Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,8 @@ import numpy as np
|
|
4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
5 |
import gradio as gr
|
6 |
import torch.nn.utils.prune as prune
|
7 |
-
|
|
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
|
@@ -42,6 +43,15 @@ def preprocess_image(image):
|
|
42 |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device)
|
43 |
return image / 255.0
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
@torch.inference_mode()
|
46 |
def process_frame(image):
|
47 |
if image is None:
|
@@ -53,13 +63,15 @@ def process_frame(image):
|
|
53 |
# Normalize depth map
|
54 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
|
59 |
-
#
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
return
|
63 |
|
64 |
interface = gr.Interface(
|
65 |
fn=process_frame,
|
|
|
4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
5 |
import gradio as gr
|
6 |
import torch.nn.utils.prune as prune
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from mpl_toolkits.mplot3d import Axes3D
|
9 |
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
|
|
43 |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device)
|
44 |
return image / 255.0
|
45 |
|
46 |
+
def plot_depth_map(depth_map):
|
47 |
+
fig = plt.figure()
|
48 |
+
ax = fig.add_subplot(111, projection='3d')
|
49 |
+
x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0]))
|
50 |
+
ax.plot_surface(x, y, depth_map, cmap='viridis')
|
51 |
+
ax.set_zlim(0, 1)
|
52 |
+
plt.close(fig)
|
53 |
+
return fig
|
54 |
+
|
55 |
@torch.inference_mode()
|
56 |
def process_frame(image):
|
57 |
if image is None:
|
|
|
63 |
# Normalize depth map
|
64 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
65 |
|
66 |
+
# Create 3D plot
|
67 |
+
fig = plot_depth_map(depth_map)
|
68 |
|
69 |
+
# Convert plot to image
|
70 |
+
fig.canvas.draw()
|
71 |
+
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
72 |
+
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
73 |
|
74 |
+
return img
|
75 |
|
76 |
interface = gr.Interface(
|
77 |
fn=process_frame,
|