File size: 16,889 Bytes
e2b2a3b
 
 
 
 
 
 
 
 
8c276e4
38d8edb
cb71190
8c276e4
 
 
 
 
 
38d8edb
8c276e4
 
 
 
 
 
4064286
8c276e4
 
 
a2e5112
8c276e4
 
 
 
 
 
 
 
 
 
 
 
 
e2b2a3b
4064286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b2a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f77152
 
 
 
 
 
31fcafc
 
 
 
9f77152
e2b2a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d131f3e
e2b2a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c276e4
 
d131f3e
e2b2a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31fcafc
e2b2a3b
 
 
 
 
31fcafc
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b2a3b
 
 
 
1e86415
 
 
b2fd20d
31fcafc
 
 
 
 
 
 
 
 
 
 
e2b2a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d131f3e
e2b2a3b
 
 
 
 
 
 
 
 
 
 
d131f3e
e2b2a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c276e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from helper import *
import streamlit as st
import uuid
import copy
import pandas as pd
import openai
from requests.models import ChunkedEncodingError
from streamlit.components import v1
from custom import css_code, js_code, set_context_all
from st_audiorec import st_audiorec
import numpy as np
import wave

device = "cpu"

# STT
import whisper
WHISPER_LANG = "en" # detecting language if None
#warnings.filterwarnings("ignore")
WHISPER_MODEL = whisper.load_model("base")
WHISPER_MODEL.to(device)

def transcribe(aud_inp):
    if aud_inp is None:
        return ""
    aud = whisper.load_audio(aud_inp)
    aud = whisper.pad_or_trim(aud)
    mel = whisper.log_mel_spectrogram(aud).to(device)
    _, probs = WHISPER_MODEL.detect_language(mel)
    print(f"spectrogram.shape = {mel}")

    if device == "cpu":
        options = whisper.DecodingOptions(fp16 = False, language=WHISPER_LANG)
    else:
        options = whisper.DecodingOptions(language=WHISPER_LANG)

    result = whisper.decode(WHISPER_MODEL, mel, options)
    print("result.text", result.text)
    result_text = ""
    if result and result.text:
        result_text = result.text
    return result_text


def bytes_to_wav(wav_bytes, output_wav_file = "output.wav",
                 sample_width = 1,  # 1 byte per sample
                 sample_rate = 44100,  # Sample rate in Hz
                 num_channels = 1,  # Mono audio
):
    # Create a WAV file in pcm_s16le format using the wave module
    with wave.open(output_wav_file, 'wb') as wav_file:
        wav_file.setnchannels(num_channels)
        wav_file.setsampwidth(sample_width)
        wav_file.setframerate(sample_rate)
        wav_file.setcomptype('NONE', 'not compressed')
        # Write the audio data from wav_bytes to the WAV file
        wav_file.writeframes(wav_bytes)


######################################################################################
st.set_page_config(page_title='ChatGPT Assistant', layout='wide', page_icon='🤖')
# 自定义元素样式
st.markdown(css_code, unsafe_allow_html=True)

if "initial_settings" not in st.session_state:
    # 历史聊天窗口
    st.session_state["path"] = set_chats_path()
    st.session_state['history_chats'] = get_history_chats(st.session_state["path"])
    # ss参数初始化
    st.session_state['pre_chat'] = None
    st.session_state['if_chat_change'] = False
    st.session_state['error_info'] = ''
    st.session_state["current_chat_index"] = 0
    st.session_state['user_input_content'] = ''
    # 设置完成
    st.session_state["initial_settings"] = True

with st.sidebar:
    st.markdown("# 🤖 聊天窗口")
    current_chat = st.radio(
        label='历史聊天窗口',
        format_func=lambda x: x.split('_')[0] if '_' in x else x,
        options=st.session_state['history_chats'],
        label_visibility='collapsed',
        index=st.session_state["current_chat_index"],
        key='current_chat' + st.session_state['history_chats'][st.session_state["current_chat_index"]],
        # on_change=current_chat_callback  # 此处不适合用回调,无法识别到窗口增减的变动
    )
    if st.session_state['pre_chat'] != current_chat:
        st.session_state['pre_chat'] = current_chat
        st.session_state['if_chat_change'] = True
    st.write("---")

