from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text
from colorful import *

@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port):
    import glob
    import os

    # 基本信息:功能、贡献者
    chatbot.append([
        "函数插件功能?",
        "批量总结PDF文档。函数插件贡献者: Binary-Husky"])
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

    # 尝试导入依赖,如果缺少依赖,则给出安装建议
    try:
        import fitz
        import tiktoken
    except:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}",
                         b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 清空历史,以免输入溢出
    history = []

    # 检测输入参数,如没有给定输入参数,直接退出
    if os.path.exists(txt):
        project_folder = txt
    else:
        if txt == "":
            txt = '空空如也的输入栏'
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 搜索需要处理的文件清单
    file_manifest = [f for f in glob.glob(
        f'{project_folder}/**/*.pdf', recursive=True)]

    # 如果没找到任何文件
    if len(file_manifest) == 0:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 开始正式执行任务
    yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt)


def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt):
    import os
    import tiktoken
    TOKEN_LIMIT_PER_FRAGMENT = 1600
    generated_conclusion_files = []
    for index, fp in enumerate(file_manifest):

        # 读取PDF文件
        file_content, page_one = read_and_clean_pdf_text(fp)

        # 递归地切割PDF文件
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
        from toolbox import get_conf
        enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
        def get_token_num(txt): return len(enc.encode(txt))
        paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
            txt=file_content,  get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
        page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
            txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)

        # 为了更好的效果,我们剥离Introduction之后的部分(如果有)
        paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
        
        # 单线,获取文章meta信息
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
            inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
            inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
            llm_kwargs=llm_kwargs,
            chatbot=chatbot, history=[],
            sys_prompt="Your job is to collect information from materials。",
        )

        # 多线,翻译
        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
            inputs_array=[
                f"以下是你需要翻译的论文片段:\n{frag}" for frag in paper_fragments],
            inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')}  \n---\n 翻译:\n " for frag in paper_fragments],
            llm_kwargs=llm_kwargs,
            chatbot=chatbot,
            history_array=[[paper_meta] for _ in paper_fragments],
            sys_prompt_array=[
                "请你作为一个学术翻译,负责把学术论文的片段准确翻译成中文。" for _ in paper_fragments],
            max_workers=16  # OpenAI所允许的最大并行过载
        )

        # 整理报告的格式
        for i,k in enumerate(gpt_response_collection): 
            if i%2==0:
                gpt_response_collection[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection)//2}]: \n\n {paper_fragments[i//2].replace('#', '')}  \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection)//2}]:\n "
            else:
                gpt_response_collection[i] = gpt_response_collection[i]
        final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
        final.extend(gpt_response_collection)
        create_report_file_name = f"{os.path.basename(fp)}.trans.md"
        res = write_results_to_file(final, file_name=create_report_file_name)

        # 更新UI
        generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
        chatbot.append((f"{fp}完成了吗?", res))
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

    # 准备文件的下载
    import shutil
    for pdf_path in generated_conclusion_files:
        # 重命名文件
        rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
        if os.path.exists(rename_file):
            os.remove(rename_file)
        shutil.copyfile(pdf_path, rename_file)
        if os.path.exists(pdf_path):
            os.remove(pdf_path)
    chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面