Spaces:
Sleeping
Sleeping
haiengchuihaian
commited on
Commit
·
1eaecb2
1
Parent(s):
9027d90
change leaderboard and submit
Browse files- app.py +260 -254
- src/display/about.py +1 -1
- src/display/utils.py +9 -9
- src/leaderboard/read_evals.py +25 -23
- src/populate.py +3 -0
- src/submission/submit.py +27 -1
app.py
CHANGED
@@ -27,176 +27,180 @@ from src.display.utils import (
|
|
27 |
)
|
28 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
29 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
30 |
-
from src.submission.submit import add_new_eval
|
31 |
|
32 |
|
33 |
def restart_space():
|
34 |
API.restart_space(repo_id=REPO_ID, token=TOKEN)
|
35 |
|
36 |
-
try:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
except Exception:
|
42 |
-
|
43 |
-
try:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
except Exception:
|
49 |
-
|
50 |
|
51 |
|
52 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
|
|
|
|
|
|
53 |
leaderboard_df = original_df.copy()
|
54 |
|
55 |
-
(
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
60 |
|
61 |
|
62 |
# Searching and filtering
|
63 |
-
def update_table(
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
def filter_models(
|
114 |
-
|
115 |
-
) -> pd.DataFrame:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
134 |
demo = gr.Blocks(css=custom_css)
|
135 |
with demo:
|
136 |
gr.HTML(TITLE)
|
137 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
138 |
|
139 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
140 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
141 |
-
with gr.Row():
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
value=[
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
],
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
|
193 |
leaderboard_table = gr.components.Dataframe(
|
194 |
value=leaderboard_df[
|
195 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
196 |
-
+ shown_columns.value
|
197 |
+ [AutoEvalColumn.dummy.name]
|
198 |
],
|
199 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
200 |
datatype=TYPES,
|
201 |
elem_id="leaderboard-table",
|
202 |
interactive=False,
|
@@ -211,34 +215,34 @@ with demo:
|
|
211 |
datatype=TYPES,
|
212 |
visible=False,
|
213 |
)
|
214 |
-
search_bar.submit(
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
)
|
227 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
|
243 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
244 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
@@ -248,87 +252,88 @@ with demo:
|
|
248 |
with gr.Row():
|
249 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
250 |
|
251 |
-
with gr.Column():
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
with gr.Row():
|
287 |
-
gr.Markdown("# ✉️✨ Submit your
|
288 |
|
289 |
with gr.Row():
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
332 |
|
333 |
with gr.Row():
|
334 |
with gr.Accordion("📙 Citation", open=False):
|
@@ -341,6 +346,7 @@ with demo:
|
|
341 |
)
|
342 |
|
343 |
scheduler = BackgroundScheduler()
|
344 |
-
scheduler.add_job(restart_space, "interval", seconds=
|
345 |
scheduler.start()
|
346 |
-
|
|
|
|
27 |
)
|
28 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
29 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
30 |
+
from src.submission.submit import add_new_eval, upload_file
|
31 |
|
32 |
|
33 |
def restart_space():
|
34 |
API.restart_space(repo_id=REPO_ID, token=TOKEN)
|
35 |
|
36 |
+
# try:
|
37 |
+
# print(EVAL_REQUESTS_PATH)
|
38 |
+
# snapshot_download(
|
39 |
+
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
40 |
+
# )
|
41 |
+
# except Exception:
|
42 |
+
# restart_space()
|
43 |
+
# try:
|
44 |
+
# print(EVAL_RESULTS_PATH)
|
45 |
+
# snapshot_download(
|
46 |
+
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
47 |
+
# )
|
48 |
+
# except Exception:
|
49 |
+
# restart_space()
|
50 |
|
51 |
|
52 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
+
value=[ c.name for c in fields(AutoEvalColumn)
|
