huntrezz commited on
Commit
cafea28
·
verified ·
1 Parent(s): 44656db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -9
app.py CHANGED
@@ -31,29 +31,32 @@ model = torch.quantization.quantize_dynamic(
31
 
32
  processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
33
 
34
- color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
35
- color_map_gpu = torch.from_numpy(color_map).to(device)
 
36
 
37
  def preprocess_image(image):
38
- resized = cv2.resize(image, (128, 72), interpolation=cv2.INTER_AREA)
39
- return torch.from_numpy(resized.transpose(2, 0, 1)).float().div(255).unsqueeze(0).to(device)
40
 
41
  @torch.inference_mode()
42
  def process_frame(image):
43
  if image is None:
44
  return None
45
- input_tensor = preprocess_image(image)
 
46
 
47
  predicted_depth = model(input_tensor).predicted_depth
48
  depth_map = predicted_depth.squeeze()
49
 
50
- # Rounding instead of discretization
51
- depth_map = torch.round(depth_map * 100) / 100
 
 
 
52
 
53
  depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
54
  depth_map = (depth_map * 255).byte()
55
-
56
- depth_map_colored = color_map_gpu[depth_map]
57
 
58
  return cv2.cvtColor(depth_map_colored.cpu().numpy(), cv2.COLOR_BGR2RGB)
59
 
 
31
 
32
  processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
33
 
34
+ color_map = torch.from_numpy(cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)).to(device)
35
+
36
+ input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device)
37
 
38
  def preprocess_image(image):
39
+ return cv2.resize(image, (128, 72), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0
 
40
 
41
  @torch.inference_mode()
42
  def process_frame(image):
43
  if image is None:
44
  return None
45
+ preprocessed = preprocess_image(image)
46
+ input_tensor = torch.from_numpy(preprocessed).unsqueeze(0).to(device)
47
 
48
  predicted_depth = model(input_tensor).predicted_depth
49
  depth_map = predicted_depth.squeeze()
50
 
51
+ # Discretization on GPU
52
+ num_bins = 1000
53
+ depth_min, depth_max = depth_map.min(), depth_map.max()
54
+ bins = torch.linspace(depth_min, depth_max, num_bins, device=device)
55
+ depth_map = torch.bucketize(depth_map, bins)
56
 
57
  depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
58
  depth_map = (depth_map * 255).byte()
59
+ depth_map_colored = color_map[depth_map]
 
60
 
61
  return cv2.cvtColor(depth_map_colored.cpu().numpy(), cv2.COLOR_BGR2RGB)
62