File size: 14,441 Bytes
e21ad99
 
 
 
 
 
 
 
 
 
 
 
c60bb16
e21ad99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c60bb16
e21ad99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
568e86f
e21ad99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import torch
import base64
import gradio as gr
import numpy as np
from PIL import Image,ImageOps,ImageDraw, ImageFont
from io import BytesIO
import random
MAX_COLORS = 12
def get_random_bool():
    return random.choice([True, False])

def add_white_border(input_image, border_width=10):
    border_color = 'white'
    img_with_border = ImageOps.expand(input_image, border=border_width, fill=border_color)
    return img_with_border

def process_mulline_text(draw, text, font, max_width):
    """
    Draw the text on an image with word wrapping.
    """
    lines = []  # Store the lines of text here
    words = text.split()

    # Start building lines of text, and wrap when necessary
    current_line = ""
    for word in words:
        test_line = f"{current_line} {word}".strip()
        # Check the width of the line with this word added
        bbox = draw.textbbox((0, 0), test_line, font=font)
        text_left, text_top, text_right, text_bottom = bbox

        width, _ = (text_right - text_left, text_bottom - text_top)

        if width <= max_width:
            # If it fits, add this word to the current line
            current_line = test_line
        else:
            # If not, store the line and start a new one
            lines.append(current_line)
            current_line = word
    # Add the last line
    lines.append(current_line)
    return lines 



def add_caption(image, text, position = "bottom-mid",  font = None, text_color= 'black', bg_color = (255, 255, 255) , bg_opacity = 200):
    if text == "":
        return image
    image = image.convert("RGBA")
    draw = ImageDraw.Draw(image)
    width, height = image.size
    lines  =  process_mulline_text(draw,text,font,width)
    text_positions = []
    maxwidth = 0
    for ind, line in enumerate(lines[::-1]):
        bbox = draw.textbbox((0, 0), line, font=font)
        text_left, text_top, text_right, text_bottom = bbox
        text_width, text_height = (text_right - text_left, text_bottom - text_top)
        if position == 'bottom-right':
            text_position = (width - text_width - 10, height -  (text_height + 20))
        elif position == 'bottom-left':
            text_position = (10, height -  (text_height + 20))
        elif position == 'bottom-mid':
            text_position = ((width - text_width) // 2, height -  (text_height + 20) )
        height = text_position[1]
        maxwidth = max(maxwidth,text_width)
        text_positions.append(text_position)
    rectpos = (width - maxwidth) // 2
    rectangle_position = [rectpos - 5, text_positions[-1][1] - 5, rectpos + maxwidth + 5, text_positions[0][1] + text_height + 5]
    image_with_transparency = Image.new('RGBA', image.size)
    draw_with_transparency = ImageDraw.Draw(image_with_transparency)
    draw_with_transparency.rectangle(rectangle_position, fill=bg_color + (bg_opacity,))
    
    image.paste(Image.alpha_composite(image.convert('RGBA'), image_with_transparency))
    print(ind,text_position)
    draw = ImageDraw.Draw(image)
    for ind, line in enumerate(lines[::-1]):
        text_position = text_positions[ind]
        draw.text(text_position, line, fill=text_color, font=font)
    
    return image.convert('RGB')

def get_comic(images,types = "4panel",captions = [],font = None,pad_image = None):
    if pad_image == None:
        pad_image = Image.open("./pad_images.png")

    if types == "No typesetting (default)":
        return images
    elif types == "Four Pannel":
        return get_comic_4panel(images,captions,font,pad_image)
    else: # "Classic Comic Style"
        return get_comic_classical(images,captions,font,pad_image)

def get_caption_group(images_groups,captions = []):
    caption_groups = []
    for i in range(len(images_groups)):
        length = len(images_groups[i])
        caption_groups.append(captions[:length])
        captions  = captions[length:]
    if len(caption_groups[-1]) < len(images_groups[-1]):
        caption_groups[-1] = caption_groups[-1] + [""] * (len(images_groups[-1]) - len(caption_groups[-1]))
    return caption_groups

def get_comic_classical(images,captions = None,font = None,pad_image = None):
    if pad_image == None:
        raise ValueError("pad_image is None")
    images = [add_white_border(image) for image in images]
    pad_image = pad_image.resize(images[0].size, Image.LANCZOS)
    images_groups = distribute_images2(images,pad_image)
    print(images_groups)
    if captions != None:
        captions_groups = get_caption_group(images_groups,captions)
    # print(images_groups)
    row_images = []
    for ind, img_group in enumerate(images_groups):
        row_images.append(get_row_image2(img_group ,captions= captions_groups[ind] if captions != None else None,font = font))    