54 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden]
|
55 |
+
|
56 |
+
|
57 |
leaderboard_df = original_df.copy()
|
58 |
|
59 |
+
# (
|
60 |
+
# finished_eval_queue_df,
|
61 |
+
# running_eval_queue_df,
|
62 |
+
# pending_eval_queue_df,
|
63 |
+
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
|
65 |
|
66 |
# Searching and filtering
|
67 |
+
# def update_table(
|
68 |
+
# hidden_df: pd.DataFrame,
|
69 |
+
# columns: list,
|
70 |
+
# type_query: list,
|
71 |
+
# precision_query: str,
|
72 |
+
# size_query: list,
|
73 |
+
# show_deleted: bool,
|
74 |
+
# query: str,
|
75 |
+
# ):
|
76 |
+
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
77 |
+
# filtered_df = filter_queries(query, filtered_df)
|
78 |
+
# df = select_columns(filtered_df, columns)
|
79 |
+
# return df
|
80 |
+
|
81 |
+
|
82 |
+
# def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
83 |
+
# return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
84 |
+
|
85 |
+
|
86 |
+
# def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
87 |
+
# always_here_cols = [
|
88 |
+
# AutoEvalColumn.model_type_symbol.name,
|
89 |
+
# AutoEvalColumn.model.name,
|
90 |
+
# ]
|
91 |
+
# # We use COLS to maintain sorting
|
92 |
+
# filtered_df = df[
|
93 |
+
# always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
|
94 |
+
# ]
|
95 |
+
# return filtered_df
|
96 |
+
|
97 |
+
|
98 |
+
# def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
99 |
+
# final_df = []
|
100 |
+
# if query != "":
|
101 |
+
# queries = [q.strip() for q in query.split(";")]
|
102 |
+
# for _q in queries:
|
103 |
+
# _q = _q.strip()
|
104 |
+
# if _q != "":
|
105 |
+
# temp_filtered_df = search_table(filtered_df, _q)
|
106 |
+
# if len(temp_filtered_df) > 0:
|
107 |
+
# final_df.append(temp_filtered_df)
|
108 |
+
# if len(final_df) > 0:
|
109 |
+
# filtered_df = pd.concat(final_df)
|
110 |
+
# filtered_df = filtered_df.drop_duplicates(
|
111 |
+
# subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
112 |
+
# )
|
113 |
+
|
114 |
+
# return filtered_df
|
115 |
+
|
116 |
+
|
117 |
+
# def filter_models(
|
118 |
+
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
119 |
+
# ) -> pd.DataFrame:
|
120 |
+
# # Show all models
|
121 |
+
# if show_deleted:
|
122 |
+
# filtered_df = df
|
123 |
+
# else: # Show only still on the hub models
|
124 |
+
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
125 |
+
|
126 |
+
# type_emoji = [t[0] for t in type_query]
|
127 |
+
# filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
128 |
+
# filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
129 |
+
|
130 |
+
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
131 |
+
# params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
132 |
+
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
133 |
+
# filtered_df = filtered_df.loc[mask]
|
134 |
+
|
135 |
+
# return filtered_df
|
136 |
+
|
137 |
+
|
138 |
+
# print([c.name for c in fields(AutoEvalColumn) if c.never_hidden])
|
139 |
demo = gr.Blocks(css=custom_css)
|
140 |
with demo:
|
141 |
gr.HTML(TITLE)
|
142 |
+
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
143 |
|
144 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
145 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
146 |
+
# with gr.Row():
|
147 |
+
# with gr.Column():
|
148 |
+
# with gr.Row():
|
149 |
+
# search_bar = gr.Textbox(
|
150 |
+
# placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
151 |
+
# show_label=False,
|
152 |
+
# elem_id="search-bar",
|
153 |
+
# )
|
154 |
+
# with gr.Row():
|
155 |
+
# shown_columns = gr.CheckboxGroup(
|
156 |
+
# choices=[
|
157 |
+
# c.name
|
158 |
+
# for c in fields(AutoEvalColumn)
|
159 |
+
# if not c.hidden and not c.never_hidden and not c.dummy
|
160 |
+
# ],
|
161 |
+
# value=[
|
162 |
+
# c.name
|
163 |
+
# for c in fields(AutoEvalColumn)
|
164 |
+
# if c.displayed_by_default and not c.hidden and not c.never_hidden
|
165 |
+
# ],
|
166 |
+
# label="Select columns to show",
|
167 |
+
