Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,33 +5,34 @@ from transformers import DPTForDepthEstimation, DPTImageProcessor
|
|
5 |
import gradio as gr
|
6 |
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
-
model = DPTForDepthEstimation.from_pretrained("
|
9 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
10 |
|
11 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
12 |
|
|
|
13 |
def process_frame(image):
|
14 |
rgb_frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
15 |
-
resized_frame = cv2.resize(rgb_frame, (128, 128))
|
16 |
|
17 |
inputs = processor(images=resized_frame, return_tensors="pt").to(device)
|
18 |
inputs = {k: v.to(torch.float16) for k, v in inputs.items()}
|
19 |
|
20 |
-
|
21 |
-
outputs = model(**inputs)
|
22 |
-
predicted_depth = outputs.predicted_depth
|
23 |
-
|
24 |
depth_map = predicted_depth.squeeze().cpu().numpy()
|
25 |
-
|
|
|
|
|
26 |
depth_map_colored = cv2.applyColorMap(depth_map, color_map)
|
27 |
|
28 |
-
return
|
29 |
|
30 |
interface = gr.Interface(
|
31 |
fn=process_frame,
|
32 |
-
inputs=gr.Image(
|
33 |
outputs="image",
|
34 |
-
live=True
|
|
|
35 |
)
|
36 |
|
37 |
interface.launch()
|
|
|
5 |
import gradio as gr
|
6 |
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
model = DPTForDepthEstimation.from_pretrained("./", local_files_only=True, torch_dtype=torch.float16).to(device)
|
9 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
10 |
|
11 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
12 |
|
13 |
+
@torch.inference_mode()
|
14 |
def process_frame(image):
|
15 |
rgb_frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
16 |
+
resized_frame = cv2.resize(rgb_frame, (128, 128), interpolation=cv2.INTER_AREA)
|
17 |
|
18 |
inputs = processor(images=resized_frame, return_tensors="pt").to(device)
|
19 |
inputs = {k: v.to(torch.float16) for k, v in inputs.items()}
|
20 |
|
21 |
+
predicted_depth = model(**inputs).predicted_depth
|
|
|
|
|
|
|
22 |
depth_map = predicted_depth.squeeze().cpu().numpy()
|
23 |
+
|
24 |
+
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
25 |
+
depth_map = (depth_map * 255).astype(np.uint8)
|
26 |
depth_map_colored = cv2.applyColorMap(depth_map, color_map)
|
27 |
|
28 |
+
return depth_map_colored
|
29 |
|
30 |
interface = gr.Interface(
|
31 |
fn=process_frame,
|
32 |
+
inputs=gr.Image(source="webcam", streaming=True),
|
33 |
outputs="image",
|
34 |
+
live=True,
|
35 |
+
refresh_rate=0.1
|
36 |
)
|
37 |
|
38 |
interface.launch()
|