Spaces:
Sleeping
Sleeping
import functools | |
import tensorflow as tf | |
from tensorflow.keras import layers | |
from .others import MlpBlock | |
Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same") | |
Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same") | |
def CALayer( | |
num_channels: int, | |
reduction: int = 4, | |
use_bias: bool = True, | |
name: str = "channel_attention", | |
): | |
"""Squeeze-and-excitation block for channel attention. | |
ref: https://arxiv.org/abs/1709.01507 | |
""" | |
def apply(x): | |
# 2D global average pooling | |
y = layers.GlobalAvgPool2D(keepdims=True)(x) | |
# Squeeze (in Squeeze-Excitation) | |
y = Conv1x1( | |
filters=num_channels // reduction, use_bias=use_bias, name=f"{name}_Conv_0" | |
)(y) | |
y = tf.nn.relu(y) | |
# Excitation (in Squeeze-Excitation) | |
y = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_1")(y) | |
y = tf.nn.sigmoid(y) | |
return x * y | |
return apply | |
def RCAB( | |
num_channels: int, | |
reduction: int = 4, | |
lrelu_slope: float = 0.2, | |
use_bias: bool = True, | |
name: str = "residual_ca", | |
): | |
"""Residual channel attention block. Contains LN,Conv,lRelu,Conv,SELayer.""" | |
def apply(x): | |
shortcut = x | |
x = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm")(x) | |
x = Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_conv1")(x) | |
x = tf.nn.leaky_relu(x, alpha=lrelu_slope) | |
x = Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_conv2")(x) | |
x = CALayer( | |
num_channels=num_channels, | |
reduction=reduction, | |
use_bias=use_bias, | |
name=f"{name}_channel_attention", | |
)(x) | |
return x + shortcut | |
return apply | |
def RDCAB( | |
num_channels: int, | |
reduction: int = 16, | |
use_bias: bool = True, | |
dropout_rate: float = 0.0, | |
name: str = "rdcab", | |
): | |
"""Residual dense channel attention block. Used in Bottlenecks.""" | |
def apply(x): | |
y = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm")(x) | |
y = MlpBlock( | |
mlp_dim=num_channels, | |
dropout_rate=dropout_rate, | |
use_bias=use_bias, | |
name=f"{name}_channel_mixing", | |
)(y) | |
y = CALayer( | |
num_channels=num_channels, | |
reduction=reduction, | |
use_bias=use_bias, | |
name=f"{name}_channel_attention", | |
)(y) | |
x = x + y | |
return x | |
return apply | |
def SAM( | |
num_channels: int, | |
output_channels: int = 3, | |
use_bias: bool = True, | |
name: str = "sam", | |
): | |
"""Supervised attention module for multi-stage training. | |
Introduced by MPRNet [CVPR2021]: https://github.com/swz30/MPRNet | |
""" | |
def apply(x, x_image): | |
"""Apply the SAM module to the input and num_channels. | |
Args: | |
x: the output num_channels from UNet decoder with shape (h, w, c) | |
x_image: the input image with shape (h, w, 3) | |
Returns: | |
A tuple of tensors (x1, image) where (x1) is the sam num_channels used for the | |
next stage, and (image) is the output restored image at current stage. | |
""" | |
# Get num_channels | |
x1 = Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x) | |
# Output restored image X_s | |
if output_channels == 3: | |
image = ( | |
Conv3x3( | |
filters=output_channels, use_bias=use_bias, name=f"{name}_Conv_1" | |
)(x) | |
+ x_image | |
) | |
else: | |
image = Conv3x3( | |
filters=output_channels, use_bias=use_bias, name=f"{name}_Conv_1" | |
)(x) | |
# Get attention maps for num_channels | |
x2 = tf.nn.sigmoid( | |
Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_2")(image) | |
) | |
# Get attended feature maps | |
x1 = x1 * x2 | |
# Residual connection | |
x1 = x1 + x | |
return x1, image | |
return apply | |