humanist96 commited on
Commit
949e47b
·
1 Parent(s): de9d51f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -155
app.py CHANGED
@@ -1,160 +1,20 @@
1
- import streamlit as st
2
- import plotly.express as px
3
- import pandas as pd
4
- import os
5
- import warnings
6
- warnings.filterwarnings('ignore')
7
 
8
- st.set_page_config(page_title="Superstore!!!", page_icon=":bar_chart:",layout="wide")
9
 
10
- st.title(" :bar_chart: Sample SuperStore EDA")
11
- st.markdown('<style>div.block-container{padding-top:1rem;}</style>',unsafe_allow_html=True)
 
12
 
13
- fl = st.file_uploader(":file_folder: Upload a file",type=(["csv","txt","xlsx","xls"]))
14
- if fl is not None:
15
- filename = fl.name
16
- st.write(filename)
17
- df = pd.read_csv(filename, encoding = "ISO-8859-1")
18
- else:
19
- os.chdir(r"C:\Users\AEPAC\Desktop\Streamlit")
20
- df = pd.read_csv("Superstore.csv", encoding = "ISO-8859-1")
21
 
22
- col1, col2 = st.columns((2))
23
- df["Order Date"] = pd.to_datetime(df["Order Date"])
24
 
25
- # Getting the min and max date
26
- startDate = pd.to_datetime(df["Order Date"]).min()
27
- endDate = pd.to_datetime(df["Order Date"]).max()
28
-
29
- with col1:
30
- date1 = pd.to_datetime(st.date_input("Start Date", startDate))
31
-
32
- with col2:
33
- date2 = pd.to_datetime(st.date_input("End Date", endDate))
34
-
35
- df = df[(df["Order Date"] >= date1) & (df["Order Date"] <= date2)].copy()
36
-
37
- st.sidebar.header("Choose your filter: ")
38
- # Create for Region
39
- region = st.sidebar.multiselect("Pick your Region", df["Region"].unique())
40
- if not region:
41
- df2 = df.copy()
42
- else:
43
- df2 = df[df["Region"].isin(region)]
44
-
45
- # Create for State
46
- state = st.sidebar.multiselect("Pick the State", df2["State"].unique())
47
- if not state:
48
- df3 = df2.copy()
49
- else:
50
- df3 = df2[df2["State"].isin(state)]
51
-
52
- # Create for City
53
- city = st.sidebar.multiselect("Pick the City",df3["City"].unique())
54
-
55
- # Filter the data based on Region, State and City
56
-
57
- if not region and not state and not city:
58
- filtered_df = df
59
- elif not state and not city:
60
- filtered_df = df[df["Region"].isin(region)]
61
- elif not region and not city:
62
- filtered_df = df[df["State"].isin(state)]
63
- elif state and city:
64
- filtered_df = df3[df["State"].isin(state) & df3["City"].isin(city)]
65
- elif region and city:
66
- filtered_df = df3[df["Region"].isin(region) & df3["City"].isin(city)]
67
- elif region and state:
68
- filtered_df = df3[df["Region"].isin(region) & df3["State"].isin(state)]
69
- elif city:
70
- filtered_df = df3[df3["City"].isin(city)]
71
- else:
72
- filtered_df = df3[df3["Region"].isin(region) & df3["State"].isin(state) & df3["City"].isin(city)]
73
-
74
- category_df = filtered_df.groupby(by = ["Category"], as_index = False)["Sales"].sum()
75
-
76
- with col1:
77
- st.subheader("Category wise Sales")
78
- fig = px.bar(category_df, x = "Category", y = "Sales", text = ['${:,.2f}'.format(x) for x in category_df["Sales"]],
79
- template = "seaborn")
80
- st.plotly_chart(fig,use_container_width=True, height = 200)
81
-
82
- with col2:
83
- st.subheader("Region wise Sales")
84
- fig = px.pie(filtered_df, values = "Sales", names = "Region", hole = 0.5)
85
- fig.update_traces(text = filtered_df["Region"], textposition = "outside")
86
- st.plotly_chart(fig,use_container_width=True)
87
-
88
- cl1, cl2 = st.columns((2))
89
- with cl1:
90
- with st.expander("Category_ViewData"):
91
- st.write(category_df.style.background_gradient(cmap="Blues"))
92
- csv = category_df.to_csv(index = False).encode('utf-8')
93
- st.download_button("Download Data", data = csv, file_name = "Category.csv", mime = "text/csv",
94
- help = 'Click here to download the data as a CSV file')
95
-
96
- with cl2:
97
- with st.expander("Region_ViewData"):
98
- region = filtered_df.groupby(by = "Region", as_index = False)["Sales"].sum()
99
- st.write(region.style.background_gradient(cmap="Oranges"))
