{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PqYth26aiTQt"
},
"source": [
"# **Automated DR Classification with PyTorch!**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xOfZtocWiTQw"
},
"source": [
"## Dataset Images\n",
"\n",
"In this section, we are going to:\n",
"\n",
"- Check if dataset in local exists\n",
"- Create a method that will plot a random image from our dataset\n",
"- Check the properties of our image such as the placing of shapes, preferably change it to [C, H, W]\n",
"- Perform basic data augmentation\n",
"- Create a `dataset`, and `DataLoader` objects"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pq-zVaSWiUIQ",
"outputId": "d7f7d6bf-bc21-4166-9850-3c53e7304e25"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: torch==2.2.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (2.2.0)\n",
"Requirement already satisfied: torchvision==0.17.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (0.17.0)\n",
"Requirement already satisfied: torchmetrics==1.6.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (1.6.1)\n",
"Requirement already satisfied: filelock in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torch==2.2.0) (3.17.0)\n",
"Requirement already satisfied: typing-extensions>=4.8.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torch==2.2.0) (4.12.2)\n",
"Requirement already satisfied: sympy in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torch==2.2.0) (1.13.3)\n",
"Requirement already satisfied: networkx in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torch==2.2.0) (3.4.2)\n",
"Requirement already satisfied: jinja2 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torch==2.2.0) (3.1.6)\n",
"Requirement already satisfied: fsspec in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torch==2.2.0) (2025.3.0)\n",
"Requirement already satisfied: numpy in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torchvision==0.17.0) (1.26.4)\n",
"Requirement already satisfied: requests in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torchvision==0.17.0) (2.32.3)\n",
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torchvision==0.17.0) (11.1.0)\n",
"Requirement already satisfied: packaging>17.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torchmetrics==1.6.1) (24.2)\n",
"Requirement already satisfied: lightning-utilities>=0.8.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from torchmetrics==1.6.1) (0.14.0)\n",
"Requirement already satisfied: setuptools in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from lightning-utilities>=0.8.0->torchmetrics==1.6.1) (65.5.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jinja2->torch==2.2.0) (3.0.2)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests->torchvision==0.17.0) (3.4.1)\n",
"Requirement already satisfied: idna<4,>=2.5 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests->torchvision==0.17.0) (3.10)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests->torchvision==0.17.0) (2.3.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests->torchvision==0.17.0) (2025.1.31)\n",
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from sympy->torch==2.2.0) (1.3.0)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"[notice] A new release of pip available: 22.3.1 -> 25.0.1\n",
"[notice] To update, run: python.exe -m pip install --upgrade pip\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: opencv-python==4.9.0.80 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (4.9.0.80)\n",
"Requirement already satisfied: numpy==1.26.4 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (1.26.4)\n",
"Requirement already satisfied: matplotlib==3.10.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (3.10.0)\n",
"Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from matplotlib==3.10.0) (1.3.1)\n",
"Requirement already satisfied: cycler>=0.10 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from matplotlib==3.10.0) (0.12.1)\n",
"Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from matplotlib==3.10.0) (4.56.0)\n",
"Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from matplotlib==3.10.0) (1.4.8)\n",
"Requirement already satisfied: packaging>=20.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from matplotlib==3.10.0) (24.2)\n",
"Requirement already satisfied: pillow>=8 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from matplotlib==3.10.0) (11.1.0)\n",
"Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from matplotlib==3.10.0) (3.2.1)\n",
"Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from matplotlib==3.10.0) (2.9.0.post0)\n",
"Requirement already satisfied: six>=1.5 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib==3.10.0) (1.17.0)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"[notice] A new release of pip available: 22.3.1 -> 25.0.1\n",
"[notice] To update, run: python.exe -m pip install --upgrade pip\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: jupyter==1.1.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (1.1.1)\n",
"Requirement already satisfied: ipykernel==6.29.5 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (6.29.5)\n",
"Requirement already satisfied: pathlib==1.0.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (1.0.1)\n",
"Requirement already satisfied: notebook in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter==1.1.1) (7.3.2)\n",
"Requirement already satisfied: jupyter-console in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter==1.1.1) (6.6.3)\n",
"Requirement already satisfied: nbconvert in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter==1.1.1) (7.16.6)\n",
"Requirement already satisfied: ipywidgets in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter==1.1.1) (8.1.5)\n",
"Requirement already satisfied: jupyterlab in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter==1.1.1) (4.3.5)\n",
"Requirement already satisfied: comm>=0.1.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (0.2.2)\n",
"Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (1.8.13)\n",
"Requirement already satisfied: ipython>=7.23.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (9.0.2)\n",
"Requirement already satisfied: jupyter-client>=6.1.12 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (8.6.3)\n",
"Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (5.7.2)\n",
"Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (0.1.7)\n",
"Requirement already satisfied: nest-asyncio in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (1.6.0)\n",
"Requirement already satisfied: packaging in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (24.2)\n",
"Requirement already satisfied: psutil in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (7.0.0)\n",
"Requirement already satisfied: pyzmq>=24 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (26.2.1)\n",
"Requirement already satisfied: tornado>=6.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (6.4.2)\n",
"Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipykernel==6.29.5) (5.14.3)\n",
"Requirement already satisfied: colorama in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel==6.29.5) (0.4.6)\n",
"Requirement already satisfied: decorator in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel==6.29.5) (5.2.1)\n",
"Requirement already satisfied: ipython-pygments-lexers in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel==6.29.5) (1.1.1)\n",
"Requirement already satisfied: jedi>=0.16 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel==6.29.5) (0.19.2)\n",
"Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel==6.29.5) (3.0.50)\n",
"Requirement already satisfied: pygments>=2.4.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel==6.29.5) (2.19.1)\n",
"Requirement already satisfied: stack_data in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel==6.29.5) (0.6.3)\n",
"Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel==6.29.5) (4.12.2)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-client>=6.1.12->ipykernel==6.29.5) (2.9.0.post0)\n",
"Requirement already satisfied: platformdirs>=2.5 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel==6.29.5) (4.3.6)\n",
"Requirement already satisfied: pywin32>=300 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel==6.29.5) (309)\n",
"Requirement already satisfied: widgetsnbextension~=4.0.12 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipywidgets->jupyter==1.1.1) (4.0.13)\n",
"Requirement already satisfied: jupyterlab-widgets~=3.0.12 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from ipywidgets->jupyter==1.1.1) (3.0.13)\n",
"Requirement already satisfied: async-lru>=1.0.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab->jupyter==1.1.1) (2.0.4)\n",
"Requirement already satisfied: httpx>=0.25.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab->jupyter==1.1.1) (0.28.1)\n",
"Requirement already satisfied: jinja2>=3.0.3 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab->jupyter==1.1.1) (3.1.6)\n",
"Requirement already satisfied: jupyter-lsp>=2.0.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab->jupyter==1.1.1) (2.2.5)\n",
"Requirement already satisfied: jupyter-server<3,>=2.4.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab->jupyter==1.1.1) (2.15.0)\n",
"Requirement already satisfied: jupyterlab-server<3,>=2.27.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab->jupyter==1.1.1) (2.27.3)\n",
"Requirement already satisfied: notebook-shim>=0.2 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab->jupyter==1.1.1) (0.2.4)\n",
"Requirement already satisfied: setuptools>=40.8.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab->jupyter==1.1.1) (65.5.0)\n",
"Requirement already satisfied: beautifulsoup4 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbconvert->jupyter==1.1.1) (4.13.3)\n",
"Requirement already satisfied: bleach[css]!=5.0.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbconvert->jupyter==1.1.1) (6.2.0)\n",
"Requirement already satisfied: defusedxml in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbconvert->jupyter==1.1.1) (0.7.1)\n",
"Requirement already satisfied: jupyterlab-pygments in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbconvert->jupyter==1.1.1) (0.3.0)\n",
"Requirement already satisfied: markupsafe>=2.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbconvert->jupyter==1.1.1) (3.0.2)\n",
"Requirement already satisfied: mistune<4,>=2.0.3 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbconvert->jupyter==1.1.1) (3.1.2)\n",
"Requirement already satisfied: nbclient>=0.5.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbconvert->jupyter==1.1.1) (0.10.2)\n",
"Requirement already satisfied: nbformat>=5.7 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbconvert->jupyter==1.1.1) (5.10.4)\n",
"Requirement already satisfied: pandocfilters>=1.4.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbconvert->jupyter==1.1.1) (1.5.1)\n",
"Requirement already satisfied: webencodings in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter==1.1.1) (0.5.1)\n",
"Requirement already satisfied: tinycss2<1.5,>=1.1.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter==1.1.1) (1.4.0)\n",
"Requirement already satisfied: anyio in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from httpx>=0.25.0->jupyterlab->jupyter==1.1.1) (4.8.0)\n",
"Requirement already satisfied: certifi in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from httpx>=0.25.0->jupyterlab->jupyter==1.1.1) (2025.1.31)\n",
"Requirement already satisfied: httpcore==1.* in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from httpx>=0.25.0->jupyterlab->jupyter==1.1.1) (1.0.7)\n",
"Requirement already satisfied: idna in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from httpx>=0.25.0->jupyterlab->jupyter==1.1.1) (3.10)\n",
"Requirement already satisfied: h11<0.15,>=0.13 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from httpcore==1.*->httpx>=0.25.0->jupyterlab->jupyter==1.1.1) (0.14.0)\n",
"Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jedi>=0.16->ipython>=7.23.1->ipykernel==6.29.5) (0.8.4)\n",
"Requirement already satisfied: argon2-cffi>=21.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (23.1.0)\n",
"Requirement already satisfied: jupyter-events>=0.11.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (0.12.0)\n",
"Requirement already satisfied: jupyter-server-terminals>=0.4.4 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (0.5.3)\n",
"Requirement already satisfied: overrides>=5.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (7.7.0)\n",
"Requirement already satisfied: prometheus-client>=0.9 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (0.21.1)\n",
"Requirement already satisfied: pywinpty>=2.0.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (2.0.15)\n",
"Requirement already satisfied: send2trash>=1.8.2 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (1.8.3)\n",
"Requirement already satisfied: terminado>=0.8.3 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (0.18.1)\n",
"Requirement already satisfied: websocket-client>=1.7 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (1.8.0)\n",
"Requirement already satisfied: babel>=2.10 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (2.17.0)\n",
"Requirement already satisfied: json5>=0.9.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (0.10.0)\n",
"Requirement already satisfied: jsonschema>=4.18.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (4.23.0)\n",
"Requirement already satisfied: requests>=2.31 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (2.32.3)\n",
"Requirement already satisfied: fastjsonschema>=2.15 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from nbformat>=5.7->nbconvert->jupyter==1.1.1) (2.21.1)\n",
"Requirement already satisfied: wcwidth in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel==6.29.5) (0.2.13)\n",
"Requirement already satisfied: six>=1.5 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.12->ipykernel==6.29.5) (1.17.0)\n",
"Requirement already satisfied: soupsieve>1.2 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from beautifulsoup4->nbconvert->jupyter==1.1.1) (2.6)\n",
"Requirement already satisfied: executing>=1.2.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from stack_data->ipython>=7.23.1->ipykernel==6.29.5) (2.2.0)\n",
"Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from stack_data->ipython>=7.23.1->ipykernel==6.29.5) (3.0.0)\n",
"Requirement already satisfied: pure-eval in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from stack_data->ipython>=7.23.1->ipykernel==6.29.5) (0.2.3)\n",
"Requirement already satisfied: sniffio>=1.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from anyio->httpx>=0.25.0->jupyterlab->jupyter==1.1.1) (1.3.1)\n",
"Requirement already satisfied: argon2-cffi-bindings in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (21.2.0)\n",
"Requirement already satisfied: attrs>=22.2.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (25.1.0)\n",
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (2024.10.1)\n",
"Requirement already satisfied: referencing>=0.28.4 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (0.36.2)\n",
"Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (0.23.1)\n",
"Requirement already satisfied: python-json-logger>=2.0.4 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (3.3.0)\n",
"Requirement already satisfied: pyyaml>=5.3 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (6.0.2)\n",
"Requirement already satisfied: rfc3339-validator in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (0.1.4)\n",
"Requirement already satisfied: rfc3986-validator>=0.1.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (0.1.1)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (3.4.1)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (2.3.0)\n",
"Requirement already satisfied: fqdn in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (1.5.1)\n",
"Requirement already satisfied: isoduration in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (20.11.0)\n",
"Requirement already satisfied: jsonpointer>1.13 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (3.0.0)\n",
"Requirement already satisfied: uri-template in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (1.3.0)\n",
"Requirement already satisfied: webcolors>=24.6.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (24.11.1)\n",
"Requirement already satisfied: cffi>=1.0.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (1.17.1)\n",
"Requirement already satisfied: pycparser in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter==1.1.1) (2.22)\n",
"Requirement already satisfied: arrow>=0.15.0 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from isoduration->jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (1.3.0)\n",
"Requirement already satisfied: types-python-dateutil>=2.8.10 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from arrow>=0.15.0->isoduration->jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter==1.1.1) (2.9.0.20241206)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"[notice] A new release of pip available: 22.3.1 -> 25.0.1\n",
"[notice] To update, run: python.exe -m pip install --upgrade pip\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: kagglehub in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (0.3.10)\n",
"Requirement already satisfied: packaging in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from kagglehub) (24.2)\n",
"Requirement already satisfied: pyyaml in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from kagglehub) (6.0.2)\n",
"Requirement already satisfied: requests in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from kagglehub) (2.32.3)\n",
"Requirement already satisfied: tqdm in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from kagglehub) (4.67.1)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests->kagglehub) (3.4.1)\n",
"Requirement already satisfied: idna<4,>=2.5 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests->kagglehub) (3.10)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests->kagglehub) (2.3.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from requests->kagglehub) (2025.1.31)\n",
"Requirement already satisfied: colorama in c:\\users\\admin\\desktop\\classes\\2nd sem\\intelligent systems\\hf spaces\\diabetic_retinopathy_automated_grading\\.venv\\lib\\site-packages (from tqdm->kagglehub) (0.4.6)\n",
"Torch version: 2.2.0+cpu\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"[notice] A new release of pip available: 22.3.1 -> 25.0.1\n",
"[notice] To update, run: python.exe -m pip install --upgrade pip\n"
]
}
],
"source": [
"# Install the required libraries\n",
"!pip install torch==2.2.0 torchvision==0.17.0 torchmetrics==1.6.1\n",
"!pip install opencv-python==4.9.0.80 numpy==1.26.4 matplotlib==3.10.0\n",
"!pip install jupyter==1.1.1 ipykernel==6.29.5 pathlib==1.0.1\n",
"!pip install kagglehub\n",
"\n",
"import torch\n",
"print(f\"Torch version: {torch.__version__}\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "VF6zXO2jiTQx"
},
"outputs": [],
"source": [
"import torch\n",
"from torch import nn\n",
"import matplotlib.pyplot as plt\n",
"import cv2\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x2L18ZppiTQz",
"outputId": "62efb2da-b18b-46eb-ecdb-0e438b7287ed"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset already exists. Skipping download.\n",
"Dataset exists at: dataset\\colored_images\n"
]
}
],
"source": [
"import os\n",
"from pathlib import Path\n",
"import kagglehub\n",
"import shutil\n",
"\n",
"# Define target directory\n",
"target_dir = Path('./dataset/')\n",
"\n",
"# Check if dataset already exists\n",
"if not target_dir.exists() or not any(target_dir.iterdir()):\n",
" print(\"Dataset not found. Downloading...\")\n",
"\n",
" # Download dataset\n",
" path = kagglehub.dataset_download(\"sovitrath/diabetic-retinopathy-224x224-2019-data\")\n",
"\n",
" # Ensure target directory exists\n",
" os.makedirs(target_dir, exist_ok=True)\n",
"\n",
" # Move dataset contents\n",
" for item in os.listdir(path):\n",
" shutil.move(os.path.join(path, item), target_dir)\n",
"\n",
" print(\"Dataset downloaded and moved to:\", target_dir)\n",
"else:\n",
" print(\"Dataset already exists. Skipping download.\")\n",
"\n",
"# Check if a specific dataset subfolder exists\n",
"dataset_path = target_dir / 'colored_images/'\n",
"\n",
"if dataset_path.exists():\n",
" print('Dataset exists at:', dataset_path)\n",
"else:\n",
" print('Dataset does not exist at:', dataset_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "XMhQIbgwiTQ0"
},
"outputs": [],
"source": [
"import random\n",
"import matplotlib.image as mpimg\n",
"\n",
"# Create a method that will plot a random image from our dataset\n",
"def plot_random_image(dataset_path: Path = Path(r'./dataset/colored_images/')) -> None:\n",
" \"\"\"\n",
" Plots a random image from our dataset\n",
"\n",
" Args:\n",
" dataset_path (Path): The directory of the dataset with subfolders as its classification\n",
"\n",
" Returns:\n",
" None\n",
" \"\"\"\n",
"\n",
" # Get random label\n",
" labels = next(os.walk(dataset_path))[1]\n",
" random_index = random.randint(1, len(labels))\n",
" random_label = labels[random_index]\n",
"\n",
" label_dir = dataset_path / random_label\n",
"\n",
" # Get random image\n",
" random_image = label_dir / random.choice(os.listdir(label_dir))\n",
"\n",
" # Plot the extracted image\n",
" plt.figure()\n",
"\n",
" img = mpimg.imread(random_image)\n",
" imgplot = plt.imshow(img)\n",
"\n",
" plt.title(f'Grade: {random_label} - DR')\n",
" plt.show(imgplot)\n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 452
},
"id": "detCXUpQiTQ1",
"outputId": "8e98bd4a-82cf-436b-8622-3a95f3fdba0f"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAGzCAYAAACVYeimAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQm0ZVlZH/6dO7z3au65qxuaZpZJJEGDIw4gCIaIEuMcjASDgi4xLpX8ccCY4LQiahxiYiAqrEQjaqJL4oAjUaMYRBAJjQgIMtNTVVe9d+89//UNv2/Y59xX1VDVXcPd3bfee+ees8/e++zzDb9v6vq+72nTNm3TNm3TNu0CbJN7ewCbtmmbtmmbtmnr2oZJbdqmbdqmbdoF2zZMatM2bdM2bdMu2LZhUpu2aZu2aZt2wbYNk9q0Tdu0Tdu0C7ZtmNSmbdqmbdqmXbBtw6Q2bdM2bdM27YJtGya1aZu2aZu2aRds2zCpTdu0Tdu0Tbtg24ZJbdo93r7yK7+S7n//+9Ol0n7nd36Huq6Tn/vN8c4776R//s//OR0/flzO/4Zv+IZ7YbSbtmkXV9swqcuove1tb6PnPe959NCHPpQOHjwon0c84hH03Oc+l17/+tfTpdY+4zM+Q5gBPldddRV9wid8Av3n//yfabVa3ePj+bf/9t/Sy172Mvqar/ka+pmf+Rn6iq/4intlDL/0S790j637ZDKho0eP0sd8zMfIfH/jN35j9Bpm6PlZHTp0iP7BP/gH9NM//dPnZYz5fjzGK664gj72Yz+Wvvqrv5r++I//ePSaPD7+8Lw+/dM/nX71V3/1vIxx07TN7OemXeLtV37lV+iLvuiLaDab0Zd92ZfRx33cx8nL+Vd/9Vf0yle+kn78x39cmNjNN99Ml1K7733vSy9+8Yvl9/e///1C9J71rGfR//t//4++53u+57zd9z/+x/84YISvfvWr6RM/8RPpO77jO+jeasyk/vE//sf09Kc//R5b9xMnTtAtt9wi++xnf/Zn6Z/8k38iP+fzebnmMY95DP3Lf/kv5fe/+7u/o//0n/4TPfOZz6TTp0/Ts5/97HM+xny/O+64g970pjfRz//8z8uze/7zn0//7t/9u8E1n/3Zn03/9J/+U+KUp29/+9vlvXna055Gv/Zrv0ZPfvKTz/kYN42IF3vTLvF2yy239IcOHeof/vCH9+9+97sH3+/t7fU/9EM/1L/jHe/Yt58777zznIznmc98Zn/zzTf357t9+qd/ev/IRz6yHDtx4kR/3/veV9Zjd3d39LrlctnfddddZ32f3/7t3+YkzfJzv/aABzyg/9zP/dz+XLW7O05uPG9e/3t63bktFov+a7/2a2Wtvvmbv7l8x/uhXZv3ve99/eHDh2Xfnus2dj9uJ0+e7J/+9KfLGH/sx36sfMfHnvvc55Zjf/mXfynHn/KUp5zzMW6atg3cdxm07/u+7xNp9qUvfSndcMMNg+9Zu/r6r/96uummm4pN5fDhw/TWt76VnvrUp9KRI0dEA+P2+7//+/SFX/iFdL/73Y+2t7flOpY877rrrkHfDC096lGPop2dHfn5i7/4i6NjZK3jJS95CT3ykY+Uc6+//nr6F//iX9CHP/zhct5tt90m2h///EgaQ5yszfB6sGbFjaEbhkFf/vKXy/15Tq961avku//7f/8vPeUpTxFoh9fjCU94Av3RH/3RGe+TbVKwWbGmytAQ4KK/+Zu/ke9ZU2Dt6sEPfrCv5zd/8zfL8dz2G+cP/MAP0Cd/8ifT1VdfTQcOHKDHPvax9N//+38fXM/z/i//5b/4GHicaO9617voq77qq2TtuW++B0Oj56pNp1P64R/+YYGY//2///dnfIbXXnstPexhD5M9eE81XjuGYhka/jf/5t+IxrRfe/jDH07XXHPNPTrGy61t4L7LBOpjAvi4xz3ubl23WCwEwvjUT/1UIYJM4LkxJHLy5EmxrTBR/D//5//Qj/zIj9Df/u3fyndov/7rv07PeMYzhCgx9PPBD36Q/tk/+2cCBbWNGRLba/h7ZphM0JmQMZN4zWte49AQMzk+hxluJrB3p/31X/+1EEy2Q2Qo7ud+7ueECTDRYQbzxje+kT7t0z5NGBQzDR7Df/gP/0FsLr/7u7971uvJhIwJHzNynjsgJibCzJz/0T/6R/QHf/AHYg/hc//iL/6CfvAHf1AgydZ+NDZObj/0Qz8k/bAgsbu7S//1v/5XEST42X/u536unMNjYMcNtvXwvbg96EEPkp/vfe97hXmDEfLYGMJiaPT2228/Z04evO5f8iVfQt/2bd8mc8bY1u0/3lNXXnkl3ZONhZHP//zPp5/6qZ+iv/zLvxRmva4xo2VBCuu4aeehmUa1aZdou+222wSOYAijbR/+8If797///f5hqAONISG+7lu/9VsH1+Xz0F784hf3Xdf1b3/72/3YYx7zmP6GG27ob731Vj/267/+69Jvhvt+//d/X469/OUvL32+6lWvGhx/6UtfKsf459nATg972MN8fm9605v6r//6r5frn/a0p/l5/PdkMunf+MY3lut5zba2tvq3vvWtfozh0iNHjvSPf/zj94X7xiDNMYjpZ37mZ+TevAa5/cRP/IT0+ZrXvOaM4xx7JgxlPupRj+o/67M+66zgvmc961nyrD7wgQ+U41/8xV/cHzt2bPSZ3124D+0Xf/EXZS4MMee1edKTnuTP6i/+4i/6r/iKrxiF2M4n3If2gz/4g3LvX/7lX/Zj/DevE4+Pocg//dM/7T/ncz5Hjn//93//OR/jpmnbwH2XeGMpGNJh21gjYIkZnx/90R8dnMPa0hgkgsbw0Qc+8AGBmvg9Zs0Hhu/Xve51Yvg+duxYMTyzZpUba198Dn/HfeHDkBWP+7d/+7f9XNae+D5nq0UxNIj5sZbCGh9L7y2MxV5aeVzL5VI0QXYweOADH+jHGS790i/9UtECsLYfTeO587gY1spz/6zP+iz5Ps99bJxjz4Qle5bwWQv8sz/7szOOgdfzF37hF8QBgH/P42BNmvs6m37OtmEvsrNCbrzeeFbsaceaH2vN3//933/O7v3RjpG1Kx7fddddRx//8R9Pv/VbvyVa9jd+4zfe42O8XNoG7rvEG9uSEKPTNoau+CVkqOfLv/zLR21VY9DcO97xDvr2b/92+h//43+M2oy4secTt4c85CGD69kdORO9t7zlLXIdv/hj7X3vex99pI3hMPbWYhiLbV08nrH7POABDyh/s72KIU0ea9uYqTBM9853vnNfKOhsGs+dvcqY8J3N3NtxojGs993f/d0iGGRbFs/7TI3neuutt9JP/uRPyudsxvHRNOxF7E00hk95DiwgvOENb5DfeX9tbW2d1Rz4usxkxgSzj3aMn/d5nydwKEOqf/InfyLekrxP2FN2085P2zCpS7yxhsLSP7/0bYNNBQb8trHxvH35mBCwxvOhD32IvuVbvkU0AI5pYaM7azcfSfwRX8OMgx0Cxto6An42jcf2xCc+8YznZU3knmw8d9YaxtyduWVnlnXjZEcWtkc9/vGPpx/7sR+T5832M7bbveIVrzirMXBjQYU137H26Ec/ms5Vw15kO2lubGPDs2INjvfWP/yH/1DsbWfSVDj+DYIRN3ZE+c7v/M5zPkYW2jBGdijiMTPT+szP/Ez6gi/4go/4fpu2vm2Y1GXQGN7imBN2cGCj+UfT2KjPBn32EON4EbQ2SBPxVqwptO3Nb35z+ZuNzr/5m79Jn/Ipn3KvMYsxxsiOIu1YASEy824ZyEfSeO5//ud/Ll6DZ6P1jDWG6lhL/F//63+JYIHGTKptY/fgubLGwALI2TD0j6bxPZhx8tqyQ86Z9i3Dm6ytsGMNCxzrGgs42bs0Q7QfiRbFDjr8fFlr3q/xuNjJ5YUvfKE4W3ykz3DT1reNjnoZNMbMmSiwezFDe207k5tt653VXsO/s7SbG0vzHCzJzCy7GjMzY4+p3Di4k4nXv/7X/3rUw4uhqHPlgn535vmkJz2JfvmXf7lomrx+TGSZwLLX30fbeO6shTIk2TYmumzzO5uxMnHMcBePeSyzBBP6vJ64nr0wmdmNadxw1f9oG4+PPTcZ3uSfZ7N+rK2zV+jY+uTGAg4zWHw+UibFa86ZMRgp+P/+v//vjEyHIXH21uQ58V7ZtHPfNprUZdDYDsOElV1/2caCjBPMXNjVm79jzWDM/tQ2hmBY+v+mb/omIa5MaJi4tbYpbux2ztIwE3RmkPzis+MC23GyjYylZZZI+Xy2qTBzYLiKtTB2LGAGyFkSzpUL+tk2tokwU+Xxf+3Xfq0QJLbjsc2HY8/ORWOCyC7lz3nOc8RJgoktE3NmxHyctSM20O/XeI0ZLvycz/kccepg+xE7wTBU1aa7YmcU1lr5/BtvvFFsXAz7cvYNvj//ztkd2DmDnxfbDvl8/v3uNBYiOKsEN7bZIOMExxN98Rd/8ahAMtY4Ro3j63i8nL6rzVLx0TTevxgj70cWnni/vec97xHGw3vybBrvQ7bRfu/3fu95z+RxWTbz8tu0yyTzxNd8zdf0D37wg/udnZ3+wIED4qL9nOc8p3/d615XzmU3ZXZXHmscZf/EJz5RsgFcc801/bOf/ez+z//8z0ddw3/hF35BMgZsb2/3j3jEI/pXvvKVazNO/ORP/mT/2Mc+VsbFbt4f+7EfK5kJcpaMu+uCvp8rNNp+bs5/9md/1j/5yU+WuR48eLD/zM/8zP5//+//Xc75aFzQ4S7+vd/7vTJWXqcrr7xS1uFFL3qRhBCczTh/6qd+qn/IQx4i1/Mz5fX5ju/4Drkmt7/6q78S93leY/4uu6O/973vlf5vuummfj6f98ePH++f8IQnyHO5O43XnfvGh9eOx/blX/7lEoJwd13CX/ayl531Mz/bxvfD+Dh04ujRo7L+vJf/+I//ePSa/db/O7/zO88q68im3f3W8T/3NqPctE3btE3btE0baxub1KZt2qZt2qZdsG1jk9q0Tdu0s2ptLFLbOJ6Jc95t2qady7aB+zZt0zbtrAOjcyxS29gBJhd+3LRNOxdto0lt2qZt2lm1Nhapbfd0IthNuzzavaZJsYss5+Rid092h2bX5I820HTTNm3TNm3TLq12rzhO/Lf/9t8kzQmnLuE4DGZSnAblXOYH27RN27RN27SLv90rmhQHDHKuLa4XhNxhnILk677u6+hbv/Vbz3g9n//ud79bUrls0pBs2qZt2qZdfI1ZDye45qDy/RL03uM2Kc4e/NrXvpZe8IIX+DEeIKcy+cM//MPRazjCP2d25kjxsXIFm7Zpm7Zpm3ZxNa4msF+2m3ucSXGNGnZj5RLVufHfnApmrHG6nBe96EWj3230qHuuZZWbM/ix7LM1I/ryT9iiqw/1NF3tEefT5o8ouB3RJD2grdncNWEo8Cyg8O+r1VKlKbuu71fUrzivXHTQKv0ie9khudS0au6ns/OtO+omKxkTPtFn/MSH0s+u15P1mt7m1MWFXIa97EMuy57GmjfoSo9rGggbu4xHe+Cfk0mv59j1KPOOjpb9ilarXtYGQ+Lfeh5n39GSVrSSiWBdJj7WZcf96rkr8STn33ua9Lpek6kOqqeV33dpHfHvqyVfHwsnv07msvhyJo9NjsdzwjPx+ehM5RxfB1/f/Gwx73j28jyb59fep0VWYh11sTAy3pezLqR3Xrduwuvf0ZRWdNvuhP787w7QX73nNP3Nhxay4/Xqu5/lf9PGG55FWw7lovTuY60rp+rnYnMMD2LDb9o907DSQky7CT36PhN62HWdMKhtJnAzI95My4XIMXMIQjuxbcmlNkGcVMvnnjVxrR40Yrrq7ft2BNqmmTUk4iW/2/lCfIVJdfswKT3AxB/H+PfOmBTmAgIlfyt38U7AFHny/L0yPP3d78XzXk1sDEwQ8aLyv8oo5KbNPNGvsxDum5lUP8akeJWZiaV+jGf1PC47t590Ps8J7t4tg8mDSXWJaSZmiVufOLUUoePIIf1OmVR+LonZKI8PRt0wqbxWeLfzMRZu92NSmSFKt4XRR8f6/BqD/HRG1K2EfU77KU23JvToGzqaT6Z0YGtFb3t/T6eZSW/ozTls+pzOmMSX7uHG9Vc463KbjZv/Pn78+Og1XH4glyDYtHuv8es9m3R0aGdG97mC6MHX8bu9op4pJjOCZZJcwTSIGVQQ9JChqnSsNCWRATtW9jAu7VoJOhEkO1GJXCL5qR8hlumQvix2P4wf42m0mZhgaGtFy0uajE4qiLRea4yKqWTSMEx1q1O1+Yv2pLxs0MasypkxtLK/Ty3dKN9Lz6kioM4vFhPfLBcrWixX1PVM5ENLGnQORmHrK4xV1nY4dp98esbB8HUdxglbzCxrblijrG2pYhXMV7RjObqS/3mPX31wRcePEp1aTOnvbl3QYkW0SI8293+5t37kWHexevdxVDpnYuayy2gsifHfn/RJn3RPD2fT7i6DogkdPzynL/qEQ/SwG5jwnKZuskeTbkkzlkKnHU2mHU1nE5pNJzSbTAzyY4m9l99Fs1E1RYCWrlsRo3qzCdFU4JaOpp3+nPDZ/UTgKdYedOszy5NedFymlXAVkdm8k5/cH9+DSaFKzwIg6USMT074w0ftd77frFMmPO1tHCxkdzz2lYyfxzXrpsTqTM/FAplBmwaWG/c75X9FfQIDmFDH68EQZ0e0t1hQz/Of8PwXNLM15PsAEBPmL2NmDqo0tFthXVQb4oM818mUv+tFUJh2fIbBn67JdjRZMcdT8IrnxXPseGGXS4X9uE+mxKapTfpOjvN/ALtMX5RZ7mx1dHCb+1vRnHra5ucGDVq0aGP6wFJNQ42nF01hX4Yzla1Cgxv6djmImxg0jkEvxPPOd5EnXCgqPwthUPwMWZFcTmg56Wk1WVBHp+iB13T0KQ/appuvntHVh7kkCi/yJpvcPdnuFbiPoTuuAMolCDg26iUveYnUzeESDJt2YTVIxSDZN109oxuvmNAVW3s0nzI8Yjaa1LJNpkA4bkRRiMmOOvMIOw7gtAwHBV4T2pJYv3yk1kkhowmRU/sLDFlQnUxkB9ykRNEYClNT0/RiQYx5uE0pkUL7R/gvYEyh6tovf6EM22ClCWxpYV8KDa5ReeT3tCAN3YZGmpQd117k3sk2o89LmYUOKK2haTCyDmxDS5qTMHx/HqqpzgXihQ1Q94vMpyhTwPmSyuramK1lgmhjPqFB6ZrHHMbsVWzPGzb0r2snQ5no/iu7tmjCseQz4dYLetBVE9qZ9nTbXUvaXfW0YBh4VH+4zFu3Rq262JjUF33RF0keMK7BwsG8XBzvVa961cCZYtMupDalSbdFj7xpm+5zdElHJ3fSqlvRSiR0bVniZWlYbVdBADOTUltPsKrxSIggW6yB+FGHa/zqgHlWy8Kc8H12kECfIIBCcBNB5++mU3boMM0k4YUscK+W7CSgf7NtjjVBsWdgXIlRsOS9InMMkfsx5dfxTZnAC7Ef0Sqc56mtCf2K0GBUvV0zXfNgvrCbxXm92uZ8zVXjVM7FBSbVJjWdTEObEVteaGJgFiKcTFa0M7cimCu1TYldb9o4j+jAbexYF9WwuaeVcMN4rhCMik2vsfGNMSm1WYXQU1BWu17vaM9U7HIVTxZHmXJoQbO+p79340G66sCK/vp9u3T73oQW54Mab9qlk7uPHSeOHTu2cZy4Bxo2x/HDU7rhyIQe96CerjhAtD0Le09He0a01FMviIFpGfbGb81MCxEoKWlQhmShFWN5K327FC4sw/+eTxcDzWlq3oItZKQ0OTQyEFSlV2B2BiUtGUaL8az4OBNis6NNGGMzECw0vLiPeNHJ+FWLm7AjAux0osWYn9sq3cM+C4MRFTI0G5DgngprVThsCH8JuuYaiPVl8JZ4T4oDhloMxT9vCetV5x6YfGvvz7XqTj3hGi0ZUB0ztmyfWuXnZvNsyQ6YCzMsdfJoFtIeKq7jApStp+jAk9AkmdDGGa7j3xYydoaWS//6mIqDkDJlHtOcbj9N9NYP9vTad63orz/U+/PZNIr3N/HuM1FmeHhygcz9qjRfFN59m3ZPNyPUxkaYRh/bWdGNR4kOzxc0nzJ7mAdkkj0Qiv5jvbk3QjoX4i0EjcDL9FiCzhxyKqdBA1Gx1wTj6Lp4+4HY5PHV+Q7dxrOFXFcC68E/mdkok6rMLy2faTUG87Gdy6A2JcPZSSExahu8zy3NUTz4/IL9n16wv3Ri1vD8XLPbCdPkNTDRzzwUWaIw15A0T30u/E/oSqFxofHzYGCTNUg/B9pLHdZgXHnARavEfoIHXyPUlHVo1gj7x/XKAq/WTSxPIDEstrke2prQ/a6c0DtvI/rAiZ5uZc/G7BizaXQ+lMsNk9q00cavHRMY1hOunKzo/lf29Kj7r2zDsMF94RoOOxPYYbNFVK7CEjprH8zcMqQDBQkMCYgeYB0m7Ow4ELxCHRUQTuVO6wnWAeNUfwJzGRdcKZEng35gP2GHDYHfmPky8iROGsYERfsxMpq8sKcThs6yAwg7jehg1MHDbGDsmi/MDK4ePSODAXtahzq8cDPnBgVO457MlmeQX8+DNGeQsKVBC1G2I04Xxkz0cRg0J51qHIDyY+6RJw2CO7N4Kr1enF3k4YSmJvAaND147vHPKZxauC3FQQP30JGrAwbEoHiANj+PRoJWavvFnCrwLABHjrkH8lj1+yoMsPOL3y84X2yeghKCsar9cEJLOjBd0c7hGf39m7bo2mMz+s033UEndmMmG73q/LQNk9q01CAzq9awRR0d3iZ6+H0mdN2VbOjnwE9ImQFvqTSutp0sqgrUw9CeQUNFExL36xrb5KMwSig2lkYBE4KfpGIwuJZEZNIFppGsMesJStaCIOU7E1aNjLUneK+xRiV2JWe2IX7H2OI7mTrzivBlsO9jbMav0nfgNUwyY4LQsFzpa9z1Y1Wybgv7VrJr4Ya2pqI7mXNB0bnCtBWQKW6WBwYGzOtUesAvZhMqNsVgDbKXXB2MSRUnnKzA2MAC9cx6mcKaqk0PNX8PIUAH+bxYaNV+ZYmWdMX2klZHiO53bEYfPLGi959EyPP+rd11l5KpojuPfW+Y1KaVBia16qa03RFddZDo730M0bYEOgbTkHPBpIToMPFWsubS9oqN2T3Nt6Y0Yy3KY6Bg1I/YpPYl18Ba1U48fsk0knDCiCDOMRuHjiXHYlU4cZ01Nts4wFxNB1InCybgNi79G5k1erejQbuIUChbO2ThYIYjiiHupQG0oi3ALpW+UwYZLWudysCCtGYCq9oiNMHkGQmNzJ5HS9iD2UZgcqbunfl7gjn6WEUrNBuda8qhlZmFSsfUPDc8S5h6BhlGTEMSDRUOEklrxRNYa2ZPEGE5PPLsHVo0uxVi+PiXK3b26PD2ih569Ra9Y7qk99/FWuj4LTfto28bJrVpgybu0bSixz9sSvc5RnR40ZMgRVM1uCv9itQ2DJeJU8AkmAuaQnNJCm+UHiHAgLqyC7pDNBHcCwbpNNeJJ7IkaCQMoCAwTYeGWo3F7xMwIJoTJdhm5PypMiieq4XLFDtURjnNYxBaAxhD16gCCkXWmCB4Dq4xtaQGjTMWCHCrPB84g/i9o0OB1QymBDQYzES1RR0hvPcCTGX4Vp+puXXLICKdh4kq1HMVXw1zi+dWPCLGm65XnDfGdFo7FLwPeRjL5LyjQk09b/Dc9x9NfXAcsyca/ooefZ8FHTnY0btObtOtd+3Rqb39UyZdSprTPdk2TGrTkteWvrbsucdBmsePEV13hGiKbAdy8hB6ye9e9q6D5pMx/uybEJqVU7BCVKPvOJjRnExiMvwX8TV1TPF7YHlyTb9On8wcFa7qTaDqiEaG0CONs6pjCIRKT7JZj6h1AYnJ9831A/pakdYyk7KEDolpnBRMiH5eci4QaBJ9Iu6Lg3sdfgQjSzzaNDpFIY3BM+TrnHofbMghx/AK9RRHa7Tfoe5o97L0TONrkphr25c7sEDIyOZMdV7B3j22vaKrD07o+iMzWiyXtLdYqTeqPyAd16zraXs+ocM7E7rz1Ip2l0R7kmLp/MJkl0rbMKlN86Zy4JRuvHJOjzi+RVft3CVZEDgeSlzGF+zMoBnzNNYE3MIM9k6QIzgWzc0L9vdE4ENuHNdkMVMd3KqXrWpgzewo9h3uoTTX+uP4G9MCxENB7qkOB55WZyDQJ1d5y63HDg+SISO5cAuk2STNLUTT5qcOFDTIU6jJao2sJlOQOpwEXCXzMgZi0UrOtDiTBGs17iEomTLCcJ8FAvV2hF6jTxhEXRiIJFpgO6OtJQQQJ+96ZQCNVTvJ5ix28pAEswLH6bOcTbfVLX25oJVpzP1EY5li6U3bdEtorI8zElehNa8jGLdkxyiM33Q/ceAwF/V+4UOPhMScxivtgczARSmE5yaYGXIhQos35rfapWsPzunJjzxAv/9Xe/SWPaIPskPKipMt9+xaJOdduUX0iPvM6fGPPES/9Rcn6G8+sKB3n8DG2CSsPVPbMKlNg9gvL/GBSU9X7yzopiM97czgTcYteWn5Gx2MKiU1MEJWg28H1ByOFonxCJSYR7VW8g4oLAvouBd67DODAuwIMCzZSaDTKP1RxgZ3dmck8l2C7vIYUwILJW5xLJt7jD4GfGVwWebD3l++v2U8d+2C+4fILi7tzT28v5hnWUImvCXYtkJRERLgpyenkGxEVPhXhQPGP5GoFp6AiB9TexvmLDJIqNDWuXli5kxtthjKE2MzKIOisvBhl7SnD+jUVCPz5UTeDI0hs6wZFV5Ma2WOMh4f0KjcfN28W9JRTp90FafL2qLX/t0enV5xYt65OFkcnBN96kPmdJ+rpnTl9pIednxCh7am9KFblrTLHoulx00baxsmtWnWNLjx6HxB1+2s6L5HFrTizAMOb4A32Wslbn5jYEr7Io8BGq29RVI7VLuUX9sPskxkm4IzjZJAtNqrOP0QYqWgaTixglZj2ouQfNNA2uk5nGh01OEw0DCjt6JVOCGMcyVbRZljimKW+ZmnGQJhkdkhrZQLDXZjgQ0Tww7zWwgPscoj9z0Le1DO8pAzsqsgEEKLMBP9R8a2WCyqcwv/gWDefD/5vnH3DH055u+mw+HcyimNbQ/nSswWhCpHJsvudicgFU7a+0QmfYxi3nHE4F30wKsP0NGDW/Tm9+3Scjmhu7ot2upO05Edtu1u06Et3l979PDjHV15YEqv/es9eZWiSt6mrWsbJrVpSgi7FV25M6XPf9RROnxwSaenC5os94QpKVSmmgSnC+ILxE0ZfsBicwCTCCnW+7c3WyL8+5oySZwanOGgXpMZ602Eb/lcMD7JpyDncG2gyEZhDgmqtvgkNdOCwUUSBwXGFyU43J6U7oWaVtMp5gyHEIWE3MMOTColYoV3n9Jyjf2KBKoMK2oCWk5WG4RbByFOKICp0FhzYYguEXrLnCd3lSwbEqulXnI5B57MuVUF17RxZ4VghBAE8EzhXKI/F+KIMZlxfBzDkwrj6li1LpPm2jMoku0zyJ/rjjfJ2cXqg6nSpfvBQ4yTMDI+dkgMleHo/cK7UPbGALJGALVpg2lc/PdKMp6og87VB/fo6M6SPvtjjtI7P7ykv3j3XfTY++/Q/a+Z0na/R/1yRcvpko4eUM3z0fcjevuHid724TM/i8u9bZjUZdpaEnTFgRldd3RK1x9jPJ+BimRj9/x2YQAPIh4yrx0ZxOpA6syaTpbrcV6GuEqXrsWhr7Df4Bc4CQ6ua5hOLEBkqsh2DWhvSZcIGxvifsy13DWYdFsnpiNu9eFUoA4F6+HMOu9coiInigWcidiecp2MIbJJxHMKq14dW9aUKszp6+f59bKrDb5PyWkFjossIzmOulWgARsjuDqvizu5FOcFGikJMraQyCKS+mrLbKTyMK4fevD4fhlKyl3kM2Ovz25FNx7TCd9+kuimK4luOMrfchyVZHCk6WRFB+ZE97tqRif2evrbW5eSrDY5aG5a0zZMatOEwn/ig47RzVdNab71YdWekJ+OHSUQ8yNu5jC4pJQ7ogxkkoEwUIm40uIJckhFcHYsQPXY2SiRCSka8UegeVqIQb+HRC/jCjLjxBJD1a5hFU8EM8VDyWX+txX9c0cBOC1kAhpGIB8bvofqw3FQGWGzrAm1pTpRjY1KYUh1BPB6UujOGIMzKqfA0DH0mclas/OC2aEy0ldtUtk2ZxnQfYTp6VghyAKBpbnk3zRmKjqX/dAvPaXS0h1khoKO6qMJ+nMVyL4Pw5E/L7WPReolQHfCeHj9MA6TXCBwaC/m0CEHdTezq704YRSQGOECiPfSPhXZ7OmmK+6iG49N6NH33aHZ1mmaTFir1EWf8H6YcLmiCX3axxyi+XSX3vW+u+j9e1PaFRjUnDw2rbQNk7qMG7/vW1OSdC9Xzk/QFbOJZxFXZwMQb30hBdc3eE6gOhACI6Yoq47Er4UIMDTE0FbO1s0vLhMUtxGElrAfKgVpO/pODhF2DjQBhdhCagealMuTg3FAYwSDC+0x2aP8E9e2ruitl+Pa/BZIVyTX6CCdHPp9c4LU5nKzj3kuvKJd2fpZqRBlGKEpRSZzriHVrK8H5iYVpLFPxSoHrAnNlPdFSQQslZbByJNW6E4M5g6fwgaKLc0dIqqH5mAdkxbkf2OP2l4G9Dxm0AqndW0aPoF9DFUdCW0x1sa+J1DsirYkOwvnLWR4Uwsp+rh5X0136YYriR730B36g79e0AdOcAH7qtVvmrYNk7qcW9fR1oToiq2erpjfRYennGVbfaw1Y7cyFc2OraTI87mxM1fQjmLghgOA26T9dqk+UIqJ4dYmQrXh6XfJsaEZ/tq/IxVsshGl8a5fE2NOAt9EZgdXCJqx4Xc+j2NXw8sxQ5tgDjkBa/jjB2HK8V1W+8rsZ+vmq17MYCJVGcHzAfuTQGc5XVU8BMBmJlT7jyjkzNzG1y3Iey7rJLkXk3dhuK8HBClaYlEwdSLBFJOGhs0gEKDra4lpKLDWOs/ovavn4PhcguELA1/l51bXYMxWqnPlYHgtGNmtppqBg7XxZLtjl4lrj23R39/apjf83YJuPdmTpQHctKZtmNRl2lSq7ekB1x2kT37QETp09E46Nd2j+anTLmVGIGWV7+S3hcJ46thg5dBTsnO3zYijQD/QWHIam8yslDhkaCe0ljZGqZ0Pzu2yRG/H2TjPvFZQzBHmiXuwcwQzYDhGJFTJ5oBrQttB4UJnaEwgDZ7zRK15rAlWwthXizQWgxd13Cw4NNd60/Pka/MREVIKXM56V6cAtTPqM0KZEHXYGPZbBhtrmEuDuEde1pDsEkeEGd60wpEW1C2wmkByUG6VwbADRnjtWdCsP5fkUm4eFjV5bk5dZZzZnGCw/lVbTgAlHCecgVVJRv6yOllS/VlK1GifEjOYXPl1OJbLkbVHt7FyLkLTAFcz2yALOjhb0OHDPf39m2Z0BXv8/e1uCgbeNLQNk7qMWt7/XCL9msNTuvZwR1ceWpHVrotzG6kcBMXtNx5fYgTbJfJwSfbg0GSgDg0jov6doeF21lUxuMNFu2hLQ8XISFphltm+omPOrsQ4roQUDMoZTtQYBO2LL7I03TA+QG95hMhA0TI+0VHhhNbCPdkrMd0qewL4+qVHAG6V8304XW+11DXrmTWgIMYJ5hrha7kMR9aOA/zLCwAGN+7Q4CNvGGgKhwo9PBVNjOcytkPO1BAbNdSUWi3Zx+J/2LCKkKDPQWHNYKMsLXHRSH7vbrhim04viV7/rl25bBM7VduGSV12TcgC7cwm9OkPPExXHz5Nc3o/7SymohktHUKKBLDgUk50zDtAf/CxpUuNoB+aBcEKHJoBX5ueIWX2PO2NuVRnWxTgKoe+rNRFA7UUZwLLSQc6yEZvtaNFyYmoBhzu5ChIOJsFk3Jp2zUiMAJI4uYynjMXIOlrHlcanxBjWS946oF0s3eYrgUn5NX7xvxE6xA3bpXqI05MFwm3wHxLjFA3oaW4t4fWllGvMSaf9Qh1W9dv1D0/Yp5CU82aThOg6pCiCQcO91mWdZMWNIYMl2ihSa5mrBrQvAnWtUKQzvj1gUupEucflcOMaYqZ8SMsAkl+9RotEJnHvOQ8lqZFSg7D5BY/WFRn1rZXGPWbaHFO0Xy7XrK5POJ+B+nKoxN6zZt6uqPv6FRIOJu2YVKXW9PKOFuTFR2c9XT9oZN0aIfrM2XCXe0mEsvDFXc9PZAeDwNRI4qneylS02g/2aCeAlYhFbvNJ/UHaNK/9/dXHR1arzcdVsxDi/lFoKbbnRJDZCY65QwbVpBKvjduK9V1fYwgiHmm0HiytG0aUpNyh5tAjgYFouVs7ehUalt57atYEHkOxvwTUGrsP24Omp6/H3gnhm5V/gobWhYK0v3zfaXKb2jIUuTQtbYa6MXEfSyObp2jjDJELYWhz0yZNZ6Ja5Vlj2Fc4ewxxqQy7Nwe999T9vXs0SkM2iWrJGABaZASNXUPY0z4W8a37KifnqYD2xP6Bw/eols+0NNbPsBsLTwfL/e2YVKXScuv4vaMpNTAFTunaT7nzNGTJptDJkYjLzPEwoYwZP7RIF/ej/5t9xhhLhk1y9DNaGxPc22+Y43JipFl7z18D+2J7VGhPRrjKXYo/Kwedxk6TChczKEZ+qSB31B3K69ROCqkLBJF8s+pp3Bu2Ebwi6cGgsUnc/+yhiEwKEPw30bWN1pobTjXqimX5MFpQPu0vH/yfmuTB2VBZwDpOYNaf6+afLjRHfN3ekK5Z/Qde0C13fSupKmOvQ9Z1lMlf5e25hN65H136ORiKbn9dj8CoPJSbRsmdZk1flk+5eFX0wOumdFy/gHJVTfXhDFRfsNtT/oCL9ltrW0pPii/iUGYgloDCgxjvRrU+SdKbJiVS86beRkQJIZt5jBCiLKkmr+HZuNODlYHKpfaEM/4rn6yb4NoYuqF731nyMzhQbsXCDTy/2GJijQd1Lg8nJoKSg+r27z2IA4GcErIHncG72GerGkI8xOnASB/NSO93gMOEDlTSGJ2tobuGGGhBmFjSWPMSYfbfeDT1d85MwaCmsXbsHmOWeXIWctLSqmmT5R8hxQAZrvWKaRp0EIRniD7lWuiNRArQ5G+Xm0ftuHgGIL3Y5UyiXktMMykJ9qZdvSQ66f04dtW9O5DRG8/OaFT8Ii5zFvJuLJpl3LraHva0dUHiK46sKBjO3sCoTl9bt62gSSaIDIn4o1U7ln+mppBrXakdCsArPy93Hvsum7/T2YIfg/5I1yTacQbT343hsWLUfpNGmKrLVUNqplv8nLESZlZ+SCTk4kDepmg3k1ROpc+8bGVsRbuGLdpUwvBQaJhLsXelbrK6wIbY1kfjCM/b/sCPEyZ+hD2GxbbqIvi65wMgeKwY5Cqe3tmeDPZ8Wq/dU+W77B2TTZgH28DYbZrVHqz47DrKSK6ovlsQdcc6+jBN8zpAMeGbJq0jSZ1iTfNFKas6Mptoo+5ekVXTW+l7VVPc5EWJ1L+AS+5koRW0mZyBTxKq6JqwY7UTGz0EhQpyNVH4LFR2YxgFWsTRoKs3kAEWyYhw8j3hdkjQ26pfLn8ZVoOV3BAX9PEnNCyk6OclzQpU1aMuI5oDTagIJqVy2rwc8L7omxvuafbkwBHpiy2zsDXwlqp3AXKTUSNCmcimWuqTSn3hz5M7zIbDDSlylCz3U88O/wJ6dcpQzmGksYKbQxBtqJhNxoozDM4rwE1PUGw92pu9nkMODGWKz+c9Lyz0CYlls32pFh44sx1jDp1s2nK/lffI/yN0AnsQzx+EYyWmkZqNTlJD7rxEN10/Ai9+cO30u2nOMA3p3+6PNuGSV2iLfl8ycu1Q0vRoh5yDdujpvLScCw8Iv3DtUpf8Cg7nozPHqQUFHSgZdjXgNDMUoHTfWzoqrXpmMXKuV2G+0BgEMMUb3oIuM6gmJilmCYQFWhPkk0A8UjOfUIDaKbZZnkdrnfjdWgIVdKWgtm6S3sO0gVtZ8IIzzf0nfvMJCunUMp92+OUR+DjiAUXGNCgQF2jdXBY5qjRxpizudZ4wt9cg8pjnhCzlWKexoKEsRyAG3O4gqZ4Sg9EOFrVAuHB6cqMlZzHPqiLanfMQkfpTnupgcBD4WDg4WdwoCZo0SBqZ0qGJICnSz5l/32X5tM7aDZZyPu5XPNkLqe2YVKXQWOM/cCsp2M7RMe50u5cHMBpwq9ALlueCFBrKHaNyo3zJm3DBTdLti4ZJ/gkOVYAISuwHF70VrqN6vLpvPp7CwvaqCs8h3s2kB/GB8qkGh96CFrWMsrMwHLcDgTuahtL44AHoGlmziQB+6X+kUfPpXAMFgwtB/km3WeoI9SmRLOF0LIgEVfj77XZGbzP/IAS7IU7JsizvTbWaIA529X8HMDcsg2qPT2yUWQVGsG8YocsKmRAdhliRl9DZmw4w6hHIH8i54oyVnX95zdF8vZx0HJ6lp6E2Bit2v4WNJlyzsClZ8C83NuGSV3ijWNndrYm9NiHHaEbD+3RZOuUVLFl/rTkdC3m2i0wi50fxBuAnL2UDGckNUNsWqkOkl8jmoql3QHMxddmjERPduYRh8JFXP5uzxkh/tC4Bu0sbFdQ2qzrQuDgju7aiTkgOPNq3Lsl9iUx5TzHzHzAbIrg3sBQaq8A4zDYyTpHtd+CrmUmJgQSRB0BV7a6TuBZUEnaRrLH6D2N7XH4gRFsaDfuYACIF5AbxpGlBktG2y+XGgslkBgyXmRYGXCc9Z2MU4uFgs1yu2knjjUcrxTX6rmIhyvYL2ceF2iXXTjtiC+aaaxYR0C/rrGzfoj0TLoOEU/VbLV0IH4P70vdQwxnhmavXoFAJDQLx2o1o1U/o93+NO1tnCakbZjUJdrAYKac7LJjh4kVHZ6b9gOinLWbJiFsfgc1h1/KwZaIkP7aEDhPFTFUP3LWAzk33TBrO34sZ1JI95YfGRNr+F9mFgLt5XgtxwpjDPCQazUntxEV6KyRb927LmmRa+0I7KJtdpfUSZQyh/eeW7cSZ8v3RCbySF1V8iCmMiT1OvArdRUHhFgUIShDhdFmldH+diZrSYat39aG4tP0OcfDxN/7Wl2Q5gqed5JJwySGclpsTLGh7RN7NbAF5nnnfWkabY3rGukvtTY2y69do4wq3K7a1u13ruiDp1Z0156kaab1++jyaRsmdYm3GS3FHnXdfEVHOO8Y26g8PkdfItGILEO5tByoC4kyQ4JyDrScWpocZFJpj9k9Kl9zDpJjmeCenuiM5UdLEFlyJXe7Vc6yk+A0MCh1JU7VdLO9oWg9arQvDBKQYMtry+ok2M6INxhVjnXScRk8inGYLSIgQtWAOOtEiXnKArWtAwJ9S8u2EszdMjNAk1oKzhhQbessU6DCpKplYUT3jPbPmgUS4MrsTSAogB8EIP6Tt59nLxkS97q4pt1PBJi2dQDEnK+rewhOHu4inxhjXrK8Jz1Lema+Axf/dc4y6K0NUh7x0BvBYjWrR0+zBdG73reiP33nkm49OSUG/DrJdXh5tw2TusTbo+9/iO5/1YwOzU7StGejczAHxPO41GcxK5CIQQVzUC+gDndesJYZBeoiOWyWCUp7RSIINQuCZaHuVgMbD5ij0L82SznovpUBkXMtozm+9PF7Eln9Qs9Nnn9GDHPSTyds6dhqpOiga6vJU69VV4BKCdNJWS3EM8xKO+iziMq2Wd0b2o+y5K4ee3gMfEQhssJaB9eOCe6hF8P2GPfRNUOWWxDc6ggDzQ0LUjRa348l/NfHIhpUUvSyTVTtTZNwPGChpuvEa3VhZVm4qi+ug8AUD6aZO45byyVHfGm8jlQ71pqTMI+13MNV1Oa76ZxO7VxF79u9i/7f+0/QqQRnXu5tw6QusYatza8mY/E3XjGnB143p9nuSX+RnbgZfq+lsRP259VjE6XNtpzWBuQve2CIrfaUjdP4G7aEsIwkQmbBnvppUyvVfjO6Bi3FZfs2pgm/e0xUZHaNY2GPkvPNIFJ4Qp7zmlIgILB+fp5DStdUnp9pGeEZiAzawcj9kjQWwLUBG2ZdJgKA4zkFzFfoLQbdEOHyLP2J1ZRWuf8sMAgEmASd4vjgjLVqariT7wxIHmlqYBqSxy9pkRxsy9DZIB5qH7o/sp2HrVXDcNg9EJvTMZ6MEoxCeKzhTui2vR364KkFfeBO1hxZg9owKm4bJnUJtn4ypZ1JT9fNVnSkv4PmCzXKqtbUU7/gF5toPjfmlBoyAQgxEUO2uU3Y+yKOEiKWBxSXm+a843O4bzP47zPWgFf43LAziMFfskGokV2zt+EeFYbjr7y0Bv/DWslKtSFxNzetyG6oH3zHpHZXD80AIwqhC3jI3enhsCDJQQNnkirGjQ0J9GgKTSkJ0bN94jQrzGe+YYmZjaFNfHtWJlBFVh5PMs4D3+V1MCVLVDWtmKx1jt2BPM9D1gPfZi/8HDRs9iLzbtNQBQOTxWmmMkh1iEDcVGg563dHRzPYudj9PMGrRZOU7WLMCoIUqUYFhsqxfRi3LAFyVWL7WXd5NEXDT3uo1ZJarSvPK1zi2YFIVc7pdGYogc7oQ3fs0sv+6J30wbt4r2eXlk0752HNL37xi+kTPuET6MiRI3TdddfR05/+dHrzm99czvmMz/iMEgnOn+c85znneiiXZRMJvZ/Q4Z0JPeD4hA4fUHlUmQ0kTf14k0zfqVZQKdGQwzrjb3ddTwUO4xOZKXCNegFmG5B04kaWolnlGzZj9iwRkmsvxT2NOVxILFQdGwoZ+nHzOcf99RzAhPpp7+33s+q9Mc+q5bXPJU1Hfx2RvNUexcReCW4eV3Hm2HcTxHvV1PkLO51XUo5nEstuTCYNePCMy2MqD2zEWDY+RthwWjg59w4GB6cdfBTKDS87aLEa8gdhR4PVde95eG/8lxZyvyXN78XYmZXJYtwJNrT3C98H3B5zXCx7+tDJFZ3clQi2eK9o0865JvW7v/u79NznPlcY1WKxoH/1r/4VPelJT6K//Mu/pEOHDvl5z372s+m7vuu7/O+DBw+e66Fctm3aT+maw0Qf/zE9bbOPENuiRIJTijRjOMRxKtVYJLASDMPqakBShYFcj4EqBGEoxA/XJQ8FEJTCCGHITlBia5MKxqiFCHFPOdeYFDSDDLVBIoZxXz8oex9ZJpxxMj9wIjhRxiQnAq7RvrkwoTlioRp4gRXd/SCtTW4ZPW2P4VEsFjwuLpsyoX5y2olpjWsqJp6wD+bquLbe+tQyLKdcGh7gWP/gfOGpJ3lGRjS4BvFs2lgc0QipTbCmjwEsz36PtcRzMC9T69P3lJVT0UWUwjFqz5RsKjr7CT///XhnCmIfjrXBcMterQ4WA22KA3LNbX3GKnl2X08hBIsV0R2LCe3Jgls5jw2LOj9M6lWvelX5+2Uve5loVK997Wvp8Y9/fGFKx48fP9e3v+yb2KEO7tL1O0QHzTjsdpGEhwPikB8mIDqJE8Jf08DU7BNwajA4zwmmFm3SInbJ/pFsTuhHbT4oVjech0rr3JfCXXA+zLCXl+Dg4+Z4UIXaETdlxMIUqDB5CRq8CZuULIPdr2emyF0uQxM1Hi+MSxFK9YhA3Nk6RtX+jWckjHe5EJhsMtXKr8i6kL0FNd6mrhdi0vKK4zvXAQBTpmwX2BF4tluzKM0STCoF07pWlTWfDIvp3xK3ZMfGveKgISKhcDTxGjSoMF8Z/cAFf9i3p7ASBqbPU7bqZFz3a/Uj7Po8H4HpirLYPkg71eO/cB/ZHQZxGqqR74f1GfLBTbN23rMY3nbbbfLzqquuKsdf/vKX0zXXXEOPetSj6AUveAGdPHlybR+nT5+m22+/vXw2LewImQkw87jmENEVO4zBh59ycTZo+hn+Dcivgf08nsgIUotttc4FhUlVuGoIHVXiEdVz9RvAeRlya21Trr1kCmQBooVI5wHnZKhpPVALaDDWNjg4jyfDiGuwGmEKiIPKQkLJkK2Jiyosamu01lRRJXvXVpN2meHYWGi4/4Xw4mubrxuCeq79ZihysLrJJR5j8z2Q+scOaPWQZlPYtTWmLz+n9t7iHg+4bWQt2hG7xmkDjGe5nnWMZ6ao37faZ2TP8N1O80lnGSlMIByw7suznVfHCZaGvuEbvoE+5VM+RZgR2pd+6ZfSzTffTDfeeCO9/vWvp2/5lm8Ru9UrX/nKtXauF73oRedzqBd9EzSs26L5bE6f8JCJZDk/TSdpNpnQjKVy8SbQOClWHFhWXomWwtK6qQwiOWvcy2qy4jObF5BtJivRGhbIJC73zZpZaCVBhKIPJpDI/Cx/W4Cm5D8wSFL7VQ1KvhNHDIX82N04a1MloQI3KzY3mRH1c/uOK6ImxwdRptCHwYVOt/kfuJ8LfVPXAb5DJt65xpTMn++50nyBnm9NlzwYYIr1ApPyfqRwlf7OY9d7LzXBLT816wRBqvwR/xBoYtRLhgKsbRFIEGeV609N09rINQrV8q/qcq8D3zYR3zULjMGI6AT2H3l8DCuHPVK7YcK/TJkxYi9IFWUMr7iETyRDBDI86NfmvIE0RjYG1jzhWSnnOuO3QomcAc9tWisTPtSpJ4OHeWgM9XqAszEN0dr3YUy5ei/2RXSa9r8tjDpa6DfT6YTm045uOkz0/pNEHzpt70G5w+Xbun69a81H3b7ma76Gfu3Xfo3+4A/+gO573/uuPe/Vr341PeEJT6BbbrmFHvSgB41qUvxBY03qpptuKhL45dgCnWf8fUqHZlM6tt3RP37MhA5uMya1y4W3adrzq6qSOWtaM0usKsQINhujmlw7Sm0yYUuSezhhNdtUiiNibzVhNpZYFjYc+X4kX1G4wWsTRiQXac5nvU4htdlMxzGbM/Fme1nti+kSxxhxyateuKd65gkct4WTtA9xmjB4EjFKYFLMCI1+CQGf2rXuHWdQqtBBi2MC7GXxsbTiKqtM5Jf8O6/leCBu/uSgXGFwmk7RvQiVZwZkBqLN3ywLpGdEcgRmREn6Gg+UflFXN4N9uQhmaLW63EPIN+d65A/fghmUQnzGRAs8hm4ijx+AMTCZoETsWZrrW8U9FWbuaLW0fSgMxdJIWSJZ3E8S2xpYpLn7AqoGlDuyICKE+UhGbE+DtRzVpuJ4IAhR6Rh2OH3PJnRid0J//Ddb9KYPLOgv37eXnm53yVI46ImMth09evSe16Se97zn0a/8yq/Q7/3e7+3LoLg97nGPk5/rmNT29rZ8Nq02376TKS0nO3TF9i4dP7BH28ws2GMI3lFmL2DCPZ2uaCaJNpWoakeQ2piQq63JSw64MVij4v2FwyCSVpM/EMbb1spEJsQrU8tJXw06y+7LYcMIVF81E0B2ZhMzp4oolmVOHRYEXK0GUTKDj7EEb1mgxKYVFVeNETNxa+PEUql3ZYjGYIDONWJg2PDqGjqhzpCeZ2fAtYCCKvkqbtIjxfiw9v2IlpttV0qgGyuN/QmG5IwSWlMqlYI+ROsxLbvaHZPgkxllhsRQ1NEZ8rBBm5NCgl5AMfYnso+jvzZXYDj8xDlYH+9bCkyOy/D7MazmTJs/5j10LOG/D8w7+pQHHaBT/SlhVCjNMmYzu9zaOWdSvOBf93VfR7/4i79Iv/M7v0MPeMADznjN6173Ovl5ww03nOvhXBatWy1pi07Tg66d0EOvmdNkvmt5zsSvyWJXlIizJgSju6RIgraDSq6ckHMsot5vFsQav7ffo0ELqXAf+taMCPU2jf0svZ0yZoehYG/J/VpgssQDWaxOosYA7XJTT7+o8yRdzJY05evnKbg5eLlrNx68i1NYIjZvus7/VrhQoLsqtvt10Mq8+LEkIYW3WsrGVwKxcb3loi9OFUoEuT/VGgyqyjYw8QCN5ZG5NA/SNZdkTClMw8qJoA7YkhmWo2OqCXGsFsbvsObgaZs8PSLVjGkr4XgT2iWuj/Rd6k2nDg9+dfWqLLY7n5L1WcfC50iCWtPIxsZ2phbJaRNzy/OiFe3MTtCV8wXdMF/QB3dJSshv2nlgUux+/opXvIJ++Zd/WWKl3vOe98jxY8eO0YEDB+itb32rfP/Upz6Vrr76arFJPf/5zxfPv0c/+tHnejiXcAvtYtr1dHCypCt2OrrqsJVjZ20I0mIjvTsc1MQWpS5d6mtFcvQVBKnaPyCdt9J8CNKR+DSE/4i3KucmBlHhoDgGrQN9IZ4JtiK75aDvALQyI7PrZ73YhfwezZKbU2N5Cus0SsCkWM5yetaWivZkmmuaZ/GCtoV3W0uyl8AmhaUb2kiSG7/9UQutxAiHz68SWO+jIfAeEJ182TRWz286AmJVmDLzrPA6XaO9iLyifeo6hzqf9xnqV4XbfRp3MU3FhgGsWWdt2lkeVlnfEXh18Czi/QIaMOn26PDWiq4/RHT7kmh3MXgol2U75zapdRLGS1/6UvrKr/xKeuc730lf/uVfTm94wxvoxIkTYlv6/M//fHrhC1+4Ly6ZG9ukmOnplrk8FWGXyPoJHZ0TPfBYT4+434Tuc1VHW5Y/mf+ZdVzDhqvwWjS+QXni1g2Lg7yzKoVybBtrEtMZH1EMK28QMAC+EgbyXI6dq/x6vLxoFjmq36RtMQ5pJnAQ5wwXMX+AXYo1GmiBHN+1xX9vmzGdtT9GRlIITGZSDv2g/0ZWh8cg27nE/jUn2mLb1yCThnIBdQxw/w4NwrT7W2kut01xnjzYl0RVEZtZ9egTDWqhNrW99J14zjs9N8JqR4K58vGIfRMnNivvocQeV4zsHZZOE1MUS2BiDooCK9HfKob+zCRgI1Pmw1YU1Qx5v+WAVdUuoUlO2L3d8uhJOiPzL5HzDPuVMaTBzpNdSXmwMhFZWmc4ASG6xm1OIMHAbZHNKOnMnfdHrhBsfE4eG7RjFG1MgluuDZXHUIOT68q3XoUBLffUzZZ04vSMbj85p//yZ0t61+2cFeTSLXt4r9mkzsTzmClxwO+mfXQtoLKODu5M6f7H53TswC5x7mS0SJJjcipiioRC8v9IlmkvCV5SFySTqNhkP8gib7attE6z2YaCQF/0baCfOTQYoXTtz7zU8MEszMFBGS4CcYNQZPd0H0NOTpslfsscgdRJksGCf6bAjLCJVbioaJ72d2iL1rfY/QyGZPootqqAp7Im0rZA2VrrUzSJ70oKr8dpoQbYQPuCluuzK1MJZ4jhHQdaLkTEfJp7Wsa9HaFtJoAtlDUdsffZdVESKkbSQoWi+SadMxSk0JCzBqj7JGfZiBvi78xcfSeXGmYVgsV+9veqaa0GPNCIG216a9bRkYMTOrK1oIPTnk6JxHBO9YiLrm1y912kzTWHrqPDB2b0kPscotlySZN+L3Ko4ZMSlurLBKKm2D27wBYPJOsb2hhL/OqMkCqsmh1HfoWNS8xFyHJgaYmSl1Y2VOMeyDfHP70YHQiVKlzBWOBdCCaQtAEQQwnqT0xKjeZDhgBtMjMo9iQULTJJ2NAUqtdYfRbFWQTMIyWFFUldAoHV6VpkhIwvjT3fRLza4+rYYh6M6M/c3UGioWRhfHF9jX3TY0oIcc8oZthwFoPRwAxCDKqDVYUoBh5QYDcQXDBAFUoidZF9MVwYFGOEcwPrNh4+ptofbFN6OiC1nGbIbLVp7KLdZyedkBKcoY4ClKmqwLo25igxuha9ZoOZzTo6Nl/SkdmK7lpa9pfLmFFtmNRF3q6cLOkYnabZ0qCBxkcb8qC67sJpSCnYbGYZDeTFYdyKfzNJHF5zKbyGCTYTcetYGiC/bH+B5AmX5BbiwF26nP06EQFPCCGOCkaMUlokucZd3O1ekKzhGo+wKxsjEk3gRM/JNyGabRmjEnf3CGQKJqwa3MAmhrWxqq6cNsm9/CxThvArN943xgusRVqf8ARL9pBcXoWdAlhgmCtB4+64cq0m/Y34IIQBAOECs06Prh1FaMjLEW0UD9pgRgQLY00y00UJKxVQDOa1ziLuCSyO4Vyr/usVcKFhVyEnj0OcEOx+005j/RbmfZKdSDjWzGannqucdGi51DksWTDRawXes3llQS3yGzaM9SxadjQZpPwaqe6rggEbonr6+w/YoWuu6OnX/+pUKRVzObYNk7pom7pUX3toSlcdYBvRohhkg6QkLQIvRlt+NpuG/VCCCdMhlwozhDYCxYRdCkwsMbdGSg3pNveQvkvalBzPSVGNSWSbVuvYUfpKTNWhviaLRSa+MV1oVKOPwqGrfA2+K7QoByDn87IAb/2tI4wydmbGTb4YMH2cM2ipI8Be+VqfRxI0hneIrkah/awEAQrzaO/av57XDyo2t3DxqCt62le+F0am6np74zyjY6iJZouXJPqE4Gb3UzsqtDj9Tiv36lxiSXJiRzvSeGcOlw3v7oquPdLRqUVHWxOiXbZdXsaMasOkLtLGmhHnWHv8o47RNQeXtDW5w7+LWqoqCWpsDxgXv5TKQjzwUoI2NWRUtDE3dTQMKmUJQCvvnNi59OCMgRgJ6LT0PuWyqGPk0n1DhwDF4R6WLUihMy7DwRrQ3MaVnA5yPEzO9ydzhzZh2SeQ3RzZ1NuC605wMo1d42WY4bVyHhwqMADE4qSgYIbqULMqSKTMRm/vhLF3jY+hSdHw5PoJ9RJNa27hvlaqP0ZC3zS3ZK2UeCcn3pH/r5mlL8ZkMlWtQzR3vTALJaEZWvxTUu5Zl0ERwx4eIhKYqxwAweKqsWlweSQmNq3MM08Afl5Rx1o+X2OxASt79rN0c34HJEuG5Eec0GqFPa/7dmra1sIKw6jgAxgwgIZYCcvWYgyohYRdW0K1APkb5UksA0ySNCQHsgyop+sOLWRfXHuQ6MOnO7pjl79YHzd2KbcNk7pI26zvabtf0Q7dRXOJOcqBtoAUwtmBXz7xoCoQhDEAJPjMrtJheGj6SoGsSSFzqK+RFEEi9kft6wmu/aVj2YkL32uwpdo/QNtaSTXPCbYLsa/Nw1EC2TU0M3ybsSFpgFlVGmgdgOjKxcnFv2bYBiHLDNaN8M4Is2SuY9F8dOoViOu1vEezxkhmykLC2CLnY7lKZIpBcsZgHUr9I3/otc7SOjCsfYZjyY7j3GGJi0FfRRDQP6SaNHwgGntXZiKhreqG1eel1aqxtjJ/04y6JvtFjBz3yOuWte/6nNU2W+cX8G79G4OfdEs6OJ/QQ44fpls+uEe3f2jPV+1yaxsmdZG2LerpIK1oqz9JU7OJAP9BPVNAGfGC8Iu/LPi41i0KSEUDeVMaCGsKrakLrsNs+A69ubdTgBci3TawRwvN4NjAe86JTEP0Ib1bRgB3BLFBZPuO9+0zVs45N9f2gPkyMBoDBpzkYKTYLdL4IV7n8ZWJWY9Z4k7rtQ7FyUyqSuUp8BeEP5WqKJK9ZQmBs0Nx5kjnts8hE9CyhsjTl+Oc7WEG1Dic0TBgNtWBipX2MYHxewqu5HWnzKT2nSG67AQxvrDwZuXz7NqULF8dLKIQIuIUIuSj7vf2RnWu0J4aZlm04zWZ3WkpWSgeesMh+tDpk/S2D7GT/+XZNkzqIm2PuukgPeL4Fh05cIImE3YmxwutHnOwH4FRqbF4WBoDsUz8MuqLOWYZ8LOLTScTC9ck3FVjKL8j5ZKGbI0RM7+LV791TTB57blUnKupQrPBtc088Tu8+RhSQTYGEAcQRUHpJK5JIVEuQiiomPSrHXGGBRkvcgBZWQtAeJkrhg0mkooC6iwJaXNLj0A1JpPyeewrBrgsPap8p4yzXUtXdIyhMzwlCYLNq9OJZLmupvEpMT/mJal7Jj9/reLstsQiYNRJ6XrzxFWz1FyNwZjK2XZ/zeu4xgaGG7I2bbfTKsgGKcPRxwdmTibIEMIwKb8zXJYZa4DwMzAuToqMkh+5imQaU87Y0XrusWCos+c1DGZVocJIqcUIJe+v2WRJD77iDvrrHc7ByQXl26d1ebQNk7oIG7/YR3aIrj2s7tKRsQGGYJX7VUDUl1XtDFkjMbdfExm9cqlxH9d2RrQfOW9NhWtIoMJgssZRYq9GiE2WUIOmB7trPATXCcqD77LThjgcGJMc5ACERM6EkROYaiofZTgGK1kCWf/IQbM5ZOiuqG34Pbt+JzhzhOHjHLiG4/ts8/Hzz7QQyZEEggvmW5xZ9u8iLab91nh9jGnGVVsIjbB2GmovNJPszzPq3p00uXxQd3TAfeXSqiA7ExrVyjLztcGGw9D6xXKb5mDca2DWdf3Y+nAy5APTPTqy1dOVOxO6dZeLIypjH4oXl27bMKmLqmkg65x62ulO04EJp5BdqEu5GF1RLlszmYvXtpTeSMX7JIkq7C8J1ojoprhbetGQT1olX3ZFr84BcZ5+2E6Ayrdy3FzapSUtKd8RGasDf5HasKKsSHaAJsg4PO5qJldI/MHYTBNjhw5OeZSLKFqmAzgwYE6rU5ZxgK8XpwQ2to/lelMbUWYaQqpSzjiZO7wFMPxJ+AsodJkN7vlRGKNKJUqiDesNQUNNuXXl3nx0wYaskZY17Oz+LmuSNeHkNg4iinGI7REVX3DjzHBkP1kslH0nfmziHBH9FM9M7AF3NlENEBBjqM6qSsO2KgIZqim7G1FwpNjp+iDUQSPqd3mMl0sSptU1axbz0qgr6TszWmTKz9qXY8W58ma2+apKhezzPe3SjUfn9Nj7bNMfvmtFd55e0azfk1fu0s1FUduGSV1UbUaHdzp62HU9XXeU40gkmkRf0AmSVw5xcG78EhqqJ03T0ihlAuQVhmVrIPIWpCvEWHB8hcPGsPlgPEO4D03jraqkK2aEYodWIomA1YFADa0gZYvGvcLMECI5YLrQKozoGCFmOE1SFBmMJzFPYJeSt6fXNExgzL6OCdJLmmRu3dj80nfZ6SSb4JynZdXCtaBMJNs+U3mI5n65v+oM0AglybCnUwzbH0bSBvHKdfCepPGmjC2CyltGVnsbY6LJxljVvDSTeBgZeiuavV0PzU4z6a/RTMAYU4XkKsDFOrWTyI4zGS6QQHorcY8LshemaPB27tVHO3rIfEJ/+v49Wu2uaNlzwrL9VOhLq22Y1EXVuE7UhB52Y0dX7ezRlKkn1zS3DAQmyxUmJZ5alrmBN7/LdAleyYb5Eo+UgmWzi7UQccuyPebwEAk69wmBHNGk8qkgZUmYHbSmorePzVh1mUfWFFTiD7udSumdSPRid5J6UJYPz1zehRFZiR9hTJaVog3hAZPK9qA8yQYlK987w0q2L70GgkfNdo4LoZm0PGNIdOOZ5/XyZw7m5RpLM8YRG0zVKNIqmLQwgDFNyAFjdwgw999ck51CxhjJ0P5YbWn5eL4P4N1wmhleX7Z21qoae56jvGUg6W/XoHRR12VgRxeCfPBSTDo6drijA0cntL2lSQaX/M63MQ+XcNswqYuozSa7dGhKdP12RwekDgS7+XEapE4IabEbGfQX2QGiKaG2BLLWUEyOqS4IRS6FHsULW7eIKryqcsNangEgIEKNVBsEM6BItEJHW6aZCZW/+JnZuL7hC4ICjT7+FUNfqk3iXQfjlYKF3IcG/gdDTpkb+PjSmFRofjEc0Zrcq8/iemz8LDhn7zw+BugUUxrjyq30HsfbA2DugMoUR4Q+lK/Te3OqjMQx8AyzXXJNK+PJaeHtMK+xJ/FNH9wDIQQoHYM+9ZiJKWBASZvJ98+ZLyK7OYpojjCktTOyUvPacdI2w6Em9+f9IivFmFIHdRHOEujQnUV62tvb83cveGUaZ0c021vSdHmaHnTsAM37nt7OdTxGrHKXatswqQu6ZTimo0Pzng7OieaTmpxVT8iieyOpiVQWEIhrKEM5cM394WQxkhoo21ka2C1eTSeZcsSUu6GxHePrG1N4gXqi8CGYGexOTqwSrfTYXhAwMB6DE4X+oLKuaFGaY0mCYzG/5BAxZj8vvwcdcoXCZ+f1lZo5rzlQv4vEqLip8/EWHsxXIb0SnDvGxu3rB22g9ud/NGNTforr0nrhfAuNCDtTaNZZ6wJ06UzHEg57mJQLOSHAjJFoeLNWiQcB1FHsUg+3ruwV5o7pNtpgo8l6nyk5bwy2Mm4NRwOT0rhFCHJpmu0TJF3Lnq4/skWnlj29/UO7+zpwXGptw6Qu8AbEgD1p73OkoxvYo483+GRFi46Iq1a4JIeYHrHTMHbNUhpHxU+o6/f0ReEif2Z3mUN7EqMwBzWqdiYSf8oSAKmaIUVoASHhRrntKHeg7r3RFJfz+juFiekF5ZgY1yciaXPZe0vLquswYXuWeujF+DKmpqZyQPoyTvaIsoznYpoDAUXWB2hPfGyP/X876mWiOgdVNFqisKbsbnPvmcFJK2iuIMiJgRoN8uP4m+ca2huIajCn0BrHdg1WmrMnqAVDMrAnxqSKczgWKINqgrhZixww3PS97T2t8mywpG0IzcdnWmRiXoifkxIhJjS1rpsIV4ATRuZXob3malW41OpjJdhQNKSEa7J2Kcl+GTbzMu2uqsejTXsfixaCUdXooWs5rIz+2lYYUrwFmu2f147tVHxEF75bTcSjj5f00TcdpSOHVvSn77zd5kSXRdswqQu6mUutYApE97t+m244zEd2XTMRGMqoiCf2xD9uc0GlUv3b4QVItuAsLuk1o3DtxRKwhoBa7EquIRX4LxhKJjSBS8Y30Jp0HBzPw0zKJOuUWw9EAMwj+ETYO/yOllkWt4SnI2A92KA8vom5mBDzarMbjHtEa/T55eBQ41bCqJJWlhS7WE/v19bMuZ0SWme6rsUUlE6agKwpoDqPMUNyPo0kbDhhN4GCx8x1sVyryHwENaGKt11zTxuowKXyN88rKjQqEhnpjrIWzXYx7ImaO8tsc15zq4GfweGx/ijFkTalJgzW2mDi5SkxeGBsXGXYXrmSKDehCo2m1nr6YX3ysfw8Bhrgqpk7w6RccQCZLzr1XDw8+xAdnRFdMZ3Qib6n0wh23heUvfjbhkldwE3prRQjEKJx/ZUzuuZgT93iVLgCOwVF5dOKyWQDMhgQUgCFwTz9tM86Z4Wc5QGDxGWa9CJlwGuM6q2Bu0A4g8k37tWJSbrDhnvbDaEmJ8KalM0bspTD5VxoocN+SDuU5PLsueeIal2DtGwFOXUADUTO7pMZaVHG4KiB9UcsGp5vfliu3Yw4J2SCCI+0ghWm8TVeoN63pfJpUD5f55hCGdXAUQF2v4wIQHgqhDm6Klk5lIFG9JMDpjb4kHESXFl+0caCGWdED8FDGZXan+rcIndhddSAXasw67KWZ8EsHO0Iu5TPOe3licVI9GkddiZ30OFpR8dmc1qsVnT6Mknlt2FSF3RTSnWw43IcSzq8Okk7K97kXKu09w81aXcm4t8NiEwpNFfclbRGVhaBX0RmfyMC8AhRMqJhlVi5oWQHsH6UwnDCl3ryXIL5Hs50kg0JxH2a+hlkKA/twctiZEaCGCnUo5qkgGfTosCg1OWcJK2U2AtGHKacIZ4BWslekZ7lHBqKxJVFIHC5R6MJgZjn+yrhBJMfk9TjatUStMzFWJvPJkIA9/a0NEuuvZQbskrw+dUTzUp1YLAjLZ+vJeSDsS72IsluMN7a8Kxj7nlxLU9FOjZjZIAXm6Fsri7dL902hffCHwjGxftCGAHDoSmvH0PocyWLwmBbL7x07sgDaA4b1GvOSJq1YySTR1XNwlnHXqjlaiUhJJNVR4fnU/rkR+zQn73zFN3x3suDSzXJ/jftQmzHDk7pxiu3aM5aROtp5NBPbHQmISrtWriiwzcqe4bUq/E2GqBbkDf9vvnk7AFZ+crMSe9aiW3GBAdKW4Lv6jWNVxjib7pKtJXID0XbgDFhUzAmAW0Gpd0LwUF5e/t9hPYUyK+ZU76/jwGHc6aKlLEiAl+r91u+X14PaAE61nDRb7WhKqEbYfa1ViaGDPmjNBbQZJoQtJCyFp5Syhe8mcD4vLIWpX+GBIK+Wu00IL00hnwfCzQP+DHtqaLtmkOO2d9i76WinqnvrE2vTc10Fi07MmWN28fZcj+HPkkFKymKSHT82ISObDMUjmsGG/mSahtN6gJvvHnvd90B+ns3bdOB6Yclxf9KslErHMb5JpjYzJKEzZIXghSlgitLxCzJi7Fae+W/2AEBRA8vJPLPoTR7S8Tcw05v5h62gIasOESxi8Q1/XoGWOA0/en5+ixbOe7BjndwfmC7ld7M0gcVGCvgIiWm7BBhDGphbvY2GkBXHMfDxzwbUtZ0MtUs7v46V9EybRFyNWHH9FJ/TlaM+aLbdTQQ8B+8Dtt1BNvar6kDg2qUoginOYju4QQ60pVXXadNONtAbC4s6YhamNR/t5xZ1WtOHx6KZOJkyXSS7HWq1WOmzkbSf0gwW+FYmb/AnuE1qK4bfBuD1pB7Mmdfz1DimoeD9R9rgxx9bq+MsWdMVR6zFLO0PdZziIDF7nU9bc17esAhojfuEG1TT6exV+nSbRsmdQE3YSScDbk7TYdpIb9r6fCQ9ZDBO0vMASG0knIvXneR+mYlfXF10sVCvftybJRI2p4hPNmV7IUHjIF3TMaVk9g27yHsH7BhF+gkZw0yBsloDCf+VAY1TO6nPEFffHgjIr2Q9xNIkxNBr9hbVrvpHwyAbRkWs5Oz2+hc4WxQe/IEHmeiHN3wthnSbE9VRpueMVhrzW5qZrA4DxAtNAKN4+qatD64j3rnsSA0tJvY9QLR6uLCAomURXpenO82q1RwE44+zTLU8/zS0Kx0bau+MYRiwyba2j/1oei+hxY4gE/N4xF7OASUwF/bmDWVQRBbmI6vgVHxHAMpgLNLOdMg0aXkm5ybZy7PfrY8Qce2e7ru2IzedcdS02tdwm0D913ATTSgbkXb3R5td7sBz/nGTqUkRl4InGN/OaTAqWmQpkftQnhRm2JyTQAusoYPJOMztCE4E668FUpJYxI3eGVQxauvuV8LQeW7lHUwhpZLygcqZIR0uIDpXF09eGqtW6eMeGUiBM+xj7zV0eU9kFbD4a271eMg4DbmpveK/ZHvH9cmTaF1Ymn2pmtmQ6y1tHZP5LikyEvYOjasmSeeXXo4zliae6qtU+chP5MuWVZ6kDFiaL/a79w6wASLWzhGdvDoLFcmpLuu36Uj2z1de3hK08QUL9W20aQu4DabEF2zTXRk3tP2tKee3VJZmhI4KUnyzcsOyZmN4kuDR6TAX6nBpC+fFsxbpPQ+kNCRwUF/cjVYvCRu2DVChhpTevWahswC9gfsYGFriSZMyirmig8Iw5I2dpnTcjlIRyR5/txlWOcq18JQnRiUnlMhqbZljSYIYcMMkdlAPANNw4VEnThAtkMVO0R2ymA7San3ZMHGXsV3WGYFY/J4qaS+5iwJ7CCg/SgwpIqhZUuQRTPGgntwHFE/NtdU2G+wXpVRteuq947ktVhbtf0FM/S4rQKJ4Vk0QegOC0eKK2Bn49k59L5TofhrQDLLhOFzGZkn5jiWcmnsvhKnOPZiGMYbiXPz8WgT87TkpM16oKOHXLdFVx/aord9eEmnF2KFpku1bZjUhdo6ztU1oZuvm9PRQ8wR2GpgL2BxfpB/ixipkEz7ooblAn/h60hLExmuW/dxgWmsNnySRUuEfxQ7NDinEUHLu5f+cKTFNCaB98wWhXxCgB3XaVRlpmJLGybZba+DbahAjfZPdwYGVY6hnlV+Fva7rllQ9jGmKKeixhZy9zVMOGuZjSWvlhxpvM9gE1OINlbKUVYmuAhyLfNqDEoj9qUyh+aLgcZrk3A7X9pXPk7EeTkk1t4j4ba+3NXTL2ao/5ZK1Onn4DEAyttHcImJpJ1esEcwsRijXzYiYORxBqzYN0HtfTnfdCnanvV0eGdFW6xliW360m0bJnWBNWzE1WRORw5t0T94+DE6sLqD+uUJ2clsRBbZ1152dzVOUih6kqwNllQWGcyF2dlNOHMF3GwRMBiEIJoE/1oWcORE6zp23aVyMuoCO4MySRH/towVUjWmAFdz1to63pkz61QgP0ia4wA8bG9yujE6GatzG0CbiFWKcaeUbU7Q2WbDms0ovUpMPOAgu7n9nglVC5NlKAvHxGHD5s95Az2GqyH4bH/KNke1lYW2tmf2FExdHwGk/mSDcfdv8wTVbFAmvGTC2Gb9M0LcLskYs0ieia5NQuvreU8lKNYYhC6han6A5DB92evicIGF4+8QhJHWKTGE0MxSVhNwjCzApDkGEoFvwpak75wuruXx8B50bS1TRvUKaZ53Ypd+Wth2wbz09z6SgLiDDttrl7S11dP2RBkV+wHtg2Nc1G3DpC7QNl8taGu1ojnHN9GK+F9OsaNYuXklNbFDDOvIy7hUrUtguFyqW6Ls1QFAGKFh3rLp1Z811ftRap6xe6XNyTaQ1LEOnlkN9AOtRIlY1OzBOQWis6q5CvEp4Z6w44TlD8JLjJddrtWJuCciMzhldnxSVNrFRSgtntPmtApnSPuNVJ2N2y09cC3K7hiKTkjMDJflZKpJQ4LtbTYzZmEalRjFbX7BOyBY6PNeSuVX7VSS1YLYOT83rdcdW1TSwbhQvJah4TyVsalm+xC0mArTjRPKqpDF/kAGFO+8vXe6hwTklrLHti+K3SrikByOTYPvR8Qmh+ryGMq4I5FtNuOHp2FsDNnj9j0cbqZNslvEfSHzS/QT4RKy/5Jm1stw8dz51wVtLTt60LVzYVZv/uClq0ttHCcu0LYlEtKCpsuTsiEHVFE2MF4cNa66YwMYVMk7pq14KzUdtulVyuvqKYgCP8oxJbXzxMyyR1++tcdohQblHzhLJNgOuJXbM4xJiwYFxwoE/ZbKu3ZduXcz89bNfuR5eFWlMQcVI3T7EWjXbJp1SIpwCVxWe9owi3jyaXcnGowQf5drBhpshnENEk0SfJzbOk+MTk3vDCeDQeBrYid5rum6/BP3reNrPrHiI+OoTNQDaNeW+BjH9bLgl7XPVn1s7UAQfKrTSJrXSOFEX7OkXbu7hhybGNOqWhfHS3Jey+uPTumawymlyiXYNprUBdj4lbj+aqLrjipNYg1qxqrFlJPFqgTtht8UrLrkSn2SONbsG/2C+pVRu5ZA8sOfWal0k4LlhTKPpkwAwzsN0l99EyNYdOjSCw8sluLn8yDU8HZzwjwNLQialO7OcAf2sRuyJhqH/ZK9AKXy8ITrQ41kYJX8cXYd+K1DgZx4VCsZI2uuLAlwt6T1rX12NsGWWA80zBQvlZ+JwLAzy85gwjE/f691lbRGTTrLIQQzTSJrUnwW+jODE08wiZfrpYyGj4+feUWKy4SgQbtEP7IIGbpsm6Nr/uwpOTDgnJoHsE+aBmdL8eGwIJbDHOw87VP3SnZsgCYFzVPv29FSUAUUCsVzgmAVtqCc7QIaOfaDpy5SuMHHh6eqCMB4tHQdV7cWGic3eGZGPqFuNhWa8Mj7HabZzoJe83aOmLo020XNpAYv+CXQZL93Hd14bIduOMJQwV0akDtZqYHbPi6TpRgZlLB2uImblaOGNxvO07x/LrpFFgO8V5YvcChJRxCsElW23URA4rhwWiX/bPfK2hMcJTh+0aHMwlgtnsQIiMMArcbRQlapOKIT8LxExR0daEtgdT5cQHWZ94GRZ9c92FmkdHwQnsGqRB1zL2vhzMvuAQE6ayW+1rlXN+LUm405MLhfhx/TGVatOJLjrmt5TX3vpdPFhoS/sWZA65Kdxe1OINQGbVkvZUx4tiXJSONNuFaI8AjrGJdD1IPkzBHLlPkyAonBsNa57TWZFp3ZoS/8lYHLwAzrOeQocgo3MSx3e3qKdqYr2pl2ki1dvXnznS/+dlEzqUupxXZVt7aHXntEmNRsddpKU+wlpwF2fgiARl6mnr18zFXVNrYEuKIOtRFbzQihWfs04SYK/9nWtswOwjgCaNefFhgqAYUO94WHkwuUxbaQMgTYAHJ+PZZqVZsSlVGZ1CwYVerGIUYN2FVHDnUxtxMyI812IS1oKj+lAgeU0GwTk8uyOpFedl4PODFkAgoKJhcjYZ/9Y54I+BPEtzhNZIolGdhZ0+GMIWoc16VUwtM6THPZDcCPsJ2JaSr3i2wWti655EgGalErDGMR+6IxqOrcUWtr5eWeupboE9bSE0kLR99+rR1XnhAuKL4slkwRghJrMGpnrZBh1kiH8Hbs/5yVAntJS8/oftbrjRE0GTHUwUPteq4JOyQ3DveKVp40aGFUpk6yJgeEQZckVc0Gk5NSJX2areVRFEPlkvrJkqa0R1uSIX1Kd+0t6TRr4HRptQ2TusDanHra6Za0tbyN5iglILWeWoN7jXCHQVbegVkQ7tZu5PFBUpECsETlK+XjZcuVYDh0JQQwSiegb4U4mJQsnLBJjFayF+WAYGQ1dyeI7JXWyIPFduHSL2CWIKSwgwl0meKTgFJmbUqJyBrmkRiv+RokpqPMCpkn/Ll4pnWNR8pG3yC+eBYhjIvTi8UhsSCgpUTYUSBi1dox69o3tpVhBMFaW1msaZuKyObKyU1T/bCqVAFyq9nStVihrlS+L7I4eD2Z0bGEVpvL0ytMF/ab7BEKpzv1ekuefAnzLHY/Po/3SKpkrc8MHq6oqqx72VbHGU5+2MjTMWZbAxPM41HmF8fi3Ur72o+Z8EBrniPqs3VExw5M6BE3btNbPrBLf3cHC7OXVjvnjhPf+Z3fOTB2PuxhD/PvT506Rc997nPp6quvpsOHD9MznvEMeu9733uuh3HRtvmU6NCcPfl2adLvNoby9UZcHNKXNieWG4dnWqNvC5Xl+HwlPqZhJcO8XljHFc+92kParBHrjpmg2Q495pgoPJLOCkEoEOHIlWtilMaM3MPTTBAYLDaYX0qqm/tqEsq2YwhniJSfsHA1yzfYME4fQJL+oTEVCLPcpwBKpn2N7QGDZVNJlLKGa5bX01alrBWxrm2dr3zduFND8WrLQ3CGMHQGDEFjzcthJxdBxrW0dO+yHpEyqummjHVwM3ccivcCAsB+QkP0GXPqB/OpcZI7s47uc2xKB7askOQlBPWdN03qkY98JP3mb/5m3IT9aq09//nPp1/91V+ln//5n6djx47R8573PPqCL/gCes1rXkOXc8O2u+7oDj3gqh06sHM7dRMVY6Eh5DIbeAkEAums7ABLgxbIC+lQCxFWSqMGY4tFwv1hXIdYnMV+g9SEWZmrenlJkxGYJU45j50gkDliphohtKjpyH2lOaNJEN7YWqVEqLh2Jkk57Vi+NEnm6wJk2+wVcQ/TKqyaY07u6tlorGBdsWnle6S+x2gnnu3W1opmc6L5FtHJu4h2d7msxXK0fAj6coZspTm6aXUWcWEAcT2m4TnEmw34VmjRkdNJ1aR8vINffERJu/K8+MXLc82FpsGwxmO5IOF6LXkWeVwRuhAGoWHT0hs1gDePQVzCM6xn+Q/RHTwUJ5zqpU7Lcgb2Usc34MeqAe3X1qVLarNNuFMG9lwfyaKhHUqSE4NdZ6spXTGf0Cffl8vK93TLB+mSa+eFSTFTOn78+OD4bbfdRj/1Uz9Fr3jFK+izPuuz5NhLX/pSevjDH05/9Ed/RJ/4iZ9Il3eb0uHtGR0/MqUtttW4RIrsyRVOwMsTUpUGO3oBVhjji1G4vqiwIRR4T692uGHKThuA1RJ0Yqc53COQBlzg23x7gHAS1Fd+thofPLj20fULXTAtwG0ikGDzkk0q0QWTyiYm/FSgaJBlNC4sA2nNYZZaaqSgYzCX1I3ZytRNfUKzmRLL03Yeklb4OFNfKnQgHg5cqboNhvYRORPrd6GdOFNP5erzPDFe14BGtc9xLqJaWIorygwsVeAEH3KdQDxOA64b9GvIgNuNMiyb95XN32/tGfwjX54cT5WVFaLDnwoH8kAc+sPz9D1kDMyT88ZxZ4m+Zum987GCuWOzkPZpMW7Sjy+vFm5kAWU+W0rqtO2uJy7ZNS4yXZztvMRJveUtb6Ebb7yRHvjAB9KXfdmX0Tve8Q45/trXvpb29vboiU98op/LUOD97nc/+sM//MO1/Z0+fZpuv/328uHWQiwXZ0NdIJ7FjI7tTOm+VzCTYvajLEgJhkqWoi3JdUpNlAfpKigTiIJLmUCnS5LtpuYLy3CbZHhwzztlOjnwtu0TMKB4IlqGiHyNzNSkc0B9pSR8kuJbT7UKO6ZoWx+rwU2+osmonfsoG8UIrJVBYBuFZPMwx6lJyu4RGgmeyDicCOKDc3DPAWxmbZU+e6w5LfikqRQa3N7i5Lrqa89ODBX6Ci7Hmqs7Wcg6Rn5HDJNzvomWAPd6YxIyfWSxz/zXyrNzREMOBs97R5+32m1yfJduPyWesGN6v5g1l5oxSJH3lmhKllnBi2fa/pXHyhosPqIS64efxqSbmjekzS8x/rZp2Q/LkWgwLStfrIVrILy6lkpWeXzglYqUXVkodAeQ4HDxmMGgfOdqBphU5kbnp0xHvW1jpwMiXUnds2ykSzsMOR1FG1vS9qSng+LwdGm1cz6fxz3ucfSyl72MXvWqV9GP//iP09ve9jb6tE/7NLrjjjvoPe95D21tbdEVV1xRrrn++uvlu3XtxS9+sUCD+Nx00010qbUJrWibdulgdxcd7u6kmaQvWgN3IfZI7DIaS5Kla5dJzSgbcVAaa8MQj7yU8GTlY4XYK/XOhB3SfwmWBRPqWD0xtzmnLMlGYZQnE2u3xSQvvjJHi3E5G/y+Xhf3UEZZrx/YS4aLG1oObE1r7CnFCcMvHKpP2S5VbCkO8RDt7RGdvqunO29f0t6eGunZ4YSL3HHcG3ufKd9p55MzirTQWrq/QWc1hmgcejvTuuq66ebRIPI0FksCXJ9d2CnPpmU7TGby4/YZRW7m81nUhXIHjFFxwvsVYQplYKw6AHfB7wvDpsMsGmD08O6r71pAiON3zcHONZ4wL+zQENeLIDKM+dMqAbzm7P25Rzde0dEjb5xL7bhLqZ1zuO8pT3mK//7oRz9amNbNN99MP/dzP0cHDhz4iPp8wQteQN/4jd/of7MmdakxKt5WO7MVzcWt1HWBwYZtiYjDgY4h1JcgJNlUqM9hk+StB+M7rkniNXD7AstlDYEzqY9pWA2RyZpavh6eudkMpnOI7jLhyfOK1Rtm14AtKjqp9x50k09tBpPQqfq905UgOusyGdQbVPiMaZDkFdldia2QbXp4SpGnfHy47bqXk7wwYbuPhnMo2lSCpNbl5tMv2v0WY8hQV4u9eQxSC6X6YPJY89rW+Qbzy8w6zbHgqpn51Q2gsB7ikHC85fZxeMw9wT3zEqTX3hcdRQjJekE0u+R3aTgBq8fScSZNruB9/NiMpu9ZqtZ5ibTz7oLOWtNDH/pQuuWWW+izP/uzaXd3l2699daiTbF335gNC217e1s+l3Kbz4iuu5ro0I7GwJw2GHAL4N6AORl8kfB0SH6IWcF1A8maJTPGsTmDhdgvNO5KbbVBIBzaMHtPvneB8UYEQfaV0Tx8ZicrY0lu54lg4g5i3zZKCdt0vl++V3iHrXvZsxS+fv2rVpRsE+mibChvvfTCs4zz7a0ZSyKijkTm6/bsI3kY2XGi05IobLC3isKKR473i/mqzaSlkmDkGTaqUJyupyWsTYwmCwdZw8kp90Jr14uiECNsqxbjM7KeVRiJkeOZzDmjhlyrYQ1l7uxSvlxK3BGaa4hwfmmKgkbOwNoXrkMGi1HXcmcYnWTw0GcY58EJJBBAQJ/1/QGkDmeoVjDTAofsCKPvJjvFZIFTwimMozLmsTeZ043XHKFjh3fo1W89TSf3Go+Xi7idd/jyzjvvpLe+9a10ww030GMf+1iaz+f0W7/1W/79m9/8ZrFZfdInfRJdnk0z7W3N5vTAKw/TFQdmtJSyHGr/cNikecEMwzF/o4AlslutSOGo+ZRcaeXlsE2vSS2tJpSRTr2OCaXal7I78pjbeG6exXw6orXoDPxHgb/AFNRkgUQZjh5KOqCE/YdNSm0G4800Ujh2gONmmKZlZNnEICeqOubCfc4Igfhdsw2sWKMEg0oMLymfbpNQW4tei6rzWILFnnr3MfykPD6Ehdw3xuAKrg8+DPW+ywZKwRBOw7NVO1Xy1Mi7tXnuRRsbeQIlv+SIVlRXKF0Hnx8jxNwNJ2pVPpLSdjFTFUuevS9mc+Kfws9tkZDPEo4SyrgaF39/xrqiaqOCZ50xPVeA1Mu2ZXwSDwbmm95JvMfQoLKL/ZgANSjX0lsNObdZ1f01W/U073dpq7uL5ihqmgKkL+Z2zjWpb/qmb6KnPe1pAvG9+93vpu/4ju+QHF1f8iVfIvakZz3rWQLdXXXVVXT06FH6uq/7OmFQl7dn31SY1EOvPkIHpnfSsjtNc85OLYZhDo7EZqsqS5WXwwaA2A5ldDkHn1woDEq9dfsaUGuH3LHB8Pr2Bar9ZXtYL8xJmJQb7rO0HHYqecdybEouR5BdoVtgzzQJJ9pO8WNMeOlxjjOoDJnk4eRjKZG5M6h0rtolEq81TzAQpgapqvdqPLyQpTzRG9WI97SP+QFmsNAG9kkWnC5WWppy4BUJPq1mk6XBmYfMqck04c8bXnk256IxmeMAAlGLdhewVdv4XBTijPNjH+LCzhACZNhQhqFO4eK+bsG8uv7xQPl7Z+I+DxXJkIFDyp+ktQyHh3qh3DlrwyOqebi/q2tq5/fD2lR4M+5VtVr00UkKFttfEnVvz4EFVHHPV2Y8XSxp1d1Fs/60MCm2YbIfjuyxi5xPnXMm9bd/+7fCkD74wQ/StddeS5/6qZ8q7uX8O7cf/MEfFKmCg3jZa+/JT34y/diP/Rhdzo1dvGfdHk1O30q0tSTOb7y7WtJkuqJuPvSS4xawDV7YHBQJlpak2FIdFMwpvIgyRC5CPrtEs+eV3GxM1k1jMaNJOF/UrBJO3NLb4nao5Gfh90nMRDzbGkjNxzoIWK2/S02m9gVtzAUZZpTOoJmYOqUEbKxCa/15NnRAtC2fhNMcvW0rTVt8k+W53dcWlV2d922NZhTCxTjB5eaZQFLCQoyZhZ3lIlU8HtkncF4YBg5XGBqaBsNbOqbej4mHW1IbdJtGxos2d18Zf2Iwycvdx1DHZWOSqYY2tG7z7+fUo5pOVNIdt+fZGEbg4bBZrfz2EVMV90UmC9Yk58KtlnSfoxqG8Lcn6ZJoXX9WVt4Lq7HjBGtlpjjTxdx48bcnHV1/sKN//LAJbc1hNF+IhnNgO9y589sCl28kj+0kO6uDAb5xNRCSP5q9nD/sLabZxqPstmhNGJD94MDSzBzXrfSKc87ZdcLYoE01kAePRWomIedOwtezJoV0L9I30tR0nO2b+7WxgklJxvMMXUW/YscxpwQhdAYnSub3BdFy1wo5ZqEZk8e5q4gXKmjjPkUMx94ohwgLhwwXdPTthQ6J6NCBiYx793RPC2YGZmYYOojU7AzjxHPMoWMIvWWNTs5ohCPch/ck75/FnrrAt2NxnlKyqDOTDm0/jw21sVQb6ivjkuT+GJlKEcG0FLJDQlgdI+5hM3IhQ/9dMr4gdrvQvqBG8zVszsnzhwOOPqNYR84kWJ9DXqO01muYlOadVCal9izs41wHa1W0/YAOAxPnM+eMusw6KX74i2+a0Ntv6+kvP7AMZ9sLsAEf4vhZRtXWtU3uvnutxUu6teppp+9pe4cTv4a3GIQxeUGMUHom8LW9he3Dq/bKpcrMMgMYSNbpu6wVFaKMXIHi0mw0ABh8yiqRG8O96vVkUqERhDCt9eLF7hpQ0ui40ghfJAwVJSVSDFCZdPIWBFw0wPp9vCHegEkV25hjhLVcw6Cv/RwyEtManJuZQmKSisjp2Jg5lXutERSCyeyr7zbQbTxsEPN188BzwfoAUuTnysyz1fPGiLW4v/uMR8YJqNI6iDx9MVr8g0KDSO0EhaUyPnhGquMO4sHwHg1eIlPrUQ7FZ+RqfBmq4RNmC8bGS10F4hhMGdqhrkdILOJYkXMhJg1J2shyZfd+bxbY+7Cbd6h734re9IFd87a5QLnUWbYNk/oI2ij0cjf7kFdMtJ8p3XTdjO5zhGi72xNjp1bMtYzmSxiIYZsIGC9sQoqpB15vo0y1bRjPFxguu6EniE9iRsDErMFWVUpKpNlH79FfC7kp3GJMzIl2ZJKWyHwjDClXq68zaO/Uk68Gj8JalPlkazJsPpmOIhUSOzk0DEOJA4QDcBVoG+PPHLSmQZLKJDDuVktx6NE8Nfl3sV7YQdVQdD+ErW4/7CCIe9Yo47lkeDe0Tx/qSChAZuAg3nD+EOHCGWvSmI0BQEsB8Q27i44B3nTBOIJZ1LHDi860qES9jaeXjYjy7QDsxHo70Qz+IfA1DykxlMwwwkaVbYd4Wsrs4MzhE8h2zfy+2Hkt1OnPBu9uWkNK/fpzNGOmsT+9UmKltF23Q/S+LcCNFzeD4rZhUh9pwyb7iPZATqMwo/tef5Dud5RhuD3JTL7kl0zUCS0NPmHIyTybTLYfQD4+Fhh5BP2Lt1cJS67bY9NAUK5BaNPMaMDkRiCfCtaY9pZcyp1JgTiJZKiZyYXoCowWWcr5vXP7C9422Gykkn2v3yeCpJJyw3TTM3HJOTMj05TUtXt4Dc6xyt9KAPZ5xoDwiiLTam9JOi+MKnO2xNxB27KjoJv1Uv/QOvy6BHnhHrA3Vk0LDCo6wlqsgyxz1XZxh0bZFqw7Sp8Um4meEy3uXzQF/yoeQjC2kG5EcGg38KBVyUPWBNk1AEUm6K5ch3i3rDXhvnZbaJH6DlQt0mMPwWibYbYhGLgDvHd9RdKz7kcVT4NXomPqLa07d3XtNtEVc4bRlx+hCH1htQ2TuhcatvaU7UOzBV1/4CRdd4BosmRRWZnMytSKfmkS9RKJL9mOAgw/h3mCXhlePaLxuPbR5NQTO1AqHBgvbNWOQnbTmlVMeMXObX3kc3OmdEi1nOrGe5Ihss1lFRoW1gf3Te+5O1i0zeJNwEhHM3ujmCA0n5GM1/5s1hjhsX4D4t3SuSH6VWCytms/30uWWEqiwSDMaDiSDbfNEVcyhXNf5clBe+Hwz5QoNzF7R7g4dksijGOdQuZYRTxYgcKqW3ZcVBcPzDgLCvp8MpMFM83cM0FpOGQ2HVT6laTLHsSl/ai7eCp+4cw9NE7/mQShzCTy7xHflF6UkZYFCfQfLvCpfLwLkpG7EJujt7GoLQrTQiq14SaerE7QgU41qtt2iU6PJFC+mNqGSX2k7aPVovH+si1qsqBtKSgHkVZjPwAtyIuWKprq33jh8g5N+eKSvQEgRpbYfQwpE8Q67y8dA4oXIu9Z9ara1zjbxkMZkxpNNxQoyrCNHMu55Zy4NsxEmWodC5bDLwRRz0Mo2FeTvSJd59/ncaW/99PE/PsmDktd30PV8vQ53hlsk+OLBTg1nt1w6AqV1erBTojRJeyOOTsIbFuZR2V+lO+XbSx+fbBMPSXFoTWaK6DA4bHchqmh0B8zJ6RHLmEcDTOSMTSa+tqHle1PNqnyFjpUOB6ltI6nOYtKC9qv539rhqfv6daE6OoDRKdWEzrFFX/8Dbj4tKoNkzoH7e4/dnsdpdzzkmYrohkTAqmDoS8za1n81izxQrNEzJtNPNom1LN3WtaQUkVdePJpXwoTppqkrqEw5CVwmcFq3JBsXd/X+EKqw6J2knw/Le5qIHASBIwiikInkzHaMqWqU5KeoBV+GyAK9BWVZfPKpWqzyCOIJW2hudZRQcxMRnSlG9fOkGFgFXlFQaxaKTQTscahYNASZCenw3062zkcizI4c9QO1ourd1ZMYF/Ub9X2k5UsDzRO/aACL6A/eV66S5yg+qNp5lEYFVLuZAaeHpwvjzEozQieNOSRNyYQMoPM0s0HTAn2PctkgUrN6AlMTxhUgWK7cYHC1kCdQYgWS65YbePPqiYQAWh4YI7FsKfrpM64Oo6Fl98I3Dzg12Cc/r7hwaTRceN8gigiWtYwvWsCw/ZER3Y6+ns3TOjku6Z02y6fe5ou1rZhUh9B687J9VyWg+iqA52k2NetGDKfE27Lal7e05yPzcpZ4OVmuERQDzM4i/u6nG41pNqceoUpNYqWidX4iYzUDkXkANw0NiW8iMA3JgVtAaXcca8kuWeJfAxC9J84pag661u+v1+fbEnKqMI+5vAYNECfW+03iP+aUewXX9bYf/x3u7HSqpCmi9LmQajaD4QCJ3dMbGdWgl5ijBIR8/Ea4TNHlLLAOW4uq5y+d2JWgOe0llN2WKhMVi9fA4kl25MWe0Z9krxJkkDgCx7B0cWzL2lH0cdIvFYLDbsG3fTl+y9lhC8b1Rc4HRm6nWugL0JB6loUQSzt6y4x1+wAo//HvSXW15/PhA5tz+nm6w7Qn39wl+i2i7ug/IZJ3WttQoe3O7rhWEdbM+hEQUnBQJwA+dcSWx8vHbqzAmmZ6uOlAsGBfcYZUnoznFklTqXdGWZu0fPhlYdUTNF3K1mLFLkIo7tI/9BOUm3FHIuTCX9UUE3jzPc7G4EhjQnnOzPMGgDGbVJ6rZCbxpXQImcehTjV246YY8KuY18UjQ/MGs4CeU0zSUxaWvJNcY0STMPDBAqDqmMS0pnWU7RlLMBImEK1UYanHrSXWJ+R6r7rmg0MAeYcepfXT383+2xeiJEWIzZi3nr0JY3Wx5quHIszWycQZcY3TF6rfdaA4+HgB3YmvxcE1vQuy5n6AoXNLxgjgoB3tqZ04/ZBOrDFtGVvwFIvprZhUvdCU71pJiWfP+WBUzoy5dBwjaFg4q+BqJzuRZPA4oWXqqvcJGGrbnaWmFuPoeWy11xm4mjBBnKOnwgC37qhj2lROtAEtVgdIk7VxC/TXvJ40qBEHQM7UogzRXa9toDYCWJl4B8CF3Xx7EtwVsrEsI6h1r+0Mi20j8wgShmehqkAhlQURgm6CAY+33KLwqy8hpMXe4p7nlUbpXkQLkZyro2cj1shyBcQHi/ukpMIN4GzA6eSJLAUziWMwAihXT+bTTwvnQotyEkX5WD0Z6yDFnGMBdlP5xUHatMw+IrJVO+nmlpoMGCGewvlVvwfgn7b+bWpxNbnLcjehEP7Vm5wysgprgb3HaSFSlJnhUSGQ1m7f/oiwLXf4SHi3hPao226Vcr/bNGSdtdaLy/8tmFS90KzV4G2p0SH5ystpDqABnTj9VNU5wRMFlCgVsBVjx9OpFngsqqYKWNKHnyZYZVjuLzRqFCUThlmdsFt3jVjXpoN2zpColj1klVtMEl/YCwu2bqEGlVR8/iy9uiCp3kD5rG4XWxkmLVVR4B1z0xEgwy1FQ13KLEPaFy3XjuLUh/lhhlpSz9DFXBG6bFWlk9vGQvoDLrRJqGtxtiNyPlipTyJmG8czv8UbTDbGNN00/zWLHSC1fzQiNaGv8CmcKS639vaOGPYn1llQS/WuDqv5PP2I/flG9vARXseZWg1Am6cofbNr/Ekk9+ijUGx3q3JinYmPe1yxVHc8Dy0sV7PFUPcMKl7ofHD2+7YWWKPJpyfB1h+gkokdx5nwZ5yDj+1K3E5D970Ep9im3vL3NL5fJfYpJOO+j1VCzjNklxrzdMKIWt5yhLh0ft4wd2ZQqnQSrQipmisUYWxp8JjPAF8xRVEdbxzBCmuEDyM88PoD5qPCrkqVtdsFtDQuO5Wwelt5EbOLFdepB7y9U8MWhShHOtUUvw0a2EejQ6hZc7avP9n0qhaWs0agqRvkvxsQ4jTA52NOLFOu2LvGREKvGyslK3gI9gPFW4MJouJlQq+SLuUxokqw+H4YkJFA5l5fznY1zzNhpWX0hrYeardN5nbff4GcnnRRvNiheAQGKnjFOweL9CjlVaOXHjDBhhcxxKBsrLGzgjtuUBz7BnpmI4w1SzpYQ21dIdqyJVhK5PK9X5zjsdhULY+p0lCL8Co4A8MbyBVkw/PiK7cJrpzb6IhA+eJSZ3PtmFS90LTOlGnaSYEXNMFtXg4pwHy/W5EIUu/QVt0Y6pXn75aDPVwn0LIp6GleIlvY1KZiAHqGtvDRQGw0hIlkDO/cHae2w4ko4R5fRkhmPIArKQ5rhXFMRFL+Z37mLYjiQFmzQqZuz0DRFaf7APjshAtJjZLy4jgdhtMMuaEW2rfiIvBaIxhO2E4Mw1wvtacF/aM9JGaQnqVM/FGU8PcOTu8MlvrJ3mSwabhGbpRsZbj8Uy7LUy18cALAaoSYE1JZGwoq3prXK/BSGylYn2TV6kM2zwt0eEwk3tAV1lry4IeH+csKxJv6NeCKTTQYHaIkDpReT+3amGqMuya40huvvKckj2qgV4H9i9HPoa6UVeeU1XLcvwV6tqwNnX8qi26vSd697v21tY5O6etvqLnpG2Y1L3QePtxbNS8m1LXax1ehQQAKWRogVviACBgXC8nGUuCqDGTgsQWhc/wDokGY1KYk4sGFsMtYR+IXWflDYwYtnWcCpzkQl0EH2WsPkNQpZIpmBPiqOodyv6HziSXJAeE8kn3CeaSnoSdtI655MDfGugLyTypg/s0oR2JUEKzwbNrnQxg08G6tlBnmy1BczwmYl7uXQkh4CxZN3iDRld+Uuv0MaDDWftPDMN5e0XK4g88q5F18ntFBHJlUsY0hu9Iy6R0AgFjGiyWLvBzC2XVZM5w+lElNT/jlH9vpK5gTkkVS5r2TcOTokSKecuG+ljevS45QXkMVrInt2uhf/d01dEZ3dhNafp3DKtcfFoUtw2TuhfaznxCj7hhTjcendJ8NaG9CUM0/dBAq9hJ8czCRkUVXc4cIFIjBxwZbKhxFAaZOQSTCCDKaLjWgeTS2bgbruMibRvT6Ffs3AH3ciOklqUlO2HkYnxtPliP0s8ECATJ3KaladhY1T5wumiEkdm9hd28W8G+dPyYC3Na1u5a4tsS4Uyb2gzmQFra4oCtXWrQnzgbmO4s64c6YKrO+ZrKDRohwG/QQkpD8RVaU9Gg0kA0zo2vWZjmypAemGamqNGv12vKTKLN8G2JjQVyg6NPWZw0RuNUyJEnxxIT9UoXkq0fjAbMJh5Qhl2h1QREGFnVxyBYZTjqaBKZINIzbBRIbignImuY53Y2ze2vdYx8fCIIQ91Lkwk7Tu3DXOylq4zR7NTTFd18dUdHDk/pf76hp7tabfgiaRsmdY81UM2ppG+59tgWHT7AwaMp/be1AVMZ21pZuMvvvlXllKDahLWrdSETdLMzQMNxjSbhNokxIP+cQl7plHUEGdkvzMECJgHPXJ2WpJ2QMzvXxsoKhsSeJE/jlaPaVJlH5omelSA9JYdwGg0zMcj8THVeYXVZR06UtwRRdRrbMCMcK1sCMNWAkdZsG2UdsTgDxgt7DnLMJUKf12AfWlbuZTkZ4UmXE/sgMWyGDj1vbxpnGSIEnqQ3e9LfNC6GMx1Cy2O3RQxb2PDJtFDb4JmVNW20/BZugDbumk9oRSl8vq7t4HY5e0iz1n1AhWVv1hlbOKX97ol7e5pN2XmioxkLr2KfzdrjeWjnQVnbMKl7uK26OU235nT/4wfpUHeSVqsT1HX8GKamPTGTgYvvEPqJZpKYncNR7SjFwfWiGFfnmk5REYALPHH/UpxHNaEU4xfCaPNamZa1XExotUhSOUOGRjkd2hPDmMXNCJSpuLgel9kbo2J7VGWGQk6kVL1F1OcwnUTUMsSoEi1nCdA0Uj5cSyDLda6cEZsHBRiy52d3uK+qSc64ky2oQlh9deNuCKVnPffij0E4cE7H9kJkRXCNKJi6r4FdgKzoePYgRpz/UJ9BFnRQiCvJR8Ubw1c0DnlQcPXe1G2mjhm5AvGkAQ/ZQUBcAGwx2K4qWneBTFdSsCWcHZK2jL0Axm9DK7YU/96MVwlyC4++KsG12lVucO5A1hFpXo1yVDLx55Hdz/URJ2aUx10xSb0FOA0zj1Q7qpj9LOykk2cdgdPcBcfBqRAAj6ncvTH1JWe0OU39cldKAZ28SPNObJjUPdjk3ZKs5kTdcpdoogyDmYe85GBQI+n8x1p+8cTonN21hdirfsHEbSEAu3lRubRuAZglqWeS1Eqe2pqeRhJsslyWHCgAySiNsReYNS+4OUfOT+0PrtOWod3RxuSxh1IemUc75GlZ2ovTRxojx4tJscNFojemEfJ3ONddr5MSUtf5LJ5to8DAruF0eI0dpj7jeO4C4cKT0TQIOReJhy2tFBKihuYRrMeL6iW4y5/RiG2mbVmCB8QnjMc4sGqqYUtZiTsmpymysaUsHrE2Nv7M3hrHA71tTazKTfcpvHMQlxVakWtG6VlkrWngoo518POh5ZsbP1ZSBosch3q+8n8ETOes5pgDw3f6oiH0vryvAwPScP11Tr2tPTPRZGMGC24qH2f0hYc371bEVTsO7xDdxQU0986PBnU+QcQNk7qH24TlSHZ66BcW25QJtMJxzmjWPPmx4w6t+SaNkvLcpwZGmn0JwbSpvhDaAM1IBKYl5m0Dg/Lf3Z40Ykwuiou6sGeoq4yhmWm7NpkIRr/qqq8Z5GONHL4T9WUIdbVjjPkMv5M+1zC2DMP5+NagIQ77QZNtPC+dLkMYMI2ylsHwkTVG9rF5jWQqX9NibZXout2Gj7lLODy9W9tR3j8N9AXC72uQmAiYmI/dWHBwfBHs8tg+qhYcUxpsrj3cUTEClRIazDipqoVZ5A0acywtzX/M9oVrun2kVWTCGLyXbiPuhchzdps794huY/+Ji6xtmNQ92HgPsWSz0xHtdAuaWTwDHB0WHEVftIS4UCSz9OJOUrltSYMDB4VVJzCSS9mpiUa1Z6XdU1G60hL0BM0MZdi1D5Ps4N3Xvj92aFqsCiBMUcgvH852mUyM8+/y6wjRzQZuMCmGEr0kB1IywWPQmLk6LoRr9+jzqvRn9L6ABQtTWXN+y6Qyg4Pm5XwJjKucC/dohnHUcUQQLwuKCgEFHoNLmR9ni0BKoYCMgsGs09oVJvUR6NPMEGQqc85jQDYGOEzkmLaYyPo1qumDNDCOj50+vdA9JcgAtG/4qmvnEITa9T0T/2q1m4hHCjuYrlFoS86jxDNJx5WzbsT42vsrJ2odTcLpI9nJErPrsoPIYP9HejK3+9qzFYWWs4XMO/rYmw7SzgeW9J4Tp+hiaxsmdQ+3WdfRlkAHCr+FCJWj3bUJFq2mfc0ukWNoYCdwHD3UqSj7DsJv6XISfCMtESDYESDMxwtlaY1A4Jx4VngB40B2cTWIG5NK50T/UVYkVIUqUHKqpMyroyVClvLSuSKCuTrEp6Xnfb61SkMd2xkY1JjmhNu4XSx/tx8OkmG89Ow1TCATyEwokcUckFqMK49Z0wppHBPWqzD0MjkdSHW11v0HmaI8R18MmwCy4mcbjQhaOoYAeGNxdMoV+qqwpO0hQHaNmp21Qbf3pZyQYDSwm1pRgZEW8GixDZaT07uQhKnYq3mz7Ked1wFg/2ftHz+D+XSVkWKB/B5ItZIESd4nmIvERnZ03dEpvf9E0JqLqW2Y1D3cdrqpaFI9p4PAu2diMyQyQDaSu88ix8WeZIXxuAnz4o0oIrV20btkFy++kx17gd0mwKcKDMaBrYFt5fPh7ccOE2LfEendGJqpDxn5ELuYIfWSg7CSp2BQWQFLHgeuSYCglMSzYScYjaXJ3YFRuTalTNaLLjYSqb/QWcC1e59NvTjQijg3M5KhBoh7SeYESVWVNBR+fnNlVKfvsudjiyvrIzm00LP5aiERrxch45yOU0lxzoZ1eHTFwlamjLHm2KOAigPCQ3zdYpGYiVB2fuozsb70FHgSCgO2q6gONTyZ2ajmAG2mh2aSbGJe2SS7lpuExnvOhuMsUBw57HkPi6knVV7eJb6eb6axi5oFJCQbCF2IwULslQtMKeatpFMaoHy2zgafZqGv7JEkLPS9VeN2+6/eh22EuhPsGdplEO54VCzw3HzNlN53Qj0eNf/FxcOqNkzqHmtT6rsp3f+GA3TTsY5mk9uEOIntCBJ1cikOmZa1qJCqMrETgsZMgw2kc9O4XLkya1fKlsCNs0trxolQCbw+UGqAsfhFYBhSpUzTSIRYDKE+FKhXIRhaVEcr69/ep5iLj3MEKmuCccuipGOABBnxYnrClWT5fow4eeBxiotyvjfyho5lX5DUSVkzWhf4Wxjf/tJqtlcBMq0adNNxM28hvrJoKsCEgwMWRaEnEE1cGAkn1CjZNVK7M4ckDGSNJWKvgmkIAxRPFPVOwfGhN+r+q1I1IzAkXVRF+XRfwV7UXotrxJ2ngV/B6MoGTO8armUhcdL3tGvekhHDtp9zSQiV3ATqTFA1nll+hm4PlLI3jBakirvWH5wuooWbOjSrHIQMezD/NfNsNeFKszVhV/SlJHpq5LELvm2Y1D3WJLqOrj46p2uviPxmDnlAcfDYEsvW4N5+bR4vg2gs1ZFK/uGEgZY9nGAfgNs02jq7jMdGyctkDMgJYppXniOUpaS0uOaQtIX6S3vj9F43b9N6IhcBt8GcEgHPStswfKgwnzPalvZxHqmDHJLlwqDwrFIBw7FzHe5LWhts+DjaIF+D7AsumSdGmh0TalYGmHpqNnbcIxgQ7z9dENZ6ot9cnqLuW4zHe9+HWrpW5Zk34Hm3H4lloc8Cc9MeTIu+7/10LTi4Pk4Mp44zRxeFoBB5zMZvm6BMjwneT7DphgJLyJn+tzLngABx81m3pGm3FCauRQoq0nIhtw2Tuodaz95I3YKuP7pL9z3W0fy0pjYSAiVnBNOCBiQvu0A5ASN4f6I1rWg2hxQGhd9iMHxjR9VWePUJPUFW9fJeVO4G7URfJtOQik0gE1KDHcRdXDMaQKNyN2HRVJBfzEbbwmA2DOdjJfltjbnBfEvmDAlS1rF71ds4MzSzhlFlDSqXmxhxyFr/jH09x4lNaLlhYoGAwdIvvOd4r/CZs3lok6wE+HME4UyJiYu9Sa6JhRLnBkGxdP30cVQGkY3ziz0kuQW0C+0o4EAwMzBXkc/ZYcUS0LJGEU4ZuSJtMCoVfiLNUFnLor3EokeuwAif4DgjRwbYkUgcZUzjTy7smno37oDxtc+INRtobNivGnJhMLbDn3COgOZqThQuFuW9Ue+Ne4WDRbyMrbt85+9zVNzGw8oJiaE9inNTMg3IXqKTNJecoUSn3LB8cehTGyZ1DzUgx5z5fCZJZXHcpEV/afTlgv1JIEHbhMnPIZwocF5KT2Ol04qdxcwabhOCLAUpr0CE2Txs3nL6bZIJ/T3pJZFnTsEkknXEKoaG5S7qkXECtaMKg0Iqp+wEMY72hW0F2lqbIAD3bY77OpzhPc3XrMvPGffJV8GWZOckz+Wxm6gGqGvpQrhrvMnrjeNcoEWlRetGtGb5RuBKjcNzxuxrUTWburD6R+W5GQ40W9HMHHoQV7vAhDHumj8PkCrOAaSMcYBA1zpSASHXVR/4U2gasQa+Lo4HQd+rY1GavzJewI2xjq23jKN5yWNlHTyI+yG/Zp5HvCONg4Tfu/P3ij9S0t5exYBe80WZCcZG2JoSXblD9IG9jsSR+OLgURsmdU813iyTbkXTxWmaLNQAjCZGUWwYy3COlEZCj4xqO+uw7yT9kTEplciCgSTBWo4CUVCPwFolp8IRRtBFmDcpT4Ju2c3ZbGjo2Bp7vFtcrb9MESurFBVYukM89p6lWPvysoEOw0cDg0SWbL1NzMKJOJiVzx7nhjNaPla1ifrMWmcKP9Y0JeR1XQsFcNfiqgmG0wzRYmkhBhPeC3othwpAtxbdaMU8SotOQkMeEsZUjgPbgSVrBxjVwonMEepFGAyhTeGrDNQ0nmldd3co5efCWt8eP3e4I4Y2n7W9DJfmQFosSIW0E+QGlgmv1sTU4FiiGjrfD64B/nSqPTI9R58bzUJDsnVRWCxBnuZtC03UmVsuBw8Y3wU7Hb0jD8L8kqDnDBrvmzGixlDZ8z+wCQb8Upj1WFol/U4t2ztzohuPEt15O9FdF1HqiQ2TuofanIgO8Ibh1EIL9r5CagItasRwSd9AOfw7x7hgI04t4jyEpohIXxcXkuhgHEvuyuoMUQmd2ncYjllRz54WHHslY41YLRM201i0IbefI20gBka3V16VFzCHUW0eQ87GnUsEeZVX6wuwVxO7AvgH8VFmLonMOY2mJd1Lqp9Yl7YVW1BzThA6JfoC15X1HkrTukaxfssUvK3pnHqazcy5RbKG8N+60Jw94847NctHnk+WSpzxmrbjkGyKLXI7z4gdTgQiSBwjazE4ZtDx9o4ST47D269lr0HtMwsStRTKIDDW56JJmKrmGg4SNcsGPAz3Gc+oxSgJekWDQpmTqKtlPe2rltf3K8GIDC26