Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,23 +8,11 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
8 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float16).to(device)
|
9 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
10 |
|
11 |
-
def resize_image(image, target_size=(256, 256)):
|
12 |
-
return cv2.resize(image, target_size)
|
13 |
-
|
14 |
-
def manual_normalize(depth_map):
|
15 |
-
min_val = np.min(depth_map)
|
16 |
-
max_val = np.max(depth_map)
|
17 |
-
if min_val != max_val:
|
18 |
-
normalized = (depth_map - min_val) / (max_val - min_val)
|
19 |
-
return (normalized * 255).astype(np.uint8)
|
20 |
-
else:
|
21 |
-
return np.zeros_like(depth_map, dtype=np.uint8)
|
22 |
-
|
23 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
24 |
|
25 |
def process_frame(image):
|
26 |
rgb_frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
27 |
-
resized_frame =
|
28 |
|
29 |
inputs = processor(images=resized_frame, return_tensors="pt").to(device)
|
30 |
inputs = {k: v.to(torch.float16) for k, v in inputs.items()}
|
@@ -34,26 +22,10 @@ def process_frame(image):
|
|
34 |
predicted_depth = outputs.predicted_depth
|
35 |
|
36 |
depth_map = predicted_depth.squeeze().cpu().numpy()
|
37 |
-
|
38 |
-
depth_map = np.nan_to_num(depth_map, nan=0.0, posinf=0.0, neginf=0.0)
|
39 |
-
depth_map = depth_map.astype(np.float32)
|
40 |
-
|
41 |
-
if depth_map.size == 0:
|
42 |
-
depth_map = np.zeros((256, 256), dtype=np.uint8)
|
43 |
-
else:
|
44 |
-
if np.any(depth_map) and np.min(depth_map) != np.max(depth_map):
|
45 |
-
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
46 |
-
else:
|
47 |
-
depth_map = np.zeros_like(depth_map, dtype=np.uint8)
|
48 |
-
|
49 |
-
if np.all(depth_map == 0):
|
50 |
-
depth_map = manual_normalize(depth_map)
|
51 |
-
|
52 |
depth_map_colored = cv2.applyColorMap(depth_map, color_map)
|
53 |
-
depth_map_colored = cv2.resize(depth_map_colored, (image.shape[1], image.shape[0]))
|
54 |
|
55 |
-
|
56 |
-
return cv2.cvtColor(combined, cv2.COLOR_BGR2RGB)
|
57 |
|
58 |
interface = gr.Interface(
|
59 |
fn=process_frame,
|
|
|
8 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float16).to(device)
|
9 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
12 |
|
13 |
def process_frame(image):
|
14 |
rgb_frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
15 |
+
resized_frame = cv2.resize(rgb_frame, (128, 128))
|
16 |
|
17 |
inputs = processor(images=resized_frame, return_tensors="pt").to(device)
|
18 |
inputs = {k: v.to(torch.float16) for k, v in inputs.items()}
|
|
|
22 |
predicted_depth = outputs.predicted_depth
|
23 |
|
24 |
depth_map = predicted_depth.squeeze().cpu().numpy()
|
25 |
+
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
depth_map_colored = cv2.applyColorMap(depth_map, color_map)
|
|
|
27 |
|
28 |
+
return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)
|
|
|
29 |
|
30 |
interface = gr.Interface(
|
31 |
fn=process_frame,
|