# elem_id="column-select",
|
168 |
+
# interactive=True,
|
169 |
+
# )
|
170 |
+
# with gr.Row():
|
171 |
+
# deleted_models_visibility = gr.Checkbox(
|
172 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
173 |
+
# )
|
174 |
+
# with gr.Column(min_width=320):
|
175 |
+
# #with gr.Box(elem_id="box-filter"):
|
176 |
+
# filter_columns_type = gr.CheckboxGroup(
|
177 |
+
# label="Model types",
|
178 |
+
# choices=[t.to_str() for t in ModelType],
|
179 |
+
# value=[t.to_str() for t in ModelType],
|
180 |
+
# interactive=True,
|
181 |
+
# elem_id="filter-columns-type",
|
182 |
+
# )
|
183 |
+
# filter_columns_precision = gr.CheckboxGroup(
|
184 |
+
# label="Precision",
|
185 |
+
# choices=[i.value.name for i in Precision],
|
186 |
+
# value=[i.value.name for i in Precision],
|
187 |
+
# interactive=True,
|
188 |
+
# elem_id="filter-columns-precision",
|
189 |
+
# )
|
190 |
+
# filter_columns_size = gr.CheckboxGroup(
|
191 |
+
# label="Model sizes (in billions of parameters)",
|
192 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
193 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
194 |
+
# interactive=True,
|
195 |
+
# elem_id="filter-columns-size",
|
196 |
+
# )
|
197 |
|
198 |
leaderboard_table = gr.components.Dataframe(
|
199 |
value=leaderboard_df[
|
200 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + value
|
|
|
201 |
+ [AutoEvalColumn.dummy.name]
|
202 |
],
|
203 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + value,
|
204 |
datatype=TYPES,
|
205 |
elem_id="leaderboard-table",
|
206 |
interactive=False,
|
|
|
215 |
datatype=TYPES,
|
216 |
visible=False,
|
217 |
)
|
218 |
+
# search_bar.submit(
|
219 |
+
# update_table,
|
220 |
+
# [
|
221 |
+
# hidden_leaderboard_table_for_search,
|
222 |
+
# shown_columns,
|
223 |
+
# filter_columns_type,
|
224 |
+
# filter_columns_precision,
|
225 |
+
# filter_columns_size,
|
226 |
+
# deleted_models_visibility,
|
227 |
+
# search_bar,
|
228 |
+
# ],
|
229 |
+
# leaderboard_table,
|
230 |
+
# )
|
231 |
+
# for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
232 |
+
# selector.change(
|
233 |
+
# update_table,
|
234 |
+
# [
|
235 |
+
# hidden_leaderboard_table_for_search,
|
236 |
+
# shown_columns,
|
237 |
+
# filter_columns_type,
|
238 |
+
# filter_columns_precision,
|
239 |
+
# filter_columns_size,
|
240 |
+
# deleted_models_visibility,
|
241 |
+
# search_bar,
|
242 |
+
# ],
|
243 |
+
# leaderboard_table,
|
244 |
+
# queue=True,
|
245 |
+
# )
|
246 |
|
247 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
248 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
252 |
with gr.Row():
|
253 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
254 |
|
255 |
+
# with gr.Column():
|
256 |
+
# with gr.Accordion(
|
257 |
+
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
258 |
+
# open=False,
|
259 |
+
# ):
|
260 |
+
# with gr.Row():
|
261 |
+
# finished_eval_table = gr.components.Dataframe(
|
262 |
+
# value=finished_eval_queue_df,
|
263 |
+
# headers=EVAL_COLS,
|
264 |
+
# datatype=EVAL_TYPES,
|
265 |
+
# row_count=5,
|
266 |
+
# )
|
267 |
+
# with gr.Accordion(
|
268 |
+
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
269 |
+
# open=False,
|
270 |
+
# ):
|
271 |
+
# with gr.Row():
|
272 |
+
# running_eval_table = gr.components.Dataframe(
|
273 |
+
# value=running_eval_queue_df,
|
274 |
+
# headers=EVAL_COLS,
|
275 |
+
# datatype=EVAL_TYPES,
|
276 |
+
# row_count=5,
|
277 |
+
# )
|
278 |
+
|
279 |
+
# with gr.Accordion(
|
280 |
+
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
281 |
+
# open=False,
|
282 |
+
# ):
|
283 |
+
# with gr.Row():
|
284 |
+
# pending_eval_table = gr.components.Dataframe(
|
285 |
+
# value=pending_eval_queue_df,
|
286 |
+
# headers=EVAL_COLS,
|
287 |
+
# datatype=EVAL_TYPES,
|
288 |
+
# row_count=5,
|
289 |
+
# )
|
290 |
with gr.Row():
|
291 |
+
gr.Markdown("# ✉️✨ Submit your files here!", elem_classes="markdown-text")
|
292 |
|
293 |
with gr.Row():
|
294 |
+
upload = gr.Interface(fn=upload_file,inputs="file" ,outputs=None)
