Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,53 @@
|
|
1 |
import cv2
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
-
from transformers import
|
5 |
import gradio as gr
|
6 |
-
import torch.nn.utils.prune as prune
|
7 |
import matplotlib.pyplot as plt
|
8 |
from mpl_toolkits.mplot3d import Axes3D
|
9 |
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
)
|
31 |
-
|
32 |
-
model = model.to(device)
|
33 |
|
34 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
35 |
|
36 |
-
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
37 |
-
color_map = torch.from_numpy(color_map).to(device)
|
38 |
-
|
39 |
def preprocess_image(image):
|
40 |
image = cv2.resize(image, (128, 72))
|
41 |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device)
|
@@ -46,15 +58,13 @@ def plot_depth_map(depth_map, original_image):
|
|
46 |
ax = fig.add_subplot(111, projection='3d')
|
47 |
x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0]))
|
48 |
|
49 |
-
# Resize original image to match depth map dimensions
|
50 |
original_image_resized = cv2.resize(original_image, (depth_map.shape[1], depth_map.shape[0]))
|
51 |
colors = original_image_resized.reshape(depth_map.shape[0], depth_map.shape[1], 3) / 255.0
|
52 |
|
53 |
ax.plot_surface(x, y, depth_map, facecolors=colors, shade=False)
|
54 |
ax.set_zlim(0, 1)
|
55 |
|
56 |
-
|
57 |
-
ax.view_init(elev=45, azim=180) # 180-degree rotation and a higher angle
|
58 |
plt.axis('off')
|
59 |
plt.close(fig)
|
60 |
|
@@ -69,14 +79,11 @@ def process_frame(image):
|
|
69 |
if image is None:
|
70 |
return None
|
71 |
preprocessed = preprocess_image(image)
|
72 |
-
predicted_depth = model(preprocessed).
|
73 |
-
depth_map = predicted_depth.squeeze().cpu().numpy()
|
74 |
|
75 |
-
|
76 |
-
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
77 |
|
78 |
-
|
79 |
-
if image.shape[2] == 3: # Check if it's a color image
|
80 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
81 |
|
82 |
return plot_depth_map(depth_map, image)
|
|
|
1 |
import cv2
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
from transformers import DPTImageProcessor
|
5 |
import gradio as gr
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
from mpl_toolkits.mplot3d import Axes3D
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
|
11 |
+
# Load your custom trained model
|
12 |
+
class CompressedStudentModel(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super(CompressedStudentModel, self).__init__()
|
15 |
+
self.encoder = nn.Sequential(
|
16 |
+
nn.Conv2d(3, 64, kernel_size=3, padding=1),
|
17 |
+
nn.ReLU(),
|
18 |
+
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
19 |
+
nn.ReLU(),
|
20 |
+
nn.MaxPool2d(2),
|
21 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
22 |
+
nn.ReLU(),
|
23 |
+
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
24 |
+
nn.ReLU(),
|
25 |
+
nn.MaxPool2d(2),
|
26 |
+
nn.Conv2d(128, 256, kernel_size=3, padding=1),
|
27 |
+
nn.ReLU(),
|
28 |
+
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
29 |
+
nn.ReLU(),
|
30 |
+
)
|
31 |
+
self.decoder = nn.Sequential(
|
32 |
+
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
|
35 |
+
nn.ReLU(),
|
36 |
+
nn.Conv2d(64, 1, kernel_size=3, padding=1),
|
37 |
+
)
|
38 |
|
39 |
+
def forward(self, x):
|
40 |
+
features = self.encoder(x)
|
41 |
+
depth = self.decoder(features)
|
42 |
+
return depth
|
43 |
|
44 |
+
# Initialize and load weights into the student model
|
45 |
+
model = CompressedStudentModel().to(device)
|
46 |
+
model.load_state_dict(torch.load("huntrezz_depth_v2.pt", map_location=device))
|
47 |
+
model.eval()
|
|
|
48 |
|
49 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
50 |
|
|
|
|
|
|
|
51 |
def preprocess_image(image):
|
52 |
image = cv2.resize(image, (128, 72))
|
53 |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device)
|
|
|
58 |
ax = fig.add_subplot(111, projection='3d')
|
59 |
x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0]))
|
60 |
|
|
|
61 |
original_image_resized = cv2.resize(original_image, (depth_map.shape[1], depth_map.shape[0]))
|
62 |
colors = original_image_resized.reshape(depth_map.shape[0], depth_map.shape[1], 3) / 255.0
|
63 |
|
64 |
ax.plot_surface(x, y, depth_map, facecolors=colors, shade=False)
|
65 |
ax.set_zlim(0, 1)
|
66 |
|
67 |
+
ax.view_init(elev=45, azim=180)
|
|
|
68 |
plt.axis('off')
|
69 |
plt.close(fig)
|
70 |
|
|
|
79 |
if image is None:
|
80 |
return None
|
81 |
preprocessed = preprocess_image(image)
|
82 |
+
predicted_depth = model(preprocessed).squeeze().cpu().numpy()
|
|
|
83 |
|
84 |
+
depth_map = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
|
|
85 |
|
86 |
+
if image.shape[2] == 3:
|
|
|
87 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
88 |
|
89 |
return plot_depth_map(depth_map, image)
|