File size: 5,837 Bytes
137e5e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.model_selection import train_test_split
from fastai.tabular.all import *
from sklearn.ensemble import VotingRegressor
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.base import BaseEstimator, RegressorMixin
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
import gradio as gr

df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
df = df.replace([np.inf, -np.inf], np.nan)

cat_names = ['EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'GENDER', 'ETHNICITY', 'JOB_TITLE', 'DEPARTMENT_NO']
cont_names = ['PAY_YEAR', 'REGULAR_PAY', 'OVERTIME_PAY', 'ALL_OTHER_PAY']

df['PAY_RATIO'] = df['REGULAR_PAY'] / (df['OVERTIME_PAY'] + df['ALL_OTHER_PAY'] + 1)
df['TOTAL_NON_REGULAR_PAY'] = df['OVERTIME_PAY'] + df['ALL_OTHER_PAY']
cont_names.extend(['PAY_RATIO', 'TOTAL_NON_REGULAR_PAY'])

X = df[cat_names + cont_names].copy()
y = df['TOTAL_PAY'].copy()
for col in cat_names:
    X[col] = X[col].fillna('Unknown')

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train_sample, _, y_train_sample, _ = train_test_split(X_train, y_train, train_size=0.3, random_state=42)

to = TabularPandas(df, procs=[Categorify, FillMissing, Normalize], cat_names=cat_names, cont_names=cont_names, y_names='TOTAL_PAY', splits=RandomSplitter(valid_pct=0.2)(range_of(df)))
dls = to.dataloaders(bs=64)

learn = tabular_learner(dls, layers=[200, 100, 50], metrics=rmse)
learn.fit_one_cycle(9)

class FastAIWrapper(BaseEstimator, RegressorMixin):
    def __init__(self, learn):
        self.learn = learn
    def fit(self, X, y):
        return self
    def predict(self, X):
        dl = self.learn.dls.test_dl(X)
        preds, _ = self.learn.get_preds(dl=dl)
        return preds.numpy().flatten()

preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), cont_names),
        ('cat', OneHotEncoder(drop='first', sparse=False, handle_unknown='ignore'), cat_names)
    ])

model1 = FastAIWrapper(learn)
model2 = Pipeline([('preprocessor', preprocessor), ('regressor', LinearRegression())])
model3 = Pipeline([('preprocessor', preprocessor), ('regressor', DecisionTreeRegressor())])

ensemble = VotingRegressor(
    estimators=[('fastai', model1), ('lr', model2), ('dt', model3)],
    weights=[2, 1, 1]
)

ensemble.fit(X_train_sample, y_train_sample)

def predict_total_pay(gender, job_title, ethnicity):
    sample = pd.DataFrame({
        'GENDER': [gender],
        'JOB_TITLE': [job_title],
        'ETHNICITY': [ethnicity],
    })
    group = df[(df['GENDER'] == gender) & (df['JOB_TITLE'] == job_title) & (df['ETHNICITY'] == ethnicity)]
    if len(group) > 0:
        sample['EMPLOYMENT_TYPE'] = [group['EMPLOYMENT_TYPE'].mode().iloc[0]]
        sample['JOB_STATUS'] = [group['JOB_STATUS'].mode().iloc[0]]
        sample['MOU'] = [group['MOU'].mode().iloc[0]]
        sample['DEPARTMENT_NO'] = [group['DEPARTMENT_NO'].mode().iloc[0]]
        sample['REGULAR_PAY'] = [group['REGULAR_PAY'].mean()]
        sample['OVERTIME_PAY'] = [group['OVERTIME_PAY'].mean()]
        sample['ALL_OTHER_PAY'] = [group['ALL_OTHER_PAY'].mean()]
    else:
        job_group = df[df['JOB_TITLE'] == job_title]
        if len(job_group) > 0:
            sample['EMPLOYMENT_TYPE'] = [job_group['EMPLOYMENT_TYPE'].mode().iloc[0]]
            sample['JOB_STATUS'] = [job_group['JOB_STATUS'].mode().iloc[0]]
            sample['MOU'] = [job_group['MOU'].mode().iloc[0]]
            sample['DEPARTMENT_NO'] = [job_group['DEPARTMENT_NO'].mode().iloc[0]]
            sample['REGULAR_PAY'] = [job_group['REGULAR_PAY'].mean()]
            sample['OVERTIME_PAY'] = [job_group['OVERTIME_PAY'].mean()]
            sample['ALL_OTHER_PAY'] = [job_group['ALL_OTHER_PAY'].mean()]
        else:
            sample['EMPLOYMENT_TYPE'] = [df['EMPLOYMENT_TYPE'].mode().iloc[0]]
            sample['JOB_STATUS'] = [df['JOB_STATUS'].mode().iloc[0]]
            sample['MOU'] = [df['MOU'].mode().iloc[0]]
            sample['DEPARTMENT_NO'] = [df['DEPARTMENT_NO'].mode().iloc[0]]
            sample['REGULAR_PAY'] = [df['REGULAR_PAY'].mean()]
            sample['OVERTIME_PAY'] = [df['OVERTIME_PAY'].mean()]
            sample['ALL_OTHER_PAY'] = [df['ALL_OTHER_PAY'].mean()]
    sample['PAY_YEAR'] = [df['PAY_YEAR'].max()]
    sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1)
    sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY']
    categorical_columns = ['GENDER', 'JOB_TITLE', 'ETHNICITY', 'EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'DEPARTMENT_NO']
    for col in categorical_columns:
        sample[col] = sample[col].astype('object')
    prediction = ensemble.predict(sample)[0]
    return prediction

def gradio_predict(gender, ethnicity, job_title):
    predicted_pay = predict_total_pay(gender, job_title, ethnicity)
    return f"${predicted_pay:.2f}"

genders = df['GENDER'].dropna().unique().tolist()
ethnicities = df['ETHNICITY'].dropna().unique().tolist()
job_titles = sorted(df['JOB_TITLE'].dropna().unique().tolist())

iface = gr.Interface(
    fn=gradio_predict,
    inputs=[
        gr.Dropdown(choices=genders, label="Gender"),
        gr.Dropdown(choices=ethnicities, label="Ethnicity"),
        gr.Dropdown(choices=job_titles, label="Job Title")
    ],
    outputs=gr.Textbox(label="Predicted Total Pay"),
    title="LA City Employee Pay Predictor",
    description="Predict the total pay for LA City employees based on gender, ethnicity, and job title."
)

iface.launch()