|
295 |
+
# with gr.Column():
|
296 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
297 |
+
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
298 |
+
# model_type = gr.Dropdown(
|
299 |
+
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
300 |
+
# label="Model type",
|
301 |
+
# multiselect=False,
|
302 |
+
# value=None,
|
303 |
+
# interactive=True,
|
304 |
+
# )
|
305 |
+
|
306 |
+
# with gr.Column():
|
307 |
+
# precision = gr.Dropdown(
|
308 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
309 |
+
# label="Precision",
|
310 |
+
# multiselect=False,
|
311 |
+
# value="float16",
|
312 |
+
# interactive=True,
|
313 |
+
# )
|
314 |
+
# weight_type = gr.Dropdown(
|
315 |
+
# choices=[i.value.name for i in WeightType],
|
316 |
+
# label="Weights type",
|
317 |
+
# multiselect=False,
|
318 |
+
# value="Original",
|
319 |
+
# interactive=True,
|
320 |
+
# )
|
321 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
322 |
+
|
323 |
+
# submit_button = gr.Button("Submit Eval")
|
324 |
+
# submission_result = gr.Markdown()
|
325 |
+
# submit_button.click(
|
326 |
+
# add_new_eval,
|
327 |
+
# [
|
328 |
+
# model_name_textbox,
|
329 |
+
# base_model_name_textbox,
|
330 |
+
# revision_name_textbox,
|
331 |
+
# precision,
|
332 |
+
# weight_type,
|
333 |
+
# model_type,
|
334 |
+
# ],
|
335 |
+
# submission_result,
|
336 |
+
# )
|
337 |
|
338 |
with gr.Row():
|
339 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
346 |
)
|
347 |
|
348 |
scheduler = BackgroundScheduler()
|
349 |
+
scheduler.add_job(restart_space, "interval", seconds=30)
|
350 |
scheduler.start()
|
351 |
+
|
352 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/display/about.py
CHANGED
@@ -16,7 +16,7 @@ class Tasks(Enum):
|
|
16 |
|
17 |
|
18 |
# Your leaderboard name
|
19 |
-
TITLE = """<h1 align="center" id="space-title">
|
20 |
|
21 |
# What does your leaderboard evaluate?
|
22 |
INTRODUCTION_TEXT = """
|
|
|
16 |
|
17 |
|
18 |
# Your leaderboard name
|
19 |
+
TITLE = """<h1 align="center" id="space-title">OPENT2T LEADERBOARD</h1>"""
|
20 |
|
21 |
# What does your leaderboard evaluate?
|
22 |
INTRODUCTION_TEXT = """
|
src/display/utils.py
CHANGED
@@ -31,15 +31,15 @@ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average
|
|
31 |
for task in Tasks:
|
32 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
33 |
# Model information
|
34 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
36 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
37 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
39 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
41 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
42 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
43 |
# Dummy column for the search bar (hidden by the custom CSS)
|
44 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
45 |
|
|
|
31 |
for task in Tasks:
|
32 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
33 |
# Model information
|
34 |
+
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
35 |
+
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
36 |
+
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
37 |
+
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
38 |
+
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
39 |
+
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
40 |
+
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
41 |
+
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
42 |
+
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
43 |
# Dummy column for the search bar (hidden by the custom CSS)
|
44 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
45 |
|
src/leaderboard/read_evals.py
CHANGED
@@ -23,12 +23,12 @@ class EvalResult:
|
|
23 |
precision: Precision = Precision.Unknown
|
24 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
25 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
26 |
-
architecture: str = "Unknown"
|
27 |
license: str = "?"
