Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import re
|
|
7 |
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
8 |
|
9 |
# Load SOP Dataset
|
10 |
-
@st.
|
11 |
def load_sop_dataset():
|
12 |
"""Load SOP dataset from CSV."""
|
13 |
dataset = pd.read_csv("dataset.csv") # Ensure this file is uploaded to your Hugging Face Space
|
@@ -16,14 +16,20 @@ def load_sop_dataset():
|
|
16 |
# Load the dataset
|
17 |
dataset = load_sop_dataset()
|
18 |
|
19 |
-
# Utility function to find relevant
|
20 |
-
def
|
21 |
-
"""
|
22 |
-
|
|
|
|
|
23 |
for index, row in dataset.iterrows():
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Streamlit UI
|
29 |
st.title("SOP Question Answering AI")
|
@@ -31,28 +37,21 @@ st.markdown("Ask any question about Standard Operating Procedures:")
|
|
31 |
|
32 |
# User input
|
33 |
question = st.text_area("Enter your question:", "")
|
34 |
-
specific_context = st.checkbox("Use specific SOP context?")
|
35 |
-
|
36 |
-
context = None
|
37 |
-
if specific_context:
|
38 |
-
st.write("Choose a context:")
|
39 |
-
context = st.selectbox("SOP Contexts", dataset["text"])
|
40 |
-
else:
|
41 |
-
if question:
|
42 |
-
st.write("Searching for relevant contexts...")
|
43 |
-
relevant_contexts = find_relevant_contexts(question, dataset)
|
44 |
-
if relevant_contexts:
|
45 |
-
context = st.selectbox("Relevant SOP Contexts", relevant_contexts)
|
46 |
-
else:
|
47 |
-
st.warning("No relevant contexts found. Try refining your question.")
|
48 |
|
49 |
# Generate answer
|
50 |
if st.button("Get Answer"):
|
51 |
-
if
|
52 |
-
with st.spinner("Finding the
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
else:
|
58 |
-
st.warning("Please
|
|
|
7 |
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
8 |
|
9 |
# Load SOP Dataset
|
10 |
+
@st.cache_data
|
11 |
def load_sop_dataset():
|
12 |
"""Load SOP dataset from CSV."""
|
13 |
dataset = pd.read_csv("dataset.csv") # Ensure this file is uploaded to your Hugging Face Space
|
|
|
16 |
# Load the dataset
|
17 |
dataset = load_sop_dataset()
|
18 |
|
19 |
+
# Utility function to find the most relevant context
|
20 |
+
def find_best_context(question, dataset):
|
21 |
+
"""Find the single best context for a given question."""
|
22 |
+
best_score = 0
|
23 |
+
best_context = None
|
24 |
+
|
25 |
for index, row in dataset.iterrows():
|
26 |
+
# Simple heuristic: Count the number of overlapping words
|
27 |
+
overlap = len(set(question.lower().split()) & set(row["text"].lower().split()))
|
28 |
+
if overlap > best_score:
|
29 |
+
best_score = overlap
|
30 |
+
best_context = row["text"]
|
31 |
+
|
32 |
+
return best_context
|
33 |
|
34 |
# Streamlit UI
|
35 |
st.title("SOP Question Answering AI")
|
|
|
37 |
|
38 |
# User input
|
39 |
question = st.text_area("Enter your question:", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# Generate answer
|
42 |
if st.button("Get Answer"):
|
43 |
+
if question:
|
44 |
+
with st.spinner("Finding the best context..."):
|
45 |
+
# Automatically find the most relevant context
|
46 |
+
context = find_best_context(question, dataset)
|
47 |
+
|
48 |
+
if context:
|
49 |
+
with st.spinner("Answering your question..."):
|
50 |
+
result = qa_pipeline(question=question, context=context)
|
51 |
+
st.success("Answer:")
|
52 |
+
st.write(result["answer"])
|
53 |
+
st.write("Confidence Score:", result["score"])
|
54 |
+
else:
|
55 |
+
st.warning("No relevant context found. Please try rephrasing your question.")
|
56 |
else:
|
57 |
+
st.warning("Please enter a question.")
|