p2Lk6ZulvdRLlWUTNAH7m4Za7oECqO6SjrAVPfeKI1v0iAdu03vechd9+HTKiXaBtw2TugcXeoe1H5aWUEPKiX2F09xIWjZ3stOYRDZuHwl1wQMLx9LxyAmQlJMeZUxLfrLNQAoWRiXdnNHcgQmLH4GdQK43GM9fJlTzLdI0oI5gmi29KIdypfZGC8JxaD+R86/CnEF4KsNZx6AwhrNuSFPTZAEYwD/4B/cwRiLX2CKzFzkz55kINOqZOYTgQhPyMYO7++RHhmkbY0C/zfaUg37zoLMG7oTaxoysIfW51BuMr3MsVGZS68adBYasEe2XmSHuFRNAVhbYMStTHHn4aZ3XbtCROafBF8aXM4MMn0O8FH16l/3aNXal4RLEgZ2tCV1/5TZts0G8PskLum2Y1D3UDsyIjh+c0MHpltgdlpzo1czb4kYuL4x6JcVm1CwUKnFZ1gST/kF7wm06gJpSn0kuaAZjX2tWBoVIBKZxIqeVdzuOhxGUj92A1a14Csk/VVFlm4dei8q9kLDxIpkmsFCJMdtcCubXaEXauSNpgxe5aDLpI3YFFFJEWqQUJJMZ2n6vaEs8EPfTEiExETTueVVDqB6U6Fc1WIOmoPl0K2VGXMl4Kzmm8PpTL8dYW2GP77wmQdzTmieoS/mAbhbJ3CAOAGNELQSl7JDhawFng8RU2Enl1EnLh+hRs/sTP53zWFaUoUMHmDBXD1ia44I+UCRZLRcUbWodw6hC3pgTCXsHwtUieyUM+xKbn2lkg7IoaSWEtSRGIxqSSSRwcmJaIA4qtkFXgFbZPb7od9GPLaU6okgsYwwX+4KFzoNbE7r5mhkd2grPx4uhbZjUeWp1D8zo4IEJ3XjNlObbzKDgj42XWs+auMYSx/ilVURQmYm8kqKpGDFxYgvpyqRNGGptMHh1nHjzx5JeONG2c7O2k6V2lPjGIScA0FJ80smQzxCWcBpI212JeSmkLAt36M/Ut2y+aDUoHzyCd/OxlPdO1zOk32waSKdkqlLuFzBKPUlm0UB8TlxDcqj9OqMsorqO1zwxIXlL6A3SPUGyzlc16+8apWdcSNzfJljn0AR803irGnRoytwWy+y23qgsEGgy0x9IHLXv/FeBBtPkkecS99Dvc6qnDPtBO9QHob/FuoQ7vCIHxY6Yx+z1pnL2cgga4Tk5tnIuOrin7jA7uwsUfmXn75IFxyUHpLp8LtCkDDIxBKYjnIqNffsgGV4cnGok5O6ja/e///0L7ozPc5/7XPn+Mz7jMwbfPec5z6FLtfUsKXdzOnpwmx54wwGa7xAtJmxXmCiMZvYMDTiN7OHYrFJywhLDulEYgapC6HXjMoNjBqRu5ZEpG+81C7kakKuZwblMx2qPy3Xw36YBmVYlxMakMn1BWVJExgHNKcEMBh+dR4T0uzusRfEvd1e02FuqJyJ7hIg7L/dvuRBS2fe6eJ7CLeGMOk75uFdcVPPN8VHmyS0N0I5/N/awzqAAePl4EEUhGGobwVpkBhJxN2k+mcEao9aP2h34eTJTkmBk8yhkBrC310kGa0ugUeJ40FcQXymGYs974usllWTBwWSPxCdKmqxfErhiZwia981y1dHeQj3GZD+mIGBloHzNVMq3eAaIVjWGZmkVp9lWw/YxLf2hHy8OGKvvMVmikXq9s7qRqg0s7qcJiK1UinxnmdW9eEcKmA0cNZwpDOOUd1zQCH1e3p9/rJy72VBjOw+ZBGgBBjqBIwaEDfWWihcsPSfXyPCelO75jz2arO60gIFzTvovHk3qT/7kT7xyJbc3vOEN9Nmf/dn0hV/4hX7s2c9+Nn3Xd32X/33w4EG69Bp2iFLP2WRFB6bqISeZjCSLc4hNvLfYSC5bOrnp6stp/WFvAvpjjzCBgSpxReJY7Vo37YwNHEYcJJFtT7TNngpOTEy2rL6sRtw1XaxEmth5wgxtLExQgjyHJAvJFF5q6ibPECYHFuKF13FK5jc21+XYxqb4I84F9GR5VW3OgC+rZhfahRmb95EfR737ztAAdcb5Q9tIlZRDZZB1gxTvzhsW57Ug2jvNjibKGPZ2V1KfCPZIbpz6iH/b3WU1JmDFqmk2jCB71qWB899cnbZek327sypY+1cDvZHckTXj+Q2q9BpjzxpAvl8e32iWCSjZ3YQWwmzWJ7Aag/0gHOT+bATl/Ibdyb8lPqoJeE69+LsU2T9iTrpeSQN0dDyYKeC6jhmVFzK0FTXBzJ16DTJhoUGHVyUx5V3s40e0RT1td0R7F4cide6Z1LXXXlv+/p7v+R560IMeRJ/+6Z9emNLx48fpcmiaVYDjX1Y0F/figNA4DiO/9m6jKV5XLYWGzJzcs+X7cfVAXuac5kYyhBtuL6Xp0SLDm57b4C8lYS2YZUuMq4SPQFDkfANuoYS5DtKZ6ojHWb5LITZu9wJhsWuhVTVrGfpGfj4VKqkT2sdjcuR0HceavnxNAq5Z24dBb0tO72jOE3tshxIzTLg9atA2f1QoDBtSg1diYPkYDIP+e4mCS+uMDN+Sam/wLGKfNO6cg3Xpi11P3cWHGs9ZN5i+ytzquEaFg3IebuwD8HNzVoy1Q0iMrDL+xHTSvcr0LCPGkE1WBoUm9i4E7Hum9vVtdE8bo+J4Kf7siYPf3Vjze6mdV51vd3eXfvZnf5a+6qu+qmyYl7/85XTNNdfQox71KHrBC15AJ09yzcj17fTp03T77beXz8XU5rSkrW5JO7SwdVC4LO9/PswZBtRoyoZthi/4hdbf20fFBGo20UqoWjmXobUQoJy3WYG/06cWUvJg9zRL3VpFVTMyhCjmhHNUhbAXMsEQjMnPplOPwmcCxMcACfGH3adnUy5HAnc/jM1ZnRvaAUvlNYk7o3x95Olzu5nBokv7cH1H/kRapIAB821B4zWX4XDG/r1X19VxZ+eWMcK63mBv65yIocBNVgrFiZ6N9a67iE7e2dOJO5Z0+lRPe6c7WuzyHKsggCqtvlhnIyGPaCYCLTX2EfadOb1HdMcJ1sCHHQMClOIsEkPAn9wHQ9tawgMaCO6hxxyoKuuH0h8OrjZQo64Tj2nhiEGG9dZNWdc8HHiKh+fa61Jmj/zcpEabaUmlflt+xpERAn0Vbc7GEnt5mPqpx3kjUObweSQhz5lnyLAczXDFgY6uPqxwKl3ujhO/9Eu/RLfeeit95Vd+pR/70i/9Urr55pvpxhtvpNe//vX0Ld/yLfTmN7+ZXvnKV67t58UvfjG96EUvooupIQczu5zPaCaJK2m15y60UvzQtBwx00gZcLMN5Y78LW0gCadJlSrlPRweWWZnslO9woIxShABVBsXCG+C1EJ8gL2c1BMRGxsKC0hM5owdYLAxUa793d6eou2EqmbzVHsdbL1VgNbJtPWjciVuvKCurTWJp8Gci/LoTChJpdI3HgikaDDv4Tz11FZbSE8t2bCiW8vWkR6rapfWp9fjMnhOZBS+JsqiZKVJ54t0OkwQiy7ko1WP0QrZIR4H5V/8zkkLc0+4NHfsufaZt4G6EmIKuLuFE2FrisCMst7rNJQB8Faylddnhz2B5x3aU85wkdN45eebvGktBMPXLN3Xs3OMyn7dGq1L37WMVvQlWbAxZXfZCE/bcGayMdq74D4eHdE1R6Z0nysm9O7b99ZmUbmQWtefiTV/FO3JT34ybW1t0f/8n/9z7TmvfvWr6QlPeALdcsstAguu06T4g8aa1E033ZTk/wurYcNOaZum8u+cHnPjLj3xwXeJ0Zs3Gwf3imF40tHcsxZHpmmyDTplA7KlXugk64NuuK2ZlhffT3oWj1nWxthFWHIFaiYLDTrl4grJlV28LlBqg4nHihanp6Z9rGgy76mbs1QTnlruQeVF7iznmWDjNo8+JGjlH/qdGqW18ddSQ2m2kp/TLbahacYFzmTAArqck2JxZL2S8WpxypxMdk2jTCXn+W/XuIx38n0KUmXaWCtd51LkOUcg+JVDjKkvzVsI43oQqJyirodHXBoX1gLnR7/VdRl7IzNAaJLQyvRcDXoVDUQ4VtiKvY9k94M9TO17VsmZZmILYzvi9pxoPrM8dsY4PWUPJtWW0Wi0m0x0+161IP0iIvCUuFs4htcM0+/EwSRRVmXASTN1O1fVCH07JohOUG8MwEMIIpM/a3PrMqGDkfBQxFs30aIWZsxehu339XlURifDmgYjQ1kO9Sy0sBTL7xmbSzODyPOcsAarX0mhUz4+JXrju7fpbz4wpV96/V10ehFewfd0gzXvtttuo6NHj97zmtTb3/52+s3f/M19NSRuj3vc4+Tnfkxqe3tbPhdbE0MlV+GdnKbtieZlc5tSIn4sESMyXI+lLNJSekCp1VxgHT5DPbfavHbY27yBpV8JxrWihRLDosTApXI33ZpXIBN2i9lSryKkfWnnJTqiZT6I7NflnOSqK1klzDsLr58kwURaHrs+aziegT2Vz4DU64zGA4bVXuPwnn1Svb0yRDAk/zvZ3MEc8M476WpDZApTAhG1mJQE18g1dk5OXNtCmJ4Gp0kWi0G15UL83iO2kHxO2wAt5crPGVLjjYiEx6xN87mc9IQ/wUBD64E2KGywUePXZVlATNFSmJxqCOrIEAxT96iuaVvNuZaxiPu6YNQwAY1JGsfzQoAK5yEWoWKfhgBW+oO3p093nEHFcoy5myeBI7Vx2LIP5MA8dzl7CxIP44GHLct2pL0HkOf4m+uvOkz9fE6TN3CV3gtflTpvTOqlL30pXXfddfS5n/u5+573ute9Tn7ecMMNdKk1rRWzokPbPW1zIk6rsVvOMarYbpUigaWS1gEzBRFuSVSW8F0iN7wQvytxhcjdIC3pl3zfXCZd5zJifF5XSiGb4OxlgzSubsaD0wvDGc5n5PeGSe1XsdBhnjSHVrOK+dd3eczoX6cWErHDZ3h0JSVVhSCxRu14xn4XaTq7QeaxNQSyGX7qJ8FeBd5KQoG5Tg/7bvZxgruKM0Vzvzqu9RL8Wm2j9KvMqmWOg/kDjstZzzMSIMJCOCVIYtkmvdLArR3rVoY5zqDOtrUalw+eG6Q3a/IE+jW4pz2evK/0FP3+wPaUDu8xJnJxtPPCpFj6YCb1zGc+k2aM21h761vfSq94xSvoqU99Kl199dVik3r+859Pj3/84+nRj340XWqtp4U4Etz/+BZdc4RxmIVqLL6XMiQS1+VoeTMJGFGDpGjxGDi/TZ65DB87tXMxVDC3GAyG1AKmQZVUvz1LaMKQTOqzL8Q0bveZtIwKs0nxMchPxy7C6ASu6lEae43jQf49aUOuAWWGnKA6oTP28RipfWiFpH4afF+zLNhyF4YlLz9y3yWmkRuk7FXblz27uA4wls2qGc9+DAtEKN8f94G7v2iUKOdg14e0bWO1flarpTooeBLF4PShvAwZVTD7HM5gZTMazYEdHcAcJiANEJzGNEDzQtX9P2SOOWgX5TSGDLphMMmuWtzNnWkj8Hg81RLeV0kUK+9hOHhkXpHnjetaGDQ0zPpsYkyruJ8dc/h2XUuSFRAHD2vpOgmFOTRfjNYwu2yYFMN873jHO8SrLze2T/F3L3nJS+jEiRNiV3rGM55BL3zhC+lSbKw7cTqT40e26djOnqR4QEZzDWVIko+12OC67bVqJ6ht0qSgRWXCmS51idwCHVf9UpkSw2xsCJf0KaFyDAzTErSEMaoXoDMGtdZn8mRjMEm8fGNeVB7Eqdf5rwzZcV46lIFICZ77nAnd4Bo4/zlx1pAvXYsm68KYFlSejxOCetwVpX0Sz+K4wHhpXA73gQnlp2kLw15w6ojSV7tIo9RmTdHvmTRLJaShVUi2awR5O49mKNncEryiqwZ34wnmnOGudfi3wZuKMJIsGZm/6nCCCVRNILi+jBEwp+0ajQnMazFk2jh7Pz0Fjg7IIqG10MxBx81PifA3mVRc6U0QXmYc8MyV+EF5l4L5yPvt2c4zeoDaTwF5ZuaYmZsLNvi3s4X1NcT84AhjNuKRtWgpR7diGyVX6DXBUWuGl0KIlwWTetKTnjSq7jJT+t3f/V261Fu8vozrT+m6w1t01LKeqxSUPewEaxiUVPctapQQ2L2+OCOJQc0zy9mYB/PCfxoZ1DuasKYFg2srZTq1MdsV1DXLGJs1u/AySAZ5ezNV+E2qTLLzK5+ymfpihHdaGY9l0uA315PW4larYYmOoj2BgZ8B9htDp3x9LVluuQavc2KYzjSdORmRStIDmJQHcTKRYcaS4D+lcdCuqlaniE/ENDlUmJ8enDogkQsThWZjFdSl7LveU3ZjSs0xrHybGIIkpA0IcwBSF2JaWJR/X+xUqQgm2zh1d5pLdn6AuDw7YIxoQn6Fw+SpIjGIsG1pdxRJglUgHMZkmsKGvmeloCMXpZyZwymX7wAsr++3rGNyKmntcnk+Mf76twhsXSoH4BqV3kE1N3NkUilkmA7JXwnLtilZadjqtvA+WG9OyVkuuLbJ3Xcem758HOF9gn2k5JhIU+xZ58lKg0Hl6/ACMTwimpeUbcheXkYojCaIUwY0KrixSyaAiQbtLltC1NFyYan82Vie3hPAR+zhpwR5pZrXitR5w6TQJc+JzzM3wwGUIU4fmqVCiYYFcvI5hhlqUt1aciNDU2DI7vToNY10sOqJZrFG7J1n04SWZVPa5xmNV+LNdLoU6tMhOZMoThDI+ABnD88nZ4HTdtFiqS794rsh8Bq7k2etzphUOob7s7en8uxIKZVJtzI8cDZzCpBBWekSLrvixb8soNS0MQhQeQFCs2Eb2FSuXWgU6KiGqV5lqp+tUuaZsVZgMIfLqjOCaldrpAxxCqjesHY4KW3GEFAssNS3ClZY2LJJEwpbD+/N6Ijy4ZCI0IfGOYaTg/ywNeT1w7zHPB7xHRiiMJQJnKXCcUW8Y6WenHnOJoHQhZaU0QWIizPM1WmhEQfEIEHGri7ctmFS57Wpf9yUFuLW3bazMa62GHeWzPVA1sjiGsf5RYMJjy28TdBATADTbwGDmIwFwgH7E+K5uFrwWLGAMLyPxJYkiVbvlY0kIzh+grbKlWms0CQc9hvTplKGj7a1/g9r7P1rnsNwTDaV8Rce8zANR2C5EcYX1wehzN9xomEIGUjQG0Q9X4u+LEbOFzWgwqyxO4Qk+wXMMRaxam2tBtCsK+486ggwtAMp0c5jOUOzCYzdfVyPqPfOP7NLfOl+nQNQowEN0/2a8OUv17ophFY17mikmljv71Qdf3k5ATAnqcW/Gr25vixb5h3I6ZE2TOpybbahtrqF4L7qwDAt0iEgoLgksGv9nksU8AcbNCLlswSvUjwMEqbcm3GfZe8Z26WkQqf1A+0EfIuTv8K1m7F2lhYXWqqApTVO/Te3TS2QiZaRVdBK9nziCs6o+HhT3qKBvkbJCrTE7PnGzexPLunCTZ2dJjJzSvayJFuvbVqdtjKsMejP19mzXY9cY5WVkeg0xz9BS0Jy3KUl7lUGEYlq8XxVtLAwaoauPMlqMJa4P9S7vMyoVKucSYZi+d7A4KRUjG2CEG7G10vz76mNc9RRwp4NF8vcL/PDWNO1ReXZBAevTW/UCDxJC0vsRsIwRFudcI4/c3DI5xvnzTNeLhd+XgvJtZodhDmF9lvtSHNoegB8wxjb8fvf8sbquUvRmjheUlGDcODTrBdQkTBzhy3beD+rQaWRc0qPDs6ITk47OrlYK1pdEG3DpM5Dq157TJ22xG7Dwbgl+FHPsmuoYPXMlIRBiUkpTJpKcIIg42+83lmSZoOujEauVwM6U0vx5uNNi6wM8jPiqNAAIfL9eaPMUSZeemWmB0eHpWS/5k+ADEYUiwddwuT9hU0rMaJRoTe8RvyiavxOT1OxmfVa2R41o9xOpcl30cE6BoShrKOpxSaUaxcN3mlIu2aERpyY+e2LPQ3CgWWJqBhTrJv/i0S60E5kfdtkpZaJ3vwu4Uqt+YTNHdOYNvibepjC9VoDueEvFswN/Cq0FqyFa+Vgc5YZIj+wUCQarSu7fq/ufnY2rE1+i5AoVn+G1Nc+V51j7NAGV45vsi2p3SPiKheai8kdCZ3IEo2unGinSWtiJgfobzA7e9ddUCMIoBA6k0tnDFqukWTTeFFydhXsLXjycvqyWU9XHunprp7otjv3y1B477cNkzqPTbUS3vAsq/ImSy+I7cCBI0QDHWk+Nd1cwpDs5Y5qs0YMPW1K8gZyT7NwM1cIW/HuzlzV5SMl4uPGfL4a1cGkLEMFDLZm4JchcSVXI6bqeq2eazKdARqS479iuGuZhNsqgiB4+XUrbyKFGZFpoalbnxWD/H6vY1StRoXvQzwNyLWelzLIW8VbGQ4CYOHR1nj/+TUFfoz9EPJIwH8YT/ZOVNukPgeXiyGBsD3MXOKR1BSh2hhHhR4zY8lazCCvrzt5xD5GKqC6nTGvWMs0930oZH5WQBJyvzgnZzRPTy5cutO9xXW8zCEES82iUaFMrCV0EagrnlUE17ehCPmlTva19TBiMKaYAflLgEKiUrwS37oNSvUvON4AApfyOMWpR1Xp6ayjY4d7um23p+5OvK13T/u9p9qGSZ3HNu+XtMVS04rtUoExC6FZtZh0xCUp0U5lC6y/HJDoRJ7TZLdF2zxXhNYQ6o1NqqzNUpwlJeIYDI5G5/yB5gveLzT7haQJlRiNXlMwTTlVkRVT43HPrLaRjEkdLNhDi42wqMrAY2SIKDIE1KwDOjlAXuOaFGpnyYuWvfuyc0QO8jUGoowN0myyWaUS5y2tGNj1steefVmDN9vrC+mUf6PIquZClNRLktxXb4K4LxCX0IoTky/3MPiOn5EZ1RleU81LwwxA0HCpHmMHmugHjh3qkVYZkcsqaX+GZjqE3oZLoouHWK1B3FLOqJIzlns2ivQM2vU9Ax0t/ZUxBmOCwwr6qhC7oRCsbVjyZJQwEa3VzhNnl2SYlHjAXCnAIEZ57lKKRZPsjsGHtem7K2ED5hHbjUhweNfVicIYa3oWReawDCqxriuaTqb0oJuvplOTU3TLB26jC7ltmNR5aHghZl1Pc4HD9vGBLhvWhbT6vf9T7TiA+qq0ChkPBnZcg5rz+o3WoNKXgRkYh0xFMk+FhOTD2dmFIHK+MIXahHhPLXeZDQAFFQGLZePAOjjNaYJri3XSLbKR30JAf2IfSgS5aKW5r32fwHCtQQ9HrytYf50P4CH5vZ1zA+FA4yjojSckBQzcUuqA3oQ4hcqUNkLWpNKQ93FkiPMGqV5HjfuVueSbj3MRz+xgewT2udB0mjUcY1BplAHDjmf/WO+UBLeOpuLuPvu06TnB6rE2Z3KCar35ho4TeZOX4Zbmgqr9nWFf1+RGJxHrj5yLRw5v086ORCjShdw2TOo8tp0Z0cEtY1JJclfbkBmzU9mAbHjNzQU5k4akHylrYRK5Z2q2l82IhgcF8qYUyz2PgyvkAkbknGwdzVlqFK2KJb6JQn+SjJarqfY0nyxpNlvRbEuTV8ogphy3pNrU3tKqsu6xFsa2KoOX1hCPLOl6hm5E7cLl2xwQ6jtXuYMnVG2CPIoWkQn1iOkjmxD82pbxOEFcf73/buECVQtL59iJyHahRCrWZjDPlIsNz1qTwHKMVUc9hyWYVwYgPVlDCdbWPSWBu9AMSwoqEGcz8Kf8dGPG/awVlec4EgAsY5ANqJIINDe12AXT9MTEDJFaULRX7k3ruo4JhIddHeuZmnpYDqUZnZPaizjB7NhdVUNPjJ21KoudUq2mSSjbMAF8h/Ilcp/ktp6c6glCT76vJIq1oplZSHB0RQy3+6eN5XFeeWyHDh3Yowu9bZjUOW1wCeZ4lY4ObU/oyDbRgrOIJxXJgLj0MiUIIMczGFSQY2TkuL38SgQTOGQvOF4CuDnzVXsdR5n3kn1dE0tr7jfWjFhL4lIiHAcVI1Tmylkp5DPrBMcWPBw5kkQT0xsLz2WXPyEwK4+9EGM1Y/FuPFZmBJ0OZFGif2AvATbfBtLm5KtYtkASy3Et9FhVqFGbc6p0q+uKjqPMQTzd6KdNXiun2jEuDii/slAhAbQBYzHT37O6TBxS6dd7sBY7tSSbieU2BDwYgcAsGLBGrPCu8yGbMgsh6nUZWRwAI0OIkb6huiQNQWldho2HrXi+offRU5MjgI8inrMzO9h70t7VvRLvSCps4seERpt2Gclg45mULPa2sdpM6fIuJO0MeIL01zhX5J1QCpQ4jGf5O5q8lxm0z+87GJT3zAIl8Lm0D3seo8Gt/M5LDlCTddVeHUJYgdMT5O1mBPv94Kyj7SmPl5ny/jFt92bbMKnz1boJHZhP6PA2S4fsbJzikdKrqlJXpbIBB4SEqkROgwgliNZblmGDMOuLYi8ly6/dMsrMI3uFSX6T6YombCvhbNchXxsj1cwU4gYLhyQwqYwkclbrKdvAOIOCOl3wi8QvkTAswICmNbmDAMhPWhtfiextracPA2vHYMTi5ZjhpdYQn9ZtoMXY2nnOsxGbVTwwcwmGthI0G79LILbxPC13XseUvQYjTRHGAi04SHQvqa64EF5422XYRh0oUrYCDN5TAEWGe3d19zkZJJQcbnylRu0j/hTrw8Iquiaq3q5trBLOw7lh6jHHAGMU45p5rFOLdIm9DrvMHkQjW2BWfr6bescwZl+vfO+Ym2q5WNd8XYyvXbfWfR/PwfLSkGctkX2sz4nfMdagdbuZQGm3qowdd080xO7Bx3Ysuz0En/2TTd17bcOkznGDhDajKV1/5Rbd5wom7kg+B/JfIQlN2MAEfVgWesa+xOg7lbrAL76x7XeWjJHEU7+3iHWWvgxSYa1Ia0rx/VR9EscKJnhOK/mcmWhas8mCpvbSaXLaimJLgUSDKRiK0PIBPe0uO7qL4UNjtp5OSMZlL06C+cbWEi0L/NAYhFfD9TwznjDE+fp4P7nPlhcMWtKoCrEdKm+6DmmM9mXAqitxNuHDeyeIVoueVoyR+n0Sg/Gj4WQCmx8b62UVGSKzazD9Fs1sY4xwzL/TEY7PPOdb9MDWYbb6iPfbJzB10PewbEUZr3DzrF1k1RfHsEYBB4ZTTuk1+mhcwcccLLTPzBSHmwPXcI0teSeSQ4nGLum+bteirs+wxpS7qJuqDuFoYv2z1oVnoaVuoJ3X/a+FJNu1zUxSIYKd2Z20NbmLdXK6kNuGSZ3DloQ6YQAHtjo6uDNx92N9oRBwFztLhZ+ofuobuN1o8g8YXfYbjh06RiKg5gNqgzbFEruWodeNINCPUTwjSf4SiPOSubPCpObjcohJ43P4+/lKNSmJYRqNf4J0d5Zrm2NVE+oj0+n3Q5uqR5gzuH0aiJAG5IYjSIFlyvxTfr7i3WimNtsPli1INFKcg/P24ZRBaLOknyXzhCQNGHtLKIsEH2rBGLGOC9aMqjG2nU20zRgTG2Nu6zU2HdR6XjjOWM66uRp8tlpFEoiw5s26+35iu2+6boxJD2/bu1t8CAs+0LUjgn607lv+Oel3hUHt84gviLZhUuelKS7FNqljB6fU71n8ijOY2ph4ids3u+zKZja1vEBdLVYQPckmk/ghdSkvmLSdwRqQamoMPao1hO1TW1KUcSK5BPlar+xqCWa5F8l4wXarVBV3TP7mjBQSg8KQDp+76Oi0ZYiGUTe/iOPMa82KwoMQ/Ji1PsSLpTV1x0LkvUtQSBbI69KmdWzvK04clYDLj6bKbr635hPUY2wHZMhf+BMzeXPlZybVei4WhcHdj6O6rw8SsnC6VrVXXutlKXyZWwhHYCgoNDgWYN4c2e9BZQY1OK2m9Mmu1+u0qTG9tzBWFxiQbSENpLCBzCjMnjsCq69bo/G5hvCYg3M1IzoEQQiRQAsU4nR38XR/uKnzhzUzvp5DRCpE2EdfcDY507uDNVrHffi75UnqVpyybZNg9oJv67SPu99AABSKma32aL5cuMaiUfaVeEq59pzdPNd8crgl9x1JP1voCoRcHQcTdCh0zjBn3JMJ25SdJ9gxghPIcuxWR91UbWSq8S3VQ6yfasyUZK2wflPlWkEyWRvjYc0YL1/RNr9805522CK2Z5XLjfoqjKU+7jD2IvtA4r1DHp0hC8QTOS9PjKSB55Ru58Wo9+ETJXKMITSBW9TbLbQWEL9E1HLAKtLxTHX9OScwPA4XBgEyQ11KEJnW+NL4LzADy0oOEiqdWcbuJnMDahepJhx0OfIvhkoHBwyfPdzAhTm5BVNLhuScjV5jjMMTYsGhEUaP6pm5XoOKdEuSCLbPzMI0/zU1m7DWmHt5XkULwSxinEXZyGU4vORLwHkueMQiOeAq9jPbdNhjmig4X4P11mOSkALHi4GMv2PoPnlgpnRiMk+PtTJaIO/FSu4pH9Oo1D6t8Rdckyve8wrgFtkG54gzkmavmE8X6rk76WlPHs9HoYGex7ZhUrmdC73X67swI1hIoOykeFbVhKGa16veNLyd6osZtZ2wsfszCHt6jScNNZVLy8NrPSnJpoy8fQLpdRo0yy+AeSVOei5JkOaB5TJ8QxwwzLYmscVTS6PEgcCrFe2u2N4VJnhksrBlqpBc1nZaSFEpahxriYt4BA41Tk9x5kTIrU3RidjZ6rNA31X/7dYOUDQoKTRp42WmbwHAYuuTwGoQJ1wG5lfzwQVDNgO5a0Duwgl+2wwtBXY2jCrx5Ci2aPPOM5clsbg5VSJhzM9rG0yiMJkGLRja88aEiZZRJS/DAteuI6L6EIe8LrJq5EFhy9Wr019uf5tSv1Lvu9bWNerEYQ8EzL6dU9GcXeBMXr7FW3LE87HL6wDHlmRG8AKjFgvZaMj1cs4HuKRptxLfPnZEjwIpFxaz2jCpc95C9mYIZmabAM3rSSGVPjsY7LLhpqedHd3Y83m+ItVMcoo5NLrip7wIVtHOBDN/OSxZhDhBsB1qe9pJoK7m89IsGJzFgJPNogSIKTyqQbG7usVJgcGqGUsJp8dQ8XczrQbL3tYL0Rx62ssF2owhOqVtoamxshl+DmRFSxhqYnY1Do9c3/AVDTBNVYyTY4pAMVIcMGeYXv/yBvTDTJFjX1Rj2l0o1Mo5POEtt1wq3IfnH5BRxLsF9Ke+xf68m7UK+CzGByEllsuOe8Adw0yhyeQ9lJsyipAekI6qoanjrXHz1hgsyzBhMXRIvJrn4XP0fb9GahSNPmVWGZxmTLhcX3TzmLfX56rFB8HMNDF0nhoycEz9d9iQHa5sFyeX4CiMenjcR5tKmLRN587IDMfLhds9ZF6FElU6yqVw/HrBe/C5sNuGSZ3Dll04Eb0CkEa+T1RTBUm8yGN2pBDqMtSRpeAMe2RpVPtKueR0cEqcGMJBbJR4A1pNKSSoVAxS45PcYGtdJO1HUiyZjcpLPbEWlaR41qyY34pjxoTjxawf1J93NaDNlxZ2h0w0IF23xpYz2bhjjdI84k55udvlj+fgEuaamzWZJBTiUi2IlaQ9zpNo/Bg2q3XjBsHECHPNpCzxtGMvkJg7wOh9lTlAaueTUJxvSASHthoLPN4nv12JmcoOJr4vxzSP/WH18YBig9Vs/2AL5XPhsg2nl2Ivw1qYALDOrT2/k8Wm1nDDslb72DbPpo0JDF2yTQ+fUx1zOb7PwvpXwmh72poTndqrzjwXUtswqdw+WqivQGHGpGRja/ZzaAB4keE6zIZ0hd2ashZ2Xnh/Ve+f9iUWt1SLREc+rxybJSmQJh3Npiuaz5RxsLandaIU85as6+LFoTEfck9xdzVmBicPk95EW7IXgzUpTZWkmhf3tTMn2p0r5Haa1So5z2tRxJoV1+BqgyrOBaUsiGWlWCPVK2HlEICpZfYIW5PdskUZgxG69pTun4hVDb6ywovm9CLWO7GZ8c+JfrertklwErd32bPN2R4KkUfmEBBnKzBZR53GlfaMEquULsfK8YIApymt11g82ayeHefzZ1hwcLSLAeYH5qLMAvve+8LPXBW3uY/HusriV0bl2g2fIhh07aNopWkVB+EK0EZcQ9VnIe+2xRu0q+Zg28iY0wDSBUmrcgEzru9cMsy2NQvoWMO8PD6SIfvJkPFi1twPe+MeOEB0Yklil7oQ24ZJncMGaVYIuqUZUo8+ZGIIaEbLZdthqfPEmQiWlm6fSy7YRswuXHq1itPI2oD4meVKMlLIJuSURUZSoPVo8UWirUlPO9OetiXtENzQ7XeB4TieR/tZ7EVBOob8ZgxhGaSn4U2WtUAT/9HMmBEfXlgaHclyMSPaWnXCsBiJRAYO0Sog0VrC3XZBUeUWfzcovx52NQLrU9tK7Artd2AUkfXC7YDNagsxzh7/gF2hTbQcTjw1QBzVQKVMqxJMuPQP9hGq7+b6R6ia63zOBBZjeqjcbI8kaXZIUQVCDi0Eabki3RYQQ1+F7ImJtU5EUhwKEpEV+JdTZdVkis1zxXm6x/X7kefmWjZA3WAiJV8hnHAS45cSMrgaCWHZKcaGhcszo87bJ8bD7tmRDFfjEIOReNqxAXMEM4uqumPr4AreSEn5fBrZADUhgM3VkgCIDdngPPHwtX5RcRtQtfJa1YWVHnS0mszo0DbRzVf2dOJ0r0LkBdg2TOoMkMPdbWrLsWwN5nZe66eOSH1OaJMXYCOmDaGAiJ5XjzTT01oIINuWWLuxhLHs0YPU/sHIjHA6IYj1kevZ+QHZKtJkRFoTTTC0H+iN6lpvkB/ffMUlq83ga8QgBO0wUDvUlwVPEFr8ng7XX6ixNzSqUP7dUzHFumLxcG83v7t6AtirarZ4jiAkyqiWgzx20NSyTca9O8H83ONPW1s4DzZGf855epY+250jwLmQfRwsx6T0bMNqTe3ut5Ah10YZyPNvn03bwAx1r9U3r84jbDxx7yjqB2XX75wckoRQNwIE7DuRfSIdd+897TxCFlKUuN13QCua6siYh66pr8i+bb0WGhs/zxeWKrUmaewV5qbelrp/ah+lJ93T3USgvqsOdbQ1u3CLyG+Y1HlovD3m8qp04jjAj57zt8E1nFtmQtBWckPi2RYKKchJUxrAGZ9XsNUXRfpmV/KONyPbiThprGlQqZ6TeOjxjmAX6iUMquqGPGUjleShW3jyV4xjpoWmmpfYvM96s03xfXeVa+nK2DztHuvgpnIYIvAYgUwIjtstgEf20KSqP6Tnw3buUov74SeguKWX40WMUoJOkkYn6Q1RANLc2jOMqznhVLPS0AC9Bpovak4N7SxJWud1t1IddpuYV/EiMygxE2L7XQQJ7yMmHbyiptbIFWkHzWyTqPire2rEGeBM0GBIDUlXGj5yeL3hGoeJG04CpEHjx6qLQN5z2XFFpwkxi6+1GlAid6izgrbaX9a4ZgWWje/zuPZ1PFk789q8mvHYnO1vF/TSmilKsaJDB3bopuMH6c//jst18At64bUNkzqnTV9PSdlohe80FiZBDG69xRVZmg44pTg9DKQxk6Saejz6sgI2sM1qfbLXntSE4tioFJTrHycgoTrxNdDuDJdU25U5WxRHBNOmdM4guvGqS5kPFGZL06hQXdjVylQzA2hsSvmc1kYQEnIy9I+98wXKi2tlLil3nx+3PqsWFX+E5qpE05+iQaAu1afchFxUUvkoHxgWxgvUB0JJFgyCmEHRg5ASI6ocX/vHPWti43ZOKKgYTgiNk3KCkjIzLIITtGQbZBYm1rccmhAapK+lTzToOZhg9XqMcWZAF88C/UX/DZzbLKP/md+BNGcb+f4teQJinw4Cm/FM++EOyJpfETCQm7bs/xEkwX5lT+KjRw7QbHoHXahtw6TOcdOyGJqrrUBZ8o/tDHsHtPSgvWEpizFiHrIHVXgYNTb77G3UEiXcmJ0lZlOaz3qazznq3UoKwB5lpabkKi9Xr4G95uanr4JWACjR7sLgzCOQO2F7AGpRIQM7MygeJttMJNNCCtzNpB1ByphjZOgOBhO2+uz5V1/uDI2hImsQr7o0eCbxb4xBHB4ggSbiA+0v7lFpJb7F0MSWIQ4UYbwWG1WqKAt7IqCaFu7NbFBNVO4y4vdw79JGAMcaeaJ13z9w3gki6UwrrRE0KoVP83aLTaB2sGYtkhOA/G6MsfYXGiJKp5+p5TEGeJUT5rYQLt6p1AcLXAluFJsV4FuY1NJ8cHFd2sbL0cIWoFHqoeGMct96nr5v6vRqiYhhj5zgrjFbXy/Wxc1BSr+NGK90IzvfnrO9DFi9na0ZXX3FYdqaf2gTJ3U5NCVMnaQbkgzDnrfcygmI665uIs4cwDtH/BDMDoOyC/z3kmOLUhXeyN8VNh/VbCwq3rddzqsXRGfeL2hLUhexlmc5+dxpIvsd2gvDYwPMxRk0uhUt+5X0oYHAad6mOiybBLDywlq5CmGIE8vEbu7XziTSyyT92QRyKikgUi1g5y0hUSAQzuy0eLEt3vizqzKnihDaRyq/bYxXnB5xQ4e5EhqJVBBWuwPSOQgaP1N5BpyZxkpH8NrC5V+dSUK1kWuM9rB3JuA5Z8Lm8i4VmC13Yt4rI3qePX0x8RdtWqVx0/9QxTZrvyFnVbslsq7Dq7VdX0ucGkxcywe7BtEiWzZh1x2c88QggllV7Uhy5KVFyOEZOj+LXG+98LB/DAVx22ijibQu4llzw2gAsa7TqLJbPJ6Rj8ccS+Tt7eM8BFbbKJ0Ru8C4D5SYUZMQD2eyXw5MGMK/QF37Nkzq/DR+/SVhK/+R9rfDC8kYDPKYdCppGf5vbSRuuy/xIQ3ukI+JXYm9/1Srce3Dg3ITsoJjznyCPrh02MAoYqxt4KIxpQ5BhRmS8lH263OPhZRfy24UKGnNszBFyJlcq3W5pjpK0GtPYKwjQ9Wche2ci51RJ50hMClnAjuVMQMwwlZKdx2kMCB8V7UKEK8gfqmHBGu1UFjVoGztoV2V2eL+VRsqcXrN+uZ5+PkjdZ0G8FuCsnSMFcAKFhUvRRDvYX7Asadb3cWj07FnHed1+8aW6VBriol1fbXflXhBqtpN5eWVeeZxtVtd5YCiSsoJ/O7PJ5ru7EJtGyZ1jptGyajTgb9mLmWre65CZPZCNEGdcJhAuhy9zDQL41xKvBNLc9QlrBPYjhoXRbQ17cxhAtqJZWS2EwXyk86jPEQ/WeqLxjvZVQWUPEjjToRToTbO+pfS/NjbLl5+PadL4px2kP6tz9QyhOmSdiIEgMxaSXjwLAodaTgujWUQUNdvGJ5zH+sY1EfSYA+S388w9lZSzy3H1fG3UiDT9peISiUDx7DMRtysZd15HGu+cd4xDCjPjGnMeWKs7zauaN2c9Vje4evHnWPPRJNLZUX69n1yjY6Le2omCS6NkeFktfnG3mvHoE4XquGkojp58I1Gq71ivjkOSvvjj8L+IZyEkKv3sxCR7DmT5SSgNC6c+hfyrrON+uDWysoFXZhtw6TOUYN7LH+YERza4hIYeNly+lDdgGqPGkrbIJDVcWL44g4xb9PEBgTHxiUwkI7FXzGcm5QxfxlQG0m+5ySXGivltN4Ylwu41p/g+hk5SH267SsxCpGmsSxj73WeTOKKoSWMES29gWtcSWvLy90axbN9SX+PBKn4mW2M0B5dqrfy7RBI3O072Z4ApWUHhFb5DVtPnZGPM52rtwptx+WIxOT8CyRHFRknNMjQakO7rmuTNojbVcNdPo/PtdrkbOFjHHEGCXy4iv+h4WKNbM1GnBXa1jLN5tuydoOxYTMmpxvXzqAN47yBEJTtenE426wGY7XjKq/GM8kISW+3U4S9H2E+iN9SPdrXPL3n/qySDUzuK/tg1yB/FtJWZyUE3JNtw6TOYcOjnU87OrKjcUH+ogrNipgGr4HkiU0B8SmH8GzRjYSpx9SJWwMo656qwpLi/vJuS4qIRFjAjBrarpnSzUVohZSimj4FL0+bLBd9ye2Q5dvGhVugJpU4VTDzZgnQ33Mj6APoKkhEJUwgNA03TJOp2mnuKxNUu84ZewqQznyzVGzVV9xLhthV4vTRMDHp16/LIA3maLF0KaEqiDaYR+ZO+VFp0bsgfMgsn2mte+Qlgipr4BWfg+DKvDyv5LpVzdqY7Sf85ZkpLLO9VeHFYMYYB9I9gbBGhgm9MwSzEI40e0dAgGGzCgeZ6hAR+6HmdmzloQKT2TvDqIAKF2ntnaG1TMpI/2SiTkMjMCePETbqNFF39GG7pK5/nNUnJg57FZ6jaotg4hF7GD8bB6wGFtc58x48re8lTQoCcqG0DZM6521C27OOrjioMJtsTKgQJuJ2FnOjNhr20NE0DngXeeNpwb2AT1pYRaGpHLPBmR8mwgy0gqcdNWmJxyJ1ofgccZiw+lBp5Ny9ZCya2Uu5MEhwupT0MvwCLrkOBcdbccoKcRIIFUgcAuQNrXnAAG9OuVxFeqF01NqkF9PMci3H/Mo44W4aCHLrwt4KsJCHISSAcHlF3dJ9ZXhqkE/3TGfhPuYnUYZoSml5dqN9pHvhS9Ze5bkmmFNhPJC8YNogWGHvwdxrJVowZJ+day+qOYJU7w+3BbPDfN0hZDr19FPqDFLdq/fXcvLzGq6XPWGoha6tmZ9c+rtCuHF9aCw5q/jAljQ6qtB4ynqkdfE55bW33Isu1IAxSXxa2mNJABTxBVJLVz1LwfDxezYG51LyWbNlEsFZYbKZIW69iswadGG2CxiJvFgbv6gdHdyeiD1Ijoy42gDWC7sMJELt48wxJAEttPBPM5xIj5TdxzOxyvFSE4MGkfvP1B3RgpiDCWMELSzqRL5lIYIu3YFhFW+y4bjz1PdfBoP9zrxUufdEWOMe1X5T75+fUQwqa3zDcTiNqatRbDTuOeb3DzG/FdZb+DevQf7h7LrkaVuzDiP9FAabx9ksUGbqEbuFudX7ZptPHVOyf65BDdaO3YLU9Xb179bWlRmrMpomr4bbhJq926xOfhYFYs1Z6+Fxma9Ja7LfVg14dLwycD++EjamIRPVZahXgXH6GsjasR0zR/RdWG2jSZ3jxlLa1nxG1xzbpu2tXamEm+GBzJi6nqUpdu1OySJZ6lqjccOpYvQFFLf1hcBt4cKt+fzYaWI2XVhSzkjiigKJiJWSy6SKrCablcwTzJAsG4IXdGPZa6HaWoGGEjWv0pppaZbEGxU9RP5NXnylPyc246+1Lmm8/Ciql9t+jgLKPHMZlHSNV/fl+8DBY5j+JgYDAqNF7ZYoHJVOaECjarcAXFi+rNQyQ72qNWnS3HKNqXWuYdkasmadkCK7n17LejVgtiwmldEnrWSgSQAam2hl2jqBvKhn17KzRe1PXcclX4kchhu5RpW1Dc82vzMTeT7j9rE8zuzAsD+zbGx3Of1Vkt+wS5PSGuufNExkeNEv7JlM7L1frdzGne6u92OUwjKHAPJFBhuFUZPA2cxXnS7gIHKJaFK/93u/R0972tPoxhtvlAX4pV/6pcFD+/Zv/3a64YYb6MCBA/TEJz6R3vKWt5RzPvShD9GXfdmX0dGjR+mKK66gZz3rWXTnnXfSpdA4xoJjDw5tTWlWJDqrsul57fAiWKY/F1RRdSiO5w+Oc6JW/ogvIYg5NB4puYFs5QoX8U/NcG7JSE3t1+zroUHp7xqNK8UPxX4UEqIWUmPCp8X9+CdDe8s8xvyx+WcpFBCMa1a6EuEhmBxLNMjRMl00cq44afhfWXaFPaTKxlB21AAPg5neTTIZWixbvzIoJgX/uvSJuC5jXuhfn6NZeYz7MlFdNQxKvzIPTquJy/96zsakHfe9jcnZR9irOAkxCBago8G59pFMH/6mw9kleZO5upu0mkalGEMDlJHoRtKZ6Mc9DjPDbJ5AMJ5huYzKXJrzzEmA9y9ndXFvWs5HOWX0gp8mv2crsXuOCXWAPfPfY1ognBPsqUV6JHvsWuomqm37Oph3UEZI8D2eM9YPx8sS1cUgfd5KNTL30y2sL5qYB5BI2DVbnG7QvtMJBE4D5ksxc3QJMKkTJ07Qx33cx9GP/uiPjn7/fd/3ffTDP/zD9BM/8RP0x3/8x3To0CF68pOfTKdOnfJzmEG98Y1vpN/4jd+gX/mVXxHG99Vf/dV0MTcQUMm4MO2ESQHukwbVhSVSqWQbCUw1QzZgHuU0LXNiG1b83fkxzZgd8TPCpPACWUZ11qZYCuPxCFNyZmSMygJehUnBAaJbUS/OFkGYJRgT+c0WxqDApFAjyX7CYz2VvnIoJkvJrnGl9xUvf2ZO+A+ajS6psYXkSeaEc4xRBfV3AupYJwQCTqIrg1bCX70njbA7HIc8Afy8zEYoAzPty4gkH2MhQZdBg1qZUTlRZ+JgUoUsNRLMCtNBDnsllBjJIDmtGNvNhR5ZD+yO2nXVGp3A4n7QXHEssZICUSbtIGxhHOytLvD8AXQXTCa3ynjWNWZSEY6R3zMrOWO10MSma3uYHZWcSdm7VpwlMkMcKBVVa/Ocl/Z8MtOPZ2BrnhxzlgjulkzlcPCEY0feo7HezrAcOQgouTcHGb6X2iPhoQmnl9DMPGNGoUsRm1jeNTHKKpOacHZOoUEBU17UcN9TnvIU+Yw1XryXvOQl9MIXvpA+7/M+T4799E//NF1//fWicX3xF38xvelNb6JXvepV9Cd/8if08R//8XLOj/zIj9BTn/pU+oEf+AHR0C7mxmGzzBTEfJMkQNloJs7yZlKNxDaj7yyLs0jSXRvrIWdZtgK8sF7fye0t8SKq9AeCi81Zx+zwow5BM5pzCiPDJvg6YUCcdNa8t8Rula7XIlJJkxqib8nu0iSJNS+49u0oBn/cp1QqHm9YQ70esA0mh74BM+rAx5xTqs2KYTZzWjDCwD+4RIoyk5TiJ1Zm/SCzfiFEhmPSht/FSZZmSsovsFCwHMaOsSCS5oJ5tFjOEO5C3FCGznQXZQgq7z9lxuPQIISG9fkWKqSGPlunijGoDcennMpf3q9YN03ykJ1IouR9PNtgtvs117IGNq7heDjlmOlag2rDgGbZiURg15RFw70vLeEw043RtepQHw6xb4iF0/Rmek7NmQgOJmgg3jn/3rm9Vj2YIFfZmVblEnCceNvb3kbvec97BOJDO3bsGD3ucY+jP/zDP5S/+SdDfGBQ3Ph8JsaseY2106dP0+23314+F2LTZw/5/8wSyeBFLxrCmW6Wa0GFq3syO/jPapBOzGgwmMhSBDuMesWnhKjuNAFKHdLqfg4I5T5nCIwdd2CoDL1FSAaE2eedGVxz17XOEkNHgbExlvkWiAtwLUjkulbhSFNbGgbWMGR7gK2G49Cpe3BFYLf045pq2EAGnn8ZJkrLtc7Lr/2khS6zq+dnB4E1q1IY1j6rx4R9pqmgzEE2GeOwJjHfdtPnMWgQ7tCtfOSugzEIo0j3xXzb6wZrtaaVXdrVPuqyAdqu98Y3rWPQYBYoOS+psUyDpEucSTGD4saaU278N77jn9ddd135fjab0VVXXeXntO3FL36xMDt8brrpJrowG7OnuRqjxdk6pMRyVuN62v7eQmJjG5s1JynN3rFzhGlqGbVudhtc2uUrOEnEsE2SNu2g72l3uaKFQVICYRgUJoYqjp9KNicoJCLcO/TRlt4GtNmLFgBoQiXEVlKtDCfmXiETdqeXo4DV3ItrSEjGaCKYmxZFrFqUwidRBgElLUDsxF7E0CAq7OE6ycPHsO+EejPUj3OqwRNzzXkwDpO0Rat2g4w6PPAxuQZJEQuso4QLMjK7h48xB54nNLO6dI3jgd2LNYJ9y3aU+WqHfD5rnW5U81itu9f0Oa/Mcaen7e0JbW1zSAQcAxKK4Mx7qNnGvtQ5ipbjtqXxZ9GOtyAerO3sl10D47BrppOp98/Phf8evudJqx1hbAMzoYWvZIaMbdBCnbJSFjs56dmpaiVlei5EuO+icEF/wQteQLfddpt/3vnOd9KF29gTZ0GrxWkNlHPiEcg2fgpT4809cIrVptI8CNiofOpeO4j1yXHyuUfYP7Rf/bj9iZoPH2fplIctdifNIsG2KckMLt5GwaSY9DAjE9sUSqZbmQumfQ79maFEmV2eY6Ppjbgqw6mhNjCM9vdkQRoD5MU5AlBg8uAzJqrdVXuULgwvshuN5COemY39q2omBqUld4aBk0J96L4Q0GLFVmU2KvEI7UEUw6bo9kizQ6pDA2xbynBdU7ALtJKrEWTLjSj2MttHGrTMzFbdE7INSmP/JgMnH3XmgawSNjLMeUybcBuNQU/y8SzEWcMD09VkxryNumlPs3knH3UeCLUxFAzPMd7cn+1ZaT6NUFRtSGk/GVyH/3TNzEkEQeqNgNl5pnuzYXpG+gp7tvtukvMZWfYSvNtJdisSo9qhOP4ykBOvG5eIA2zNAuuutmi62pZKeMhtcUm6oB8/flx+vve97xXvPjT++zGPeYyf8773va9ct1gsxOMP17dte3tbPhd+MyMrb0ym2DMkX01Qh8UjKPnC5rfy5N4PUilFZgMcV0LBGx2aWtgcUOKB8+O1zRlj4kZZQtFy1xaQakI+MylxkJD6WOpAwdkkOJWRKAmGJ3Gmc7wnHv9uL6d7LYKbFYgMq5ZmGJbddml9hXUlEkSWzlGCkKMZ09LlQw475hMy3IX+M+OzInheDTWFDthzUYnbMlSjX6mWamsRN2gcQOx8ewAZppNS63b+1DKlewWHROyF2BhzQlkM1YZMOJHgYIwJxNxsI2n/qR3D1thE8WC5sK0OnxH2uGS+t9WS9bM96uS9sTmpm7RVeEZ2EX8cVqSseX5q6OfzerNP6Tujawwcy5yT8DwzVYebtmV3gFad91kwpmbfNOMwa5QJYinYtmmSUNjWFO+A20YbhCU7FhG+twEMxdmwb2OQeDooFa+PMcrMy3hSSrNJP5fK24oA7dWyApeSJvWABzxAGM1v/dZv+TG2H7Gt6ZM+6ZPkb/5566230mtf+1o/59WvfrVI52y7utibSJrTKc3nc6Mh7XaFNK/axnKxosXehBa7E9o73dHe7oQWe1Milmr6uXyvxuDwNst4fYaE8JLVvH5MHJfqMm77bgVvPBuOpZhTKVTUIv25XEzs09Fij2ixt6TFLv809/MFCxj6k/tXzz6Dp8qamKs7Z+CYKNODQsLj2NculI+l9ezXnZNgmTEPM3X/zrEzLe6Jtzi9zXbDoZTtGRj9OZQqrvu0sfG3dre6hipV+/MWeCrHzZlQIOtfYVGHBH3vmMvyqG2karYV8lJYrOy3M7SiGTdacoFuJ1OBvXSszfcGYYFpSM6UfkqL3Y5O3NHTHheUXakDg0LA5twjjjz6TJQrKaKh38MtW/9eZ3dDuMB+84snGpBqdoAa26dw6ll6vGHS+vM1fXTvoQtlH5rDjK3dfra+PGbAgsK4Jlw6nscRmWouak2K45luueWW4izxute9TmxK97vf/egbvuEb6Lu/+7vpIQ95iDCtb/u2bxOPvac//ely/sMf/nD6nM/5HHr2s58tbup7e3v0vOc9Tzz/LnbPvtwUf26N3wluKk4GcGsO+Vtpa+R0Gxg+U//NF1GDSXawEb7EDESCs1vFHY0+iS8xa4KRpkiCgw2+4+8V9oODs9VXajuqQ3IYEd/mD1Zmv+bzT/cocMe669b2nwccjAbEI1nJyveAbobja9VChP9WjS2eY5WaUb7cDng/6nY/HlQKSTx6jNRauY3bRIfPqI5v2AfcoQdzXnevZjBZK2nPz/kZ0wWlyf1cc9VrVPjS1D/ZVSQvZQwmDcsIteYChMacBZAxfaU83jq+NQtXPSlrRpnRIGRXhiKZbuf4Xl2DdPMzvEF1b3pyWdPylVErcnMhWoDuNpP60z/9U/rMz/xM//sbv/Eb5eczn/lMetnLXkbf/M3fLLFUHPfEGtOnfuqnisv5zs6OX/Pyl79cGNMTnvAE4f7PeMYzJLbqUmhgSHnP6iaVGrUO5QgTwKYpkeD6O/LvCQHL0eNeOM+8inC8GErDyK+xJBHD5CVAuB/LLSixWxaoylpRv9dRv7uiFUt5UlFXHSXYlsRantgOFrta3A/vBhCWFlbz8Wky3VUuEijQ0NRw/P3hBfDv1sV3HXGuGsYYE8nndIOMAXDxdQLA47aEhANDfBIuIAmXsQ8ElcQe15S2KHBPAYKDGGdmA40j4NR0zdiarcu6APJv37FTCSDYBtwrzHv0XvaP79P6TblW191CBdpxOZOPc3Rf67h4z/IOkLjBzGgIBS/Vtuvay8oC2mF6kSgEFBqtNa0KGmLvGRxk8qZT+FH3R8T2Rj/Qcmu4QySWqCsaa9enrOaxbBEXGdvaYqcs40S7hJK/z7co4uyYTvQ04dycbHxuigxdKK3rz0Znv8AaQ4js5Tf26tzTbbB43Q495viEPv9jOpqsTlPHcRzJQGmcQaE39UbwdDP8KBBkKRvaaShykwWJQ6aIGcMWKT8fn8eSh/w96WhruqKtaU9XHSY6vN3TsYNsa1Jnjem2qld8K7ZjMZPqFhPq95hRKRTJ23a2zYZeLv3e0fKUpjKfHVxQPzXDFtsEHD6JdfEnIxh9RycWKzq1ILr9FNHukmjBBGOpL63YubKjgkNocCcfxot591XGxUnl+cDOVC51HhOxV+54ku1GcBAxJsNficNET7TnRALPmL0hjSHZ+XoeahdBczBHEC8jzmttjMacFSRDic1P4RxkLIjkxEVXtBpduK+MRoJdbWwpI8FwHYKJR3b6ykyr6lq1RCF5gKStL7dceZiEYsqjkJTvcXuWrhnxVSthNvOtYKAL3qfmmjHd0ndhd1c1K2FaeFls2Kox6TX8bvE7xzk25TVDsHxK6ozPqklU6+c2YRTIBoO1ZQ9PMLnYy5rKqczfbNTKOKonnsyvg87IIm4qGmpKDzNr8fSdWQlsnuVM14O99bxSM9vHOcn0fELTuQX6z2c0nfc0mff0vf9tRa/76452+y1a0oJWxBjq+W0A5tkZjrMPrWub3H3nqpknlRKlmlNYHR3UdVYJRSaWlSJkLyJIj5lQ4tVAyhxmUvgO0eXer3usIXWRwQwOE1nf4ummJ/YMTy861fSgdInzh2bTEHzfskrAQ0ydF3W8zEvyOxjZ1VI5CtBWlIdPxNzHXrSPEcaVgqMrI2oUnHgI8dMHUu8HP4HyQMDA0mGQaDkqVd8bOM0cWDJJV2KZ1cyouySExfqQYF3YSSQflWq4YFb5Z10r1c7LWqWKyeEMovsvL0mF2rJ/aJprsZ3Va8uKgclIIKw+c39K/lyG8GVWTKrgqcyLmdT2Drv997RasgNPnIEMJ7BvZs2Ds6x49WPbz0hJJl6m6Rm00CA8T5UBx3zZkzXMRfVJiPMMpos5ueNJzEyrGKg3or/XjRIO0au3AN6oWgCHKgQcs3CTtarKQOH56bY931NWxgfnjAT6Xwhtw6TOYeOtyKUqJh0btjUVjiQd7Se0lFgMPsu2qyd9tJx6XvdIsWEJTjSX72BUSPcj2BOtOK0Ji0vIRcnSkbiOB+QhxCKnLZJujXgYMxUVf8F2KIbxzEDL31ihRPGjQCwUMyTzVnSiY9kmsq0LM4UrNWsee0vSj42nsImcsicFcekUauaJfE0+b/A8Kv5XDox5VLXfVZ+Lqn2oYVxTVIX9IL3xdo1K54nijLaUJqeMX50eZiwG27h4H7EGIKmIPMGeMUVfQ60jNPDYB4SVC/H52md723p0opybbTfFsWRYimXdGmeniviuXida1LyjnYNIx8WaFK9tmn/PaZHUfV73lo5DGBQzphmgP3X86dvsJKMWohCEyphHUN0iDzVrhT60jMmai1Ih07YfNMh3ufgIUp2xeWBQfTdd6BqYjF0dR1i9YkFmkb1wC3u7MNqGSZ3jxvAemAnouMcUCQSQX05AIUrFSuC6BTuKEobEftaQ8sWEqWFKoQwz2DjEuGxuu15XSb6w0hvm3MNu53oTy70KSdWM0zw3SHeQelHlFccyP0AeMyhPDlA50d6Peg+ZCtYOx9Z5M7V2GH3/mrLA3m/mqmdu2cNQn1OVpke78Qdi98dCNXNsjfbj8XMpQwJg3mKHigq8Z5rD8Av8OHMG8Dzm8neer5+jdlIf21k3yz3IUBVTq+S6La79sn9tJYx7ZCcQcfZAvJAUaeTs/uZynwUfczhqRxbONEm7gg14kI0jC1dDW2PbSizVyH2FJlDWVWPf+d2abguSmAEBPx+EI5hyCIJnft73RtswqXPZBErbpclqSl0/F5uC2C7gWSfYi+bdik8yVZpgCKIvhyx4kV82jgp3t1FhThPqBHvgJwkXZMTQJAmXOtrbW9HeXKVMyVDBTgxSioN/rqjn2OOlbgjRoNSwJdeLm7l5/DGT8nIAxk0FqnJX3vpySOBlCvK03K3OrQKGssGeRYNkGs4l+58PguFaBm45crtaStAgzSRBK4OGoKF2GGG+5vaNNQjNRLNBQKv0hbEgYL+r08qualbm1o/vNFEsZ1zAXkhZ0zPTateA/2MbzNKyK6xxdtDR7G86b50uwJgwb4Wl6rqFfebMhLCRI4xB9TSfaxUB2WNaFUXWfWFMijVM2PVwf9aaxG41VVsNX7R3GsJbjmmqngj7MdKcTQW2Js9e74LHeg0dv5cMHoxeJJ+F3V195tszC/YHDGzCqxwrCmhdNNeacD/eR5ZKDXAhO3ookmOB1mu0yXu7bZjUuWqlwJ2WkG5LosMwrNpTENgi0bSb2bQpGFD5x5zxbKb6cguGdbRkgbx0/MJaElK5woKJF6uJvMwMtc1m6myxe0ozSkxY+eP++H/NVKuMSIxQUdRBSJHFmvQMXUhJ+bC0u0EXU4c2BXgPH52t/CfJWZ2BKAMsFKp4Ktk18LIzm5ES5pSjaYToYn3D/JSIE4xRLZxo53sObJbExVGMoTZjMqBrvOZCLKFBK8ypzy0lE8b3DuWGhunjs8hqVHTWP3PSxQRBZftdgkp9CThkwDJWyFzAPN0uFdkzShC0Z3Rva2FhJ7DmoZCnPvtc5hkwV2gbTIQx6hx3VeHRrEHE/VZsyl8S3XVKKK1lqrdnkrz8csiG9qX7VRwZlh317KmT+UeCPSfybDX2zeFCaKhpiLr1osKx+rlYMmZ+pmnd/CY5uNcYIbKWK2ybyiRanN+UHSEwRsK25VVRRwlTJKuLutiIs23N7KXMnBLcx8HWsrWk6oHuJ+yqCw/s2zCpj7oN5SVLcpTSBumJSFcC9/AoOoeO8uaIeAgxAskmg8QqvwtRDKipzxmfccA9g5hI8MvX0YJfDjtnuRupj3A/zfqMQZi9qZjsuaoinAWcuhXJzVE8a2qTgkcjPpVawCVXIYcscWbGoh8Qdw9wlhNxnRHGLBWve3Zeg6kKExk2iyIN+E+ZzypzZBjSUyYBvSb6TvkWUrqg/K+tg1MltVvqWraxMQbNeAaJ4M+YV3EiaWCckPVD43A9J0FQddxxjT2FAjn7UviBugnUwB86apUjmucdHbnswMxh97Q5MCRPOt17EXuoa5Ofsf4URws4A6V7FgHStSlcXNc3XxUogN5f7L2Afs3RIa9ni8NJXJxoODn0IrQxVBno8fXAOacFmYNRlZXFMThGpOOeTsuY30iSrguibZjUOW4IzNzdXXjpdY6EVw+/gD3ApPbrI3sWgYBrKsDsEQfVBPnVDF+WDd5Tx+6mbGifshv5ik6d7Gl7iVIGU69txAXjDF2S/jSFSzTWeNg7kOtSnQViYzAZXHt1yIuVOk6YImRjDeN1a5M5W9uFnlbXU9y3E+d0Aj56/fA+wgjNDRIelwuKxLguSieYa3xsYKjjzh8YExvV2/MG1yZty59vW20VfTb3w1p4wckzVGZomdS6e4zNMwftOpwLqd+VQEsjxQIUw49GTCVjhAhHWi2WhY3l3lQ0fU41hmKdcB1vxwxNbCwB7mLPMp2wJgZw1MYHhyBBOdgBAzbYku0jCD32ACA/fS55QEmIg/NFYZ6NMJDtkHB4grTTma5jMKYWYLRrzWGJxytZJEZw7Bb+1YTEnPtRoeiOK/PCBg2PxwuobZjUeWxusHVnidCa2jaI/TGJDsURTeY1iCvkWthZmFchsxzDUdopoBYl2ryRNY5E3cklNol7YSwfL78VbuSLU1Joj+tRWGq9N5RPI93bNTcUQ7QxF1QvuzXbu30muS7bhvZr+45zLNMBUJnSx9ARIQzibXqjpCiWOaY0TaFij+6HdU4L8ACLqJ/ou/6s9819thkn1gf27tdsV1ifkTEjEWfXzkILDg8yey9GFx/nwJkf9a7CYWjdcMOmN5xTDf0Ya+YJaNoZYOhwrshrldRH+7LAyUAFskbbjBN7ClBu1qnz/uhcGqraXZ1bhbUL5FfuW0ZscD3s5AD9Lqy2YVLnoankpXVuxNVzQN1SFcw1BeSgUah8HTs/ssUB4jEYivOqJZgFG5+lVCnFMFlppvLlhJanOvl9MllKcs7ZPCwAgvlb9L52pcZ/hreYLK54Q/PYVzzHNS+MSfmCsKTqwoucM9C5VQRJOsEze9tYz4D6/IiX/Ih1K95UDa1PNNIZVHVaqAwiMwU3XWX4p3HJLs8QwblFW8QAamYJdrA5k5SN+l46lvEqqurAAQeWKJo50OJGiOb4iufonrO7Ru+XCWIObM1as+0v52JpZyOvniWfVe0pl2ofCh/BoKy4KFQhaL4eEC4pKuIagw8RJM3vhNoMLW1S0tCAIof2Dg3VtG1+sWBBMvtgs2XLfWWeWBlnfvoRrW6SYgHxvTtdjXPAwVNJjNPDO/CAZM6qteq6wWPqwmkbJnWOGxukp9SJc4MYeyygEiUTwA7YM09LIOAd6rTqrUthiUm4JxEfiHIPXg/UmABXAJVzxUtIrSdSekjKOuhJq90VLWczWjIEyGyNX/6pek1pgJ/ZuiQ4HoEXfM+FvLgLNsSL8wanOLLxZunR5pOzn7PRGzAfXzHlkbNBG7YCuW8EH6MCqVsAMG+49ieXY0eT7GbFnRflCATOscBMe0mVsam33GKJ1D/pOdrfbKRm5hql5W1UAgea65mVYhE/TRsrlAQ3wyE7txPF1tvLbI8MK2EolklES4RgZRlGNiHGqGVxozbmiBIP8nzdSIasF6GsQDgvjAgP1H8YI0k5CFXr3s9N3XIgWqn3Pl/r+XmU8Hvgs8O9DJHr0rIgtMdpPUwLChAv9oaFEvrxFTMhGyP7SkCyQNoiLcWOQF2MP5xx+F0R/mGF1yqDt3RLqBiQhiOZQdJzz7nwB1pdUhizk3lk2dC62GRqI6A9h//97Kh5Fj3ntGnm/CQOTyqACi2QsnAL6wv52dVr8EwIxj3dNkzqHDcYo5k5SOE7vExe1sFeODdaBwysWD4cCGKrtLZXfYGQTsWkNrjeSiZkJZr8U0pP41Vk+I0TcrIrMuxWlk/PstLIS+b5Jq3QH15ouLiLtiL3GIIeye7vP/kaZlRgXPFKDLUHXwmRnFOaHK/hhHgOe3H9hUW1rBCcAx4Jm4gTXriH52rG+8b/5KTABtNUuddvLOtjRhN3TXZTd8y7enHWdRyWkk82CydmCRMdTAL3ApMCNc8LhLkUDKgwJ78TNIkMVe27bhpIK2mcmgwcoRnav9nJJeWlFLfxqaY5UltgOJIUwLKghiilgvmHFupTdCHIJiz/2zWhrLhHrexV2zwox5LnG4+HCwiWhCo5zXB51jGWgCUdzygbqx+BiEMgiWeSA7Ez3YjaZT4x/yjj0pyiF2ZVXm4bJnWOmwIyI2q47x3Dn614oDRxWjDYoNOcYko81ssz0C7U4M6bj7UBbE54EE40It2kaVTh2JUAR9ZoJmpA5yq8LHy6htLRbGtuMpqTEmc4UmDRvJlguNX72rgNj+dz95Y97S5IPnCg4Iu1EB+I/3CePv+mxLl6Q2XmoesokrfDKyMkdIRSwI6iKWpazSYgHk/Km56jxoYxTBclLPOY1z+3NaUb1pAIj9vyMhezqjEWmAz6QHVDRtVXrYwL4bwREJLtBUKSuJFnCDQ9Z12GuEnOpqB5CG08HJfl+zKpD01QL6BPL6iZax7665SyoKckqZGT0OaO9ZQ9rvfhOD+MQeyvA8eLqeSqZMGIy/4Vm07SouLY0O6nfwechn2oxQ5jfmD0Y1ktzj6QeqUjEoUZ5Vgsp6fYmKG1anYJCL+YhoxBst6geGba4xdY2zCpc9xcXk72C0pqvQv3cdjhIXf3LS/FuL3DrzfJs35vkplsQngeBQzBjIphEK2gq7nQgPVrnMWkwTOSm7cwCgsaziiUCeoISFQJ3nIGIk4qSYbx+8icRuAG1QZabWsfpwfXmNZj9KmrcmzciQASP/4CBAVju6aPOtvWOi+ACfl4kvQP+6UOISiNBndmZxrAn62DC76zfHEm4LhW5N6i6xYstMdYn1o2A3MKd/bQa0MjDth6HQ12LYz3F++ZZGuU0hqmMddHlO+X1fvQ6jQOyjSQ1qbTMByBoO36UW9MuPiP7pNg6ilm3b8Jm2leudEekkbU2QYJB4cS5Ye5jHYHySLoxOit95eJ79W2YVLnuCHJq7vaJqM3bCntXhCiL/m0ZlXiHdl0JbVolkST9iYSsCeUbBKGso3IIL0lZ49g19XkqCB8SKDK9s5I9cTF9kIrkvy26aUWBmymGYH5zO3cqn64y7m8vEYs6xuTCE6CQgRmNEYeDg4MvSQrReBJwcAgHGQ4qRHO8xpmKRaS8ZhSC8O5nmJQa4orA1ML1/FU4TczGg+WHW8oTe5P0OBWSUQrf1gOAdTz8+wBYOrOValjjWqpRQAzocqei85EAFviEaXF4gwJPF9I4D52V/oSvMSu47JR4uli3tWOEs4zEo3HmcpNopJjjDZMp7RYLuQ71apj1ULbFqtSZASfaNCsjMbiK7g8vdqlOsu+gVFYhnvfz8YQY1v5vfj9UiQgadE2b2VOlrFe1sugX9OYcm7K2E9Zq0wPgxJT9GB3R/HcK7ftywVhrwieBSELiMyM2bTXC7FtmNQ5bLIhOT6elRB52bnCLgXeLBKlETVcgFxnDI9ZPRi2N0n+x1yNtedI8yh1LZczoQCG77i/2osEolqp5CzJJOBlx9IYM8tuRad5bJxyZjKlSbcwd1R2QbfSvGkzC1th5sOpmcQnhD0yspanb4pUEuYC1FyeYtXRLru7C6GCXcEG729/qz2Cy0VaIZ0LvBgZ1jRbmcS0BAwpvZnjiBItiyErWi2kByPiph2FQ3127IZ/hKau0qBo83J0xhHjB0SlBGII+Vb9AtYTnSc/A+/HXJcBaalPhUGZyVoPe5cSXnfJcal41PkLEJmkxOHHb041jjjB1te4cTcaEh9mYi5ocxLi3U7apUfpqovuc/Skh80QCjsjymDwOuyp79F8qumDJL7HGJNmQ1Fbkvmb6jPJ2p3EFTaLkIodMhdEghMt3ptg4iHCJ79ynOAeQ5hqnI1Flv1t8UtysjlmcOJbRxxs79q7ngUZ7N18L3TWwWHCIiFRzsdt15YooDz3pEkK4mGZ9gVdkY8+e30O5sRkbHmdvfHeahsmdY4bkqmGphBOC15fx9+XqqKrodlYzX65ziAxuwNF6s9NtZb1QrwKY2zc2FWdmSC7PbM2JUTEQ6siP5g7wAvx1fRKTsw4t4rVhsi6CdL9sAYlLudii0KhuGYOa+JZ8jkhyaNiLrgbpEwTDrIUmDMhOHMIEhvsJSXqzQBKKB9GTIwgiD0Bcw2TeIGfki/DmNYcYwwGVZYFVA7G7gLxlctDS4cGknFO+SI5OADiazllSEsR2+Orlgg8mD2eV3kmTYNHKIivZ86w870vQxyECCujwnPUtTeFCPl6CqSXvCSR3zLd3jJLJS0YuwAnWedG0TG+M2FeePKt/uvZRjKRdwg2Bf2WB7huf9hDajhml0oSRviCnWfoRRu9mD1glUHHc/Q4qdQuNAbFbcOkzmHLqIiWs46mm8qqcoJkumdaOACoVAzJuGoZOZW/O60Zlci+PsxatNJuNYaLMscE3STY0+Zux/t2R1zVLXWMSas5JY4TYnvpJXHnXIGNVOyX+slM5L27Ti8kTyA+rM0x5CfSuyQfW5/LwJ0LbDH15Q/oQyRqmRDUp0yQVBrX+yiTzaXZPaXSmlLr0PbGGERhOsXwlaAUM0RkVtqn0h5j3maaNDYFxkLtHQgATR4iLLxI8NUImuG8THfU/hTEXjXFpYQjTGcMN3P1ZT7F8vLZ9XmdsJ5chibPpqJ3ldihsGc+PJ1zMUN2/gG60NFdJ9URYtLxeJSocnVgyUrBzj2t/SX1B8LNH0naato3Hpcnfkh2UXneDtHG8w4YD89PvXM1ObNpY/4+mCBjMXHKKkaypzewni+XHQsHipSiSZreKGC/ERUvwZG5OUPLaY+8oJy+Ryig2ppJL5S2YVLnuNVQ27prxiTi1g7iAM7I5i4IRGFwKuULzu4brbqUQupSiU9hK3Gg4KSziyUxv5F33wlfiq/xPgLT7lecZokJgaFm0rdCLprbDoGnILJGTMUwzTaGcSUx1m5kbd3oHfKsISapsGSCwxKMEvagKk2oQpJiYXz+VVtzR49GSh4Zpc9B+dw66TxDZ5WghYZUPQxcUyoQEf/bpt0Je4+7f6d6UarJw0ikrppCwoCOIq4pO2MkIpjhXWcCvlUi6GJ8v8fyOWIGz0wmmAz9mXMHGEteFjUrRcaTDE1izdo90DophCdevEtZI8xPK+bcMgGDoqserJV3B7NOGmj+O/3uY23uSY62RFXeEB3HX6A8VghL8EYtSa4lPVKEvGwcJy6btg9Mh4qcJQAzXWGJZMXigU2ThcYEEUCGxXHREDhAV3GpsLdkycv+FpLEmo3s2ZUUOpyr+kVTqwIr/VqVRCD74q4qRIOrrE2t7IN6T8DDDMyPmRQnwRWoz19CxST4ey4OOTT4jv1UgoiXV43OQRpCimWsn51Owscua1ABTaGaMBKe1lx5rX4XThoxKHiYjY3doZkkBUNrHigYjeG9dQPOXnRrIb+RfTYmUWM9uNClQ50aumpVnnntxi9UIod7ZeYT+eXA3OQ+5pgxE83MSlmkzQxX/aVE2hLNhTmpC/V0tqeE1bRuJ7imge8tOBtKrE+rmfhzNGeWLAjgXZI96/0q4iCQpMMFjbYmxUwRM5jXOcWQJceJ/Voj98W90n6V0hkjwmHnTwMon9oV21aZXNxDNSZ4IJmNT1Ab3dE568mF1DZM6hw3ZFSDfQnOCLkNYAAjjpEgEjCMxVYYxpZ7kfiibkILS8M/s0wX6mGWPLPYKMrjMAlVMl2YtiMvu0m0bNxlX4ht9UtSDyk2KklMkInKc/Ua5GSfC0vE1+9NqZtyvQ8l+uwswalhNAWSEnTEQ4FACb1gPwyJhJdB2guePPL8bba4EniTaTr4tHY6/ulM8VVTDMxF3qrkIU7HXdntOThOAnUJf2rQM5g/E1C9IZwq1FCSi8SxcIC++WXXaSn0CjdkgfVKbSueU8TQKI3UchQiTIjHYM0YXqT8EZ0TY0BNMbkUtbugDcr4TCNjjVfc6NT1AJaK1GOyw8WzGo4Ge1s8JXStDeLMA86Z4kX35X2ypw9tMgNMa+M17jTfNiFBKhPb88V6CnPR2Cp5DiHS2E3DIQULubTktYocYCbA58P+pg4HtgpWt01TjylErhlXFDZznSWraCNavdvAEpYKpjq38hyOE7DcObHLJG8mZ6xZr0EhW76srcRMISBaP4VpWSo1GYGs41KcqlbsvbsfyHEvtA2TOg/NSWJ62u1DX+swIIjT4GyH1EDA8aJDG4C0iXQ8UPN9KOzVl4JSwUilmZu4OFr5i67GK0m9w9KWfMEOF0aMZUNzXauOJmLD6jU3oNmf4KIOnaNK/ci6EdJ1huR8KYTR6+8lT6Alx21kaFtXlOkI5wLErkGTyfYfFwKafjBm2LiGal99Pslynidg2jGcRlpHkSx5J4gx6Jc5vSUCV9I+pfgoZ3J2KdZAHpue18YvAVbzYnrNAwhICs9whHTJkFuyZmQ2zRMn+74EHGVB35Ls2GP+sv3IHCssDVTAmKG9aaLkxknBxqYaEsaX9lxy/fdpJczPx2GvjAcX+3OLBVDGbK7s3und1UoicLpe2ofY4P4qWWCo8RFDbc8YPOZR7ItmHUfIQkn4e+GwqQ2TOsct4lPywSByLS7NjaEEblrhM8OAwTAkdiThxlzKQIg4lxXgHGUpuclC4BaV0mfiuqv4iZtbrCwHa0Nqs+5pd1dhOkVCmBktad5NrQ+GFawMN0OKfLNdll41ZQxLwlwQcCHl6UxLs0BhvLUCY4hQi2J/bTXa4ZLJsglEES+vBoYGNKrJauu1KmFzReGlugDP4oWOWlS0jx2D0pgNnrWsBrjO85yiDxBMKyNRnzETUpT5gINMcqRJEBU7e0gWC3GRjvF5dpLG/tL+Lsb3MQk+N2PkIqjAaijCh66S7olEMJ0HDWXscEwYY2Ca2QRaZt37pnVxQc6FOUlYnkRoRVIN2q6ZTTvams7UDZsFpORFx92wazivnWT65zAIW68M08neNJdwJI8t+yYl49W/O9ra5gTMRHfevpR6bKL92nl7e5rPMol1IVlk4TS58yuCXtVLOJXkmL9YXyo2wch7CBmlMm49B4JD3CkXPXQtUuNcLPxFn78pse0rda+2DZM6Hy0Z9+XPM+LUGTevDhKiQOB6x6qzRqXnI/+eUcskkBtABQjKYkQYqgBTk8wQYpewSr38nWlosrm5ki8SU6YqvHItv+xLDZhUW1TNXVYJtmlHhv8Xe4wzi6o4VJpYiW8Nuh15DHCwwJo1z6IlUvm6nFsxP0s8mexcoBpM1c4y88FaZOeX0lu6Dl/K+VbTqsTPNHupjbHJzg6wBcHTEwTTT8jCAG8N2HqSoDSy9Pu24mYNhuoa30gQr3vPWRAtItLSPOQ4x5I5NKbXqkdarnsGz7tqSxTmPWWPv9hckYkFQkYrPMImrMLZfIsRAxbs1BtRpsVekEnzxTvhv6c1y/DeqJaSMnGM2dkIsVHtZTmDBpyfUkKBUcrjF6iwpLGVSjMkNIUurLZhUuehCW1FTpTUgmmkrWM59bCjReJ0rBu95U4NKjOIRKQzEKUEn+nbGtoHeJek7+GgQjEGc741lNFQ2I7dfGdsXzJ4Texqy15LzuMecMEVu42+uALvWWog9fCL0vChayTGk9x+CzFPL7xKmDlbhC9Z9c7Na+wvOKLzlYlq9o3wFhPiBpuJGnCMiMfvdTwJRmru50EFiYEMmJS70sdzl8wPkKKT8RwsXgsvqsbhxvMRJjXQltI9RYCQJMNp17W1siyYFd9rWfP0fVrmevdxDTgkdkBsa+BtMAHTPjl/ZI4pwi041k7cv8VeEkyA+5zNJuKhCicTOS4Z/tHYzV2dLjiIPc9chaWUwwuvmGcZMVtwR7S9MxFm2e9ynkgLGD/Fg0tCVoIB8zpAi9T/avHTAUraLFAfG8Zgz3qGBucmeNJKnGSHE19qmV8wtWJbtYO14u+F0TZM6hw23ggCmU1WXPRW4ki8UKC9ABzvwTvP8ecG68drxE4QHjVh9gTsOaGrkiqGyyAEdi6OO/y9ODGY3ciyoIsi74TdcrhJ0GNHPdeYWrLnVy8OGPpCmdOETWq1x5E0RLO5Qomr6UxtT1yGw4hIN5uK8ZVJSYYu8LJkmzLG8v+39+fRumVVeTA+99ucc5vqi2qRgkIjdkAAlTAcyaefDJAYEgOORIcmqAw0BGMEYxxkxAbzB0QSxzc0CY7fbyiQb0QwfD+BiIIfoWhUil6kFaugGoqqW+3tTve2+zdm88w519r73LpV3Fv3nHvfBafuOe+727XXXnPNZz7zmWzg/NPi7UD/hIp2960Ozw4vfwTnEBqAZUteQ14j8H9ANJHZMowYEz+4jAcTJ/TUppwus4X2sUtdiTca4qGOuoluFDxKmIq0ajcPLOfAFQbBP9b7Wi5mqV+DnqzqIjzerOQCw7zqIjupRVIUkm4i76sLFQVpg0GmEFZO9XRDk7wl9TSNGVgYNfW6OacI8boSZo08NxE6HungYJhOCRLh4SgEqn02YSzQPHwQk/g5rB9SrcnJZC6kHr1YFU5lD0i9NGOqOvRm5CNPKzDShhAY9NwixGwu0YF1NYZTVsBYU+M