Spaces:
Sleeping
Sleeping
File size: 14,066 Bytes
bcbf0c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import functools
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras import layers
from .blocks.attentions import SAM
from .blocks.bottleneck import BottleneckBlock
from .blocks.misc_gating import CrossGatingBlock
from .blocks.others import UpSampleRatio
from .blocks.unet import UNetDecoderBlock, UNetEncoderBlock
from .layers import Resizing
Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same")
ConvT_up = functools.partial(
layers.Conv2DTranspose, kernel_size=(2, 2), strides=(2, 2), padding="same"
)
Conv_down = functools.partial(
layers.Conv2D, kernel_size=(4, 4), strides=(2, 2), padding="same"
)
def MAXIM(
features: int = 64,
depth: int = 3,
num_stages: int = 2,
num_groups: int = 1,
use_bias: bool = True,
num_supervision_scales: int = 1,
lrelu_slope: float = 0.2,
use_global_mlp: bool = True,
use_cross_gating: bool = True,
high_res_stages: int = 2,
block_size_hr=(16, 16),
block_size_lr=(8, 8),
grid_size_hr=(16, 16),
grid_size_lr=(8, 8),
num_bottleneck_blocks: int = 1,
block_gmlp_factor: int = 2,
grid_gmlp_factor: int = 2,
input_proj_factor: int = 2,
channels_reduction: int = 4,
num_outputs: int = 3,
dropout_rate: float = 0.0,
):
"""The MAXIM model function with multi-stage and multi-scale supervision.
For more model details, please check the CVPR paper:
MAXIM: MUlti-Axis MLP for Image Processing (https://arxiv.org/abs/2201.02973)
Attributes:
features: initial hidden dimension for the input resolution.
depth: the number of downsampling depth for the model.
num_stages: how many stages to use. It will also affects the output list.
num_groups: how many blocks each stage contains.
use_bias: whether to use bias in all the conv/mlp layers.
num_supervision_scales: the number of desired supervision scales.
lrelu_slope: the negative slope parameter in leaky_relu layers.
use_global_mlp: whether to use the multi-axis gated MLP block (MAB) in each
layer.
use_cross_gating: whether to use the cross-gating MLP block (CGB) in the
skip connections and multi-stage feature fusion layers.
high_res_stages: how many stages are specificied as high-res stages. The
rest (depth - high_res_stages) are called low_res_stages.
block_size_hr: the block_size parameter for high-res stages.
block_size_lr: the block_size parameter for low-res stages.
grid_size_hr: the grid_size parameter for high-res stages.
grid_size_lr: the grid_size parameter for low-res stages.
num_bottleneck_blocks: how many bottleneck blocks.
block_gmlp_factor: the input projection factor for block_gMLP layers.
grid_gmlp_factor: the input projection factor for grid_gMLP layers.
input_proj_factor: the input projection factor for the MAB block.
channels_reduction: the channel reduction factor for SE layer.
num_outputs: the output channels.
dropout_rate: Dropout rate.
Returns:
The output contains a list of arrays consisting of multi-stage multi-scale
outputs. For example, if num_stages = num_supervision_scales = 3 (the
model used in the paper), the output specs are: outputs =
[[output_stage1_scale1, output_stage1_scale2, output_stage1_scale3],
[output_stage2_scale1, output_stage2_scale2, output_stage2_scale3],
[output_stage3_scale1, output_stage3_scale2, output_stage3_scale3],]
The final output can be retrieved by outputs[-1][-1].
"""
def apply(x):
n, h, w, c = (
K.int_shape(x)[0],
K.int_shape(x)[1],
K.int_shape(x)[2],
K.int_shape(x)[3],
) # input image shape
shortcuts = []
shortcuts.append(x)
# Get multi-scale input images
for i in range(1, num_supervision_scales):
resizing_layer = Resizing(
height=h // (2 ** i),
width=w // (2 ** i),
method="nearest",
antialias=True, # Following `jax.image.resize()`.
name=f"initial_resizing_{K.get_uid('Resizing')}",
)
shortcuts.append(resizing_layer(x))
# store outputs from all stages and all scales
# Eg, [[(64, 64, 3), (128, 128, 3), (256, 256, 3)], # Stage-1 outputs
# [(64, 64, 3), (128, 128, 3), (256, 256, 3)],] # Stage-2 outputs
outputs_all = []
sam_features, encs_prev, decs_prev = [], [], []
for idx_stage in range(num_stages):
# Input convolution, get multi-scale input features
x_scales = []
for i in range(num_supervision_scales):
x_scale = Conv3x3(
filters=(2 ** i) * features,
use_bias=use_bias,
name=f"stage_{idx_stage}_input_conv_{i}",
)(shortcuts[i])
# If later stages, fuse input features with SAM features from prev stage
if idx_stage > 0:
# use larger blocksize at high-res stages
if use_cross_gating:
block_size = (
block_size_hr if i < high_res_stages else block_size_lr
)
grid_size = grid_size_hr if i < high_res_stages else block_size_lr
x_scale, _ = CrossGatingBlock(
features=(2 ** i) * features,
block_size=block_size,
grid_size=grid_size,
dropout_rate=dropout_rate,
input_proj_factor=input_proj_factor,
upsample_y=False,
use_bias=use_bias,
name=f"stage_{idx_stage}_input_fuse_sam_{i}",
)(x_scale, sam_features.pop())
else:
x_scale = Conv1x1(
filters=(2 ** i) * features,
use_bias=use_bias,
name=f"stage_{idx_stage}_input_catconv_{i}",
)(tf.concat([x_scale, sam_features.pop()], axis=-1))
x_scales.append(x_scale)
# start encoder blocks
encs = []
