Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
from sklearn.model_selection import train_test_split | |
from fastai.tabular.all import * | |
from sklearn.ensemble import VotingRegressor | |
from sklearn.linear_model import LinearRegression | |
from sklearn.tree import DecisionTreeRegressor | |
from sklearn.base import BaseEstimator, RegressorMixin | |
from sklearn.compose import ColumnTransformer | |
from sklearn.pipeline import Pipeline | |
import gradio as gr | |
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False) | |
df = df.replace([np.inf, -np.inf], np.nan) | |
cat_names = ['EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'GENDER', 'ETHNICITY', 'JOB_TITLE', 'DEPARTMENT_NO'] | |
cont_names = ['PAY_YEAR', 'REGULAR_PAY', 'OVERTIME_PAY', 'ALL_OTHER_PAY'] | |
df['PAY_RATIO'] = df['REGULAR_PAY'] / (df['OVERTIME_PAY'] + df['ALL_OTHER_PAY'] + 1) | |
df['TOTAL_NON_REGULAR_PAY'] = df['OVERTIME_PAY'] + df['ALL_OTHER_PAY'] | |
cont_names.extend(['PAY_RATIO', 'TOTAL_NON_REGULAR_PAY']) | |
X = df[cat_names + cont_names].copy() | |
y = df['TOTAL_PAY'].copy() | |
for col in cat_names: | |
X[col] = X[col].fillna('Unknown') | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
X_train_sample, _, y_train_sample, _ = train_test_split(X_train, y_train, train_size=0.3, random_state=42) | |
to = TabularPandas(df, procs=[Categorify, FillMissing, Normalize], cat_names=cat_names, cont_names=cont_names, y_names='TOTAL_PAY', splits=RandomSplitter(valid_pct=0.2)(range_of(df))) | |
dls = to.dataloaders(bs=64) | |
learn = tabular_learner(dls, layers=[200, 100, 50], metrics=rmse) | |
learn.fit_one_cycle(9) | |
class FastAIWrapper(BaseEstimator, RegressorMixin): | |
def __init__(self, learn): | |
self.learn = learn | |
def fit(self, X, y): | |
return self | |
def predict(self, X): | |
dl = self.learn.dls.test_dl(X) | |
preds, _ = self.learn.get_preds(dl=dl) | |
return preds.numpy().flatten() | |
preprocessor = ColumnTransformer( | |
transformers=[ | |
('num', StandardScaler(), cont_names), | |
('cat', OneHotEncoder(drop='first', sparse=False, handle_unknown='ignore'), cat_names) | |
]) | |
model1 = FastAIWrapper(learn) | |
model2 = Pipeline([('preprocessor', preprocessor), ('regressor', LinearRegression())]) | |
model3 = Pipeline([('preprocessor', preprocessor), ('regressor', DecisionTreeRegressor())]) | |
ensemble = VotingRegressor( | |
estimators=[('fastai', model1), ('lr', model2), ('dt', model3)], | |
weights=[2, 1, 1] | |
) | |
ensemble.fit(X_train_sample, y_train_sample) | |
def predict_total_pay(gender, job_title, ethnicity): | |
sample = pd.DataFrame({ | |
'GENDER': [gender], | |
'JOB_TITLE': [job_title], | |
'ETHNICITY': [ethnicity], | |
}) | |
group = df[(df['GENDER'] == gender) & (df['JOB_TITLE'] == job_title) & (df['ETHNICITY'] == ethnicity)] | |
if len(group) > 0: | |
sample['EMPLOYMENT_TYPE'] = [group['EMPLOYMENT_TYPE'].mode().iloc[0]] | |
sample['JOB_STATUS'] = [group['JOB_STATUS'].mode().iloc[0]] | |
sample['MOU'] = [group['MOU'].mode().iloc[0]] | |
sample['DEPARTMENT_NO'] = [group['DEPARTMENT_NO'].mode().iloc[0]] | |
sample['REGULAR_PAY'] = [group['REGULAR_PAY'].mean()] | |
sample['OVERTIME_PAY'] = [group['OVERTIME_PAY'].mean()] | |
sample['ALL_OTHER_PAY'] = [group['ALL_OTHER_PAY'].mean()] | |
else: | |
job_group = df[df['JOB_TITLE'] == job_title] | |
if len(job_group) > 0: | |
sample['EMPLOYMENT_TYPE'] = [job_group['EMPLOYMENT_TYPE'].mode().iloc[0]] | |
sample['JOB_STATUS'] = [job_group['JOB_STATUS'].mode().iloc[0]] | |
sample['MOU'] = [job_group['MOU'].mode().iloc[0]] | |
sample['DEPARTMENT_NO'] = [job_group['DEPARTMENT_NO'].mode().iloc[0]] | |
sample['REGULAR_PAY'] = [job_group['REGULAR_PAY'].mean()] | |
sample['OVERTIME_PAY'] = [job_group['OVERTIME_PAY'].mean()] | |
sample['ALL_OTHER_PAY'] = [job_group['ALL_OTHER_PAY'].mean()] | |
else: | |
sample['EMPLOYMENT_TYPE'] = [df['EMPLOYMENT_TYPE'].mode().iloc[0]] | |
sample['JOB_STATUS'] = [df['JOB_STATUS'].mode().iloc[0]] | |
sample['MOU'] = [df['MOU'].mode().iloc[0]] | |
sample['DEPARTMENT_NO'] = [df['DEPARTMENT_NO'].mode().iloc[0]] | |
sample['REGULAR_PAY'] = [df['REGULAR_PAY'].mean()] | |
sample['OVERTIME_PAY'] = [df['OVERTIME_PAY'].mean()] | |
sample['ALL_OTHER_PAY'] = [df['ALL_OTHER_PAY'].mean()] | |
sample['PAY_YEAR'] = [df['PAY_YEAR'].max()] | |
sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1) | |
sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] | |
categorical_columns = ['GENDER', 'JOB_TITLE', 'ETHNICITY', 'EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'DEPARTMENT_NO'] | |
for col in categorical_columns: | |
sample[col] = sample[col].astype('object') | |
prediction = ensemble.predict(sample)[0] | |
return prediction | |
def gradio_predict(gender, ethnicity, job_title): | |
predicted_pay = predict_total_pay(gender, job_title, ethnicity) | |
return f"${predicted_pay:.2f}" | |
genders = df['GENDER'].dropna().unique().tolist() | |
ethnicities = df['ETHNICITY'].dropna().unique().tolist() | |
job_titles = sorted(df['JOB_TITLE'].dropna().unique().tolist()) | |
iface = gr.Interface( | |
fn=gradio_predict, | |
inputs=[ | |
gr.Dropdown(choices=genders, label="Gender"), | |
gr.Dropdown(choices=ethnicities, label="Ethnicity"), | |
gr.Dropdown(choices=job_titles, label="Job Title") | |
], | |
outputs=gr.Textbox(label="Predicted Total Pay"), | |
title="LA City Employee Pay Predictor", | |
description="Predict the total pay for LA City employees based on gender, ethnicity, and job title." | |
) | |
iface.launch() |