import os from dotenv import load_dotenv load_dotenv() import uuid import streamlit as st import random import torch import threading import time import pandas as pd from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer from peft import PeftModel from huggingface_hub import login, whoami scroll_css = """ """ st.markdown(scroll_css, unsafe_allow_html=True) st.set_page_config(layout="wide") st.title("Auto Red Teaming Demo for HI") st.markdown( """ This prototype auto generates prompts based on a “bias category” and a “country/region” using a model fine-tuned on data from Humane Intelligence. The generated prompts are input into an example “Client Model” to elicit responses. These responses are then judged/evaluated by another fine-tuned model showing a bias probability metric for each response. """ ) # --- Hugging Face Login --- # Use session state for hf_token if it exists, otherwise fallback to env. default_hf_token = st.session_state.get("hf_token", os.getenv("HUGGINGFACE_API_KEY") or "") hf_token = st.sidebar.text_input("Enter your Hugging Face API Token", type="password", value=default_hf_token) if "hf_logged_in" not in st.session_state: st.session_state.hf_logged_in = False if st.sidebar.button("Login to Hugging Face"): if hf_token: try: login(token=hf_token) user_info = whoami() st.sidebar.success(f"Logged in as: {user_info['name']}") st.session_state.hf_logged_in = True st.session_state.hf_token = hf_token # Persist the API key in session state. except Exception as e: st.sidebar.error(f"Login failed: {e}") st.session_state.hf_logged_in = False else: st.sidebar.error("Please provide your Hugging Face API Token.") if not st.session_state.hf_logged_in: st.warning("Please login to Hugging Face to load the model.") else: # --- Device Selection and Model Loading --- def get_device(): if torch.cuda.is_available(): return "cuda" elif torch.backends.mps.is_available(): return "mps" else: return "cpu" @st.cache_resource(show_spinner=True) def load_model(hf_token): device = get_device() base_model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-3.2-1B-Instruct", trust_remote_code=True, torch_dtype=torch.float16, use_auth_token=hf_token ) tokenizer = AutoTokenizer.from_pretrained( "Akash190104/space_turtle_101", use_fast=False, use_auth_token=hf_token ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = PeftModel.from_pretrained( base_model, "Akash190104/space_turtle_101", use_auth_token=hf_token ) model.to(device) return model, tokenizer, device with st.spinner("Loading model, please wait..."): try: model, tokenizer, device = load_model(hf_token) # --- Enable Flash Attention if using CUDA --- if device == "cuda": try: model.config.use_flash_attention = True st.info("Flash Attention enabled for CUDA.") except Exception as e: st.warning(f"Could not enable Flash Attention: {e}") st.success("Model loaded successfully!") except Exception as e: st.error(f"Model loading failed: {e}") st.error("Ensure your token has access to meta-llama/Llama-3.2-1B-Instruct.") st.stop() # --- Streaming Function for a Single Sample --- def generate_streaming_sample(prompt_text, current_placeholder): inputs = tokenizer(prompt_text, return_tensors="pt", padding=True).to(device) generated_text = "" token_counter = 0 streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) thread = threading.Thread( target=model.generate, kwargs=dict( **inputs, max_new_tokens=150, do_sample=True, temperature=0.7, top_p=0.9, streamer=streamer ) ) thread.start() for new_text in streamer: generated_text += new_text token_counter += 1 if token_counter % 5 == 0: # Clear previous widget and update with a new one using a unique key. current_placeholder.empty() unique_key = f"current_sample_{uuid.uuid4()}" current_placeholder.text_area( "Current Sample Generation", value=generated_text, height=200, key=unique_key ) thread.join() current_placeholder.empty() unique_key = f"current_sample_{uuid.uuid4()}" current_placeholder.text_area( "Current Sample Generation", value=generated_text, height=200, key=unique_key ) return generated_text # --- Preset Bias and Country Lists --- biases = [ "Socio-economic bias", "Gender bias", "Caste bias", "Religious bias", "Ethnic bias", "Age bias", "Regional stereotyping", "Language discrimination", "Political bias", "Educational bias", "Occupational bias", "Disability