# Import required libraries for image processing, deep learning, and visualization import cv2 # OpenCV for image processing import torch # PyTorch deep learning framework import numpy as np # NumPy for numerical operations from transformers import DPTImageProcessor # Hugging Face image processor for depth estimation import gradio as gr # Gradio for creating web interfaces import matplotlib.pyplot as plt # Matplotlib for plotting from mpl_toolkits.mplot3d import Axes3D # 3D plotting tools import torch.nn as nn # Neural network modules from PyTorch # Set up device - will use GPU if available, otherwise CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Define my compressed student model architecture for depth estimation class CompressedStudentModel(nn.Module): def __init__(self): # Initialize parent class super(CompressedStudentModel, self).__init__() # Define encoder network that extracts features from input image self.encoder = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), # First conv layer: RGB -> 64 channels nn.ReLU(), # Activation function nn.Conv2d(64, 64, kernel_size=3, padding=1), # Second conv: 64 -> 64 channels nn.ReLU(), nn.MaxPool2d(2), # Reduce spatial dimensions by 2 nn.Conv2d(64, 128, kernel_size=3, padding=1), # Third conv: 64 -> 128 channels nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), # Fourth conv: 128 -> 128 channels nn.ReLU(), nn.MaxPool2d(2), # Further reduce spatial dimensions nn.Conv2d(128, 256, kernel_size=3, padding=1), # Fifth conv: 128 -> 256 channels nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), # Sixth conv: 256 -> 256 channels nn.ReLU(), ) # Define decoder network that upsamples features back to original resolution self.decoder = nn.Sequential( nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1), # First upsample: 256 -> 128 nn.ReLU(), nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1), # Second upsample: 128 -> 64 nn.ReLU(), nn.Conv2d(64, 1, kernel_size=3, padding=1), # Final conv: 64 -> 1 channel depth map ) def forward(self, x): # Pass input through encoder to get features features = self.encoder(x) # Pass features through decoder to get depth map depth = self.decoder(features) return depth # Load my trained model and prepare it for inference model = CompressedStudentModel().to(device) # Create model instance and move to device model.load_state_dict(torch.load("huntrezz_depth_v2.pt", map_location=device)) # Load trained weights model.eval() # Set model to evaluation mode # Initialize the image processor from Hugging Face processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") def preprocess_image(image): # Resize image to 200x200 for consistent processing image = cv2.resize(image, (200, 200)) # Convert image to PyTorch tensor and move to device image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) # Normalize pixel values to [0,1] range return image / 255.0 def plot_depth_map(depth_map, original_image): # Create new figure with specific size fig = plt.figure(figsize=(16, 9)) # Add 3D subplot ax = fig.add_subplot(111, projection='3d') # Create coordinate grids for 3D plot x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0])) # Normalize depth values for coloring norm = plt.Normalize(depth_map.min(), depth_map.max()) colors = plt.cm.viridis(norm(depth_map)) # Create 3D surface plot ax.plot_surface(x, y, depth_map, facecolors=colors, shade=False) ax.set_zlim(0, 1) # Set z-axis limits # Set viewing angle for better visualization ax.view_init(elev=70, azim=90) plt.axis('off') # Hide axes plt.close(fig) # Close the figure to free memory # Convert matplotlib figure to numpy array fig.canvas.draw() img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) return img @torch.inference_mode() # Disable gradient computation for inference def process_frame(image): # Check if image is valid if image is None: return None # Preprocess input image preprocessed = preprocess_image(image) # Get depth prediction from model predicted_depth = model(preprocessed).squeeze().cpu().numpy() # Normalize depth values to [0,1] range depth_map = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min()) # Convert BGR to RGB if needed if image.shape[2] == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Create and return 3D visualization return plot_depth_map(depth_map, image) # Create Gradio interface for webcam input interface = gr.Interface( fn=process_frame, # Processing function inputs=gr.Image(sources="webcam", streaming=True), # Webcam input outputs="image", # Image output live=True # Enable live updates ) # Launch the interface interface.launch()