Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import numpy as np | |
from transformers import DPTForDepthEstimation, DPTImageProcessor | |
import time | |
import warnings | |
import asyncio | |
import json | |
import websockets | |
warnings.filterwarnings("ignore", message="It looks like you are trying to rescale already rescaled images.") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float16).to(device) | |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") | |
cap = cv2.VideoCapture(0) | |
def resize_image(image, target_size=(256, 256)): | |
return cv2.resize(image, target_size) | |
def manual_normalize(depth_map): | |
min_val = np.min(depth_map) | |
max_val = np.max(depth_map) | |
if min_val != max_val: | |
normalized = (depth_map - min_val) / (max_val - min_val) | |
return (normalized * 255).astype(np.uint8) | |
else: | |
return np.zeros_like(depth_map, dtype=np.uint8) | |
frame_skip = 4 | |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO) | |
connected = set() | |
async def broadcast(message): | |
for websocket in connected: | |
try: | |
await websocket.send(message) | |
except websockets.exceptions.ConnectionClosed: | |
connected.remove(websocket) | |
async def handler(websocket, path): | |
connected.add(websocket) | |
try: | |
await websocket.wait_closed() | |
finally: | |
connected.remove(websocket) | |
async def process_frames(): | |
frame_count = 0 | |
prev_frame_time = 0 | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_count += 1 | |
if frame_count % frame_skip != 0: | |
continue | |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
resized_frame = resize_image(rgb_frame) | |
inputs = processor(images=resized_frame, return_tensors="pt").to(device) | |
inputs = {k: v.to(torch.float16) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predicted_depth = outputs.predicted_depth | |
depth_map = predicted_depth.squeeze().cpu().numpy() | |
depth_map = np.nan_to_num(depth_map, nan=0.0, posinf=0.0, neginf=0.0) | |
depth_map = depth_map.astype(np.float32) | |
if depth_map.size == 0: | |
depth_map = np.zeros((256, 256), dtype=np.uint8) | |
else: | |
if np.any(depth_map) and np.min(depth_map) != np.max(depth_map): | |
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) | |
else: | |
depth_map = np.zeros_like(depth_map, dtype=np.uint8) | |
if np.all(depth_map == 0): | |
depth_map = manual_normalize(depth_map) | |
data = { | |
'depthMap': depth_map.tolist(), | |
'rgbFrame': rgb_frame.tolist() | |
} | |
await broadcast(json.dumps(data)) | |
new_frame_time = time.time() | |
fps = 1 / (new_frame_time - prev_frame_time) | |
prev_frame_time = new_frame_time | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
cap.release() | |
cv2.destroyAllWindows() | |
async def main(): | |
server = await websockets.serve(handler, "localhost", 8765) | |
await asyncio.gather(server.wait_closed(), process_frames()) | |
if __name__ == "__main__": | |
asyncio.run(main()) |