    c1, c2 = st.columns(2)

    create_chat_button = c1.button('新建', use_container_width=True, key='create_chat_button')
    if create_chat_button:
        st.session_state['history_chats'] = ['New Chat_' + str(uuid.uuid4())] + st.session_state['history_chats']
        st.session_state["current_chat_index"] = 0
        st.experimental_rerun()

    delete_chat_button = c2.button('删除', use_container_width=True, key='delete_chat_button')
    if delete_chat_button:
        if len(st.session_state['history_chats']) == 1:
            chat_init = 'New Chat_' + str(uuid.uuid4())
            st.session_state['history_chats'].append(chat_init)
            st.session_state['current_chat'] = chat_init
        pre_chat_index = st.session_state['history_chats'].index(current_chat)
        if pre_chat_index > 0:
            st.session_state["current_chat_index"] = st.session_state['history_chats'].index(current_chat) - 1
        else:
            st.session_state["current_chat_index"] = 0
        st.session_state['history_chats'].remove(current_chat)
        remove_data(st.session_state["path"], current_chat)
        st.experimental_rerun()

    for i in range(5):
        st.write("\n")

    st.markdown("OpenAI API Key")
    st.text_input("OpenAI API Key", type='password', key='apikey_input', label_visibility='collapsed')
    st.caption(
        "此Key仅在当前网页有效,且优先级高于Secrets中的配置,仅自己可用,他人无法共享。[官网获取](https://platform.openai.com/account/api-keys)")

    st.caption("""
    - 双击页面可直接定位输入栏
    - Ctrl + Enter 可快捷提交问题
    """)

# 加载数据
if ("history" + current_chat not in st.session_state) or (st.session_state['if_chat_change']):
    for key, value in load_data(st.session_state["path"], current_chat).items():
        if key == 'history':
            st.session_state[key + current_chat] = value
        else:
            for k, v in value.items():
                st.session_state[k + current_chat + 'default'] = v
    st.session_state['if_chat_change'] = False


# 对话展示
show_messages(st.session_state["history" + current_chat])


# 数据写入文件
def write_data(new_chat_name=current_chat):
    # 防止高频创建时组件尚未渲染完成,不影响正常写入
    if "frequency_penalty" + current_chat in st.session_state:
        st.session_state["paras"] = {
            "model": st.session_state["model" + current_chat],
            "temperature": st.session_state["temperature" + current_chat],
            "top_p": st.session_state["top_p" + current_chat],
            "presence_penalty": st.session_state["presence_penalty" + current_chat],
            "frequency_penalty": st.session_state["frequency_penalty" + current_chat],
        }
        st.session_state["contexts"] = {
            "context_select": st.session_state["context_select" + current_chat],
            "context_input": st.session_state["context_input" + current_chat],
            "context_level": st.session_state["context_level" + current_chat],
        }
        save_data(st.session_state["path"], new_chat_name, st.session_state["history" + current_chat],
                  st.session_state["paras"], st.session_state["contexts"])


# 输入内容展示
area_user_svg = st.empty()
area_user_content = st.empty()
# 回复展示
area_gpt_svg = st.empty()
area_gpt_content = st.empty()
# 报错展示
area_error = st.empty()

st.header('ChatGPT Assistant')
tap_input, tap_context, tap_set = st.tabs(['💬 聊天', '🗒️ 预设', '⚙️ 设置'])

with tap_context:
    set_context_list = list(set_context_all.keys())
    context_select_index = set_context_list.index(st.session_state['context_select' + current_chat + "default"])
    st.selectbox(label='选择上下文', options=set_context_list, key='context_select' + current_chat,
                 index=context_select_index, on_change=write_data)
    st.caption(set_context_all[st.session_state['context_select' + current_chat]])
    context_input = st.text_area(label='补充或自定义上下文:', key="context_input" + current_chat,
                                 value=st.session_state['context_input' + current_chat + "default"],
                                 on_change=write_data)
    st.caption(context_input)