4nSxoOmtpZ0epiAH3qjIKPG5dhMBEQZnZl0U9jNIY5YPs+Ho5l7S9Vwq2SsJ8z6M0xnlbgdntfefyJ8i34hI9o7luz29ty5D9aTvNj1lbGakz3BzayfBSilZiACj8ViZg5oPoQM1Jnmm1Jge2VWcHEUuWIIPZ+QL9Gszj57FvqhKQteEJAO+7rBZ51SkD3q6DPSnJhTIZm5iPy8oPsBkJMst06wyDuOZbXvJ7X+6+vouVYdkFbvdSRdYyDpavCf0d2xXe3S6nz0oDcFej28076kCSpxIojTEUT93Wtwm2LHrIlTnUCsfv+D7fQNCmS8WNdG31X6daWrf1YNPJuCbph3cUB8v9pF5L7W3p8wA8jJhZ6QWah8HyWKjdBmUSg/nkiuZ9zwAufcpBYqasxU4lRUMHe+mpmPfCsU6lw9f5bGUX5bWEd1o84PKmfN/kDVFAeBmJ8bSIAgavO7f+PZ6nIjbK6sTiJUDWvdNWRuqMN4vxUEuyIHP1AnZHeESzIgN7IDNdRVpBQlnYsIBmOxcaqNfh2WUic2jGFlO82MxadaLTJbBHKFdgkIO6zStD0RNkqC9PTwkqWLSsv6fHHzG8ArhAVmYa28LMwAFwVkvK8BlW4J2YiWHsOW8sVrkPv5bDcaFLNhwrdVYcDZ84fXa0c9e1obor2AxBdj8HZHNq8ZgMVe3W+vqkvLs4BOBgBRWD7lyzwPICW3UgyzIQOW6WP2fI0VNQbWzEM6kXALlfwnvANbgdNQQB+U/YN8OTMOwgOSgEW/ZFm3LfItZn/bIkmk5basfzTtFzkC4GDXv30iPaLxCZdW+uMl4N0dq6nmC6w9txIdGBkCS4T9kwMWlpNmVShXrUOzuxUOuDX91DTZ+jgjLGf76WovpWg3clIOe+NRtsT3oURYMcUr5PRTdamk21RMmec6GsrYzUmW5WrMbyYH1watokM+8M/jYVZkiT6WYBiRSTLMZc5o9isskr406AvycIW6+67IehLuD8/IsyBgOq4sRLgfEQNJbKoYYzSg5JuCAqSwQoo/vC5hhTnyOZr7bujzx5BmzCE4tuvcPLX155L3eLg5h3Y/E0tejY1nooeVsBreSSJwCISigR22KylX7gWAgYh12/t4hbRSfV3RATVjieSVbL+gcxFFxT7WHnBUNB1jHCTvfUuWx6/SRjbAWEmpfxcfxMksnHxuSdGZtYU2Syi3dLpRuon8U15K21TI0Zq1w8s7j2JMAKmSST9hfoT2AwjuspeULWdLbWxP1IHA32PRnYukaULDn5miA5liSaTkWsaoXkmckm+hyiBlT2rEDdz9AqFhGlN133K0zjXmwrI3Wmm5VOQFJcdqDZG/ESF4xPeD0kHWwSNK/YXBG7ihWaqkqExyTfp3gItpdE1HRpeDHtQsNASaDcakhZqQ6eA8Uocf6ThAIMT58b5MGl6cULxMRr18xvsTCiTNmh8p70+pMSOUqeZ2PskxHkgqIf872onJT+DSM12TYKc/Kg/FRgMvmkaRNw9IgLyuJ6+VrDM1KWnO4Wz7Xt9ZB4obJUdXPzajG5qYSTehC+8g62QTmZFjeNe09/I9Zkx/ONTCy2b/qr2YcS28HndpwYgyj90i/3Uxqf0suS76mr6voAAOLqSURBVJgSbqwMV7kwowr2GSuKi8pC0rurx0y6+gIjK2xjPCaPu3CaRbxjZWdm713Kx/C1mtIFPzb2mpa8OON4rcHabJSYyAFhE0g71ZhwZ4HkMUGDxvPCM+2DPsUhW1x6x0VKVbOdzWfpJv536eniPYvYoz0HGT97jdMXbWWkznRbNjRsB7TWjAoIhSe/qazE7KVZsymTIQTR+xpIfpNaCFYB0IGEjHN/AcM9E8MEiSOwBB0aqC5LlRqqF2du9ZjYoBruz9cgOSdsRJkAguHLOB7r9dFcVphra6ql0ApnneVvzD4NBkK+EEWKlLXvJIJqTsGElSnHoBXna43vE57vNbu0n2QTk2tiXcFBwzVW+UO9Zpm4jY0FtQ2ovWu/IskzrtOr8opNj0iL8g5tf09G1kWHs8bSJCZ0f35eomARfeD1otxw8+mknqwG+xMso+ftojYc7AfLE9cKkoScD7lCknCqiyEcQ6vHGkkCLkxhIPAT4sjwgFX8Q43FsLooyOwI+ltMsHEHcytNo9sDtob3ulvBwUhw9rHJC6eWaG0wtBjpksZj9X52ZqiVZOQR8bKFzO7qHhifSogh2pksabTW0MEDQ9rYXNLOTKXDeHOGvjmnjEeNV/ulgdDjedTOrEpjxIuiS7Wn9VlIqY9Twr5lwVJKtcHkiVh2sVbi1R+WN5Jnz2PdYHBeLPNug6w2b/R0eX6cWzY8INWTF26o9pZHVUO5D9s+9KEP0Qtf+EK6/vrrpXPf8Y53+Hez2Yx+6Zd+iZ761KfS4cOHZZt//s//Od19993FMZ70pCclPFt/Xve619H50AKAUjmWHMeI0gy5vlLKnUkvelkstYI98jSVvKPsJ+Hc6aIc39YYmU6k9Tzg0AU07mw2Qk4UK5nzj1T1RQ0fY485eQDXiHIKOacrwUx1bkqRD1T1q64uLaG40nTzgHYW1qy8RsA6+jKX+/pyNTteNUwFw5guzKfwKn8l+rT4NP0bCgmlxckBoB6/xTyu/N6Uzw6r5O6+fkm90Fvf9XY/88VG7/b1WIvle8Tq07FQ38yg5hgju/JJ0n2ir+yaLAEYsKr0gT3jyskqrsllj6RbTZ5KGKdsgIIFKCoqGPcy9hPsa7/jkuqu8z4TeAXXH556f0pBHKDxRVycI0rypG7OM3kFbtSfqaGKYqiagRZFcPrHwT7ypDY3N+npT386/dRP/RS96EUvKr7b2tqiT33qU/TLv/zLss3Ro0fpX//rf03/8B/+Q/rEJz5RbPvrv/7r9LKXvcz/vvjii2m/N4wDfuCTdkDrBpF5CQ4ohHNQeaZ/M013NOaaTlgw6TDh4okCPUlybdOZpLqrrvgroVP4tjfYKozeZmBir3oMvhYnWBj0NxgNac6KFGykpgNmrtJorKvRodHtmfaOsgfNggkWSkefL+dq7MxTw7GLAohVy1BPfomZqjwem5eGDrf7ZFUAPvdwZIUJxV7qKlKeiygSKAuMJyBeBbun0HMtYUThQdi5BrxqHgg1XWnxXTYftkMJDsBKqoQBoEdJIyxZBPZivSiRoDrmNygo9EBgUim3WpGLt4SYn8/8BpGyCHBa6SMOh3ik3tbDTVTVNYgKv0FHyQhwnzOUt2COusOVphsohYVVcxL1TXCf3mc9xA/Apbq96iyKfqMoo5iElq2XmF6NRGHJt5J+mAuFnMfw9tZS9h8NR543N9th1IBovq7xKP5eMkeKHou4WcRf83jt9m++j47QdN5aA1EpJtr6eCjiSwl9KBeY8Rn3v9TTTMQKGGPkhC0FUdlbhunrMlIveMEL5KevXXrppfTe9763+Oy//Jf/Qt/93d9Nd955J91www2FUbr22mvpfGuK77PA6oDGnlcba5YR5xItG5pMFzTmPKchT/ZWtC3TmeHmVkF1n3Ryw2QdjkO8GNVi1z0aEWE1VXNbldZ0+Rwn4W0U3dDJha9/fW2pSb1YIgoNeGglO0y1AfBM1fxc1SScV5n5RVbFZpVyGTslWWMISARV1Ey9Lb4vhWP0Xtkw8YvIMjkKyVmXeA6TxeWwzDADxhOiwmNIus4PohuTikdTugSFx5wWEdmj1JVxF/rJn4uSuXgKKVZWnD88VVi48J6LI3o/F4y9nqB/fT3dL/EPM0WXNBjrxHjwIMPG2oc7W1zNVs8b8ceo6VUX4NuN6ekessFqsozwuAueHfT+vC6njtNUf204Jlo/qHXR5glO9X7m/L8pfz4Uo8fQKyBVgfHF8zKDmg2VLTriuqOfcz+eit0pixeD+lrLqSzXDCov07eOyCFNfY4AgeFhxiJC145DGg3XLObYZ2D3Idz3SNvx48elcy677LLic4b3rrzySnrGM55Br3/962kus0x/m0wmdOLEieJnrzaMkXkqEQ0vhb8bDYdqmMyC8N8RGwh6s67U2i6kV0TNU6u8p94RnFbZ8mOxMo9lFKvuwNTcy9P8ffGo2EhJpr+9pEJFt1wq1gZECL+rqh391Dsh99QD4sYaesim11WwUpsljjbXyUaC3iyC65n5AT/yipgnGhNvj6mxquNUw9CFN5cgWL9+MwYVaNPDqux/FjBm5bOu94tgN55b7qveiTypHKiHlKCvGqVLixc3YB6PegTNO4elg1o6eIgNgerfiU6cj5boS8B+ThKw++3rq1hgRWzM90gTucNgvg4KeSb0I18fU81HY73WWjePr4mNFC8oBxJENHjcdOFdpaEyPA/XZe5ZFx5QEBzYWKjeYA3lUrEaLeDFBH9nkkT6T4zjxOAlnG+4Ht7pWW4xCk7fFJ5V4sTOzo7EqH70R3+ULrnkEv/8537u5+iZz3wmXXHFFfThD3+YXv3qV9M999xDv/mbv9l7nNe+9rX0mte8hvZ6406ftXOazkY03W7o0HpLgxGvfDkwr8NyxKUzOMp8cF1WaAMppaEzh6hROPEhsXCMUqYFNXXQcWCcwSCG1fjEXH4ARgHRMI2eIiEyVt5asJBjxhwF1hXUnAnnntBqytRWmVAC/yOdGGR1yUoMVmmXV8d8DYYc0JKJFCy7BHUDJlyg1L38K/KzBpNFuXDZ3d86CCtFLOngYUBHgHiY/KBeE7OwtjYVCkFJEClNsFCvKeCRkHLKzK7aCGHy1CgiL8UtXQCLDpR1gOSUzRhR9iHdi01skdydpI9Q10fGRyxMsGywXrH9dAWscRxWCdHqzdJbQne3ysqIBboZjqJ/7t1mCNgtrCbbySTsZWKUpYqGis8+3kGfNqV3/5yvZ6GqKRob0gq8HNfnSd+uyqXFZbypSKQv81TfpPuCwY4KBC5DC942ezo6rhnWk7Ey4tw+W5gBYmMAXir9Es0mqh7BBnQuyrZ4zhp4mrGXxRC3kCtSXXvVJMPj1bEiki8NjXhs8n2m2ly6JZACfGqq6T5WtOSIwQHCnNVhtfT3nxdqup3mWGo5jjIRWbzEJHskKhMoJcN5WXxeC9gt2xG1y4tp0VxDbcsL/x3ai+2sGSkmUfyTf/JPZIC84Q1vKL571ate5b8/7WlPo7W1NfqZn/kZMUbr6+udY7ERy/uwJ/WEJzyB9lKLuIJOnswIateNveTYcaRiahzI8Zi0ZkZgFC1gkJJOaoPTzh35FjFTZvq2r5QhBeM4S8YEleuG/YsmiYdqFHjUy+tkdZv0WpJOn5UG4abzsfUN8psErQAdvBspVwgHOHoumZ406arlmOq+2bll7kt9iEmgfmiBZvrk6AbKu6V2UZO7XF80/vVNERtLFLcOCab0zvpbse5O26fnJsatHDewfNlJSyhreQVZEcJPkEp1yP/7Ke356nUI6nPlRQyD2QWppei7IKdoHpHl69Xeib8FRs3O3sKpGoTkOS5jKt9qO9SYzec8nm1MA8OwRQU38bpN/T73ud6HGld9l0xB3sfjboOjHz2ot3GPtu8GmzxP7NIP9Qf+ntcfD6REz9YUyhl04RgpGKg77riDbrrppsKL6mvPfvazBe67/fbb6SlPeUrnezZcfcZr7zUlSswWCzq6M6MrD6vit2iSJaowbzeWlZ8G0nOuhhylxDHs3zxPmvclkwjysdJVZHFLTc7xCUi4GCYIGxCDVfiUCT5oRLqyC++GCyeOxupliZ4fv+gzojWm+5pR0jLV7JlZ0JknCnGcrCaWeI8wQHWsJr+YGpPiVS9/PpnY6liIDwHjCFwkwe2wEsVEIJNeBWV4IiQlLzP6rialYL4v3n3YLruZcr9kPNCf6Rr6zlfYth4r2Jm0K1KJwmb8HBFcj2PkasVQd+DVdLl/wIbmF9vn4QHAEGYPFF5hhtj4hx/HxsaS1tY4XUFjgOz0a1wq35vS5FFaRqvTKnU9w2EYm44uJOUJHXIhICyzmmgKssaeqpaLCvrmUghLvAEbKL43UZdIHhpUPcTIzpeqT1kRa1QaiT0tNVB8LvbeQkeveHSd51XEAHcR3oUO5FDS7MwXk75RUk6f0UGzfGQ7gbFZ+R2HvKV9xR7X1uaU7nzwGO1MQhPyvDdSMFC33HILvf/975e408O1T3/60/LiXn311bTfGzvpbARO7sxEPFUD88CQI2eFWX2sGi7K4T2kAfdK9IOCZi0fyUrLwrg9K+MgHuCFxkBX4oPaLKyiy8kVrCIkn8q1sHGR2FNavwssqFAIDie5HeYKyf9EF1DzwaDqLfu6cnW6ckxGKQaX70tpwDop6CbzymuKf3VSUMZYeHhlfCwm5phACvH65EnpKbpLW0laLmoEAaIN3cXC5KWFCgytBpsSvTypmOP55/GBhnLj5cQdpUl0zCXTl5Kki88MIqzvzq9fPFeORpbGPrx3uRq7e4tHGnV7anlKon8n/azJ3lAf5/1Fodzuh+O1uz0fqRclZWGUhVfEX8TzgRQUxq6KHrcM/Q4WwgzljeezhSwYObaJfcdjVTlP9lyNhNXDmnL9tNCuFeOhsJ7GaSMOWXq3fQzFvOCQd5RZhYXXaB4bjkE5jhTjzDXV0/D3zWyu0GrWMOYKnWeDOZnO6ejxTZqxS3W+GKmNjQ269dZb/e/bbrtNjAzHl6677jr64R/+YaGhv+td75IV3JEjR2Q7/p5hvZtvvpk++tGP0vd93/cJw4//fuUrX0k//uM/Tpdffjnt9ya5221LW1OmXwd7zEtBYTuf9Bjz1hJuKH4ozSarmGyg9ID94PZzTCQFhStUyifRNIFlNKGD+KVjZbKGX4OHPMx7MPIETuhFQK2wnsKDCOSnct1QbU7Ng7eOjJVlOoS6L3hNMpReJC8SaIOZlzwj78/UQW23SJ3aDIvHFNtFdkpnpYyuyrN8hRLiGnZrgNUyLT4dpuP15BV4YbwKLzz2zWw5eFPdm0iQqY0tyC71s+yir4NwYSPWjJScTyjexirzmoyBoWmhRtMRSx2CPzUhmWOP4f3C50kmQd8zK5LpHmrLJCWlfg7HkKbSmKkuGHXMMetWkq2ZxZcepBzLMO78jEQXUxahWq7D+9C6IjxlsEYBHfbAbsk4Ydzi99ZrKITxQh0oP1+KdyZORLkJ2Hy5+iErvc/mdOzkdqR1nDadYQ8bKc53YgODhljRS17yEvq1X/s1+l//63/J33/7b//tYj/2qr73e79XYLu3vvWtsi2z9m688UYxUjnmtJ/bjJbEyv0nJkTHtohYg/IgqzNIxjdDXbqi5GRYbhbK1cGMySkppIvTzwXfPFkR+Q2ad6IJwvbyWukCVYxoaSQ55KreIEUNOagsMjV6rVyhFBiALGzlfTN5GDGcdlxZ4Q5oPOQAv2r2tXNOQOHjM4TCS0uNWbEh4Sbeog35BQrT8R+muu4vY64gapBh73vSwiPjqqtaZRh5HvIym3KATo7ZUzFvFlCWGXpRZMCEYkHsUuLJngeNLXPfSw5ZM5NlH2quj36OOUu8A0hfSXl0hR6Vx4rz6DXydphyUQVYij3A0eoxLAU9X4ZEWFY7kvy33leMlfVRsUqXWmbZUAUJR5USTNexKNWhv4sBESd3SUN47UmKiiFwGRMDzUfimmbeB8ngYcIuuL6mYLGczcJzsORxpo+zt6MeoaUbLFtaP6B5ce1iStNJS5MdotEBJnAw23BkBJaW1g8qMYGvj3uRRZRnJrDJl8XGdTge0myiGLPHZGfKzBWTx9vjnrEwsJirjK6i+8usWyxi1YCkUYF4LDcZ8yz4os9ZFrhAVQZdQ8VqMVp1d1mpt+sz1wKmROPBgk6cmNPnbtmhk5sBl+97I8WG5lQ5E6fMpyASVt9HPvIROl+bDNqlCp3qStJcFUjndEAjzYNIjNaYrMwIRUYIvsUUlI62yyJdjxH/IsMfUEuxCE8H8qeYxm5mxHlFU7xksnqNLPbcIUHgMBuMRfMuzkUB5SS5IfcAUadObiwZll46dv/BcykVEDokiC7G7tTacR2YEjgLDl/1pgbkI54CDy/5Rt5XqJulBq3qy+RFda4LnpKzSUzto2fSyWkMgsyaMYkrj0lXyzmUAf+AteK65fxC/2dEQPtTVJ1c1cRICVZ5Ou2t11AlpOde1M/jzgRcy55+8iKwERsoTuTlRPMlYOKk+CILPGOHqvGFpUh+oRlzkafycxgV3eWUbOwUfV1kfJUxqM6zSM8je/SVogQ3Jx7pX+Hxlc6RFy7May4dM0Fs0sVPS5NpSw8d5TDN7l7+mWyd+z+NfVbafWew8YvOanH8UpyY6OqbvRUVEDIpomra4N/ZS8mwDg94yX63oLKyuLuDKCAclEJ3iQEftepFcd6WaZgZ5gJcXbXTQoSzPI1eFa8+PcBtorI6yYJmDlFXudnYG5OZTGARu5F7SpM4hDAxAbpoZ5oY4ph63fwvF1usRUt3WyR53KanaaLwkoajJbX8shp9GNRmf7qRFlUc1705szwK5dpzlrkv52LBqFXIXDVBa1fGRLjbPdXxDfGArZ8Z3uSRVQftcZ15IcKGKiu+e+l5X4l3FRL8mPwjxIiWxsOWLjqkHuv2lha1VJKC0ds52ddcAcTmulAmn28osafsZemCLhZXmjQOlqxSztV1J1pnwsY6x500PsV08p3pQsgOC6Ydehs7XbtYCFqf8bUvpvMqrUBzBfk4mSuDV8+RkJ5nh7/Rn6WXm0qRWE4gJSFevBuiIJFGcyxmEiJR5E6ltAOpFRfldvgZHbmXaMcSrfdiWxmpM9RylU2GQxgd4BdkbWxTmK+0EPxME0LGry24Ly8qwy2MfWf6bmWsIlCe8Wcd7CrcM9LMHhGjRXFPrLpRCQ4Cp+X6FjyHyHiPSIWTAC1pWcRBbeLhlyuXLXA0He+4u1Gp/lDOtjevTNSn7WVVkVCbECvMP46ZySf8MmvSNE8m2n+6AIj6WvFicxB9/VBDWxtK0CiC4MlLUjOP+kHpwv0ZxOo+X4/TuVUC3yFIWxsUPVU8Y0u8ljLzJq2U71tX+/Zs8Rkb/QR1woMPYVkkaJsgbuFN55hVGMGorIuNQ+ZKoDMWJraqsBddxNVt1VDtTFranjAkFkJ59bPKI8vJCfDm0qJA8oSwQcVUA1zGi8I1gfp0XI8P6D5rB1pqtlg9gmh7k2tD6Uln04W8Y6MR5wypUYWmJh6XkjxceM8ZfciAE2MaAGjPIqY7TLQrklKFxf1648oE2nul0dfXvG9h6KxUjCzEYsFiaV2yIS9g93JbGakz3GQysLpR/EJIKepFPYlFQUCslJV1FSLRYLppAmXX7S9/z8KiAbkFdTZUxfkFk1o72NeFJtPxqlwV5fWWNOlcSwmUV4dxErRnlwLcM9EP6hIcYD6aRyBK5rHKdNZVoU4Q8FRcql6rsMGYws5GigPnnhidOh4wrDmBbKjgBcVdFnxAPWu+SfRT6hyYKS2VYRR2ixflWy6JGaX3qM5O5G1hXZMZen4rgbmmoHv0D5qWXO+K4XpJlWLrNOV6ORdQKWIxg/PhWXL3r6834sloCkJDk7nq34FQ4d6CeZX6e3h42TClXrdUAmP2ZUDNdmOHnxl8B9cVvhO0QJLp9SjzBVPc+V2Z67PguB+zmyTdYc1ODEo9iEaV7jzgS4eZq5ZZkj1kmZqGrnYivxWxeIq7bwJRsGq6+U2sW7E/FmfuUUXyr6aLmILGHoxFoa2M1Bls/KCnFnAfShqjDSgtHVXwAorVkk1CsbrKgznh7bYYVTgwJUL69gYRpkHNLyGqlAIN5NrA/EIr7GKvh018CovHis4r9tr1shSSkC/MG+BI8UjKAfC/KPwW9YjkL5zbguWAyNRQLbtVZSGmalJIAnOIICxW7dJrEYNxJY5sQpmqjAVwzs5VaDUBVfJgeK7a2mLx2shhwt3z/brHA0NidE291lIOBzI/vmDw5X4AM3nqkquyvhN6tSxzYynjixmrzaRVF4IFVojspHGkpzR2GkpbYDxhkmUP2zpEdPZ0yo7eYVUC6SN7doCLUz8LFVrEh4k2Le2C8+kuukQJIRKf5arNPEykdDO6IwQUUQIse4rxHPSqWPmBvfVciFDKVEjSMBHzkw4fbOnSK3QhxrtvbavHwCXhx4MZtazZt8YVfZkg0dBkW9UwxgcmWmZmje9Ds9X5eh2eFZQgv+kLyeHTsWuLQEMWYhsYo1hIdlp6T2AOHTBpdq+u62SIGn9Oy1S5Ah5YXqhUrwVSZYt2RLN2Sdu03MPVpFZG6qw0KyqhQeKUw5JXTbEtxqkun+thXCA/Vp8nIK9UCFGj304q0MlKXyx/T2AaXJwy1Cz6wh6AHvF9ubqNwC3OUZIBUlDY1ArgEfpr7A5IrPzKyQnHyHCj9VXyOHqfQZGPUsaO0iF8dhBWmKGfeYHgnm7e51Qt90EyVBkm8+3SWFDDm7wz6ts3f0clhFp52DhTabAirtQ5ZoJQ40rzTJnLuoQXEN6zKTosW8mN4rLuqOHlp/J77PNAYlznMZcHlTiMYhRSD1gFXQYsWB6Lf2eob8zBYYkpcaLtUhh+bNh4neSLPvPQZQjI55ysTjS0GbtkxUMmyiZ6P0ZYjXKZZM/NE6C7t1zcRH5Ona9agxjz1YQxq4+NsQon0KFC87CwVBrwzQ6WtDApsz6vbC+0lZE6o81WvqJhx/X3GlqwSoMpLmSMGHEj3atk9ch/C7wa9FqlG2gl1hzE1hcH7rtCcJb0aks8jRtpaRBOct114ku/cPKkkCTcJbGqsr1IgwaBheKdGHl6L2XMCHEUJ2tYbgtKJcS2hsMhXyUxCmOC6L5Y3itm9Jn4gdVwPKfoN92WV9Acw8qxMyV5wEjBpOfqvUiYzvZBno4vDpQFwl5haDOY96TR/+K6pbZSztFyjzdDRLmsfXd86DUE6QIwapehh4lU9xHFCutghwWd6BFjDrFTnYjh6RljtG1oc0MtzsWXVl5F/ZwKY2nEomWaVa1IpFKnVTmDS8LwXyOO1drCjBUt1tlDOqAxMfaV19cGNGT4th3TiZNzOr6pHqgU5sThLSlYxtPU9l9XZX0RkOCSLgKHAurU1QRQDORjxUisnklaiOwGp3kcqtM/9aqvtTGIlyrOYwfyz7gMC/LFYMlUOd/gcDNY4/UDNBizt8vldLik9d70p1ZG6gw2B3NsxagFAgMaARDeuPSMqTMUB8HLn72F/IpHJVHF0oOpAxAN2DuXvgbdWkoo8KrTXH+PNSTvRg1gTCwCcxWeTyuwiU4m6ZLt1pZC4cbxo+AhvATBviV0EooDKaDRaQJPWVJXhn50Ig0DrgYSe9i/yQbHJKF5I7Ad2F6zXdQTKLwRU95wWSHEPuAppxTP3nFgArIaE+CpM7idhs46zotkb5kUYbyTyEDEQfiZBNnGx8wurl5MYkFrd+8+eWzIiuNRybAfxhnykpLPbf81WNmOCWPH5V82uSyHGIOBECcUbgbxIOpzaXK1jjmn/RsJB1eIEi0+Jhjy5AUZl7kZEB04yBV0WyEo8e9g802mDQ05FDmc0cCSDJnhx8ngDNWyp8X/TidqqBZzhsZVSBlkp+mOlbTJDx+EBCQry9hMCcC+flHKN+5B8uw6uW55kYleRX4ZFnSUPNFQdvHtYeRAjJAUgDK+ifcdc41KZw1ptlzTem8tq0bTY9JKNOb02spIndGW11K8ChwKVZUTBKGijBfUSefw4sFS8+NYwB0MtLR6j4k0SBABMvJYVrVvps9GwTON+0hlWjtvHA/b6Gegvoon4d5CVO7MQpxeJhsxFY+l6NGcBYeFXhKA1dvQFy97XjXEmcVi/XTiEdrqPfV6adB9L2cfAILBJB8emdHCi3kkGUIvsVAagn5fLn2bZpnCeS1kCvOzTRCdK2FHjMvnwnxiyCjtUpdJ97RJyg2UTaCJwBEkiupCE4SUP5VYFPrRIF3+k+M9/Nf6DqcJhESRe9Z43iC6moXGfcNjkMT3iu3mZT0sFsvGZrzOauaqaK4KEaopyYum0ViTddmBYNk+iclJsru+CyxMrGxOvs5QrRDBcSwtky0RdX3PR0s9Gf8pRwAICzWUn55fhu60V/M4a/w4OGOGvuOziFH64kbLJsT2toGOiYHEpIT1K7Jt3VDDWW2nfnGKtjJSZ6XpIJu3I5ouh7TOILcNGqH3snilez4o026DEblCDL2w9D/DRAYvyJF9go3EUDulQXwsdWKUbZu5eKW6vrZmMJ/mfOgRosnqKv5yaE8FVONlZQkn8dIElrHN+Vw2kVq1kSLnBpMKzsDfS20n9syQ25LuJcgiyK2y720iwHwAuRmZLLMUTvpeHBZLxlSIRj0aFWOtmXtqGGCoatlXUSFwTwjWvu/p59+DsOLehK0KmPrszxZ6drLIUDICK4e4R2Eae+xF+CrZ5XY0pwlPLlPsta9VpFe093KcLv9iFy3PGMSZnnGSm/StqIBw9Wb+j31h0Nj29pwWS65irFWd9RrztcYYcvQAN5csQw0Vx/1rDGp8QBmFayOlnjOjb3NDDZWK2jZ08PCQprOFitQOWcdPDZwaVfWyeOzu7LBgsr7BY64+zXlVyZtnNQrkatWwN9+PsOQZhbBnre9EWTkZ+yA/EI9BR6t5k1ARaYMhiIRc3HuR62gLRoH5nL2nxhbVebVSsp6D373l4gDNxLvbwxLoKyN15ptPa62ymrZnRBdX8xlWknmcc8MKLadR1cl/9iH2SDRuTNL6UoLOixVV/ITwqUM0gs2Dep514wIPTIv2gKN81aYRED0l6LvYHpTdULpIgJhBJXa8pP6QW+2BoK92bzHr1vGXoOV3JGHV0FUScru1SM7dZUmIj9O5AKf51hYntCWB5bY0UlbCDZv3jsGPp3Nt/cBf4X3V3+fzYB2PXKqyl8DI1EMpGSYsDXu4nGvEfzA0LNu4ikN/snXnk+Rlpjlaz54Ykr5ngmnFtgkHQMfszkSfq5ApmGVuxwLJwj8zCjwfRjQ3BeazWmFIsk05jTp2u2SV9G1njOaYoJN5wi7FWHJPyeJadSekPnJPzchQKocEQershXavc7Y8SIt2pszN3RhIe6CtjNQZbEXglIg2Jy0d32npmgMIY6dtU2a5bF8wb6LxKiwC3xDiRPJgLhHP3pPGosRxEBFMQFz8N7y5UGeQ0giWvANFbc70B+yiChOm4gwdtiV7GileIscb2vvFJUTq0iCITZmxSgFlVa5IweuKnShehvdm7qdMzkCl1gTNuYEKFXT0YSi720lMww2Co6q91vYaoxykhgfUMCmjLrdQ2C27NihiQ9vA1fENpLPlLxcGFGKMWXbo5EW5QUyYOHY5+WWoSMkUUZlXPsM8iMm3M4btGWQHq4AADbi2hwZIzsehlFVZEufuMtVbEmyHRFPJE4v8qLzAwtirc4dyyxBXjD17R5iZyWrkHHtidQm5QFVG2drWCryHxks6cFAhQfaahBE4ajWOxaVmhlrQk72vKadRSewriZIZgsELLX2/EmTf01wbsu9e6j5P7Av3LgUO1WcJ+BMtq06oYVIjK0VUvXaXkSUsYAx4FggJ39dkdgnNlhOiZtbFc892ewQ2cWWkzuIzOL41p4f4xblMtNEjcGoTu67M4N0onCWlAUT2B8KoUArgQccCr2YwZFmeOUOtQBFM1uCt+TicSMyVOJmyy+wyrLzAWOOyG/JOaDKSHEWz57VxLE0n9gh6ywSdXhRR2DAlA6myYOw0IEsSA7DVoL57ujpV7bXoLCFUWPzMSQCdxFOdODhJ150U3mIIoTjzONnSiPq2BaJhtOVtnktwnFfQgAu3NjjQvwxD7zEsJBYbccKUMMQbA0VML0yEb2HIGpb0sTpLGRESlW1/YGZIENSWc+rEFyQIq3iLmmCJtSdVxCxGBhYjZm30zcBrcgWvEIZ9yWPJjT32in7HMYQkIozHqKSbfCozaJZgIJc0NNFjJi+MhW3H43A0mFEzUnp6PE87h8y4lQq3M0v6/ULpLilcSMTOAD/yCaulW0VefmSzqRpMVW0ZcjFseXbb7UJhTXYi2IhyAvCwJS5Zx+SJkxsqucX76zomSTjl2BneYT4vKh765ceioiDXeD0tMz+cXJ8WPw5zC9NS5wIkUjqEJzR7NsKhHq9kHs53amnMHpTAfkuVu5K8TYMpZRgPaTYb0KduOU53fG1Ko+VBWtJ0z8J+KyN1BlvxKjUNbU9b2tqxooSm0wXcHVp2eU+feJOL7lAZwtI8qCXTM8FiCeoA44i3VZaWHkBfohI38wx/Y+OhjpGutmqcLeAynzgAZSVlCzV64RIlGcw4r18yaPm5FwLyCMJExljCc/Rlv3xnSYpuO+LFxyFcYcNedLVRwZYU4keOgaT7duMKb8SfXOUBFB5dOTaEuVf1p0e5Mp5qhkEp6ok4kcR1k+tSOm67tvCulMzS/z0uJfd8gRh5HpkZqNLPjafFRmChCh4QnBXijuGd6vVlsWSL2SYPNBhq/ZCaLEB4UWZpPrKUgPq+kCCYsceyWFrihQkW/B0L+LO3JNWcbaiytycamWzkNpWCDnXyfH8ZZvRxg0WB51FZTqCPaCSdZ0NmhsqThe2OEoGp2KbJ8F7E50ThIqGBaX2X9gsqk8a+FHG5855NeujolAZiwnoqV5+FVr3Rp9VWRuqstZZObi/pqAT/h04siLkLgqVlJVk2ZBzM5Po2HqOyPdyjMihDJ/KYhMPicKBc3ZnS1mSdPzunqTyjzgxW1/WQBUyo+mkonqbHBPgo1GDTBZN7Qi0pk14SL8DuCYK4a5xQKJPTwgLJgMICu0ffdPH/tCr1+FpIBuG6GQYR87MMEVJWR4gEaDuvPxffu4g75PigiA3gpZccL4NFY2Yt9vErrijuMOSQ+8EzkeC7V7MQmdhkd9EXYSIwvvI17nZ+hUiTim9tVBGfjE7x/vD+kule9zE5Qm8yRqSExZx2Fuw98XjWazpwYCQF9rjwoOfMmd5jX9MFRVRgjkWNCcdOW5qvcRkZJkKYconAu8rEWywa2tpkkdgZXXnNkNbWiQ4eJlpuEm3vKPVcPBGu4CsQIB9nKH0/HKpaS1+ZlIjN6XNHCZjiOfZpM1Z9nmFOZ+rKexbTeePbpj5CAqQHpwZa48oIEpDilBin5EdlQ8dqGwv69GfupHuOilYH7eW2MlJnqfG421k2tMVwBKCrXYL9eRL0gKq1/Lsm1Sq8onN/rtypxoMbQ3380uTMfFxTMdnXmLlNTohtDCxhI4xFVZnV/gO8HuykbDe9UKPFWnQ6tnwlX1Haqry6rj5lhDKIHiva0hNJ9yU0Z4iGIiDOy+nGxM6thkm1ZsYdFJN8dhsq9yUvNLwPe+bdTvzKL7sf1pJrdu+JDXwhBNk9QTpe9fSTES6N6K4kFHm2OhGXQX6QbAImzpeiX0fcD3FSAQWtQJV6IOWzirhT6ZtpKZsokqkTeVThZYiOxevZAEki7tyIHxY75QXRdEI02VHGrKijjzUJeGuqlbR5v5EsYjhmZbC5wMb5uWq/QW/QkQKPs5Ykkk7LAdfi4y7Cgbht0SPJo8J7hoVWrh2l24WyjD67TNTSvtzcIZrMRC76Efo2j21bGamz2LYWRBsLHgI6eqQkh1Okc9XZ8mVlIwNUIGuZIdDO9FFXMZamyXkY4FwKm9lM4kHYUi7ORelfrAQjGJ9XgUse+P53ov76S2VxnBQTKSdgXcXJYk9yTzReIcUL7RC6r8GVyGIcZjZhf6kJBIx1sighM9W1Q9lupUaLvCDiUxxoF4MJnj4MfNf7KUh86bO++41ni9hTn5UCGGSFJT3x2UxIMgY4ghZxDJ07hcZwrRkc6l5LwbyzxYAW3iyfZTkG8bcFRYvnbl6wPFOURMRioey3gsZhMPQo0eXxLPU5GVjqq5fw6vlrTq+ISVfPhneFIT2ORx28qKXlnGg6aWhtTSn7PLZZi28+47IUOnEfPDSQ79lwbp7k2JQq34/nbLwaiWNx7Exim9mzznAr7hcoXhaGLtdK9nzKVU3Xo0I/moZmXgC19h74k45t4VlGDSmt66UxKauRZnArIFc+FjMwt3aYlt+ck1jUI4H9VkbqLLa5VWEdtVMa8WNBTR6rPCoQBpJwnZEjNVALLwM6S7KqVdzMBye8HlVfVi5S02iVUT6SgnHiFwWN1uZmVv3GyxLkCPxHKwjHZMY/DJmxdJCDEHK8uTD3VH2AB5QSjwIHl0nJFCnYKIEs4vEJj0dYLS0Lwus5+7wOg4E8h0yrDeNz07jVqSHpl/H1KUpnwmYes4OHV58rDLj+maYnGEQjcQj8VMBwPQ1z3TIIMVis67NniGoggUXpp4VBoylOIXCmayomA+PhxYAFERv0id8IINl47ObZebOcJ877wX2mwJ/H51j/zSdol0wI8WTE+GfC71bFiJbvD6okUfvFvSeGj9lAM+NR1i4Ch+l2SmhTLwDJ4fPZUBPZ24a2WPVChr5Bj9TSzpbmwB08zMQJLQkjKunsNbUDyS/cYWbiQsd4eNJqWBXmxJPQ5xymA33Ib7rCy3jkAM+xoCrHA3tAeJltzFp8GA7vgOF1vN/GE8JjUHo9x9TA7LM5AOMT5Xb8jR5QM1xKXttOO6cdyYurYIE91lZG6iw1PHLlvfWvVNK6U/5brNjydkbh9lZVD8BEjxcLKuYY8J7vlIqqlbEX6tUL7F5wgpkcktNJASS0JWPgeEmKQxjkZi++5nAEMw2by310VB9K7yz/Xgbby36FnTfIXgPbMvFX5RbEyJbQXkCcsQb2f1Nl33xO9166Pdd/fTlImSYet51pD5wP5Tb6z5LX2gkK7biC6JhTX6k/bdSjSuOyDlfls+HwrIAuib6I7YHun64nQ83YO3cJxnVNHAgkQXsc40b+Yjs/U8WVIDYwjKcLI4b+ePbWagHQudMFj6tjxNnLHs4SYule7RZsUdbtV1+s1U8Lzz3AWOsTX05R5yf9URAkUr94VXn0m/8gncUWjLY48wXOHmwrI3WWGz9+9qO4o0dJHaAZjDSmpMEcaaD5Mg1cg8+qNKovT5SwhrGB8gSP79liIWoQ7FFwsT/3sox+nM+BoGyemFEiGwZVVrJOLR8qi8rU1hHMlgmfr01KMNjudtkcH0BDSRAubVBozqGPzPuAM9fy0tn3y9v07esarv63ehOAMFVYlPNjWJSU4Q1mdXEwH96IkwkqEotj/kl2CJBOVrgAWw7KAtz/3fsrRwVZv+ojLskxMIT8vRKL2VsIwdhMKKlbXL8F33jCNg8qvKaIadaeVCaq5OPpVYdp1pIsMDShOhLjU8eU54FV67T6+v1oCT5jKrUSekI6i4says/YYMAFs1j1ObXLhQimjg+GYdoW7UA9Liuh87On+4lGay2N1rVfhNQxWtCAjdi0kZLqiAmhfzS9wtIu/B7VTElOFXv04iGjHM2pnv/pt8ZgbShJgDgrgifyTtszYS+KiRMjhfgkP80KT+bcKRlvzUFaMKNveFzrB30d1/dYtJWROkvN17RtQzvLEY3Z8LDgDCY/jD5b6pcvLQK25ZKaX1j5ASsMk4yAHvyjRf5UOboqOZ/YXwFV1ZNRTNSYNOJFjbuSfZmy6+PbYiwLUf4XN0qqAIBn0cHTU8My2V748qvuy5ONkRbV675j7vXYF67HNtYBLxMY58D4arZmsYUn9XATTI71gVGHzwuj17mPgImQeFnvK9CVqIxDWiobjfgMqQ3ZCOVtau/Yn+0u1+Rd0hMzxf4CJC9zPAlswrxVeAY4c3wdosCA0eRasTBhj1HgY63yi/EFOJA/E9toY5Ah59l0KQZMCoX65NyEFy8STg1tbw9otGhpLMoYMTIVPjNjLP2GStNw7bSCAEOyKlOFmO6QdnbmNIe7mO4xe6OnJk6lNwS08U4Mrk3uV+lBKZ6n+XtuyHbxtOZ0kBbNGi3bkwgE0F5uKyN1FhuG3fZyjQ4sZ3RgONeXypIk5X2UN8mKFRrFXIvB1RRi9YCwIsrGRjXdoLLNtFmNSXU1dPCyxt8xgek5MMUFZJjvpvGXhVeWHLCWLS1ZluMWsgWv1tbhkQ1CxRtnrSc/dR1MxxBAS7DDOuwn20dWxXZt/abAVuasfN2wQrbp9pnkg3tGWmGwB/5Mi4fOyjgbFdukILmoxyzeEq6jgj/1/KnqKo4NRQv2PKWupBosh2gFNtMJEgsPnB+SRSgtUVxDdSsB3dWTp99Q2aPJlsMTi/0znR5PRPMBNTYWosS4z/K6cQpLV2amHSekU0OH2fKwkWKojuN1nLogCe+aF8hsPt59yrc5UkI1DI4af4tbyrvX0mJrRGNm8M2WtLZuhTWNDZcT6dVehoyY3hKjHApX89HYYI1HI5rPlzSfsycdfYtq2Gh5EYN+hgxZKHxE+kfAm22w88C2TV4WiL2adRLbeWmgdE3sdc6aw7RoDtKc7pf+4CypvczvWxmps9QMVKFp29JXNzZpeZDookOoQcPfsIxnlEiQfWSwsjqxiZ7Zi6UQUpIQMksgK1qWNhKvYqGKFTwYeSQO4drbBABmQassw9pLiNhACK/yi8uNp0o1nArZybsgORmNqC1xLopmzo9pyvlO7DXOhloNdczXoaoXEGjVfCqlA8tkKwGP8AJG4wi6aXItDJUL2kU/29uJRF5U+pVooMk58TbTiSpRjNd1kmFPT04tUCrnlXlPyH95daz9AthU5EDSE855bvp3GF2earUc86B12VCdaOWYaYVtxAKGadSAKiQqnrFR9mXB4AQGn80lWRsVejHoSllYE/UxNQ7JUYNhcDZnl4KetYNjiRRl2h1SFdKI1lzSvrK+wDlo5KxUr3WmDy2eHSBbkD/kkVmAX65/QQeEaNFSOyLamHA5+gHNd9SIrQ+HMp6ErbatizAed7yAkbyqdkFjft6sSDFV7ggv4iYmFjudonxLsEj52bNkkjwtXSXEMkiKYzbi+ItkL38nHTmQWm2i2CIviEGcEptDWRdGU5C7GD2MBVZUW05J6Y0VTpXqv4DfWcVdqysMREfLjJPDehCfTUw/zp+SYy/o6M6Y7ttk+Q3F6fdmFaloKyN1VpvCUce2FnQ5z3mHwmtxYdWKYQBPBnNtxsZ9m8yLTtAfPsKK19djNkuWdOoO2JP+2/nYvJegJAc84vXc7Wu9AM4z4e91gLlvFCvpRBJzJlUKV/slJnWE3gW/i3PmSTqLdOqBmJo8Y69ilArW2cq6C6X1nC8VptOVrHkGhbuVNzdPws4fXksY/3Tz7hUV01aWiOoHS3Vyk3uJ4oyFIXcPLbycoDP3Ha0idKTP0aW5a31c+AWmY2frWcHFwV61vu8s4y23R2JTGmPhtZvEn2yn0IW0H859Y8LEjsHAUqWDPQWLzZlw4tw0BIXoY/FMeVqZ8CkwnvWDxL6CwBQwt8aMZbnpuXZIbY9XL/qp+76jY/E+FV3n7hLFCsFf+8TwtO8KD8pj0Pl4aogfOj6lIw9wmY4MDe/dtjJSZ7VpkP6ue5d0Gb9Ql2mwV14Q2yKrm2cKL1hQp8KykQuku0MCQQeerPikwGCpbCErMlN7qA2f/6XBAYf42IvichcKI5oG2FI9MmDzHDheLBjO1IAy1xSSnK3R0iizBk3phUfhRFc8jXgEews6N2ghwtyfOg+G5QI0w+fH9aMiKVbn/AerHHAcCudn/bIFr8HdwAftv4Zo0E+aNqAwHmC5mHyyNxpX3FOeyp85PBD5fREUby0xopNh3VSU1zxcLYREo9FIvaxc/qVHZV+uBwsKnwOz4oFBzLZNOWlqNeUU7vJUAh+jLnCbbtauCJrIAQ3qFfvYq+Ny3HNMaFgf0MHDmvPH/b/GMkem0ccqJVtTzo1aaiyUxtTuLGlnpqLMfJqR5OSZJ8rXOWSPSlke7LvwYir3q+QQcYHQIeddaeyLZZ1OHGNquqUOMCHEysjoLRruLBChwe4pd9C4NzHW0A8ufly+565kYSy8AQgbiQQhdBqrOoBipvkHsTVzePUyeS4YDugjn/gafeyvWa1jr/tQ2lZG6iw1f1FZeYKVlWVGyrlI3SaxA57ksYpyT6E0KDkQLrk2tiLUlRLEZAfUzhlcUDgjVM5TyY8UGwDmXoS44SlYkFsTelHDyRB0Y/rxrfHvDKEwzMJ1hIZmbJcmRFuUSvcJGoK0ATOqwQEyH9Xn8vRa2K6exaBPvvBo7NQw0Aq89axe7QG5ziL6CPbUz2cCtCmO59fpnmG6ZoNoYTyxiHXvB/Eap0yrWjXO7x5tstqZLIHrC9Xsvj6BFx8GKo8nv5bUz3mchDeYs7TyGELsJMHJcn2g7Odj5kFeX6h6m2x0WY92PtTkdP6bxxJ7VAqWa6l0zvNROawltRwvypWnhTRjOWgDLifPI0pZsFmHUmFxEFbMi7Uqvrz/Giuls44x67AC6YjOidvxMRBpIJ6Qn3u38GJ6PHh3LZeVB2UxKjZCwujTHxgx/8keVB7bTUvHN1p64BgWq3u/rYzUWWx4lbdnSzFSkuMCmSCHPzDZZ6/IK/p42mVyOJyajZUZGH28+hMWm6llCvkanlW96s0JvOEzGbOPKc+oD8XyQfbiGkbn14/y2IJ9NyLQyatQXnHzJMCenBAANDRkyg66M8qA4ORy6EoyB5EJB8s8oTRv14UFO8/BKVAa87ErsJhIafzzNOpOg/VxIVCX+k0muerkOuGHtyRJug4tBsTo27uTEqmgyMcSRexUQx2LDFcmcZgvyqDEtBjelZMuqnIeRX5MRWopvcNSdQTeVSbCyATKJWIQb3Jp5ATtyXVk7LkyqwbziZFiz2Y4FuMzZ/Vy9oh4nNk9c5SGf5caaiZroTwLgwOF6WqxJiuVkt+t7AoDAvQYKUuayYJPy83L9kJP73qa9RjifgljbouTSgoMx4DH616ovWB5mcPNhzGc0T4jlZl8Ntdk8g8b/xNbRA+d6I7ZvdpWRuosNR1eqoDOiy9RZZC8FQuOgv4KT4KjrDOGb3QEyp7GhFggyWSpyuajgiCgK8B5u6R1GkpglnERHeJ8ZoWrAOXMFjOBuiJxSo+CkhpaLRZ5WOoejYYjzQXhQLSUyuCB4/xyW+2pBRVJpsGQFjMr68HXYhOXRAdEpVonFjXa6ovoe4lE24TrF6tMnTBgdBl2kaRgS8RU58ZUJaymEP7LEk98BWMW7jUzsGRIkgPfiREld2ixNQTUUTk5St7HsUsvCl6bKaZb7EvuwinLvHXICWGCmpn3KM8KE/pC6cE4R613LqF2XhyYEq2ZQYUP5ZySlBBl6KWEi1A6IrHaYzIsDWSK/TYmeBEz5Hy+YkzbUPRaRjb7xoK/CMvo+OaFjtLxcK4MFSiTVOudXXRYFRR4wTWbMuGloftPMqTZ0nDcCrzHBAj3+uXYLS34PeFDDEiYf5LDx4SZZat0c/5e+oW9pigCglxD6TtZAaqB4u93Jlz+hmi4o++Eel7B4OOxDsPAtahYQ7AdYAHBpBGMn1CfwDoHUmLZ43RNfKtireoSje7HTxvqHQLd2aIuCckKyQLnwY/F8NSb5PdvTJMlM473QzRK28pInbVmEw1DBJbDxMw9zXrMk3JsXlCbsRgNt6sCDPRvNSj6VydXBjk2mCSNfaUQHlhNsqdOF1IXyWIIdm3F6XtuEbi3GgiLV7GeWjg/hceDeIlOEOgHi3E4GppkZHCqAvJM8JRrCtpqNSJXcZFeBKjYPT+l8BI8WGOXlWjyNQMwM+j1v4jj5aP2ULz9QOUqOV9j6c3tPp2ER9YjFFujSUkENbyICMI77CfXEjWu+lyGDN5V/mjn1D6u83Egh8W/q5aXLBbYY+Ek1MZSHJhezlJFQ9bWIyuxUSjQm8ER5RFdrKjyki5A5HfB6ZQwgaR0vzjEhqIz/GbE45SAp9HXK4gOjECpX8XqFnYtu0KZ+TngI++S8Dn93uo8J0rjKVHSaw8Kt+W3AnUOqX+1TguaSzx2v7SVkTqbzQYgZ3cvOZN0bY2a5SY1nBkvxflsgjEZFqyZc+4LhDnBrJNVoAu0Dmgx13ICcrohs9cMErP9pTS80dg5T4iVF7a357JPkAKsum2atLzWD3TVLE8rMu7jJiVYLNel5Ta0WczANZYBjNm3RkeX2A+ztyTvSSm24/FYCwSioE9PO+0sfsHvlTbPF6mxpvaUx9UVczTNedL1dh+JBdCexx6sLlXnWs1AiDpBZjpaITrtQ71n6X2BfxV67QSaZDjodWXYtszF4R2GKRYWz25ozDjec8ielqiURGxHPEcYqXROX0PJ82HfOCs82nfJHkHP0MygCZzC49OF0mgw1LHLJd4PLKUgJXtTUiV32tLJTYWx16YDKc3BBoGNDW+/tqYesl6TFitstwGFckmKoRg1BilmTE5xQoPlUKWFYiQ7KzIgxQV57DQLmm5byoJ50DyG+Nr4WrniLz8jvsadSSm6W/fbKZtth/yugO3aSE6uYk5CLbdTCtRfQ39Qq2ADOlijOV1Oy+YoLSXatz/aykidtRajkqugTln0ck50Mb+UvsjC2gjkAAOiLFdJPvKEzShXrRNXfA4vALlHXL0XXgBiushTySWP9Fi5aCHqMcUdCMtMSGRGP4dipQfD4XGgtAEEQvUYCzYMQIBAX0dsrPBSQEHABJbWrBUL0Xu4iK11YzY4NuJCfk+Wdza3VTQMa0kcSPukuEx4u9mo65HBJkSfSvFxm/w9CpIqMQc5o6k8XtxHnL9zXe699rM/c/4W4i0qlKqG1kkDkn/DzyZBUp7zFXCy92sPVV88ANePjJwuGyZmhIN6Hx6q9ouMDxb/bVmSSIlAvCASeNn7YkCzGdd5UtkwX8yxPTH1CfQl50y5xJZspxJeQB2Y6AMD4DGo9KxRg4nrU4lkkkHgzNRlCNKfDas3iLo630DEk4s1jkEF6J+MdsCrxZUidpYXUQ0q/sI7EiMVVQBc8sg+i/2yHBKGwZiWQzZSx6llRuLua7U91TqaBA/XPvShD9ELX/hCuv7666VD3/GOdxTf/8RP/EQRoOefH/iBHyi2eeihh+jHfuzH6JJLLqHLLruMXvrSl9LGxgbt1RYxgSoGcRo7qoc0oBnXlprpRNSNvyuCXMY8chykkiUyZhIYd7LGl9iMyraUcXAISWISTMFUTKj+QutxGbtHhVHg9sLSc/p1BXXZ9fm1ywkUZtPzYqIsg87BTNN7jAk1/IxyPtTVd1Cmu8KwnUcgsatUI86197R8up4jUfN7rEGfIShPCa8zcpVgkPI23f3iq7jfrHBu95lZfmnxULDzYmhUsGTMXLEg0eeCDABNuI1+RYJxsVJI+7qxytB0ei+QpC5sPIvpQe2dQSYZX/KdsuoWZqRYiXwyZXiPaLqj5TP0/nScz2daUVZPH/flFG17XxYLppabscK1mJFSMlHM3H2iqvBWRF18zGU/FIFgJCL3MS8UObF3sq3lPlpmDqEH0kIPUF52qWJ+LMeZelCwNMU/gZjCQFVwIL7P2wTRhZ/DmOZ0sSyaESc7Lz2pzc1NevrTn04/9VM/RS960Yt6t2Gj9MY3vtH/Xl9PaqNEYqDuueceeu9730uz2Yx+8id/kn76p3+afv/3f5/OtybeQjuhk1tD+vL9Y7r0yjEdWh/SbDBRUUgaSh0bqXHEygfyUieFhVzGg8txi4z/oCM8y1n1Eh5P1gKwnQAYDHcY9Bc5WCOFpriSr11v/lfiPXiROSjAhxf0iGm/SnPHqhyTrDCoWB9tbrlOssqNiqN4AflO+CwzlEHA1AvYEKU8fLLvN0aIsWVvxmFUO1PSqxZ41Ko3WMDaWGDwaEWlIEpwKGynxANdwWctw4ip6b96DsmaaYaqui7ImSXccufhmcKjA+TK3q8bOUz+scznApR8XXhSRQl7ewasDDKS8zLVGgy6WDmMRmtOgMlGE4uX2hOIVOSItWhXqdTVAJ5jwUqrRhHKzFiNc+37WIwwX0LTEFqasejvQvsNXsJwoFV92YOa7MxlIabUf52kWTQYskDDEQee2BjBq1GFfsQKEYtdzFWAOcauEYfc+1PCSsM1pXiBxvGmpU2VDefW6dKLSSgYtyLNZIiAlxuRasTlgk73hTHyZaC/E57QYJDvwEafCMj4mqNVVh8H6ZLNLQRo5Ycln3hbPd5DJ6b0xSMnaOP4kEbLQ7QkdgHPQyP1ghe8QH5O1dgoXXvttb3fffGLX6T3vOc99PGPf5y+8zu/Uz777d/+bfr7f//v03/6T/9JPLTzodWAyM5sSQ9tLmh+uU5agH96alroHplEUcACOlK1LlOU7laWnA72DJMJp8wmH01ETEmixYo7BY/tuzhOtXkVHM8xl/yvTqTGFDT1lnyEPgqvHi8YZ4gh1ASBgIHyv8mTqSCcEo6LpNZ8v/3xl3yR9QUnWCt7ln3b1auACsaM+8HEnzsdZ/HCKynuGJ0enr5K6UR/qhGHowg4tThv6vsOLb2CdYsVvv1HJXtAcQeAmZjm7slV8K39R1S7eNEy5wRxlfkREVmul+Qxru4iJSpC51hXiCQX5zH8UQWYDYJ1mDK2FLMhhTE5T9fUzQEhAmatnh+OEZ95pq8L1VbuVZFhV4wF9L91XpO8JI2lVR5UB9brel/8s7k1o9vuPEFb25xZth+AvkcJ951O+8AHPkBXX301PeUpT6GXv/zl9OCDD/p3N998s0B8MFDcnvvc58ok+9GPfrT3eJPJhE6cOFH87Le2sbOgrz44oR3OBhzMjE6qyUQ5obZI0DTA3D+z+IH8MItpzvj9XFx31rvTEvL95y9gPWPSiecGL6RnzDo0JAnDGisQVyqJ38KT87gF8kGYp24TBZcRmYYabBH7EQHaDFulGJwaY6UWI2FZT4fVcfwUsJ8brgRvQTbIZG2Yvu5xOL63kA/YNcZT3nN0NP8lBfpq9mWVl1YfKyfRgq2ll59gtTiYmylsxdcRZTiSRyV6bHo9/DunJ8yWnKvHSt2is+E/Jk0X/1a/876SLuDH04rCAqPxSfk5c/FJ6wP511TJJR5pYwv+Qgn5loaU92Nvf8rXysw+g+dkscOEADFatj2SfbkPXObIIHAnbBj0bR6lJBlbugJ7Znwfej/GQrXxxdAgw3hMKZ9OibZ3mPY+p5nQCi2nEbHGBNspcUGLKerz0bErScSZ0IKxZPctC0zbx9my6LdBq6+c5EOp8oaQJUCIYHKH/Q2YEkYsp4aw53Xvg5t001/cQfc/uMG+H12wxAmG+hgGvPHGG+nLX/4y/bt/9+/E82LjxIoKR44cEQNWXMRoRFdccYV819de+9rX0mte8xraz23WEp1kyM0weq2+aUl/EswGdBZVQMsVs7GmeAKQSdXceRugcH0kvwcQUcIanGTAWfTMyTIoKnTkKuvGx1xUsTXEqmTm6U40QgTg2lPyha5yZ5yjIvkkVal1xC6MSRaGSgkYSsJgmAuQk+JRvL2SQKAooStvEAG077QvVTYogvkwZnIcK4AUi4JaAzHut/R4QhUbLMyI9/W4JT0l5nWT2quwo8igyCzCWOrr+VByPlqO4eH03h84D1bkSaNXSDHpgt0bDVZ4kDgAJdvkCeFfeU4p3ysnCuvxjVpdsnWKoRZwr+oryu/sebPKPlAHEHPCF9RFl+RGKTs1ChbG8SWvnY0Yx2AknqUgGoRxw8MJoWKHgXkh42MzYNM+BEAp3gaMWjIy8v64+KKOXat80LO/sjmV7egGCBp8jeXqWbxMKmqPNPfQvSsYqIoFiFg3Q7zb0wHdf3IktdR2Xc1eCEbqR37kR/z3pz71qfS0pz2NvvEbv1G8q+///u9/VMd89atfTa961av8b/aknvCEJ9B+aHhheJxyAp0EiY3+KpBTil9qbCLgFsQJIqdFQRQecMqGs/pSkkBokQFj3WEir+pDKDziWLpO4urx9LyE9m7GITQhmUtHSJH3TukBe+lRJsI8Pk3i5c9Ua85p7zACuSgb7oE9KDu/lh2BUYhKwHIqL5FuOnzwKtJMUMBXmPNTTpZ/5YaueIAwQTG5I+hulHFfTFT9VvYLQLCyr5z04Gy67FHpRCfniXV2L/OxWGo4rTqMlxqeclt4ODApIM4Xw8bGpP/eOZd2JCty42xQdfDtLPaS5+e8+MrjSFXeVT2e85r4xTHSt4vBFqAqU9GNcer9ktXek5SQlmDUgFd4WzrAke6MI4tRFHOmBk2S7ZOsVIwX6xp5p8LomelWeNHppSY9VuU8wRPLBionmFOG8YQkonE4MG07MGCiqWvvsfe4pMlsQMe3uF+FvkL7pZ11CvqTn/xketzjHke33nqrGCmOVd13333FNvP5XBh/u8WxOMZVky/2W+PBsmxHxIU7Nble1QCE+8fqmAzRCImBKrFPT5SyA3GeDf+ruT+s7sDHYAKKC77Ke1dNSD6a00SQt5Fgs72iAk8MdYUKb8/eEyTgar4LPIokjQOCA3AjFqcVSIahiaG+V0xO4Jwrjjew2KdYoiBI5AC8GHU2c81QDqmAi16DxEEMbkTxPZgTuUbJRQN0Brp3mjDsWFJGxCYwQD48EaiBjF1QcgIK6uI1CFEEEj3JBBlBQNXSYyWMc2fYS0VJtR8YuoFvti3zCJMU2BM1A8XPyWIkvloWOj9mz+TZmgeMysjOICQkduLmzIPI8S0bi5xDJVu1SylAyFvjGaSjpSRWGyMGY0U/QxsyQb3InXKtjPiUA1EsZ8zPYr4z08mb1zpGIPHC1az2MINeX3rfIBYr0ufYViNnAyYMZYYipMNwBJ/4tQyOkp/S00swrRsqhrMlF1ErbutYsYWAeIDIr9JK0a4uYgoVnr/lS5W8UCA1QpbkzGCuViMm4ko4zhY2A5UNF+J5nMTLd79DU630vI88qbMSk8rtrrvukpjUddddJ38/5znPoWPHjtEnP/lJ3+amm26SiezZz3427cVWLWYeVcjRxF9oumhoYmXXZRJ0TX3bKucRQRIFumMmb4Ogv66acpQ0DXAjVRTU8GqBD9gI2+Aa82SVgK4Ec6SCi37wrOIcNGWZo6Wsdj5PCKyq92j94TTxspd91WsGLMe03GMzr6xYIVu/BqQXT1PzzFL8C9+5onf0AJKaO1flblt6AMVGZbA8ezCduJdNmLLQwEo5e0/pR/dXYbZiNZ9OEvdak0vMYLiJSur0qUMLRpodPfo8eXTF9t23A2QJnD+Ol55dEozScRvXJtR0N7gY98r8tHBY8iDK1Jd45nb9WeewuNJwbRItxcZCunYfv3Fv6YFaPyS/u3inw4OK96M2FNnaxGEbv7ZU3BCbVGoTfhjf3xaSg0toSQc1nLCPDNSj8qQ4n4m9IrTbbruNPv3pT0tMiX84dvTiF79YvCKOSf3bf/tv6Zu+6Zvo+c9/vmz/rd/6rRK3etnLXka/8zu/Ix7Az/7szwpMeL4w+/qb5ksdn7V0dGdJV45ZnQEBVcRSgE1bdiKU0X31xiXgmMAw06KDAvXpGjbkkWJlpgUFY0DWBA2sH8U+yNsDxpPuK0oEZiBPlYuE6xMdOSsQCEFaXigqUYEDwBEfAYTJxxYPkr1Lia9hgjZquPVDVlWAkawD74XBhDdlGIrfuwuJ2tpfzh8GVmDYXVYh8MQUvjHIT0/X/9pnWK6LAIa3bFRz7r/xeCj9wXFHQEs8sWguESyNjhuJq6FvkmHve1TFhOp/u05S4YXlvoHB6Kzyd1n4RK/YOEjjEQxDLSOhdHa5d1NE0e/Va5eYlNDzeVgOBGJmb5FTlUaDltZGaqhkvFhHq+elyedZ7T8Mrv6SFe7xZBBrrPvLF15er8u2Tfsj9ivSTFhAomMKZqL1RyaPuLZjXE42PAN4RokvyIZZRJv5O17QOHECZT/igQkFfTCgyfAGWgyOE9Ex2m/tERupT3ziE/R93/d9/jdiRS95yUvoDW94A33mM5+hN7/5zeItsdF53vOeR//hP/yHAq77H//jf4hhYviPHzAbtd/6rd+i87sxPNfSvceI1hctPe6aMBSUcmZcHqnyVPK/uq0l8NoLACHT3PAy5m8Kb6fJHohN0no480isHPzDGihEDSKhVZmG8Mqy4mjZ1GhZhoix+AYjhTI9sJ921Xwjvcj6spx8YTiJqmco7IR7gKJGxL/4U0BfEZPJfV6dJUgnCfISQ54q7sKDQFoQYFys5qnajhUWAH1DjsimREVOHTI0A5DjWS6UeopnBD1GM/yS9O2TqYn9Fp5H3J/HV+xckqsFsdNqfFXmu/IYoR2Jvs6LjLygQtoCyssEpIhJXj0pFsy1RVChnBI109yRdQKEflc/22yY87MxkRT34nPuGKyB/qOQa44fhxefuyB73bnqtPWPyYxxjNXjS42+mINxK5AfSK1iqCAqm54DGH5qxJciKv1nnzhCn/vSzsO+y+eFkfre7/3eU97on/7pnz7sMdjjOh8Td0/dJBhDR7eIDvNoutawdwikmluumfdgK2DllY2UKRrbD6YFqC/01oky76EgWDkE6eFyP34mbARsVlZzrdGqDnyFpSBn4ScPz10KucWIQ/CLqYX/dALKyEdvfk2BTyWjg2tLfdZfNyeC5LokDSuSt96NLl10pJ+6z19Kh64/KtAi3Zdp0RrYz8Kn8Dri3hx/9OtJBia7PblvgqpXQVmQoSoXQn7dxfF64DJf+GSehYNeRTdhO73kNO7M+LhEVec2gpiRTJkyOx1+DDWUuKeA2OI6+8ZDMDbRLxJXKrsyym7gsSe0HeV00EeA8is7XX1QLuBglNW42VnB2jNNPtcxzt5Xtn3ZG2MjPlvS5245Tnd8bf/QznNbafc9Rg1j6I5Nop2W6P+w1VbbjqgZzNI4XXZX9/a2RSY9AK2BlHOAm488lNJgxIyvTDurWmqTFhdukGRDl+6HQciadyyRmyfqMHxqNMOYqdTNiNoBM/nYQI3E+PCEsr7OEFVL07RqZjhTK18x7KaKGFxsTkgSns+YmY6l0dHcl0SPzn2eJk9f8VroSxjuJhw7gMcpwfVkpHbLtebFhBAccOyAeLDOBriTFBc7I0IICBaYHw3YgxrQvB0LsURW8ZLAo0+alST4CAtWBzFGnegRZNX7pH4o3wupchjxD3jbnlJQTtjyvG1TnYCT15CuWwkUJbU8FhHsqaguBns6QXE3bp0oa/D2sTDQ52KwtxbSEkzLIbVUYZChWbmgOSs+EI1hVKzEu0KlWaLIaALyXsgo9vMW8bxUr8vV+MUAGg/WttUuRPmMqm+qOFP2BPFVOk1x/41pejKJh3utNGyt9qDlRXk8TsreWOEXo73X2pwsbDhdDOjDn9+gu4/uHymk3FZG6iy3vJbkCY+1h6f8oprfzhCBwjax3MaEnBlXGc7w4K9PUDFpZM8r05OVTYQVt9GcU8C7IL71xDUw+dXwTqfZRKexHRAxMKHbb4nGq9R0g3vMo1RjFGXvA7ZJRie/8OF4xrUmzzMMCZb5MaG7p4J+LDwBZUnCp82lwWOL7FvENeL3vAIv85kMXoNHVM3HCBHhK9PuTc8HPRv6h4WhShF+3Ft4PvVDS15iupe4zyohOVZKXeKGwE1gC8IgYuIsFznooWzgai8n1gBqwHjhIrfGdZ4E6mtpbZxo20n/0mFhi7tmz6/Pm+qM+cIzjOsJMADqIOVzwTkcC/GPYjHjPWZ/oHvkX7doSVE+jRGPV1XKE7U3JQtXLlM3b2hjOjC26P6hnqOtjNRj3Di4O2+GtBiu06htaehV5/KLE8wkXreyth5IEP4CWoC/lZykWvgzVnROlLBkVsSMApdHPMWmGDeCaZWbWmH4DOvwida+YJqwxmIaEgawKXvzatTX+gWMpkoGkllvHpzEhFlU1CaY7C3gHy+KkCZkbqI+7t9143rWxZ1ZJ08h7q15srN3n8eH0po8TURlf5WTYRkL0fweXTwEEy1T5jOhAPcfxJZGqsb6kQt/TioQK+ZU3GifmkanpVgpvLAo65IOJ4IpOulxuQ14VpK+gBwyezYRP7V815QXx0Ub+fjsVXNMzuE5fzR6DVLp2T7j0hv8L3sfQ4jBjqyHVODbPV3/kdrxxtSsF1u7ILXRJSXcC+Mlz6ogYlSH4+s2NfeA5yNGllmAeVHjDvwgKu/6F8kIZaVzhx8T25Hz2bmkyDYdoBlx327TfmsrI/UYNh3UY5q3Q9pZsCZZS+vGaEKuUeDpkdSa5zm8zMqQsslLci+A17Ph6547pHzC+AwGWnFXJYE0RlbEtWzmVlmXUrZHAB1b9Q85A96LKeqKWjwpU8fgTHpeBktuT8VaZFUIvHCO96sUgOdZee/5C2rbcdnfAV54PV6wJEOyyffBpFIZSaQDiMfCUKN8pUKhksRpHeYTX175WjXfggQACSO5xvT8k3erorOcF2V1o1zo1i9Y4DLpUpE/QvkJ5NfoANiNTszl6sNT3G082P1XxjsXBQyFfE6w9Spj3vAcwWrrIyDAhCq0GR5X8QxkMo9Vvu8vlWWTKZYyNDDsGk+dsZixvBtDrzQctxTjZ5Fy/mQRlMZ7H7CJaww6e343eDFlxsnhvFSKJh1DSvO4ZwYYwDxHJ0rwO4aqv+ploywHcRdD/sjU3tWLCh3LOgFYY1ItNeNriNYvJhrcTS2TMU5hiPdqWxmpx6xB71jJEdszovUR0QEehKF8U0IVZqz083iNOJdGSQelokBnFYa/PV5TTvQIzqK2YGZzpTVsUOPTy+aryDwNFLJjQSkGg1AC0baixvllYrIZ3aEVD0DhakLtQb/OyZ+ASfo9hBJgyfGIdE5XCABrL+2fILfc31lrT2J6nqAbBgx9l41invTUSOkEw3GUeO56XO4rZxGK7I/GVQoPtvIAo498RdEL4dV/wzP2O8Tu7mUqXJ2PDRBRYzfZ00sOalHaBQuPHqmpwmjl68sfxHgIiFuLL6p9y2kYgUrgnxKqLas/90GheFY9yKD2SX7+kn8U91J6rtUBfEBlryoWPW7ojIXZmMHKnhPVMJ+7UbnsL8tMHaLJ8mIrzbGKSa3aabSGJqL0fOuD63TDxS0dvljWTU7Vhi1R1eUQhY2ZiznarACoAWEOjMoELWC9bgfKrr6QmiqJULvLlIpwq65cNQ6Dl0oD21KgUN6EFEkv1pu6AuQmeUZ2dPHHpKR2BM1FNYDpEYuhvkMjM4wmr6TJvAkKGTbUsuIAr65nc6e0O2Tpwpmu/ULzlrdTozhib1PeZrAbeHud3GOtHvBVO8z8RgjPBnzmnlE713sba24Xf7i2Ft7ufKb9jEle9rI8NsY9c5IxJj6u/sow1WSLnwdy22zWEZ1FNVYjjruYYCka6kHReKjjRaRI0J8BqYEavfCYSOk3OLVdCmaa++S22K5FlMqjRzCa5e4gbSWqkDaKi1hgSy2X4TBvpzRyfij71xZz2dPza851gM1AL0e0GDCMtaQZ5zBY2gPUP7I3OULJDttX60zpvbLnKYxZHhdGBMKzwCJNrUGqggzAWRZ5iiZonxlEakOacxudsSfySendkoSwmZUbMRhZXCPT/2vUMAmsaVcvahPZW4IegCMSenUtrdEX7jhOf3PXNi1m2zQU/OM04N491lZG6jFuPETmiyUdOTGjy8dELRspx6QHKV6ErWNSU4Vl2zZ7DwUkGIMw8oMypbhccWMfn5gdqkD5hSo4bMeIOUWNCaaQuATskWBMvOLKsnaDifvrdhakdEKBIVPEMdlFuXfkDtk0Gt3jcGhunYTNYiUfx+4GpPVoCrdEQFzCM6bmDW8J+dRS7dU8tVglG6rZR5FPH5UeU0zZmH4LQoY9x45WYa6wK2qK1WSVoFw3XrkTi37r/oHSF33bh0dc6vQlZ6Ly4jXvC55YHDt57Zbcq88kRILhHcEr7EM7UfBEt8PIgF4fw5q2XWIsaLemd2m3Zn2mUluBQugCEBcQHlZ+GzNBAlDfQOA9xC77vCc/ZGnwmTTRLOiuI9v0xa9MpGLCfm0rI3UOGiuD337/jK5eJ1peRREPYtq5xR8Q2xEVB1tVDln7Tt5SUFS7UAQmPqzcMGIhiM4F3LqKB1GHiVfROaYkOmQWFyiIHTiZTM6hn6dGLiZDoQDLP0KsFdiKjRoTz5UJb6oUGSYzrB8rz3R3JaaZrl0vR69b4yqpY4SMoSvm2iBJvw6Vpq05SognIV+trF/l+Wk+4USWvzwmK/mA/hchb/NQNaaCBGvznbkcunSfL4HTPVoPMmTK/Zdh25QCoCVdzCjafYmXi37IBg/3bYKo5en6Vgp5bMXkXG9bIHLpMx1TiKFYwnqhDmJlNhJc5t4S4osexzIYTzpOyTFIKOb7tfzd8np3fU/CwJXXAi9fx4WWh8nfq7Ay+hpjJY/B2jAFVB6xSmyr+plloUknRZiaRMNBZiF95HLxJbvPdtbfGYmQjpnRF78yo4/8JdFs0kUd90tbGalz0Hiy3miHNG2WNBwhZmMTubwUPOkwjMcNQp3BhMPLpFPYqByo8rlOarFqNYZc8cKVkw7DY1JWwAgWWXUb2mowVHqGWski/gWhTBlXKIPBJQv4Bdfg75xxq0UrMJasPBlWgZI0c/pSrCQHt+vYU8TWQrRVvbZUMiKFBbKqAu6fYU9nCMKjqIL6Mtcb5VnVGrTKLlf6XbLhgpCoHINXwKrDN1tykrKSAuAh47mwUeRJiNlpIy6zuuAcn4XrHBZ3Kv0akJLur9tJAB+1uRynC21GMb72jHFvUv0YMZM0ydZGv+BU9BAIfHxJUUtlcRbXbYQCHT8BMXfHDPLJ4P2FMYPn6igZQDuTtxLJIqNb6+75+tIYKDz3WgoJD18hvSAwZcJLqU+JhVqR7gGViooS3tdgyJgg4zEnljtjlHpgFaSHyrxoLD+KvSuGiPGOKQzO75oSceScUEEfDiRHanPKA8FYk7T/2r42Ut2huH+ue0aN/MxTUiCo1jKR+UsVEBb2DQgHQETiQ/tITKri+LAaoeUEVK6sPVlTIEAjbsAQBAhZvLixN65bEzq5iJzU77GyFpIFb3R0Le8NCCZdV7rkfNlQX7er9pWrB9iTVwhKNOAd7z+HtcASxMSObXogLl/xp5W9MQMxWWnMSZf+WGE7fOUQrl+6FZG0+5J4UHm+gGhjwvN6RB3B2wS1Fs+5H/YKQ11+5osCO3f0U/bMYdBwCut3iV9mqLW8QkDZbjAqwgtILAXElsZDhgNzT2mF6jh3ARwmODHWcaeeqn34pZzE3M9x21GZObzbdH/p0WRYD/uCfBNsPXhJoUJDULnPVPOURRzwXw0HchUDZhK3UkQyiwrvt7avjdR+bjxcTs6JvrZFdN36gMbU0A4nfyw1tiOYNsNUKc9lwUwf+T1IEhA1YhOjqhBY3ZkQrcoOiKciuwBwl8OkV89otAJKpXws3YZztYimoq1XrkzlheAqpQzXLCSrSYUmxAgNaH1tRJtbLU1mS1qY16DoVqiND41luOAMTdCcLWAdE15aeXNJb5kU+UW0CT8lOGt3xX2qEod5FaJ+YcYOzCnRzTNR3DrmkhoMqtazC4yf+2TRNDTlypa88uculxl+IQx2JjxIvEpcBl71qnXiQq9cvZY96GYYHoaWlOD7YTUSXmkPackEEvZ+TOMPg4iN4pDGPhZiwaKTJnso/D/+hsMS7g3ZnLUooFP0N+jrGAMwIGZ0oBph59NDBdkCfq+PEcmhSt4ppMAKz1X/dm/RYrD8O2vPqbelkLGUdhI3Q/ef8QJAK2UoQSScSbvGhBogxwziw/5dNn9WuDMlSYfihOV+WJkQVdEIkpIaiFyJF7XhpFiPm20gxorOmZESijlSE7icjaIO8JAyStG4TBIXAVWtJFWqYCh9SO3gYmrXHk8T+hptL46fIhlh77eVkTpHjYfM1rShBzYGdOVgIBVEc4xDYkiJ5ixfnQI/gN8D0pt85ghJYkT59mWLMvAow205PHH2AiKJxbatoi2B1hjGur2s+jhPytScbVIVxMcYYVzcjo8jk4AnFEPuJya8uIowRMywU2y+LCZY9ItN1l2AKgBB98Sw3q4dQz9z8lpzS5OcTsaoN6WsLhfZTYZdd4M6CDzA9NxgEOBXWDzH59p0VUUV3tChcE8Ifqp7SMlLwr+nM4E57Fm5YUhxKFToZBvE2XLMpXwKJRySfBJ4tVlzshj/mOXNKPF4tb4W7xbq4oVH1e+L5ftTokaMPz+vC/rm/btkhPDsY+TGtWRPygRyzUtSryoqHHcIEhS/d8pzyH7GeLXNt3aI7n2ooc3t+s3ff21lpM5Za2lj0tDdxwb0xAMNHRCReGSmw0iVBIDQF+vCN4DLTv0ali6/JvHaEVNNchgqLlPtdPZcZarC8sVY2AtmebFW/Zd/m9NgOKQhC48Z5LUwOjaTMnjVJ5+zFod4IFYNNTt8BXRiEz/HuEzbrntnNaTTU77clALapKTgBq1gSmUDH5BoeijJcOI4VpSQ+5CT4TJEY6tmbrrYNvq9lycJbAt3oPllg557guG3BUYiSrhHCJ2/ovpy2bzCEO7bztfpS4lrlrApvoB8j7I3AXfi+HlLNUDoLXX6Qm5LPfAYc3qfORYXsCZQA/bA1bPGKkHlxgKizKVe+vsg4pllracQiTV4Eu49FhgGN6rqeE+fmSUp1j1G9mAPeTxi/4q1OyELVhohbg7xVZBf6AAqBu2wH88tGy19/stLOn5yP5snbSsjdQ7bye0l3TVraXLFkNqxlkBnr4AhMbwL0E6tGxaG8AcAh+D1BqxD1Yufm0Ia+p+R1Y5Cwi3weEyQOGmXrp3ERm121MWdGQ+uAcTz9IBotgMPQav18jEmk4VAG2POTbEJ3Be9iXKcwjPJkzOlAgkUoSCksgmy0cqkimDqlZNXJmp0GuJaMAbu9WAiUoOM46qAR+lxwVvTpE+ddFmpQxQuuAQ6S/oYFKXiq9pPsj3khczmeKwkLbV1cWP3adfBDEqe4J0Ykp9bz3hylDD1FURSkaumCcZGq8F4sPiKGkhdfID4wYK9WGhhjGpsT8dcGOaKcdmnIJ4fSfGvVQw246gEn9jRWZBpUVYnE0t9LutnGO1CgcUGVE6SrjsxEyhwXDHc0odqyTTepPlZYqyllhlgwnRfXkaeVFCWoXKDy2URa9vzZwH9qVfGd/C1Ixv0tnfdTnc8NKX93lZG6hy26bylk4tWdMg43lEGPnWbvCL1wHbv0UpITFes/dTbTDzYbXWNla2iNaf2z/Ti7NosGJ7AjoAuta5CwEZMprAAgio56+Qemnx+AU5IyPk+7h0YmyHHPbB/zBmVn5lZe6UPlvomFgH4Dh5K6sLkw+YzhVcFrwfHUjgq4oBSpr1nJeJ20GZ8bOurfTGOMW64AfrEnRYOZPY4+61x8l/iMzdG1bbhXWM/jKdEGEfuEeI/nTEX/VQ6u8GoK/vW+sLPkQgwfl14YTLUlXKdeuBhj9VlaNJXRsDNu+9AQuOK685EBh9hboRioSeLQEEQ8gGxb1XVt++n1u+zPtvcaem2u7Zo08fg/m0rI3VOmgbVeY3D3vjGsqHtZUNrosm3oCHHcUwNXFbZDJdxdc05V2jVAS/BVqeEA/axwc7p6f5WYJWJXBqUSAhFBf6Z88RpDCnNa2HVhgTB+AtgTfB/PadmwvOqnX/jrH+U4jAjhSltrHTs+ZQVMxCfGkmxQ15NDsdL8apG7FWGr+NXysoWS7l+favl5RRVDuuXyhtCvwybpTLPMG9hhZsgvsoMpQgCs/aS7iGrPjC5ZajUf64RZhiZbMGLDfR3Tp6VVa/131ygQH35ePXPx1tjAkTT0JjhwdlCqe1mrlGWhQ8yl/PBG2RgVPxSQ6C4cq16IMo0ZNo7k1lMRR0KEW73oqrsIC0ceOZD2Q5VaTDvCvcipWEV1uOquehsVUpQxQq5c+FS83jQxFtNMxiaWkJgy6whKffJKILkrC1pNp+qJ2gjwTUELXaj8TTux6XAybq0ieeGnpfTGGNOyt8UOYHxBnBfueyVLbTGTCBhEosJ/uLdgCPuoyYZI70PQLnJM8IiyuFeNbHID+SKAXaJQjeX2zHPqEECfzqXe