Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ parameters_to_prune = [
|
|
19 |
prune.global_unstructured(
|
20 |
parameters_to_prune,
|
21 |
pruning_method=prune.L1Unstructured,
|
22 |
-
amount=0.
|
23 |
)
|
24 |
|
25 |
for module, _ in parameters_to_prune:
|
@@ -41,15 +41,25 @@ def preprocess_image(image):
|
|
41 |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device)
|
42 |
return image / 255.0
|
43 |
|
44 |
-
def plot_depth_map(depth_map):
|
45 |
-
fig = plt.figure(figsize=(16, 9))
|
46 |
ax = fig.add_subplot(111, projection='3d')
|
47 |
x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0]))
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
ax.set_zlim(0, 1)
|
|
|
51 |
plt.close(fig)
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
@torch.inference_mode()
|
55 |
def process_frame(image):
|
@@ -62,15 +72,11 @@ def process_frame(image):
|
|
62 |
# Normalize depth map
|
63 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
# Convert plot to image
|
69 |
-
fig.canvas.draw()
|
70 |
-
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
71 |
-
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
72 |
|
73 |
-
return
|
74 |
|
75 |
interface = gr.Interface(
|
76 |
fn=process_frame,
|
|
|
19 |
prune.global_unstructured(
|
20 |
parameters_to_prune,
|
21 |
pruning_method=prune.L1Unstructured,
|
22 |
+
amount=0.2, # Prune 20% of weights
|
23 |
)
|
24 |
|
25 |
for module, _ in parameters_to_prune:
|
|
|
41 |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device)
|
42 |
return image / 255.0
|
43 |
|
44 |
+
def plot_depth_map(depth_map, original_image):
|
45 |
+
fig = plt.figure(figsize=(16, 9))
|
46 |
ax = fig.add_subplot(111, projection='3d')
|
47 |
x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0]))
|
48 |
+
|
49 |
+
# Resize original image to match depth map dimensions
|
50 |
+
original_image_resized = cv2.resize(original_image, (depth_map.shape[1], depth_map.shape[0]))
|
51 |
+
colors = original_image_resized.reshape(depth_map.shape[0], depth_map.shape[1], 3) / 255.0
|
52 |
+
|
53 |
+
ax.plot_surface(x, y, depth_map, facecolors=colors, shade=False)
|
54 |
ax.set_zlim(0, 1)
|
55 |
+
plt.axis('off')
|
56 |
plt.close(fig)
|
57 |
+
|
58 |
+
fig.canvas.draw()
|
59 |
+
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
60 |
+
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
61 |
+
|
62 |
+
return img
|
63 |
|
64 |
@torch.inference_mode()
|
65 |
def process_frame(image):
|
|
|
72 |
# Normalize depth map
|
73 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
74 |
|
75 |
+
# Convert BGR to RGB if necessary
|
76 |
+
if image.shape[2] == 3: # Check if it's a color image
|
77 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
return plot_depth_map(depth_map, image)
|
80 |
|
81 |
interface = gr.Interface(
|
82 |
fn=process_frame,
|