import os import gradio as gr os.system('wget -q https://storage.googleapis.com/vakyaansh-open-models/translation_models/en-indic.zip') os.system('unzip /home/user/app/en-indic.zip') os.system('unzip /home/user/app/en-indic.zip') from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils import gradio as gr from inference.engine import Model indic2en_model = Model(expdir='/home/user/app/en-indic') INDIC = {"Assamese": "as", "Bengali": "bn", "Gujarati": "gu", "Hindi": "hi","Kannada": "kn","Malayalam": "ml", "Marathi": "mr", "Odia": "or","Punjabi": "pa","Tamil": "ta", "Telugu" : "te"} def translate(text, lang): return indic2en_model.translate_paragraph(text, 'en', INDIC[lang]) languages = list(INDIC.keys()) drop_down = gr.inputs.Dropdown(languages, type="value", default="Hindi", label="Select Target Language") text = gr.inputs.Textbox(lines=5, placeholder="Enter Text to translate", default="", label="Enter Text in English") text_ouptut = gr.outputs.Textbox(type="auto", label="Translated text in Target Language") example=[['Farmers are backbone of our Indian economy.','Hindi'], ['India, officially the Republic of India, is a country in South Asia.', 'Marathi']] supported_lang = ', '.join(languages) iface = gr.Interface(fn=translate, inputs=[text,drop_down] , outputs=text_ouptut, title='IndicTrans NMT System', description = 'Currently the model supports ' + supported_lang, article = 'Original repository can be found [here](https://github.com/AI4Bharat/indicTrans)' , examples=example) iface.launch(enable_queue=True)