Spaces:
Sleeping
Sleeping
File size: 1,948 Bytes
54b562a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import streamlit as st
from transformers import pipeline
import pandas as pd
import re
# Load the Question Answering model
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
# Load SOP Dataset
@st.cache
def load_sop_dataset():
"""Load SOP dataset from CSV."""
dataset = pd.read_csv("dataset.csv") # Ensure this file is uploaded to your Hugging Face Space
return dataset
# Load the dataset
dataset = load_sop_dataset()
# Utility function to find relevant contexts
def find_relevant_contexts(question, dataset):
"""Search for relevant contexts in the dataset."""
relevant_contexts = []
for index, row in dataset.iterrows():
if re.search(question, row["text"], re.IGNORECASE):
relevant_contexts.append(row["text"])
return relevant_contexts
# Streamlit UI
st.title("SOP Question Answering AI")
st.markdown("Ask any question about Standard Operating Procedures:")
# User input
question = st.text_area("Enter your question:", "")
specific_context = st.checkbox("Use specific SOP context?")
context = None
if specific_context:
st.write("Choose a context:")
context = st.selectbox("SOP Contexts", dataset["text"])
else:
if question:
st.write("Searching for relevant contexts...")
relevant_contexts = find_relevant_contexts(question, dataset)
if relevant_contexts:
context = st.selectbox("Relevant SOP Contexts", relevant_contexts)
else:
st.warning("No relevant contexts found. Try refining your question.")
# Generate answer
if st.button("Get Answer"):
if context:
with st.spinner("Finding the answer..."):
result = qa_pipeline(question=question, context=context)
st.success("Answer:")
st.write(result["answer"])
st.write("Confidence Score:", result["score"])
else:
st.warning("Please select a context or refine your question.") |