Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,8 @@ from transformers import DPTForDepthEstimation, DPTImageProcessor
|
|
5 |
import gradio as gr
|
6 |
import torch.quantization
|
7 |
import torch.nn.utils.prune as prune
|
|
|
|
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
|
@@ -18,7 +20,7 @@ parameters_to_prune = [
|
|
18 |
prune.global_unstructured(
|
19 |
parameters_to_prune,
|
20 |
pruning_method=prune.L1Unstructured,
|
21 |
-
amount=0.
|
22 |
)
|
23 |
|
24 |
for module, _ in parameters_to_prune:
|
@@ -35,6 +37,9 @@ color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFER
|
|
35 |
|
36 |
input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device)
|
37 |
|
|
|
|
|
|
|
38 |
def preprocess_image(image):
|
39 |
return cv2.resize(image, (128, 72), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0
|
40 |
|
@@ -55,11 +60,47 @@ def process_frame(image):
|
|
55 |
|
56 |
return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
|
|
|
5 |
import gradio as gr
|
6 |
import torch.quantization
|
7 |
import torch.nn.utils.prune as prune
|
8 |
+
import asyncio
|
9 |
+
import queue
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
|
|
20 |
prune.global_unstructured(
|
21 |
parameters_to_prune,
|
22 |
pruning_method=prune.L1Unstructured,
|
23 |
+
amount=0.3, # Prune 30% of weights
|
24 |
)
|
25 |
|
26 |
for module, _ in parameters_to_prune:
|
|
|
37 |
|
38 |
input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device)
|
39 |
|
40 |
+
frame_queue = queue.Queue(maxsize=1)
|
41 |
+
result_queue = queue.Queue(maxsize=1)
|
42 |
+
|
43 |
def preprocess_image(image):
|
44 |
return cv2.resize(image, (128, 72), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0
|
45 |
|
|
|
60 |
|
61 |
return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)
|
62 |
|
63 |
+
async def capture_frames(webcam):
|
64 |
+
frame_count = 0
|
65 |
+
while True:
|
66 |
+
ret, frame = webcam.read()
|
67 |
+
if not ret:
|
68 |
+
break
|
69 |
+
frame_count += 1
|
70 |
+
if frame_count % 5 == 0: # Process every 5th frame
|
71 |
+
if frame_queue.full():
|
72 |
+
frame_queue.get() # Remove old frame if queue is full
|
73 |
+
frame_queue.put(frame)
|
74 |
+
await asyncio.sleep(0.01) # Small delay to prevent blocking
|
75 |
+
|
76 |
+
async def process_frames():
|
77 |
+
while True:
|
78 |
+
if not frame_queue.empty():
|
79 |
+
frame = frame_queue.get()
|
80 |
+
result = process_frame(frame)
|
81 |
+
if result_queue.full():
|
82 |
+
result_queue.get() # Remove old result if queue is full
|
83 |
+
result_queue.put(result)
|
84 |
+
await asyncio.sleep(0.01) # Small delay to prevent blocking
|
85 |
+
|
86 |
+
def get_latest_frame():
|
87 |
+
if result_queue.empty():
|
88 |
+
return None
|
89 |
+
return result_queue.get()
|
90 |
+
|
91 |
+
async def main():
|
92 |
+
webcam = cv2.VideoCapture(0)
|
93 |
+
asyncio.create_task(capture_frames(webcam))
|
94 |
+
asyncio.create_task(process_frames())
|
95 |
+
|
96 |
+
interface = gr.Interface(
|
97 |
+
fn=get_latest_frame,
|
98 |
+
inputs=None,
|
99 |
+
outputs="image",
|
100 |
+
live=True
|
101 |
+
)
|
102 |
+
|
103 |
+
await interface.launch()
|
104 |
|
105 |
+
if __name__ == "__main__":
|
106 |
+
asyncio.run(main())
|