File size: 947 Bytes
ddfcbfd
fea1e17
b1334ad
fea1e17
ddfcbfd
b1334ad
 
 
 
 
 
 
 
 
 
 
 
 
f3edddc
b1334ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddfcbfd
 
 
 
 
52ba718
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
import tensorflow as tf

print("TensorFlow version:", tf.__version__)

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10)
])

predictions = model(x_train[:1]).numpy()
print(predictions)

tf.nn.softmax(predictions).numpy()

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
loss_fn(y_train[:1], predictions).numpy()

model.compile(optimizer='adam',
              loss=loss_fn,
              metrics=['accuracy'])


model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test,  y_test, verbose=2)
















def greet(name):
    return f"Hello, {name}!"

iface = gr.Interface(greet, "text", "text")
iface.launch()