pmf_with_gis / app.py
hushell's picture
fix
f8c1035
raw
history blame
6.13 kB
import os
import numpy as np
import time
import random
import torch
import torchvision.transforms as transforms
import gradio as gr
import matplotlib.pyplot as plt
from models import get_model
from dotmap import DotMap
from PIL import Image
#os.environ['TERM'] = 'linux'
#os.environ['TERMINFO'] = '/etc/terminfo'
# args
args = DotMap()
args.deploy = 'vanilla'
args.arch = 'dino_small_patch16'
args.no_pretrain = True
args.resume = 'https://huggingface.co/hushell/pmf_dinosmall_lr1e-4/resolve/main/best_converted.pth'
args.api_key = 'AIzaSyAFkOGnXhy-2ZB0imDvNNqf2rHb98vR_qY'
args.cx = '06d75168141bc47f1'
# model
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = get_model(args)
model.to(device)
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=True)
# image transforms
def test_transform():
def _convert_image_to_rgb(im):
return im.convert('RGB')
return transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
_convert_image_to_rgb,
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
preprocess = test_transform()
@torch.no_grad()
def denormalize(x, mean, std):
# 3, H, W
t = x.clone()
t.mul_(std).add_(mean)
return torch.clamp(t, 0, 1)
# Google image search
from google_images_search import GoogleImagesSearch
class MyGIS(GoogleImagesSearch):
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
return
# define search params
# option for commonly used search param are shown below for easy reference.
# For param marked with '##':
# - Multiselect is currently not feasible. Choose ONE option only
# - This param can also be omitted from _search_params if you do not wish to define any value
_search_params = {
'q': '...',
'num': 10,
'fileType': 'png', #'jpg|gif|png',
'rights': 'cc_publicdomain', #'cc_publicdomain|cc_attribute|cc_sharealike|cc_noncommercial|cc_nonderived',
#'safe': 'active|high|medium|off|safeUndefined', ##
'imgType': 'photo', #'clipart|face|lineart|stock|photo|animated|imgTypeUndefined', ##
#'imgSize': 'huge|icon|large|medium|small|xlarge|xxlarge|imgSizeUndefined', ##
#'imgDominantColor': 'black|blue|brown|gray|green|orange|pink|purple|red|teal|white|yellow|imgDominantColorUndefined', ##
'imgColorType': 'color', #'color|gray|mono|trans|imgColorTypeUndefined' ##
}
# Gradio UI
def inference(query, labels, n_supp=10,
file_type='png', rights='cc_publicdomain',
image_type='photo', color_type='color'):
'''
query: PIL image
labels: list of class names
'''
labels = labels.split(',')
n_supp = int(n_supp)
_search_params['num'] = n_supp
_search_params['fileType'] = file_type
_search_params['rights'] = rights
_search_params['imgType'] = image_type
_search_params['imgColorType'] = color_type
fig, axs = plt.subplots(len(labels), n_supp, figsize=(n_supp*4, len(labels)*4))
with torch.no_grad():
# query image
query = preprocess(query).unsqueeze(0).unsqueeze(0).to(device) # (1, 1, 3, H, W)
supp_x = []
supp_y = []
# search support images
for idx, y in enumerate(labels):
gis = GoogleImagesSearch(args.api_key, args.cx)
_search_params['q'] = y
gis.search(search_params=_search_params, custom_image_name='my_image')
gis._custom_image_name = 'my_image' # fix: image name sometimes too long
for j, x in enumerate(gis.results()):
x.download('./')
x_im = Image.open(x.path)
# vis
axs[idx, j].imshow(x_im)
axs[idx, j].set_title(f'{y}{j}:{x.url}')
axs[idx, j].axis('off')
x_im = preprocess(x_im) # (3, H, W)
supp_x.append(x_im)
supp_y.append(idx)
print('Searching for support images is done.')
supp_x = torch.stack(supp_x, dim=0).unsqueeze(0).to(device) # (1, n_supp*n_labels, 3, H, W)
supp_y = torch.tensor(supp_y).long().unsqueeze(0).to(device) # (1, n_supp*n_labels)
with torch.cuda.amp.autocast(True):
output = model(supp_x, supp_y, query) # (1, 1, n_labels)
probs = output.softmax(dim=-1).detach().cpu().numpy()
return {k: float(v) for k, v in zip(labels, probs[0, 0])}, fig
# DEBUG
##query = Image.open('../labrador-puppy.jpg')
#query = Image.open('/Users/hushell/Documents/Dan_tr.png')
##labels = 'dog, cat'
#labels = 'girl, sussie'
#output = inference(query, labels, n_supp=2)
#print(output)
gr.Interface(fn=inference,
inputs=[
gr.inputs.Image(label="Image to classify", type="pil"),
gr.inputs.Textbox(lines=1, label="Class hypotheses:", placeholder="Enter class names separated by ','",),
gr.inputs.Slider(minimum=2, maximum=10, step=1, label="GIS: Number of support examples per class"),
gr.inputs.Dropdown(['png', 'jpg'], default='png', label='GIS: Image file type'),
gr.inputs.Dropdown(['cc_publicdomain', 'cc_attribute', 'cc_sharealike', 'cc_noncommercial', 'cc_nonderived'], default='cc_publicdomain', label='GIS: Copy rights'),
gr.inputs.Dropdown(['clipart', 'face', 'lineart', 'stock', 'photo', 'animated', 'imgTypeUndefined'], default='photo', label='GIS: Image type'),
gr.inputs.Dropdown(['color', 'gray', 'mono', 'trans', 'imgColorTypeUndefined'], default='color', label='GIS: Image color type'),
],
theme="grass",
outputs=[
gr.outputs.Label(label="Predicted class probabilities"),
gr.outputs.Image(type='plot', label="Support examples from Google image search"),
],
description="PMF few-shot learning with Google image search").launch(debug=True)