|
28 |
likes: int = 0
|
29 |
num_params: int = 0
|
30 |
date: str = "" # submission date of request file
|
31 |
-
still_on_hub: bool = False
|
32 |
|
33 |
@classmethod
|
34 |
def init_from_json_file(self, json_filepath):
|
@@ -38,7 +38,7 @@ class EvalResult:
|
|
38 |
|
39 |
config = data.get("config")
|
40 |
|
41 |
-
# Precision
|
42 |
precision = Precision.from_str(config.get("model_dtype"))
|
43 |
|
44 |
# Get model and org
|
@@ -55,14 +55,14 @@ class EvalResult:
|
|
55 |
result_key = f"{org}_{model}_{precision.value.name}"
|
56 |
full_model = "/".join(org_and_model)
|
57 |
|
58 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
59 |
-
|
60 |
-
)
|
61 |
-
architecture = "?"
|
62 |
-
if model_config is not None:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
# Extract results available in this file (some results are split in several files)
|
68 |
results = {}
|
@@ -85,8 +85,8 @@ class EvalResult:
|
|
85 |
results=results,
|
86 |
precision=precision,
|
87 |
revision= config.get("model_sha", ""),
|
88 |
-
still_on_hub=still_on_hub,
|
89 |
-
architecture=architecture
|
90 |
)
|
91 |
|
92 |
def update_with_request_file(self, requests_path):
|
@@ -110,19 +110,19 @@ class EvalResult:
|
|
110 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
111 |
data_dict = {
|
112 |
"eval_name": self.eval_name, # not a column, just a save name,
|
113 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
114 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
115 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
116 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
117 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
118 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
119 |
AutoEvalColumn.dummy.name: self.full_model,
|
120 |
-
AutoEvalColumn.revision.name: self.revision,
|
121 |
AutoEvalColumn.average.name: average,
|
122 |
-
AutoEvalColumn.license.name: self.license,
|
123 |
-
AutoEvalColumn.likes.name: self.likes,
|
124 |
-
AutoEvalColumn.params.name: self.num_params,
|
125 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
126 |
}
|
127 |
|
128 |
for task in Tasks:
|
@@ -156,8 +156,9 @@ def get_request_file_for_model(requests_path, model_name, precision):
|
|
156 |
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
157 |
"""From the path of the results folder root, extract all needed info for results"""
|
158 |
model_result_filepaths = []
|
159 |
-
|
160 |
for root, _, files in os.walk(results_path):
|
|
|
161 |
# We should only have json files in model results
|
162 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
163 |
continue
|
@@ -185,6 +186,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
185 |
eval_results[eval_name] = eval_result
|
186 |
|
187 |
results = []
|
|
|
188 |
for v in eval_results.values():
|
189 |
try:
|
190 |
v.to_dict() # we test if the dict version is complete
|
|
|
23 |
precision: Precision = Precision.Unknown
|
24 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
25 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
26 |
+
# architecture: str = "Unknown"
|
27 |
license: str = "?"
|
28 |
likes: int = 0
|
29 |
num_params: int = 0
|
30 |
date: str = "" # submission date of request file
|
31 |
+
# still_on_hub: bool = False
|
32 |
|
33 |
@classmethod
|
34 |
def init_from_json_file(self, json_filepath):
|
|
|
38 |
|
39 |
config = data.get("config")
|
40 |
|
41 |
+
# # Precision
|
42 |
precision = Precision.from_str(config.get("model_dtype"))
|
43 |
|
44 |
# Get model and org
|
|
|
55 |
result_key = f"{org}_{model}_{precision.value.name}"
|
56 |
full_model = "/".join(org_and_model)