x = x_scales[0] # First full-scale input feature
for i in range(depth): # 0, 1, 2
# use larger blocksize at high-res stages, vice versa.
block_size = block_size_hr if i < high_res_stages else block_size_lr
grid_size = grid_size_hr if i < high_res_stages else block_size_lr
use_cross_gating_layer = True if idx_stage > 0 else False
# Multi-scale input if multi-scale supervision
x_scale = x_scales[i] if i < num_supervision_scales else None
# UNet Encoder block
enc_prev = encs_prev.pop() if idx_stage > 0 else None
dec_prev = decs_prev.pop() if idx_stage > 0 else None
x, bridge = UNetEncoderBlock(
num_channels=(2 ** i) * features,
num_groups=num_groups,
downsample=True,
lrelu_slope=lrelu_slope,
block_size=block_size,
grid_size=grid_size,
block_gmlp_factor=block_gmlp_factor,
grid_gmlp_factor=grid_gmlp_factor,
input_proj_factor=input_proj_factor,
channels_reduction=channels_reduction,
use_global_mlp=use_global_mlp,
dropout_rate=dropout_rate,
use_bias=use_bias,
use_cross_gating=use_cross_gating_layer,
name=f"stage_{idx_stage}_encoder_block_{i}",
)(x, skip=x_scale, enc=enc_prev, dec=dec_prev)
# Cache skip signals
encs.append(bridge)
# Global MLP bottleneck blocks
for i in range(num_bottleneck_blocks):
x = BottleneckBlock(
block_size=block_size_lr,
grid_size=block_size_lr,
features=(2 ** (depth - 1)) * features,
num_groups=num_groups,
block_gmlp_factor=block_gmlp_factor,
grid_gmlp_factor=grid_gmlp_factor,
input_proj_factor=input_proj_factor,
dropout_rate=dropout_rate,
use_bias=use_bias,
channels_reduction=channels_reduction,
name=f"stage_{idx_stage}_global_block_{i}",
)(x)
# cache global feature for cross-gating
global_feature = x
# start cross gating. Use multi-scale feature fusion
skip_features = []
for i in reversed(range(depth)): # 2, 1, 0
# use larger blocksize at high-res stages
block_size = block_size_hr if i < high_res_stages else block_size_lr
grid_size = grid_size_hr if i < high_res_stages else block_size_lr
# get additional multi-scale signals
signal = tf.concat(
[
UpSampleRatio(
num_channels=(2 ** i) * features,
ratio=2 ** (j - i),
use_bias=use_bias,
name=f"UpSampleRatio_{K.get_uid('UpSampleRatio')}",
)(enc)
for j, enc in enumerate(encs)
],
axis=-1,
)
# Use cross-gating to cross modulate features
if use_cross_gating:
skips, global_feature = CrossGatingBlock(
features=(2 ** i) * features,
block_size=block_size,
grid_size=grid_size,
input_proj_factor=input_proj_factor,
dropout_rate=dropout_rate,
upsample_y=True,
use_bias=use_bias,
name=f"stage_{idx_stage}_cross_gating_block_{i}",
)(signal, global_feature)
else:
skips = Conv1x1(
filters=(2 ** i) * features, use_bias=use_bias, name="Conv_0"
)(signal)
skips = Conv3x3(
filters=(2 ** i) * features, use_bias=use_bias, name="Conv_1"
)(skips)
skip_features.append(skips)
# start decoder. Multi-scale feature fusion of cross-gated features
outputs, decs, sam_features = [], [], []
for i in reversed(range(depth)):
# use larger blocksize at high-res stages
block_size = block_size_hr if i < high_res_stages else block_size_lr
grid_size = grid_size_hr if i < high_res_stages else block_size_lr
# get multi-scale skip signals from cross-gating block
signal = tf.concat(
[
UpSampleRatio(
num_channels=(2 ** i) * features,
ratio=2 ** (depth - j - 1 - i),
use_bias=use_bias,
name=f"UpSampleRatio_{K.get_uid('UpSampleRatio')}",
)(skip)
for j, skip in enumerate(skip_features)
],
axis=-1,
)
# Decoder block
x = UNetDecoderBlock(
num_channels=(2 ** i) * features,
num_groups=num_groups,
lrelu_slope=lrelu_slope,
block_size=block_size,
grid_size=grid_size,
block_gmlp_factor=block_gmlp_factor,
grid_gmlp_factor=grid_gmlp_factor,
input_proj_factor=input_proj_factor,
channels_reduction=channels_reduction,
use_global_mlp=use_global_mlp,
dropout_rate=dropout_rate,
use_bias=use_bias,
name=f"stage_{idx_stage}_decoder_block_{i}",
)(x, bridge=signal)
# Cache decoder features for later-stage's usage
decs.append(x)
# output conv, if not final stage, use supervised-attention-block.
if i < num_supervision_scales:
if idx_stage < num_stages - 1: # not last stage, apply SAM
sam, output = SAM(
num_channels=(2 ** i) * features,
output_channels=num_outputs,
use_bias=use_bias,
name=f"stage_{idx_stage}_supervised_attention_module_{i}",
)(x, shortcuts[i])
outputs.append(output)
sam_features.append(sam)
else: # Last stage, apply output convolutions
output = Conv3x3(
num_outputs,
use_bias=use_bias,
name=f"stage_{idx_stage}_output_conv_{i}",
)(x)
output = output + shortcuts[i]
outputs.append(output)
# Cache encoder and decoder features for later-stage's usage
encs_prev = encs[::-1]
decs_prev = decs
# Store outputs
outputs_all.append(outputs)
return outputs_all
return apply
|