0/JA5PrEdbSYWIOz7GW37PpvlQ+P2+MVL2K2S8tJlEtKX9iQnRijejqQzahl7Ygyr1ZYiNWe4B9ur2Rih3Kn/HyRMu4f744iIiWNZqKXKSO3xAxK19LQxMvXZ4rOY8ZMlJ6FGwZS+SKfeM4leUdKScsX2eCcXIBQMy8iTHi1+dwaYbfoKxOPQYK1wTiRkCYuQNd2drJJXoxBQlDoEiT6UmLBvmNy7ZI/SNVfZ9yLoLTj4Maj3wcp56jTyz2oJ4K916okegCwBKshRGXRoZ8qVlLamd0cRLPKY0hnM2u3Wn8xnoTdpuXfQmqdlFnSa7TMsnRy+5ddlXZFXKrCAluz7L5gdORjZKNleKQdh89YrzZ69ZE4PCUM1lD+lBYrZUkk0O82DQ8twz9udK5SYzx9+r9NB3KucebCo5GW3xe3oMu9jxu1zS001xOk2ZOy+ZojN193Pa1kdr/jSeKIR3baeiicUvXHaq8FZ/YbSWXzIAwujwxN0ps5yYvASaPTBOqWgEDFS9/qDSUwEu8bIBZYAwlgIwAus0OOB7TaxX/b2g50yMupFiolUhfDrXMx4CLAIYenB46QzSYkpSOLPkxtjrFdUcoQQ1EFq5A7MdhGZzDWdSog4UVNHaM6dcXDUbisDMVEyH/JgX4TFTYfVdMZnNmpqmxYIo+P2thVHp5jtARLO885fzAg5TCl6q6gPsT8gor2NvuErsztf1CiTwW6Zq7hrEjfVIpVkCVgbeEPFQyQPw79BvhgUsOGAo5GskG/VDbRi/vsRsi6WxGNR6iII9i9MlIKBsvDEahYoL3IkPDJlAb8LLFWd3zjvdHd+uPb+Ux5mSLBIDnPDBd5Ni7Yd64L1TgQbWVgUqvcT6rJvWqdd2gK2ir3aF2cNTeD9rXbWWkzkkDkLWkOS3pjofmNJ819M1XrUX5H2yJ8unyUihTTILK9jIXkj1Ob8aEoNCQfNIDTAelVlW20RAA1/ylmEww8QnqhTIFCZDDql/gLpdXCnCRBS41R2cgwqyjJdGk5R7AK69GYDJdckFfGq6FkVKFBBWZFdUMY+dJTpknCttEnVbDMn+bGoFCqGFInHhh1+qr/mQCZDswHIsFvn62mIt8qECdrBah/W4LDKPWsxFbNkNa8r2arI51nN27Ct8y5CZFUODBwltOhqCOs0leDOfSSO5B+BNazkWNFF8jvDK9TRMHNsUGgdmMJOGeLVQqejwDH5dwatM15VGm6gsi4yr6KREPjQkbcDL2A82+R13QT6aTtdLbFUILpAAGCqy7vGhQjzGIQCHRpL0Wnk+OA4eBU9YrZJGGtJAVVtLkSyMD0klq7PGucPxJ4U5eiIlHLzEpNWZQxA+mnuVOmYEaVCSKUEbnBR0rSgxoMiX6/XfeSp//KscJtiOQvY/bykjtstB4rFxkfok2Zq1Uzixd/AQxpRya0qMpr7aAphzysZyPZKj0Zc4wV3k9xq4teiHWynVEK8Fv5Y31dyLCFnwelgMatqJvp6Q8PSbDXwKDSfVDg74EIwkVd33B+eXXycBJJR1jXCo9AHaDAcvkkn4mWcT3FFZJ/QIJHPi3eT5AHETUNjBhB6xks2uhms7fiRK6Q8FROgM6cTi48SYMXsuwWemt6WUihhOfl6vw8vmWg6tU63Bx1qqLyh6P1AlnyzkHP/YtnlWq8xUxFjtnMeADhjaBi87YzPfRQTFhVAtoHKzTGLcB7wa+gOec/y5uv2J/OPlBOj7nQFXwXob5MtS3Cx1dWs6hApTIiHlL9OU7N+iu+3ijfW6drK2M1B5orDyxsWC+w1Jk+MPooFmgGh+i8m0hvroU3T1+yQ8wn9kOY5vTvImVLednZCotYg66vU4qghzYDOFJoEPNbxItvxSwzZNkIQdrRd5UAFWvl7flVT88n4MHGilvvTNhqSib3Fi9gSfrOZMomEzBpT8inwkQG0M0Hu62mVZ106JWlnhKxiBUz3GcoKVkiq2kBVdBZuM+kjKvqOcUrZpXtQifeUCRz8O0+qHkmbGfyNvBy9Lz1iNALLAaKSHH6P1xHERtGecCYYKD/h4beIVOB3PNK1tGOUopqCl/mbadQLHyTHIyrx4TJVVSfUCfkhW2Dc0/WMdy0ZPTxXnRgcIw+I/40DpWJIanY0oNPFMe+D7Zl2SVFPOprZiiG1BfF5h8FOqQcb+ZOgvqonl8zUl5gGPLz7F/mYBrYx+DmXOu7EVSDxWmUPP1YqxbJYDIWjevLxsiM99t6TkJDC5CsuY5MWAySiU6Gv3J6xD11oKmLqZwNKDFqKGvPNDS3Q/xdkLN2ffGamWkcuu6KGftNNywIp3RgHbaAW0sxnSQ5rQ+WBSXU0ASOaU0rQ5z/R1m6pmv0lnxRu6HQTspGRaTkxgqzm8RBmFateEwmdlUNSBVSCrMs7pcoxyTJwabEAy+WBszg2upHhQn/kqcaUQLNhoyyUY8QRve0JzvhX9T3onNlCrcG6yyTKsGUwzSN7o9BEz9zjreSu6QWCFbHSGDXJG7JHCdz3xolguUDQWWxtVipe5tGRMCFyq8iNwjT/725F1ATqEYLvlPMLiVgjeuuy/O4iSFTEyxC8ykigz9uWE11wbqGCg5HwYAtczsyKCKp/EDeaHwXc1oZR/KlcXjZfZxAw82jd8+4gPgvpKUZJ5P5YXv2nblfcOr0uNw3TWpqMs//Lsonj887bzxa7D7Gwxp0V5G0/YgTelumvNC6TSVRPZ6WxmpPdAYTd5ph3RiMRIK+lqlquwL2LxTBefoR/oZCvIVMGA2jUktHErYWuxO2WC86i28JQS400tb5lv5RTnZIicA5+uUezE3DQXbQLRmz0kIA+I2MP2XXzxWBVcKsyxiQYWXf21SszkqG38xKkaJE1UzsOJTIrD3mVUPxt/8P/W+UNI9LOBuE1POjQHLjo+pcQ+mylv9hwIkysdKBAaDnzIMVzf1RJTK7kYqgWniWbrR0MVGzuFxW9A5w6lXav3PvRLPLY5RwspO9JBMCUuRWFgeVdN//HJ8B0sTkKhFIQ3ODM8PVxLHSX/3PEYsaGCk/JrNOOl3y+o4Af3KXZv35Oeoz5PcPKkxJiQJM0xGO4cr57fblDGpHLfG4ojveb68hCazy2hG94r+I3Lv9ruhWhmpPdAYmuEg7C1HtujGy5Z00aVlIT9ZqZv0hMzJwpCC7Ituld8FeBY5fpIDwZgPc5wrIB4U9dMJhb0LF9W04n25IanUz2Or3eJl7TSl3vPx5myYqBHtQsjLDA+okZgv2Hxb5V2eyKQqqeb/yFGMri1gGeC+hZIzfIUp33POFzwWUXpNhqqeRexehAXnPRLP4hQeRT6n1xyyOZXFUqVMmO+QvJwEy3J9KQ7KM2wkV5rZhclIeH6XraJRiwUrfYYbWTZKyRCht4jaU5xvBv8DRsDIZP6MdNYNY+ceiEtB+SCoH2/KIerRVbTByBAoP7c1ZQsUhg2LKYxHdXbR//wfiNZCaUK1JnVsIyew6/FjuSZGPucXpYvPxBS8AxgpqixSHhPX50w8WxQovBokGP6X71dEY62YIbxtgbAl6Tm0OwVlGJnIrIvN1rEr6F0u6AtfOkZfuH1KOxPFW7Bs2e8tYw+rdo6eJw9PnoTv31jQ5jSr5Nn3FdymHyJoFMtvnThicsgR6FMAE8kbCagmzodJCgmi2FTpXfK3qWq7JmoRMM6rUtCxjfFmZeN1ErWXW1aX8TJ6XM1Eb1GCveMBZMOU/pfnvRyQj+1yP0R3hqeRVgF5iW2f2bSZoNVy9epsNl99p5OkLXOwPM3vnUGZjQrgyDCW5X2rOkdlTD2JyE1UeCbZQOVnX5z/dF4SHg/x4AuqdwLnwqP3NNpEYqlGbDYcPTlPnU6qoOa44zSG02fOjLQ+RywpP68eykjZO3mopPfHQmbF58UCrirFUZTtaHpe6Qr2k5+W6MgDE7rljk2azSL5fP+bqJUntScaT7zbs5b+5n6iqy8e0mI4ouGSq02pXhphxYiVpOVOBbBlzZhutSp44Pz8H3MpUjKswmlCpNZVnR4szewMqCjslvNqECfjfBkhGi+XXNSDRlKWYNAxIFbn0Famiakn5AbXVdCLstoFs8XcKOdEM9E6W9JIyhNY7hQmWJsJ4t0PkVplOer3WVIPAq+S82PGRKj1hZxOub7Xc4FVFgZc826sxAaX57CNmTqPgpZ5lV7EBeXCYuJibydXg837ZMWEGcsK2IQasSfdWGJqlqzmib0GrOocntkb8BHyoDFotNpKPT4QIxLk3EnONWMkxA2RTVHPMtXV0nIpTJmYF/vmxQTuGxAv4l98XL1f1RMM8eW4fiHNVNO0jENVTwx6vUHPqpwSHp3UZLLUAH0vjIIZMIVdH3vvxV2bOdbosRxjl9iSKkvoDwgSQP1yblSb1i+CNpjihJT2MPLJ57+yRe/52Cbt2C3v34LxZVsZqX54+jFvPFFOaERbyzGdXI7oUlYPz1I/Vp8JCt01wqJ/RwG+/haVYT2ObPlGMF6xygRjrkx6BMwIdp5ORJGP5deaWFw4bw7MgzoscIclZsaNKGQogrvypwqxCktuoZVMlSCQOMa8oWzLPRmp+UoCSV6eu3zRZ35f8adfq8OuBX27nJwVPqsmVqsWmxOE8WxALgBkp4Y/ctGKMh1y3CAUdIL5SYVD+tJmNV4MpNQ3+YyZdVhkuKG2Gk0CFAJ3LMgKD9d64OSs+g33ITu1nj/kZr44ontKKRZVJ/ji0QEyU2Nde1+RRNvXsgitLBjkWuFF2X1JuCi8IY21hjdaDBtUT5bPU7Kv1INSGA9x2IwUaC5UCM3mOFST4lE5LhXeFX+4TsvRVTQdnKCddsui3OeDD6VtZaTOYQuJTDUvUxrTVjumk/MhXTxq5OEELJKwfvm9DlZr6/Wg9GSd2AYwd08erX2zxLAqgtdJZQI0Z08QTccPVQN8lpCYdL3Kik46hL4qXRjez0rhStHWBFilsTcWm9Jtk0RNNVepQ2HU5bQ0jfvOSdDlE0pJY+mzsh8zdFTAh1DDKB4C7rV8XjDo7uA4TTomxJLpxp90E49hmJiZCc83qPvaGciF4waPNHsySPDNC48YqbtAcQXBJH+n7itMTCashIGq8OwKzg2PSv/qBdxwn0kLttnFiOo4K3Bo6+uUr4RjZgjQikjifPg3n8DjoWkkwDAVBijDe1V+1MOLyFIBb7fNOs2aq2hKC5o1M3svVkZq1c5w0yE/pXuPz+nzdw3okutbumSt0oXDtgKZKUwHwgC2Ko4n2f76KSqe8gujUJJNahLnIWpR1tcTG21CYoFWzm8yxW6UgA9aPGusKu16LOVGFHKUWk9yIZxPYlCPT0gO6hVQE7wWj+PI6tNEXYVQwB4Le3G6G4fOTQdcLQJvP2SpJRZW5dFt8tIOEyn9Ha4o5JNkBWuX0owUexGYymc84CxQW4cBQF9jurXqxl47Cp4b7lT7RBUqOPdrSLP5QsV/OS9MNsvSS7EgUe/QVNRBE0csLC0gWPhWUCl7TtxXWhiSKd8G1xmzhi9Nxg/n6RgBIcf7iomWnz8ED61PeEyBOp8NGKraZi8JhFMt1QHZJv1M/HhD0JQEGbR57OvXYaQEfFYXKeRjCX/CF3V4RvXaJaMD+sP5g+ylHxjrtxMu8wTZwVQDy42oJWaJMosZUFH+8D7LhlI/ZwKNqp7r/Q/HqhYiiy7kSSFnCuSJBvWqwmhxCtR81NL6oKUjR6f0vs+dpK/cM9W6VLvS3/dnWxmpc95KyGFr2tIDJ1uaMaGAB2TS50umo5Pv7uvLCm6JCSe21EVfStLFdBJvYeEaFHT42kPzqRLeiTkqzkIwyaVihigVMDp5N5iMLO6jJahCXkBiWlKJtacv3dMrjUgHtkpCsPWXCnVWM5s7YKXP5GoXaUWthJFkHX0SS+eIIIZOsMWzrTxf37fElspDxt/qcJaelzZbOBSn1vSDmqSRvYRIQciM0HqEdVvqpV22qDxqtyrwqMFc63pV6J7a+IQiSVxd/gQee36baqhQ84hbmgu9X1Xqa30WONjah1G0Uc+R3rmUxlF6RE0la1Rt+zBlOlr3TYk2thf0hVs36OiJ2S4G+QJj933oQx+iF77whXT99ddLZ77jHe/YJV+k/Hn961/v2zzpSU/qfP+6173uzNzRvm4tHd9a0B0Pzmi64Ddl5DlSsQkKuw0MXkuvoH/HXgbrsSl9QUtwINlXcXX/4ZIcVmXRJ0qfKyxr3q+uplwb/cGSN5x5J+oKqM7HK/QFzedcMiK5JQkjw8o6H1eqlg7G4sUxtZjLd3CQWJQ1ZnPxQITwYBebiRgiqmp5WsHYM4/NRRO6mmvcJCEWxhjwjOWzwEhBt9D12eLK7X/ydIyunWMJFntzo2+5UzZzgfQiwfDhkpohx/qShjkq4yYvwkkhfv1KO0ehw5ywPFtwn9kSHyt/7l++LuuskokX/4PwK0abezlC8rAU4j66uUFk+Gn9+ZYlY8Roc3/yWGRlE3imaYwrOaKbPIZzq1ZhLB465sv6mOn52SgFwaaVFIDReEFr60s6cICVR/T6lQSB5GvdQZ4VfqBUn5cbAvO1NBrqO5bjSuKJWiK7CguDYh7s1ti+8coAeW3Dh2ElmSNHJ/SnH7qb7vraZhA7LmRPanNzk57+9KfTT/3UT9GLXvSizvf33HNP8fe73/1ueulLX0ovfvGLi89//dd/nV72spf53xdffDFdyA2vzIIGNG0GtDkf0/ac6BBjzFAJsMqjGIJRzNy1BfR/scTTic3gLcso8olIJjJbLUqto1Q4UKBEHF3Ku/PheOplBhsQMxSgi+lmZAXuDqzptXGpisUMNXnUQrgxqyfEnBeDzw1aGQz4GKwUa3Cc1dqSoDRUsBmaVF0pXTHb5CnV2VF5mOHHegJjaaMegwUjIBNqjgEk2SCH2gJTlH2ErQh2Cp6xVbblaqyI5ak6uonm+ontWVR6hF3yRBo59k+GctUT4b7SBYKaeHhGSiAB3Is+Uy8uERX6vJiC5BJ91dd/YJp6PlvaX1mU4c3k3ED4CV6ZOR/Yni1+V2+9YtfjPMlLz4hA3FO5WBE/mMuwDFo6fEBrdfF1sgA0vsdYwHVpugVieqWB8jCtx56stpjBeQIjwhjJgsg878wAJMSkobihi9CmHdKMrpNY1JQeoIXA1rPzzUY9ciP1ghe8QH52a9dee23x9zvf+U76vu/7Pnryk59cfM5Gqd521UwRuxnQxmxIm7OWDq3H8ikTD+RvVHrNHpCt5lSjDWKuwSTzVbgZhRxbsS+ysIReE1b8vqLFZKgb6MQX27PxXF/Tq5vOmPRgorWpqixo5ZCI0Qk/vKlgc2UNNGMFSn6VXoPSmFFSpPQ6g4hhEkHw3Ko+dxo4jG0srX2Sy7BVBMZRSh1PQ08Qiusl8AQjB6hx4aKzVTVY2bx8VvF7+W++iVAlTwAn+oTPY4Uyw7O0PCuH17D4CFgsP4vwTsww1HlIPXJKfr2uXl5YhOK+SinbgC0HPVT0YojKQiypgyR5L0deTzlxh2wU/yKLwZbo4JqqnyzmrCMZJVkwBnB+h00d6i2JEKpYgfcT6hIK97kEUob7IB5YL5waLDyMEdsO6fjkctqazWhGR03/EGSivQP41V3f7KVk3nvvvZf++I//WDypujG8d+WVV9IznvEMgQIZDtqtTSYTOnHiRPFzvjbWGRgspvS5ezfpc/dv03Q4EJeeczu8IFzDeRkqXsR4NgqocdMFl+jwCCGASQtc+RSwCca+gFEDlmHSMqCyyjdyhedqMOFBEjKYZ9fSrJ2LCgSTGGQCMZozoJkB13FltYSGaG19QePxnAbNXHM6LKve41XsEXH9KLyPHNW3c/G18wu3XM5owJ4MceXaAQ3lRHPJnZrMFzSbDcVTk34Dm5DzkqxSLxMnWKiU/9fI+RhK0SXsjL0YKWTKZAyF8FQRAqK0lt/EygZSQZhoOuXcJBQqXNBCSm8s9NmIejt7ahrVbpcsUDui5XJES2alCNSlpA9W0xDpKpmkltSIl9j6D2/D8RDxQk1k1gt1JQgMBA72yKQkiFHJoSaBJjAZ30czonnb0nTJym4y0kQCi3M/WdCX30FWPmnbmeR3qZFnX4LVMhohNi+ETWaEDSEbDKQaMOBjGYOJVajwFcgS5nmbkcE9Mo8VJVIEopZEQCVqsFQWC9Yi30mgVxHWtXEO9RGZ7bWEBueDiWclAsTW/7agiFIbNm4E8kZdMiufM+dnPqCLLiG65BKiSy9lUhC8efZKAbEaeV/Lefm7xaj0MIO+OTFdXCbTfh2BTQJYORm/DBMPjUzBxpNTzmhEjATPd6b0xj+8k/5/772bqJkWOYx7ubV7iTjx5je/WTymGhb8uZ/7OXrmM59JV1xxBX34wx+mV7/61QIT/uZv/mbvcV772tfSa17zGroQGiCZY1sLOjxmqKZvHQFYiQraa70NnCeg6DGIwy+oURosOhWeCR8iw3G6Qk2eRx54VilUSGac1OpwBVa5EBRVppyQHwrp9NwTed0OhhNPKAZd2cSnLEeNcWjdpey/lCs35OCUeoZ2D4Z7ZW81U9bFc8tFZqvnlvsD8S9ZGKTtC6p9icwFAQOEkeK6cW21aHDKuyrgLrjVZTFAlP/ACMjxmPCQyvPG2MkJtWXbzVmph2XOTcsebP7N/PXwpzIy2+sKlwfAYRF/DCi3C+0Vx7AH5Z4tMyLHROvC2MzkEu2TMiKcvDY/fqKw2y9CkgBsZ59jm9P6GcDTanm9Rl+9d4fuuT9yxfaSB1W0CordM0bq937v9+jHfuzH6MCBA8Xnr3rVq/z3pz3tabS2tkY/8zM/I8ZofX29cxw2Ynkf9qSe8IQn0PnYUADwvg2ml3K2vtVRslGKFapoG6QEU1DEYzrKDDuLP8l7BAVyy5lJhife9eDuFioHaSaGPprHvUTjjLXYFIIbrSskN5w01E50tS+OjhndZsBreKLxGhcDVB23crbBBGufCI6v3oTAZOJtzGkg1HRWkFbvUK5RgswDheL8pQC8pdRyJAMDphHnrpBTt/pRJtmEG9cujbL3fbhMKJrD/nJAvlXDnWYxIIXihRp1G9dcG6icxOtUFtdRtLhP2qfIR7J4EHsjerXVyqCAGvknKhvLc3PjyuPREn/t1jOrsT63XrspmpjB1BysNJ9aAU3Rdkg3gFiWShblnLuUs2fnrc8H9Qu5PlvQ6FBNMGVF6sxrEokpWk0zJuwMmbRj3SVVpY1EwmSISljLhkOogsi35kkpOUK1+5CTlbX48DplgkVjP+JRSfkOdtMWWvxzQXT73TtSOyr1yHnXzpqR+rM/+zP60pe+RH/wB3/wsNs++9nPFqjh9ttvp6c85Smd79lw9Rmv87FhmLHexPZyQPdujemKtTldPDZYw4yVi8DabJlp0LlmD3J35G+sgtNq1skXlTuE4+VJLs5vMRNrEvBW98thr9ncRGcEdlRIRSslGeSRr4Hr5rCgqhA5khQUD9CxDtEp42wGoQg3wqq3BuSl9zcSeE4nGvcgrJ6U3x1SXExzUMVkLdbl8Rf9vqz9BFWIMoaU1cet93rJLbJfIVYTpTq4TyBeql2ja/W8SJCPrZqskmhydqeJx1akkEheNVjWFi4lVVvHUy73AuPLE3EYIjMKdeKuJQ73tTqe5dJPnlCMHLDu9uHdWZ9GDc/ec+S+L3SQrb/AjpMxVnmhCVug+bwRaHdzk5TdZ2RIYYRmhX/vvfDCEDt10kRfzEnKxjNjz0gThRErjdbACRV2vXwlA6JJcxVtNZfTZPBVmjdThz3Px3bWjNTv/u7v0rOe9SxhAj5c+/SnPy0P/uqrrz5bl7Ovmq5lG5q2A3poe0gHmwVdzPi1fesrSH9XypcUkzzgPEdVvOCdvvx4j0PPztauWZQ0kwjyFSSmVOGNWX2n+Zw9NkvfFUPH17QoAuV+vaa/hrLrfh6Laeh27GGoFyhkiQHXzdIQMuJJ8hJjxY8yGTVx3rwgzOfaHQpHFp5iWtVG32qfeTKszE3QDwRxoYSQCkRL6Pk5c63v4afkX1dbrzyrBMOp3SjL08Z1lM9SSSemvG3X3LfoACzGfSIeDTym2gDi2frthTHLmXyx2Cm3K5zR+hhpfMDQA5Gr0L3OvsV6CxT6pMkYUKctCgBBWD/wdD9fcCxcn3WdjxcsyHiS2hfwzhEnLqG8CMBaTA10cxvT/lNX5230M80X1LNtTg/TA1tX0LQ9QotmToO9bqQeBcz3qI3UxsYG3Xrrrf73bbfdJkaG40s33HCDw3Fve9vb6D//5//c2f/mm2+mj370o8L443gV//3KV76SfvzHf5wuv/zyR38n51EzZJw2Jy391V0tjR/f0NWHx1qiIkm1yKBF0VsxDjo55wln0XLFXvXMJEckybpIIFso3AHxyIpbiudxrN3gDOTBYCKQcwUXK09UQj5YEj14dCml4ddGxmKT/6nGnQJuSo9u2oEEnRm2G7IXNOBtUW6joel8ph7A2sDJD1yHiONdMw72c7Il788F44RgYkQBuRbtL6cpm1fp0kEC23DfjWOqQVmL5dxWw8Hg0/pVKBqYlLPxPPBHmrhmJt7HJBW+V/4GkKNlLaU4lQhBOXzKhA41Lkxc0LyzMYxPKeMQnoHNbHPZUfuBYVGdkEGoCK9NDZzeD3vAcjgfiEyhtLQHN1DKIZPJ2PLbYKx2bX5ddkxrQliAQoUdc8AWwSyzIwNWvk96LBPfTAmFc5vYi2Q0Rr32kcOKXNrFjbWZRZXZNUURg+gUxAT5Qs+2vc2GSo3OzFiqPKTkXi3Wqj+qNyVPMCtV2UBglIDHCm8hFXaZ7ORq5yCXWIkOM2w8xp0c0thYWmulUu+hlug9Nz9Ef/TxCT14nIWo91drzraR+sQnPiEGBg2xope85CX0pje9SX5/61vfKgPsR3/0Rzv7M2zH3//ar/2asPZuvPFGMVI55nRht1jtMQPs2M6StmbMRlMN69DuS8HqBJ3VLftfbkoKTF//dry+s3/5iefYWHFCZqpphn4E5HmPOUvKiNySTYzg9zrcaHESTHI5fmL1sgYGAYrhS/3iOSXp/phxKEgIG1aLmGsV3lQAEpptbnCKMoEWb0qGN8VcclxKrj0t6X3SrKu5stFEjEStShjBFBQpCCkJgsMU6Kd22BWub3qe2bOF95V2hscknl/1TDMpJg6HJGn1EN3GVGPrtBbIPQasiCPl/2b6fLo+jJu4jvRZcQ6UfcFDy3BjeldSGoGM6KJkmHr181kwZ0Xg2GOWiUQCjxSPpfqBZyRrj5SkqxCe5UPVihPp0TZQnzDWoMbqxnTs5Jy+dt+GJLWr/NnejUh9vdfVtH1ZeHu8sad26aWX+hA7X5usqIjo/7hxSN/9DUM6NGR/KHTO5HWReky8dag2jNRqyAvP1Ry0PIa9hSlp1EtSpLqFMBqcU+OeUioJjyvj1fTOZEHTKWfma0a8JBja6o9N03jU0OGDQylsyBRukZlhWrDFiBApEco6U5lHqjs3nU9FFWA8GtHOdCqeGFOJJVlXGIMqNrvFpAyZ+CUSJgnJB9aY1q5eBxMVit7kCXoB+rYWGNQ4kdLDY2HdEF+KwkQZRrE+hCyNdYfwOZjQIU4AdOnUc92hnMhss5pVIhkZNRtNiBOcWGzPc2GVIST+lBkkVSJ0bkI/sWcOQyUxlGoRgneHj6veKPQA7U7hHZubI15d4SZoonMZc0oH1zTilOQKO5Jh43h/2eNBHAnLKYcmTZ2C+1V08gz+Rdww4n6mOs8wJRTHLXk7K1wMmVSfFEP0WfBkD6uj5+CSM0PWNRxw6oH2u3hceO5MZOB9odrPsdUxiA4oXtjQeM20+MYNjdbYW2TCUOj04TMec17sEEoUI/vhv4V4M6aWLqbX/8EW/ff37rjnHcu4/dMAxB8/fpwuYa7/Lm2l3beHm3gkzYDu32rotoeInvK4AR20fIlu2iNKcJRDFRn1oFdHSQzIJVWxK98vVsr5iBHf4IlcY02jEWBBE7WVld9QoJHJDjOR9LocfRP4hkkUam2j9pLBii0H8Rs1bhwjkERUyz3BxljtC1TlTorqzHr8AyW6Ff4RD81YkC5jJ5cdXotOguGjZUJBfjDwPuogOvZBX4kzlz2x5H11G2JQljdlVHQlcFhNqJGSRRSh7RoIqWslv2jJiHzREUMKQyf5YJXuX4VWFR5TTvLNf3vybO4k12zMscV0zWnzYs+UZ6XPC/uYSHJPD3ofCLlBBIPkXPI8k3sikmGinMLJsHbtbFxGJkHm+qwQYtaxAjmronS7KDxAVFkFjuHZReFOKKsn8dmky4dHmWNXmUwxSB7WeDCkrdkBuu3+6+jBzfsFFh/afSZs5Lxrq8q8e7jpXNrQyQnRvSc5qbGMxubXXiYXp6r3HaucLR0O6VBxE+zj/6nHvy7RZRUp7CeOAySAyrwGnvzZ0HjJCrVuxcHAVhSIxT0EViFXjwuyQWXuDgLVGWeLCr9l/k1EokPAtKROewgPhROTcgUmD+8z75nwBitA1M+NCZ8nQ1d/s3BGmMHqYSUPqHaWCgIErsLvtfZk7JdwfNL3gd+pTqFBmAlf9DtM46kbd4KHZFJBHZgu90j3++jJWGp1IcTdJl6Iz/Z+mh5/GmsOn5nmomtUllqO6E15/+CoW5oAkpNRBLE0NtUdgKWXYkuA7uJ6AibMj8bhP4pr5vNPpwP68t1rdGyDjap6UeenaYq28qT2emuJ7j6+oJObS/r26w7S2qilA2TBUlcJV5hNVPWECxGrVIWQQAqy1bgu+iTmpRPM0DVHXccNLyqKkdrF8EpdJt4cp0COk10U/w9FQthrmi2syGKKf2ihWoVhNE9KITJMDyHwYsm/xj/OpSkYBuGERr7IQXNAi0QuJwpVyg0PZd/ZfKqZ/xbv0pU6Kruy3kEkB2uxOuQd6RVDWkruX/qDISM1bgo0KrwGLVjtF0BGobKhOXDB8FLwqMw/k2u2OEReHwtTkdUiFqrMop6pruTHjAWZVcsFMlK0zY4DYVXNNZNtB6DsGwUf94vFjKlcqEeIawpjyQoP8k3B/rOrwERu9j/PpllCScgsJsir7FTLB8K2yWNENoEWVYZJCkKK+Z7a/yhFgru3SV/UPhjGk27Te9qaLU01oqHh0gBEYcZr+jOgS4ULLSfP10haUkY8H3sUzAxcZ/iOZ1gu/SFwn+bzSZelshxFrSg7BtpQjj+mpZBBdujOIyfodW/5LG1s6XWdL9V3T9VWRmoPN0w3PKFMFkRbs4Yms4YOM+TD9G4EmSvnCZ+VQpr4RtUZBC0SiEJfvOw56Ao9T0ddmAorPPnKEn2V2pwwDF/pJyq0xFiY1xsei07CyuDKgncyZUlp+3QcMN4qiEQkdETeCBNTWVgQ7HYHtpICv9hY3LtNWiCSOFUhdXAWSS2mbVCcLVYStgdXG6SA/ohSWRDCETG/5DL+IurzhacbRf92G00a36o8pcplQ52yAkYsWHjlMfP9NL10cOSjJcNbeWUw4tFjpVJG7aPJZymZvYzRxdV4z5tRxmllQeJ5WIA/Y1ux38VJzfRlvoQLwYYHnpzUBNlBp68kSHgOVR/hgo2XrQYbkTdb0HxwBU2opZObJ5Uw0Q9znHdtZaT2QZO8IyKB/S4ZD+jq0RotianZrPCQrYGtW4tqurbW5AnNEkCHMFIJ1hEPw7PyrRhimlAiy78ssRLnTrk7qWidKJEnhpzAJyZbp4ZEi9Zxsb4Z080l0K3XBz01MX7WFwWSZ0FsToyUIosy8bCCIN9jFN/LBguTC8pmyD3I8tyUPFCSIn/ve+pBBN502JG9PqO3u4WI3BsvpNG1Bd1mp3BDqS5NxL4kLgdjjpV+ur6k/I77LFl7aqq7ibel4dBYjMJL5WalKgk/tzrZOLwbGB6lvkcSQ3/j69b0AfhTqj7v8T1/lugmqIVXRioR74rFl+XPOSrAcLKo6wdsCI8P741cS8WEddAypBSL2k+hTAEPyaBBybOoPKZKVSIbKSFKaMYFjYdzGg0XtDX6BpoMG1rOb6N2ucOqpnQhtJWR2gdNyncsW/rre6a0fSnR9TcycMMAiQb6ywB0qWxeGCqsxA3yKqF7mxrSC5onqTpgHseO1iFuuCsB46WxK5+MIDzKOSBLFmpVQoaw48Lk2mSrUBlvV8YbbHUsE2ZDE4vXj9hZ80klJnvNzlIvRERUxUAFZJUNMCBNOBvwQgQ6SvWqcA/1hMnnUgMWfZ3jMvBY66YeU+hZ++e870JVO8SgIp9KMpO5lhKPik76cqhMMKxrRmTO6h7xePz5RX0qGPfwJIv722Xxrgy8uA85RirSl8dUvndJHcCiBfAgvuvxlrBkqEktanBSHC0tmoqEdKsRBXs/TGNDbxaQcIwhM+HmxbGF0RwqhftM8sgNDv+ukl1iyEA9N+PT+1PBf3LCsajVijDwm//oLvrsbVyMY0JtM+8U0jxf28pI7fmmkwVPTQ9sLuiiMYkSBVfwkIQ/Y6a5RUiwWieo7HBRmsSwLIROXp4cCn5Y4r3nqyvyippqMjaorrwIe3HLyUon81BFCDzejmlsCY114TxhNGD8mGgBdXaRsOnwSEzjInktRU+nmkp24tRPbWW8Go3vJTnUeGIArbBgiHuu5/ccn8GpdSLs5q2FaKAZEeQ4QVA1M/V8oRLHxS8wkPmJlS1JYVVXHblJ1n+5NEbqx9wf+bjwcPJ6JlPVI28PfYPuq/DPzhVXZwRmWp07fE+IHae/U3f4UsMPkcrxoqeLCroYH6bPl/T44GV1YL30GfKnMmG0GWDh1tDnvrxBX7yTvauFxWgfvtU9tR+BwZWR2vPNIx50Hwdjdxq6f9LQ5WstXcR5FEuFf1gaRZosAjFZIHjsf+mLqPIUofXGWn9m1FzYk8kBokBgk0/KDcKkl7Xech5PrFyNvuvRIJUp0msUvEXKMKCBLaXZ+WqQhsOxkjxmM10gC3SiR5TYOiAXrma74AKLqszRDhayOgdYhJWpEBxyYL8Z0BzReFPD4KaFDi2GBi9gNJTcppGdD/WvOCVAFTxEjkBhsMLQo0yFseDs+lHyAfESnfCUTsbf8zwnuoTZtxlyGRBWERFetD0/u3jcRBo7UMjgxqtxKJaMDDaE8K/cu9PcWYEDLP009aeqwNIYYk0tj4PalGZVElybyx0B3tQ/et8ADeFUC6zkdfrnltgKA8V5Z3x+9pRi9tcEWBnv/lmMgZbrYUTlUBsr+kxQgVcJDjpGpKfs5qSqMudIaea9QrTsJQ4rg5b1+Zyunr2wSPJt23Waztbprvs36Z4HlODx8Njx+dNWRmqfwX5b84a+ypJDlzZ06JCqiWfFgJgoQhU9r1rhefQuqVIsS37MMKlXBliDIaPu6t//dsKFGsu8kIUQbXwWRrA4nl8Hl85SBhtPCMYE7g2lo5icyjspdZ2r47KSEuenaJdon2haZ4quGNSZ33uF0KwsQm7WD8qEizgc+j5ff3l9MSHj2DXdX+fFFHfJXp6LDaZaUVgHCAzp2uSFXxceXfwtxzNmaI8D5deTCRvp08rLCaNUt2yoMAgxHiXhOKnci8l2UeOsmh7xuNorB5TnhJSsZxhRKSdsOJybPP245TQeOlC4H8nfHSc/ZC8oicOKcTEvidmEA170ecn4DAsij6p7TL7WYTugIw8N6a77B7S1E17sIzJR5ePbd21lpPZR46J1XK331vvmdBkTKA4NaMHVz/glnINOrkXhZE7LOmeFoSqNC0+Anc8Mgsuf8cvLL5hQgRcLX4Xy77k1mSFmBZgyA1CbJWYaLdx3NFo4rkvK8zUNrYl8hK78seKOiVSTj+R+ubyJUMIHxBIQA6sB5ex2RBayugLEbZNhgCFxFQSbXT2OZPlb+cX3HLWCuBILB1VPj8+1XmOUColpMCXGOmRnk61fTxgr0akTaKhW525KDynNglhICFU/30PqH1x7n8GtlSb6F0qx4i/y0iwFwBmXBpHBo4KH7LB1huL8vhKBJ52njIlGtWRcn5KD1LsCelAbaiC8JjzutxGQHmKqYWBEHQLxJORG2Q9LdonihJWbgZHygqUdA6UeFHvzw8WY7joypI98kY3UfgTrvv62MlL7qbVz2pkR3Xmc6JuuXqNJM6ZD7baurCCFVO1SVLyRAoFaSRRYvMcv7F+BNByuQiKtCrFKGXgO2Fb0ZJYwop4gtgEhuwbyPdphE5TuD8V0W+kLw8kICMVElOqiG4OMjfN4raXZYilsv7ZVqJC9MSlfIi9+t0BkbTxwDi0BD6Vsrh6sRouPwRJB7qEmhYTefqiYlsWkb/vU1H2EP9RQJhadz8cQTUUcrTuBOVkBZV2o67Wose7u3bdogQeC689qG30EkM71WBVhO4OPC5VnxQQd8kWIBwE67iPueAmO3uv2u7Ex0pV0Gor7E9R9+YxhYltsYJEibFD518pwiLFisgo8oxybilwoc9vNQPH2unp0UVkzbk6sSCoTfD2zZkBfuHNBf/yROR3fvBCyorptZaT2VVPF78255kxtzwd0KDGBeskSJegSk181EXtQPy0doVyd54ZigrLJEt5SecYykG4hAoMhwfbrgyDKAn9o4mz5T8akMAnohMJaayiK6FCcyd1gZSyeXlFzKEXP08Tmp0vhDMCGOonESj33uN1FZhekw2bPJCtppMnV/w7wqrvkTxV+O9GeTJooYVl8BsgNE2i9TZ8HhVP1OB+dVrNH7cN8ggKUVBgLWefwroMeXl9JPm6kO/UZ6pzX5p1SHEcJEAZPY4zUP6bP5+e2C3P0HI9JVnn2N2pLmlQXqvuWHlmG9xKJwioNbM8O0IMbM/rag4wplH172u0xhvke7nSP1B9cGal91XRSmhLRvZsLuv2hKV1+BedRtDTnWIyIzRp92nOgau8GNGOGKIbqXSHeYfk/KpWj+xowpSvBURTAE8UFsLTYa7Hj55x/C5j4Sj9P58JYKs2ntQzrSLZO5zuP9dvyu/EJhvWhleCwHBFtT7mIotwpLZdWZoNfdV0SB1FjMA9Y1CScVGZpQHMxSErsHkvys23IAQZWym5n0qeSCuD3loyEKYLIyl2IIzr56FUZkSTdXyl2lT2VpAYCG+3iwiilkcZJkQOXS41YPMggwnzdfZO8foy8r5SpWp4tGew82dc4Wuyv3Sj1eOMG5ZkGm1WIEnytKdnaJ3FfZMU1lKMkXZ8bApFjNao5yD1KSxFvSOSrYnnCcSRR+ROtvzJGBWKDPyI2QKIioUoW7HWjYCLzSwTmk9QFhuNTscNy3eFGbsgs3uk63XrkBrr/5DGa01HLltzjdaNOo53OIie3lZHal62hBzcWdHvT0rdeOqCRoG1LS/4ML8PX4DGT6d5JDUEhDUsEDd1V8JntbJZjZTlMMCyFqoAlbnr1X7/SvsuvVu2dCS1gMVCcEXSP7+pBny7W7pVFQ3l+Fmadl7g3LUFJFg0hWp88rQ+ZqKcTvNIIWemCpVglmmGumK7gtRqdwn+IoSCmpjku3kcVOcM9Tbh73vUp9lUs0YO5VjDpfNd8PDtDUmWI7se+ZXXf5JgWHYxjIKbIHgGMX8Th+pfQuyml54kqJyTHPQXxp6bn99lSMZKSrJ7U1G3MgATJsKlQvI0y78fG9sU1hVHU/QHxxYuF76Luk0LKTiuH4oRcg7nzu3hNxWemQ3lsY0l/+uEH6da7NmlJExHReqSsvkfqtZzR1pwZr25lpPZpu39jIQrjW09cJ1atG0sipnoLyq7tHw2A3DBpy/vm2YPaAiaDTl/QpmMSqUVsbAoNXC/gkN7VE2IO5lUkpW/Pt6o+y5OneGapnAgmbjdXnKk/GotXyMXw2OhomXm2KTphoOpsrJBjmoKRwDnlOLKyZu02hTeFVS7ag5rH4mQDewbKTIsbVyMWM3qpBhGz/G6l2PHMUu9V8GGZEwXj5zG+bLAMwvJ+S2oVIC10Tp9h2CoO12+gSqVcNXBdTes6xmlncJjU90nOHOKayuxPixobg1BdF0adsPSZXWdGSp6R9UFSnOhcl4vJJkiuRx0icp2CCOEVd1F9V9BxSw5O0LEzAh1WxMJyRA8db+md77+XTnLiNdPiLSfvQmsrI7VP23Y7lByQ205yci/REy8ZOizCzVfKDUNRDDloDg/PypiLpdJo9obS8WGc9PcyEKG7x+wuMSDT1MNrhGA35w6pEgV/Z0KzKKPuVONuUww/CAN6kWkyroEyIQeUbhyTRLhxwFqMqvSPHpNtnxQLGbAxMz07hzmVuu5y4zDqizHN/TPddmaLW0UJ7Z4l78qqxqIybydPqDQuOqlaf/ck8eZYYFxn15ikkKL/aJXa7CfYs+2JW6WPe5+JTLVYOKR74bpbERrKuXJlonNuHivyeJF6ubqOUkUSNiaosqsqG1ot2CN3Us9JJZz4OetNA2KWK3P4rllC6qhcOOhQ1qJq7G3RgCtDh+yRPRTPc8r1ntwoMVwo9Z+UDKHisWqghBHL+VNJTQJMQB27UTtKPbOGTu7cSMe3B7TR3iHVD4Yigzx77ANMe6CtSnXs08av3qxt6P7NJR3l/AlZjvE3KGuO6dbwdby0SQxTGsRGq3yfrB692+Ite0kAULqb5vIZ2RCUf2fIqYin1BNuLleBPK5EX0AMKE98KNUtuZfyMTwd/ume028bwW30uZUfWXCtK45HWbHAIGqUx9JyrKf7RDMUFn1W0PZzlL1aSOR4lv+dl/s1hFo8u/xATnGFhUfYfxxPyi32yZAlPo/oW94+MwmxXef6nOkYMG6BTVdxTbMvhVdX3jtGcDXc/dQYWbvAdEXFXUugzzWhYNCMSLgrYQJitNTQV48Q3XFEF4C6JtqHHlTxEj96+7rypPZpY+iAlRI+89UF7WyP6NuuOcQKf2y6lCzBUIOVDdCV40jjKqJUMJAxP/CKvQaruZCpvkFzWR0DlqPE6gvFaP3RtU4mwYOwkEVIRbbIiBqjZmgQHxdFNK9JZAVVa0KVKvh628orUIowJjj3qCRWZtVWAzjz/lozOvBkZpWH2Qua201AT80nKDZs0JCzgo3csyyCysH1duCVb0Xng2Mh5jGKhwqTIVBceKF5IVBafjZ8upd4X3Z9yEXj2BrKmJi4hZRlGQ0YeGysCKbdrZ1AqyQHjCsGRfqyjBGpz8dJo6jqW1P9o2VVP0DB8Fq48+RZoJikXUuXbZ/JDuFl4gGD5BFGFr453NVkMADn+bhLJeUBzYJkKcOWBWbZq+EqAjrve7KFL/LU87K1TDKkPA5MTSJDf1KCg8k6TGc3OSQvxWEkijG0/cL7ygbKx56Iv7Cn19D/9w9voU9/RRc/uILzxYt6pOZ2ZaT2acPLs7Ec0PE50fHtGR0atrQmgDfgnYDy9Bel0UKANjPQcq5SaJgFdFfnAIn0UBHUB2yE+APgRnxHpYq4QYCilsDRrKRAXjPKFKM3BXcrtiOTq1yXyvsw0w3XkL206CvALArltXOLwbQtzWYKzUil4eKOTObAltee6Aop9x4voOjvelpJzyTDkiA46LGxKIjy5tHnkurqCwcULIyFauklFEYxK4lkeA8xGcRC0iXuZqzwGSA4MTR+jIQXJmo7SCUOcaXxlafgnJyL4oRhuKwUjAV11DYGNdxJNha8ku8N3gZ0mO+V/yPG3D0kRR7wOwaCeKy7qJWXChLK2qNTxa6yd5VKefAPG9Rlc4Bm7UE6Md2hDa7PQ7PIFdgn7Uz7fCsjtW+bTlRb7YBOzomObs5ocGhAo7FBdTkJNe2BJa57J/GN/obS9KD39kxQGWrJ8EoZH9Ev+5Jk8W8YKU2S1MkfEwMMQwnBcczA4zzm+vC2SE51Q1HDOrYqH7LwnpAcQuGAPVJVRjcKsk2uiQDucJorK6AQn1PJ0DelscBE54YkPwxP8InzxEdqpLy/q5woMBXzueNJothFTaroTnSeKItnnry+8qGX++gzCyhO5/R4YG4I0yKjPlyOa8aYQJHLzqVGrMulquoEXVs4uGHIivbVgsV6SVmreN6qWh7wW3hskgxuBtGNTyZJoFghPu+B8txr6vwoNZ0N5s7iAJ2cX0wbswFtL6YGSeTaURdeWxmpfdpQMZQH8YNbDb33dqL/8wkLuvyKiMkg4FzL9xSmRGIqDCtpGQfk5dbeCLwcUZeQ1W2szgWy8wvDCltzcmr1Bf5bj8XBafZeElBvzLYogxGTuF+HafPxFXJpeocKPWxTGtXaxGoch43VUPF+IVNwddpW4D+OW2kQfihFIVkIN4fnMAELLMN9zDCXxPJDKFFKjdg9cP5aQbnzeBJqZIXnhPuUAo5S66gKGecVRxDSwysxYoEaCFOZqBYI8FALtQhbcBjPoRggQdToCrtm1XCG3QADIk4GqaOQWIoxJddgYnwKS6rR0s/Vs/DuiZO6gB+PA/WqcAn6zBSu4/5XKE8ynGCgCpuoHrxuo/uK1wUiBWJO5uWp92/kBvOCRqiyK7ijQnsD9sYFBoSaRKP79On0uWcl5bSpHbT0vj87Qf/P/7tFt93HpWsKgPWCbSsjdR606byl+7cGdGJKNJkTramIdeEFiacBPMesUDn8y9iT0n9DhtMdppSoGYKgJYpVW4Y8Acf16HFUbdy3tIkkrcj9sPFHAvTMW+ueuKMdl/e0yYcnSZ4YtDsiz4bDdJzIqQeyfhAoyEHAxB5LsFZBBqw8OVxXQqRqb0KuIx5PEb9SQwGli/Be4J3hEUT5+Dwd90z2VXNNwAS7YbcaOiwNXOwHYxmf5K36vO24t+xh66eg/FiqcBpksFUp2GfXjGeD6yklsIoFDGKOPubisotjuDeUEnCTgrl/B2jQPDCQdToeVd4uE5hoQAtaowdPLuhv7prRNupW0aqtjNQ+bnjdJ8sBTSZDumezoSsPEj3psrlW9UySDgvxCjQoO5hrPMMY2bGizytevLiYTI11xGKZOhEPO6ttDvRr4DdULdRz0QOyx4YlqvI1GhFZRQxCVs8yW5YehJSMT3ld0bRwXTCSk9J1NRE7uuY+wVSC3bxYnc0Wnr+0ZLLCYklD9qCQVONlTjhHig2rFReMg3rgXQtLapyMNQc78RzbpzYmKE0iRG5L6FRY04Ep64swlIhVgEwRnGkYhGRkjIiBWJcTH3DMtDjJiwomdJTedGg1KtwYhqCAlV3rJF8BmlU9TtfJ9+CQHBRaAd/KQkHHK6olD2GhZZCj5EmK/8g5CuXKVE1Qym7qtUtCt7FdzPCABareGaMHKlzsj5IvjcVajGrOYEBo7qmB4mOMEiEiG7mcS4WE8pZGNF3eQCfpOB0dPiAK/oWc1gXcVkZq37ZqEm6J7jiuMkDXXTqiA8JsEnDMJtS0RLcXVBEVLMOtNIe96WwwFnOdlFxhwOrvyIQnJ8W5MblEDABEBzFIWeHbA9/p76L8OOcZJVV2/JNW2lBdx2Qpn/OsYB2h8bZleGtuiTUIrwQMTFJEc9WCUrklm8gkcVcEI5IHgHLw9nuIe+jS3v1O61f+x7lqyVj5pO/3Hv2uAf4kqCqPx4qLFCKziYatJ3CDoQZJySghl9SNCeGpwKPo0Mor4kS/oGwwPeGB1bHJPgC29hJKKHApi5jwoooDpIUIBJQTpJfKPrqXr9YMtEtn6FktYP2B+oi5aZ6Ya+OeY5laRypypRjuqyvtConCDJuWjbdSMZZbhfVAkCh0cXb0xIL+8KYH6BO3TFTirLzlC7qtjNT50tqWjpxc0mTa0t978pjW+KUwqSL5Gv9xinBmskFfTlfyCDpHjk7EtDwp1A6YV93ZgwG9OcdJToE2VbdiHlGaFHdL+vXzIo4lK2tVx0YSq042CROzCQplznkS4YUrAjPtYECL5Vz+DDOYuq+nllbeJoxFOdV0oKyUo6af8+Q52B0aq2jsOccM8SCoiEMr0GNgOcE2XSuMRZ+BCpi3hOJqckptoIpnnZ5RZ2FVArRuiFUpMQxwp6+9RAdkj9hMhd4kDGcnb9AJN7pmYU8nKtxaXKzyenCBkvZgx9HvONaUSm3YZ2q0ol4U6OZiFIc9cJ8hChtbLf3xB47SPdvqoa5gvmgrI3VeNH15thlNmxLd9uCCrj7c0rUHVUxVPAd4L7Ka1Jd8ZK6AUriRYGIOl5EuBAKTono90FVPYy9I9qrUMzGJuiNnzSGoREGHjI9PNtVEVRMKeBOpVCsVfW0HzApQULcYBCYuLSIo8qEinNssWPaI86C0Npf4i1bWZDhWUomnPNmK2yfwRRveXxXgyF0WFHWDr8wzFU9g3hUOxUIBfVR7lSIQnOp+6fG5D3mSZMgxJT9XBi9I3Qa19jzbiAKV52WZKTwHGDOGeftYnEoLB9N0dzg275fLY3SIME3P9pITZdcjZV3Ue9YRb+QIHgpmq8Dqk0WKQ7agn0f9sczGEyiboT3JieJcKyu1kcgUoKDDYLlBghq6PLMuu48WF9NkNqA7psdpOh/QQYbvab6rtNmF1lZGqmp9w2I/rGr4BZME1SWJRzVuiK7hOh62kuQXOQfZdR9uKZJvnlEnKRMeV4JkAONgZYvm8FH2ErCQzeQN2zqzxJAOkr0x8cLqe+2d4JIgboVwSXyIJ+6wUsGbEnQnJiendcOAy3Vn1YZg2LkXkjwovYy4kHyl7tOWKVLeYekx2DahQ4jvMsEBUC0gKe9DHxGZuh4n7DDfqxYFIUtSB2C07F11TRmAzvzBbsJI5XVxg/OSn1W5WSADWEQVAwxIAL53UVfoFJaEhSAzlOXd4e3URQmzeCwMUE2K0H2Dqo5k3dD4Awyop/3S7Uv64p0tTUz/8XR660JqKyN13jQd2GykPnP3gqazIT3lcWvUNDPWjqChqEc0tLBk36AIg12lMSkLzxjTrWQ9+a88oTuwkuC9TokGpZtrgEGVFGKOR/5KgulcfNU8DPMkskApzlU3fAIYT+JBFpcSEVKd+sx66mo7hFdnGocbD2goMCHH89hLMZr3wso4iHwAH4y9lSSG63lQ0CtkuQzJFKVBprAD5nPLA2JA3EErUhZKlPDuGBp13618nNdd39QLsHN8Hwvo2HkNLNvC+yRyvdDfmTIeBifkikas2GDjBNvgNjKqF14Tl0qxMZeKXsTV2raWqqykB00LEA9/ZFtxDp+J4LInE09dPXC+V9yPUtC5uxhe4LNqgUIZBeLl6HNEjadscLKBQv6TeFAoES+lNgLqkxMZiQK/+2dZ5y9V75V/+b2YDeh3/3CDPnkLp0OoEsbUlV5WjdvKSO3WqtX4Xm55ymZawLF2nR6YEd19Yk5XXdTS4bUBzWyy5snVA8R1WXmRSbIVbQ87rtMntoitYxQ8sSipwXKYRA0iT6bpepPKufII4lhOHNilAF+RW1R8oeKu7rWYV8hGS0STKo8QNyU5OsY8Q3mPJXJyuPQHJ3SaZ+aAJCZ0JoiwYG+KAXI/ZGRS40TWca6PWN53NswwMJCqyj5LX3+U8aroI9DluzEgPAMzEMYUyJWAc99nSjcgWr+OZChPhQqXsTFL3u75vmjcj+gzq3nmGnnpWuIYpkAu6xHznNulMk/t6eAVKCSOam/JPneIzgyRVGhO6uUlcaKb5JuPm5UpdqZrtLl1mO5fbNKD7UzhbhtfqxZtZaTOs8av3xaN6dhsQfduTOjSgwO6yFleALlqD0kZZYCHoDsnx9tFsaBg3xWGKoLliH0B7smr8nzMPCkVhgfkiTQx5pYn0JJhGN879OgVA1NfFQrr+g9UAeGBaZhHVd6RZNyNM1kibR2w7zyb1C/1gfI9GX4H4gfuQ/rRbUIHBE33VB5vN5vh/SmTY2mIXLy1OFh6PtUz6Jyj8MJ6zln9LUm0uVy8fx/et9SDYg/GoUEr6Z7ku3jjXLgwoOSkJAFI0BYy/Ls4ZpVxKgwLPocRSuoSWXsvU8ydfNGnQNEQbU1HdM+xg3R0PqVN6UNWmFgZqLqtjNR511pq5pt038mW3rvd0sHDYzp8eEjDwY7KZMoLEyUllJmtb6OURRAJhpgkALvxqr7LVoO0XdDO3XsxKjFP9oNmLBOM5EnpnkVcQBhdSZliN+ZcPcE5oaD6DivSYJRlxewcy0i/m7Cn0NWZC8GQjtWJYjiwcaMJ6Z6evvAJPEtGRT/iPj0TYBfJKOxeyyKh79BxfazC3hYdfUrIFBWaM4T7cM1hvHrbHg8J/6IfmF2XtjDYzmJiicHnVXgL+w+1CmP5Wf+z4eKiFigQKHl4zMTjkjXsSZvSBeBSkCUEIoZnxR6zECJaoZ6zdyQeEpd04RmTkWDzmgDlufGqoUJAe/beBXGipb/4qxm94e1b9MDxAR2cj2lC05UP9fWW6njta19L3/Vd30UXX3wxXX311fRDP/RD9KUvfanYZmdnh17xilfQlVdeSRdddBG9+MUvpnvvvbfY5s4776Qf/MEfpEOHDslxfvEXf9EZQ3umZSRoHzV9kVWP7sSM6Oh2Kz+iKp6UERDcBT0XVUehZRYZ8/GZR6BAcEiB5zA61UpZNmVjlURSE8wGqAaMrgLsQCkOW2UHiSCkdkpFOzsCuBrJq/ApzsuB5AIPBrvl4/mNIiOalco1XpV6wn63vz1OhAs1FfTMtPA1fo5NFXH/dP92vVV5k+jcdCz0k/dtddBE5vBT5rIn+ZpgJPL/Kg8XHZ0jQ36TfdBsIkVgjAbzz8ZbkRaBirbhHeeu1aEW3rEP61SKJo6btk/lV7C93BriUbvp7rHMUfKuTkWe6NXusxwriZMtGrr3oTW656EB3XN0RjtclFPYfHu7tT0/e85IffCDHxQD9JGPfITe+9730mw2o+c973m0ubnp27zyla+kP/qjP6K3ve1tsv3dd99NL3rRi4rVLxuo6XRKH/7wh+nNb34zvelNb6Jf+ZVfob3QHn7tuD8aT63TJdFdxxb0lfvnQpMWXU7kjEjQWF/SJZOY2ctpW1ndcjb/gL9vGMeHnh3vv5SyEELLlmJ2EZAvJgYLRsP4sEcVXpR5OlrMSUsqcOG6oWqj5ZmMr5QZ7fxjISL7bClFHDG5Zh8vJnRNyNUYmx7YlQwEMMKTDs9B9hdqON87T16qQq0T5YBmiwXNOUnWUFM2QHYbSgqRYLlhQtw/vIyX2lVRH0rqUZnShpaej2vCtnIdya5F8Yg0OgPTLDyrcuIAjR70+6h3rgK0JdvhkU4+KNUeAKCZSyu5kfOoeLzomNG+lXEhfcl3x0olJNWlwYIbcYoEjwuD4mBk4PlEl4XihArE8mqMUy/UqLBCGDs//J2MKZczYvUQI06YZ8RcGSU9KDFCoTstz8GqEvCI4B1lkkSvunkqzaHqEkQjrvC809CnvngJfeWeMW3ThHaaTZoOtovSMqsWrWn7IrCn2e6//37xhNgY/b2/9/fo+PHjdNVVV9Hv//7v0w//8A/LNn/9139N3/qt30o333wz/Z2/83fo3e9+N/2Df/APxHhdc801ss3v/M7v0C/90i/J8dbW1h72vCdOnKBLL700rX9Xbbd2zeGGrjnU0A9985AuXl/S+mguNaQkNGJxF4b9uJAfTxdlQB01jliMFewyE46FlE8iW+hOeSGtkxbTFUT2E7VxiviAJT82JHlK6iElmAtPuYKL6qZEvXYXKGrUTVQtYlg5CVXhTdmfJxT2ntR+y/FZqUImLHf99Bo11GTGSIySwYM8y5rKAViTXPGL21Bwow4y6N6NcLyQvlbBaeH58LkAIZbwX0HGkGOGHl7x3tThOmfsGbvOPyvZm33PYjeIkHPy1Bam7UUKiZlzDQ3YtshXpiYi1XbVmEUoM0phJFKdlYhvaOypea0YN0gUIZFblSb0u0i2DTUIh+hMEFbgvLGqTYzWLH+KrZ7Be4D6OE8K+4/WwtvC9yJEa0ZrrV2n+x4a0r9704i+ct+Mbn9wYosZfVP2cmvxSwz9r2v2Bc2I7cYll1xydirz8sG5XXHFFfLvJz/5SfGunvvc5/o23/It30I33HCDGClu/O9Tn/pUN1Dcnv/854vh+fznP997nslkIt/nn1U7vcZQ3z0bLZ2YDmgy11Ly+p6ngLy0XEunnDIBcZXMrNJ45NYJfFeMrRx8d5kh/aYgPuAzStAdx4jcG8peSLq+2L4M/meYsc9olWy/gCLjAw3Zi+cEZfAkMB9GAT1n1XxFtzDlMlXGpNuBu/dnuujUN2Y0quq8fUw5z1vL954gOiwcgqVo/6vqUe3WHjbpO+2ax1PAqz3HzKU7jDqfIUH93iDrnGulpQoLFp/Cc4lCXudDVYm2EvPq+a4D6+3C6Kt/tqcDemhjSH/1lTnd9QBDfEi9WBVJP+PECV6l/vzP/zx9z/d8D33Hd3yHfHbkyBHxhC677LJiWzZI/B22yQYK3+O73WJhr3nNax7tpV7QbcJMv8WQbr5zTt/8uJae/Q0DmsuqvqWheAj1MjpaLoFRwmnIcVIm2qBm4xVxIAtgty2Nx2NXUBDRWJsUxXtaLGkgS04VsdU4GVQoTFPPICZ4ZDqxIZ9qUZSg4M+EBu8VfUuq++7GNTEG7YxcS4jtNMf5dBpERdlgA6JvdK8QU1LvySaxnkRNNQinbtk4ZK9vMDIljFbjuX5LuzD6imeYjwnB10xYSQsT7JMXNdkDRQMtvN4PXp7Xj3SRWDA3TaNP1gHWo6lTMH37dVqvqZArG6KFVuHF2PP6Vip9hBjWolNvygwLoGk2XDmXyTwgrIMKZl/W4kuek5MmQLZI0B///fabd+jTtza0zasWami8GFm1qL0ekTp37VGbb45Nfe5zn6O3vvWtdLbbq1/9avHa8PPVr371rJ/zvGmiTr6ke7aWdN/Wko5P+G9QflP1UQTKMYlD/RvEiiqgLZNDgl00/mSqdHnVanEp8eBsxZu4AkUwyyEqj9+A+BCCq0JesNW/xqlSAUYHgPMJKoJDgs9q76724jLpwr0Uiyuh/nhWeMA+7qxAa09gMzAUBpLEqUrxmuAMj9KjK1kEJF+7f5eCdsk4+i1n4gjgunSVQRoAaSUb2n4WdDk+Uu4UoL90Td4HyLkzrwZMPS2fpLWbpCSKB/WcuVF4Kj6eBA/UH4X4QN6IuJxsZooOop4Oa+XGqCJV7EZ8AGNPEncrY5XhQmfu9f/gHO1yTNPpJXTHvWv05bsHNGdIGKogjykN4Qy0x/hyH5Un9bM/+7P0rne9iz70oQ/RN3zDN/jn1157rRAijh07VnhTzO7j77DNxz72seJ4YP9hm7qtr6/Lz6o98ta0c1osWrrjJNHBNaJvPEl0/WGiw2tgdak3pErSAcMhnq4raDYIGtjPK2WJaXHibir1rjpyIYvNEwhLNGm+EbwZC2pJCMgMFB8+sSMQ6zLAxj0cJmBgwtQgvVaTlYkJwZz0EoUN0YsI9YmeOE9P7pFCilEATz8DqwOKBikeZWdVBE4TfHF+FKNUJYSctVZfQ7YUYciU6RfBPI0RAr60W0zeizxdnKiII+gfuWggzt1H6d/N23YjJGXey8sGRMgq8iNWAcHurNwBiV27RiRta3WOwPW0Yi0MkRliWxyMxGPWNAdJn7AEZMQ44UopUULvS6/B1ChAioDoqxlGpaDHj8SnuK67kSqk+80rgqfkib4FLKgVhBku5BjYZHaYNravoS/ecT999rZtmguSwG/LHmM1n6I1+8GT4kHABurtb3873XTTTXTjjTcW3z/rWc8SSOd973uff8YUdaacP+c5z5G/+d/PfvazdN999/k2zBTkwNm3fdu3ff13tGq7tge3iD5+N9GD0zWaN+syufCKdCTlB9K6jgkMljMD+EzhEFSesnwfgWdyImXZwPDTZozCZikro/FwQOORnl/jXklmKK3YC0+oyqfyz3pyf+J3nQokNi11rCxZNnl6u7WI1wfUhr9niyXNmGVoof45G1aeKFNFXIUftd86sZpEdKhjPe5ZQZapJ9ZTJ1urVxSvs2geFpBdeZ9lfLHsz1O1vrifGIpkx2TRYGVOxNthVgQCS8y+Y1kp/kGpkPSsBe5LnrUqf9h2YMgJSqgVeKX2Ez8b+bGFBC9kjBPJZIoxGwo3JohFwcAGWUIIEEziYJjPqu46Q888pvG4qypRw35QlUAKR9sM6a9u3ab/+H9/jb50z0maNtNO0vWqnSFPiiE+Zu69853vlFwpxJCYaXfw4EH596UvfSm96lWvEjIFG55/9a/+lRgmZvZxY8o6G6N/9s/+Gf3Gb/yGHOPf//t/L8deeUtnp2HlvDkjuusE0bHpgC5fDmg8mBVM5k5gG/92FCOSCGk1yfXFWGIlrv/ywlSkdyROoBRpJHAqyQKB8FTqtgdlKCfUFDvJ2yTnyncuHYhuf7lHaaUOM0vOfkc5BUOcqj4M42O4aac/vHZXz70EqJXc2oe5Xp/oEwRYkCjKC+gpgxKTZjbIuT/0XiPRtozd2XZOO8c+QWjwp+gdZ1t6nDDiXnouNmZqoFz+KCUQwNuH/QMdHkAaYk0wIAlZTtCeejwgSUi3SDJvEojNBqhK2u2DJfPn3LYmDd1535z+/LMTOrpgKUgrU7+fIL79QkHfbdX5xje+kX7iJ37Ck3l/4Rd+gd7ylrcIK4+Ze//tv/23Asq744476OUvfzl94AMfoMOHD9NLXvISet3rXkcjDpyfRltR0B9t47dmTM+6fkZPvLSlv3MDwyka2R+0Q6FOS8UIxHoAVUljUVGoJig1G5PVzkwhCyYqiJyQ7SFPphMTgZzCSOAvTuLm7eXFBYwnsRrkOIVoqx47yBF56I7Mo8N5nXTBaNeIq/dqXEgUMBiChPGp6N35d2HmMV5kHzFsijpV8ANk1W1VYO2ieMN0rG5NJ92fPS+biNM1cxPau28vB62eoV1f6luZwKUO1iLyxuC8wDNpIkdt2HnXUvHFHq9UNRidi198F4ZFjRTCQHpezl1a0Ego5UpC8VgZx+acIWrGzLpLoTn1hpROrvAckDf2jnDdo4EcXRIdBgPO7eOqyra9GxAlRqiSREgZMf1d0tWGS9FmFLLEuiXvDvk8RqRYC/IDFzb0goVGMYenlUkX/O/2lOimT47pLz7f0h/+OT93VLa2/vOKABdea0+Tgv515UmdqwYjxa1XH+wxvJa+zturw07Xl0N64qULuvaiJT3/mwZ0eNzSAam1o/EOlQGyVXVC1lRohpNN9TsrGyX3LwmugvXnuIx+q5BTt0cYGuPGxxGPKm0iKZ+uxq1fCCMQjoUZM4Um9TwiHooXH+ewWMeSVbsdmtLjC//O9nUldsRG/Nhloi8Hu2GkItYVIrhwDloxUvAQgv8HBp3XeJJYXwjb4pIEnswlS2B05E+wJyuNPkmEZVWMSr7K+lDPBwPBk7nFkbC/BPfLZxffKVMSBSULRp+w8dTD8d08NkQO742tdpcI8QI+XRqZQliklpDLngpyn6z3kS8lZdotjxeLEoH8mqGVilcjxfC1GKSKKNFUBkQgwLF5PFxNV/KdGhqstw71iVHifVgFHaXi5SfVk2II0OA/qeArxoq95UN0fHNEv/22bfrCnUSf+grfodWJSjHb820+ak9jm+YRGKn9r91XP4FzZXL7cK491oDj33WS6OSU6Fknl9QcIjp8iHX11ASwoZGqGUueKJRKLYSFItFQy68LVVxUKhSU95yb3IQQEbk87D0sBxozkSOxKyJzvU38rppgqgQp4q+TUqy+UQKiTs4trkCUHxL7rAgLKTEjNxRI1O9Dygl4jxtKo5nr+Tl4r+ryYrRTGZIQ0LDzq5W1awV9X/tUjocerogOLHCrfVjmOZWeX4ZI/VGJYZU1h+NyeCi6AfbJkavCS+MHwUrkqdpyDUPiHnUCxgwcQq6ewZXgQJBRlBpiaQfsXcnuy8Q81DRzTvBVrgfilkrM0GMIZTVJH1kiMPq51GQy+nrJ5BODxHp9YPOl8hsuImtxLFFigdEzokT8rtvM2stoc/sAve8Td9FDG3yNjEboO3jW54rG/j2Xc1KfdXwU17P/jdSqPYJmq/VlQ9szoo9/bUlPuWpIlx7m15+hHJ1oEa4Qo2b1pqCXhzyoxTzgPp1CHv68uQVkF7RzEXG1SQBwFSrrwCj1EQA0V8p26Gl9rDUYNTaWctyHARTgZSn0FaU8/B4W2WBYRV0x7kq/ZsgK9Y4GSlmjpQnkqncBbweMRj9xsi6pGGXOl0KF3HQPJVwXoaDCyYIH1bNfLxHGvBg4uDl1OHsEXsZkOdc4jzD6NEamTFJo8WEJYp6P/6ukC/aONRlX5ZJsyWQ3kwy9FyuMhQIYkPIdSA5QfshK5fCMzBvq/S6x9lxdIilURDzN+lPeiQG94/1H6VN/M6Cj05am3Hlct2yPq0rsxbYyUhdc06Ukx57u3mjoyosa2pwP6LBg+eEOovwBqLk+QelHxeFK8kBNW4iJabmrtxOOaFOvyntiIF0pHsxZ3RLmD2N6eogOpza4OqlHwUI9XzJOdlhFvXIVX4B25r2ZcXajWTLnS8pDlhLClVd9sJuRyl5a78J2F9r5br9nYxeiwNnww+PVmCIvclKWmT9kJz2AvZj+Fg8KyhJmqKL8BnoTsSYslsyQpCuqSRIF9Jc/y4apypsqKurmEhx9JAn7l+OY88WYbrlrTp++dUk7C1EOFK3AVXvkbWWkLsjGMj0N3bM5oIMPcc7Ugp55XUOXrw9osmASRAqE21svdGKw0niOZTKCJ9bisGUJC0xuUkQwQ1QGTWGCl0C5LevTvK4r0oUSJpxhWK380XpDq6nUg3sdogyaYlseSIpbAHRZHqqc4kuIkX/KshrBlGOIU2nwqrHHs7uu+NnLUKo4r9p1ChPPLk3QMC9Q90AcLhuXmpa/a3/kezYSTH1vfdR2v5F8nPJsSTorw2JGvbexpIsZdLRcuR9B9RuzsJMaK1GlMBOvD61UjNBjhZwXEsyF3CDfL4JmXqk/KLzXBKTnHpKJy3LcySjrOWlX8reE5aexK8Sh5DwjounOQTp29Cr6ykMn6JZjEyMgSelMAYP3fFxgj7X9b6TaPXLKfTPuMCPrBR/fIfrKQy096ZIBrbESNQeVeaIQSehKQdKwHpkrhBVopRbME1A1iXq9jjiF/ZXJDSAbRFX0BKUnhltBaK7uJbt2Pp/G6jxvFzn++N2F6jqxtIKUAI8sF0+EV4REVktGdk/QPah8tXocZglqzk86rllnr+8FI+fX88jyaro08kDJYi2RPKyOZmJFgsjlMtx5rO4u5Z3lhGEBL9NiJgocqr+cy2lojCkMnfeayylxfzNRho+afU94UiFK2/F+zFAJGy/FnMRIsbLEsNTq85I1KdakcSiN3YKIEYUPGea7iL5635De/9ET9LX7prLIYkNpWV+P3UTRPjanebTXUD65891IWWvO1QnL+XGfNAtSs5HaJtqYEH3b5Q0dHDR01WW80OeJhaNUHFFJKhHqAtmklhI4/StMjNkTUbgqG6qoVyR/pP/qb+J9AC4ajKTEgxsSN4RmHNNqPB8RrL/MRkMej86vqgZQnhuXt9vro9INzu4DKcBiEkwKETseOFgWjlAGpTAaoWPnfp5v6EzDdFdCfgCdMhmBPk9otxYeVP4sWInwIPPzQdK2sPtSvpdIDeEi3bM1VQfuD2HtmSGymJwTZXDi7EUnmye/I7/J40/G1DNGol5PenadGlIm58XHMI9KvB6UAdHaHaYiAeMUdaNgfPg4kF8a83GE6YecKiVORDkPfXbTxeV0y13b9Hvvuo9OtGMhghBX3H2MWvOYnenRXUOgLqdvpc4bI7Vqj7SpL8Hgw7xt6JN3L+nIRkP/50UH6NBgSesD5qgF4873Mkp1w7k2IBEw5ZrrBeX51hWOQo08j16tbUUVo01nGaab85mV2K7KFzLhJA8piiHa8XJy6i6GRtUpEnfeJmB8x+cdyIyl5S9wTUocAac6XatP9Hqn+JqJAnE+OHvl2hHpVGrPlDyRY3t1c+Hc5DnOhLXHk6UKzfbdb97Xk28fgUvG+zqNw/PK0AeAhNkILfTatGyTbUBd6DcZR3hnzJRzlt9yHmPF6O1CFTeb4nErWzjBI4XxYHjOEF3prEL0FR6UumyqKpHKaODHWXvpM6kxlTwzRwZgcwdj2piM6I3vvI8+e/uSjtOQ5lzXit+wKKW2ao+iXTBGqj3Tq4694E5/HS2v1Hl6uH9bX7aj2wNqpO5UJn+nXzyr350DX80qh6s8uqtfYwLOnZ680CLPyFfI5bH0NPnYuzeoF9SwWf9OsayrEcsC9kvHqI1CxMpKjyUyumyCzQxyGL8Ee+aL7PWQCnmLOm5W31NlkHrieaE2USp14Np7nxfGgdUFw11m4xRwLow5PECllru3lIxOPlFm7fGo0m2j6KH56yZubJChSRH5WiKTHpIoLAgOWTg2EyIKht9u4rHoYvt7MhvT8c0xfe4rG3Tbfa0s/NTjzK70/mjtw3x/Ru7kEcyfF4yRWrW+FjP40VlDk82GPnLbgr79GqLLrhtYfpHSqNUlCAFYrpzqsRMW3pSqsvESW96nTCKqrOBVn+RzKDaAxs7fLeYorBjB8eJac1zFjpUn/NhUSfEQcq2Zh326dVBVYE+LhRX06B6Z1/+y5yMopx5dBGOlGqwG01FiJKtCwFOSkiYmpMswJrwsuJwmlVjea4Y/oW2YJXeNVBBwWznV43gBtdV4Xwm7FHGsVLdJiRFLJc/k/jb4VxcoafHi8FuU3UD8CfemtsG8rwTpDcdKN9dakZZ+bvCdwokoCQ8DoLCzjC+LHQlEV9V6olzMkBN4eeYzAVnPlcrGq9Lsc2jPPpNt+DiWQvDVuy+lW+8+RB+/a4eObxg5QjLUHwGutWq97cIzUh334EJviO20NFsyLX1Blx9q6drDLV19UDPso2BfOakD0tOAMY6m9Z8oT1A+YVppC8SX8so+wSfBZMMx4ztARcX6tGIUctYXwvTw4ppT0K5zUUckrPphvaAgyBVmUL1+lhkck4nye3SPCqXj2XBacqpBiPAKNRXK6mbBAnsMLt9eEt21eJh7dcb88zut4EXtR/N8nOAQ92ZHL/6tjxOLA+wFbE9h33C8ApbFM3NYs4D8zBClS806foKyOXMvDJVvA4OXy2VkBfJMnoB0UTYyyTDtRkHPPwVLEHlbzZgWdJj+6tYpfezzU9re4fHEY5+VJfZxa3o+O0c3tK+NVLxmj/1593srUZylxzju3iC6/EBL1x5o6co1EsmkqddCKqcoJw8gOM45IqxvhwRZg7ecJCHEgVSaAed32Ms8BTF68DRiZd93/Rmmcg09UWcwJYrkQfl5aq8B+yOx1v4WpQbJ86kneZOHAlsQJUssNuTGxq4KWnV6fF7pG7fQCjpK0YZC4zDuOZMjXIMPyGvyCHG/Tkv3mFq6llRHy/uE43KVgQrenHkquuaoQL3E1jNPMr5DerfFoQrh2BCJxXFy4UiH21DUEIuXRH6AseyF5oR1Z9BglkMahSeVE3oz1Fcfy2nl+bMU42I0Yd6OabK4jD711/fT//7oJk3oQHF3q3bqubM9343Uqp3ZxhPndDmgO463tDNd0FUXj+kaFtlsZl46IsdfUmFV+U5ZXBDiy8XoIscl6MEoxa4TGnyA7D35IsR1/EBCKAe3K373rR7M8CFRN28S+UXxqZcggacInT0YKF/1p/ITCS4rvDBwDVJFXaafq+KEeRHmMcKDU6Ok9ZHykzEUVFQV9BmEJ6iKE1Kz2EtbwGRoUmy+aT0e4jbcBZrk6tWy3LtGbAjPXBOYg+CSDRtDgWhKtTDSBp9LSmeY0YjagSZ9RLSWqPgsDguSBCC9MKrhVYlRhHeTDId4tmyg8mdSgiMZqaxkbp6VFIUe9NDNed9UpdfhQ5E9OkCfuWVJ/58/vIe+cGRJm3yg5WQF05zhduEZqXafEjXOYqup21tzoge2G7p3c0DjIdE1FwXNfJecWY896aQZE7brwmXVhGRPHLpLpAPEWPLx3RYUEKEy/pyUYHfRIQfgP/kYxRPyPcvnZnEkJNhmrDihbnodyVvxX0Kv1rzQqMHqEKj9ISzJHFZLNP1MYSmc0F7oOkNtofKQ1Rq033BqU4Wwh4uYkn9XD1p4ZrJN8qtSrFD/BbQXdZXwfOU7yCHC0MqxjQhRAb1hKBHX2gWKw5oowXx1McKCJAE9vqw+UZEqvHJvUlPHe3DkoQF95Z4lffa2CR1bDESzMXFV6XydJ9tT7LZbBO7r6Y0Lz0it2sO0BU0WDGMM6ebbRvSEy4j+wbPmNOAEVGbTWikPVOPVSRNxLaUDsxfAJTg0pKOTWTlR8u8m3ipeACZr/R6TdSR0qoIA4lRBIojRrytzpZHrlyWgiYlolhUy/CiYbrFa131FWZ0Xx0tAf6ZW0XCxvRD0QVFDF7tNh2ZJUSWKDPRe02Xl+NMoKVbMWPFdjJRN11J8Ft9nnBT0by0myNeVI3iop1QnAsMQyZTqmqwQaVVsD4uKcB65LAmTGhJ1Ttxn/Xu5XIj/xPFA8VbgDUl8CMrt8bnq8iWFeFGcsP6SBY8oHHu+VAHtuTcVn3nNJxsLKHLIHhQ+hMGCV+Qis9jP/hZPSpQkagIGb8AsIaLJpKG33jSgz93Z0t1SRppJIPvcMO3RdsEYqXM2fHpXu3uz5TgP1yW6bzKlZqOhrxxp6HGHGrr8AM8bSPpwoRuPqzRpVTwcmuhpXlyqGxTQmUFD8ok7IrkeVY42IQU51u/ZeZFkV4OieqI7voo3HQ33Gg1cczcxILfykfUd16+jYhwCwsvnhx+VGeSlx2fxm8GAhizfZBJOkFXS51J6FR43qvgS4sEYrlroA/r52o43p7YJhhr3qtRvQqK2dFhOnubPooKzQosax4IHlzsNUF/Ep7DQsOefPCFd7KiRykUHdSck1FZGJBkhLaWhtHTgh4D6hDxRESbEKKVS8CV13cpyMOuwXdLJ2cX04NY6/fWdJ+nOI1zFcKwKw/lB7OPW7PJ5Xnzt/uWZn/suGCO1aqffMJk+OJmJoMtX7h3R8CqiK9Y1kK0Tebg5kfiaJh6rLSXf5MW/eVV4oT1IjziXeABp2Z0nuVxMr7pi9a6YomwFDqstQCAQQpzM66GC4LWc3DjZv0hWTbBldTv+N1SiAP8Bwgy2IOJi6DPrjQx3woMz70RjTRziw/3VhAzzRusgXXW9+Lswit1dUu2rEI9SI2ULAzdQaZFgt8SLEjFiokiS41oK7aGpTFIykI6JJpjOlTzMULnBWJZQXtoeMJ4YmFSE0GNI2SAl4+beVVI1L5l+rN9n/3KxxZak/MaRExfTl792lI4c5T5Zs4G6yto9G21lpFZt99Y0UnL+5rvmtDEb0nw5pBsubSTRt9pMPQNGaGQi07ReqQRrhsrApNhHPlQKN5pMbTzJMZnCBEd5tlB1Bi1rocw4bI3JlpfeVpfKYwZRwTefYOhrfTYGGl1nGR+tmZWOm3czCrlMv4Aibb6GpyHHdrhHae3qBWl/wAB0zaceQzRIhSWoZAKPV1kHs2fQeTx83WagufyKhs12X8lL4ULHVsuYnxa91JyvkVyvVh/kIn1lCSolLeCeFf1rqZ1PBArk2mKAEiF35GuOhtUjTOFcnhtGRipYaRp4CsMhHyxX7S2VH0RdwvT3kPMksxqPUYPuMtwHRYkcs/I8KPusyIlKckqLdp2Oz6+iP3jfBr3nY8foyMacpnwzy51d+3zVvv62MlJ7uJ0r8kXmwPHkeWLa0r2bLV1yjOjKgwp/MKHC84FwrcXFhYQO6kOx8nqOI+liHzOYwUnweEoNg2KC9xwfQIdeRgQxJVuxF9TzHA8DWFmCcn7GwvMLQoXGHAyyyyv+uN0QynW8y3xGu7+IfNVwYjdnDMJQETOrnMvkyRS/g3gBO15R/jPUlmG/bN/gFWdwVy1Lei5CdMCTMWo513Sy/YvqXwm2KwkZSOY2qSMnV0Sss/hJibp+PFMx99ynTI6w7/z77IlV3ljAf/De1DDq4BrRxtaIvvTVlv7mrjndee9UDJR7xPnBrdoZDXGsjNSq