Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer | |
import torch | |
from sacremoses import MosesPunctNormalizer | |
import re | |
import unicodedata | |
import sys | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the small model | |
small_tokenizer = NllbTokenizer.from_pretrained("hunterschep/amis-zh-600M") | |
small_model = AutoModelForSeq2SeqLM.from_pretrained("hunterschep/amis-zh-600M").to(device) | |
# Fix tokenizer | |
def fix_tokenizer(tokenizer, new_lang='ami_Latn'): | |
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder) | |
tokenizer.lang_code_to_id[new_lang] = old_len - 1 | |
tokenizer.id_to_lang_code[old_len - 1] = new_lang | |
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset | |
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id) | |
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()} | |
if new_lang not in tokenizer._additional_special_tokens: | |
tokenizer._additional_special_tokens.append(new_lang) | |
tokenizer.added_tokens_encoder = {} | |
tokenizer.added_tokens_decoder = {} | |
fix_tokenizer(small_tokenizer) | |
# Translation function | |
def translate(text, src_lang, tgt_lang): | |
tokenizer, model = small_tokenizer, small_model | |
if src_lang == "zho_Hant": | |
text = preproc_chinese(text) | |
tokenizer.src_lang = src_lang | |
tokenizer.tgt_lang = tgt_lang | |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=1024) | |
model.eval() | |
result = model.generate( | |
**inputs.to(model.device), | |
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang), | |
max_new_tokens=256, | |
num_beams=4 | |
) | |
return tokenizer.batch_decode(result, skip_special_tokens=True)[0] | |
# Preprocessing for Chinese | |
mpn_chinese = MosesPunctNormalizer(lang="zh") | |
mpn_chinese.substitutions = [(re.compile(r), sub) for r, sub in mpn_chinese.substitutions] | |
def get_non_printing_char_replacer(replace_by=" "): | |
non_printable_map = {ord(c): replace_by for c in (chr(i) for i in range(sys.maxunicode + 1)) if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}} | |
return lambda line: line.translate(non_printable_map) | |
replace_nonprint = get_non_printing_char_replacer(" ") | |
def preproc_chinese(text): | |
clean = text | |
for pattern, sub in mpn_chinese.substitutions: | |
clean = pattern.sub(sub, clean) | |
clean = replace_nonprint(clean) | |
return unicodedata.normalize("NFKC", clean) | |
with gr.Blocks() as demo: | |
gr.Markdown("# AMIS - Chinese Translation Tool") | |
src_lang = gr.Radio(choices=["zho_Hant", "ami_Latn"], value="zho_Hant", label="Source Language") | |
tgt_lang = gr.Radio(choices=["ami_Latn", "zho_Hant"], value="ami_Latn", label="Target Language") | |
input_text = gr.Textbox(label="Input Text", placeholder="Enter text here...") | |
output_text = gr.Textbox(label="Translated Text", interactive=False) | |
translate_btn = gr.Button("Translate") | |
translate_btn.click(translate, inputs=[input_text, src_lang, tgt_lang], outputs=output_text) | |
if __name__ == "__main__": | |
demo.launch() | |