import torch from torch import nn import matplotlib.pyplot as plt class DR_Classifierv2(nn.Module): def __init__(self, output_shape: int, input_shape: int = 3, hidden_units: int = 64): super().__init__() self.block1 = nn.Sequential( nn.Conv2d(input_shape, hidden_units, kernel_size=3, padding='same'), nn.LeakyReLU(0.1), nn.BatchNorm2d(hidden_units), nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding='same'), nn.LeakyReLU(0.1), nn.BatchNorm2d(hidden_units), nn.MaxPool2d(2), nn.Dropout(0.3) ) self.block2 = nn.Sequential( nn.Conv2d(hidden_units, hidden_units * 2, kernel_size=3, padding='same'), nn.LeakyReLU(0.1), nn.BatchNorm2d(hidden_units * 2), nn.Conv2d(hidden_units * 2, hidden_units * 2, kernel_size=3, padding='same'), nn.LeakyReLU(0.1), nn.BatchNorm2d(hidden_units * 2), nn.MaxPool2d(2), nn.Dropout(0.4) ) self.block3 = nn.Sequential( nn.Conv2d(hidden_units * 2, hidden_units * 4, kernel_size=3, padding='same'), nn.LeakyReLU(0.1), nn.BatchNorm2d(hidden_units * 4), nn.Conv2d(hidden_units * 4, hidden_units * 4, kernel_size=3, padding='same'), nn.LeakyReLU(0.1), nn.BatchNorm2d(hidden_units * 4), nn.MaxPool2d(2), nn.Dropout(0.4) ) self.block4 = nn.Sequential( nn.Conv2d(hidden_units * 4, hidden_units * 8, kernel_size=3, padding='same'), nn.LeakyReLU(0.1), nn.BatchNorm2d(hidden_units * 8), nn.Conv2d(hidden_units * 8, hidden_units * 8, kernel_size=3, padding='same'), nn.LeakyReLU(0.1), nn.BatchNorm2d(hidden_units * 8), nn.MaxPool2d(2), nn.Dropout(0.5) ) self.adaptiveAvgPool = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Sequential( nn.Flatten(), nn.Linear(hidden_units * 8, 512), nn.LeakyReLU(0.1), nn.BatchNorm1d(512), nn.Dropout(0.6), nn.Linear(512, output_shape) ) def forward(self, x: torch.Tensor): x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.adaptiveAvgPool(x) x = self.classifier(x) return x