100
- csv = region.to_csv(index = False).encode('utf-8')
101
- st.download_button("Download Data", data = csv, file_name = "Region.csv", mime = "text/csv",
102
- help = 'Click here to download the data as a CSV file')
103
-
104
- filtered_df["month_year"] = filtered_df["Order Date"].dt.to_period("M")
105
- st.subheader('Time Series Analysis')
106
-
107
- linechart = pd.DataFrame(filtered_df.groupby(filtered_df["month_year"].dt.strftime("%Y : %b"))["Sales"].sum()).reset_index()
108
- fig2 = px.line(linechart, x = "month_year", y="Sales", labels = {"Sales": "Amount"},height=500, width = 1000,template="gridon")
109
- st.plotly_chart(fig2,use_container_width=True)
110
-
111
- with st.expander("View Data of TimeSeries:"):
112
- st.write(linechart.T.style.background_gradient(cmap="Blues"))
113
- csv = linechart.to_csv(index=False).encode("utf-8")
114
- st.download_button('Download Data', data = csv, file_name = "TimeSeries.csv", mime ='text/csv')
115
-
116
- # Create a treem based on Region, category, sub-Category
117
- st.subheader("Hierarchical view of Sales using TreeMap")
118
- fig3 = px.treemap(filtered_df, path = ["Region","Category","Sub-Category"], values = "Sales",hover_data = ["Sales"],
119
- color = "Sub-Category")
120
- fig3.update_layout(width = 800, height = 650)
121
- st.plotly_chart(fig3, use_container_width=True)
122
-
123
- chart1, chart2 = st.columns((2))
124
- with chart1:
125
- st.subheader('Segment wise Sales')
126
- fig = px.pie(filtered_df, values = "Sales", names = "Segment", template = "plotly_dark")
127
- fig.update_traces(text = filtered_df["Segment"], textposition = "inside")
128
- st.plotly_chart(fig,use_container_width=True)
129
-
130
- with chart2:
131
- st.subheader('Category wise Sales')
132
- fig = px.pie(filtered_df, values = "Sales", names = "Category", template = "gridon")
133
- fig.update_traces(text = filtered_df["Category"], textposition = "inside")
134
- st.plotly_chart(fig,use_container_width=True)
135
-
136
- import plotly.figure_factory as ff
137
- st.subheader(":point_right: Month wise Sub-Category Sales Summary")
138
- with st.expander("Summary_Table"):
139
- df_sample = df[0:5][["Region","State","City","Category","Sales","Profit","Quantity"]]
140
- fig = ff.create_table(df_sample, colorscale = "Cividis")
141
- st.plotly_chart(fig, use_container_width=True)
142
-
143
- st.markdown("Month wise sub-Category Table")
144
- filtered_df["month"] = filtered_df["Order Date"].dt.month_name()
145
- sub_category_Year = pd.pivot_table(data = filtered_df, values = "Sales", index = ["Sub-Category"],columns = "month")
146
- st.write(sub_category_Year.style.background_gradient(cmap="Blues"))
147
-
148
- # Create a scatter plot
149
- data1 = px.scatter(filtered_df, x = "Sales", y = "Profit", size = "Quantity")
150
- data1['layout'].update(title="Relationship between Sales and Profits using Scatter Plot.",
151
- titlefont = dict(size=20),xaxis = dict(title="Sales",titlefont=dict(size=19)),
152
- yaxis = dict(title = "Profit", titlefont = dict(size=19)))
153
- st.plotly_chart(data1,use_container_width=True)
154
-
155
- with st.expander("View Data"):
156
- st.write(filtered_df.iloc[:500,1:20:2].style.background_gradient(cmap="Oranges"))
157
-
158
- # Download orginal DataSet
159
- csv = df.to_csv(index = False).encode('utf-8')
160
- st.download_button('Download Data', data = csv, file_name = "Data.csv",mime = "text/csv")
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from datetime import datetime timedelta
5
+ from io import StringIO
 
6
 
7
+ st.title( Cumulative Trend )
8
 
9
+ uploaded file = st. file_ uploader("Choose a CSV file including 'date' column. )
10
+
11
+ if uploaded_file is not None:
12
 
13
+ df = pd.read CSV (uploaded_file, sep= usecols=[ date "])
14
+ df = df.dropna (axis=0)
 
 
 
 
 
 
15
 
16
+ date_list pd.to datetime (df.squeeze()) .dt.date.tolist()
17
+ date_list.sort()
18
 
19
+ start_date = date_list[0]
20
+ end_date = date_list[-1]