# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo # -------------------------------------------------------- import os import sys sys.path.append(os.path.abspath('./modules')) import math import tempfile import gradio import torch import spaces import numpy as np import functools import trimesh import copy from PIL import Image from scipy.spatial.transform import Rotation from modules.pe3r.images import Images from modules.dust3r.inference import inference from modules.dust3r.image_pairs import make_pairs from modules.dust3r.utils.image import load_images, rgb from modules.dust3r.utils.device import to_numpy from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode from copy import deepcopy import cv2 from typing import Any, Dict, Generator,List import matplotlib.pyplot as pl from modules.mobilesamv2.utils.transforms import ResizeLongestSide from modules.pe3r.models import Models import torchvision.transforms as tvf silent = False device = 'cpu' pe3r = Models(device) #'cuda' if torch.cuda.is_available() else def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, cam_color=None, as_pointcloud=False, transparent_cams=False): assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) pts3d = to_numpy(pts3d) imgs = to_numpy(imgs) focals = to_numpy(focals) cams2world = to_numpy(cams2world) scene = trimesh.Scene() # full pointcloud if as_pointcloud: pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) scene.add_geometry(pct) else: meshes = [] for i in range(len(imgs)): meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) mesh = trimesh.Trimesh(**cat_meshes(meshes)) scene.add_geometry(mesh) # add each camera for i, pose_c2w in enumerate(cams2world): if isinstance(cam_color, list): camera_edge_color = cam_color[i] else: camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] add_scene_cam(scene, pose_c2w, camera_edge_color, None if transparent_cams else imgs[i], focals[i], imsize=imgs[i].shape[1::-1], screen_width=cam_size) rot = np.eye(4) rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) outfile = os.path.join(outdir, 'scene.glb') if not silent: print('(exporting 3D scene to', outfile, ')') scene.export(file_obj=outfile) return outfile def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False, clean_depth=False, transparent_cams=False, cam_size=0.05): """ extract 3D_model (glb file) from a reconstructed scene """ if scene is None: return None # post processes if clean_depth: scene = scene.clean_pointcloud() if mask_sky: scene = scene.mask_sky() # get optimized values from scene rgbimg = scene.ori_imgs focals = scene.get_focals().cpu() cams2world = scene.get_im_poses().cpu() # 3D pointcloud from depthmap, poses and intrinsics pts3d = to_numpy(scene.get_pts3d()) scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr))) msk = to_numpy(scene.get_masks()) return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, transparent_cams=transparent_cams, cam_size=cam_size) def mask_nms(masks, threshold=0.8): keep = [] mask_num = len(masks) suppressed = np.zeros((mask_num), dtype=np.int64) for i in range(mask_num): if suppressed[i] == 1: continue keep.append(i) for j in range(i + 1, mask_num): if suppressed[j] == 1: continue intersection = (masks[i] & masks[j]).sum() if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold: suppressed[j] = 1 return keep def filter(masks, keep): ret = [] for i, m in enumerate(masks): if i in keep: ret.append(m) return ret def mask_to_box(mask): if mask.sum() == 0: return np.array([0, 0, 0, 0]) # Get the rows and columns where the mask is 1 rows = np.any(mask, axis=1) cols = np.any(mask, axis=0) # Get top, bottom, left, right edges top = np.argmax(rows) bottom = len(rows) - 1 - np.argmax(np.flip(rows)) left = np.argmax(cols) right = len(cols) - 1 - np.argmax(np.flip(cols)) return np.array([left, top, right, bottom]) def box_xyxy_to_xywh(box_xyxy): box_xywh = deepcopy(box_xyxy) box_xywh[2] = box_xywh[2] - box_xywh[0] box_xywh[3] = box_xywh[3] - box_xywh[1] return box_xywh def get_seg_img(mask, box, image): image = image.copy() x, y, w, h = box # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8) box_area = w * h mask_area = mask.sum() if 1 - (mask_area / box_area) < 0.2: image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8) else: random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8) image[mask == 0] = random_values[mask == 0] seg_img = image[y:y+h, x:x+w, ...] return seg_img def pad_img(img): h, w, _ = img.shape l = max(w,h) pad = np.zeros((l,l,3), dtype=np.uint8) # if h > w: pad[:,(h-w)//2:(h-w)//2 + w, :] = img else: pad[(w-h)//2:(w-h)//2 + h, :, :] = img return pad def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: assert len(args) > 0 and all( len(a) == len(args[0]) for a in args ), "Batched iteration must have inputs of all the same size." n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) for b in range(n_batches): yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] def slerp(u1, u2, t): """ Perform spherical linear interpolation (Slerp) between two unit vectors. Args: - u1 (torch.Tensor): First unit vector, shape (1024,) - u2 (torch.Tensor): Second unit vector, shape (1024,) - t (float): Interpolation parameter Returns: - torch.Tensor: Interpolated vector, shape (1024,) """ # Compute the dot product dot_product = torch.sum(u1 * u2) # Ensure the dot product is within the valid range [-1, 1] dot_product = torch.clamp(dot_product, -1.0, 1.0) # Compute the angle between the vectors theta = torch.acos(dot_product) # Compute the coefficients for the interpolation sin_theta = torch.sin(theta) if sin_theta == 0: # Vectors are parallel, return a linear interpolation return u1 + t * (u2 - u1) s1 = torch.sin((1 - t) * theta) / sin_theta s2 = torch.sin(t * theta) / sin_theta # Perform the interpolation return s1 * u1 + s2 * u2 def slerp_multiple(vectors, t_values): """ Perform spherical linear interpolation (Slerp) for multiple vectors. Args: - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024) - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,) Returns: - torch.Tensor: Interpolated vector, shape (1024,) """ n = vectors.shape[0] # Initialize the interpolated vector with the first vector interpolated_vector = vectors[0] # Perform Slerp iteratively for i in range(1, n): # Perform Slerp between the current interpolated vector and the next vector t = t_values[i] / (t_values[i] + t_values[i-1]) interpolated_vector = slerp(interpolated_vector, vectors[i], t) return interpolated_vector @torch.no_grad def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform): sam_mask=[] img_area = original_size[0] * original_size[1] obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False) input_boxes1 = obj_results[0].boxes.xyxy input_boxes1 = input_boxes1.cpu().numpy() input_boxes1 = transform.apply_boxes(input_boxes1, original_size) input_boxes = torch.from_numpy(input_boxes1).to(device) # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False) # input_boxes2 = obj_results[0].boxes.xyxy # input_boxes2 = input_boxes2.cpu().numpy() # input_boxes2 = transform.apply_boxes(input_boxes2, original_size) # input_boxes2 = torch.from_numpy(input_boxes2).to(device) # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0) input_image = mobilesamv2.preprocess(sam1_image) image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state'] image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0) prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe() prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0) for (boxes,) in batch_iterator(320, input_boxes): with torch.no_grad(): image_embedding=image_embedding[0:boxes.shape[0],:,:,:] prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:] sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder( points=None, boxes=boxes, masks=None,) low_res_masks, _ = mobilesamv2.mask_decoder( image_embeddings=image_embedding, image_pe=prompt_embedding, sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=False, simple_type=True, ) low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size) sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold) for mask in sam_mask_pre: if mask.sum() / img_area > 0.002: sam_mask.append(mask.squeeze(1)) sam_mask=torch.cat(sam_mask) sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True) keep = mask_nms(sorted_sam_mask) ret_mask = filter(sorted_sam_mask, keep) return ret_mask @torch.no_grad def get_cog_feats(images): device = 'cuda' if torch.cuda.is_available() else 'cpu' cog_seg_maps = [] rev_cog_seg_maps = [] inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1]) mask_num = 0 sam1_images = images.sam1_images sam1_images_size = images.sam1_images_size np_images = images.np_images np_images_size = images.np_images_size sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform) for mask in sam1_masks: _, _, _ = pe3r.sam2.add_new_mask( inference_state=inference_state, frame_idx=0, obj_id=mask_num, mask=mask, ) mask_num += 1 video_segments = {} # video_segments contains the per-frame segmentation results for out_frame_idx, out_obj_ids, out_mask_logits in pe3r.sam2.propagate_in_video(inference_state): sam2_masks = (out_mask_logits > 0.0).squeeze(1) video_segments[out_frame_idx] = { out_obj_id: sam2_masks[i].cpu().numpy() for i, out_obj_id in enumerate(out_obj_ids) } if out_frame_idx == 0: continue sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform) for sam1_mask in sam1_masks: flg = 1 for sam2_mask in sam2_masks: # print(sam1_mask.shape, sam2_mask.shape) area1 = sam1_mask.sum() area2 = sam2_mask.sum() intersection = (sam1_mask & sam2_mask).sum() if min(intersection / area1, intersection / area2) > 0.25: flg = 0 break if flg: video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy() mask_num += 1 multi_view_clip_feats = torch.zeros((mask_num+1, 1024)) multi_view_clip_feats_map = {} multi_view_clip_area_map = {} for now_frame in range(0, len(video_segments), 1): image = np_images[now_frame] seg_img_list = [] out_obj_id_list = [] out_obj_mask_list = [] out_obj_area_list = [] # NOTE: background: -1 rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64) sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False) for out_obj_id, mask in sorted_dict_items: if mask.sum() == 0: continue rev_seg_map[mask] = out_obj_id rev_cog_seg_maps.append(rev_seg_map) seg_map = -np.ones(image.shape[:2], dtype=np.int64) sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True) for out_obj_id, mask in sorted_dict_items: if mask.sum() == 0: continue box = np.int32(box_xyxy_to_xywh(mask_to_box(mask))) if box[2] == 0 and box[3] == 0: continue # print(box) seg_img = get_seg_img(mask, box, image) pad_seg_img = cv2.resize(pad_img(seg_img), (256,256)) seg_img_list.append(pad_seg_img) seg_map[mask] = out_obj_id out_obj_id_list.append(out_obj_id) out_obj_area_list.append(np.count_nonzero(mask)) out_obj_mask_list.append(mask) if len(seg_img_list) == 0: cog_seg_maps.append(seg_map) continue seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3 seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0 inputs = pe3r.siglip_processor(images=seg_imgs, return_tensors="pt") inputs = {key: value.to(device) for key, value in inputs.items()} image_features = pe3r.siglip.get_image_features(**inputs) image_features = image_features / image_features.norm(dim=-1, keepdim=True) image_features = image_features.detach().cpu() for i in range(len(out_obj_mask_list)): for j in range(i + 1, len(out_obj_mask_list)): mask1 = out_obj_mask_list[i] mask2 = out_obj_mask_list[j] intersection = np.logical_and(mask1, mask2).sum() area1 = out_obj_area_list[i] area2 = out_obj_area_list[j] if min(intersection / area1, intersection / area2) > 0.025: conf1 = area1 / (area1 + area2) # conf2 = area2 / (area1 + area2) image_features[j] = slerp(image_features[j], image_features[i], conf1) for i, clip_feat in enumerate(image_features): id = out_obj_id_list[i] if id in multi_view_clip_feats_map.keys(): multi_view_clip_feats_map[id].append(clip_feat) multi_view_clip_area_map[id].append(out_obj_area_list[i]) else: multi_view_clip_feats_map[id] = [clip_feat] multi_view_clip_area_map[id] = [out_obj_area_list[i]] cog_seg_maps.append(seg_map) del image_features for i in range(mask_num): if i in multi_view_clip_feats_map.keys(): clip_feats = multi_view_clip_feats_map[i] mask_area = multi_view_clip_area_map[i] multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area)) else: multi_view_clip_feats[i] = torch.zeros((1024)) multi_view_clip_feats[mask_num] = torch.zeros((1024)) return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats @spaces.GPU(duration=120) def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, refid): """ from a list of images, run dust3r inference, global aligner. then run get_3D_model_from_scene """ if len(filelist) < 2: raise gradio.Error("Please input at least 2 images.") images = Images(filelist=filelist, device=device) # try: cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images) imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent) # except Exception as e: # rev_cog_seg_maps = [] # for tmp_img in images.np_images: # rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64) # rev_cog_seg_maps.append(rev_seg_map) # cog_seg_maps = rev_cog_seg_maps # cog_feats = torch.zeros((1, 1024)) # imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent) if len(imgs) == 1: imgs = [imgs[0], copy.deepcopy(imgs[0])] imgs[1]['idx'] = 1 if scenegraph_type == "swin": scenegraph_type = scenegraph_type + "-" + str(winsize) elif scenegraph_type == "oneref": scenegraph_type = scenegraph_type + "-" + str(refid) pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent) mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent) lr = 0.01 # if mode == GlobalAlignerMode.PointCloudOptimizer: loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr) try: ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) for i in range(len(imgs)): # print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None]) imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None] pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent) mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent) ori_imgs = scene.ori_imgs lr = 0.01 # if mode == GlobalAlignerMode.PointCloudOptimizer: loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr) except Exception as e: scene = scene_1 scene.imgs = ori_imgs scene.ori_imgs = ori_imgs print(e) outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size) torch.cuda.empty_cache() return scene, outfile @spaces.GPU(duration=180) def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size): texts = [text] inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt") inputs = {key: value.to(device) for key, value in inputs.items()} with torch.no_grad(): text_feats =pe3r.siglip.get_text_features(**inputs) text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True) scene.render_image(text_feats, threshold) scene.ori_imgs = scene.rendered_imgs outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size) return outfile with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname: recon_fun = functools.partial(get_reconstructed_scene, tmpdirname) # model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname) get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname) with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo: # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference scene = gradio.State(None) gradio.HTML('