import torch from ultralytics.yolo.engine.results import Results from ultralytics.yolo.utils import DEFAULT_CFG, ops from ultralytics.yolo.v8.detect.predict import DetectionPredictor class PromptModelPredictor(DetectionPredictor): def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): super().__init__(cfg, overrides, _callbacks) self.args.task = 'segment' def adjust_bboxes_to_image_border(self, boxes, image_shape, threshold=20): h, w = image_shape boxes[:, 0] = torch.where(boxes[:, 0] < threshold, torch.tensor( 0, dtype=torch.float, device=boxes.device), boxes[:, 0]) # x1 boxes[:, 1] = torch.where(boxes[:, 1] < threshold, torch.tensor( 0, dtype=torch.float, device=boxes.device), boxes[:, 1]) # y1 boxes[:, 2] = torch.where(boxes[:, 2] > w - threshold, torch.tensor( w, dtype=torch.float, device=boxes.device), boxes[:, 2]) # x2 boxes[:, 3] = torch.where(boxes[:, 3] > h - threshold, torch.tensor( h, dtype=torch.float, device=boxes.device), boxes[:, 3]) # y2 return boxes def postprocess(self, preds, img, orig_imgs): p = ops.non_max_suppression(preds[0], self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, nc=len(self.model.names), classes=self.args.classes) results = [] if len(p) == 0 or len(p[0]) == 0: print("No object detected.") return results full_box = torch.zeros_like(p[0][0]) full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0 full_box = full_box.view(1, -1) self.adjust_bboxes_to_image_border(p[0][:, :4], img.shape[2:]) for i, pred in enumerate(p): orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs path = self.batch[0] img_path = path[i] if isinstance(path, list) else path if not len(pred): results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])) continue if self.args.retina_masks: if not isinstance(orig_imgs, torch.Tensor): pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) else: if not isinstance(orig_imgs, torch.Tensor): pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) results.append( Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=torch.zeros_like(img))) return results