Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import numpy as np | |
from transformers import DPTForDepthEstimation, DPTImageProcessor | |
import gradio as gr | |
import torch.nn.utils.prune as prune | |
from DepthVisualizer import DepthVisualizer | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32) | |
model.eval() | |
# Apply global unstructured pruning | |
parameters_to_prune = [ | |
(module, "weight") for module in filter(lambda m: isinstance(m, (torch.nn.Conv2d, torch.nn.Linear)), model.modules()) | |
] | |
prune.global_unstructured( | |
parameters_to_prune, | |
pruning_method=prune.L1Unstructured, | |
amount=0.4, # Prune 40% of weights | |
) | |
for module, _ in parameters_to_prune: | |
prune.remove(module, "weight") | |
model = torch.quantization.quantize_dynamic( | |
model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8 | |
) | |
model = model.to(device) | |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") | |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO) | |
color_map = torch.from_numpy(color_map).to(device) | |
visualizer = DepthVisualizer() | |
def preprocess_image(image): | |
image = cv2.resize(image, (128, 128)) | |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) | |
return image / 255.0 | |
def process_frame(image): | |
if image is None: | |
return None | |
preprocessed = preprocess_image(image) | |
predicted_depth = model(preprocessed).predicted_depth | |
depth_map = predicted_depth.squeeze().cpu().numpy() | |
# Normalize depth map | |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) | |
# Convert depth map to point cloud | |
point_cloud = visualizer.depth_map_to_point_cloud(depth_map) | |
# Render point cloud | |
rendered_image = visualizer.render_frame(point_cloud) | |
return rendered_image | |
interface = gr.Interface( | |
fn=process_frame, | |
inputs=gr.Image(sources="webcam", streaming=True), | |
outputs="image", | |
live=True | |
) | |
interface.launch() |