Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,34 +16,33 @@ processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
|
16 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
17 |
|
18 |
input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device)
|
19 |
-
depth_map = np.zeros((128, 128), dtype=np.float32)
|
20 |
-
depth_map_colored = np.zeros((128, 128, 3), dtype=np.uint8)
|
21 |
|
22 |
def preprocess_image(image):
|
23 |
return cv2.resize(image, (128, 128), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0
|
24 |
|
25 |
@torch.inference_mode()
|
26 |
def process_frame(image):
|
|
|
|
|
27 |
preprocessed = preprocess_image(image)
|
28 |
input_tensor[0] = torch.from_numpy(preprocessed).to(device)
|
29 |
-
|
30 |
-
if torch.cuda.is_available():
|
31 |
-
torch.cuda.synchronize()
|
32 |
-
|
33 |
predicted_depth = model(input_tensor).predicted_depth
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
cv2.applyColorMap(depth_map, color_map, dst=depth_map_colored)
|
39 |
|
40 |
-
return depth_map_colored
|
41 |
|
42 |
interface = gr.Interface(
|
43 |
fn=process_frame,
|
44 |
inputs=gr.Image(sources="webcam", streaming=True),
|
45 |
outputs="image",
|
46 |
-
live=True
|
|
|
|
|
|
|
47 |
)
|
48 |
|
49 |
interface.launch()
|
|
|
16 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
17 |
|
18 |
input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device)
|
|
|
|
|
19 |
|
20 |
def preprocess_image(image):
|
21 |
return cv2.resize(image, (128, 128), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0
|
22 |
|
23 |
@torch.inference_mode()
|
24 |
def process_frame(image):
|
25 |
+
if image is None:
|
26 |
+
return None
|
27 |
preprocessed = preprocess_image(image)
|
28 |
input_tensor[0] = torch.from_numpy(preprocessed).to(device)
|
29 |
+
|
|
|
|
|
|
|
30 |
predicted_depth = model(input_tensor).predicted_depth
|
31 |
+
depth_map = predicted_depth.squeeze().cpu().numpy()
|
32 |
+
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
33 |
+
depth_map = (depth_map * 255).astype(np.uint8)
|
34 |
+
depth_map_colored = cv2.applyColorMap(depth_map, color_map)
|
|
|
35 |
|
36 |
+
return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)
|
37 |
|
38 |
interface = gr.Interface(
|
39 |
fn=process_frame,
|
40 |
inputs=gr.Image(sources="webcam", streaming=True),
|
41 |
outputs="image",
|
42 |
+
live=True,
|
43 |
+
batch=False,
|
44 |
+
max_batch_size=1,
|
45 |
+
update_interval=0.1 # Update every 0.1 seconds
|
46 |
)
|
47 |
|
48 |
interface.launch()
|