Spaces:
Sleeping
Sleeping
File size: 1,472 Bytes
bcbf0c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import functools
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras import layers
from ..layers import Resizing
Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
def MlpBlock(
mlp_dim: int,
dropout_rate: float = 0.0,
use_bias: bool = True,
name: str = "mlp_block",
):
"""A 1-hidden-layer MLP block, applied over the last dimension."""
def apply(x):
d = K.int_shape(x)[-1]
x = layers.Dense(mlp_dim, use_bias=use_bias, name=f"{name}_Dense_0")(x)
x = tf.nn.gelu(x, approximate=True)
x = layers.Dropout(dropout_rate)(x)
x = layers.Dense(d, use_bias=use_bias, name=f"{name}_Dense_1")(x)
return x
return apply
def UpSampleRatio(
num_channels: int, ratio: float, use_bias: bool = True, name: str = "upsample"
):
"""Upsample features given a ratio > 0."""
def apply(x):
n, h, w, c = (
K.int_shape(x)[0],
K.int_shape(x)[1],
K.int_shape(x)[2],
K.int_shape(x)[3],
)
# Following `jax.image.resize()`
x = Resizing(
height=int(h * ratio),
width=int(w * ratio),
method="bilinear",
antialias=True,
name=f"{name}_resizing_{K.get_uid('Resizing')}",
)(x)
x = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x)
return x
return apply
|