Spaces:
Sleeping
Sleeping
Save dataset to huggingface
Browse files
app.py
CHANGED
@@ -2,11 +2,10 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
|
|
5 |
from mini_agents import master_agent
|
6 |
from utils import get_full_file_path
|
7 |
-
import
|
8 |
-
|
9 |
-
subprocess.run(["playwright", "install"])
|
10 |
|
11 |
# (Keep Constants as is)
|
12 |
# --- Constants ---
|
@@ -14,13 +13,63 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
14 |
|
15 |
# --- Basic Agent Definition ---
|
16 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
class BasicAgent:
|
18 |
def __init__(self):
|
19 |
self.agent = master_agent
|
20 |
print("Master Agent initialized.")
|
21 |
-
def __call__(self, question: str) -> str:
|
22 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
23 |
fixed_answer = self.agent.run(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
25 |
return fixed_answer
|
26 |
|
@@ -90,7 +139,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None, mock_submission: bool =
|
|
90 |
try:
|
91 |
if file_path:
|
92 |
question_text = question_text + f"\n\nHere is also the path to the file for the task (file name matches with task ID and is not in plain English): {file_path}"
|
93 |
-
submitted_answer = agent(question_text)
|
94 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
95 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
96 |
except Exception as e:
|
@@ -106,7 +155,12 @@ def run_and_submit_all( profile: gr.OAuthProfile | None, mock_submission: bool =
|
|
106 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
107 |
print(status_update)
|
108 |
|
109 |
-
# 5.
|
|
|
|
|
|
|
|
|
|
|
110 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
111 |
if mock_submission:
|
112 |
answer_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
+
import datasets
|
6 |
from mini_agents import master_agent
|
7 |
from utils import get_full_file_path
|
8 |
+
from smolagents.memory import ActionStep, PlanningStep, TaskStep, SystemPromptStep, FinalAnswerStep
|
|
|
|
|
9 |
|
10 |
# (Keep Constants as is)
|
11 |
# --- Constants ---
|
|
|
13 |
|
14 |
# --- Basic Agent Definition ---
|
15 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
16 |
+
columns = [
|
17 |
+
'task_id',
|
18 |
+
'step_class',
|
19 |
+
# Common attributes (from MemoryStep base class)
|
20 |
+
'model_input_messages',
|
21 |
+
'tool_calls',
|
22 |
+
'start_time',
|
23 |
+
'end_time',
|
24 |
+
'step_number',
|
25 |
+
'error',
|
26 |
+
'duration',
|
27 |
+
'model_output_message',
|
28 |
+
'model_output',
|
29 |
+
'observations',
|
30 |
+
'observations_images',
|
31 |
+
'action_output',
|
32 |
+
# PlanningStep attributes
|
33 |
+
'plan',
|
34 |
+
# TaskStep attributes
|
35 |
+
'task',
|
36 |
+
'task_images',
|
37 |
+
# SystemPromptStep attributes
|
38 |
+
'system_prompt',
|
39 |
+
# FinalAnswerStep attributes
|
40 |
+
'final_answer'
|
41 |
+
]
|
42 |
+
df_agent_steps = pd.DataFrame(columns=columns)
|
43 |
+
|
44 |
class BasicAgent:
|
45 |
def __init__(self):
|
46 |
self.agent = master_agent
|
47 |
print("Master Agent initialized.")
|
48 |
+
def __call__(self, question: str, task_id: str) -> str:
|
49 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
50 |
fixed_answer = self.agent.run(question)
|
51 |
+
all_steps = self.agent.memory.get_full_steps()
|
52 |
+
for step in all_steps:
|
53 |
+
if isinstance(step, ActionStep):
|
54 |
+
step_class = "ActionStep"
|
55 |
+
elif isinstance(step, PlanningStep):
|
56 |
+
step_class = "PlanningStep"
|
57 |
+
elif isinstance(step, TaskStep):
|
58 |
+
step_class = "TaskStep"
|
59 |
+
elif isinstance(step, SystemPromptStep):
|
60 |
+
step_class = "SystemPromptStep"
|
61 |
+
elif isinstance(step, FinalAnswerStep):
|
62 |
+
step_class = "FinalAnswerStep"
|
63 |
+
else:
|
64 |
+
step_class = "UnknownStep"
|
65 |
+
|
66 |
+
step_dict = step.dict()
|
67 |
+
df_agent_steps.loc[len(df_agent_steps)] = None
|
68 |
+
df_agent_steps.at[len(df_agent_steps), 'task_id'] = task_id
|
69 |
+
df_agent_steps.at[len(df_agent_steps), 'step_class'] = step_class
|
70 |
+
for key, value in step_dict.items():
|
71 |
+
df_agent_steps.at[len(df_agent_steps), key] = value
|
72 |
+
|
73 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
74 |
return fixed_answer
|
75 |
|
|
|
139 |
try:
|
140 |
if file_path:
|
141 |
question_text = question_text + f"\n\nHere is also the path to the file for the task (file name matches with task ID and is not in plain English): {file_path}"
|
142 |
+
submitted_answer = agent(question_text, task_id)
|
143 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
144 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
145 |
except Exception as e:
|
|
|
155 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
156 |
print(status_update)
|
157 |
|
158 |
+
# 5. Save steps data to huggingface dataset
|
159 |
+
print("Commiting steps data to huggingface dataset...")
|
160 |
+
dataset = datasets.Dataset.from_pandas(df_agent_steps)
|
161 |
+
dataset.push_to_hub("huytofu92/agent_steps_huggingface_course_unit4")
|
162 |
+
print("Agent steps data committed to huggingface dataset.")
|
163 |
+
# 6. Submit
|
164 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
165 |
if mock_submission:
|
166 |
answer_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
|