File size: 5,380 Bytes
0c4c4f3
e21ad99
0c4c4f3
e21ad99
 
 
 
 
 
0c4c4f3
e21ad99
 
 
 
 
 
 
 
 
 
0c4c4f3
e21ad99
 
 
0c4c4f3
e21ad99
 
 
 
 
 
 
 
 
 
 
 
 
0c4c4f3
e21ad99
 
 
0c4c4f3
e21ad99
 
 
 
 
 
 
0c4c4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e21ad99
 
 
0c4c4f3
 
 
 
 
 
e21ad99
 
0c4c4f3
 
 
e21ad99
0c4c4f3
 
 
 
 
 
 
 
 
 
 
e21ad99
 
 
0c4c4f3
e21ad99
 
 
0c4c4f3
e21ad99
 
0c4c4f3
 
 
 
 
 
 
 
 
e21ad99
 
 
0c4c4f3
 
 
e21ad99
 
 
 
0c4c4f3
e21ad99
0c4c4f3
e21ad99
0c4c4f3
e21ad99
0c4c4f3
e21ad99
 
0c4c4f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# model.py
# Merge image encoder and fuse module to create an ID Encoder
# Allows multiple ID images to update the text encoder with a stacked ID embedding.

import torch
import torch.nn as nn
from transformers.models.clip.modeling_clip import CLIPVisionModelWithProjection
from transformers.models.clip.configuration_clip import CLIPVisionConfig

# Vision backbone configuration for the CLIP-based encoder
VISION_CONFIG_DICT = {
    "hidden_size": 1024,
    "intermediate_size": 4096,
    "num_attention_heads": 16,
    "num_hidden_layers": 24,
    "patch_size": 14,
    "projection_dim": 768
}

class MLP(nn.Module):
    """Simple MLP block with optional residual connection."""
    def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True):
        super().__init__()
        if use_residual:
            assert in_dim == out_dim, "Input and output dimensions must match when using residual."
        self.layernorm = nn.LayerNorm(in_dim)
        self.fc1 = nn.Linear(in_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, out_dim)
        self.use_residual = use_residual
        self.act_fn = nn.GELU()

    def forward(self, x):
        residual = x
        x = self.layernorm(x)
        x = self.fc1(x)
        x = self.act_fn(x)
        x = self.fc2(x)
        if self.use_residual:
            x += residual
        return x

class FuseModule(nn.Module):
    """Module that fuses prompt embeddings with ID embeddings."""
    def __init__(self, embed_dim):
        super().__init__()
        self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False)
        self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True)
        self.layer_norm = nn.LayerNorm(embed_dim)

    def fuse_fn(self, prompt_embeds, id_embeds):
        """Performs two-step fusion of prompt and ID embeddings."""
        stacked = torch.cat([prompt_embeds, id_embeds], dim=-1)
        fused = self.mlp1(stacked) + prompt_embeds
        fused = self.mlp2(fused)
        return self.layer_norm(fused)

    def forward(self, prompt_embeds, id_embeds, class_tokens_mask):
        """
        Args:
            prompt_embeds (Tensor): Text encoder embeddings [batch, seq_len, embed_dim]
            id_embeds (Tensor): ID embeddings [batch, max_inputs, 1, embed_dim]
            class_tokens_mask (Tensor): Mask indicating which tokens to replace [batch, seq_len]
        
        Returns:
            Tensor: Updated prompt embeddings.
        """
        id_embeds = id_embeds.to(prompt_embeds.dtype)
        batch_size, max_num_inputs = id_embeds.shape[:2]
        seq_length = prompt_embeds.shape[1]

        num_inputs = class_tokens_mask.sum(dim=1)

        flat_id_embeds = id_embeds.view(-1, id_embeds.shape[-2], id_embeds.shape[-1])
        valid_id_mask = (torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :] < num_inputs[:, None])

        valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]

        prompt_embeds_flat = prompt_embeds.view(-1, prompt_embeds.shape[-1])
        class_tokens_mask_flat = class_tokens_mask.view(-1)

        valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])

        image_token_embeds = prompt_embeds_flat[class_tokens_mask_flat]
        stacked_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)

        assert class_tokens_mask_flat.sum() == stacked_embeds.shape[0], (
            f"Mismatch between mask sum and stacked embeds: {class_tokens_mask_flat.sum()} vs {stacked_embeds.shape[0]}"
        )

        prompt_embeds_flat.masked_scatter_(class_tokens_mask_flat[:, None], stacked_embeds.to(prompt_embeds.dtype))
        updated_prompt_embeds = prompt_embeds_flat.view(batch_size, seq_length, -1)

        return updated_prompt_embeds

class PhotoMakerIDEncoder(CLIPVisionModelWithProjection):
    """ID Encoder combining vision features and text prompts."""
    def __init__(self):
        super().__init__(CLIPVisionConfig(**VISION_CONFIG_DICT))
        self.visual_projection_2 = nn.Linear(1024, 1280, bias=False)
        self.fuse_module = FuseModule(embed_dim=2048)

    def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask):
        """
        Args:
            id_pixel_values (Tensor): Images [batch, num_inputs, channels, height, width]
            prompt_embeds (Tensor): Text embeddings [batch, seq_len, embed_dim]
            class_tokens_mask (Tensor): Mask of class tokens to update
        
        Returns:
            Tensor: Updated text embeddings incorporating ID image features.
        """
        b, num_inputs, c, h, w = id_pixel_values.shape
        id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)

        vision_outputs = self.vision_model(id_pixel_values)
        shared_id_embeds = vision_outputs[1]  # Use pooled output

        id_embeds = self.visual_projection(shared_id_embeds)
        id_embeds_2 = self.visual_projection_2(shared_id_embeds)

        id_embeds = id_embeds.view(b, num_inputs, 1, -1)
        id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1)

        combined_id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1)

        updated_prompt_embeds = self.fuse_module(prompt_embeds, combined_id_embeds, class_tokens_mask)

        return updated_prompt_embeds

if __name__ == "__main__":
    encoder = PhotoMakerIDEncoder()
    print("PhotoMakerIDEncoder initialized successfully.")