7d5s4p1RQ39zjOiOk0t63EUD+oYB0TUXc9wqIUCA8MR9ygKvtrplQ8ISf2YKOAgvM8N8LvAcT8fi2bRMMIjjqe6fVkvlooGcRDsajhS+4uPZvpjENJbPwfuheAR87Jl5CNwg1IqS5Xr94/CQOJYGwybeUxxdnQY9Jso5yKrbbtUr4BaK4EoaYGhR50sznFDysIY8JEkKNk+FyQghUKuTuXuCUnLebLVDq2mSlGcQzEdui9bIDXKcKDLpsSCfZhdByijiglFyXv8ClZ5LV0jvmwJHUjI3y4IEXDFnLM4qFjQ8XR4OI3hJ0kF85lwCHjE784aSOjmUzEF2kHLuZqzaBOE5EaIq15E9KJSQd0FePgZ31uIS+vJdLf3q791H951saVsKR4VQc7flT/dBQHoPt5WR2g+tis08lg1exGC5lJpIn72P6OikpcNjorVho4oUEOjmyVJwq/6gaVbiVhtkdZUsTgE4KbyZiAepN6AVdDOEJCv0dCo/PsN3SZ07XwN4EsuUYKqOGUOSCkJB0V1Ye/yliStgaoX6eX1/bpjTd3pd4a2Fxp8ZLE0ykyb2qUcRvZ4Is5cYOU5+Jf7ssmAi4kHyu4naxnZVTSo7WJihKHIIT1euIXkScHBRMFN6DpRz5EiJ96UGiMV8kUvHhBwnKVQFCvWkulCBkWFDAvVxeExSggMCsWZ8XGA2xZwQf8oeVN7H2YNcS4pLFc6H9P9+bJs+e3tL92+2tMPSLC52vJv31PMCXCCtOcPHWxmpVTutprGPlr58lGhnwaU9iC49RLQ2MjJ5Ue8wklQzopbzU12xIbHiOmtSiW2YGVE8LCVMBfTnkz3ykEywz+WOjGnIzeNUsAuJHAGWoRI4QOJQ7wH096htlAyOx04QszJpqGw23KjE7Xkpdj6OcMHtmHZvkFDKkawu2aELNDkRwz8IEoT3d6FE4TzB4phicABtJsgNskbClIQxSzAnvneChPWcfgaBWDYAamCVst6kJF3kVqm8ETgluZS7MvT0e5AfstZewd5L9PUOOaKjWBGGS2j4y4bmkwHd/LkJffGulk5MhrYQK6HiVTt7bWWkVu20Gr+SHEI/NhnS7BjRn9y6oGc8fkDfevWQ1oYzgY6gX8eyNNp0dpdKHhYoD1hN/xWigGpjJ48HrDUPXOnRwAwzz0EFXXOLaA//V2oOJV3BuoVvo/RhIQWIh8FemBIeeJISLUBGJrmMhBvMXFcp+zF6nIA7M8uu9HXUWCj86TRz2Ve3gwahOFpmCNnT670XOyBsOcOakoskQZl4iioSW67/BeDkWJLVt0JFXd1FS2cou81EYOXhhSHlLeWR2y4Cxcn1qyeHeBUMlnMZhNZtElq1GXZDQTQaJ5JEVfdJYL5xCecVXhM+q+jmZbHCKteKj80Hbg/Sp/6G6K9ubehDXxrSfSdaWi5yVuCqPRZtZaTOdjsTY/kcvg9laUKF4XdmRPduEN2zod7U4y8e0ZhjNExYT3I5MBi8OuY5XxybRC8HPKfzeYICc8mLRHUvryhBQYlOHblbSF6Kkh3+WTJQXQICJl/9IjgHgB6Tl5jusmi1KoR7mQbNubREmQlWiuLm8+T/xkkiU00nf+22iKWIkkTfFWa81HUVE1MRx0c8ya4ve1F6iMiN8x7C8VLX5vgU+g/H0Y2gH5i3KVl8HcWIgoGXajxlmLBn/1o8NpMwnGDBC5JFQ0c3xnTLPQv6zO1zOrpFNJk/klpc57ERax/b062M1Flq5+NaC3Gk6aKluzeJmntbenBnST/4LQfpUsbvh1OJXUXGqk1AomoObTqN92SGnEgqJQjP4R3QoNMiOyZ1xevwnUnSCTyFWJRouJliAeIzvRp/mB1xfCZqiNqDXjcuYgBPUUJUJZkcZUfkcJLfajc3tPRjS3hWmjd7lHwQ6CtEQu7S9e70OlD2gkkPmUbOHujaYCSGRdQ9nCShsyxyrXhV4UUnU/zN7xswHFxbSBaBbce8busTL1IoCxLNLSjkrpwWojEnlsliEVYp9Y5S8ZYgjCq7qJQoScymdOFqF0jgTQYKNPPsNXkZ9yKGlWC+VMgQsKF7Uel3JkjwDx9iczKgT9x2iN73+ZP0/r9EZd0M853W23JBteYsHXdlpPbwQ9uraDde1aPbLc2XC/rCXVO6/uKWvulxc5kFitczlvo+gaDOEz5YMqQmqgO6LzPsMNkVKuRGKnC1hUoT0Os8IQOnUBCHlxFL/LwqDjXxyl+ByGxSENe4VjpvpVSRbz1JaThpY87qQ0XALpooLfh1hw9V2hU1QogT+vUXni/khEyWSNYXuoBQJNMeChRoUZJERF75PlVA12uA2e8wNpousHTV+Rx7YrhPSQuaEyXm3qj6uTIvvCYdG2qcnLxQGxGIvZpRyvEkYfgVlXRDBR19lr0nGC83XHKckRvM+48dpi/fPaQ//MAW3Xr3zJOm98fbefbaubrjlZFatUc9XDdnrUAgdzwwp2bR0pOv5BW0KnjXFWF1kk4fOT9Zm3gHBhVqXKUUio1oU8BNmOcVEYyJ3FUsKtkhJ248zCK3JDnkeFMYuVx3SgyeGYteAd58TrtHJ2Hg3tyI5tkAxBLkhOH+rBOMZp4V0fM59ZBcQsT09YziLqoQBr263hz+4aRk9irsolF4ECxKMSTeLyBBJJUQeEpWZkMRVyNCdCC9MpbGhhHq5jWUl42Wi8bWsF2KQxULo8pAAd7zfcSQa5ytXQ7oyENr9OWvEX38C1s0WWgy86qdu7YyUqv2iJuuiDXPiKG1zzy4oPsnDR1cH9GNVwzo6otQSNDyjGwhOhyp8RKJH9CmoWy9YIqxWRz3mpQcYRGqxEhLcSOjlXE9JjnbMuJiWXGiL5YQtZfafoUK35dLYOBfzgkaeumQmt6ORGNnE5plTfM6rQ0UslugfLGQDLSGlkCVmNA530tEW4e0VGl5qddVxn6S9wdIz7UEjRBh/1Pj01A7bOQ4vNFoxPeSIVqhpJgAsIhHmRGq2XrG0BP4spFyG2hg66FqsV6MqVkYrIiCkc7aM0bfkEkLFcFBnBzLYYIhGq/BmBlNM+dB8XWZIQMtvSBU5Kq7OPdgQps7V9GxzSvp//qDO+hLX5vQBpecSfXKVu3ctJWR2iftdBDux/Jlcn07Ykp6Q8cnDd1+tKWDa0TjUUOXrvGkFMmkKFIBenHWxeNmc3DcKcI0VlZCJ+4ynpQUlSwOlZ2z7FsZCWEXiA2B/t2C4vBIokaUWZtE3FC18dgBkTAnEdi5k0NlOoIGJVp+kHwPI2U3rk6P5avVVYmTeoPE4KBvCKPu3lDQ5v0a4eUkVDKIFkntATlOeYy51wvYLjxGUPsBOqKOWHYS4QnBOIFdB+KCM/Ky11QLylpCtf/gWk9BlMhel8S4rK/a9gDdcaSlz962TXc8sKCHNnnJEHWxVu3ctZWRWrVH1dJ0Swsa0tGdlj5510J+nywH9LevmdA6r4rNn1JoSoP/SCLFrM4BdsaGRLEhVZtQRyljhLUSObSI1BOS71izbTmwxGBtUDlHFd3amofSt9HObQNNrLXJ32df9RANYFNCQVxNxJBcUTyIIFDPgPEdDbmkCatKmJK4kQwKIVpRz1vK/ySExG6FxJW0o9yBSRZAWX0gjyCOp/0Ab5ETatXWwisNnTz2SbO35pRx5K2ZNeDSI3BmldgehItYbBjhwo2del6qaG6qHR3jEyKxwqA36SNXIxePsO1Cgh4L636WZZLY42IlCq4kzaL+AxrRnK6kD376BP3unzxIJ+eqBrIyUHujrYzUfmt97tI5fpe0JizRNg3plocWdHR7QYdHLV11uKFrLlGsnye/qISb9pSyFAGFcb6QM8V1Ee5eVVFmD8w3PYxM7vzZ3OIfLLMDoNCJB2wAOLcKk+xuca/sEvXGqkrCRViIfmgIBIg+dQIVay1hyUz4kG28ki6Ce3A91eiDyFEw28S4Iu/J4E/5DjloWjtK903FI5MH5d3nahGW2AzOxaARKSOrsWwQayYtJE8LxImiBEalSp7FXUcqtSTooBkmhfMs2RfCsKMe45QVJjxnyhJ/veSHmqAJXUz3PDCk33/3Q/TpO5a0uRjTsp31PP1VO1dtXxqpst7PhbHa8bvck7er+nbTdkD3by5oc6ele07oCvvSQ2oM2EsKGxXGQ76z8vPyfdrOCQOIUxmNG8fA6pw/n2lYS/6FOVPKN8gJNsHDw2Kjmbnt6fiZLyhl2b2EfE3o4NW8UamRh6Un653haqMIxQn5aNGpCxwwpMOKagxwcO0nrT0F6Cx3LzyyYaaUwzuba4zIhIncG5XjOWwaOU0iLs5pBlLc0bwYo+KjzHt4aplGbrE+W3gMjbbuVHAp6GiekqjUoyRLK6ryfO0osyFERHhQvB97RVZ3UY63SIYp/S6afMCGOZ4lbpL+vb1Yo68dbeimTx6lh3aGNF2O9vKLdl41f4seJvdsXxqpkydP+u+roUTnvC9iCl/ShFenC6K3/jWuSFel3bY8rSOX/57+FT12tX32Qg2hxVnetz3NbWFEH805Hu0Y+XrbA9V17oXneWG1kydP0qWXXrrr9017+inUe6YxbPSlL32Jvu3bvo2++tWv0iWXXHKuL2nfthMnTtATnvCEVT+egbbqyzPTVv14YfRl27ZioK6//vpdmbX71pPiG3r84x8vv3PH77XO349t1Y9nrq368sy0VT+eubZX+/JUHhTa7uZr1VZt1VZt1VbtHLeVkVq1VVu1VVu1Pdv2rZFaX1+nX/3VX5V/V+3Rt1U/nrm26ssz01b9eOba+nnQl/uSOLFqq7Zqq7ZqF0bbt57Uqq3aqq3aqp3/bWWkVm3VVm3VVm3PtpWRWrVVW7VVW7U921ZGatVWbdVWbdX2bFsZqVVbtVVbtVXbs21fGqn/+l//Kz3pSU+iAwcO0LOf/Wz62Mc+dq4vac+3X/u1X/OifPj5lm/5Fv9+Z2eHXvGKV9CVV15JF110Eb34xS+me++9ly709qEPfYhe+MIXinQL99k73vGO4nsmx/7Kr/wKXXfddXTw4EF67nOfS7fcckuxzUMPPUQ/9mM/Jhn/l112Gb30pS+ljY0NutDaw/XlT/zET3TG6A/8wA8U26z6kui1r30tfdd3fRddfPHFdPXVV9MP/dAPiUxcbqfzPt955530gz/4g3To0CE5zi/+4i/SfL73KhHvOyP1B3/wB/SqV71KuP+f+tSn6OlPfzo9//nPp/vuu+9cX9qeb9/+7d9O99xzj//8+Z//uX/3yle+kv7oj/6I3va2t9EHP/hBuvvuu+lFL3oRXehtc3NTxhgvjPrab/zGb9Bv/dZv0e/8zu/QRz/6UTp8+LCMR54k0HhS/fznP0/vfe976V3vepdM1j/90z9NF1p7uL7kxkYpj9G3vOUtxferviR5P9kAfeQjH5F+mM1m9LznPU/693Tf58ViIQZqOp3Shz/8YXrzm99Mb3rTm2TBtedau8/ad3/3d7eveMUr/O/FYtFef/317Wtf+9pzel17vf3qr/5q+/SnP733u2PHjrXj8bh929ve5p998YtfFGnzm2+++TG8yr3duD/e/va3+9/L5bK99tpr29e//vVFX66vr7dvectb5O8vfOELst/HP/5x3+bd73532zRN+7Wvfa29UFvdl9xe8pKXtP/oH/2jXfdZ9WV/u++++6RfPvjBD572+/wnf/In7WAwaI8cOeLbvOENb2gvueSSdjKZtHup7StPiq3+Jz/5SYFUstgs/33zzTef02vbD41hKIZanvzkJ8uKlN19btynvBrL/cpQ4A033LDq11O02267jY4cOVL0GwtmMgSNfuN/GZb6zu/8Tt+Gt+dxy57XqpXtAx/4gEBPT3nKU+jlL385Pfjgg/7dqi/72/Hjx+XfK6644rTfZ/73qU99Kl1zzTW+DSMArJrOnupeavvKSD3wwAPipuaO5cZ/82Sxars3njjZnX/Pe95Db3jDG2SC/bt/9++KVD733dramkwAua369dQNfXOq8cj/8qSb22g0kgll1bddqO+///f/Tu973/voP/7H/ygw1Qte8AJ557mt+rK/bNHP//zP0/d8z/fQd3zHd8hnp/M+87994xbf7aW2L0t1rNojb/yyoz3taU8To/XEJz6R/uf//J8S8F+1VTvX7Ud+5Ef8d17l8zj9xm/8RvGuvv/7v/+cXtteba94xSvoc5/7XBFfPt/avvKkHve4x9FwOOywVPjva6+99pxd135svMr65m/+Zrr11lul7xhKPXbsWLHNql9P3dA3pxqP/G9N6mEGFbPUVn176sawNL/zPEa5rfqybD/7sz8r5JH3v//99A3f8A3++em8z/xv37jFd3up7SsjxS7ss571LIEDsrvLfz/nOc85p9e23xrTdr/85S8LdZr7dDweF/3KlFaOWa36dfd24403ygud+40xfY6PoN/4X54sOE6AdtNNN8m4ZW921XZvd911l8SkeIxyW/WlNuadsIF6+9vfLvfP4zC303mf+d/PfvazhdFnpiBT+7ni+Z5q7T5rb33rW4U99aY3vUnYPj/90z/dXnbZZQVLZdW67Rd+4RfaD3zgA+1tt93W/sVf/EX73Oc+t33c4x4nzCBu/+Jf/Iv2hhtuaG+66ab2E5/4RPuc5zxHfi70dvLkyfYv//Iv5Ydfl9/8zd+U3++44w75/nWve52Mv3e+853tZz7zGWGn3Xjjje329rYf4wd+4AfaZzzjGe1HP/rR9s///M/bv/W3/lb7oz/6o+2F1k7Vl/zdv/k3/0bYZzxG//f//t/tM5/5TOmrnZ0dP8aqL9v25S9/eXvppZfK+3zPPff4z9bWlm/zcO/zfD5vv+M7vqN93vOe1376059u3/Oe97RXXXVV++pXv7rda23fGSluv/3bvy0PYG1tTSjpH/nIR871Je359k//6T9tr7vuOumzxz/+8fL3rbfe6t/zpPov/+W/bC+//PL20KFD7T/+x/9YBv6F3t7//vfLhFr/MF0aNPRf/uVfbq+55hpZPH3/939/+6Uvfak4xoMPPigT6UUXXSQU35/8yZ+USflCa6fqS55gecLkiZLp00984hPbl73sZZ3F56ov294+5J83vvGNj+h9vv3229sXvOAF7cGDB2XBygvZ2WzW7rW2qie1aqu2aqu2anu27auY1Kqt2qqt2qpdWG1lpFZt1VZt1VZtz7aVkVq1VVu1VVu1PdtWRmrVVm3VVm3V9mxbGalVW7VVW7VV27NtZaRWbdVWbdVWbc+2lZFatVVbtVVbtT3bVkZq1VZt1VZt1fZsWxmpVVu1VVu1VduzbWWkVm3VVm3VVm3PtpWRWrVVW7VVWzXaq+3/D0x30+nPKwbmAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_random_image()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"id": "BEqS7inAiTQ2"
},
"outputs": [],
"source": [
"# Check the properties of our image, change shape to [C, H, W]\n",
"\n",
"from PIL import Image\n",
"import torchvision\n",
"from torchvision.transforms import v2\n",
"\n",
"# Get a random image\n",
"labels = next(os.walk(dataset_path))[1]\n",
"random_index = random.randint(1, len(labels))\n",
"random_label = labels[random_index]\n",
"\n",
"label_dir = dataset_path / random_label\n",
"\n",
"random_image_path = label_dir / random.choice(os.listdir(label_dir))\n",
"\n",
"img = Image.open(random_image_path)\n",
"\n",
"transform = v2.Compose([\n",
" v2.PILToTensor(),\n",
" v2.Resize((224,224)),\n",
" v2.ConvertImageDtype(dtype=torch.float32),\n",
" v2.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])\n",
"])\n",
"\n",
"img_tensor = transform(img)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8HiKj5TliTQ3",
"outputId": "626c72ac-6337-4199-eff5-cde780e77c65"
},
"outputs": [
{
"data": {
"text/plain": [
"(torch.Tensor,\n",
" torch.Size([3, 224, 224]),\n",
" tensor([[[-0.9765, -0.9843, -0.9843, ..., -0.9765, -0.9765, -0.9765],\n",
" [-0.9765, -0.9843, -0.9843, ..., -0.9765, -0.9765, -0.9765],\n",
" [-0.9765, -0.9765, -0.9765, ..., -0.9765, -0.9765, -0.9765],\n",
" ...,\n",
" [-0.9765, -0.9765, -0.9765, ..., -0.9765, -0.9765, -0.9765],\n",
" [-0.9765, -0.9765, -0.9765, ..., -0.9765, -0.9765, -0.9765],\n",
" [-0.9843, -0.9843, -0.9843, ..., -0.9765, -0.9765, -0.9765]],\n",
" \n",
" [[-0.9922, -0.9843, -0.9843, ..., -0.9922, -0.9922, -0.9922],\n",
" [-0.9922, -0.9922, -0.9843, ..., -0.9922, -0.9922, -0.9922],\n",
" [-0.9922, -0.9922, -0.9922, ..., -0.9922, -0.9922, -0.9922],\n",
" ...,\n",
" [-0.9922, -0.9922, -0.9922, ..., -0.9922, -0.9922, -0.9922],\n",
" [-0.9922, -0.9922, -0.9922, ..., -0.9922, -0.9922, -0.9922],\n",
" [-0.9843, -0.9843, -0.9843, ..., -0.9922, -0.9922, -0.9922]],\n",
" \n",
" [[-0.9843, -0.9843, -0.9843, ..., -0.9843, -0.9843, -0.9843],\n",
" [-0.9843, -0.9843, -0.9843, ..., -0.9843, -0.9843, -0.9843],\n",
" [-0.9843, -0.9843, -0.9843, ..., -0.9843, -0.9843, -0.9843],\n",
" ...,\n",
" [-0.9843, -0.9843, -0.9843, ..., -0.9843, -0.9843, -0.9843],\n",
" [-0.9843, -0.9843, -0.9843, ..., -0.9843, -0.9843, -0.9843],\n",
" [-0.9843, -0.9843, -0.9843, ..., -0.9843, -0.9843, -0.9843]]]))"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(img_tensor), img_tensor.shape, img_tensor"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"id": "Ytb7BiSBV_vH"
},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"class MedianFilter:\n",
" def __init__(self, kernel_size: int = 3):\n",
" if not isinstance(kernel_size, int) or kernel_size <= 0:\n",
" raise ValueError(\"Kernel size must be a positive integer.\")\n",
" self.kernel_size = kernel_size\n",
"\n",
" def __call__(self, img):\n",
" img = np.array(img)\n",
" median_img = cv2.medianBlur(img, ksize=self.kernel_size)\n",
" return Image.fromarray(median_img)\n",
"\n",
"class CLAHE:\n",
" def __init__(self, clipLimit=2.0, tileGridSize=(8,8)):\n",
" self.clipLimit = clipLimit\n",
" self.tileGridSize = tileGridSize\n",
"\n",
" def __call__(self, img):\n",
" img_np = np.array(img)[:, :, ::-1] # Convert RGB to BGR for OpenCV\n",
"\n",
" # Convert BGR to LAB using OpenCV\n",
" lab = cv2.cvtColor(img_np, cv2.COLOR_BGR2Lab)\n",
"\n",
" L, A, B = cv2.split(lab)\n",
"\n",
" clahe = cv2.createCLAHE(clipLimit=self.clipLimit, tileGridSize=self.tileGridSize)\n",
" L_clahe = clahe.apply(L)\n",
"\n",
" lab_clahe = cv2.merge((L_clahe, A, B))\n",
"\n",
" # Convert LAB back to BGR\n",
" bgr_clahe = cv2.cvtColor(lab_clahe, cv2.COLOR_Lab2BGR)\n",
"\n",
" # Convert BGR to RGB\n",
" rgb_clahe = bgr_clahe[:, :, ::-1]\n",
"\n",
" # Convert NumPy array back to PIL Image\n",
" img_clahe = Image.fromarray(rgb_clahe)\n",
"\n",
" return img_clahe\n",
"\n",
"class GammaCorrection:\n",
" def __init__(self, gamma=1.5, gain=1.0):\n",
" self.gamma = gamma\n",
" self.gain = gain\n",
"\n",
" def __call__(self, img):\n",
" return F.adjust_gamma(img, gamma=self.gamma, gain=self.gain)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ld37cLbbiTQ4",
"outputId": "37462db9-85e0-4f61-a16a-38b65d98cdf3"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\admin\\Desktop\\Classes\\2nd sem\\Intelligent Systems\\HF Spaces\\Diabetic_Retinopathy_Automated_Grading\\.venv\\Lib\\site-packages\\torchvision\\transforms\\v2\\_deprecated.py:41: UserWarning: The transform `ToTensor()` is deprecated and will be removed in a future release. Instead, please use `v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`.\n",
" warnings.warn(\n"
]
}
],
"source": [
"# Create `dataset` object\n",
"from torchvision import datasets\n",
"from torch.utils.data import random_split\n",
"import torchvision.transforms.functional as F\n",
"\n",
"# Create transformation pipelines AND for data augmentation\n",
"train_transform = v2.Compose([\n",
" v2.RandomResizedCrop(size=(224, 224), scale=(0.8, 1.0)),\n",
" v2.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.2, hue=0.02),\n",
" MedianFilter(3),\n",
" CLAHE(),\n",
" GammaCorrection(),\n",
" v2.RandomHorizontalFlip(p=0.5),\n",
" v2.RandomRotation(degrees=5),\n",
" v2.ToTensor(),\n",
" v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),\n",
"])\n",
"\n",
"test_transform = v2.Compose([\n",
" v2.Resize((224,224)),\n",
" v2.ToTensor(),\n",
" v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])\n",
"])\n",
"\n",
"full_dataset = datasets.ImageFolder(root=dataset_path)\n",
"\n",
"idx_labels = full_dataset.class_to_idx\n",
"\n",
"# Define train and test size\n",
"train_size = int(0.8 * len(full_dataset))\n",
"test_size = int(len(full_dataset) - train_size)\n",
"\n",
"# splitting the dataset\n",
"train_dataset, test_dataset = random_split(full_dataset, [train_size, test_size])\n",
"\n",
"# applying different transforms\n",
"train_dataset.dataset.transform = train_transform\n",
"test_dataset.dataset.transform = test_transform\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 505
},
"id": "kUbjMNeke0KI",
"outputId": "f9d8aec8-b94b-4171-b79d-9c8f9572f129"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAAH6CAYAAADvBqSRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Qe8ZllWFg6vN99UqavD9OQZZoBhCBIVxD8qKmIOGDChiFkEFBUVQYEfBlRUFHMOoBhADAgKgln4JBhAQAYQZpjY3ZXuffP3e561nr3XPu97q6q7q6ures6euX3rvuGcfXZa6VnPGmy32631rW9961vf+ta3vvWtb33rW9/61rfbtuHt3+5b3/rWt771rW9961vf+ta3vvWtb2i9Ad23vvWtb33rW9/61re+9a1vfevbXbTegO5b3/rWt771rW9961vf+ta3vvXtLlpvQPetb33rW9/61re+9a1vfetb3/p2F603oPvWt771rW9961vf+ta3vvWtb327i9Yb0H3rW9/61re+9a1vfetb3/rWt77dResN6L71rW9961vf+ta3vvWtb33rW9/uovUGdN/61re+9a1vfetb3/rWt771rW930XoDum9961vf+ta3vvWtb33rW9/61re7aL0B3beHsn3Jl3yJvf71r7fRaGQ/7sf9uBe7Ow9te6mO47/7d//OBoMBf/etb33rW9/ub/s7f+fv2Pu///vbZDKxy5cvv9jdeWja29/+dvukT/oku3r1KmXYn/7Tf9peKu3X/tpfa6997Wtf7G70rW/3pPUGdN9esPY3/+bfpADIP48//rj9lJ/yU+xf/at/9Zyv+/Vf//X2e37P77Gf+BN/ov2Nv/E37Iu/+IvtQXvOfT8PmuB40MbxubQv//Iv5/j3rW9961vf7t+5C5n243/8j9/7/vd8z/fQWHqf93kf+yt/5a/YX/7Lf9lu3bplf+gP/aH75tT8yT/5J9+VXEafHqT2WZ/1Wfav//W/tt/3+34fnRA/82f+THuY2lvf+laO6Xd8x3e82F3pW99e0DZ+YS/ft76ZfcEXfIG97nWvs+12S+8qDJ6f9bN+ln3t136t/Zyf83Oe9fW+8Ru/0YbDof21v/bXbDqd2ovd/r//7/+joMvt0z7t0+yjPuqj7Df+xt9YXjs5ObEHqT1o4/hcFblHH32Uylp3Tk5PTx/a5+pb3/rWtwe1/b2/9/foEP5v/+2/2fd///fbG97whuZ9GMmbzcb+zJ/5M+W9d73rXfaH//AfLsbtC93+wB/4A5TDat/6rd9qf/bP/ln7/b//99ub3vSm8voHf/AH24Mml3/+z//59tmf/dn2MDYY0JhnrI8uqg3OFKyLvvXtpdB6A7pvL3j7xE/8RPuIj/iI8vev//W/3p544gn7iq/4iudkQL/jHe+ww8PDe2YcwbA/OzvjNZ9LAwQaP7n95t/8m/nar/pVv+rc761WKwqTF8vIe9DG8V42OAYODg5e7G70rW9969tLqr3lLW+x//Sf/pP9k3/yT+w3/abfRGP68z//83dkC9r9gG7fvHnTjo+Pd17/6T/9pzd/Qx7AgMbrtzPgz7ve/WoYu3s5bpDJkPGQiS92A5y/b317qbQXf0f17b2uQTjAyBqPW/8NjEnk+7z5zW+msIORDQH91FNPlc8AcgW4MYScIFiC8MIg/cIv/ELCxmazGT2g8DbP5/PmPngdhjtgUjDs0Ze/9Jf+Et97+umn7TM/8zPtVa96Fa8B7/kf+2N/7Hl7TX/wB3+Qff0Tf+JP8BnVx//9v/+3LRYL+7zP+zz78A//cLt06RKF90/6ST/JvumbvuncawASp2t85Ed+JL3ruf3Yj/2Y/bpf9+vsla98JT/z5JNP0quNa7zQ46j843/4D/8hPdGveMUr7MKFC8zreuaZZ3gdjDHg/IjKo5/da6NvP/Wn/lR+Bn34gA/4APsLf+Ev7Nz/f/2v/2Xf/M3fXJ5BitF5OdBf9VVfxXFGXxG5hoPjR3/0R5vPIJqNfuH1X/ALfgH//dhjjzEisF6vn+MK6Fvf+ta3h7/BYL5y5Yr97J/9s3mm4+/uuSyDGucmzmGcqfg3GmTCPvg0YN+43iOPPEL5D5nyz/7ZP9ubLoUz/7f+1t9K+QAZ91wb7o/rQQ7/il/xK/hcH/uxH8v3vuu7vov9hiMc/XnZy15mn/qpn2rvfve7914DkXh8HvoN5DjkGmDruX3DN3wDr4/PQK683/u9H2VrfjY4ov/8n//zZYzUfuAHfsB+yS/5JRyfo6Mj+wk/4SfYv/gX/6K5vuTeV37lV9rnfu7nUvbis9euXSty7Yd/+Icpt/FvvI97of2P//E/KHOhf7zmNa+xv//3/35z7fe85z2UgR/0QR/E7168eJHBke/8zu9s7g99BA3P39Ut9uVAQwf5Xb/rdxWdC2MCHQfjkBuu89t/+2+3r/7qr7YP/MAP5GehK37d133ds573vvXtXrQ+At23F7zBaAJ8CwcivKtf9mVfZjdu3NiJzsJYxkGLg/d3/I7fQU/3n/tzf86+/du/3f7jf/yP9F4CKg3jEdCxv/pX/yq/9zEf8zH8DbjW3/pbf4tCGAfyf/2v/9X+yB/5I/bd3/3d9k//6T9t7vV//s//sU/+5E/mPX/Db/gNPLQh7D7u4z6OhhNef/WrX01PO3KR3va2t90TMg8YhvAIA9oNAQBhCOGGZ0F/0Jfr168TVv0Jn/AJfM4uDAqCDZ9BHyFU/vgf/+P2i37RL6KAlYf3F//iX0zj8tM//dMpsDDuEN4Qnvj7hRxHNXwHhurnfM7nULnAvKN/8ITDKQLF47/8l//COQfEH04ENRjLEI4/7+f9PDpaAPeHwgRHxm/7bb+Nn8F84PkgzAHXQ4PT5bymtQUBj74hnQAQQ6wtrLHs9YehjPFHjh+E+b/5N//G/uSf/JN0KvyW3/Jbntca6Fvf+ta3h7XBYIa8QVQTZz/OajhwZTjhXP7bf/tvU1bgPZzPMLpg8OHs/IW/8Bfy+xk+DVkFLg4YdJAXMOLggIUD8x//43/M7+QGWQCDHDIDBtjzbTBM3/jGN5IHRIYb5CVkKmQGjGf0ETITvyG3snGL9kt/6S+lHINs+e///b9TrsLAhwNezwjDFc+MtDbIf8hFyJ+cCvarf/WvZpT81/yaX1OuDVkF+QwdBboRCMYgoyEf/9E/+kc74wMHOOYHBi+c00KZQa7B6MW9oDdgLmGUYrwhQ3/lr/yVnJu/+Bf/Iu//0R/90XwmNIwFjFeMFV5Dn+Awh84EB8TLX/5yQuPxbJgX6DgIBGTdotsw1ngGBAuATISuA4f87/7dv5t62Jd+6Zc2n/8P/+E/EPmA+YdTHogC6DrQazAmfevbfW3bvvXtBWp/42/8DUiinZ/ZbLb9m3/zbzaf/ff//t/zvb/39/5e8/rXfd3X7bz+KZ/yKdvj4+Pmc9/xHd/Bz33ap31a8/pnf/Zn8/Vv/MZvLK+95jWv4Wu4dm5f+IVfyOt+7/d+b/P653zO52xHo9H2h3/4h+/62XEd9FPtLW95C+958eLF7Tve8Y7ms6vVajufz5vXnnrqqe0TTzyx/dRP/dSda1y9enX7nve8p7z+NV/zNXz9a7/2a8t38feXfMmX3LaPL9Q4ftM3fRNf/8AP/MDtYrEor3/yJ3/ydjAYbD/xEz+x+fxHf/RH81q53bp1a6e/n/AJn7B9/etf37z25je/eftxH/dxO59VH/AbDf14/PHH2afT09PyuX/+z/85P/d5n/d5zbjgtS/4gi9orvmhH/qh2w//8A/fuVff+ta3vr03tG/7tm/j2fgN3/AN/Huz2Wxf+cpXbj/jMz6j+dznf/7n83PvfOc7y2v4N17De9328R//8dsP+qAP2p6dnZXXcO2P+ZiP2b7xjW/c0Sk+9mM/lnLz2bSv+qqvamRC7idkU7ftk0Ff8RVfwc9/y7d8y841sqxG+4W/8BdSVqt96Zd+6c6Y7Gv4zG/7bb+tee0zP/Mz+Tr0JLXr169vX/e6121f+9rXbtfrdSP3ICe7/Zdc++Iv/uLyGnSFw8NDyuWv/MqvLK9/z/d8z85cYW50n6yTQJ/LsvJbv/Vb+V3MVbehD1nWf/VXfzU/+0Vf9EXN5z7pkz6Jffr+7//+Zlym02nz2nd+53fy9S/7si+7zYj2rW8vTOsh3H17wRsgQvDm4ufv/t2/SxZuRDnhSczQWsCe4HlFtFo/gNvCg92FM3fbv/yX/5K/f+fv/J3N64igonWhTvCgIsKYG/oAjylgXLkPP+2n/TR6br/lW77leY8FvKWCsqmhhJQ8xIiwAioFGDUgbPBkd9sv+2W/jH1Uk5cXHmI05TUDTpXh73fT7sU4qsGDnXOeEM2FHAQMLje8/v/+3//jM6vlPGohGODpxjPi72fbvu3bvo1ReHiuc240YIgotdJ9LuWx54Zx1hj3rW9969t7W0PEEigfyHA0RGEhjwAZfq7pLZB3IM5CBBfIKsldQKUhW77v+75vJ80GaCfIzXvVumd9VwYBNYY+IYqOtk8u75MXeAYgzNCEcPqar/maZ50SBrkMUlLBy9GgFyHKi7QsRIBz+5RP+ZRzuUgysRr6BNQYItAYfzW8hveyvEPEXHnUmGs8m2Do+8bjbp8L84ioelffgK7QrdYCXQwoMDVE8wEl7+Vy316M1hvQfXvBGw5+HHz4AUQIxgpyWgEdQv4vGoQkDCNAnmBg5h/AvUVKcl77oR/6IR7uXTZQQK8gCPB+boIl5YY+IJ+me3/0G+1Ofbibtu++aIBjQRjAuAMUCffFOO0zFgEtz03GtIxlCDrAxiB8oOwIroW86Du1ezGO5/UTDhI05Dp1X4dCkZ8VsDaMOwQ77ovxUK7YczGg1e8MMVeDAd19LsxD19GBcX62Dom+9a1vfXspNBhNMJRhPCO9CvBj/MABCjjvv/23//Y5XRfXgLH0B//gH9yRvcql7sre28md59L2XQ+G/Wd8xmdQhsIYRX/0uecil+FoAEwdBiyu+ct/+S8nTP1ujGnIp32yS2zidyuX98k1yF/kkXch6Xg9yzv0E5BqQN2hY4BDBNdCrvhzkcnqN6DfgGPfzXN1xxitl8t9e7FanwPdt/veYKBBCCP/FEYrcl1xOMN47hKSqHUP/fNaVwic1/Z5Z9EHRMBRG3lfe9/3fd+7uvazvS+i8iDXQL4Xcn8wDvDKIpfq//7f/7vz+fM875l0AyRdP/fn/lzmLCGnCMoJrgdP/4d+6Ie+oON4p37eqf945o//+I+nYfun/tSfosGNiDq81RDg96MMxr2MbvStb33r28PeIDvABQIjGj/dBtn9M37Gz3jW19V5jnzd89BMXYfuva70sO96iMiCAwUyGbm5iLair6jLvE8G3Umu4R5AsQFNB+c4nPX/4B/8AxJ3ff3Xf/09lTnnjc9zlcloyA+HHgEEGXKswd8CXQ66xv0qTXU3/exb3+5X6w3ovr0oTXBdRJfRAMsBURM8tM9FOII1Eoc4DPJc4xGecTBr4/07NfQB/VHE+X41kICA6ROQ9my4dkuDPNuG5wEUCj8YFygBIMKCwf5CjuPzbSAMA/EJGFizx3kfjP9uDX31G6RnUFhyw2v347n61re+9e1hbTCQ4dwVa3NukF0gDQP51Hny+7yzWiUgke5zv2XveQ0RTUTUwRieyS0hF59Pg8EJ5zB+4ByGUQryLsi22z075BPkVLeBuVzv3w89BYEPEJzmBr0A0ehnK5PVb+h9gO7nKPT9fK6+9e25th7C3bf73pbLJT2uiCrKSIO3FxAxeDb3Gds4pG/XftbP+ln83WXKhpBSruudGvrwn//zf2bEtttw/5yj+0J4VbMXFczX6MtzaWDqRM5W15iGgOqWi3ohxvGFGA9AxMBg3m2AeN9pbaAhnxzKHxS8PAaAuYNd/H48V9/61re+PYzt9PSURjJYpFGdofuDdCwYQd2yU7mhnBJa97zGuYzyg2B0RoS72975znfa/W77ZBDa86nEAUh4t6nCxt3IZVTMyDoB2MfBCo6qGkiJux9j0h0P8MZ089NVQ/tu5DKeC3ofqq3kBqQZDHEwhvetbw9q6yPQfXvBG4wUeRSRy4QyTPDkolwFCCDQQBCFUkiAGX/Hd3wHoWDwSONzOKQB94agPq99yId8CIkzIFBwcON6EDjILQY0WqQnt2uAakEBgJIASDUIzCCkUB8R3leQdWRP671quB+UE5SigCGH/DIYehCKitA/m/a93/u99HDDIYBroAwUogOIIiPv6nbtXozj822YezhXAEHHmsAY/JW/8leoaHUVLMwRSqV80Rd9EWF++Ew3woyGtYS8cJQkwTOh/IrKWEEB+azP+qwX/Ln61re+9e1hbJCLMJBRcmhfA7kW0qwQpUau776GyDTkEWDLSIcCBBj1fPGDqDYIslDuCgRhiErjfIbB+CM/8iNNreH70aCXiDsEDn+U14LTH7L5uTaUdwKEGzIekVXoQl/+5V/O/ONMDravQVf6iq/4ChqUINzC2EEmoz8o8yVyrxeyQU/BM0CGoiwV9CLMtxAE2VkP3hLoMHDaw6BGnvy+vGzIeOgUiMJDv4L+gXEG0Rqg4ZkwrG99e9Bab0D37QVvGQIFEgvktsLogXGUGw5cGETwRIMwCoYfjBvUiwa0+04NdRdxmKPeLwxGEF+hhvPdQqHhIf/mb/5mwqpgtKOWJQQphD2gXCLButcNxjoIvvDciH5DyQDMGn0Ak/azbcgZhoEICBrqSmIcMeYgLAEL+As9js+3gSwFDovP/dzPZV4c7o/6oVDQugzeWFsgGoGiAwUPxvE+A1rjjDn+o3/0j9rv/b2/l4IdTgsY1rkGdN/61re+9a02GEqQ3eAI2ddgwMEwxOfAznw72fLpn/7pdFiCQBQyBQY0ZB4qJUDOQu7gGnCGgq8j6w/3s8HRj77CuEfkFY5dBANAevVcGpwPMBL/+l//62T0hjMe8upudAuQjiEfG3Lry77sy4gwA+ko0p3uF3oKOhkCChgXOEE+7MM+jLncMO67zmoY99AZwEwO5B7QY/sMaKwbOGcwx7gmPged70u+5EtK5Y++9e1BbQPUsnqxO9G3vvWtb33rW9/61re+9a1vfevbg976HOi+9a1vfetb3/rWt771rW9961vf7qL1BnTf+ta3vvWtb33rW9/61re+9a1vd9F6A7pvfetb3/rWt771rW9961vf+ta3u2i9Ad23vvWtb33rW9/61re+9a1vfevbXbTegO5b3/rWt771rW9961vf+ta3vvXtLlpvQPetb33rW9/61re+9a1vfetb3/p2F603oPvWt771rW9961vf+ta3vvWtb327iza2u2yjwdDOKxg9sPeOtt0zAoM9T7+9x2MzHIxsOBzZR3/AE/ZTP+wVdul4aI9dGtrARjbYjm293dpis7HNdmsq6z0K1wj+Lj+5U9th0zt8fjQc2Hazse12Yxs97XDAH3x/s9nYYFC/s934xUY24t94P5cVH48nNhwObL1Z2na7tvUG19jadr217WbLa+l6+K1+YgSHQ70/sq0NbLNhp/l9fGU02rD3A/ay3hOfzZXN1R/dSz/+PGv+G4+IT238gcr38Dx8vqFvk+1mHX1Y8x7jydiGwyGfH+tguV7ZarOx4RYF1gc2XA1tuB7aZrKxzWTFvmoX8b7DoY3HY94L3/V5wPOarddrdCLNkD83Po/vrVYr9m84wnXyp/g19gf/w2f4ucHAJmPcfWubAeYJ8+UjiL2tdcGxPRjZYDSwzWrtY7De2Ha9ifsMbDvANbY2wPc3A5tMhzY9HPpamYxsvdja/JqPUQymbda6p7+IZ9D9uLOwLvC8ugfXK17zNTUajWw08rFiV0dbG01wnY0Nx2vD5cZjs+l0ZFevHNh2O7RrTw1stcL84kaYvxH7sFoubLNd2/HRyKaToc2XG1uuN7ZYbW21MttiKtZbm4zHNp1N7OxsbTeuL7g3uH75/BpvXzPon+8B9Bl/13XdrMPOvhxPhjaZDGw0Hdt4NvXVsd3aerWyxfzUDg7MHn1syDNgvZ7ZcmH2znesbLHY2umtpWFJTlZTzsVys+QanswGNhxjnWu/+/MvNxtbbdY2Ho5sgv7GmTCI+dgMBrYYmZ2eru1H33Zq73rqzP79d/2YXbu1sLPliudLzNYdzkDfqzaon+RnzhMge5q+qf7tO2cftrZO58v9aPms7lvfnks7mAxsHGfZua27rwfn/elnEuVI+oyLfD839+lYt714XMDPzdqV7qd2r+ty/yNee2ivf3y68xw8cwYDg7jSuYfO43xfr6Ad1Q+OhsPQKyTP/JCX7IKIoNzZbKirqZ8Q+VQp1CASh5DnZmMoZOV6erZ6b+1tydHccf4Z3x0OhkW+s48Q06EvQObq2tQWhtJLQk9K41ifr7yy85s6FPS+IXSK9vzhY8cc4/rj8YhyGc8rXQj3x3fx/mQyiu+HPocxTHIAZylGAmPvslZ6FZ45nm+w9efn/Lh64s8d+l7I4fXC52kN/RU62sjvPUFfuF5HaSJi3Kgb6tn82cfjoR3MXEeBfqFFsliu7ceevmnXbi3t277v3fbUjaW94+mFzRdrW67xWXug2nuL1NjexWmT7ZnnZUD37e7aC7EXLh5s7NLR1l5+ZWMvvzKkQMMhwKN0sOWhjM3fKuz+txuBOmghEFojV4YYDuzNCAefH2Y8/GnAVONGBrS/H4IvliEPIBh9yViFoQkjzY2MLbpqMPspIWi/Z9FajdYqiGRUu3OAz0HPgPeJ17wDhqI9xLe7/6a16ccyjKBqOMeYxXHCozyMOzUayms81NoF1nBrIzwkvr7eGPwKFBCYi/mWRuloEsI2lBIZUoOBG6izA7/32Sn6EePFcfAxVP/QN+9f60BwJcUdIeswyn2WwsHB3z6+E+5+GLdVAcG8HByMbDwd2q0bbkDXe7sQ5dhrPnA/XHC1te1oYGsK+XCUhNCUMqI59Q5JIvrrWpdbWKZydLhpV5YJ1leZT9xyFdddQ+BtbTXa2Gq1tcnExePZ0p91PIk1NR7zmgcHbpDOpiOu+7P1ypbzDY18GM7D7caGtrHxYGMwafFMQwpFbDfXfkK2UypnR9Bo5HvDF0Hef248y+kzoFAf2nCytcFkY+Op2exgYKvl1uboywbC+5AK0zNPY33hvivDFuM2w7IbjNkRjNl2jT5gTbiiQHO+6Ef4LhxdbsFj3cI5IsOaDjL+c2vTlSsC7/OKE3v00tSevn7L3n3tzL7nR67ZrXnW9va14jHhvcbcCjDMRz6/MSZ32x4wvaJvfXuvajhHPvhVh/bqq3sMzBDSxemdjdc4ov24D+MoDE0YO5euzHjGyKBazNe2Wm1svlzaCmewrhNCiZKA/rcqf7PBDHm0Wrr8WMkRG70JdcFWNGLrA8iYPJntVyD8fTjH/Sx1AwsGmVFPghyQ4VP1FY2bO//ZXz9YwzngeoEHEsJwTXYojeeROywmcIDGW/juGjIa14DudRvnGMdsz1uUPdBHivwtIipN1p1b154ocy1RsgNrrY4FGppbBEfcqNUz+1j7fGB95GBKMaIp/zDmPqaUaYMazJDRj8/SSVEmA0Z2rBXNF9Yj/hH6EPQWqCP4nuux0Jugo6mfCEAMoaRE0KjVuVzmRiAm9FLOeww0dIxHLx3ayeHU3nS2tmduLmw8uGbP3FrZ0zdXdOAXJ03fHqr20BrQd3B6PnQt+0J0yLnhsbWjg5E9cmFkFw5HNpvogPE9GuZrE2ktV8sCo/ntB5A8viXStxna1rXs6MOeTZ2i3PIIlr+bPoTxFBHGph/JkNp/3ueIao5F+W99s4lupU9k2bIvGq3r3K6dI54iEpzmJ/UFc8X3MEYSqpR+Iaxk74anuSodPk7unS92ZVoF1aFQegKBwXlMkd40tH5+t6Nb1kR8Xh5ZRJP9C/55CoSRpHE7ZgEQKAiC8g4js7iWR5o9qNBGEfUctb8xl92p8BB6cQa0b0EAh3rEew7cyQBhiv8NzZYrv+A6nomGm0tMV+gQzYayAiWF0RA4lnzQqPZQsAf4wjENab5jDcQz7ou+6hmFpvDnDkUihpVjjDkcmQ3H8HpjzOEMcOeDRwXcGF8s4Djw/m/WLux9DGMNyLAf5vvkhe+jILRFfQvPJidRfa4xvO8HY1uvN3b10pRnw3TskXoof93dkacvhtMOxkM7HI1stR3aYjO01XptC6AQ8jq9T+05xLT61rdn1SZwjrab664bz5AUOesG+bpRwOabzXm659puhVaDM6K1ij5mP3L5XPwLzvQrx2N79MKumuhGbeghSSdQh3Of4fTG7zERV0O7cmVG1JKizqenKxrAZwuc3dVJ57JBSLSwAnnetc5nPMty4UbIis7gZECHgMFlmy7GWbl/PhTBrePtztNqIEPuDCADw4DyZ03Xlm5UH6SRHxroPNdFJkS0VP0j6i59uPS6rI/2OcrZXwx0/IOubrvrlqLuz6YVx/J576VedJZy2Qe+prN+4XJUeKlYwWU+fD27g2AnYqi1sueeTT/SrbRjqgyPv1Nf9j2b9D32MjmUMJezCRUqu3w85d8XDidcqzfPNr5mOw6evj0c7aE1oF/qDYfJ0WRrs7HZh77xcfvxb37SLh4Bszoq0BM/lD36CeWbHtjVosCKZIBgX9PDJcMEhg48d5stoTSASdMlGhBbRhypbI9oXPmxtSFQmQ0eVKrzYXDEqVPh2BFliyOEUB38RVeuC29G5sLSKnDx4ggI4ZyOKjeS8qEnQdRCmMI1UOBGiNY5Ejtcvu2HI6Lu47PJ0CzvTgifenSnr7awrQEB9RTY9JbiMMcjBuQccCA+KyLRU/zgTUyEIwMAE4eyAwNFUWYIbQW9gbiVgc17MrpN69fHszwnopuAHw9sdDilEbRYrNwzDEUG0PKIQBfB754YRsq9D0OzVSAHBGFCJJGIAs2KxBiMIxhWG9vCsEUENuxVGKcVet9GH4WQqNFmSR1Z3w7pysad1pbmWYLPIxwwrCf82OmtQEqMPOKM50BEfrVGKgF3AxU5RJpxwTV3EfrhaAIgESbjCcdjsV3YGvcYjzzKy+7BSeDRfShSNN7jb+4lbpGle58R8Q3EgcPz8FwRKR4NbHboP1ukKgBGbejnhgYx0QxU/sIjD7TIGhB0jCvgIyMa3AN+HmvCQ89aj96fcHDB8RBwfcaCMdfh5RliTcS+CNyJDdZrO5wO7QNf/4g9fX1h73pmYe98Zm7vuLaw+Qo7f180eWBH04EdTgf2QW943N78+sfsne85s7e+66a97T237Pt+9JlnZWD0hm3fHoaGrfYBrzi0V1yduaUVqCaPPIZDTE1KeRgMSq1BSsXF4ynl9njsMNbxbOiOzDCULxxNbDYOhxe2+njIH5wJOJvcmAzZTSctHHNxTg+MTqzTs7ktVxu7cX1JtM5y6WCp5WJNJBLkBX2+gRC6dOTnWdMEtQ4QUfNWQh0VqHBK/cBY3Lq5tNFcDgc4CIGs2dgakTgguuI6kT0WaDUNdrLpgMILw5iIZ8ox6RIdi6hzmChiScdvmUhBgD0SCqdIuF+J2nEda2AjyNxkYDJqWoyo2lGPiqd1kpywSFHLfQFyiU7buFZ3ffFsRx+iv3d0/2sJpt95VNyJ7zrKZuk6DuUAU+eE+qrpcB7lbft0t601RCPwA4izj0REriGf9jmkvWGN+rbZmd2CDkiAOx9TyNPtxiCJMacOi3d03m1HT89MlCfWGMZmT/g9Nag57MfKnd2uf6un7qaGU/lVj54wHQpG89M3FjYen9rTN5b2NNOk5DxK1nffXkoGdDurD1Je2r71dq97dzfPey/uqYP2YDK0kwOzxy8f2queuFQMzBKVlasr4Ejc8FCM45jpOgObWGJcRzlJNCxSJLnNdYmrKboaf3bHXNHvYtz4xXggl7FJ38tmmO6bvrbn2mHPlp5JQOdP1miuTsJGiCWMk8PQ0lPewQNYxjRj1Mogp8g0jX+fF9ootPEBsw14dwjBBr4VwrfkTVWXQvXMUsKE8hWQp92JDk83hXJEJ+N9GVayS6vHPOY+jGMYyjTsM6KguJbzGAnGJ8hVzGfA1iTEuwK0jmaeF3mLJdz2aD2aOzgJag9KH6WwwWnCde12fxG5rhxC2FYI3mbrohvGa1E2GBmGV8Vh3TSS+b72QCvA67/wI8GJf7shXxwthNHBeAangTs6qKhNYNQOjcAxRQx4E3fooL/c23Dw4Df/hvMlguqulfs+i/xCzyfvgulaJa5sxjJdVdNi3vnA7MrJjEr+5ZOZzZdbe+rmyhbAQ+6ZQ3T+YDokUuaJR47sta+4ZLMJItlru3m2LGvhbs7IeyFbdjKculpfQkjcq3v27e5aifJp7zbGRztvdxuYUUrR7s2qgSM+hLttJT/3Nn3BNrtyMrYnL03KOVjEVceA1vvsVqQJHUxGNh2P7JGLh25Mw7k3Gtj0aOiOt3BCX7kwtYNpzQ1Fmg04FNarQRjRSu9RruvWhuNI2wEHwmptN26NiWh5+qkFDeizOYxms/kZjFjPsYUOQZhx6ut+2diN9sV/Ovp/jm6jN4BrU2YwUdbTXAp/igzE8I279OvKgn0RQOJ1ApVX15H8sU2UMbtlOyKtrkfIT3QnZDmMyyLHWs3K7bJOilIxqNM5FDqWL8FBx4Ae3GZ96tqdw/M2Z2k94ztqSnMthRuqU8QdzHtkb8zJswxI7/aroBPr/lcfu/dp7ye9M/QhDUD6DvUrXQ/zxnS6AVFxTFMqN75d/3RZ/4f04tt9rdEB8n5RYCD2L/44PhgTzQW5irG48NTSFsut3Vis6AjXwPiau9No9u3Fbn0E+oFp9YjDgTwZbu0jP+AJ+5A3PmJXLx3aBkRceDMsL4cKb2yzhMcLSjmibQwzhscriCw6cG6QQWVFQ5FBRcd24FgQbEGmRQWdQsRdzyB8iJs030vqRpO7Wg5PeZUj8lkkpr6VDLcSeU55MTRT0uG027LgVx/r+GbSrRwdPS9fmkZ3CL0MWc/KgmBHzYzSYGKCL2HcnCd6dzc2OFvTrY1oNBULCFaOg8f5J5F2BqVGuOmcnz2SR7h5vrB/oPwsVnaGnNUtVoLP28bjrJ4/TQXBSbugsKGLp6cOJ7KbyPVStFnohZr/rvGhgjbytbDdjl3Q0LjKCidC8btj6uPga6kAIzj+7hXIKAuXRZ4nTuhc9QaESrbk3+PppCiXvkfk0Y3njyg9IjEM/p9GRH88tJMLZuv5wDZzPCPVvICED2wDkq9DkKqBPGxNQT1cRD7XwhEg26lw3yJswdGKOfU1DvI3z3936AAi2FQc12vbrDDfIzueTZg3vJzPXKFcI+K8tdXCc+a2q8jVWg2NHCWIHHD4Eb1wwTsoZFUgeav5g7twxXatc11RcXSiubwHj2ZT+6g3v8KeuTm3f//tP2jvfGplT5+Z4dFlonuu4Jbn1Qe/3xW7euHQDscre/nVmV0+fpzX/N4ffifh9QtEy87du317KTetupPZ2A5nnpZ04Whkl46mdvVkVp3EREO5USVyTE+P9UgVmuxSol+2Wzu7tQ4Ib7iyYt1PDkaEDD9yaWZXLiH/FsSHVQnH9cHb4ASU1ekEh9vpjQV/z+dLGpW4PvujWFj4kh45DnhVuaqMNjn2JG8DlRR7y88HmTvbzjWqGYRXFzibV0jpGlIJV7QyMjnjfz4WsBnwcYzZCmMDBM5q7Wf8CrwpniuK51F+LRsjudAngvchuCz0O/csz2f48JpG+RHRXP5N3WMQcGqQiwb/RYdFiUF8pYrE8DCVBtApmYFhGTvsfesoIaGR0nUWq5XLjy7XVqDk2DWdj4mAy1NqaowUfaRsTJDtOgKtI19HLdABOIMXKbLP18NhxPlTxDmMZ8H4c6Osii97sCPGOxmgXSIqRdK59iDvSTZa3yMx6z06hTMR625LAQ0Z7xWjHp/wbUTZtc76FtZfTXWLl6tRrXHQOo01g/+t8XQgEIVzAug5rHUh6pLuSLRFnB+FYLbgr5+bt0DXlK5VnOfuCqPT6+WPHtuViwc2Xw3s4rWFDcdDe/rm0k7nC5KOkbu1N6If+NYb0C9S28cKqZ/JaEv2yycfO7b3f80joUDEAcw8zXIKRh6ok1tQBOdor+R7iiyLEKzYk5msgQwZMuTkCc6SMQiSZKylp8lP5oe7Nn9yPyfBUzgW9PTpY/VDlUTCH7kar/uPtlaBaSV6R+RL+BTjrr1+t3NF2ZGhl43onY4XCe3IAA8JFnWI1wEBFjmgYm4EJSMk3b3f7iMR62a9X53HsNK7zxZQPndciEUyBExAwP2ZnIRtBMggvjcPOPgy+tJIK29yskgYDhklxWvEk8e6Eexd6t1u9ECoBEG5fXzr2BV1MoQjoIg+klJNldNF1zP/1pgVhaZQd8Yxh2hzENJBAduufAwmM7BhAxJdc8cBMfPIje+LAbkH/DuaS+0/D9wGW31BIUQEf5ujDMLdQ3mMOSf3gBsFk6FDOfE5kvDhf5HuQMU78p/J3MoItHvYvc97WAsSVLS+JC2vKh9UVcRXEOdK3WdOavPko8d24XjKnMjT04HdXJoBcaavTIO19GVXD+0Nr7pkI6YKbO3kYGzHB1O7fDK1o8nATmEIKJviBWrncmsmA6Bv97+JWQMNBuDxdGyXj8f2yMWxPXbhwF5+5ZDvac9DCVV0kgpwGNAiyHO0tH8Oxu3N8ZIkfCVZJwyIg+OxzQ5H9rJHj+zJxw5tMhva7KASMMKABKzZkTQVsoxo7I2nz2y5XNut0zlTK4C+cOSKG4GKUMuo7IocoYcU4csBRiFemqhlilwWnSAQN/TD0s81oHFWvxDGM3+HOU257okWMKDBP4DI73IZBrNO0+KU1ituQOB0pYHWRF2rU62cgXtaMedd3JRXKX5k8NDI370Cry1yp0TNoXGutpOcEHWuHRJfEWDM2pIDfmfP1whhcTImx3rxw2p2IAP28D80k925fokoJxRCMSRDJsCw5adrdt35rRM0aHKdO6daWUNEIyT+jfhduLBS758Na39FKeaI8G073zGi24etDvdaGUI6nK+jpHs1kefQa1Lusv9ypwca4fKbga0RuAikQB4rOSek/7Xj0M75Pv2wiapXtbpa+OnZ8QMHyvHh1KaTtV05mbKf774xsTkcW0jTwj4tx0ZvRD/IrTegH4CmjY9DAiVmPuaDn7T3f81le/VjB24whxTxaGwykmRAZcNPAifqI3jJCDEXwkYIAyJKL7jH078E6n1F94rhDIGtsgu6p5zDYYBog+tA1+Fc86DjKCDDcuSLKMpFT53nhcpwr2MSkdlkgtWgtxteSqV1Tx/81BVeymswp6dK4xCtSWAI5nz+IcloadyzzWmSkbHPGRJPobydsHO3MDhh2C4B2B3aaD2mwoLD3aOkMWYDN34nU5StGtFDianmAYsoCCioYVVpsOMWRSFiXis4pN1Yc2ENlIJ7wxWxQJAW0D4sMeTH4j4kFWvShAKGPKpOFryvaiRUdmEVEZZM1avA3mBYFzbV5AxpHSEx54lIp85FC3tslc3AZ2+9VMcMueUsxQZDGWXF/NJe0s1LY4y3I5tO4TTYMGcK0WSomej1crGwmzcXpaTbeArF28cQavtq4c++GW5tjfmj19sN5SG0e0RWxqRO93z/0cAOEO0aDuzoZGjT6cDOVmF4roe2XoOdesByFihxcrYArBJRixVJRw4uzKjwYpJWi42dLoIshca3wlmeb+8aWY1mtCOVx7PmRNZ5cIeEcxPgDAiHhu9AN6IHKzuemn3E+73Cnnn5mX37W95u73zmlj1zc8Oo8ke8+WX2Pq+4bK95+ZGNIVYaub+yVzx6ZD/1I15jP/yOm/at/+edzparSX8BWlF7UupH3178BhJMGM9XT0aM2j52ZWaPXT6wwymI/TxS1D1/lVbczcYVx6FQSmTA55kYKCXxRYQii1zbazcWdrAa2XYzpuENo5L8F3Ac08lVc1Lxc3xhys/g+zCyDZFoRaHDoFU5R55x4UfMohqNjxTnkRvOzkdAJBDzNVHax9M5jo5GNJDHKOXDPe1nJxRvXgsM1iQlksPSHdYrlsVRJYy4LyP0jgwCggYOBkRSkZ/bRJ71CNzv528XcmnEIdN1VDlqqP184KuK0Si9hVUG4lzOEVsYOzwSVmBPdv0k+SiK/C+Gsdifm7wklMr0BYLo9xDGU5QouuumNUFHM9iYzcbT4LegwxhQdCfw7EZ/NQbKK2det/QmsTZLlsbI+D93176/6h91HWyPXzss4nQLynHmVWeOkc5FXWQgObj++06ncYvMyxergPHzjfHiOkqvKIAgPpLYSUU++OewVwpK4A79rFnwobVBx4xINFrD0n0bbHbRZ0MP7u6Kwg6PNS1ncjswGh2Wq8Jagn7P52GtMrOXXTkkodjpfG2TwcaujfDvgT19urLrZ66P12DUC9hut+n7dm8M6AcpR2yvcniuIfPgtmwXAGo7GY7s9a+4Yh/+ppfZYAOGj2XxksqjLe+uf69rkPiGE8tmBTTVz7HWnQ7MAqPxwxt9KKpzIVtwI7NQ7Rcjukan3ehrzCGP8knUFs+hzCuHBbv1GvmbEckTCQk91cUI7Ri5hSWxHc+ud7FNKVL/A9NVPhORBI1vR0jIqNN4VHbxmjPa9VnqGZJ3ITQAMrQQSu8lrmoovEYOYDOhxrNHhyEIYczh80sIGZTNinIYGgR5VqkMRgJZIbSKXB6H9SNi4wRXjnD2utBoo8nMWcCZN1RZLuXNZn/HyOWOUhpykDAq6v8W6U0NYXfO5eQAypGb7OnVUpHxXK+R1vI2/9uF62gcigZLqAEqGO6bYCyHgsqyViTf8cC161luRCNiv1iuCOtDgAeQa+amRQ0q3HE+R2702tYMpahjg6rZEP49sC0ZvqF0AVFidjAb2HQ2cJi41s7Wy6bBFodBuVgWy5jpEcdHY5vPt3brllhKnPhPuc9FswzjOZPdaQybdSnnSmNTxn8zSiVKuhVEBs+mjU1HA3v1Yxft9OKxvfU9T9tqNbf5wtfWq5+8ZB/yfo/bdORlwLIyh85eOpna+776EejFNvr+d/k6TR72cpzdwzO7Gy9Kbq2m3emeXbnyIMnB27V73s/u5Z6DwjUZIed3aMezoV08HNqlozGjMC6LzpPrcfuk5En8ZPQKtwCMrnT+5lxk1Ho/m6/cMTnC+bDhnitpQbjAFH8HmoVlBcc2RomlM1gZazob6YQUKgR7LiOrVG2h3DvtMjmkYTCFuFT5G/6OXNgpcpuDIKzmyyaLnGSNcQYWh6nLSkSbu3PDMoWRI03jP/3UuQ3j7Q7w1TJHJdKbnjtPzt4Z9C9KfnpZxPoe4ckYC6BqSk1id6pkFmw3NHOUONe8V9qWny40wOF4bg+kWBP1WYq5FVYbo/cqFxn1hElCRWcFCDUd5cXjOORoVxchMRocF1GFUGOqyHM98/LZtH9TyTjVr+Zv6SP5HI17yNhMALZ0T5cZInPzyqLtvO9dBeVamoQSktjJkdbfmWB299rt2NHlkiDvnF+kFKhCSefb+5GDkmceiS61oZOcy/06rxU9tJuex40Qz12cfh7tz/OqceL6dVWl6LIwokkMOPFz8GwOx97IxsOt3VoiWu5OH+n8L5iBu3dO+vZeFYF+Vt7FB6jpMECJh49885P2yscv2SsfO7Ttcl68wfxEkwOcWI2LsZGfP6J9KfcxE4LoevmaIpACk3JzIOkQ46nWbmK3z6JGcVJ+ZFsEsXcc4u5NrjC+avS1Bmfn/t7ZpqREhRCH1lTs4kTQQeGo/JmU06n6zSViWz3IUIYc9ucnNRgVlYvXbWGjumGVYMjqx17HpsYSh+gBMkbNlmcLP1QnfsCOJlkJEJR4w3xlKFfLuUN8St6YWE+DYAslmhgDBqxxteKBjvxb1xHCYI0wiTNhplqMnY4GuIE5wVRmphGFhvBfD22z3DhkEtMfgsHHSkgFQSKrsVwtqzy/+o/qXct4zjWW00SFYrpGTjeFmEdWbt3wGpNS7JDrjK/OZjP3+J96jhU+u4TizEg1GGmRj4x6pK79lpwq5H2Plpxo/m0bm0zXtgI7N9htyXytPeHOiuFm5fHqKFGFaPcEUbeDrR3MtrZG/1ZDm58a2ayZl13Wpjuv+LyzrY0mKxtR+K+oxCG1A04TeLMZZQsmVygX+DfHq6OkVLbcmuMl/0YpCKL669qjKdrlumE4ZLYwPMwGs6F9yBseJ1T7+mJjy83WXv/kzKa2CCfNrhiejgdk9H3VY0f2UW96zN59bW7f+yPXPAJoL3C7x6KhYljee1p52pSA2N3Gt2tIA8CeANkWlMUnrx7aE5dndnwwobNIcqGilmp9YUWYFW1VFLfrKCWseYCqA66wetQXe2zI6OvZme9NGM4NYiv+IQkER9ulCzMnh4rPw2BGbiJe85rF/hrOESr7saOU3SMHbz5T3eGp28FIHtFQPoQSPRva4YUJjefJDCSDya0YFtZoGiWhosQgDDRwKMwX3jeml9ym4ZrgWhisgHqRF64amti6yjMvALTIDy0B3tstkGTgln8hbTucq2KrZmUMvBbyBWNQzyw4HGFEyHHrudrkc0ikoOtSVaB73LSWckjRnY8IEk59Jz5Yjeeo0xx+STqwx0OboSRKrFJVyyD7M9NwqoOSDguyW3t6To0813rHrbbWSXfrjuvusO7fdj6FzddqmkC9V8osuuvWNeCEVJSTw5ECyQ3aGM41UCMEQSSNNQ/DPHOioATLrqi1KZzj0JM3UQtGkPQgQKXcijkroKrcf8wTHNQK/J/nrWue2X/ABZBb1U+VRx6aa6cIthAZ5Xaxn7LRDvJAOGcunUxsuZ7ayeHIUSTDM1tv52TmPgPZSDoD73nrrKv3Lsn2/NpLxoB+IdpupOLeXTX5z/hfGNBvfPUV+8A3Pm4nA0SeVxWWuRN57fRMeYuK1saOTYhZqSQ7z+SHvkeCJbKlmOf+8rql/uyu0OrCoHFYCLlUYeJx0EigxMHqOWVVAclDUxSr7uu8doqgN/nSoeB2NHMKUh1oXW+0jksRKaUxdihXZ+A07q30Lflh2WBv/e8qIQEiqI2t5iv+PRqOaJxCecOHgNB29c0PT0L8CJ8G6VQtAZZn1A0kh8N7Bi9c38ipFXwulKEO6/pgz1rR4zncTIRhHoH2uh4DW4r9NQjNuL4yVE5scVIOiuTeYzxnJASNVXmswyB2ivnyHc0XnR6hlC3Ogtl67Eb7ervisyO/eTyOMR0giuzMsw7Pc8V6fuYGJIBeNM0Jb4SwW9lmOyrluAD9hsJcPTEOTwTEm06ZqMk8CSIazOdoAsV1a5PJ1qYQusOhLefRfyC/uVEwTg7TR/QLzzcar220gnKwoQE9Cs/PksR+KS0gSpLsi4K438HvhXWNH99XUvCFaKlrwfWAAq4Lb5j/E0MLY+h1L7vIc2I1BIJha6B/GpNHHFH1cetEYgmRgY0Phqwr/b6vukQo9/e/9frOBjkv2vvsosDp3b066fM/yc9TY17Kykcl75OadfdGNM4uRJ+RE3/5ZGJXLsxIjun+OJ3hVUqEj4yNyrlyiON6e2w1J6vCWYZlGHm+aCzPxJJN7ozkZwXTBlKkw6CM944Px1yzWPgwmE8XYxIHEvkDwwhpFSD1w7VT0FZKPKHdMVQ1paV+0Ek7PZd5Ohv5zxHK50XkORzQPgByEODzHo1j1futl7xDVHyx8FJ2SjbaO38gWpw4eqg6DORU9e+CjEvIH88QCY6UyN30eWqvv++vPE+qYywSK0ZkiRpwY2ILMssSofTIqaDbGogMF1YOOs/jjiaV6N3K56trJJ0llfC4yQ9WVoxKdeKjeG5En+F80DWGyJtfemh7gPz5QoiJ9Co3AhnlF0eG5hwILnYlHY4NQdsOAnjvqZINna5KthMFzudrRu0Nnp8y3FSYiKWUHT4lWBL3UcpXgyRJXDSs570KZF3KGefaRMnVKDtWkRh6Xq+q4amH59uYJQ9dPDBR+lXX6D6fnnvncqFrFrRgQmP480tyKmHQSA6KD3pKYg0q4YzBfj46GNmFJeSmo9KevrW2Z07X/Dycdc0UvBBGdN+eU+sN6Beh5YMPhsllbJ6DoV2eDexk6AcF8myilHNSRvXbD+MalOuIsFw+qDATurdujGiaisuXw6Mq1fvyN4rnPzvtSnQ7qbZxMEYQsiow4T12g1dXlbEaZFSKGBfDSddO+br+RjGe3QA55wDk4ZyMzAKFc6gbhXfcL0fC2RdEFwNqJ+WieC5prEkQVwOwzKlqYPKaMlwUVY/H9ocl2ylye/hHaC6rsVMbey6xQ9qhcMxvrYz6WzAv865BjsFxJWSLZiMNRzwlCZ/p9QBkO9hgZQzRix4wY+RGB1sn3kYuHRUADUoIeHralysbk+jK880RBekSvVHnifEtEc9EtoX/KVLtMPNc30gKXnKelDWaWeJD8YsFB8ZNRncRmVktQkD6GkNkGf4o5KSx9uncmWjBdA6lG84L5B46zDHIzGDYLjc2vzWnAY3PU64zsh8waEwd2NKT1B4i02qwtelmaKMVBCeUPBjAcJCYjTcwNrc2B3v50HOvJ4MxDXT8cL6gtC83dv3a2paLQWXdlnIHrgKlITjurjiVqgFStJiSu19HLe1nGdEiIgwY5TpI1ESKJg4BV4KwNvx7k7iHc3c7vFHzJ7h4UTJsaEeHU3vlY+40e9kjR3bj1pLRaCkWD0MTwd17S3NHmucuI1/Pz3LkgG7tmVvLanSc930zkoVdPBzbk1cO7OqFKf8tNmK2ZLSV6HG31QO3kXlKWxGrcHWjegOMVogY5t4OUOsdnARbOxyDY8Jzj2G8Hh1N7GA2otPNI9B+xUnUuB8cTmw93dpw4vDcs9GQhrnQPYgEwwgQWzL5IXB24MxIzNKQ7Yg2w3A+OvYINEpUQaFmxohVgwzBYu4O0C7gX2Tlh1zwusk8hhL7dNdBBEfXeghjG2egD65fG3wcNZLKKF2JrNZI+u0aeRP0nHHG+5qpJmtGj/E7cV56RQXkbvt4eC1kl2NYG7VIRzVWtB61duQMl15BB25kwuSeixStoH1ijJkjHReSIaR7aG2RYE7PFLLO5UAQQMaCQ8UGyo2YFzGX1/jBHiu0O75t5UFfR0CqhUPmXMdgvOEpRzE2pXpFGnxF3HMU/nYTrPlMdlt3Pj3I3nVwdv/e99wirKwwaUbvOwEIT5nw79A3XgZgv3v19qjsQBeUSPSdYdy7V6hG9P538+uhO3H6PUWS9wxiNzQ4gR69cGQnM7jXfUDwvIB2/793ndp8CY4Ud/q/N8mdh6G9ZAzohwlSl41QbOLLh0O7cjy0CxOzwxFNH89SjpNOxCo6VDJMVQegyLyqd1iKr/9HkDB+N5SNXcbB8z3MgoDW0EA6/Ev0sDhUi6FflGn8J2DiJUdTkCZBe9L3dNmqLiXPdnGcV8jvDjujzISOQNfzSYgLfqRncEeD8q5lVQc0XB5PGK3pnBRsvHjrKdzlYq0KqDs0Qm6AcAvGm/KUQWg1AjQbMEOzyXgSDJ6eqztn7Q8IZljJiXFZsPiAhsFw3WwdvUADmkoOoNxYM+MCJRJ0HQYtDGLWPY6545qCIhLCW6+xDjGe72Biw/G4lEypXtjkdIixZsSTBpePh55X81Y0lzTDrliluS6GOZw/FXpe1gVfG9gGEQEOWUT1ERbdDBmdQVR3uXACoOXCAR5UniL3EBFqstwCBgliMBrQS1ucLWyzGdsSed8KxorpxGs3xVoMAxOGMxRu5Fqvt15urJTyAIrAP0tW8VHUbN2O2R+t321EvW7eAPEPyMYOWubtKFNV3PlJ6SsA6rKPNLaRx5WUuJo7GPBuOlH8PcBT+U6UxdMz+i2rMytKuXpZFJ5Jzvyr2wRReFF6D2YTO5yBcXRjjyECORzaUzcWkY+5R6HcUY/u3Ab3U7bs2nMvvRbLaDoZ2iPHk4CgIiq7thuncNaFQ+mcMcDcXzoc2aMXJ/bYxZk9evHAZiDJSrBP+YF1nuwzoFt+inpDGm8dcrz8Ceb9htYM5zFSUoYjnIljA+83+XzGnnsM3gHPQZaBJsUdBGVmwwPPyXUkiiOaiAwKAxp9gcFVusH67R4Fz7o1zh3AgnGvg8OxzaZDKsw4k6rxgD27MfhMsf1HcLLCjgZsXE5qOAS2Tn62Y6bEuYr+ujN+Y4OFX9e5FAJ9pmhppK4o57iL9d3r06B8qt9z54DQTeEs2GOkNMYbUFU4f2Z+PvJMjuqHnlTjiKlikAZKIBvPMvDcAOs6YaLMUgkE1Kgpy1UJLh/jVEpfhoPAycJyFDtQc5EKUJBakBlRlqs4bXREc/wr2dberVI8IOk8RxnF4nQoYMPmAnlsAfGnTNlzDiZRUUTIXR9bHXUvG4AKb0gcVY9G0tk6/yo3D3Jbd