Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,7 @@ if is_torch2_available():
|
|
18 |
AttnProcessor2_0 as AttnProcessor
|
19 |
# from gradio_utils import SpatialAttnProcessor2_0
|
20 |
else:
|
21 |
-
from gradio_utils
|
22 |
|
23 |
import diffusers
|
24 |
from diffusers import StableDiffusionXLPipeline
|
@@ -40,7 +40,7 @@ DEFAULT_STYLE_NAME = "Japanese Anime"
|
|
40 |
global models_dict
|
41 |
use_va = True
|
42 |
models_dict = {
|
43 |
-
"Juggernaut": "RunDiffusion/Juggernaut-XL-v8",
|
44 |
# "RealVision": "SG161222/RealVisXL_V4.0" ,
|
45 |
"SDXL":"stabilityai/stable-diffusion-xl-base-1.0" ,
|
46 |
# "Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y"
|
@@ -435,7 +435,7 @@ use_safetensors= False
|
|
435 |
# # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
436 |
# pipe1.scheduler.set_timesteps(50)
|
437 |
###
|
438 |
-
pipe2 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
439 |
models_dict["Juggernaut"], torch_dtype=torch.float16, use_safetensors=use_safetensors)
|
440 |
pipe2 = pipe2.to("cpu")
|
441 |
pipe2.load_photomaker_adapter(
|
@@ -446,7 +446,7 @@ pipe2.load_photomaker_adapter(
|
|
446 |
)
|
447 |
pipe2 = pipe2.to("cpu")
|
448 |
pipe2.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
449 |
-
pipe2.fuse_lora()
|
450 |
|
451 |
pipe4 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
452 |
models_dict["SDXL"], torch_dtype=torch.float16, use_safetensors=True)
|
@@ -520,7 +520,7 @@ def process_generation(_sd_type,_model_type,_upload_images, _num_steps,style_nam
|
|
520 |
num_steps =_num_steps
|
521 |
use_safe_tensor = True
|
522 |
if style_name == "(No style)":
|
523 |
-
sd_model_path = models_dict["
|
524 |
if _model_type == "original":
|
525 |
pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16)
|
526 |
pipe = pipe.to(device)
|
@@ -529,7 +529,7 @@ def process_generation(_sd_type,_model_type,_upload_images, _num_steps,style_nam
|
|
529 |
# pipe.scheduler.set_timesteps(50)
|
530 |
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
531 |
elif _model_type == "Photomaker":
|
532 |
-
if _sd_type != "
|
533 |
pipe = pipe2.to(device)
|
534 |
pipe.id_encoder.to(device)
|
535 |
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
|
|
18 |
AttnProcessor2_0 as AttnProcessor
|
19 |
# from gradio_utils import SpatialAttnProcessor2_0
|
20 |
else:
|
21 |
+
from gradio_utils import AttnProcessor
|
22 |
|
23 |
import diffusers
|
24 |
from diffusers import StableDiffusionXLPipeline
|
|
|
40 |
global models_dict
|
41 |
use_va = True
|
42 |
models_dict = {
|
43 |
+
# "Juggernaut": "RunDiffusion/Juggernaut-XL-v8",
|
44 |
# "RealVision": "SG161222/RealVisXL_V4.0" ,
|
45 |
"SDXL":"stabilityai/stable-diffusion-xl-base-1.0" ,
|
46 |
# "Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y"
|
|
|
435 |
# # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
436 |
# pipe1.scheduler.set_timesteps(50)
|
437 |
###
|
438 |
+
''''pipe2 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
439 |
models_dict["Juggernaut"], torch_dtype=torch.float16, use_safetensors=use_safetensors)
|
440 |
pipe2 = pipe2.to("cpu")
|
441 |
pipe2.load_photomaker_adapter(
|
|
|
446 |
)
|
447 |
pipe2 = pipe2.to("cpu")
|
448 |
pipe2.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
449 |
+
pipe2.fuse_lora()'''
|
450 |
|
451 |
pipe4 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
452 |
models_dict["SDXL"], torch_dtype=torch.float16, use_safetensors=True)
|
|
|
520 |
num_steps =_num_steps
|
521 |
use_safe_tensor = True
|
522 |
if style_name == "(No style)":
|
523 |
+
sd_model_path = models_dict["SDXL"]
|
524 |
if _model_type == "original":
|
525 |
pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16)
|
526 |
pipe = pipe.to(device)
|
|
|
529 |
# pipe.scheduler.set_timesteps(50)
|
530 |
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
531 |
elif _model_type == "Photomaker":
|
532 |
+
if _sd_type != "SDXL" and style_name != "(No style)":
|
533 |
pipe = pipe2.to(device)
|
534 |
pipe.id_encoder.to(device)
|
535 |
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|