Spaces:
Sleeping
Sleeping
import functools | |
from tensorflow.keras import layers | |
from .attentions import RDCAB | |
from .misc_gating import ResidualSplitHeadMultiAxisGmlpLayer | |
Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same") | |
def BottleneckBlock( | |
features: int, | |
block_size, | |
grid_size, | |
num_groups: int = 1, | |
block_gmlp_factor: int = 2, | |
grid_gmlp_factor: int = 2, | |
input_proj_factor: int = 2, | |
channels_reduction: int = 4, | |
dropout_rate: float = 0.0, | |
use_bias: bool = True, | |
name: str = "bottleneck_block", | |
): | |
"""The bottleneck block consisting of multi-axis gMLP block and RDCAB.""" | |
def apply(x): | |
# input projection | |
x = Conv1x1(filters=features, use_bias=use_bias, name=f"{name}_input_proj")(x) | |
shortcut_long = x | |
for i in range(num_groups): | |
x = ResidualSplitHeadMultiAxisGmlpLayer( | |
grid_size=grid_size, | |
block_size=block_size, | |
grid_gmlp_factor=grid_gmlp_factor, | |
block_gmlp_factor=block_gmlp_factor, | |
input_proj_factor=input_proj_factor, | |
use_bias=use_bias, | |
dropout_rate=dropout_rate, | |
name=f"{name}_SplitHeadMultiAxisGmlpLayer_{i}", | |
)(x) | |
# Channel-mixing part, which provides within-patch communication. | |
x = RDCAB( | |
num_channels=features, | |
reduction=channels_reduction, | |
use_bias=use_bias, | |
name=f"{name}_channel_attention_block_1_{i}", | |
)(x) | |
# long skip-connect | |
x = x + shortcut_long | |
return x | |
return apply | |