Spaces:
Sleeping
Sleeping
# Import required libraries for image processing, deep learning, and visualization | |
import cv2 # OpenCV for image processing | |
import torch # PyTorch deep learning framework | |
import numpy as np # NumPy for numerical operations | |
from transformers import DPTImageProcessor # Hugging Face image processor for depth estimation | |
import gradio as gr # Gradio for creating web interfaces | |
import matplotlib.pyplot as plt # Matplotlib for plotting | |
from mpl_toolkits.mplot3d import Axes3D # 3D plotting tools | |
import torch.nn as nn # Neural network modules from PyTorch | |
# Set up device - will use GPU if available, otherwise CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Define my compressed student model architecture for depth estimation | |
class CompressedStudentModel(nn.Module): | |
def __init__(self): | |
# Initialize parent class | |
super(CompressedStudentModel, self).__init__() | |
# Define encoder network that extracts features from input image | |
self.encoder = nn.Sequential( | |
nn.Conv2d(3, 64, kernel_size=3, padding=1), # First conv layer: RGB -> 64 channels | |
nn.ReLU(), # Activation function | |
nn.Conv2d(64, 64, kernel_size=3, padding=1), # Second conv: 64 -> 64 channels | |
nn.ReLU(), | |
nn.MaxPool2d(2), # Reduce spatial dimensions by 2 | |
nn.Conv2d(64, 128, kernel_size=3, padding=1), # Third conv: 64 -> 128 channels | |
nn.ReLU(), | |
nn.Conv2d(128, 128, kernel_size=3, padding=1), # Fourth conv: 128 -> 128 channels | |
nn.ReLU(), | |
nn.MaxPool2d(2), # Further reduce spatial dimensions | |
nn.Conv2d(128, 256, kernel_size=3, padding=1), # Fifth conv: 128 -> 256 channels | |
nn.ReLU(), | |
nn.Conv2d(256, 256, kernel_size=3, padding=1), # Sixth conv: 256 -> 256 channels | |
nn.ReLU(), | |
) | |
# Define decoder network that upsamples features back to original resolution | |
self.decoder = nn.Sequential( | |
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1), # First upsample: 256 -> 128 | |
nn.ReLU(), | |
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1), # Second upsample: 128 -> 64 | |
nn.ReLU(), | |
nn.Conv2d(64, 1, kernel_size=3, padding=1), # Final conv: 64 -> 1 channel depth map | |
) | |
def forward(self, x): | |
# Pass input through encoder to get features | |
features = self.encoder(x) | |
# Pass features through decoder to get depth map | |
depth = self.decoder(features) | |
return depth | |
# Load my trained model and prepare it for inference | |
model = CompressedStudentModel().to(device) # Create model instance and move to device | |
model.load_state_dict(torch.load("huntrezz_depth_v2.pt", map_location=device)) # Load trained weights | |
model.eval() # Set model to evaluation mode | |
# Initialize the image processor from Hugging Face | |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") | |
def preprocess_image(image): | |
# Resize image to 200x200 for consistent processing | |
image = cv2.resize(image, (200, 200)) | |
# Convert image to PyTorch tensor and move to device | |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) | |
# Normalize pixel values to [0,1] range | |
return image / 255.0 | |
def plot_depth_map(depth_map, original_image): | |
# Create new figure with specific size | |
fig = plt.figure(figsize=(16, 9)) | |
# Add 3D subplot | |
ax = fig.add_subplot(111, projection='3d') | |
# Create coordinate grids for 3D plot | |
x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0])) | |
# Normalize depth values for coloring | |
norm = plt.Normalize(depth_map.min(), depth_map.max()) | |
colors = plt.cm.viridis(norm(depth_map)) | |
# Create 3D surface plot | |
ax.plot_surface(x, y, depth_map, facecolors=colors, shade=False) | |
ax.set_zlim(0, 1) # Set z-axis limits | |
# Set viewing angle for better visualization | |
ax.view_init(elev=70, azim=90) | |
plt.axis('off') # Hide axes | |
plt.close(fig) # Close the figure to free memory | |
# Convert matplotlib figure to numpy array | |
fig.canvas.draw() | |
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
return img | |
# Disable gradient computation for inference | |
def process_frame(image): | |
# Check if image is valid | |
if image is None: | |
return None | |
# Preprocess input image | |
preprocessed = preprocess_image(image) | |
# Get depth prediction from model | |
predicted_depth = model(preprocessed).squeeze().cpu().numpy() | |
# Normalize depth values to [0,1] range | |
depth_map = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min()) | |
# Convert BGR to RGB if needed | |
if image.shape[2] == 3: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Create and return 3D visualization | |
return plot_depth_map(depth_map, image) | |
# Create Gradio interface for webcam input | |
interface = gr.Interface( | |
fn=process_frame, # Processing function | |
inputs=gr.Image(sources="webcam", streaming=True), # Webcam input | |
outputs="image", # Image output | |
live=True # Enable live updates | |
) | |
# Launch the interface | |
interface.launch() |