with tap_set:
    def clear_button_callback():
        st.session_state['history' + current_chat] = copy.deepcopy(initial_content_history)
        write_data()


    st.button("清空聊天记录", use_container_width=True, on_click=clear_button_callback)

    st.markdown("包含对话次数:")
    st.slider("Context Level", 0, 10, st.session_state['context_level' + current_chat + "default"], 1,
              on_change=write_data,
              key='context_level' + current_chat, help="表示每次会话中包含的历史对话次数,预设内容不计算在内。")

    st.markdown("模型参数:")
    st.selectbox("Model", ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "gpt-4-32k"], index=0,
                 help="[模型选择参考](https://platform.openai.com/docs/models)",
                 on_change=write_data, key='model' + current_chat)
    st.slider("Temperature", 0.0, 2.0, st.session_state["temperature" + current_chat + "default"], 0.1,
              help="""在0和2之间,应该使用什么样的采样温度?较高的值(如0.8)会使输出更随机,而较低的值(如0.2)则会使其更加集中和确定性。
              我们一般建议只更改这个参数或top_p参数中的一个,而不要同时更改两个。""",
              on_change=write_data, key='temperature' + current_chat)
    st.slider("Top P", 0.1, 1.0, st.session_state["top_p" + current_chat + "default"], 0.1,
              help="""一种替代采用温度进行采样的方法,称为“基于核心概率”的采样。在该方法中,模型会考虑概率最高的top_p个标记的预测结果。
              因此,当该参数为0.1时,只有包括前10%概率质量的标记将被考虑。我们一般建议只更改这个参数或采样温度参数中的一个,而不要同时更改两个。""",
              on_change=write_data, key='top_p' + current_chat)
    st.slider("Presence Penalty", -2.0, 2.0,
              st.session_state["presence_penalty" + current_chat + "default"], 0.1,
              help="""该参数的取值范围为-2.0到2.0。正值会根据新标记是否出现在当前生成的文本中对其进行惩罚,从而增加模型谈论新话题的可能性。""",
              on_change=write_data, key='presence_penalty' + current_chat)
    st.slider("Frequency Penalty", -2.0, 2.0,
              st.session_state["frequency_penalty" + current_chat + "default"], 0.1,
              help="""该参数的取值范围为-2.0到2.0。正值会根据新标记在当前生成的文本中的已有频率对其进行惩罚,从而减少模型直接重复相同语句的可能性。""",
              on_change=write_data, key='frequency_penalty' + current_chat)
    st.caption("[官网参数说明](https://platform.openai.com/docs/api-reference/completions/create)")


with tap_input:
    def input_callback():
        if st.session_state['user_input_area'] != "":
            # 修改窗口名称
            user_input_content = st.session_state['user_input_area']
        elif st.session_state['audio_input'] != "":
            user_input_content = st.session_state['audio_input']
        else:
            return

        df_history = pd.DataFrame(st.session_state["history" + current_chat])
        if len(df_history.query('role!="system"')) == 0:
            remove_data(st.session_state["path"], current_chat)
            current_chat_index = st.session_state['history_chats'].index(current_chat)
            new_name = extract_chars(user_input_content, 18) + '_' + str(uuid.uuid4())
            st.session_state['history_chats'][current_chat_index] = new_name
            st.session_state["current_chat_index"] = current_chat_index
            # 写入新文件
            write_data(new_name)


    with st.form("input_form", clear_on_submit=True):
        user_input = st.text_area("**输入:**", key="user_input_area")
        submitted = st.form_submit_button("确认提交", use_container_width=True, on_click=input_callback)
        if submitted:
            st.session_state['user_input_content'] = user_input

    wav_audio_data = st_audiorec()
    if wav_audio_data is not None:
        st.audio(wav_audio_data, format='audio/wav')
        bytes_to_wav(wav_audio_data, output_wav_file='output.wav', sample_rate=16000)
        user_input = WHISPER_MODEL.transcribe('output.wav', language=WHISPER_LANG)['text']
        st.session_state['audio_input'] = user_input
        st.session_state['user_input_content'] = user_input
        input_callback()

