sayakpaul's picture
sayakpaul HF staff
initial files.
bcbf0c9
import functools
import tensorflow as tf
from tensorflow.keras import layers
from .others import MlpBlock
Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same")
Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
def CALayer(
num_channels: int,
reduction: int = 4,
use_bias: bool = True,
name: str = "channel_attention",
):
"""Squeeze-and-excitation block for channel attention.
ref: https://arxiv.org/abs/1709.01507
"""
def apply(x):
# 2D global average pooling
y = layers.GlobalAvgPool2D(keepdims=True)(x)
# Squeeze (in Squeeze-Excitation)
y = Conv1x1(
filters=num_channels // reduction, use_bias=use_bias, name=f"{name}_Conv_0"
)(y)
y = tf.nn.relu(y)
# Excitation (in Squeeze-Excitation)
y = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_1")(y)
y = tf.nn.sigmoid(y)
return x * y
return apply
def RCAB(
num_channels: int,
reduction: int = 4,
lrelu_slope: float = 0.2,
use_bias: bool = True,
name: str = "residual_ca",
):
"""Residual channel attention block. Contains LN,Conv,lRelu,Conv,SELayer."""
def apply(x):
shortcut = x
x = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm")(x)
x = Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_conv1")(x)
x = tf.nn.leaky_relu(x, alpha=lrelu_slope)
x = Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_conv2")(x)
x = CALayer(
num_channels=num_channels,
reduction=reduction,
use_bias=use_bias,
name=f"{name}_channel_attention",
)(x)
return x + shortcut
return apply
def RDCAB(
num_channels: int,
reduction: int = 16,
use_bias: bool = True,
dropout_rate: float = 0.0,
name: str = "rdcab",
):
"""Residual dense channel attention block. Used in Bottlenecks."""
def apply(x):
y = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm")(x)
y = MlpBlock(
mlp_dim=num_channels,
dropout_rate=dropout_rate,
use_bias=use_bias,
name=f"{name}_channel_mixing",
)(y)
y = CALayer(
num_channels=num_channels,
reduction=reduction,
use_bias=use_bias,
name=f"{name}_channel_attention",
)(y)
x = x + y
return x
return apply
def SAM(
num_channels: int,
output_channels: int = 3,
use_bias: bool = True,
name: str = "sam",
):
"""Supervised attention module for multi-stage training.
Introduced by MPRNet [CVPR2021]: https://github.com/swz30/MPRNet
"""
def apply(x, x_image):
"""Apply the SAM module to the input and num_channels.
Args:
x: the output num_channels from UNet decoder with shape (h, w, c)
x_image: the input image with shape (h, w, 3)
Returns:
A tuple of tensors (x1, image) where (x1) is the sam num_channels used for the
next stage, and (image) is the output restored image at current stage.
"""
# Get num_channels
x1 = Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x)
# Output restored image X_s
if output_channels == 3:
image = (
Conv3x3(
filters=output_channels, use_bias=use_bias, name=f"{name}_Conv_1"
)(x)
+ x_image
)
else:
image = Conv3x3(
filters=output_channels, use_bias=use_bias, name=f"{name}_Conv_1"
)(x)
# Get attention maps for num_channels
x2 = tf.nn.sigmoid(
Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_2")(image)
)
# Get attended feature maps
x1 = x1 * x2
# Residual connection
x1 = x1 + x
return x1, image
return apply