|
57 |
|
58 |
+
# still_on_hub, _, model_config = is_model_on_hub(
|
59 |
+
# full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
60 |
+
# )
|
61 |
+
# architecture = "?"
|
62 |
+
# if model_config is not None:
|
63 |
+
# architectures = getattr(model_config, "architectures", None)
|
64 |
+
# if architectures:
|
65 |
+
# architecture = ";".join(architectures)
|
66 |
|
67 |
# Extract results available in this file (some results are split in several files)
|
68 |
results = {}
|
|
|
85 |
results=results,
|
86 |
precision=precision,
|
87 |
revision= config.get("model_sha", ""),
|
88 |
+
# still_on_hub=still_on_hub,
|
89 |
+
# architecture=architecture
|
90 |
)
|
91 |
|
92 |
def update_with_request_file(self, requests_path):
|
|
|
110 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
111 |
data_dict = {
|
112 |
"eval_name": self.eval_name, # not a column, just a save name,
|
113 |
+
# AutoEvalColumn.precision.name: self.precision.value.name,
|
114 |
+
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
115 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
116 |
+
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
117 |
+
# AutoEvalColumn.architecture.name: self.architecture,
|
118 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
119 |
AutoEvalColumn.dummy.name: self.full_model,
|
120 |
+
# AutoEvalColumn.revision.name: self.revision,
|
121 |
AutoEvalColumn.average.name: average,
|
122 |
+
# AutoEvalColumn.license.name: self.license,
|
123 |
+
# AutoEvalColumn.likes.name: self.likes,
|
124 |
+
# AutoEvalColumn.params.name: self.num_params,
|
125 |
+
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
126 |
}
|
127 |
|
128 |
for task in Tasks:
|
|
|
156 |
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
157 |
"""From the path of the results folder root, extract all needed info for results"""
|
158 |
model_result_filepaths = []
|
159 |
+
|
160 |
for root, _, files in os.walk(results_path):
|
161 |
+
print(files)
|
162 |
# We should only have json files in model results
|
163 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
164 |
continue
|
|
|
186 |
eval_results[eval_name] = eval_result
|
187 |
|
188 |
results = []
|
189 |
+
# print(eval_results)
|
190 |
for v in eval_results.values():
|
191 |
try:
|
192 |
v.to_dict() # we test if the dict version is complete
|
src/populate.py
CHANGED
@@ -10,10 +10,13 @@ from src.leaderboard.read_evals import get_raw_eval_results
|
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
|
|
13 |
all_data_json = [v.to_dict() for v in raw_data]
|
14 |
|
15 |
df = pd.DataFrame.from_records(all_data_json)
|
16 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
|
|
|
|
17 |
df = df[cols].round(decimals=2)
|
18 |
|
19 |
# filter out if any of the benchmarks have not been produced
|
|
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
13 |
+
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
df = pd.DataFrame.from_records(all_data_json)
|
17 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
+
print(df)
|
19 |
+
print(cols)
|
20 |
df = df[cols].round(decimals=2)
|
21 |
|
22 |
# filter out if any of the benchmarks have not been produced
|
src/submission/submit.py
CHANGED
@@ -3,7 +3,7 @@ import os
|
|
3 |
from datetime import datetime, timezone
|
4 |
|
5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
from src.submission.check_validity import (
|
8 |
already_submitted_models,
|
9 |
check_model_card,
|
@@ -14,6 +14,32 @@ from src.submission.check_validity import (
|
|
14 |
REQUESTED_MODELS = None
|
15 |
USERS_TO_SUBMISSION_DATES = None
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def add_new_eval(
|
18 |
model: str,
|
19 |
base_model: str,
|
|
|
3 |
from datetime import datetime, timezone
|
4 |
|
5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
+
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH
|
7 |
from src.submission.check_validity import (
|
8 |
already_submitted_models,
|
9 |
check_model_card,
|
|
|
14 |
REQUESTED_MODELS = None
|
15 |
USERS_TO_SUBMISSION_DATES = None
|
16 |
|
17 |
+
def assert_upload(file_obj):
|
18 |
+
#TODO: assert the acc of file
|
19 |
+
return True
|
20 |
+
pass
|
21 |
+
def upload_file(file_obj):
|
22 |
+
flag = assert_upload(file_obj)
|
23 |
+
|
24 |
+
|
25 |
+
now = datetime.now()
|
26 |
+
timestamp_str = now.strftime("%Y-%m-%dT%H-%M-%S")
|
27 |
+
output_file = "results_"+timestamp_str+".json"
|
28 |
+
|
29 |
+
example = json.load(open(file_obj, "r"))
|
30 |
+
model_name = example["config"]["model_name"]
|
31 |
+
output_dir = os.path.join(EVAL_RESULTS_PATH,model_name)
|
32 |
+
os.makedirs(output_dir, exist_ok=True)
|
33 |
+
|
34 |
+
output_path = os.path.join(output_dir, output_file)
|
35 |
+
|
36 |
+
with open(file_obj, "r") as f:
|
37 |
+
content = f.read()
|
38 |
+
with open(output_path, "w") as f:
|
39 |
+
f.write(content)
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
def add_new_eval(
|
44 |
model: str,
|
45 |
base_model: str,
|