Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import numpy as np | |
from transformers import DPTImageProcessor | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
import torch.nn as nn | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load your custom trained model | |
class CompressedStudentModel(nn.Module): | |
def __init__(self): | |
super(CompressedStudentModel, self).__init__() | |
self.encoder = nn.Sequential( | |
nn.Conv2d(3, 64, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.Conv2d(64, 64, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(64, 128, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.Conv2d(128, 128, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(128, 256, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.Conv2d(256, 256, kernel_size=3, padding=1), | |
nn.ReLU(), | |
) | |
self.decoder = nn.Sequential( | |
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1), | |
nn.ReLU(), | |
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1), | |
nn.ReLU(), | |
nn.Conv2d(64, 1, kernel_size=3, padding=1), | |
) | |
def forward(self, x): | |
features = self.encoder(x) | |
depth = self.decoder(features) | |
return depth | |
# Initialize and load weights into the student model | |
model = CompressedStudentModel().to(device) | |
model.load_state_dict(torch.load("huntrezz_depth_v2.pt", map_location=device)) | |
model.eval() | |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") | |
def preprocess_image(image): | |
image = cv2.resize(image, (128, 72)) | |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) | |
return image / 255.0 | |
def plot_depth_map(depth_map, original_image): | |
fig = plt.figure(figsize=(16, 9)) | |
ax = fig.add_subplot(111, projection='3d') | |
x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0])) | |
original_image_resized = cv2.resize(original_image, (depth_map.shape[1], depth_map.shape[0])) | |
colors = original_image_resized.reshape(depth_map.shape[0], depth_map.shape[1], 3) / 255.0 | |
ax.plot_surface(x, y, depth_map, facecolors=colors, shade=False) | |
ax.set_zlim(0, 1) | |
ax.view_init(elev=150, azim=90) | |
plt.axis('off') | |
plt.show() | |
fig.canvas.draw() | |
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
return img | |
def process_frame(image): | |
if image is None: | |
return None | |
preprocessed = preprocess_image(image) | |
predicted_depth = model(preprocessed).squeeze().cpu().numpy() | |
depth_map = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min()) | |
if image.shape[2] == 3: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
return plot_depth_map(depth_map, image) | |
interface = gr.Interface( | |
fn=process_frame, | |
inputs=gr.Image(sources="webcam", streaming=True), | |
outputs="image", | |
live=True | |
) | |
interface.launch() |