    return [combine_images_vertically_with_resize(row_images)]



def get_comic_4panel(images,captions = [],font = None,pad_image = None):
    if pad_image == None:
        raise ValueError("pad_image is None")
    pad_image = pad_image.resize(images[0].size, Image.LANCZOS)
    images = [add_white_border(image) for image in images]
    assert len(captions) == len(images)
    for i,caption in enumerate(captions):
        images[i] = add_caption(images[i],caption,font = font)
    images_nums = len(images)
    pad_nums = int((4 - images_nums % 4) % 4) 
    images = images + [pad_image for _ in range(pad_nums)]
    comics = []
    assert len(images)%4 == 0
    for i in range(len(images)//4):
        comics.append(combine_images_vertically_with_resize([combine_images_horizontally(images[i*4:i*4+2]), combine_images_horizontally(images[i*4+2:i*4+4])]))
    
    return comics

def get_row_image(images):
    row_image_arr = []
    if len(images)>3:
        stack_img_nums = (len(images) - 2)//2
    else:
        stack_img_nums = 0
    while(len(images)>0):
        if stack_img_nums <=0:
            row_image_arr.append(images[0])
            images = images[1:]
        elif len(images)>stack_img_nums*2:
            if get_random_bool():
                row_image_arr.append(concat_images_vertically_and_scale(images[:2]))
                images = images[2:]
                stack_img_nums -=1
            else:
                row_image_arr.append(images[0])
                images = images[1:]
        else:
            row_image_arr.append(concat_images_vertically_and_scale(images[:2]))
            images = images[2:]
            stack_img_nums-=1
    return combine_images_horizontally(row_image_arr)

def get_row_image2(images,captions = None, font = None):
    row_image_arr = []
    if len(images)== 6:
        sequence_list = [1,1,2,2]
    elif len(images)== 4:
        sequence_list = [1,1,2]
    else:
        raise ValueError("images nums is not 4 or 6 found",len(images))
    random.shuffle(sequence_list)
    index = 0
    for length in sequence_list:
        if length == 1:
            if captions != None:
                images_tmp = add_caption(images[0],text = captions[index],font= font)
            else:
                images_tmp = images[0]
            row_image_arr.append( images_tmp)
            images = images[1:]
            index +=1
        elif length == 2:
            row_image_arr.append(concat_images_vertically_and_scale(images[:2]))
            images = images[2:]
            index +=2

    return combine_images_horizontally(row_image_arr)



def concat_images_vertically_and_scale(images,scale_factor=2):
    widths = [img.width for img in images]
    if not all(width == widths[0] for width in widths):
        raise ValueError('All images must have the same width.')
    
    total_height = sum(img.height for img in images)
    
    max_width = max(widths)
    concatenated_image = Image.new('RGB', (max_width, total_height))

    current_height = 0
    for img in images:
        concatenated_image.paste(img, (0, current_height))
        current_height += img.height

    new_height = concatenated_image.height // scale_factor
    new_width = concatenated_image.width // scale_factor
    resized_image = concatenated_image.resize((new_width, new_height), Image.LANCZOS)
    
    return resized_image


def combine_images_horizontally(images):
    widths, heights = zip(*(i.size for i in images))

    total_width = sum(widths)
    max_height = max(heights)

    new_im = Image.new('RGB', (total_width, max_height))

    x_offset = 0
    for im in images:
        new_im.paste(im, (x_offset, 0))
        x_offset += im.width

    return new_im

def combine_images_vertically_with_resize(images):
    
    widths, heights = zip(*(i.size for i in images))
    
    min_width = min(widths)
    
    resized_images = []
    for img in images:
        new_height = int(min_width * img.height / img.width)
        resized_img = img.resize((min_width, new_height), Image.LANCZOS)
        resized_images.append(resized_img)
    
    total_height = sum(img.height for img in resized_images)
    
    new_im = Image.new('RGB', (min_width, total_height))
    
    y_offset = 0
    for im in resized_images:
        new_im.paste(im, (0, y_offset))
        y_offset += im.height

    return new_im

def distribute_images2(images, pad_image):
    groups = []
    remaining = len(images)
    if len(images) <= 8:
        group_sizes = [4]
    else:
        group_sizes = [4, 6]

