File size: 1,526 Bytes
03e7882
0ede83c
7daf25d
0ede83c
f0944cc
 
 
0ede83c
7daf25d
0ede83c
 
7daf25d
0ede83c
 
 
 
79e247b
0ede83c
 
 
 
 
8736060
0ede83c
 
 
 
 
 
 
 
 
 
 
 
f0944cc
 
 
0ede83c
 
0db0b4e
 
f0944cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from flask import Flask, request, jsonify
from huggingface_hub import InferenceClient

# Initialize the InferenceClient with your API key
x = "hf_uYlR"
y = "EMsDNbxQPJCSAHgwthrylHZZKKmGyg"
u = x + y
client = InferenceClient(api_key=f"{u}")

# Create a Flask app
app = Flask(__name__)

@app.route('/chat', methods=['POST'])
def chat():
    # Get user message from the request
    user_message = request.json.get('message')
    
    # Check if the user message is provided
    if not user_message:
        return jsonify({"error": "No message provided"}), 400
    
    # Create a single message list for the request
    messages = [{"role": "user", "content": f"System : you are AI model from Curvo AI your task is chat with users and be fun use Emojeis etc and make sure to use uhh umm Emotions to be more human{user_message}"}]
    
    # Create the chat completion request with the current message
    response = client.chat.completions.create(
        model="Qwen/Qwen2.5-72B-Instruct", 
        messages=messages, 
        max_tokens=1024,
        stream=False  # Set stream to False to get the full response at once
    )
    
    # Get the assistant's response
    assistant_message = response.choices[0].message.content
    
    # Replace newline characters with <br> for HTML rendering
    assistant_message = assistant_message.replace("\n", "<br>")
    
    # Return the assistant's response as JSON
    return jsonify({"response": assistant_message})

if __name__ == '__main__':
    app.run(host="0.0.0.0", port=7860)