    if submitted or wav_audio_data is not None:
        st.write("User input: ", user_input)

    if st.session_state['user_input_content'] != '':
        if 'r' in st.session_state:
            st.session_state.pop("r")
            st.session_state[current_chat + 'report'] = ""
        st.session_state['pre_user_input_content'] = (remove_hashtag_right__space(st.session_state['user_input_content']
                                                                                  .replace('\n', '\n\n')))
        st.session_state['user_input_content'] = ''
        show_each_message(st.session_state['pre_user_input_content'], 'user',
                          [area_user_svg.markdown, area_user_content.markdown])
        context_level_tem = st.session_state['context_level' + current_chat]
        history_tem = get_history_input(st.session_state["history" + current_chat], context_level_tem) + \
                      [{"role": "user", "content": st.session_state['pre_user_input_content']}]
        history_need_input = ([{"role": "system",
                                "content": set_context_all[st.session_state['context_select' + current_chat]]}]
                              + [{"role": "system",
                                  "content": st.session_state['context_input' + current_chat]}]
                              + history_tem)
        paras_need_input = {
            "model": st.session_state["model" + current_chat],
            "temperature": st.session_state["temperature" + current_chat],
            "top_p": st.session_state["top_p" + current_chat],
            "presence_penalty": st.session_state["presence_penalty" + current_chat],
            "frequency_penalty": st.session_state["frequency_penalty" + current_chat],
        }
        with st.spinner("🤔"):
            try:
                if apikey := st.session_state['apikey_input']:
                    openai.api_key = apikey
                else:
                    openai.api_key = st.secrets["apikey"]
                r = openai.ChatCompletion.create(messages=history_need_input, stream=True,
                                                 **paras_need_input)
            except (FileNotFoundError, KeyError):
                area_error.error("缺失 OpenAI API Key,请在复制项目后配置Secrets,或者在设置中进行临时配置。"
                                 "详情见[项目仓库](https://github.com/PierXuY/ChatGPT-Assistant)。")
            except openai.error.AuthenticationError:
                area_error.error("无效的 OpenAI API Key。")
            except openai.error.APIConnectionError as e:
                area_error.error("连接超时,请重试。报错:   \n" + str(e.args[0]))
            except openai.error.InvalidRequestError as e:
                area_error.error("无效的请求,请重试。报错:   \n" + str(e.args[0]))
            except openai.error.RateLimitError as e:
                area_error.error("请求速率过快,请重试。报错:   \n" + str(e.args[0]))
            else:
                st.session_state["chat_of_r"] = current_chat
                st.session_state["r"] = r
                st.experimental_rerun()

if ("r" in st.session_state) and (current_chat == st.session_state["chat_of_r"]):
    if current_chat + 'report' not in st.session_state:
        st.session_state[current_chat + 'report'] = ""
    try:
        for e in st.session_state["r"]:
            if "content" in e["choices"][0]["delta"]:
                st.session_state[current_chat + 'report'] += e["choices"][0]["delta"]["content"]
                show_each_message(st.session_state['pre_user_input_content'], 'user',
                                  [area_user_svg.markdown, area_user_content.markdown])
                show_each_message(st.session_state[current_chat + 'report'], 'assistant',
                                  [area_gpt_svg.markdown, area_gpt_content.markdown])
    except ChunkedEncodingError:
        area_error.error("网络状况不佳,请刷新页面重试。")
    # 应对stop情形
    except Exception:
        pass
    else:
        # 保存内容
        st.session_state["history" + current_chat].append(
            {"role": "user", "content": st.session_state['pre_user_input_content']})
        st.session_state["history" + current_chat].append(
            {"role": "assistant", "content": st.session_state[current_chat + 'report']})
        write_data()

    # 用户在网页点击stop时,ss某些情形下会暂时为空
    if current_chat + 'report' in st.session_state:
        st.session_state.pop(current_chat + 'report')
    if 'r' in st.session_state:
        st.session_state.pop("r")

# 添加事件监听
v1.html(js_code, height=0)