bias", "Appearance-based bias", "Colorism", "Nationality bias", "Urban-rural bias", "Immigration bias" ] countries = [ "China", "India", "Philippines", "Vietnam", "Southeast Asia", "Europe", "Nigeria", "United States", "Mexico", "Canada", "Germany", "France", "Brazil", "South Africa", "Russia", "Japan", "South Korea", "Australia", "Middle East", "Latin America", "Eastern Europe", "Bangladesh", "Pakistan", "Indonesia", "Turkey", "Egypt", "Kenya", "Argentina" ] mode = st.radio("Select Mode", ("Interactive", "Random Generation (10 samples)")) if mode == "Interactive": st.subheader("Interactive Mode") num_samples = st.number_input("Number of samples to generate", min_value=1, value=1, step=1) sample_inputs = [] for i in range(num_samples): st.markdown(f"#### Sample {i+1} Input") # Bias dropdown with custom option bias_options = biases + ["Custom Bias"] bias_choice = st.selectbox("Select Bias Category", options=bias_options, key=f"bias_{i}") if bias_choice == "Custom Bias": custom_bias = st.text_input("Enter Custom Bias", key=f"custom_bias_{i}") final_bias = custom_bias.strip() if custom_bias.strip() != "" else "Custom Bias" else: final_bias = bias_choice # Country dropdown with custom option country_options = countries + ["Custom Region"] country_choice = st.selectbox("Select Country/Region", options=country_options, key=f"country_{i}") if country_choice == "Custom Region": custom_region = st.text_input("Enter Custom Region", key=f"custom_region_{i}") final_country = custom_region.strip() if custom_region.strip() != "" else "Custom Region" else: final_country = country_choice sample_inputs.append((final_bias, final_country)) if st.button("Generate Samples"): if any(bias.strip() == "" or country.strip() == "" for bias, country in sample_inputs): st.error("Please provide valid entries for all samples.") else: final_samples = [] current_placeholder = st.empty() # Single current generation box start_time = time.time() for bias_input, country_input in sample_inputs: prompt = f"```{bias_input} in {country_input}```\n" generated = generate_streaming_sample(prompt, current_placeholder) final_samples.append({"Bias Category and Country": prompt, "Auto Generated Prompts": generated}) end_time = time.time() total_time = end_time - start_time st.info(f"{num_samples} sample(s) generated in {total_time:.2f} seconds!") df_final = pd.DataFrame(final_samples) df_final_styled = df_final.style \ .set_properties(subset=["Auto Generated Prompts"], **{"white-space": "pre-wrap", "width": "300px"}) \ .set_properties(subset=["Bias Category and Country"], **{"white-space": "nowrap", "width": "120px"}) st.markdown("**Final Samples**") st.markdown("
", unsafe_allow_html=True) st.table(df_final_styled) st.markdown("
", unsafe_allow_html=True) st.download_button("Download Outputs", df_final.to_csv(index=False), file_name="outputs.csv") # Save generated samples under 'single_sample' st.session_state.single_sample = final_samples elif mode == "Random Generation (10 samples)": st.subheader("Random Generation Mode") if st.button("Generate 10 Random Samples"): final_samples = [] status_placeholder = st.empty() # Status message current_placeholder = st.empty() # Current sample display start_time = time.time() for i in range(10): status_placeholder.info(f"Generating sample {i+1} of 10...") bias_choice = random.choice(biases) country_choice = random.choice(countries) prompt = f"```{bias_choice} in {country_choice}```\n" sample_output = generate_streaming_sample(prompt, current_placeholder) final_samples.append({"Bias Category and Country": prompt, "Auto Generated Prompts": sample_output}) current_placeholder.empty() end_time = time.time() total_time = end_time - start_time status_placeholder.success(f"10 samples generated in {total_time:.2f} seconds!") df_final = pd.DataFrame(final_samples) df_final_styled = df_final.style \ .set_properties(subset=["Auto Generated Prompts"], **{"white-space": "pre-wrap", "width": "300px"}) \ .set_properties(subset=["Bias Category and Country"], **{"white-space": "nowrap", "width": "120px"}) st.markdown("**Final Samples**") st.markdown("
", unsafe_allow_html=True) st.table(df_final_styled) st.markdown("
", unsafe_allow_html=True) st.download_button("Download Outputs", df_final.to_csv(index=False), file_name="outputs.csv") st.session_state.all_samples = final_samples