    size_index = 0
    while remaining > 0:
        size = group_sizes[size_index%len(group_sizes)] 
        if remaining < size and remaining < min(group_sizes):
            size = min(group_sizes) 
        if remaining > size:
            new_group = images[-remaining: -remaining + size]
        else:
            new_group = images[-remaining:]
        groups.append(new_group)
        size_index += 1
        remaining -= size
        print(remaining,groups)
    groups[-1] = groups[-1] + [pad_image for _ in range(-remaining)]

    return groups
    

def distribute_images(images, group_sizes=(4, 3, 2)):
    groups = []
    remaining = len(images)
    
    while remaining > 0:
        for size in sorted(group_sizes, reverse=True):
            if remaining >= size or remaining == len(images):
                if remaining > size:
                    new_group = images[-remaining: -remaining + size]
                else:
                    new_group = images[-remaining:]
                groups.append(new_group)
                remaining -= size
                break
            elif remaining < min(group_sizes) and groups:
                groups[-1].extend(images[-remaining:])
                remaining = 0
    
    return groups

def create_binary_matrix(img_arr, target_color):
    mask = np.all(img_arr == target_color, axis=-1)
    binary_matrix = mask.astype(int)
    return binary_matrix

def preprocess_mask(mask_, h, w, device):
    mask = np.array(mask_)
    mask = mask.astype(np.float32)
    mask = mask[None, None]
    mask[mask < 0.5] = 0
    mask[mask >= 0.5] = 1
    mask = torch.from_numpy(mask).to(device)
    mask = torch.nn.functional.interpolate(mask, size=(h, w), mode='nearest')
    return mask

def process_sketch(canvas_data):
    binary_matrixes = []
    base64_img = canvas_data['image']
    image_data = base64.b64decode(base64_img.split(',')[1])
    image = Image.open(BytesIO(image_data)).convert("RGB")
    im2arr = np.array(image)
    colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']]
    colors_fixed = []

    r, g, b = 255, 255, 255
    binary_matrix = create_binary_matrix(im2arr, (r,g,b))
    binary_matrixes.append(binary_matrix)
    binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
    colored_map = binary_matrix_*(r,g,b) + (1-binary_matrix_)*(50,50,50)
    colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))

    for color in colors:
        r, g, b = color
        if any(c != 255 for c in (r, g, b)):
            binary_matrix = create_binary_matrix(im2arr, (r,g,b))
            binary_matrixes.append(binary_matrix)
            binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
            colored_map = binary_matrix_*(r,g,b) + (1-binary_matrix_)*(50,50,50)
            colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))

    visibilities = []
    colors = []
    for n in range(MAX_COLORS):
        visibilities.append(gr.update(visible=False))
        colors.append(gr.update())
    for n in range(len(colors_fixed)):
        visibilities[n] = gr.update(visible=True)
        colors[n] = colors_fixed[n]

    return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]

def process_prompts(binary_matrixes, *seg_prompts):
    return [gr.update(visible=True), gr.update(value=' , '.join(seg_prompts[:len(binary_matrixes)]))]

def process_example(layout_path, all_prompts, seed_):

    all_prompts = all_prompts.split('***')

    binary_matrixes = []
    colors_fixed = []

    im2arr = np.array(Image.open(layout_path))[:,:,:3]
    unique, counts = np.unique(np.reshape(im2arr,(-1,3)), axis=0, return_counts=True)
    sorted_idx = np.argsort(-counts)

    binary_matrix = create_binary_matrix(im2arr, (0,0,0))
    binary_matrixes.append(binary_matrix)
    binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
    colored_map = binary_matrix_*(255,255,255) + (1-binary_matrix_)*(50,50,50)
    colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))

    for i in range(len(all_prompts)-1):
        r, g, b = unique[sorted_idx[i]]
        if any(c != 255 for c in (r, g, b)) and any(c != 0 for c in (r, g, b)):
            binary_matrix = create_binary_matrix(im2arr, (r,g,b))
            binary_matrixes.append(binary_matrix)
            binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
            colored_map = binary_matrix_*(r,g,b) + (1-binary_matrix_)*(50,50,50)
            colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))

    visibilities = []
    colors = []
    prompts = []
    for n in range(MAX_COLORS):
        visibilities.append(gr.update(visible=False))
        colors.append(gr.update())
        prompts.append(gr.update())

    for n in range(len(colors_fixed)):
        visibilities[n] = gr.update(visible=True)
        colors[n] = colors_fixed[n]
        prompts[n] = all_prompts[n+1]

    return [gr.update(visible=True), binary_matrixes, *visibilities, *colors, *prompts,
            gr.update(visible=True), gr.update(value=all_prompts[0]), int(seed_)]