8KE00gEYjFnuLIcOw0/TblU1R/Ot4XjnCkgOIeLycm/qws/dyM6s9aLEb6A50o1loTEHJg9whJ+s5DdztcwHm7s1nxlb396DpIUj6D3pNwPVHvJGNAPT/MDUVEbwNre9Lqr9srHjlmnErtKORo0YjrGM5oThijCI1dra/yW3GddQ2QEutZtzop8v2oUVgOyelXDKC/p2P43I5VdwZugLmJ7HAJ7WvKka5Q9HsAN/z19owqwPefQStc470DMXuZy4Bc3AYwoLxeUjTs9d71GKr2VS36VWa5kaTu9kIGKgz8g0YTxQkFbe67pdgiloh6WXi8U8B6/GpQvCH947xEJknZGxvDxxIWQJ7SlPOLoayLo4HytVmSonBxO+bnlEuyvlSm0cL2528VsPTTUWUCfvMZnHU95XAsRHSPRMZbKxU85+UBglFIvdbWk3+GDzlETMbMrog34O/dLfDy0Ly/5BHbtja0GYOH1aH4pb0GWVpC5jcnOPV+vmN8stw8iv/NTQLqhMNUapHhb9bAHqNst8iKWcxrRgB7ACIeih4j9YGOTNYLVgfHmvoeTJODSUIpp4OMdn2PM3+Js5aWrUFaM0fGoIRuGalpsBX+Y99ousUpCs4jMJNY40Rp7ypU5IR165Xn0Pg5xjSh5586wcF7I+iFpXclmpZKf9+OFo6m9+Q2P2Nvedct+7N03WadWa6Ppb68uvHgttuXxDOWmJnYBEeTLB5HWYXZzviZL/OliY9dPV6Hkpq+H0wSEXY9cOGD0+RLyfckQ3PJcKPrpRpyvBUY0C+oqzrhyHBPEXJ274RCWbMN+ZIS2+OkqceR6vLXNlKelTacjm05GdjgbMwrt22hrp8yXhvHrTMpEnURFCkSRQIKGNkVO9BIEY2Jsxqueh73AvpXTmHskQCNIZ5gO7OBwxHJaIBccI+cj9o/Kd52eLelIO0MEGzv1BFtuRAcjkGQ+cNhb2sdVLufjlA7zKGsIDg0Y4ESwRDTO+R2e51LpElsV93lrPg1uZ4wEmaMnHvszeMmyKHvVJKEFgi2ix2T1EORcqd3lvu5cdg9xLazoRE4e8fcjKyHJikHt0HW8Drh8I4/CcSSHNNYIU386Zfqo73RS8epdkuzrvC0EQ/jwG4m4byDlOC36mXSdBJ2WLgDdArWSXa/IgYc2wMP+p3x8vpyM5+b+cuDKqb+zJqS7tc5SbBFUodDc5UwvR1oW0o4ShAg/fDvHe/okP9BeszNque6Tk+2gPvs3b3tNBRBinLrXwTdPDqf2xJUTe+rWxp65tbKnbiztXdfo/Yrv3/byfbtPrTeg73Nzp1so17a22WhoH/iGx+xNr7kSUWdEJj3CDEPUva4dAVfIxEKiR43ihgYqdhiE5t5IyTmesy5LYTGgo8RH3D4EWa05XQ7v0r9UNzpaZhuNlE1JeFfgC62qftXSCNW8zX1r+67ny4+WDcf8WhUwZVaCWMvzaT3Km0/pDCFT+aQNyU0ENM/3635PJE3K02EeLf72gDKFLyLbk9WYxFTb8dLN1Sh9MiRYFoLY88Gg7CGfDVrDOkqWcZ5YfmVEchln265EXCKLw3u5f1ASobhMJgfMHwYTNe3DwDitl14Kyx0asPZj3jeI1NR5aIWGIu6u5EoICxroiq0MsKwU4XdOXle96LhWnsfIu/cot6IaeMONWh9zJwfD5xYLN6h1L0SBR2OkTOD7Y1ud4fqAAvg6BfnQ6tRrfABaXRhNEc3ny8TtcZjGE49egBQEzojh2YjhiNFiQ9g2DOgJlTRcfGOTsRNr0RiJH7oowAy+HnN9AL7t2oWRIIhdY/TboerFX1TiZNXF7sOkejqtQ80tg1qzuu4JOULq5kDJNSxQouFR6kurveqSNcIU2godI8q33tPwPmpKf8j7PmoXT67Zf//fb7NV1JXu9YIHp9HmQ83S2che8ciBQ7Av44wAo/zQrt1a2fWba7t+umQ0OjtApLDDeJ6NR/bohQN7xdVjm4097697jhcYdjGiA3mlK8qJW/Z/EDaldA7WeG+iV13jEIfP0FYTnIH+bLPZyGaTsR0BVaMc3Y3zIsBwXsKJVRzU/gMH2fGBw62Xs1Gksbj8QLRytVo5AWUcdjJ4gDhihHAEToRhGNDIf8aYKLoI0rI1f26eLggPPzvzYwC50Z46IthLC5WmDyuYl8vAxo9DjpESsiLxmV53p8VdLoY7tJK3nL+SHSr7vtRE1MIxSnRWyncnTH3XyOd6CEO7+MEJRe/oObk8IgIU4YSWAY0foo/gKAxoOG3wSFkhnBzHsBciL08jElU9J9KrsBaUVqZn9nlvnz655ZNBvDtCiqTnd841oGtI2I3ZBEtXqgQRd4GYQAKRnKBFx+xWbkipa14ivSMjUqPKEKXHskFbjVj9VWs0Sz9SabhSWETXLI5XnRlNxlTdW40TPvU/5nVfKwBwpZedF4G+bWR6vx6t54Mutq8pDc0JXTuOGxjQRzM7OJjYtbOV3Thb8L13X18G823w7NzVxu3bA2dA34nQZfsczt97WSpk56C1B6uhP7PpyD7kfR63xy8f2COXjqJcQ/RUbnMYAFvkT3YPIRcEgkGL4GefHxkCO0OZ78pTll2ADVFXfQIXAIm0LEW3SsGktl5OjfRmb29IH/exh8cx9yOJmnL3wlIdOb4hGGq0WKIprpGcfDzgU/1FJ1AqocvSPwKGdfaFISlYtnS2IgKKYZ0eNnK15QYoTuaSexSEN8pdi1qMVBAj/5rPGYI3lxfDB+BcGUApUh80W1gXMLLp4PSICktmBLyNYx2PiRxsf44oxwGYuAxTQdTcT0AHDQ2i0ZislK6k1OKTYuL24G8ISHoGgqkzThpyLvNmuSZFKIPhaa45pslI7OA6pTC6F1cP5Eaus/GaLQs7qs8Noj7sKyPwGxuNx/wsctoL4UvKx/LpSzVpIn9dihuVprXnCnvOHkqmeFmw4cyF/3A4Zv7zFrnMtxymzxy/IBDxerMiR1lHbp5HwQcB2SQbf6wZf+7I51MufazvZA63BnXZM8Fsqg9zqQWMLW2VgqjQa3mth8pXEChROitt5bQHavCg7mnlwUNZ3dqlg5G9+XVX7D3X5vZ9P3KDhCnbF0guPNuWFfu25TPKXnotHg+QYkWfHzmZ2sWjqT165YjoFxqAsyUjI9dujpinh0g0GGNhlEmBv3w0suPpiBFb5BF367x7y3m52XAO5b6cD/s7KyB4JTRygj1fe1UWUN8MQisnEfM96OdIFWSCYTMaXGSav41INfYsYNckxlvAWA5H02Zos+HQDkZjW0/MNjMQTcU5FIPqpIa4J+6xMlts7fTU868HU3cK3Ly1sNVybbdOV2Sw9txHRQo9lQbM9ypTREcXK3kMbBz13Gk4sM61R5zPTpfkgFggAr32XG0ySEeUXiNeDZsYW0Uvd2esU7M7u7rTFRqUV8ePL/nYubjkVBHpcQwD6ca5wJwBxcDUm5CfNHDXdnaaUHjRgSJ7ZfhFxQrpGyp9JklSHKXB7kxnKv4d41pWVJTcdNZoRzShraKUYqlD3iACavWRPJb5d8e07pztGtf952CxNYsP1PUdIf+07vEs2CeEm9PRU9PLCopB7PilzFXsjzYboVkfXHvx/eYzIW9cpuy4WVqk5V6VVKkdta4z1m0x2AuOf+ebTd1y/LMu8dzDdlx3Rrc8YH1f6ndd+3vIaZOT0O/tz+ilwyLdKZCWRXsNtAVUjMvHU3vNYyd2Nt/aj7zzlDwGi1x+rm8vausj0Pe5aR8ezyb28T/+tfb6l1+0GRVk+APjEFFuTRjSTuwjUhIZz8HCK4NTMOpOCSj30IoZevdkaIQNI2rV46/rQeNnPlZE9Gq+sW4aebyMEOJ9L6VU8qjK4RLRZl7fmcMK7BdjEIzLuV/nu2OqVMFYiE1VeVK1XIMfyDpkmfOkMWG5J4dd+VVlwHmUl3mqSTwUxk9B7YqfoebySVmowiWZz8pR50cJ9PVoIiISKsOwDIKoKBgI1mtnQHUD2tmhgU7wCMdmi6gEINeZQQoCBsLFodiIshbSE5buCEMGkWT2ySM3UNpQNglRdcyoK1cqKWE2nCL6NLYtrgPDMbQgwaqYSzjxsQCqnNFSGMoQ2mR/9RrBzIldI4caLULsGi0YV5EXxRqrEWUuZS3KulaOt1tpLseQ6zykcwrfnyN6FMQjeGZEevAdkIhtN2ubTGc2mU5sdcu8HE2BjHqJGq5HzXqp7xpoDNaU3toGRZxpiHp+OetDY+pmXkJrtDywEVi8AcdEOYqjjQ1QomqLUi1g3QWBmSMGziI6PZJTqBifIWBjbEjgBuUH9cATi2zxxJf1ltZ1WX8xfjF3JZBMArO0/RPiwn06bSqC18YON5pu3okK0IBJWRUyxuWqGmzX9sjxyD7mgx6zt73r1H7kHWe2WHrd+5gJexDarvm85yB9iTVM7dHM85YfvzSzJy4dsLTTKx67UAzoW4QYr+zpGws7na+YD/3UDTc+0aDcPnZxwvJlFxBpBc9ChR5F00y3RrRyTksKzD5xwP1QX1ApJq+jWBFN2dEpA5HGL87dgJOXhRlK7tlCkWf58Rypcsh85THJxvC91Sm4F1a2nqNs0dqORiNboMg8srGGZmdngIBXAxWM/DiHsH3mML5RaxjpHDgft0CebO2p95wx8ryIVBsaduTQcIcCIqE4Ncnwj6i0jD4ggoAswVkOI3m1slsLP3dOry+8/NaZG9Aoj8MzH/nZyl8uc18dzEq3ajzGGsu73J6K7O9dZ/Gfyq/iaBsitFLklkZz3Jf56ocwoIdMgfM5MxuCIK3TxByum7n+MuwYl+5QqR59yftKkAnjHQ7nXGu7OCoI23aZ6Y6jiHqP98Ody2fq8jp/LDNKaPel3c+mqHMpTwnDGcgHsomH4xaIhqEzXrNgqpKQ6V2K7wTXjnQ+xRNQRnEXWVjjLjIKFVwR8pBR/YQOaJwpId8LNUpxZFTnLtcp0htYra7qikqPKAnincFUwISanYek/b5JT2s+35T09B7mZLxsPJf60vGfrgFdS6BG2lWUsWJAon7T9fuOUwrvP37xwK4cT+z6rZV97/97xs4M+dEvTb/te5EBvdfV85Jr91pFIonQeGgvu3pkVy8d2AmYP+ll3x1Lz69RAXXl2Hat31ybOR20nUN3XySlhcXIy76HFKGQXnSSa9IdWrh3yrPcAyuHoTAC67M6FoyuzWNlFkYp8c1tw4ubor3Nc0XZIym6yldS8iejiKEg0C4qrOTp2rRtBQ2OSIii/qE/l9RpGXERupXXnU8fxrUgO+puyeGNQ7z0SYc9S1XJ0RDGZMnzc2jQeBJs2KhnHNPrZHLuqqd5xIhrMpwYgY/c8zJP4cFfVhZMXEfpR8q5RS1qQJWRrwS4WslLJoO0l3ABGZbWrQ8NEBQOWSQMbhHOIZLZxcrKSnD8T6RjdV7adVuKRjCPuYwsf0Opx78xRkUHDgcB4NDs+2Zgq8WKz4nc48U86n4X5lTVuNQuavePiFqwlqksRb/KXorcOrHTAjWJMRqdDRBo5n0ng1XkJ7rHmURm6GKQ+vr445pKGYh1GM4SQSbrTvbxLHluCfKuqLMiLN193JDsaZ3pmypXUjVQPxfkrEtRKK17jZbzNKSJrB+lU2g6Htvlo5ktLmztZVcP6fwAKzdrXWfj/wFq3ejLS6oBdg0DZYySUyPWbEYE+srFAzs5mtLQ09qH8XL55ICK9uOXF3Y4W9IJvJABPTB79MLM854nnlZhd9QctLdzXVn/Vg4cdc8ErGsYoxJRirqJELKVTR0DHs7QQKCgz85IXQFQeO2ANZtHnjM9Bex7SENkDaNqPLY5y2RtPJ/6cGIb8v5sbTMxW80qqkOkVZW4yknByG2AExuGb1QL0NHs47a70vAZQL317mYyKg5hODFQ3mo+R4Tcqw74M1ZYcBmPzujnuxXOkeisnBlKB8rynoaTxj5kt1K2ig6RHHPntXKWixQs9Ug6iiLDgldvNn52dxeXyE/r8VZTWohKinkUMWv5jM9WkIWJtyNkvgxIkXFirpLxp7xqlR/LqDqxV2hOHRkUd1TpsH2DEkevDP0dPU3R3fis1lj5KfnenkaAXCrIlpoPrj0TRLOlkkiqwx5zQN9p3n/6nbok3hw/8msFktvN+flvn3/K8rlIgOqoLK7J7DNJ6EnfY7kWde6wf4j9pANBz+FvFhmbEBkttkFhoHNQnZ2HdaRNKu2Wn7KgM/1cm8CQvnxob37NZXv7M3P7vz92k6lwdOS89M2wl2oE+r3DiL4XreYXDplr9SHvd9WeuHJojxwMbYZc1YCaFRiLbOMM3Rb3fqLV8hwIr2/glD0dpaNM0W3mKZ0UYiLM+ZDxZjLiqxHo8Nao21sgOBkG1h58yNUFgzIio+pcOWxKN1rStCI8O0EfwJS9OUw5k6dJ1OaMpRrZSB5aCpXwjorIK+pQ8hCT93u9ihztDstrCGwec3xjXSOUJRfIYb4lFz2EZimhQMMZhhEilgMbAfsHJynqBOOeM8+TXke0Uc85mUyZP+c5TUPmkMIAxn1Wq2UwVS9pKK43IKaqXunpwYRztFjjcxW+NT9F5BrlncAOnQpKYb5oBJtNDrwONWCJzojtTLEU/IAyip0K5GgcmzXHc3bo9Q1v3QLkGUav2McrbMuVIycEq6dLLkGW8qGi7ibh0AeR67Qa+nMhZ2g4tPHBgZOgGUrtbGx16myqYLbGfM1Hc0Y6Tm8ObX42ZI4x4fNRT5v1SIf7FPao1YxSOFs/QocgI2PEPFhvkQuNKDU9xmvbzDc2XJlNF0MeuqOjpU0Pl7YCwzfL4HgZG9QWhYE/TGiN9WbMtTbYLCK/OMpLpZJR1TCt+5dpIYhwifBMBm+K9uj1ehmdQdpPnjxAcrr47Y4kOarq4GjcFAgoRDuc6KolRRlxrgFE4C8ejGmgvP9rLto7nj6za9+/tMWpkzg9iK3ke7/EmrbW4WRkF8CafWFiL788pWPjVU9cpLEBtmg0TDmMxSevntjlkxVZY2/eWtrJ2Ajndpji0F772IldOp559Llp+wdQ0TkC+dNHFNniZ7okTVGiiGursCI7VNWde1G6Jq5ZnUphtOL8Al1EaPlC1LDR4B2S1AdOgOOjiU0nYzs5QPTTbDub8PvPnG1sc2tjh8ilBhnZdTe8aIyMnLnbUS1yyrX51uj+HCkemy2h257z7Oe1uApSkJzPgOoCivajTSdrm09HJLsiRBsltYDCwfPDgIYTMRx5EFUkWRRJVUdaS22IEWkc2hzqIOqqeav1DGgMaMCsRTAYVyNk2CfgHGPaeyPHYvPZ4LwAGgAOOEDWyRUDJ0SToxzPEQ+mMVc0VYb9AXPQQ47ucDa4U4QoAjqUg5iTPBpuMHNt0Slc+z4BIRw+wXrdums13Mq6laM9Ir5ABtSIZZno0nF0z4nuEqNrWUghe2LuGHEOZznFMdBhQWDnUX04tJHqFbLCaj/kfHI1KKfaeQN7vmSiDOXzMjPYtbKQuu7QLHee25HqFTRcDnp8RISfu11RchBRCXFeNIEZnRF0UO/aN+RUjX7v66v7Vu7gHozNJrQbQwYksQuZqkURbUx04dDe8ORFe8XVI/vOtzxlP/qeUzopiT7sc6EfPgO6jW8+v3bvc9xaf+oD07Zb0tLPRsZSHo9fOvCIE4mrIp4WXc9e4ey77Rqz+jMfQ7uOyXo05TOhQD0bQ1XvpX8U7TdpWHqb3n2qIM29C6O2h23T/fedtK5065TOCkIDR92B/skIqCNViimka5WDKXkLPddH9JnVy1gHR0a5BK7zCZPxvONEEAS9WusahKSY5GguPaTKtkoR9vh7Mw7PfrCAU8CRrbuT74prDp0EC0zS+DxsdBheXuLDWbvdkx+ly1B2Rf8LDUdRZL+HvwelUxEGKkFgrI0yV6yHHFHqOnYefS9j0YyDfwbsr+4IqlF5/7hfS8Qj8uPqKu47SgIx5opCg1IfcFJAoFFP1KMQjIYztONQdhHSMBIfNUIxGauFl6bZLJ1HIHPYFa985I9jLFirFPmLVDSk4HtfvdZ5MGvTwe/kX3C+4JnHrAWNzwfL9mpgo/mQU7TB/JUlWCMCGHKUd+Hjx5rVbnOveCc5rgx57Olwmuy26o3SHMjq3QebdtSbr5FE/tvux1ImJozosqqDTC6UqDK2EREQMzHInF71xIlNp2P77h96xs7Oglv5HuoG+dnuRs7o5MrkPM3vPUrfAyRxnnWTQ/FwOmTU+MrJzK5ePrILxzNGrdwBs/s9nDcXDiZMQ9msjmwB5uqVn3mH0zFzc3WedgRWunebirBPQ1V5mxrvKTHNeCWF4LLM07s6ayNKi8jvfO5pHyMw/OX1Ef1B1Bkw79lsTIcB/o2UkBHOXp7p7uyaTga2mY6cfXsDfgU/l9YkxwNnReyGIiPTc0nmRxScKakiNsK5NHaZoSfz73Tln5+TAN8wbxoKdkRKG+df53xzncDlV9inO6s4E3Q2f3euxe8zdSi4GsJZ4AZbJYgSeoyPmOZHpapUXnCnKww0qvKD0qjcMQGjXKlYZXz3oGz0iiKzMO6RSoMyZTI6C4M7K2MMyNrOqH6QdWotkUsjRYwLDL387hzP0kvidfoVxM6N58JlIW9ifst6dnvXZVmBaMfgVLWG4we5R7NM5cBEIhbPm8egICxKzfLOfqknYDOO7Z+7+ly5dp22cpkiGTqs4l7OMae4JYRTpFxUgrKODzjJbSEOugdIIe3SWJV73+nE7hxEnX1Yrx2fTcO1VzbsiJLQV+rGruskrRk4I+nAm40J6WYFhDUCAy9JX+5D0x6IHOiOyn0PrvRgNUFiUfni4nRr7/uyC/bko8deIJ4QWKcQKJsqCxro9solpLcJjMlxEAYhj7egA+oMohsfyYgsENhkdkf0z/e+DpowpqLWr0eWfLl4FAskJlJqas6brqcak8pk4/s0PDynlEZbGJJufAV0T4Zb2ExgLHeBsdnrFPCWPQPtgV/zZMRcCiWv1oHM8POuUaJzcRSspw7PQbTVIyyIRLBO46pjqA89OuuCA0+IiGTRU8J4Rg5wRO/jOTnH04gIo6YxIL8oFyUCD0hYGLlQ4GAUgs15trHp1AUg0nGhW5BVdDO29XBcSDdIkoUIa6AVyKZNVha854WNyb2F8kVLeVIdlz09GNjkcGinpxub3wr4djFEA+4V7OBlFTNRyV22iFLcus4aTWZgGeeDwnVUIcYU9jSYolQVtQWPoEI5oiJAQS/z0Y1xRA+OTqa2nK/t1vU52czFtD3YLqh0IBDNfYTnItzDo6lnN8JxQ+Mwym2JhMg2FFogHqOitgbEesCoP9cNy8eJeCcc14x6gWQIpcDWtrS1rVeIGm9tYoDbI8qAtI2Rzc5GNj1DrvTGBodrW9jKEASDRQ2EBuYRBgng3FCKCUAQTI0Y8HD0pC2QTwKlK1TESsfqK5GNqozuGM9hMDmU0pVH7t4Ys3Cg++diX3q8GmE7j9jQABBkLZWP4aeDgG0wGdiF47F95JufsLe/58z+2/98u928MbdlGOR9uz+NOcEoOXUysVc/emCvfPyCveFVj9C4IOyTaBr/bCn9g3rng6G97NIRz7wnHjlyEq5T5P6KxK+wB7UWXGpUjAGJ5rkS5fK6ThzlSfKFKiiLAdp1xkegLokOfwYgaM5WdjoZ2I3rK5seDO14grSilMcP43kEGDsiziM7OZkRun009XNyOkRONPgkfPMfgZV7PbQF8qdXG5tMx3aAy52Ct2ITnBAqAberp9DfBiZzEpgFUgoOT55Hcui2A1cCkTEWhH/jXoCTR6qMizXfbzynQ3QyIutpxpRJPrbuc617NNkD56hWeM8rGTqBoiL/NE5pCLsjEH3ncylXvaRWpTHAWbeNdYjIaSpqT85oki7mvsGoRU43yOtWgSALY0xGdhor1fXG/7DOYTBPR2M7GI4Dmu9OD/yghODZrRWDHrgWYPVECmk9wtGxcPJN3cSdTNlAk7dEJHf+J8tiEYET9a7j/GR5s0g7IpYtGbXIFGrmvcx/oLF0zruSUu8VYtjJw6J/oZ954BJ59F5PvEYBau8rFkx6VJ34kubQrMqUFpY6rDUlY12pUvoY5sPXd4wpUX2ub+GD2E90XgU8nsjBsMy9ssR5YfDcnr+78xzf3m1e7Tq+2ruScJGEeRFSiWiyB5UqyoAEgcMxyRxf//iRvfP6wo3ocJT17SVkQL84Kk/rFX3Q2sF0bK978gKh24Bxu5EjL3oIrxQ5atgtS5kY5ZXues6SD75p1fMf/44NKk9dC8FMF9tLeZpDMPX0I6wz+/SKrV4VcBmYNLJrqKAYzuVgj8iz6tIWNtb8TOU/+YXomSBFeyMdEtwVwu05QZ4vyhzZUk6rwuHlqVX0hEIg54YWzUR3Ec4tfY4apy6jcVc93mC6hFAYO9SZkO/QULeJ5KlUJmLU1qF54E4B2yu+QqOPzNJea5rzMxraegASMe+fcmMJz2WUM7tNg1AGB3s8E641AEROrGkpILETiZQbJq2rsr4LNDJdoP1a80JDZMUlWZ0dzDEmSYsrjoX1OzfBsQuWwfPiS5pEEf7yTLdruBH4sXwYaQ7YPdcClBLWgnWFBEywVEYCfbFmND8YWvH9kTtXvP6qR8AHi0ATjFR3GQ6a6FX4MfwidfDLcO1RGkQQ5mMV0f5z6kKXLc8ud1JActndzjQ1kM4Gmyi6lY45Q4efJjP6llNUAFk1lDwa2iseO6Ky+9b3zEl2dC+j0Pe85TPzYW2he04nQzuajuzi8cweuXhoF45mNB5xplSyHNVcbj3fzpLsET2avyMQXTm8tu7hFAUu/23/VZXqcKgqJzl/7pwF4Y7leg9BuQm/rYx8RQ56fecNHaow3ojqib0P4xk/IPjjDyLKMLoC2jpibXQcjiFPuD8dBovzdwSW/y0i2/jx3GSvOijW47o/lALFfNvyYn3fy2T5bxCBFUBEjnzp76w78N/tDpa8krObv3EWJcbyvWNb5LPE964joM0prQe6zs76Xp3HLDVd7lQD0Ek/Xei5gVgdzhUUAiI0jz77Oqm6Rw0Ei6m5dgPnNlACcIpivjhn8RtzTXz+DILVEQQUnZHnDJlbcrPLmooIrzgzsnM+/lv6FGkKOdKoMZAdrKhtiVZr/yUG8RrlToMblnWxcyP3uTodhDRKH3eFokFH3DUSdA9DuJ5Z18lkbc7bsfXqIaEj+XoMItIu0iKeJbNta200Ueg9+n+7PDtrtYlCt5/g2aBXGtqP0MX3Xt8/n/UKfyU9DxF/Is+pY9zKSQ1qO6qaP6R5Xb04tTkc+kgNQVrGuakQfXuviEA/iAbvvW5XLh7ZL/7pH2iPXT6wk6nnS8qQEVxXB64gq0VJReQ24Kp+ECcsT4G9nKNUqGZsNDFlu/cu59FUL3V3QipDZo0M8BgUaWPks7KkT1zb6wc67G+5BHzX88FccCvf2q9ZjdYKgcF3IVBXWxDTeHmO3Nca7W6fu4yFTr24ZiWfqs80HCH/aWiHRyOW+Lh546zk9PrZGWWP5MEfRyR0VPN05c0vCkGDl2Ps2T+PiHE8IvOmqAhFXdAovcTc6ZkrW6erW25oeQdsuBqz/rKGimTP262d3lwSMolazYhUHqN+4PGMRFrI/cWYY36QI42cOObOzVehJE4ZNWB1X609RqQ9bw6zSrbYWyuyt2IWKjzXH77NVwecMbzGxYMenJyB/UWk18c/rS3lyiZNy+3GlOzYiVYAun5wBCMaMMwlo+JOQVa1ULLBEzLue8DdPM6imnPtK4toVdzwnPDYI+fM14ND/+cL5HRvbTYCAsMZv6F8o3Y2Im7rmwuvCz2eumMJeUpcO25UrCYr5kuvlqADH9oQP6dm44ON2aFzBJwhGXszss1mxmsDis4xHbsHxMeyEnnlaBHGybcYFFLiDOqazvs5Sr8pql2RA9pXPvY+2/6ZqjjXMwrGla4VE4wR9j0T1y7wU8IAHFqPSNd26gsB65Ze+OXKDgYD+8kf9nJ717W5fe1/+FH7sXefIo7fHkh9u6eNiulwYJdPpvbYxam97uUX7f1ec4Ulmw5mqD/vTbKqiJt01tGsDseeHDsus+K8j8+5g8jRCNyxCQnE/NwgHXJHZVS8I99C2v3n5PwVzokCY/XrjLc4YyW3IseahvPaKw8MkWLiCBGgIaCYHh8i4qWc55EdzgY2BZeDp0XbDNsRV1vhvDa7tVlxnSJP/MBGtgZvBVK0kM4BNAlrwXslBFYHKDWYYcRH3Wvka6dxVQQZtZvB73B6a0EkFnKj3eCQ4z35pIUMkjOibJ1w5g6d1JH5reC7wDmBPbtB9PscP1CCzTqs2SOj3WmQo5JnA50FtQSkuqc1UORGOfMDjs0jAiO8IXweBq3eJzP53AkidWLJgD6DgzfmXZFZ/LC6xY4+YzZl7vOYtXZhlIyRagByuPHQDjCHiIgeDuzGTYz/mgY088iXQC/UWs/FSESEcCq9RMzg4gjxuVDk2aHbeu7cr1oyqls9WJDutdax5GcZ+/hvqQ7pc0HW7cQEnsEgdd5i/yj3WbwfnfXQ1dMr+qFjBZYpjwoiYEsHJ0o4pyAbFLkvz6E0RhKiSjcM7g3sn4g8K08bAQkvBNH2ypFq7jjSmdFd0wVNs9k9N7gfmede1xBZy+Pf1Tnh6KrCrRBj2s2BVnlWcrGUVCa/3r6BpX51G9r6KydTe9OrL9l0etN+4B23+NUlEIFMidi+dzuEB/e/7y+6AX3vWFaf+3W64/18epQjsRZMpRePJ/QagdX0cArjSxpIJqMpVIzhvWy9a9p8zojcev/5Z7qOC7v8FKm0VXa96R6h5DT3CwGufFmXc9V45u/I06pPnT3d+K/nd4tcqaJsdHqq/+kU7gq781yc6RONS1XeTx6uuV87x395hwzXycngkQ9FM+Kw5zVDALIMVjI29uzYsq7jGRkJoQTUs3rhZI9e17Fz2Ltq/XipL3rnlc/EAsAonWK2XkCgO/O1FBtFVkjOFTB6HOGqrcmeieSlkXxaAzUZUUatl1VzznIZvI0XOHlAxdqaKMrTxJSwQfLkhlAKI1qCM4UpEqogxTUl4Nf1x51J+X5h7CGCLrhZSVeIsUhOqJKKr1llegXmQxGj8EyTsMwNBJScKigLfIzohPi7RAOUzOhjCiVoM6quKBj53O8rL11HhLaiWrHZ3TCJXPO83Mt4R9pEXUrN6LtiWRWphkFUpcLKbqnODBlFdWvWurj8RN7THWXGleRQ3OMCZRWm9JPCQBrG18nhxOarDXNNd573PsqafDTf+UPtnw+NU5iONId3Xjic2KOXDuzi8ZSIKRiQjUN1z7PuOg33HLcdGZXETzo3shCLs0hnTaSw5ArhWs/ly6UqQ+wRkTXifSn6WndU1MNxHVBS3ZdQVxheqJAR0UiOT6kNrKMpzoI4e1hTOcq9cVmHsi/vnNMrOkwVRqFHW32vOyFgrPWShpWrWzisfbGA883LOJXSPO43DOu2pks0qUkpUq30iTI21b6tYxtnSuEyibOscFRs91tNOgM3xMwPvE59oheWQ6B8O+D9WVfxY8xT20abGCeZykGYVJ8mzve0bnTalIhlkXU+xg5pRvmyEXWzMowkl9zAlexO3nAggkQMThbky1OuEtnVrm3lTbuRVXDnAYvOEUwZ221pJT+zs9N/t0nvk4Fd1aYsseoYlhzo6JsCCDvw6qLvCK1Vy3B1DdASR0lRYjFf5w+V543ym8XQ1T0YaU7qgGokMwXAjV8NQ0EO5NzvglpUhZOY++xNKOippJHLqC/Gef241raOr9xKTKY53NvPt2iD5tvB5VGU7UDwKOpfn2/3myET0/BiPA6QUnIwtkcvzezaeEmnPgGLhbH++bWKzOvbA29Av1Sbr8GxXTyZ2sd8wCOMPB+Ahnc1J4Uv4ntOTOX50W48xMplTm0lmKARhPrAzsgReaFgs3amTrRCnBDCqyoXKq3j1+bhyJqK4aqUGRPagbNqilk58kAHiDyK/CpMD2xseOoALQtDtZI/BSkFkmljNNjXIOmoXvakPTkRMXN8KcxwbTBGIydXfxcjwOHvplqFrI/s7M46QKi78BFFpCJ3qn++MEOu1zZYLb3mceLthnceNY3pGQdGBgfudBREUl7jdzMfuPIkUi3BfMpFHNo9RL1O5NKCJTuiiYjSIUKKuspoa1rByayPXC/mnZNJG3DIgc02AxuuBzZ/ZmXzm6ipvKVx7UrR1pZna7uxWTK/FBFnb+vi9YeHE/lENAhX80Jewzl1sm0bDEceOVwv3aMa8C5C5PDAQBzAA0zilQrjJpEXazApshSGo2tf3mSBCr0w9tzDNSLmzu7mffAgRkR/4QJAXrDnovN/qy3zsRm53zpkXaW1BBVGrjpudXYakZGQhIjCjKisIgQ6Zp8x/ygpNyaMGuO1ZL7yAPVg9T+O84h51LcWWAtbmxwsuJ6BAIBQHI0mNS+NJbbgMAMKwa3iFVbZZm3DqaMOJouRTedjL13zDNYtcisBfoWA39gQTL4RVR4NEfNKu0wsPAHzZ85prHHue+TMMwocGr1KN5cDSl5xf99JeSqpoaeCB3KC3AtOquOeeZU6CeU2FDyPsgQ7eJC1iaCouI4CQTEO5RqnRHXomF08mhH6PhvjemtRFNqD0vYpWQ9jk3J9fIDc3qG98RUX7ANee8UuHk3twiHyI1qX6o56FgRO+WXx3Z3fkuMS9db5pWSE74EFI8eadw/lmvnE2BO6Vpx/zsYdxh/WbRAAEjYqY47fs9YYilvCAALpGXJgD4+nNJ6PZ6jXjj44bFvlBbFmEZVczxHJBmJobWebjZ0B4TPYMgItY0nOUKJ+wG+AOvWsIY88cXwe9aC9315CK5j8Y0+SL2Jr9szTZ3b9mhObEc0VhjSg5fjhnsw1b6EnFGZqV9bxLLLwXYZmt0Q4I5kL7WkylFeRK61x3jWe3cBnJQv8gSoCGHvJgXVEZIuh5fPtrNPuhPSooisiyOt0v6ac134/nNOINsfTxHLxa4lZ2RFwA7L6e/qNf84NarOjwzEdGEBXTHg2u1N7uVrZwsyub1e23q5sZGD4HtnNWyt7+qk5z+fFrXXMU5y/HPOBTcjijSoV/rssYzi38Xwy0cLqhUzwGsuu4zms3x0v264REzqgOEBQDpJDvKjs5+GLaWovI58bz1mdpthDAzppmYrV3ZWI8mrNyrAUuVikfsEYzk5YOV9YHi2sPPzK5bKG6IP0xbAUVfmkOOBibaCcaHXMqnJEbB89S6S6KejgMisMbcitkD81IOGICKq9DHzI+SQCgZpCQRK3UkulNjrHIgWDjPKZWiSWp7IP9jWu9bCfGfymc8JJOVEOD+NVVhV14cz3U7aM66A2sIPhxF5x5ch+0geZvfXdp/af/+fSTucbu3kmVv3nIZ0eRsE2OOfv+/AsvQH9AilE3KLDrU3HA3vk4tSunCDvOUhPihCp3np51lKop7Ts3erWjC55T8z39FwvXaqL6Gij2rsdbtgLE+xZndQ1m48VTTsukz8T11EtYfV3X35y8qv6v8QYWeCfun75R/OdSgCT2KrTtWVIe63m2jmYIzC+S+mteoJXT+uwZZp2YdzWG6xfSfnNxU1cx0lDWgVRx8sbkwbjSgezC1aF71wIUHguHSIIxbJ0l1HZYKluGMarwqx8o7z+iuGq/u2BA3XnqCgSSeB6ekFdHAXwlPqRr6AVlq9ZIrolArv/UHTd0qPtdLB09LqyTFPUooRB0xpp7q/xEPGVGMDLGvB61nrZnSf+ga7zJEfpXb1RBFsGOYwCWJKukTv7eZiSBBog79yvU+MairSlZ9x3JujfWdnJ415hJXV+dnTjQWdcNFtOYFg3uw6X6ijZ68nvKt15LkWDE2kNruw0zv773gbP4r2HUe8Q4ROMRNR7htGM6L9qNhcfrL5Qj96Uq6yz9Xb1ffMEVjRVURhv09rzoUZ98gGv5edBxlCS40U4F+X8dSO6HiSxkl2xjVxROoxJ2AOjOfKdCQSK+4YRLiew6isjTxbs2ysYrQHPdoh23Y86D3QERd6IQ0oHQFz4WUGiQxqjOSLm9/H06UC/hDPLJm48sMZ0pE6wq4SF697pIFXKyp5FXInHauk5sevv4yNJX23PnUBC+TmYcrOlL+za4M1SoVMSRpUYGpX/rIlOKDl/Pq2NWiO6otdqFLrUQw5jzKs2wPh3p8VivbLFZsWUMZDEwXCmgZisKp1JLkvhCPVcbZ5Z0nPwkbVqbYRaEpFY8a4U2RAyvro66npR7jB5CGDACdJe4MZVr6kgQ69qIWO+RK/bbVPuUYLfifsjTYU7pRJvTNl+Aj5V0Fq5X2X93qc3tOOoa1MGBDlhjta7/0mR9HQuNfLDxy3rsFqvzR2zzNfYJx2sAcHsW+Pl7ZrL3Mqnu0tIrqdhq+II8t+MUVYlY6yAnrgwm9iF2YrnNwMFIMMRIWDf7kvrDeh70Frj0P+Nc242XtvV44G98RXHdvlkRtgQmmoCt4pv5HgE83DO0fRDwz3G8I66Vz4iy/QQ+0GKAxzRRc/d9cOGubApAq2cDZErufDYELIGQe5e4qhf2ZBR1NO3kDBle6GTi4kfZ+St0FA9FwVNymGW59wZrr1u7WQyKQaMe2A7ZtY+g0BM3wUSLfBoa4ixrDHhQm4JLU8R8ue34/BXjWIniJpMhRLwg2yC3Foarhtb4zrw1hdhp7qj9YZeXsSjvyjTA289cto0Jhpf5d7i+Q+Ppnzt7OaylCQhayqZTYe2uTVk7cvgdXV20sinJrMnhbLn/rI0CKCIM9SjkvIKZQwkVmCX9gdDZIOR9c2akUgJBkG6hogWsyBTKIaIbIMqKPKsAUUegvkbuX6gBOcabMsY1bWu+VfUtJVcQlkgf3zs9d7IBF32BJRFvLxe29nN03AdV3KVrAg4DNsZxt37G+zBU8yZ8g9TzdFozG0+c2fGeDqxIRjkxxPOx3q7cMVq7mFUZziFN9lJxsRE66yxTvDGgA9yoXlPrIkVYcqridliPbCzmyNXyM+AUEHUaUmfM3LV/cEiFJCUjvPOoai2XJRIIVmolEYkIRvPq8Iwp3h0OHxizJCTzR0Se1VEc1SecI2IutObUxS3cF5I+sfwMl+a69LPQZ1FDnX198F8n5Wyvt27JjIepBOh/NIbnjy21zx+YC9/7NhODqY05GrLzlEn7vOSeZ29EvBaoSAkH5T/ruvQuIzc0NvoqrdtMCbkYOu4xthg/HIHBER4q31PciB31PAHz7MFymlkxyjDhdzX6ZBkaofMnzWbQK4SELTx8rAoJgC2aJy9iDizvNHWnlku7CZQP7HzzhYbmwP+C+esECSBihoFqeNm6WkjkwOcw4AVO5IG44xI6xxImBhnd9q5keQoH6Cg/IlRm3uFSBaJzyppE76L/F2fNzfAfB6jtBT+BnKGTMZRJ1oGmVJdEhQce71LxpWXSYE2c6yNaCg/h6u54Pu7OvnJsxFnpMvuSpYJ6DQrMGDOmKddqzYQWYMTUdlOQcbpQWxZd9WA3elvWGKLxZJjtN5i7rzmM37cCIc+5HKAX8F5zihnGM9gZAdK4WRSyrzxcxFKxl8FnQa9B3MQzkHMlfaMjEI4R8DPIWc2PjebOWrPUQeIdgOxFc/P8pBOoAYmctc5gpsiGNCTaVwHwi3S+HxCSYSc8OKXkU9NRW5/+TrJFhhzOWn7drBkXwXVMZ05VSppXP0u9kRD1rrXID/PYPRJcIoeQeXz4kW1D9c16LDBGOIrnQT0DCN3qSoDHEpThKy7RqtSFxRB14glZm3sBkKvi143YP127u9oiuYPGr8THHsjuzCY2dXZ1l732Ik9fQuIuZs8c27O78qGf+m0bfxuRc1Lw4A+71kGz/H7D4tCBebOqxfH9sjFGUthIKfMD7R2tmsmpP4rH3r2sLpxXVyzsaH4SorWEXpZPPF7ItDlv3c+fBrlPAdUS5+S6rLj1qxPoafKd8nXyvfJqlDXOOh0rj5Bm36TfsLTn0pYV2eEynQpkoK/XbiVK6tkSDLuqslRr0mim2EbgaNwbWpMt99h/xMpkwQmZRYgfnCETNxQ8frJQbSFflPjcJYReLjBzu3T4cogFR8JxhRBp1Ni7KWyHKLsT+SP2a0fnozJ9Exi1PR03l0vr+eBOXEVcrP5mlhg9y4z5fnlKIK6kMe8XUHlX2IzVx5jIxzzetUzte/o3sxP1LQXN2/kKfFzVfkofqS4JhRfkY24l7wqRN2f3DkZGVDokQKBLAGYsFCgSHYeCAFxB2rtCRlQiP22u3lLiip0fNt7xr9Gc+ocdTz25ROxVsr+SPNXSKXS5ZrnbVmbOzZVzfkPpdfp3hxyuNOlvj3vJgML6CgY0Rej5vPRbBwpMdVo4m+tgzJHvv+bs3vPFi85s+m1luxmv0S6q2foLrfsxOaLOd9fn5GzRtHnomOXCLSX0wuSRhnauGZJZZADwQ2XJXKTt25Es/5y6M4wgEF6VZyp1a+08yAaVyFPiRItfAzp3Cv8iIkbAekvMKDIlYFUF3ea4lxixJoGeTix4NwapzkM5aFGndNpnlBvLns0n3Xv78x40j10JrjjMuk4IXRLqCGg1aV+dEaHBcKoxBcVCBAfRjk/wlUopE5GjyWDq0Yu67V9jIAccMcOHCOoqOBoPnyIyTRh0Ea1EbwGci7ApCdwirtxG1XK4gAOPSCdjUxhC+NZdY8FiPDHQlpc1RGakmB0gDjBnVc4ErzaBwHEXH7u+yJyJ2TVWCRPJB84VoX3omHESIGTlH+sweyoe0UnaCa4s3abZdI9KPacGplBPTF4x6w3htKuUVzXWDa2u+dTCcB0yEnL0skOgKJPJgUgRemLTtcVVs3BlvZO2jqeRqE0E7H0d64h/pOyEzxAhtQApDiezJCGtqEjA2dQwxVzD+3Svt1nA/q9Re9poEvx8+RjJ/ZLPv71duV4yugz6y2qviXr7ygUpmuEsRerFcege+oRgcU0BaELhGQYa54RgQM1hOegepxHA68zjBw1KagusGp9PRduDldDpMDTu1rj1VMylJwbecZxGrnQck+tGxMOoy1M2zlvjgIl50DVqDX6Aq+bIrD4NvPTorYlWlGGuoZ1sDtHYQQyHIPxejZBPd6RzedbWy08V5NCmsazDPxR5JZO+NnJ7IARzfkcbNyVYGY19+/OZiP+RnR1rYjtBP1f2opYWx9T5EKNxxMKYjCs8rxVzo4hpxYdVd1hWTueG4V6oxDKJxd9DFcL7y3ITZgLPMHzgZXS6V2XpxtbL4ZEAU9W7iFnLs/Y6CHHhzeGGpcDvyZyTtdjWy22jK7CWgNbt6MZQhiHNzUChTYEpBMe83UgFCDYzfOkPTKAGssbKhSzY1wb9Y+9RBOjwojAxHqLWSx1KxVVcC9rzdf3fD2sec9x5ioeVtIYGuYL92DD6eDREs95lt9DUS4vG4PIVJTuQg1uMsp6BBvPiPwmOCgq87fnAGKvkkF9uAgRtozoTGzW4aQwdhO2hrFincoo2xbRlSCqt6HHXIo3+2yztbP12k7XG7sxWDP3cDve2nA9tPHyoOw/3i3Sr1w/qwaMe7HdCSAkhHKSvaWxj++qVrQT5rjRAMj4iucN9hGyACtpkpe58fQAllRjaF1EbhvjEUUWUiSvh7Ug0m3kcatebHNuigQm5p/n4siW25nNt0Obr0c2R5mgZ3EW9+38Nki5jiCietnlqT1yYWqvfdlFMm8zN3NUS/WU+rRC18RVFB1DCeSNUEvkOgiSozAWkBeJnMsdpbKjV7sBdPeKmtIndI4nEys9aYag19xQjwQDpu1rewNW58MR2ZqxhIeQQ+gNhaF/jqcQkCZwbs3dIL4FNmZUS9jCgN7YHEgm29p8sbHFcmPzxYrwXzloMV7bcTjamOcM7E7KmqypyTbB2W1mc/U/6mmTkVx7sijuHuVcMhUJxP6e9uHI5xpBxmfBJg4CIhnnzCdfeGksLwXYOuR0hqKl6kzl7zxfchw081sMiOTdS3PjaBYEG1SdQx9LbIPBzo1zSYtFJXL1EWcVr2WSKgQZOaYu4z1lxvUKnEeLzdJWw6Et54j4bW2+3NoCFDUk5Ixn4loBL4ZDp2dHHv1FNH80GdjRMdLyhjYbg5dma0/fPCOUX8+riD9zgcMIVu5znkCM/xaIAkC+Q08ZRH47dAysncMDOLcGNmaicmiCG7MFOW9cVlF3o6NnawfI8cZno6Eu+GLhtbQ5/+ynrysxR7s+WUtJSU9zBm25mqtDWezVRBCmcqQFhpx02mIzljryKRKrtL60d30+hcqsDOZuNgIB5Xot9YG0Dl22hbN3j38nL1o9tRxX4Frg6/I7iDRWZfzk6GG/nJ/AEZSYF0cWGspYZsJDLdv4fkpvLpuFahLOG6g0czDu+7zg2ZQvLgd9cf3FvQ/GQ3v15QM7Gg/trU/NuTNvzf0MuDeUYg9R275UIdyD5/OQXS/14IEedzJ4jlFLc2pPPnpsJ7OJk+UUWGW6adIgwtHkAqK701MrryqV1zn7G5hUgczm70l4CfqZQ0bJM9ttmZlXn8ls4NXHWT3C9VbVQaAcnXNhPSmyViPq2fveRjzqiby7uNxgVZ6RaxxF/eOBWD16MuJxIEJYIRoImB6vFizcgrT53RIJWiH6qsoMP0OuN1cwK2NnGtsQkt1nEYyNyims4BBI+nHD2xmYYLCwlAON9KFHhTUeweSjPheWUE+VYb/kxS6stCnq2a6bHEbVc2gsQyNlOQfvKxQLlGPZWb5ZouUamVmLri7WJn9NTuc63VnByiuw6FySMeXaJf+OwtpJrpxYLkWjwtQsdaHzVeWp3niN5rryOiyhodw1ZCvF+M399l/KvUMkaxVM3WINhtnpZcxqHloeFg2MP1oePEUJ855u3OFFuy2nqx5THAEt+KL9mr7CRakfu2PLzvj9EDPfWzdOV3b91srhpNld/wC3h8JLHwuHMmo0YL7zIydTkoYdzabVSZIsoIo8KBdomPr3stfqHCw3zszJ2bBKjq58ZNxhurVmh8/22SNKVxBKdOCJL8KZ+gv7PZ0CHnVmhYA4U5l3imgzjbqtLeM3USORtws4rcNqKwQJdwOXlkd9PQXC91frTRCZqMvzyplS0qayGAk57vDuikSjY3C1O5ijocPO3ekeecq5nNTOXk990/nQQR7k4W0kcTPh3Q0SKUEhgxhp7cKEQ15UXSC/FzdIQrc4xXOt5bgufsLc8rOUcF0XeJp/OAbJOdlhgnK56ZFjOLbdWPLI8+EBHO+A+jux6/jMYdkictI6c3nuv5vyRTGHm4g00yHNgXEYsfKImZcfkehCgLWHZ8O3tw82jHbPl/aG5yU8uixJT9+i8RZRS3EH1PQ6bfMw2IPkK8DX5b3qDxDDtJw39QzJB0S7Tur+SEujwraTo6jobDqDSvy8fuduTmJ+Jy/tDFUpDuoWLSjEVx3vuj613nx86oM2lW90s4730PWNuDnOheCv0X7mfEF3iDz57uPBsXA4AQmkO8cWq62jACNdq28PsQF9r1Sfh2kZvOzKgf2497liT149sSlcmHPAg3S4uUfQWY+jTE56OBpv6SAgU3b8u+7FYWNQImrAIyqgX/DmkvWPtZerp68cVMFaDRivCyffqcz7bSLPNRLodfNiNxdmcLFqetRw0HgV983Ybj3GnOPN50g5z10DuuRkl4NMbIwuEfA87on1XFTmmIKVmQpDHISAMSPvbxq5Tag/i8NpbDaeIHK8thEF6Thyn1rcj/dPNXWdFdShXrjmqNR9ZNR6vSbD9Gw6tvl8YaenCx5syIOCQPac2ToGKJcBcTZf3LQVorYs1Bk5MvU0L2MENkgON6LMAUIHdzM0uQEIqc42trm55PuDE9RJHtr1m77dkVsGIxA1sPF7vRm7ESfPZTxHmU1GifET+PEgXUE+75BOBy/3BHPvYAIYWqjhZPhOzhDNH+7FOtV+2LNETYFTd5vvE19BoWCE8JJhDAZz2Z2hJ7PVPCu/LyK5DpvrSPJQDL18ikecPJKGzy0YeV9uIyefjOBep9xtx2XIvjC7t2Mn9AHkLtAVgpfzM1LYQ0gj+kG4Z0T/sUbJ0rswRrgUJZannSyjpf5GVdT8fREKijE81Vvn/YQL9zrmdYTLFg00STCXOkbDzxnA/9Oe3Qbbuq9DoBF8/rxsSXVBMHLA1AjngZXyuylOF4+qsDubU7t2Y2Ff819+zN7+9Jm9+5lbCY7+wrcdp+PDYRbfdZMCfnzoZVA+9A2P2vu96nKkGI2YT8oczFC+OM9UwoLdOWCRmRRS+05NBpmzSUdKgr/h8x7s19qsBU4bfr/qP2rLVu02x4DU1rWw6m8tdVJbiLGXb4MJG1Hlta1uLW00HdpwMnEHIwh5YHAGN4Dq1M5xzo6Muc9g274Z5GELGM2FOKzC1AkRDlbpIQpw0ADLCnXbX6LGAClGPuYSBImdxwkEjvYE9pefgT52hATvSR1CQ2T8qWtzj9gGHLlydewb4aTvp0ifHOMSS5KvcEwHKry5hoxGGR+sSoH8XqDExEYt8k3lru/0JJ3ZydBBfeBsfGmNI/KMZzw5Qn6y5/vi+qjB7WRskfeNXPblhnM+xdwOIc/C4B0PbXowtuMTcYdENJQcLUO7BGLYEf49dnk59RzW9zx9SvSBODBQb9oZsb2T+i3HBRjBjw+AGFTdc9REd1TONKDbnguclkEYY+gHUCODRRhMkYbm6Qg1rxzPcnBY4zhAxiHFAHqHnS79ueJecIJzHkh3Xy1KyCjGDcSrWXTByqruMjJQRSVI0fGg7HHAFN1ROcMl+KFF16YRuO/WuYAaYrO8ZuiU0V4MfQb9dL7+glYACRy+CgJAR0NFz0PdkcNaCAePQLPX/L/ve39OOmuCABCN6E3Oh59prBYT5UbRiG6pHvHCQSK5J990O4LZKTaww9nELm8H9vpHj+yZU6+ccmu+tmunSz7TQ2VAPWStJxF73k2r03c+DsOXXz2yqxdmzogpAyKUY35DLLxc23tWdykQvxsxyoKGd41Tg7ZkHJTYnCvmoGZvcfL0KZLVYSB0HWm3P66L1760/NdyVTav1BwUfjeePxmBnTtU4SAa/h2vdfPp6h2M2+p7GjXVoyzw9bgBFZgga6FxXaKFXt7IHREdj6EijlmjKMbExo0O5gZXQQ/hjCgPotrLRRhOqqMdXmkNExHyYfAAUoy2AskYCcncyNX3atwwiOCEja2aDJlVKDhIUuOQW3jX6VBgWS43jlxoeSgA0K/VvtrN6mQZi5o/ViLeTVQkGc9dNESCIMhIx9809sRyW2D9nfqyaTHW1VfvUSesmzFdFo0rzHVi00qWxzhPe0skgKg64W6cKzhdwttOCF01kKMYdJAURV1YDpty7jPLuM89y7nEWJa0hiBc0rhk53V61BqBibWlGSw8BSXdIyviqX57sp7lvGvGXWdFmbfkXe++V7tTES8FGBifiIepMMZQnmh0rexssbAffcfT9rb3nHXgbn17vo3nDkr8TEGaNbJHLhzY45cP6/sRhUXLUck81+0F23mu50MbORSJUn2vk7qkNSUH2V22uovPk1ky0uvxKL9r2fkRfVwj7cTr5rlgLM5T3/AeiffaxjihnbMgItGFbbueF1U2xpEQZf62EUnUXm+fxM+zEsVMY9P5WP1dECgRRUx96DacYTDw6LQKBb5EuW4zzsmG2YXGpnWRo3L5y4PObzdyw5HcON3DGV8MzJThpGtkO6wY8CkyGRFU5ApDzhM2HQY0fhbJsVieSSUVyznmEV/lN08PEKQIh1/oWbgukIb4HIxYzNkBUrwiV3oIizz6hL7gtWZMKSqi9F8YyAJ/0/m0gl4RhnBUzvB1WMmk0Fh7mrJ89yzXQet9CoKuQMUVeQFyszCE+Tsi5Vr6eQUwZUMsWiIXTfm22XiuazLm8hzkQjsmibcgyZVmEVZ7vs53854uUFdV3pNFNmYHYDoblMLIZ+uUq8pkZpKV+EcttSY9rPKCOIS9GvFKTWS8Rzp3OazSM3R0an47uCfyA3Ivj5z48OKhp20iEo0zaTAvmTXPq7V37Nt9zoHuns7Pfhr2KsQPWBOYBN78Nzx6xY4A3V4Hq7E2MMmeZUjBa+xRYLH84ZSkkGaEEDmfNe9Cde94HUWc6PWDpezecoeG+eeQt+mRnmq05ZCbbGLW9tNF82bJEJr6kOEJbEmBXCC5EZqbRwsjZ5UX1TtVqynmTlYWsrKWyUvYL4/sjUqZUv8OGKDVJS//64oQjNsRoFdxtpHQeBwwubgZzjjUnlxfn7tBgzqWyBmjQKwgJbAwo6FGLRnDafgo66YaOV5veGODKa4xsOUSAnRcyWGSkblmwpWzjhejELlNSIDbRk4M4VdJCeF9aAqTQbvIZuTxTAc2uTiy5anZ8kaYize9ZiWihogGjqegn0avEYIHW/yMi2G1XLSs2IpEh9FIbyp/As4Yyh6JtJCnPV/ZM+9eMY9MqASvxVqNMjmRmDNU7bjSfwoveGpDyW5I9sTYHms1qkZXEaMEwX2CWmsqK5hyaAxzzdBgbmVaJ3oyKvvQnV5R+zzoX0Hagv1JYCS85sxfrHnvQzhAIhLFPL5QwpQLBiMR68lhf4HqCAjoIqJKmLNyjvJDcW8wIudHjWiMatu6MgNkgOewKyohFIN2ad3+UeKM8xVrWvPAdZq0m7AY4EDgJ9WPWCvSJehAkLIeZHsNm26oV/PVxn70XSt7x9Mru4n80qhH/cAf/A9Jw1wA5gfSsA949SV72SOHdvlk6utOiiCjw0Ch1PrIqugQgRSvFa9rBlSUUGegrXiRnB7kLU47P2tlPMf1lC/p0Z1d9UAKbolIM9/V5Y8YjmvJvTBwQp6WzKlE2EiDhZWfInoFBghEa94zt9nBiIRhiF5Oj7CXR2YHThg1PBjx0Shzo3wVI1bxnGQu5/4D9wb2HIzZlS3DycmoMlAbm4HNl1FOiaXa0uhEdB55tEIA5BbUInGfPWkyqe3zPcFJWiiGApml+dD5091uxS+bJzO9oO83NrNSjuJFPItHbv25jw4mhRSLZ3k4C1yWqkKIDIsoGVkIznYfuhiIgwHzvHHtCyd+D8lwVbJgJFcoHYmMYvS6EYtZxVo4OBo7dDvGc9nRReQl1RkJlAL0qUsnM1sfToosFUM3ieeyNyCikkqxYqpA6INT8KuUHVD3ghwOMJBwPmKt1nFOJDqRbwsnOo3rfB06e7c2nGxtYgM7pCCpgR7Ktt1RLrnQBU0S6W0MIEh/UzXJcD7LqbQX9p+RLCWfuuXgKca9yn4VD7FkXBX5+8S+zgMXm6ErBmITPDKVMM3RVFzeAfwsFe+aa+2/D5rkKmU3Wfol6/Cex6QlC8saFzlKuomcGaQ2kt7UPRt9sLiXkbt9PBraKx4xOzld2o9dX1COX7u1YB7//UJwvTe2FzgCfe9mbnAfzevzku/3Qfr0SYfrDO1wOrYrRyhZ5dpt9vDWnIgUgRY0RdDkUKqL0klvWK7LW731tcxEUiJEDiYPnG6ZPG7VKJH3MhVyj37u5IXku3ckbe3L+V7Ddhz138ym3UrhRnikw0OKgw65apMLVp4YFwci43BmUq+P6DnEfvLHWMZ4AzbHa8AADAiRSCxipKIjXprEo9htTWtG8EI4O7xbUKdEHlJGLRRA+LxpJHmUk4IhkAtSaqnEhZHjiCj/PksS0UiNecDzTp14azt3SPcGnsgowYIdP5wx1MIIvQsnv3ct1yBBmby1ZPiuAtGNKveU01WyHbGv8zMwz8paqmu6Mb4EgVZuYdLAkt+k3YUSJBEG6ehx8dpuKKWu5UokVEM3rVOHxnth3nZnjW1HvGcmF/N1FpaivPBYd6E06DHlpFI/oEApSkSjOxQAz3eKfEYaGV5Ooxgt4cRpo0sVGcH9Hy70bLZkOGXJ9YeDzhd8zVxNELjq6KrGa/Hit16w8lyuxIRSH4oUSd407MFCXBxwe8wr7L333FjbUzfXtlBEPpUFfDGg2udJlYfRE0+4K2GzQ7t68cCeuHLISLQiSvLLlJzQYPJnCwNLbPD5XHbZkdIzmtaZ5RRpLmeI9miOI6ez3mWZLyRfXw69ZBpG5BgXGRgPKnHB1BDBR5NzVsa6IJ04XxdnSAPB+TVi1GY9RdmmquzC6va6wQHBVE33Tg7qBuceDbatrUGkxnJ0npOIRiMRZzvlQlqJcdYLWlxzpJtZ3GXybg/JnbHuDGiUTYJ11c5FMz+tSKtXb84ARRl3UWslgJYuUs8hJ+TK+bmN97ntcflSSRvbeeY6BzUy7KlaHn2OVKlI8HcIrjs8qwDwPGOi98JwQuT54GB8Ww6WDK+VRoXrw6jdIOpdDv9KvpVJUZmOg0Q9oeBioHy57VhLkaOsszql+5G0rzCVJih8Te/ZuVzIjKEi6CxB5+uz+FaTHilRVyQOnikxe+d9UAdt32R1Ji7JnRrhTca+anqLfC0OKjpB9qyDrr7b3EqBnNBXS+AqrwQdHiVCXy/Q8NZ01r2cD0I6yLknHZ9EpqkJUbAzIqp3revKFuga7tKBy/oxOzkc00EDJ+nZclMcVonKt2/3uD3kEO4HQZWB12pkb3zykv3ENz1uj1+cRUSwskaq3ik9Rjos8D9PjPAoTdSJdMEf3nMGfVyZQX50tjK40QgN8sQuQatIjsGD0Q0UMn5K4VdduRQkCLNNXXV20I3X9hW00oWHR1E9b8qN9JJb0jkIEl9reaVAbUuUusPylEuLdOv+hSGMjy+XYEOOAy8+4NE+99gWb7AEUkQAOY4DlBZBTnpEkFUeIBwdbrQKWgtG1RXHaxa1FwXLKpZRQKLBFk0SFD4KAWCl1vBieea1rSP/DtB6CD+Uy+C90W/C2bqkUx6lG0/ByAylI4jbtqAJ3dqAdbulLHqEyNNdPKeW/k4YylhDiBptAdsbMpo8Y6Ivcp2mXGcweqUUop+Kxq5pDGMNyZngz+n1Ej36IuZWHvI87H3dIQ+aHvhQ2EZINGdkuWbSFXszGN35KiMhbpw682UwdofRV2vJVOFdDbf2SOgqkSqHUXMrq5cJSnQp51W823htWZwa3O2dIpEua7Vo8Dl/3zPSYVQLig/PdDAV490gcluDZdpDWw630jzifRrlDjElwUwJ0VV4oPep9Wk5q6gz02LsVAKPglyfC6dIqQsflgW7H9EiJaYW04YDHkXDJZRjjpw93w0FjhtSEeD+5rAqwbUq8rxCYere2PVbc/v/fffb7V3X5nZ6iiR+e2DbjvPmAW9uMHq1heloaI8cz+yJS0fOHhyGG3kYcG7QiIPZpxXliBCw7tdWFdEdHTYIGSFDnJYiPhFrWvtd9eu3ucZwRJm99F0Q2u1ZCH72REEJ7K0OV4Vf4zYDUngCquN1Aebb5cBGZ0v+G099dDC2o4sT207BNr72CHTcaDQZMf8W/kOMIXg1GAWdr8l4vJmN3OhegIsEMnxoq7gX68czN9plJ6LXGn85X5vn7cCi68y0tmeFxmcXeZ6cUNyTY4yR7mzr6B/JqVZvivM+5TqHDiCEWUmtul1zKyNwr/X81S8hl3a/FEZPoy20DelSj1w6KAZ6geKmOV+v1uSHAXAP6xGG9sHhmHBtOpKhhMGoHA9sMvV644qyq7wQZCIcfrduLQmfPTpEJQbwz7gzeglkIfU4760knnLblfcNBxZ1ixg3zP/Z3NGHrlvVOaCjPPk7j2euuqNLZOMOVI9S2oGOQD/pGAiSsqJj0Ilaq22cN0/yNTvyYV8UOemN6mcIIwWGVGhGMfBqg95+oSjyvPOpojJ2HbkV1dINVKjiTLeRE2XPgi2B/KqQ+uthtFJPCt3HHV6BMMP8na4itz6euqjscaaF4wKy2fd+YmYPrhHmUdNpX+uzd5uv7Xq2Q88Aqm82M7sKG2Q0tKdvzm06Gti1s5UtO2dk37yV8/PBJBF7/mrG/SByua1T947NaXcfvXhkH/4+j9sEOacwfsqxUWGfSrZwY2HbFKv34zLlVyhXWAy8WSzSfR6QMXHwx4+8jrRX4no7+aSJh0nOtnKHnKemwQhLhfDbkqOkqHfXeI7fOwdT9VpTQUouaRme+ZPt+eXGj3v33Bnh9RIjzoCDR4RrIpwqkdTwlHqBZD/c+V0ZYwHTzQpeKHWEMpG50ksVCKJOaG6ijVVOV851d9IZlMhYeeluQKZZXkSs0j6OLIUVhGDycHq3XSAKqk6k5MD75KXN3COq/J08hFQw8SIgV+HpZImM9ZAlrsaKOMB435rNV+tQDqKcUEyP4D8ylNxj6zn2FMJaO4LzIgoZuCcvjyQCsIBFyzHUzeuNsXSvcpTl0BrioIQhnZXIAhNtQNznNkUo8hrVavNLBdlcaq4EFCu9phwkZHFZo0l5DU9UdRNL0VT0QTcQQZwM1YDllS3nAx+GfC2Fka9R+Vlqj2rUoNaFL2XrygWS00EgA/U91nAeKSFcyhgrp7uMP62ZePRqGGGfOJw1nSMU+Lp6kPss1/Yj77xh7742Z0me7mTulCiye9+6sqZ04Txr8SFpWqNess+YXnThYErkikiL4OCRYZCRC1UJ3Oc2yAMSazvWVVGi9a5ygTnxbfRS57+LBUG1U+d31kKsB8mxXDdV5+DeBRIxbZ1/sVGcWdtL+yBygzGZnK155iMvGhURlnTAuqFP7iAYJDCRBshV9TxXkIPhfN6MtjaGig2ZBaMJ19G6D3I1OZ9R7g6wX3fg5hrZZfR3DOpsQOuFCo2vkS7tz7qptemq0ZwqaRZZr33pw1MVf91Ut3Alv2SURG0Da79XEDlpE0XpvHL2lnnzYIFKPmouS3mkZjnU00yyAgYijFk4JMqSSA5RjhPTY7zkF/SA2eGYOc6MVkMWg9sCKK5wNrhh5ufyMBmd2C/IJ8ffKG8ppm7XE+pwVzbxmttOFBwh0UM7hKOFDTdbsSyV+zRbN0l2BtBYJ0mlMc1nPXSkG321UclRUVDROVKPyNUhUvmq28UnJdtKXm6zMrMTTPIxngYO+DRTdYG1qzPdpb1vdn50Wtcoza8XR3CSVzpnuj2Qw6Zz4/DtVPLNoruGYevD52cGUjm0d5EmQDLY2OONTFYeePRZKjwDWmXdqNSZDOggNpNTrVXhMwAuyH6xjrd2fDCh0Q0nC65zkwRzHjB6Pu382Xo4W4rzP2fR/pBHoF/8Nh2tbTrZ2tFsa5MpWCWx0UCdKQExsAHSW8sp44aJK7VSqAMcHLky3FRkkV45qRRgpIK84gtOx8tNsV7NHd7LPN8wVAYZMpKIiRKBS42qOVti6OrO2DhoWXpLzml4OXcJnqqwpEmajHZBn/JxSYOA5WJLQcpdiFRc1SO7eJ5Fk0/EMrQJ9q4azJK0gkyXgzPy1TjGKAsxGZOFGkYtvIX5mfxg8gg80W6IuG7WNgbDtIx21JicTmyLuRUUP34mky2VKY86wiPppZ285nYIeyYTiuAD/fL5cvI3Ce+BbVZOAIbqpDy4ea+h1/1cbTgONN7jHk58MrDxemiT0ZAso4vlguiBGYnttjYCAzYO6FmMyWDFyPN0MgvkAUWwXVusbEOIdkSJyAyak5yqNVdj4RWMCYXTnUIwXj20SUREI3rjeYP5OnvFXaGCt0NOorwmK6wOY5kFZFkXBXOVlDH1NS7VjexkB5DXRi62YeyjqHkejiRfZ+7Ywfe5XZEPvhhQcUa+JCCcQoZoPAj5Dpi77w8ISsBIKxGJ6q+XijYqLxK5m54jlRxk8T0ZQJ6Dp7I1dY9WQrAw3Eu0vwTQ6zhjIRLeF7HrWLd4UB9zhyoKUYO6v6xhj68VBTIQBKJwSwqOO4KwiEcs48VSXp3oQtvOtY76dpeNylrkFOZG44KVBfx8q47b4LGgYihIZTaI3GHkKR1uVBCJsGNg13KLzlCvNRJGm1IYdJpkiKTgz+nU6CqVuZXPuBQuenB1t/n1FiJHAjoIrBDzNUvBgF1/PTa7vl7b1GkqivGovU92ZDB3j6JEkCGi6ZFoWDabBUgq8xiHIz1yel2pDWvmNv6ZPT6EMux6DhE3Zd9Dm/kqWZitu93r1oitG3we5UrpHEotawzZcLjGMHXrvasvfFbUzj5bO0lXRIk1r6UU16oiYthVFSOJkSAEGwib0cBJvsYjsm0j/5njPRjYJI5+VDKAcXN2a2nLhaMD4OTgmYjvz8Z2EEzddLAWg6SOmWD1QAKxW4Hcc894HUFC/IOElNfSWCmfPYa/GnSxjkI/Q011oBrwbNV4DORUTBmel7DraeRID4McLSoZzIn+CSQT9jPvNfS6zyGriIBiTj5Y3rcck5xSIWWwdFl7NMnM1smmhej1iz34E3ptLo0XWRcOn1awwa/TlPfaY+hp3d2pyeGR191uSySdSZpozIOqIxnBvj/xeZ5XGgeOcXVWrJfEwJfz7HY95lIix7BfmyduIQ+NvO9AHmw4RjUSrfXj6oGTwLFxPY/s5Y8c2aMXD+zyyYGdLlb2g2+/YddPV/a2p07t1hzlId1J2Lfn33oD+nlGvcejrR1N1zabbAmnBnkXoMJZgJckM5CIQFDEn/oQJoGHKCKGVGZhEBmhuzi0a8yl5bRnrTdbsmTOZDz1+8njWUr41Cku0WjdO/G5KCicPX8VTlUN6GaczvMQxn9zGaH6ZjLik0eu3C/dm5CWgPUtWc8DwgRwaic7cu9bHM+ltIdcsYrA+VhUgpLIgxqObTod08Ck0uehfi2AICsDvMqNdzJ0A4rNygVTvo/oMT68gqEpYqSIGk9nZovF1laA8/HUdcvEDd62HiSYshHJyDByLgrldIv9Us+HsQUpCgWzG9Gek+QCEmUZyDY+HLK+8HIb5GEHQxuCkOyWIpyIZGNM1hwTOoBGIxuxcDmuG+UcUqijCM+8DpSrSCEQxm7k7ePZOG9hzFa8RFVG6hqpuW6FzCzSIVoSPO9LzQOLwjepPFXOpVJUu6zNdJnKIdo219dCAYioTfPEexQtGpoBVV6t/P6oElJIBItzRrD0akBrMyraUq6pJa5kizg7qAI2lkT0MRLzfD/4uofTRDVwu1EfmRReMk9fr04OOSN4nlDTqfnv3MvKVIHjEA4W1dH1Qy1Ke+m3tPDO/WmUQ1GIvNOIbj9fI/q8XOdnjWp6iSkb3TzDbgTQoy/hCotkQ5Y1gyIfOdOuvic1kesfBGSKmFTip3SHsq/kZCtOqm7Uu6749O3EnrwDW66f0q9sXxf3nnOe+dkKA4v7w6+NPQB5wCpbYKteDe10s7bN2s9SOb3VB7w0JseGHHYwCpEGAXm1tSHTdDr9irORcldpM7ddYJVLoDNbxSdfci2F8CqRw5CxaaoZlaQQbEesOhh2ycG4e9P8NIZzfK/Vd/a0UmYPzkUwnistCIGAGnkvyBuWE8pkaUJGBd5lWNmrYVQeH049rzrCciLWBCEbo8WA1s/XdDrTyCN6KxzOkaLlxpyckTJUUq3wYKUrOpFILMpUKZ3M5XBZrzovy1yEa0MQ3Eirk8zu0Kqky7vh7JBswX7dgMazY3yHq8rNQls6kBNwXEN/kYMbhjN+ADtGOhnasHGs1DNWDiNNbqlR3F2PQhAEGlAwY+lmGi7vdpQr3exBLGS4gZqYBruLat9SS0L+/J3lRKXaK2WdJVmtOun1TOkw6oWRTYchnG7E03ecVufcXXa+M5HUSi6U10QCOlmuBdmhE/HVM5Xko0IXSPsKfgFUV8DnwHVxBpTE2uw9N+Z27Zanp9AQfx7R6Hymvre3h9yAfvE1m9c8cdk+7A1X7cmrF8iyOwqSk2xAChPrykgqoyHHUQnEOuzTsx9Q8sI3bRZiyg/jZfE3AnSwy+FFxG0EHw+2VBESOBtw9aZ5t6oyfR6IwRUVkWLFa+dsPillxTYUBkoKh1uvTkYFqHuKMriinrKm41qshcuDwh+IRhMUugjye1poJjyKQdnE58PAonAsULm1Lea4Do6guP8QQkjmFI8oKoMuSFHeyieOApyXhgcXwhkRbFcaEWV1b71HjUGTTBZwGBcwPMJriXFBjWiHieM+W5vfcmg6o47sY4dkpQmmOh0uBRXnNYzO8IgiWLgBLHu1oJd5jT4wv3VFA2U1cqG7fMq9qvPNKiKsZ4SxjcKw8zrfVeEWWygFhc9orNuapuDzhod0Cml3FAQCAWsZgoZCJwhPoHCXxyoWM73mLkz9xxWOyMmn5HLuAX6XG8D7wxVAhuzqnKk6tr8uHgCNLQUTjYaEo6+DXdaDM+c6D4C8wR5BCoODuc6xboNETtD3YsPTKRG1kotyAcj9hsYxhhZrgB/FelS4I0jwtP+yR1oqQKQvB1wUOXU+hxGYbtxV8mL7+o5avdxXYhB3tlpnNHSOAX9udzQVtAkZ2GF4YJdgzt0pQyOYweqYwzDiqVt1FEQpqDzLxMzUjP+D1R42xUGnvn4QgcCPZ3cMWLNe8NKmBSLJoyFRT1aKe6wfRjNopHjkjDnBPPscto/9TWbvcALJ6cUISmeH8ZY605Nd3pVObtwVDHj5oP7MBJhdtxvP1oA8o384RcO1SiQQ2LmxhbGHYFxfu7m02WpjR0dwLlaCH+mgirKVqFS5j9gB8eyR1xokYSxbp/rQPAO9szqTfDxrKau9xFl69BiHovvvODfPWRGNMRzOtXxO3nbr1TfLo9chb1p21MCR5yk/wWeCCH2JQLdGvEPtw2hGhC+dXpwD1mIe2YXjGUm7Dg+B/vOotB+XcUYtXB7gOwg0DME5QaQAHMXO0k126TDoCe+GjOIS9vNusQRiq2SHhe4GHcbJt1Bb2usWe+ehR4zHE0Ykef5ir22GtlkglaoGV1Ar+sZgwXJYeBZ89/AwZFo4O+bQ60qcAEYazeQypl7GCkhIxxGuULucKQWBflRNYyxFOk+qoa8gRHFKhZ7azT0uKlw5ljMZl/gM6gLkznaFoo5XlezFkSyHr+SpO/PdwAfiztVhH1PmCTcdOm9t7nU9hA8q+h1IgUL2WtZ0S/RKroJSkqtd9+XPcGDp7OyWK9Om1jcLb5ByvAvruHiCIo89vETVcVHqEBQUjJwzKKnnH4/x1hwjmDMY2Amg3OutPXKMSucDe/eNuZ0uWRKob/fLgM4i7H7kJb/Y7a6ed2D28kcv2Me8+VXcBGtE+tx23RHuaMrtmiRhWdI8tXm0OZhzQW79kGcw4uIQictC4eQrW2nsMATccPE836ENATFmDqKMD79AVjLqq+WlqtjIeL7L3VbyMgKWXhT1ThSgOPbk3dwTFXGvpR7Wn73AgzWmmd06DQ4NOh26BSaKQxGG5ZrODhjhMFIAt6ZyGERlUtDkNWZOTTB5sg+AXOPeuA48uYwae/QVEVxnXdyGAY2oIaK5EKYwtDGPbogx5zDQAoD7OcTcocCbtZtDJVqkSSne+CjnBAEEpSAOVBrQ9EKDLGVBkqqNjRz1QAPabDGK+sPXnMxqOVzTwB/N5rbZjmw9mEWuc55XHyMiepWr7R6bIAvjYkyrx5UjsYsHAw/SvBjRUb65G5yKeKaknoieODAwoI8q+hLKuPtegR1YFfKifUiJsh1jbRAyr1rrhC1jr22SAd2NnkHRxT3C8CX0tGW5dudJ1ZupoDMiVc8PPmGw9Po+kZIcEEbmTFZhDIUPK40EgjIsghTFIZZ6Tp4odN7FktAud3h15CFXvTjts4DS4ezid8AUHpEQfiocOrIS6GlvHGiePuCCH3vOx3YUOYNe6iWdLGERNKCUIBUqtvYeA/puZM69llGDl4g8VJSSeXusWxxkRkxTCGdaGNG51Xy96kBT/Xq/rp9zbuz5XlZJtpIjH8Yir9ec76F6p1tq3eoYafTkFHkW+iHL2NzzkjZUsxpq+q8cCQV964aZ2LphS8GQkAF983TJsUKVQTj1QB5WGKFLSZrOePM/ItVYN7KdhnOMSd5LPCtCKVBKkbi29kpeGVRChYeRlR0S563KYngX1n7/tE6p8xzkeeayrpB/a95KnYTE3uzHmOP2ycEZREvlqzCgxOuRcm61fh2dE0YHo8+oZw7o9pCEXFWlUYjf4eA0oAPhN0AJMQBkJijnOKLsBwu1xqI4kaRfAMEFr1AirCRqIMpX8f2Fl4NEgww6PpnROEfZK6bSUd7GuR6RQ6LqIho4m/ppAig6ymdpnyDHGk566Up04jMSG5UvYnyxJ8Gwj9eimpqnvoXs1V7gcizIPWbNONlnzIEHed3wyns1D0ljiOYJz/s4pG3JUFcViRQXrid8GNHQjcJa9PSp+JuQJuefcWh1dRjdaYUKRVNXeM08kxMv+4r43Ok5MDeYPw17o9N37qbF5+djchqRGdj5YjhuTK0MJEwKSpRhlDNJFWOKD0FpLvEf7f9IG3NkZNVp5OTAEjhGnv1maxcPptQPr58tDTydfbP39gj0C9PuJqX8kQuH/Hns0jGVZy72WOjlf53NxpxaKSTFOK2EAxHsKc3JdkL1ZxQoxZC4y4a2BV54m83V8HBGLWSxHqfMsXBXVUIfbfh9cFYdpPn4u221yWL07hHE6fDLwj5ucHuxnwyarLBIKCvftdTOztdp+qHIdzADk2E6RGN4DwvhESH3CgAyYYXGAqLi9JJCAWDk2fOqJ1OH9GNKaGgWrQHCYE0iL0RNAf0m4QytVzcQHX2AAw8xEYJ6SmQge/jXq8h3hiVqK5LXeF64v8/7KhKNz8KQiXqHUJxdZ3Vf5nq0Yg7OYDWiIB0sXMpu1ksXXpD9YVASwikiq8h5LdF7Og4q0YlH+Z2J3NkogcxwrzTIRUiGFkJ2xHSHBM3swH2d/Mqh847MD+Ec+UH+yqg1oOnBcpg+/w78uxxV2n/MT1d0jDnqykWPfRm5zy6vMO7ImRfpndIEMkQyCWzmRCP67yRDJa4ioV0UtFq2RhGnuiEUgXKni6LbRQMgwqMqxBTQZQs5twHmz1k+d51T1dmVXq+1irRd5EPyMUVkQ+XN4n2up9R3gjV0TJX8zMjHDiIrRuZDCUUKxWiztkuHQ1uthnZ9HtH15+Ehf+60IM/tXg+DEX1KJ93a/tcPPW3vfmZub3zFRXv04sxZ+1k01j/bNXPrmqpKdNUqk2KZWBgZZYUCGpHm7PzU8i1xofoym/MZZlMwLfk4/2VIdyHcWZnV16vOGcZy5MUWeyRQKcjx1gMrQgYIsK3Mbp4ObTzakOVWTjSu81LeSuRkYT7wzPHaw4Asc4wVXcqetzI/tXxQlnNecik9R56bMDCE6Mh5t3fbdgzgRubfwYtU+l4ldzGMUvSfcH/l+jZfzL9EMBpzq0gEDYwIFEgWYt5RTWO8Zk7neuPRZEVO8QMkAS4EiDeNSbJoD2166NwkKFNZDbmU7CtHdMwV0RSaFzlcmKfsC5XAKzpfIzCw2djZ2TLWRDWISnRy6vw25BMBER3RUE466jpIlSGC8VI8xTlMYlOsOxjWiddisVjZcimIetWzqA5RdlbeAkb/lxsvOUmESHbQhl6Z10bymPCX9NQIvnAvlahouy7E4C0Lsbuc5CyrfDYiDM3ngkrGxboU0df+1Vg+o2j6zttBctkY/TEm9e94JspmjX8bea/9ralZmL8ycunWhcWlPEP7gQJdl+QPdA9lt1I+i9MmBZbU+YxMjR845GAXwIDGPFy94BxNT52O7Gw18jOpT4Z+Xq03oJ9Dwya4evHI3ufJR+yxyyeRK8pYUWFPVs5tdtW6cZTQuFEKSIc2S0qQhKIqvDwsZJAXI710xHNrA7VcTjXmZPhHEInMG1mEHL4h6/Ooj/UfHShPkAF1QKDJiKqePi8e30LFi32s6IAOSd1ux97NJn9Ij8a40HW97ImMlB0Po3pVPMg0t6LuboV+ZwPMPZ0QLCB1EuO24/pcT6pkamgsgTEe2XQa5aYEW4ZyE1KYhiIxrSMbTWBswxuOy3r+NSPTjEJ4jjc/WwJ/gjFjbEcR5VkSGoj7IaIKI9qZwGVAw0D3+RKzNp0pNMhGNO5XwyhTtQzHAQxoWzscNxi1vV6z+8yrggeDFevOV6ZfX+xTEWHAWCGyxbJjA5uEUlpxBG4Yuzc9ymKVvMUq6JULTSVX9EKRN4bnLipaitRvlDsETwYJU9wR4rUyReAFD/+prUCaRCUIEQrPB2/WoSKiqHMtL3REqh09koGodVM5WzycMA7NLtFrIg4y271sD62pWN9Fx1Y5sIjix1L0j8XzhFHf8BsIYB9KmOBdmSiv26RDVoxu0o5jTnCG0ffE/vq5UNCqMrZTZQE0QtL5ecDgXaEWUz28/nBkwIC+fDS01Xpkt5ZLOhPzXu/bvTCgt7ZYr+x/vuUp+8GD63bpeGJXLkwdtrr0PDydXWjF0ZjWQz1SO1Gngtjxl6H8eUkstz8Kp3so3ToLxDjsW9eVXlfqcn6i/0f1e+WkLszTtkd8lY51jejgmYgSNOg3U4sYkQ55JmQKc2iRl7+xwS04K32tw2mpNibhplAUlXBRORtk4V54xF8ln7qWsMZUOZm6d4kUpq1YHjHkZ6llmxxijXPrDvrxPrc4ms6LfOMaFK457AUOX8Y9rZ04g9yn7eil9sHrUGSZz8cpxoTDUCWbQ4BxrFeLtZ2ewYDeUqZqHondIpO2l6OiwxfTA44F5Apvt3YKhFYcWMUVnNavp0I5SqAQxARTvDpN1QrzAyg++ogI98BoQPsYok8gKwv9L/LlR5TNwTFCIxpe75i/YkDD0HboMp2TlP1AvfnzD8dyArgTdjFfEhK+BsIrnDnEaJHlOfZ1kHTi3ovFxm7ddCWx+GKH2flRV0VTJlH7ybOo/E8Y0GGEu/Erh4pKnCWHTPqXnwF13eZgDh6Tc8NSrqosIgRMvcf+FtHXjiNNem2FP7bfASKggNeSo9DLzcce0JgkWel8Oe5cHk7l1I8dEnK9Lps0Cp061NlAp8PHPfu+i0TbjemHTtHpf0HdpDuoDvTJ4cimI7OrJ2CoN3vbtZHdmDvC0EvS9kb0fTWgdzyhz/n2+ZrtVe+lR//5X7sLWTF75GRi7/OyQ7t6ghJIbqTKqyRPdxH1cYioILqibxpJPyBTLcXc12LEJoKtqIWrDenwpIhGBU0ggm8iNmq89OFdhNJd6hCJkCkgVG6jiAgqnjlyW3QchgqjEakhrQRJ85f3bM7kxut6pLPnUyOfRbLnlydPXXxOcFZ5cgvRi3JTaRBHTd0wzHjmUykKsy6igCtIIXn1ClOsP+N2n+LDXCeRYkAo+oGqCAJEmZQjZ6auUUjkY7vi6f2G0IZgPTwCUdnA5vMz9nUshlEKO7hLPSIJRwAC5eR2itwBRfxoKo9RG3DipCtjJx9bMvIaeb/w7gejJ4Kvg6Wifz5WDYlG8UD7+nMhJakbuc2Ek9flgFywkksbTOFCRnBfMODpdQwluD2KrVzJqGeuaHNCbYgoL3um220aFB2syxlMuVj2gN3HnhuB4V7FXhjZ6KAziBqpa71QyAjrFeE1VX2qSzvY4IV0IFuqe5RZki0MT3m45dAp6cLFgRDCUQnOKeWinhGufQkOjkFlvrZSyJPDSp757A3XmmnZlauyUR0bcmgokq6Imue2+vGihOtagq+ohLEnPBq0ZRqFH5ljOziY2fu96qpdvTa3p07fQ0Nvn1x/Nmf585UhL6RMejEa9gtyC2+CTGmztf/1w0+TXOZkOrTDycAuHR3YhUOUt3InYFWY3UmpiIzWJJV0OvuijB9KHwPJwrw8146jOp4bJRI3IdMyV4b+2fDb5PO25CUEg7LQK0yDqHIG/3XewlpZIv0qxnoASJxFFxE8GEzzjW2uLZkfi+diHV0QMsKomQKxozxwrVuUBvSUByeZwtnt57MiO/j+7HBog0XUjKVPzZmk3QBR9Fr9q8p7MaKLQ6zT0nknw5nPpNKN++yE/NXsAJHJUwe8caADUeBlkWo//fLV6JXvTedshaGk+zaazzktvqaya/lcz8OEc3Q2RQ6zUts8HQrG1ynKNprZQchiz/dVCornCHMVoYYyyN5Cr1gVp0+LoFOfXT7Vur0NuWVJO6oODugdiiR7hDJiHgVL7Q4ZVMxgKbRwFOj5gFRbrVCn3POwKUogQ+eBCBObPBjGQQiGdVzQQMlg1AZMhqDL12DGiWoMVSTkvSc9NeR6Le7cMWa7BmsNPqtmcXVyJdkjA5B7M6/yzrxzPD3tZPcT7fqQn4XXbN73vHaRf7nz11mpvSRV1UA1RpXvoAaM8F/oaSxfFul/4kfQfVzfq56nLD9KzGoPMsx/5xGNnHJy6xRFvtlFg0S05n2t5+UYh9J0YBeOp0RqPH7pkOP89mfOHGHTDFzfHtoIdF4aD1rLnh3864lLE/vA1xy5QYpwL3NdFaGNiF58ukQsVUtSBEvxaRkTKh+lwyLfW/+thqsUzEhmoQGNqKaz9HBfEuoLDSEpGDxVkGEShjQIpPDXKEoikXgiDOhgUC6WQYGD6+CNmszyHuwxlrtGjZ7hvJOvcR5UwG5EGQXbTdcp/YE3FWyTHr1XXulwPHaDhXCrij3yAvUrG26QsxwEazSwN7YEBAv5cKyVpTKjrUB1gR0HMggZ6Kke2gae8BFKTTg5CfOqyZgcsCiSLCki77nKTJMLC8nzWQZ2cuGQh927333GWtKT2SRYv1FX1A3D1dLh3EzRgvIqj3qwieLfIDQ5vhAM7fBUb1a2XJ+Wg5iHP9i5t0OboB8rkE95dBuxcQWgHB4YkVEKnjUyrmzIElLOdIqSW+tFoAAAaxuizMiEA7heLDzXW3UquRekULvx3DJ3VoWQ401tExBqLynmLX5nJZkCthr0nqcZn4sg+WqxZH8PD49sMp2UEk6MxOFL+Byi0YlVPOsgfi9JOv/lCkJ9rZD96aWSdCnXWpiVImBjkroEbTCoipG9COIg/Wr2iuZ747nSjIpFPr5YX7s1VLtQSj6nM6Z7HqaUolpWzM8vITDiTOsE35W/KAecM7IGcVgQk2n9OLO+551PJlOSNH34+07tHc+c2Xf9MMpuFEhN3+5R8xzMrV3bLO362cD+6/95l03HA3vDy47sySsze+3jZscHqDxQw55iH6ZuxlK1dT2gOSTfCZooA8G/AIdfkEUuk8OGRkHHiCbxkxzJYahzv6mqgZoMce4tnFexn4AkSfuTfZJ4yZHcfB2KyOogoDOH6TSAaq9tNlszL3ZCRjQYxQPbHkI+AmPmz9pNf1BfZ1OzCYyecO4BaXSEcxIl7ZbgvAjlPc4719ddXrkuW40TOeBTcYG9rfQjkRUyutpsn6y9FGuwDIrO22yAlLrOODNXWzc0E2GZLkGbT30GMzlgyoyYpTF/FnqdUFNcGyUlqxppMmPwmaMDl+9KuwJqDGMwB7oL/5uMaCyDLAzyiKSkKDXJpFE/30DU5fweYgSvhGGtk8EhsTKgnSSxNfKapSYdJPQjj6Q7ER9UNieSQ9nLEfO4waAM6HmxdcdbG6PU5nBtq1NwFFQ6EBjV5NAIBMAZyhNx72nN14oWvp866ITszJBuSD20FDVtAy/Br6Kc+2ogtwglDUTRj8pedFkuR0IdowgkFDkaYf2oCtF8MOqoQ1QWh+ye9aOzpgRR1Lt4fuxDlSUj/J2l97L66kJsZ493Uha5xIEggCENpEPS0bklEh+JVJX63f27wR03zQtVyw3dqTx1KgfpkYHGl1MauALIzn1xZierid1YbOxoNrGbi5Vdy8nQL5a4HXT+3r4EDegK2mk989m4e+m2Cg1+8sqJPXrpyJ545CTgjG4gZRg0oZpxEJcrJJdvqX8cEaMMf963Aer3qycu980FoJ8AAo/QWIcnHNGp4sXVjg7MZVxRMGhuUEbM/HmVE0a0bvbGJte2Gxn5QGx73rxX4Cw1GpZ/Mixaj1Y9lvuvXw6XJnSXDvgwnJv8nIiOMr+EtZbdIPVo2ybydGs5L49u6zr13u4uKRTHhM0jujAYr+mQQDR2tayEMzAgqIwZIFRgyIZSNi3eehcKntOM70PIkp3TJhG129Agxrpbr5acWzkv/LB3NAQMepc3TvC1Wp3G3I9sA4dJCHZntnToNwUbYcJOuuI5ggFuQ/QUpbaQgpCiRaxTHUZepPwV45eefuYAwxj3SCQj5FC02eKLIWlrDlSQhnRPFeQqk5BFpbHSsig4KJ944SJcCQLE2TU8ESAhak7k9chzQmlfB2eABC0cCbyu4AdpX3K/BHumR20RaY9uduCOJR1DhqW7igP2NeQeZTS6KInhVOE+DYs/mLSTe1qbq9lnykhgneiI5kfVqYQVqU6n7i4qfyVoeZ2fttgO4dclqCEIbj0bShdViqZMTyiooZ2ovj3nZTSw2WTIvFzstaevL6qH/C7a/YwQP8zRaI03jUYb2rVbK7L4PnFJtb3LJ5tIFpXn4iOqCdOUdVEPtRrcrfyLL/lXtKVKBk0YioEUUpRbdU6LipgdZarJrPfSbQYdZ1E8dH1T6YbpJ8sH5yOAo85TYuTEdQeSO1pJwJQeS7JruYwUmuA2gFFDosmmNq3kZjxfeq4i3xtlvj5zM4edPeqIlsiPDGO8dbY101BlZJw7SWy6HEhQXsgeyIRmbPXdWBdyYHrecBhzgiXDgCpbOaLWIUuKwRfGnsox5543fYuGPs1vLmnEII2Kkdg5DGiMt0eYRyjxBHmKNKuAM0OeyWHLuV6to5SUOwjbU7JGJRkRBjoMTqbIzeZlIscaRHw+LUmPgVoVJSenB0PWqnY+D0/NY0HDmtNXxsYzv2DseXoF1iNTIsLxLeZljQlLV+0YHmEoJjZrdxZ5ec2C4NIiogrpKBVeO2/gKkSim90dt+sokfOqiTx3mvRDSpeUttSweXW+neHKd9O0P0XQSWKwxHK/DyRpHWg5kVUZvx8OnMZITlB3lUXdzfreffb8XF1oiLIH6hDXiW8REu64pMyvHjVft9EvkNRB5zicTOx4urUpSpZGPr/W7YvWBp1z+iFpD1QE+kFVSbghonTC+772qn3kG56wRy+MGaH0zOd83KtGrNTL2ChSgJkLAy8/DrNFY0jWunCVZCwuWjqSX8sQTBhG5bYUyu5VW4WXfjJ1CnuWdSDpg2sfqD9MIhJSKyuf0o1CRtQQle7UnanRh/31RM8dRwp2lQwKxaDzu/GQZp2n1M6MmoWCOsmYl0KWUr5dCDDe78zRCR3k+X5uWK3mbsyxalXU4WaNSBoNfuCy5nZ4LNXHyRDQaGc5xs1Wi5jj8Zr5tDoM4KGEBxAw7NF4wme4deuMhYcm48N4/pBOG68lOpogv3ljs4MJGbuXyAtdIWoKGM7IFoszwrbkOR8N4Ykfe+4h8IgknwCR19rO5tdoXA8HMyf3iXJpJL+D8QySCVyH1ae2trnpBGlwAFAIoC40DGgy0NZamwj6r7GeUpkz2Mc0vufBYAooLt44RIh8YKNZwN/ImBdRyohcaC17NavqBcbvDdezPy9zxqRYyigNTzwfIfaAjjf3fwAGHfU2l+NC8rPeLmwDojNC50fBou773b0s4dyg40MOr2C9JBPsuBjQXJ/zVSH4wNiyNryz4ISRQIBloi+I2rplfXtOsJGFnXkY1ZHFKLaeLR8MMXIh5KXws+vh/N4JSO0xwuv5IiZld1ZgPjz9WpI71nxHqy1COGp8drkV3McXea+EM7qDQPoBon5Hh2N7zWPHdjQd2XfPn7bl6d0b0H27yxbzDP5CKF3vfGZpN0839sqrnhNZFKnir5FyLrMiSvoVoy2UUtWfjbxBREELiqRAEvU7Ram61l2cCwGe8s+LNViOqFhHGfLt8s8NIRpDzfIs+UjlPtrHIuUpBnSQjMFp6M/uxjNTcSgqIm86GT7+/a3NSUoYOxAVDxZr5pvCWdptQms4p0DQQWTG3zu0YhzFvRQhLI+YIqmeSrH7ehnyZETLPeI+/jDYwqlac1XrtTT2PDLReRh8rFnvxuFgKpLLtia1yihpHdQczirBiz21R82AEXjjaZReHNj0eET5fPM6HLaeroM5Wo7GlL3TwxGRA6MpkDnuH8WzIY+6MNKH85oyNaGNZAjiLEck+8KFmZ//IXwYuV5v7Zkbc2fNjgnUuoaBjn+Oj6Z2eCCuELM1x6cS1vl4BrMydLfV1ubzlbN1R8WPs7NVM+Ykv5PztElbCCcU+oN14UUrbDHf2OIsAgoi09JzRioZkHn1bO+QsnJ9htHbHu9lrMr8ym98B92RvyOlCgEIfMT5TbpXFyotON7vUvX08XSYuzv7/Pnv5JsVSzbLnzE3vbW26ThJNdDr/Zw8UbDtuzb1ZSY0D7bfCHfHVYyl2Pshdzl2wrZWBwCuczj1GuOXDpHCZ3YE5MNoYARQPkxh34fdgG59JPeq3X6RnXe/wQsQLdj7+ciBOJyM7PLh1A4mMsBqlZYWceZ+qHqgVWZKP7iiDmZRTKSg62CoB0zDoL3noZv7Ft2nkUzlex45C2MzDMbq0Ur3COwIlWfVki1lL4K8a884KZKchm3Hm7zTdxJkSe1vPyPjWd5pueMkaDnCUUJKB5YywTj+TQkF5ecGGCuex6N9MmKC4VFR09bqaJQA1u4FZJjCeui5Ncp1YYQuDCnBvrYDrzEZOURubKyLIlfmejukscxZACwLHmzm53g96tEA0GzUjkSNMuW9Bkt7aDJlXvnMk1pqaCXlz58fUT8oBYQY3gJ5E0paEQcca5WWmUcUqHUE+ycjBm4g0lETOVqCTsMA9UhoGI9Ulqrmpllqyy5nj4ly/AMuF4KiYbFsGMqrYi6Pq3LN5WwqEOuGyheOASSIJwPRZ8z7E7XAq3KXyknIQMi1WgMJUVPj6rqWF7uwEsdnmGIQyoyvhRHHmKXrUo5hd09ov2no6ljkiJJy8WP+y3mSjKRkWFSW4MJU1igJcF6UvM34guey1/xmXcL71RpjxZEYZVk4t0ESh9+T4cAef+SYTsYf+LHrdqNAzGLe74Gb9W5zm5/PvR6K/Ok4C6G0LjIjq86/Dqtu/Vrkt0eEy+GQHmXDtbxUU6R1FA4Ov6hzAgXrdYoi+ZqpXp6qeLfljEofBns+F60hLUrkkbxHmoYCVVf+ftkZlQS03LIzDsUIHXTZm/UcKkXVRrl2DYqaHwlHNQkQuzDO5r6JHTgM6HLWpG3tz15l8c75kf/O0SeNdclNrfe9q5auJRQBc6dFHlcMZ3HCVGSjyMaKqA9kAxF0sd60HFy7Qs7vmvwZowWcGxEciBQhfHaNVCLIXSJga3AizyOdhTyaPWXJiTNJ7cnB8frSQ5vNALX2nGtBzF02QA5u7fBgwnUPgxcOWpWGk7OV/YqH0zFYdAkaj0iR8H24CPZ2GtBL/AZSyomu8lwIEk0WcrE1S5BEmUSOS1RUg0Hta7ONbNapr3uwOmeSw6TRMZslk+a/rrOiy+7X/hqeoOzkvXNdg/NZxFyfSzwz2of62XOuudwNLTGV7XMDWkz7dR+UcU4QdKU5FSTbXZ77WbvvSo3iEE8HEa9YGU33pElWDhffb3XVw1ZBmg6+/tilQztbb+zd1+b2zC1Ef55d2+ZbPt/WXVQv9Qj0A6gOvCCtlnRAfu3WLs/G9uTFAxKtMHLLiJlqxVUSoBDD3Yvxl0M0U9maQlDgA+vMhTi4PUKIz6uMUGXT7SQ2xnmirOSwCBIyIurroeYxJYu0gGEqReBiqXhDQ1EGWzQMIEQAHF6blB/eN+6aPIplw+e8qjCmFCMrT00hhgg6DE2vo1yEhFJhgmRCxqLTXtVc0wGsvhIU8xxdPCSuJ1IljQOFGl4Lc8gpYWrOTQRHKYSL74EHmZPWqBwZJBLuNxrPGCXeou4yYTQjr9kdED0Qg0yiPvTyLMY3DP7N9ozXA9kW2pIQRniJfa7hMUbODqPKuPbRhpHxw9nURsOJnZ0tWIfS1wag44i01lqSAxvbdj31/OPlkvMJCDM96mMwiCPfesJ5feeNmzZfLG0LBWEwsg08tsh5XHsJJ3jXlwg7R0mM2XRmBwcHNp/PCUn3El+x/JgT6RAhRjRIdOWIgFidxXhEXyjk0xqSAu6wcTCTexS/rmWHBsZCrU6WYGEtThTmnmkB6gMhzkMyIXqPvbZZrGy7CKbocIislkuOxWgK1EgqcyHI3MDh1p7CHMpqqZMtMre6l1drXDeUKkSjGe0IDzxKXlFZm/D6yEIXtNUdJLupYfloSWYDm9j7MYZgC6ZzhOuzUqJp//ncVIeUk4sr8hanwWDLdQxmn+XWGdyp9fHciAToonxhzts0DXdY1SjXAPOrslY8BLY2mwzsA17/qD11Y2nf9QPvsqeune0rlte3e9B87gfMAZQhzdelbMv47X4vXmMET9Ec5hFu7WwZBkAQK5bPNgzVZgNCaoeNMVG10nB6IepTnDkho/BeqkWNpnJo8VBlC3SVdskGrUWivcjAX8WobHFKj3CMebeyxeHKNFEZEVCsjiNXpgm7xZhERLnYNJE61Eb1/e4intQ95c/oPofDerMRpWhg+0kBx7IjUQPRNaLLQ4Sh2sB3OYF2dy09F6HAmDrkGMf55Wgd8VzU6KsjcvxBirNBCb2Mnu6uxdV2YHOMJwx0kVcyeBrGGGvSw3G9YYSN/F3dGseERoM/Is4ofk6L0ZEW4DKZzcZ28cKMEG4Ql0GuTRhZjxHeGo1rrP3TuZctu3Hj1JartY0R9R45zwcM4IJAUh+0RiJ9AXsKchgR0xtIY1lu7BQ50DKGE4Usx2lgdnQ4LfJRetUgam1zvYTDxZdJcJnEGlGpqYKcCi+FEN45b9kDDHUxCTnp1H5im06yPNVjz2tQSCd3ake5u44BrRX9bFop8aSa29Clohyp7rsbefY5nE7lGFGOe/DpqI8AhoW4cx0SmBRPHQBrjn/K17zLtHMcs3tC583xlx2F5bk0fyyoma7VfZLoL3UrX+vQPzP57qOXDuzS8Zp17h+5dGjf9YPvfk4G9D1rD5nR/JwN6OzjvdftTlcsB352Wd+nhkX46JUju3Q8s8sXDgrjrndD1quEePV8qZUIYeQ6lshOOSSy27g2GZLZoHRndz6J0j06fSaUqZSq8g836RHUkauQykdWjdS6Iq3gYePt3qUFLVEoPzCzhV/PhvDzNf0v9+1MbIlqin0wLkCQWOTfpQes5cPKyCamzFqctuhDDkfMbth881C4gjFZ2b/MfZZESF5IPYZg4KoRrBqM2aPrOaXlyCWsWuQpMigpMBGBDui4D2lEosmq7Z7x9QhEKYhIe8kLlGLi+1FncjyBEQ0lwvPYNJQpSO0j381BCmIp/UnBTa0xYGPwsi+dkMsjzQ5Rdmtez56UkbzEC6Sw5lk2jtTMcBoLSrnz5ULRqTxlCixT8d7LXh/PU7Rst7y9pJYs+4Ahg1wvWEe9TEekNcSe8HnPLuRaUqawvaj0XDAVq1QOx0VjpVsWZ1ONhfn4pLAuQyTR/wb7mqLRSRjT4ZOGTNDE0s0Soco+c+Uj7h6zvh9a5s6dKHM5Q3zs/firaSDVuVP3opRK9A+AgNl4YBePp3b54syu31yynFDf7nGT46SZ5938x4ZMSOtLEdZIB4KSXqDPEXl2Zb9GY3n1smbEC1HNvmz+NYphMkCL5AvIr/pXeDXKU+irVfbkv6iKdpZU3ROxLjtyyz+TLdE98iLlP1fDqJ59mQulyo780+mUCNgiIuuVDjo51YUsrTU6Sp60ztZz92utBlAN4PYRxTBcHXV1nsr+ziOZqwVo+bjl56lBhMdXGD1bzmnPhpaymyLoUC4l5yOuFY4MGqp02HZKAoWhzDSevc6DdGbKQUuD2tN4QERGUtCIPHtUL8bCeVudiXljNl55dQxEhd3QCr0oUh2UHdQ1+mDkAm2GqDqIzWA4O7O2v+drSuths+NwdlknEtmoIFJyfdM+6NZr1mthYBdxJudXfEi6Qg0QVUPcURtJcgWaL8vnrLrL0BYKUykUYVbHum91gp0py8+Q9olnZ/nzNPWSoxeOhKuLLDt4Oa+BkNDz5jPFDVHp4rWfpdRYYa+PvP87pDlWLaX2M69Pf672+/skYSP7NT8JTRJgD78+dcehHcxGdnI0JoFd3W/nj3ffHvAc6AexuRE6sI940yvtg9/4MnviCAe22FSqaPUySUlDyIu6HA4Biy6wVNce3H6rG1AnCa+ZvPiKWtdr+0HtLMjrPbnBqn3r169CDvlJ1UB0Y9jzGlV2p9yXNZa9TqFyZnhuqGyPU6o2uVGKvIpRNXiR6QVuDtOi2EdObXhhy9izzEjAshaC/PrYbYZR6DrGSsRsjNZH6QgIE3gRwY6+jRqNPiwwNP0ZPUDdAm10mDBXmHaOGz6jGLSxV5osTNJ+aItgzA0l1ngMg9IN3fAOBkzI50nzCS+xR5HBSIxxXEZu8dl8Tdg1nfPMtfJcKObrThDJQO7z0KazsU2nY9tuz2x+tmRO7uzQ+NrR0SGjIfNbIDXb2K0bTrTisx9iTPWjN+glEsk9lEsFB3WmqSyPXPkJ2225Wtn8DBF0sDxOmHe/HWKW3VlAAYLIQYJodUVGyeMZRP1rwaIJL/d85AKLVzSTmhe+FwnvwfDHUjo+cWG4rltSspCIenZBwlHmagVGdtblHJqBYGWx8pw5ELatzVZnyGvf2HAaINQNEpgHtsXnk3NJUHGy34eTR8yreB6gONwRsQy21+p8I8IhyskWmH+wiPvYxB5VTStFEopzrUYJeI+Q9UMR4ym6wJFr3P2O8EAOOxZqQNUckhbODqUYkIQOXAkepSy1fxOXQ3t+BokezwPMF7z8kZteopOexoCxRi+n27Udjzb2Pq+8aCcnU/vfb3mPPXP9RfSQv5c0r1UeE11IJmUY1pObyn4Yyji3oNyDBbgYjqj/vkDUK3ItU01nlSWiI49l9pxfgPMfmnVB/cTeFsS2nNMRogVKhKcAkRXbusYbgjIhMZIPipetz8coXKOYVqc1ZXB83t9HNCcchhqb5GAgSRMifsoVVcSdclTwzrTxipEdsq6UICqfKGfgErJgKUeny/2sTWNsGdXfV+SiazA174HozEv5qGUjj3NHtmElSFXDWE4CGcdKU8sd8L0vmVADAEOhWhih9RxukDB7KbC4hR4x4MuLKDWES5AV/QDONrPDsec9zyADwfBPA7OeTUBE8BybTSqCQVUN8jrXLAPxhPMo1h2uezgDUsnP8txGseBYIwNVMcDwtR3YAStn4KzzigIwjuEQd8d2vYb2zHy5sltnSxrMZ6jpvEa/3egmVD2in/78CfXHcpfLgBsH0WfA4fE9XK8+YmXmlilY0nbE8hypa9Uo1coPJ3byHOCXRlo8AKVkFyvOVJ2w+7u4qHJ99LQ/+Wwx1l3HWHaOeFQ5nAuUnZUIsG0RAAlSMKUdKWjByHPA7ev6TYZteKB9H9dScY7ASZuH+qlHfZllt6dVp37ZJC6rg5RUZoBIOuvYVaK71mlV+4ux8I+GMzT0B1ZG4IP6Xr54aWzDw60d/yjWdU1B7NsLZEBv7/KdFzTf6x7O793kqYl76mgytEsHY5vCIEjGsxQEv8AeyXXevbNTX7k/efEmd50MC3mvK2t167nelz9cPWjyRtXc3Hw4+hfkosoRgRr5q59VRFoCKIzoTi1ct3PSNo9hiyumB9RJkqKDWXgLllK8k4Jud4yA0l+VBNIzOSZPtR0LUoDKVh616sGnEFnGQbQSND+YhyPSWOawaAbBTtwNagdxheqVViUiosn+xTrpFAhBRqK+xnM4sytIwmoElrnMZAgN5vDk25HS6qQ/0d8op0Y49Rowcc8zrfcLwzlqvMp5wvEia2NmGRVpHgSeM7+zW5FPlp1MJXrb2QfNBMbnix3WTXVSDeNy3U6oKkeSOk3rSkunIbkS2iCEpErSRSDeCX7Cb1Z6SkXDtUZGqVUDtZwlDgmrtS3lSKt5oe58cah2Gc+YOCcTqXG5MuTx2HvHrjFgXSAGmk0LuyhP+mYE4Zv8wBILj9uX1/n1Ou45slXHOdZPc4roRtmD3/lS3JlrdmD2yIUZDZEZoYntad3dsw96XvKDrJaUadGZXdZ2lREFCRROv2JA4zcgsPhRBDpHvjpP3kYrE1w3/uPs7tXppT1ZZEKAMPxi/h8ptA2Sq3pL60fLXdOrcY3cT63QnD/pNZADRhnIGqVTFStXD9is+rrWmQ6hfFjAS3Ov6jGZ0ob8N+v6Bqma50BXvpR2bFPEbY8qsfeF5HyrqJ3dprzlEoEWGKZY+JVJvZbo6aB9UtQS/1FdcJVU9Lx4RdvDGC+GlkOKBeOXUwWGC8je/LEcGk5nvKoGMOUqyETXLrtaCGyU3ErGldi2wVoskk7As+lAKEGR2A94gLWgyII3V2cq791BChWnS/xbzNBi2fZ/+9+FKK4c8e2a1n7KumBJI9zhcKkLw8c4AcHDAVIXiO9l/vaBrFpjDFdofYlvI+ZY7wtlUDXE1kDX2VKXSj2VwxNThilx9hW1QhUA4gc6k49tq68W53uQw5UNkFEVCVpRpVvVqavqW3XEGhjobsT6XDovylmRzpf9Ud+q3eT5KreOL7q8rspIfdY6P+3T7K4FGNSz0ciuHE3sZZcPCOO+fmv5QMuqB631Eeg7NGQ+Tm1oF0ZbewTMyJ3cBp07PEgZmXZ24x3odUI8S3AWoS06StDhccOJnEL5lNVrKAM6352lB8D0GGUaHHqkj7SC3Yk4dL0w2vFvlbqS8IaXaotcXuRDRv1dkoHEgUK6Y10xvNKqjxkkTcyj00Ed9ysnL/e1e2ZdKfDcYpX9kWdVcGAjX5ZT9TNapicMZ4bszJGNuagFW2L94OHQNsjJY84y4h7y3oahFDVJxKAe5MBFSRlFCs06yppUgyJgU2Pld7nXEd9HSjNLsuBuy42tFqEUFvy/W2TI/cZLqNVHW5UJ2MhdcoZ2aFz0LEde83y+YF60vL6zycwm4wm98AczY5QZTgE6DOZeqmk8XDGfFh5urJP1EEzRHj3CRc7mc/5GP8WvhQWBvG4IGZCZIJeKEDaQhpERfMH3p7NZzOOy5N7UaE0oOhrssmbrHqqICYd9ehQslJMQFjI6ibKQAQ0FNpQEOXGUmyVDEHnbvl+0LgXDboWWK7ceAcYKAVP6YIgJJDuaIxAClmXgEIjPcz1Gnh4rqzNvKkqceBVmjzrHMzqXgUfL9LNerhmxIiFbcUZI2XbiOV8yVdFQ3r+cMANPWC5WiDJLV1vM89qWa+Tmgd3dWcblwCoGc+x7ln2RUa+XI9itCB2rxgOQQuXII+Le7yBUjLllgTSRzUkxBb8BxjjQMj4vHjmqe9kfEuXD3/yaK3b9bGXf8wPvsXc+dVp9Yr2Ev6cN0+Q+CpcjQFVgTnmGksxwUAy5FcrkIcLMHGf/DcWVSBnmb8opFISKkgW4QBDFuQ+m4+wtZ76nsggZxTmfVGcxozsyXnAcBFIFTXwD/u/Wk6a7KU2/Gg4RaW5cVVLMcSY6cy93NJA4ML/AETFrx1AOsTKmaS+4UPH0kNHaDUxWS1BOd8e85/nBTrrTdQ0CKRiKjL4maHbqMH7h7HJnXMvk25CPhzhlrfjyvtd/J/gsRWH5XogrLwElh6mguR1HSFB7cD+HYej59LEm5PCIiHThIUQ1CYP8GlCWAvGzTvd2JJ6vLUShNb9cXyhTFdqVDGhGog/B64HAtZ+3iP5iHmczaUb+G+WvxGKM7jhEG6WqJnbhCDwj4N5w5BBqerMfQChFhNPXWcx0rHOCt8KhjfNttXZ9sMyBDKSAGiP6jzxd1NlGGTRG2oXoCKeJVz3IWPjIUw7EHvJc6XzSFqh+ir0Nsn6B6iPl+M/OAZ8srv0ybzm+Us/0Ij/wdzCYuyx15JqNw5FedNoc+KlR4oIOi7XredjVkVLTJlPqEhwqS6wJj9azLF8gBsr6LY6MgY2nhTnHv75j/IbxGkjLNhK9p2WHVbeRAwTqg/OaANlVtyTQi3EO5cRvgeeCg6CNp/nYeLDEORRCjFY9IJwXnsNdrO3q3HHLvjzpAbh5JkP74FddsldfOrBv/8Gn7Dt/6OmSftK3l5gBfa/iBV2v+Ln3G5hduXBgFw+ndnI4cV4kRvJqQbzihSqGZDKuO5urmtI7Hbpjj6vnK18/bR4p+HrjnKSGtgRFt3+dHmY4VvJAq0s5Is3GsqIRidWtKUSTJ17Pm6V/JMKUiHaEQRQN3Bm9bkQie/plqEvJUHA3oqvliT3M0gx/2I3JxZ5uHdD27IgoY+N+gJJcisj1ZrgJiLdqUAdkWDm2Gm8JxeL9dKHMnFsK4upHoN4CoVHWHEqEOJTNIwiV4E3z63lX6yjdoLHy5+G8RE61G2ad1clQUjCKb7PXOj6YSoOV1zpRovRonXXYrLQE3a7fkKFbha6U4yh11Zmm8kJZ+/keSZs+bx/krxVMZxixgpdL02Zt9PhaVmjrHaoTKN3Dz4uYiyDqEqqiDGFiptU673DH7oyq3yafE3WM3Sj3yfF9GSiBznnSeq3bMcl36zxm+U4mXNQ9/d/nfTtNYmc+8B1EntfTkV0+HtuVk4ldn69tvqcc0AvdnkvkukQu6gsPXosjdAIm/iB2qnsxWNsLWieIr5RbyB+HaStSVvMt636uql9tOb+/SoEq36TQK26ld0tJK70eaBc5aaiLF8RT/LecM7qXvGd1Vt0eD6U5IljlTiX3OFA7rZ3snyqIsJTGULxdnX0aXHvuUKp7RAORRY/YtsPXmjq7M43JqStm6yovcz3nMhx5X6MPUcLI80N9vHxoYz5K2aZskddryr7LaAaOw7DK/wa9kx5CznWP9u8+l+C5tdRYun84T1cgJAQPCAi+WAbSYXRgly8Q5SwNZFghmp8Q2Yg8k08EZSdRPxrpWJEXW5yewTjP0m1JF1AamZ6ppO4FikH3Lo8Yc1s/p6fqsFZnB4iurZeLMzUgv3RCV2eqc6hUqL9UGBh2Kq2mfVEMz1jzjPbnHOa8L6OGds71lf5W1k+wgFencNUL5QQqEfvYowV1EMxj1SkvjoOAkKvkW+fc0WBUWSRemZpmWHTTRoz6mVf0SDlDmo3WQWnc6Uzvzqt0gd1p7XwtR/Rr/xRJrzdvlSw5b/JrQofsohGCyA8EdNOR2fHEDqYodSqept6CfskZ0Pe7gXH24z7y1fYBr7tqjx6hnuDAloOVrQZrG22GNgooFVpV7qFQtNcphA7xurxpMvwGQQvoBlzdxAU6FznFOomqh7/cgbWBSz9KKakEyS2HiP+wXqEOmmD+9gOqKvHOQIgolMPVpoNxPJ97JvX5EXO6PWKNg42eSbwfXl8ZX9595XzGgaSEj2iZrTUb7DKkfDxluPk/pHTx+45zS1E+F3Y8VBkpdK7IojjIkJeyopqcmXkyQl+juA7HHpHKiArT2A0jGk/C2p9D5FxhMNa1HjAE+1SKqefngsmxwKDoVfTcbo/GD2x2EDBgeHaHAztbDmy18Sgzld8xcpyRN43SVx75ZHkrRoXX9M6iNiZQ3/4cQxtsxlSYEFn1euBLCgaWbrLEBnprbVtER4dQKJALjJqmC0ZhRwdeW2Rtnpvq+fyyAuMQjnfkxMiKslo2ivc13zudfVY80zWylb7AyC0FYkC6yjyJpSY+rjVWlH2OsyxjUM9jT82cKXq0NaQ5Lc6QpDewAZ8/8v4EBYs8cnbHQQ3Ofl72XYytrWy9HttmNfbSTZEzvV4BSo86pR5T0br13Cv30BRiFYdPpBHNKpf/JoM5IvqbkQ232KXOOqza0K1LgSNSmObpVKHcjRB0zM8E6BoqMR6tL4YQ71VZVdXfqlEjelOjEHn+fd+RyCAvDBttN3Y4NPvwN1y21zw2tf/yPc/Yj7z7bL8VcR9b11H6ULZgmodxcOlwbJePxnY8CxlSIs0OJeXH6fSRAe3cHCyrg3zfKN2TyYoKV0d25sqBFP9qXDhS+ITg0rqSo4lrMTtJJUircUgis67DuGOg53dZ1SHWoLOJxxlO3pAqa+9Gl0TUB2PJvsJo5PmT/KMBbaZDCZUS8K/R0MstbWJvDKvzlIYa8mARdYZISDpFzjzR30W2KqUqjTn9nA1xlaf8NCfGqkY6s+NCxgfJ9+NolF9SU1ui+h2nphR0dzYmxbxN3S5fAtIJ6cOsuZtSPcjQnGDKOv4YFT4Y2XZsdn21sJPpxF796AlJkWh4szZzRCYDck/uEKKCIv9VdemjIfJ8cDi1yQjROT+H2Tus9TVKSm3sJso9Mj/Z9SAOxxA5z85HIscvdCyiNqKiRHFidHyISlHGeE3DuWLDCbFy8zWwY47qqk6EGrkVbwTUHuY6o2wXa365bJzfWjLSLC4Zp8bMRHfutCD6SOWOdo42Hysg0Dr+oPI+90qpYx57POSvZB+i5ZhLOYb4rUS5wLsHinGDPaKJxlkF4y6YzPGyl+bCnCDffX+PqENhHkvkWTq2gip1Esr6BaJqhxw3vhuVARQdprYVMPVzI7bPIq0ztx37ft9n9swTX69F3GOfCtWj50iOAtvaycHYjicju3AwofMIXDaFI6W3o194A/phVyZ2ogVVltvF4wlp3w9CaleVsZuTV5X8DJNQRLDmg0ZLuWA1/1HRtpZ1mwahyvREhLYLQW3UhKhHl3Ow7vT8NZMlebXCM16fIz4tD3fy8u1bA3U8av+6d66vd+I8qhupOngxfgVmXgLQrdFQnP97HHUl0td9KyOjNH6hAVRn3M6d6nXkEChCPgxqltFAXnC6mwgikqe4Ht6VCdNLuAADlGpgB4XyAERfhe07IH/qSzAs1ihn1JGm0FJEJaa2aEJZmYrItKBFnR95iGnQNyesrtD10AouXN8qyzXlQdVFUzTpchHeL323rr1m18W6rMgEfTe3Zo03HZVRJG9tXDc9Fr9VlPna//JvSn7P/RKQoUZkah6ph2vyeLXrMnW2rml1TYpyt/tdxSyT+gVBINEgnRHIjo7qWegcA53OFchfCGB9Rus5P3eOSFWh3bnunqNBkQIolZePJ7bdHth0cj19d/BwyakHUBFxaOHAjqZju3g0sSnPjSTnxGIbecnVKRkkPenv/F5+WK15zWfhv8hrojBPeasRXI9EtUgUMQy3aAt9rzLs1shmblnSN//tRAx1JFWQVTjBPCOocbBWCVbfy4dWNfoU9fF+lmhPkmQ+fIGWSmSC5T57jq7ko2rEjPpU92Ptb47GcX4oW0qWajMX+QzLx0Szv1N40a+QzpnmfAqnfPSuOYv0TcnSHZRfvY5qK8sAQ2qX/6hMpZA78UMIejAtB2cII66qVRYN+wH7gKSPpWRolLtSyavIU/Z0hTiNQB42Aly3Rj9LHfTgMynLMTka8B/3k/qCLVIhDFtC94OkSuR9OaJNR7iCMXTG1IovHJeVk9rReI4+gMMlR/TdzvV0N/GUZPRUsbe6E9pVsnZkbdWdfBxTTnc4Uco6jT6gVCyuU0qIxg/z31UFo+jAyfBN61V7kKlvzfqtHdvepXv0PMe+HlsaSEZX7LlklNZKQroZqz3fTIi7opfpvyoHmZFz3Uvo0MlQwD339b3kc3cwHdvxwcROF6hOmQN0t2/bfZd+L2l9BLrTZKjBF4+8xulmbQeICg639I7igEpVF1zJ4/dYxZiLDoe4G0n+AZQRQlsHI7HTHaYDICKabZ5E9KcYOfJydRd25BFGZUBFhQuRhwpVJiWB7MDpf/xY5EZ1j0aFD6PiNd8YTcb8LLyrMgbdyNWh5xYaCJuJ3goCq4L4Jd2qhD7yrMO1nMqDQTJmo4tRMW72TZuHE7Pgkb1aGAyRs2KL8Za4j4RazaPy39W7DbbpWjcj7hUHDLyZzsKKaB4+5bnEuBcPUhGp6BoMAsNzOrYhthqE2bwy02qkuayCrxJRISpryHMZmM1PEZUMwhq8PvN6yOMDsHB7/inDy8y/Ro3KoQ0vjW1xtrVbN5333JlywSTtOdYr1HcOQeWXBUy5PvZ2MXTmb0RCx0NbLJe2WixteDCx0TRynoeRL12cD0H0EoPKfjWKm5/yG8LGEhyppO/KhaOyR1nY+POz5iKzuVGrGc87rqQlYaAO8ryNI4+K67caj1rfUnTI3h11u1kbXF50RISmK9YjHQb761iKxCzcSmHcEl0SdLSMjGBukBPGvI8BUQlwZHjeL9ZDKDgkYgr6U7BTcx3C/+toAq0M3GfEZHvcwiMsiDT4nq/OLR82f0pXIsNwRj50qAeYG9QSd0WlCngqUIKx4dmTplFhaLGfQhFd4Tf7vjEbrThHGekiRcZj2y2zsxRyL71SzyyyyMYJiy338qsX7cqFtZ1899MNkPfFag+7w1hMr4fToR1Mhvb6Jy/YG152YiezsXNdFPIsr3sqKuSSEhJ5m4o4N/md+d/xVYiDSaSaYDuwxJ9SP4TaEHV2p+WKMzsQxPQXlW9Er8ja7c9ALghBaDvflYHmCr3LdO0PPadH0X0N88ydjMjG7P92A0yMAqUXgXoC58Bm7esYjybItuOCvA8lEiReD/QZUTWMLaLOK6DTPFKeR4aUHcm4KIZwsWjr2OZyZDKcy79VUluGPWV6Z68n44PHajnPw4BTFRFlTaVU3apvhKKO81BrxBWGeK+whfkYRg5mvg6RbeG8wLmO3E2qNnEPnKNgsH7LW58m4ZeXG4W88Eob04Mxz+PJZERk4XSG0o9DO9ssWYFBDTDWi8eIJDufzHK1tfncDdezW2C0hvwMpEOsf0Z+ySESz0lOlOoMELt6RuJzPOP1WA1FNi3Xa7t2OrflfGOnN1AmsuaRk+05GaXlrC88ErEXAjkAueN8BVUv3W/pxf3TNoQuIrHiUxQ8F9DZksJYzvr4rMd7QzYWjew2PuL0hnRJ5nbHBXGdBRBPG48O0/GUUkWKnCFKwhmmnQyuQurL9ZWbH7r0nt5UN5ucHndovFeULCPaIV8R5yWQAGeIhPg5UhziPN9qmCvfSyXrCu+HL/Tw0LkeBcRGR8X3vkSVnyJFO+dEF4WuY+iVjx7ZR9nAfujt1+17f/RpWw9qydO+3UsDusqLh7LdSQHCQjuaje14OiaUh+n3mVI+JHri6GsOiLJIi4OoDtjOQSLFJDv4Ov/OrzY5QkXhUN7V3UzI/s/kEan5UhLwbSJMITnT5UrUov4WoUHY/u09+Ho6qQX5Jotzx8mZ3c7BHi3PX/GWS0jzntExnb/lscVc2NatyGQremuHNFNRkMLSLNxRdDAIlQQBaoY6Xi/wQArMfeUCwrMYOXLqpEeARH6laDNyt8KJoIUTBiwJyQDnBtwq0gGkSCmiIWgzjbnGWVK4zYpRq/kseemucbWRiKoL1aHMipr+4HS1rtrqXU0EdbxXeF3iw157uyrT9cu6sYzIzrjKuNZ/O3Ob4cQ7pwLXI5POC0lQiTYHhWwZozIA/nxFsZRTiEo54PAtPqx6kjMOpHrBS0S9yWWugfrb9L41OlLJtfJeSvVucqfSuJQ68entoqNnD/ye6HNVvKqTpelucpSko6DZ//ib5dkGQztEKZnpiHnQHT3lgTWYH0RT29fmwHOfJ0M7no1JmDQp6Kdam7Y5t0q91pb1l+1c7bjKMocSq4ZufdP3VsPuEb9uc/F0vnQVfx1I1Uzu7oX0zXNEZhJr/pVgY3bDKjmImEtYe06HJD6TORFyJDTdoBqS+aapPFzWIVJk3RFAVfvl2CZkVjEAWA+5XYGNbG1kcjJm05u+f3cHqeSq54/Xo7ijDKVzQfup5GTm9JZsNCd8U330uE+t1VveiVJGp3Mvq3Z4sLYxUs+Uv034Nhw4Hlnmb5aTGtg6PYTXe460KZTJUn5/RJ1LXnCRu/J/ACLtZRW9HFuKRMv4baYUDhZcDw54/9ufG0bvJgxfGEmRghaODTi2G10s0mQ87SxJuoiwl/7ncmM1RbrOZnN2p5zhInfSeyqHpNcT9LuYy3GDsrTzOm/k937rWjJR80sHL3WeKscyi0GOODuJlmRQF/3ZomSejylTepfY6XfU8HgM5eF73nhXd9otSFVU7mJrhO0g517hY6klNjT/yhXn2uzK/LhePSqqPXM4G9nVk6m96xkv1+ZAyofUyLtPrY9AdxqiMAfTif20j3qdvfZlF+2VV8YlXzA3tyewnb3Wa41sJgMjmiKezB1m7qxYG104eb3hakIr55asmlESSZGxTm/Lf8shlpXdlAtcIWcyqiJ6XHZXe/EmTzH+K7KIiqftYp9j4yN9VM8XuUYcLRrH+CPK9qSoEw8JRj28Zh2jvaV/7nks0fvSqyqdi5dcbMXFMohav1uvD83SCqMu52o144oykpQvnY48nJTTIqMoCYeSNx61fZGcM1h6lHG9ANO1a6aa9wwD9NMtojq8V6yRIMaRw2Zzk09po+XWRjNAMFH/GUbFyhabJWtqTsE0igj8ZuYMn3N4sXEvGHCBO0B+9eyA/V7OF+7hng8JGR+HpF2sXBkZTMwj3qiDPFiWaCIhZSBvKVHGdsy76x/Pz5rijdKVNOGktDqj7iB9xiPe1brH+CEHrd0XNeLtny1RVDlB6hZoxz+tdBfGyA+PMmNlioKFfIj8t40LdKAxVPZqABRJ1M0uhINiMkUUAPPrOeNgCEfU2+usjyKnVGx0UiDDeRD1KetOrP3Mg6nvM/KNMi6CgEGBxJwrFxE1ZbHP6IiJM6OQ7Pn6ZhoAFZfKqOvXinsiRw0vob7qGszlXi/e90dSbJiHVvPj1B85VqSQyXJQZIDnhMgior7pm159xS4cTu1//fBT9ranTtO89e3ZNBgJ+EHe86XjsZ3MRjZNlRtyJFJGtORFKwfPKeMSrbXFfN0INp6VSD8/szHb5nlWBdAjpdkITb+KkVBJwNI+CQdgOV90y0zyk/xdOPccjRQR6KijStQPuCwCJVGNOt8biDAhBrfiWVvlbDGA4rkQqZoHk7mfUc6yDWNrdeaGmli6ZchQWwt5mqNYTkqWzlA5NIPvoFhtXSjrHuU4xG6JALcTWiPpXeM5K+k+3JX9txiozfXqdXaQYJWm1V9X2lPH2tEj46QiSzjeAGmWre3W6YJzcTibeCQVBvN4ZMeHY0JV3YkDgNjANqM684ezqV08cYp1csUs5nZ684yoAM6X+hgoDJ1X+Pv0+tIN4ugY830T9LziCPxsBeP9ZoUqDM7sjXxeOAdXG8je4JlZ7YO3d5x6ss7LpgKSwZmshQhLS6Bd7NCtQn7DcaDn9vxeN0RlcFGu0PkQTqNiWPu/IStcB0gbO3LMC1lY6ICKmiJazfUWE65yTxiDZrlwHFVCU6iyIh5cPlLmqixZ5zGr5vCcnZ7a46VL0KnSJuEYDiHLAQoMjHoqYYkGBAGvIL14N0hebybi2VT5B3raYkHCgvrFRp11WUtuBf7pwQgeB/E56mDF/A/kp5ldOp4YwLLvfGZMzhvsQqAh+navDeiXmFOihdP64fDEI8f2micv2swWVIJ3l3lATcUafad7pJIDIZZ33bTRl+IobJyNuZRV6kWrQ++9b37SZ9N2vPZ7n7OTC56M3uq5bAvWu1IuJuf0WXnUeB63eXI1OunvFSMi/pMhUKWv5d4JwluKJJYv1r4XZm2fj2ZY+SwxR4w86vAL44AHUXgBg92a2Bmi9b3UmF9TOLh0XXHHxQD6/KsWcggxan+es8XuL6I/q60NmccFY3ZNiDEOSHrZYQQFDDEsxuRwSPWJNSTA3LsTXW4Wh6iDjTTKN4H0zAHGWqvqrzzQO66mmLd2vspbxX4OJ8U+922zwjQu8lro7U4Olj6jdSA/xHmbZbAnA0qvlUWWDG4IeJWbyaR0yYPvz936mBTJrliUPZG3+KL2+06PpQw3MxW9LwiZeq0aHXBtg84S+sGCzKiwmhdPUFlzLaVQXK+Mi7zpuSRW6mQT3a8CXWPVCcbvjkFcj1cfoiLCjArIW95+3e5HO++0vM1x+1A05YAimn8yG5PtHEq0nE1V4U9GTVKKK/FfctKm69e9Husu7XEZwaXO607vWpRWIwPjP43xnf8twSl5qerQTd50K8a6IM0GLSNW6WQYFqdwObPl5Gsj7ICPb1NuJ0VeQH4FfWd95xzNJ1TXI5aqd1zPO1nKXSdhikg3D1Is7/06w21aNbJaOVnHYPdMzt/2YRFBo0jGdmdaTrTuNXSc73uhjf6KBTrZD1Enm2kxEGkTd2bqhiovpetySAvBqjNvA3WoRsJFIF5A5iW2Zzg3yC1SK7AwJzrSdNSQR5oqLRcrB4RguDJLSq7WjDKDnHKx3tqpSkepf0muZYe+H/HSR/I4KVLp7uPuOcz3daA3JQYdWeG9DAhwKCVFfxM0On6X5R/XqkdEd5MlR1D0pXBcqCp3TjuiWhhpF53F6qplyidvu9AgmcrzdjTtZll1Zue2rYvmaAVeeY0OH+hSjRpR11x1MlSdvnXkp4slw9g/Gakl6YztiPuifxddRvPCMoIFE77z1CCJO7IR0xjAA6Bo+UvM3LunrY9ANw1xvzU5cI+GSzseInLnkUswgzKnIgIsnmflniAVNNdiLkI/onKI9lBgBsQnk4EVeG7K/2V8L7xP9A7GJvAC9DUylzdejfK1wlWHoBSdGvFtuVtK2ZI1oo5rG4/hhZpEDVuPjjI3MylPxaXXPaHC2CzR6lASBsgdTsQcjXBXwCkOb3212pn6XDDFxk8uD4jvKB3EczvdYM0kcV6Xuht99Pxj/o5DqxrS1RhX1EFCU3m8YFXlvQKWzkhfCHYYnog0El5dPK7KB8VnkcsLxneFzNc16ojfy6Eb4ch3YVQk5h3QrtXWFoNbNrg1tw2i0bMgPhlvPG93ixrQZgeTMb3bCzDNQgEbe5R8fjanQb66CQpPfC0yy2P9jg/hqY9SXAOPNNNJQOXQc46q4lahyxqz7JZqaW1Sk+AsLM4BWStQK8fi+3KD8iHDX+tYdYQ9ClAXYXyDymXEriMK5I4dH+vWPO0sYl5mSDLu9dRrbG6W3p8hcvDwTxC04LqTEDbrOANwNAACuPJoAxak8xQwqTHOkxEJXpaM4kvTdAQK86k2C1/TOY88bdpCExjd9vz52C1xXvikRF59PNkm4FlUlWJtMlcQn0HeeBQG5jo/i7VN1IaUo+Brh7+Fg6D9EzntIuoh8zaez+u8lqWSSrOVceffkdNelGSdj8itNnv1Eyd0bH7PW5+xt7z9xo7hdr9a16HwsDTfvm44H81G9ponTpj3duVwUpylJU1pJ5JU+TpYCxfKf9TmbQiJVBIvlHwcjRgrwmWZN5zsoRjIYnSGYeZHXGTMx+d4jT1oETTsKtUY5jnNDRMoj+gz67Jq/0dKiJ61Oiv9ffQD5ybInLEdWNaY8s87U8q0pVrn2L8838djnumD1dqGGCMwZRBGu2GOLJibz868xq/yrLeA8q7Mc2uZdOjXdyhwRKBQez0MBxElNbWLZRSm0cG4LEsR3+ZXu//KUMYY7TFi3dDsjn1y0hVFP/5OsOtOEK7JXddn/W2XS0K5lBx7n75YX54bjudCHvr0KKpwtMoMo7obIP42HokGKgv9P11gRgLhFEYa0DYnR1MSKJ0cTaKUWayFjdmUMGyzzdnG5vOVXXv6zJnnCa+uTibArkvKFboZ5a4qD5yMR+eJIDItWLoXKDUZtbG35zpM6/N1S4nlAY5kttgLcAoMGA1fqZ50yWUPVFU4EFBlxv/2/olDQwgIL5cZHArUz7Q5XS4XR3xMeuPsUKnVDBFPDpSaNuhrHJUjKJdID6I1oToUevKk50JkJfK8nab1CZZtyhgfk52PJYdKl6w3P1/O1Gt2Hqcm9Pnk0NtpzG8Wd5DQGukyifwr4m7+NfJS1EWC7zHnHH1inG9LVAVPX5HNRieLFryXhNT1Kuh7l09m9vonL9q7r5/ZWze3uD7BBdC352lAPzxKw7P2LZUGCCZqYk6GG5sMNow/q8gUjYaihfp9Sm4kb5HLsKRfCUrtf9ZSTbxyx6Oc4dw7zt508SaK3fFA6bDKr5XPJftgp7+EEcNQLhhoHigss9Fcq42hl5bzVNtU2ZL3XF+rnkmNQ/Z6+lfSgRljTENfna6naf5VSmsoWikDPAeg2whYKC66Sh6c+HeBdqtPeYwLe6WUD9VmZgHJgmxQPeESGCY8N7y/+VAuLOoB3y3lZMKDLAXsbMWSMwO4fWiJu4fc60i7UgcB6npUYqnGJVYrGnqbRXJ5azRoTLnXmdD3tG58DGoUu6xtIQFytDlmuUS7O5EGCfpGsEZ+XDu2ZCJIUdc0TQkZUG9c/518Rml8Uy+0TgvcrUyOC1KW1XC4Fu1F8niAsMg1OuUn1khSEMqFsem/5chxhnQq6Rhblh4L0rNB+h7PlpCcrmmQ2jDrqe0SrVpW3pOeKpDh3rH/igKUrqXoGkum1aKhHumoUWt3ZaiEkGp3Z7MyRaSbc67srsbzlrkc9JqT8elPN+6Rp3u8dVgmHE4Q7PuUoHvVyjm1Y2i8sDLohWpcfVGOZjYZ2sWjqT1yYWazPdGPRl7UF8t7xQDMZJglvKLzocqpmjuZUFtdZbp8WkqlW/XnmgrhPcoR8tgqvJdczdxTRaHtnk1tsEwOVJ3VJT9XcPV0PtSIdJWGLiNQOg7OyshNjRsph1Z5qRLz4qZQqaEi1gpqREgt9bE905x1uJ0/pnyV87BdwBqjfc1FS0X25D2b7NM4o3Of8t5Ou7v0sxuRSzpHnJ8+dMks4ss69+XskBHhjgPPdZeuIPksBnn4hZ2wVWOPM2MIJ2d4U2AsIl1sBqfSIYIG4eFR3n8QzIHtGs7T1XxtZzcXtoIRv1BpN7/nqtHxRLS3Q/RtIzgcYUAHCgHfW2oxZChBUp66yKkaja5lMPc1VuVACg0cBTqmI2VG64jEbLE/mSveKXlaDegaOa5aXDWyy5TGhVsDOvaV0BuhSBdHVDps+Ytqk+Rg+/RF0qSDoUi3eENLs5UtkocRxOg4K8pzlcV+Dp4uOZzSkddBhaSUtvNa0UW7NZrrtf7/7P1Zr2VJci6I+Z7PEBGZkZmVWcMlWSTvLAotoQFBV2joQdBDv+gv60GAAOlFagF9oe5LoRsixbHIYlVmRsQ5exTMvu8zM/e19onIGjMialVFnnP2XoMvd3Ob7bPqgNDfs0l6+jMYWoKxRpSbCvGYMZu6GfQ5C7h8er/1kgXTUWz+rXDvD8f0+EMEmoeRh9XG/O/+4ifth5/ftx989qItltanFcIQBKn2UMWQkFEiYcMiS6HmpWJeWzClJw6HvKHptvU6BfvbPdJMcwliz417TS2DwJexPvYtHd7Bd5qBWVzaer3y6LM8foiqGsMf+nkW2exop3IM2GnsFxheNZ4M4IPTRDgAQVv3m28PMqPizW7pqqw7CmdB3bZDtakemY73F6NGRNJ6K8Y8ldQ19HgkHahHJiDYc0yy2hWio6GCOeY/X1dG/KzthQkmA7f2OQJ6OPqvnttifXFDdneDiF47brxlxvlh3y5WQ2X13ZYu9HrVLvtVO746t9f/8uA7+7JGPayDMLlX11BdF22xX3mP7odvED1dnjxkHmlvqztD3zalE5FJkDToHOaTnDT93OO09N7Wz8OwkyNGniGPLnhsGajSXb1+CYLxyVLSuxr9QZFD1oQ/jClPdD6YsqR9PNxj9l5h2ROR25RY70+5bGvSyPlw9AyB5YY0doSy7j2+l1YbvPIeyY+vra8rgWSMp7jTBFGUS1t7OqBFqDRezxZhDZpHp8MjlQAualUWinGkx6lWH/9cQQKgN7zSBHHSvrXrzWnmUWMz6tuiHQ/oLdosAwIaftQ0QrsBr4usHK6ntrUh1PtcroyfoMZb9YFSwSK1VqtVERJbAtZpRU4Xc2de2p/95Ka1xWft//M337a//ec/1EK/02FgbJulGwif3q/bi9tNe7ZdtRvfExnhdWBjAt7JkPM1ZY9jOeIKxB34s4yO8bHVyLSIrgM5FaTsIbIpcvDu457BVUuXSuRlcMW5YqzMBuE84GXY97bkwLCmP11KGUX0e3svWIGd0a5hW0IzoLy2eEswsXCbpwNWqdzARaCr11J+CUQloEYZzR559v3PLJpq98bcwaMl8VKPMOKIKm570tGKvYxHSjeN/uIU94MRah99j6+JM80AKwa7nCeRRVLWouoUcn6MhnfniK6OR16rTAj/k07LajDVaJz3Yn6wbLlF21kGkzs2sxzMZKtAw968Ovo8G40fd4bEDV5nRvPdzabd3W7a2rKK6PQ47Y/t8ObQHr95bA/f7Nu3rw7tn/7ptSNaP75G7bpwIfSGKIOwyHJ5oRkt5di1gsN5Ns5wQ9q6WfpD1do41+oIQo2leQOHSNntbEpcz8wEdU2QXpgGZZbWGc2kM1SyXJ/near+j3XjfTxDJFK5+azEeO2j18Uwl6Oo+g50b39fOdHY4abEl+Jdk8bm06G1L/1S6myrKRcpvG2aVVFpL8ZIx/j4zKq7vvNRTg7nef0aYrjX5Cc4LopuQ9VSVpBnGCgrkiWNIVvDvnHO4LLhjz6/c171N/+8mnWY/eH4jgb0U1N3zYh73w6rf/njH33a/uSrF+3+dpOtlKIn8VBPEoiR9DjRGypPqHpnhhCu3tzOAFD9WaaCV0FSTcVQW6LH5HyjgDHanRFN3meu/sx7UyJVffS0gZnQMKoC3pRonpXZYhURORGsgxESdTvHqmfMmclD5CGihGXYM8aUjN3u9aTkx8cAudBcOyCcWG3nTeT8STHj5Elh02RCjhWtk8pc1pjy+4jq5fluRNt9TjBI3JiA1QuhYwqbPf9o+cTmGEA6PRTMRbsclu1yWLSTt1s7tuW2tcVtcwCwpf1T5s750lYnSy22HlmoF5OhYqn7nmpuRr0Z0Ppf1Qc62hqN6MEDW70sqn2t56nuUjRetbcilLCvsp4s1cCeUjKTQd8sOsNM/SFdCM0q4vlZVVzwTwZpOrh8bsx5ISU6S65Dqfe0OIuWmmLmXywHpZ8AbJ6iKccX9o23+4k6hgICGPNyBYqa/TIj+uy9SVPzVuy4KgiZykrAEY+GLdzhgj1iVoM0l7Eva8me4D2VFu4APm5oEFyvOseiNm4x6wgJ5Sr4rMMqts9fbNrxdN/+wRxF//yUG/E3dHwAeoMruI4wDLTV+5tV25kxWzS9alBWQzUtpH5fdfeffMJ1KSSrtFBUq5AWA2RyuJedJ2U8FMGq7NZnkufL2KyozkGfGXGbRJxnIkABzFUfYYaVgzWdvVVSfFE8CDFDJboel6sHbm4jOBAtC8gMIeJbxFadMTZmI8cE3ooMmDCWMdcALpPmUIwDXa7uE1Uml7Wo8xCyQAYOz6r3S95ZNJMRJT34+KBPjKYHdQU3pIcueF4WZ2CO6pOpuYuOCMr6al4qYzxtf3uEQ7Gt/Dur9bT9EMjbuq+BeT0e28H/nbyd5OtXe3xuZTwdsVSXEhw24TrgZgq8VSIyc+ljWxmf9FIEtqSytPJaHx6OJSLAx+f7lM+1hZjmNxxY/AxlUH0ABLpNRmdrNl04v6LlJd/UVafQRossKZlHw78+hbtEs8PxO+inNsiIRNN5w46PHa0Ne/cpIxo6B3TzSm/SLNKx0NNh7w8ReGyC/Ipu+of95mRM8g2Ou/LnKkM112FOZHYHymTSgYLsv9I+jve8sTZwd5t2763eBJionM8PQBj+Bo8/RKC55c1LuV0t27N1a8/NdnYPp6KmpujSmFD/FEfgA1Kdm15C7HV2nmiGRqBC54YBzvTbwRh3DMlIReWHwdBRx6UNj20uds1Tg5UNoC/qH+zPx/Wp26RXKe5d2+6Yh/MiJTo5fhjX/BcAkB42yJ6evRFeaosns09QpcvUSFZ0YvBbREbbaDR5WpcUGTojAnVwhqmF+2Fp/ZWBvplWhYxItJrwiJ8EjKGnj8xEY2G/Sm+JsVy5YQpwkQIM5caRxmCVsXAb+nluMGZqsyKQnkJrtLkB/Z2Xy3Y6r7yO1RfB6qi8NvHcLqdlW12Wbd/Obf/1G6+BPpqwtXJn60Xt9hDowtLa7N6rW0tns0m0eizW66e4KAZxedkqAKtKO+YZiV7yIihnliUQhng1oESfirSyz/dQmoCD+6uzfHN3KCJtziEoZHA+yEDTfoGyOGrNNg+s/XakabQQs/R3vDP6dZ8PFm1lfbkEnEcprI7ZekAevY7YUwYv5gC5tIc3UNQcjMbqNa0G3fiKG6/0OLsCAcTslfXfZCQvno3J7vck+Y/5RRC4WqI225vQKqOEN7daM13jjhvc0zNQWN+HMgpU7y8spGVRHKvxFmK8bPrOArP/rKCwOU0jvVVtRpKPIPpNVZ37lB6OACJitJLv/MOX9+3F/W37y//ft90uLtTTfp3jbSrCb9lc/80fVH7vrDXjbtX+7Ktn7Yef7NqLe2MkOCIyRaVLRpPkT0bVaB4Q2d2jyZa9IpR2ORdnqmBWJd3Yo7eDIasIEQbUG8u6B/Zrr9R62m0Y6rmvA4GYMly9Y2emp/h/VIuNfzJKsW1gsLkhbR0JmG1lWAdOm/HCnD8z3OzZhtZsPeBNhpeSJEXCHW2bDVfjHcuectAmf0Y/+MykyXNdBIdQ5LwLuG2GZ8tZt/LsOirenqVSDPnhiDmE/znWWlHtANUv6zc6Lrr5n/UKZLmcByGNVTlUR8YJ4eQAzzy+OWOObleQYRwnyjxQ32s30XxbqZMdHvl/PLejN9w2Q/vonQXefHts3/5y377++rH94p/feHusha+h8SHOHeXCassyLFpS6h9soGBGg1b37inkHFPNhMA8paPJ5hMGdNmAyhgYa3JtrteJmVETuXVvS7t2Vq6a7pxezi0d89FeDtFw6HGKQBOXppYUijH0u7OoBqHc+DXnuXUOHThumIZ+MoLuEu/xLAOwGH4OyEf+Igy48Xlye4CuJG+gu+ujUYco5BjWuvMEd3aRp5A+qxNKjgZW8A26U7mt1v1dhE63uNelUBjRauIsB6KVL1gvbdNjCoxM2gyZmbNbr9qzm0377NmufbM8tMfHUzMxLj7/h+O7GtBz6/W9ncvvruIYk7AI9K156E0RViuP0mYiDE6nUKQxemxsqHF2QB7WE2g8NRJdQVpq9MY3nDZpeBDtWra36TbntF9xsrBi7ChqWkDO+PD8p7TZiNrmd3gvRqEqv+zqW9LYTQbE6+Xbi+iZvivjcKdCcpNkNhTq43oWJWTy/nG+vPlhYfOEZccwYuaN8VoBvCIFcnbI+6l3yRBj543L96RQZ6TFET9d0ehTYLLVAmmGk+m+FqbGptdXGbPSkC7tsiXg1ElG9KktDTTFAWlyTR3s5LB3WvZ0rzNrnl0Y4X1PzAtab1cUyAe+/9DuoMx0puf3NNnRdyW1YlRLGOs6V1jH6GMssFq81T5I1Uou7TtmjOua0p91wMPYotWbVCN5sYna69cTWMV4gxm8Bkq41goAAQAASURBVOrm2s4GRiAj0SvjqHof5x9Hrh20F0Wqj4fWDg50Ywa0UBaYDg1crhwb4hKh0eZWStBCvUNUHxNoyJRniz5ZrbUb5aYnrqzFzokGjGJITESlQhdp4pUXOXAcN7k5XXywJXRZFBeHFdOyhnGFOYw6s2gDp2pVODg6i6bEdIznGo/65NmmfdIW7f7GktJ++8ev9ozvj5ktx5Chbd9tV+2rT3btJ5/dTfoCBbdW1Cn9vf2+jihSGtpIMFZpUFFI+QSkNYuEQW0ZxxvSqYfxS12s5TP1cACtahkUNhFAnTX1sxqdZY5inIXFJEq2GUPoq+vZMFbfanRuBkpE4+D0w1ZgSrkr20wp1nbxPZBORVPGobiWumUNiqjH7vsLCZ9lKDIi9L5y2tc5mxyVdRMsRLgTPn1M/x6vrIBroQbF5CU/Tznc6/w9207Dq3OelvPyfTDOowNFlqnRjJiuZjLNZNcu217Zl5byi+QZ6G8V8M4Or0k/nNvSIr5WpmMtHx8OnvL97TcH//f620M7HNGuD1iP1KPIz0xuOuArQbj0fu5wMScqUZnt7452fQKVeq33TAd88erQgKaDPeYQ8sjn0hPWMuASa0D6cYOPvaJj/0YZWimbI1J58mFhARSi5L6ai0bWLKbUxHrEetEDbpXG8+Rew0dJWzCeXQJpHbmP7FCkfByX5FioXgGmyevosYFMyj0VtFyc7R2mUcnSE+ZBbaU1Gsjd2J4QE915Md/Sffk2T9jSAarKckJ3MnjJJXV6EUs8AhH1RcHJeHaz9lp+r6NvBmx6fbwf4/GHCLR5Wzar9u/++JP2+Sc37fn9FinMRM32TSqi87pBCj2vU7ToGTavx53FhGZSSKS8R8rqXJoJvT9icNIouhTJmcM9cJ2/N69RGkcFZMAYi5PwSsoLhpJmuQet+IjkO3kjeOMMmAOKMMA1+nvH3WokQRHAkvJmUXvsb8x/nYBrY42R8D9myKKWeLD8AxkcRqLeMZwlY7pKpErn2oW46t5DSojRibWpMATiA1pgnE4UjEr3ngoMEzy7nRWtIWshIkFUBPwzT8NZOjjKcXn0FG/zie8sJXOxbec3y7Z/vY86LkRe4AJeeJTz0s7mbdcYbExmjAvltTgIpCCrL7nmPoJRRdkZgaJ0aC8dFbENJTg5MZT0ESW+71su2uiFSk8Pscdm5rYKvH7Oi4NglEaRdkpFzFPxStqZK9BE5baUeBv/Dh7yw6MhwTLKb1n3x1SSm96XfZK957IBjwWiKzMyCNK2NEcHa9miBrFzoJX3So02lNOYxXB6eSV42Y1y9llEXLYsU169jtQ86aARB+2Sohd6j9WIC4wte9x3GTahBHIe1Gs7jDetG2rh8a4aXd4LBhFq9X/4ctv+F3/8vP3jL/btZ1+jv/Yfjv6wabvfLd14/uLZqn1yt243a6SvCu0YskxTnDw5/mL6N4HrsQ/XxqMXHmEVoJin2Ub7pWEchINirLZ8E9Z576KTg0hRUWNhpSWffy9QsoqaCzdkyfSRM6C4jysad4cAHoNNhykjXR6Btw4BZke1JaKKl0vbmePdz4HDc8s+uY50b/18B3+QZxsRyRxZQwQPK9HxSJn1tOJ5BVn4HlX+/io+m75vM7PBKl9PksBzB71EvLBn+9Q1rj1Tzo1wcpQIdfcqpZ2eOXjNyJV+EyVJ4atEpP/VxZ3Au7ulz5/pdk67+p8jDS/azWrp9f/teGqPlg30eu8DOryx2udje3g4tVevTu3Reu6yD/2Oef0Lpu87F3JeSYelsF+EYGptrRzMbOXAZcDpHMpYwhgUsFXXATvTqOlEt0h6FWOofTdnPeY7+w9zHmUM52q+9WBFLAMB5bJyK2WaFD9QEZ9FN5qLmXRviDnB/p0/bS5wfe1ePpcEgEMk2vQdOYmrwS41tJdDur9o008LYz8uy7HrmeUDJ0t156EzQU6Xip6fY3rXHtVjS66pXRA0VZ8Sgh8Rcc94EWhCuR56XdKmGc8/+ezW8QL+5dW+PR4W6OTybmT0URzvbkB/kJOGl7IUsJ/+6Hn76uWttzKQcHIR6nqlYkD0NCkoFj0dFfGJtvDdU7LOSn2QBySAuhNtz7HPXk65UmeGRYgNm2qozpegq72nM7e03GK4p+qnYtwS6lJIih1KUVaurX2u541EcKLe63WVufK7OV/npEZlqMedVuLU32HAoa6dGkvU2I3/9D7VAAvLrf9bhhqj6Xa/w+kYKcgAOKmGQJ0+rPHWOtlbSwwDlCngTJ4u7kwZzP60OPm/pUUTjV42q7axdlXmu7Co5uOxnQzwJowTIIJDTCNdTZG/5dZClVVpTMGdtcsV3K2kDs4YrH0tU3nffnEZtcnvpQBPvMcOqCWFP6NKk/2RVwzUkvep40rDm/XCPsf1Rv07x70DyAsgcD5f7LkjpNPDAeeu7L5EQcWcgT9Uh4NFde1y6D6Z5aKUOTegS95fFA8M9NNHo2ovZ6FnEyjE37HXzKHAGCAda52jHIN73QyCUvbhBrVrBDKyhMaNe8uArgpSXQcZ0NecgIoe9hks+E7AiF88X7c/++quWdblP32DloJ/qNHqD1ummw0iz5/e2b9l27p8Ibq/y4hiXBZrL6SJMi88owIcxGnWQP+s7MCcpubwtOwWoh/PHaN9VxNP0lzVuYnOjTGmWzP2JOtBu+iYIrMIycX4Ew+AuJyXjLZZJLnKupyH5Ihw6JrDDHgMFpE0A3q9kZPwHDzKsm/dIGIGSE/7pZWil1Rk7fM4OUrd7iK0ZSLf5lh/+6G5TMRz7GdlhsgUrmuSvKVG8evwq14wtx/Tyd0bz13kuZorkYpOA16i2SP3GSRQjbrRqrVMM+hMOEgAHqnov9H+dmkGNPidoQ0fXp/a8cFqnU9t/3B2B8nj/gyeZNcvrZ3Vqi02i7a5XTsvdEQGcw4LF9UM6NJSzI2o4xmAYEObMa2dg5ZRFQDIXDqT5Y6sUdDuPgXdW7Fec2qdooa5lDWVdXobyUSsNiK5ytUv61eMws6ILiufWUyCCJjSOV4zV3voutbTTKeRzR9+vYkww/1gSzSVTSADZmpxCtsmxjPygRi/HBlq45X03es36cwz+S8vtsbg/Iznwca/rj+VmZp1S/V6bj+XcWbY0VioyLDsGK5yZ0Q7rd1ul+3LT3btcDq3my1L7egYnFuCSz9lH8Xx0UagK5GZV+9HL2/bjz6/azvr92pFjup5TFRtpLGs6K3PHsDqXRkCSD2d/eZiRFJuwe2zjW2PKprCokY7eV4ZcG8w15QOHdk2KHpnDpwTTA0e2TmCl8cWnL0YV2XDKR01ornagBFJwp0sVTjmZ06gEjAGXMqqnIZF6nz4ONRqg/6N7t3D4HJvM7zr3ZypHnOlGlJKwPB7cB3L441pWoRW6y6WiyjJiql3eIILbA9bSjGgsRAphTkNSo/yvsHmEG8nP3+zQR/E48HqkSkQPHMWNc52vQGPbNZmOC/92sd2aEerzbtdtoshHzuA8rldzBj3KAdMlKC/Lep3T9YE2oSOMmglsAXwo77MQa8F1KYawP5VVbeyL6zRAFKEeC8ZiQyxGFr4ZLWHGgVFmeKrEi1PY7d6UWAYJLpz7wBRTTWG3V+baZYEIJMQcq170S5bvI/SxmIfss2VKxcaI/dIxUlVWQT+ygigC2WLZnsdImvtmY0RLdmhDg5bAnwFa3REuvbS6NLoiPqPlykgtTtSPZWm7sqY1QsCZdhIwr7yNH9m3EgDyFXPtEOxCtE0FlGppuy3OhjRcFIWYHbeIM7jj0B9j6fCQP/Bp8/aerVt//DNuZ3/9tWTitXHeticGSiMpbv/6OV9+/z51gEys29wxFk7BWjIQMSdAtWZeB+WvmrlAcZDmLngtCVQTJOtlmHhLdssEkj0eSmQhdGHsl94Y5bfgMTQUsXcf6nkRUlDf2FEJiVyKsgTwMbYYs5AGsnn0hgopUsaoXhiMUjMKHeHwekc5T9R6lCN3JzESF/3vryHk7dDmqwZ62n1T0enrPP5tRNj1WtHmT4+JRxT9TPOfzWa4915KGI/3nnOOVJvOmsTdPp7ocAaoe3OFbJ6BRZkn2iiUSPy19r51dF5HfQ7ZGjZz8P+6A6OB+vVfW7t9Tf79vhg7RytVt1aVVkWDlKv5SSEw8hStRHVXt+Cp1o9qMszRuUcjFMp9xaY2aEk6vBw8bKqMbKpkjfQXpilXiufCN+SxZzOGpuJz9No8nTtoqPpn2T7xA8TrUNZB11roqnnqKFIOFXe0ULS+WnADd9XC483HQHr5m4amX6z6qRKJdnGzmvWKeNCFx670vRH+KWG7JFa26+Kw+jqMXufOVwWfjc5+W3iq/CiQZnv5inSymcORubdAV/4Up+izxp8psGYfvbt46k9vzPwnUX75g162zuOwB+OPxjQzmBXi/bDl7ftx5/dcdObYqe64yUVtpVvFi9nsnpTF4Tw4nvqWmnZAKON6PAF+Ag1CT3SYeatZN2hjgnwABWFLpIWb1ERQCmAIqXyGrFnPSLS3mjwU0kVCqpSm82ArF5IN729WJwKmDR1phqDCdEDbF76M9o/6N30Ht4T11Eoj+20OFDbZwis+5cHQLf4BuKL/hGSoSJKyHEozVCrjjGt3MAzo9SPIpyCodhPpc/669m1UpY0KoJssHZJ0U0H83LD1NJ0oXQGujaj0aGMmN1iPSGboYQu23a38e8tEm3CfGk7dWnC/eT3tEinpcpbiyA3ti9nN6BPZiDdGSK3gaks2umgMoSLG9JhaNkr3GD9/J6XS9t6VKrvASlFrUuBZtp7rEgRhNV8loLjM0Rk9/PxQA97GqZQFNdQomKdEtm8yska0Y56QdUVDtJKykWtVYq7DX4ldzhxTer+qvva/2Yk9mxRe3NKHJAOH9F61TnK+eCPqwlatY0I+kMrEyCiYEdCArKFnBuvTmXIgzl5rXBfr433haJ6trprv+/Wje2YOzfspVNR0eoQ8s/taJDANEAsUuPOL+NlDp5k0fQeod7ng1qh9l08BIMDABhbayTbQ4mMG9lSAn1ZmMYfY2M9OOdOKp39+8HLdfvs0/v2n//62xKJ+bg84G87FoxAP9ut3ID+6tNbNyRcRhEVGuVJOOznkpHZWqcqbRII2kjfxn61iFemJlo0G04yrMLG2wgBXwQGtBTPrLfzwCd5ITL0B2RmlVLI8UQ+jO/rXtUbpGz11PLawqbYFShNINK9NNgk2yE7KrEFIjLuWxvIwCu2t9NYdcso64qIOujbXvFgddRj9Fntgiz63CGUT/kSqyq6awXo+ZQB3eXuTGzhJ1KvuUbyvVS+fP2a+ROGV87fktSk7nT3iug0001NfjvnMuPXeIqDtrW2P5ojGutjrQKtLYU5Ew1V22Tnwxrgif/yL4/t1S8fAW5oPFUkwHRtGRqeDn63hgG9s4wDa/+I55nzqMonpIwbeRlg5KKtrd0k+0H379KDuyHDCs2VXC6UaREdKbqsLxJQUn/XtPd0RLhxnx0JuzWt8yo5Cv02S4CeWuOrx1CjP7fifVZYfjOfxaIM0II8PtwvNbU03j0bxduTqQ0XZLXefzxqZkX9DEELL2fvP79SNlaHFu/Fn8vvaD9LXosfjo6MMYh09aiZlsTuNJle9Tnj1VtrZ7u5eAvUbx6O7fntxvVTK08xgW1m9B+O72BAf4hKyW67bj/6wV374pObtjOFuKR4xMYqPY5NOUgAsOqpTqOwCnTNmvq6ip2FoQrNPVsa8b5vcx9XxpiFQ/MMQYIoBF0RyPV8pEKxRs29wXjfYIKlFjuuobEgIVDrZ3NHo6dopFnNvIfmLt1+cz22cm0ElVQ9l3qlPCfT10MoMNUulrC4R/t502e4Z5Te0f2IsZY+oW57GYiIDGg6XdSDz72/7P3IVEAIK6C7y9GAQ8YWHAgeKXLBjhRJR2i2OV9ZL+IsCfD2Gl5na4BRiIxYS6vz8txOVqdrdOrRI/R3BiAGnERCLa1gIlAeBe6U0V/ReNYO0wrW2olYBLzD9xXdSThrDQSWloal7EpFqZnuS8CWSr2jQqk0/i7Vu3wXrc2q4Im7YY2SwupGTAVn6Y4QGpyq8dd7GB0w0gALlN5dpnMyluH0YesE3aICHGXEoyoCEZGSF13Ff50YrjzA8Y6B0cC666jLCyMB58tQULp07WlvvxuACOx4ilgCIrkToXt27idEhVgCc5lBDR5YXJcDg4WNtxe2bN2zyFa4ANV5cWnPblr77PmqPezP7eHx10c5+VBk3d122TarZbvfrR2B21v10DAjJhGwMM24NUcN1wLN7BJ8qx4gIawg6BhCwIxyd1IyrVWswVFz1VNZThYeYQzRkABfIDpCWQRVMMrh42mRETMX3WeWEcQqezsUvuNPNv4Z8oUOxVqqUBDE0+jNVFq1t0I6sVCrYfZsvI92qVE1HdVwMPYnb31keBwW3bR+xNbzPS16bsuleAxbKnWEWOat/hu0aKoU4TzU52yJHRlRFZsk54hueLZd7A1tZK5EK8BIlR+GF+2/erNr1IqQCF8ziDgNwXJzbGGDheODmYHLlF0eeTUjlaVPWseHx1NbH82BbX2gL219WrTD5tTa/uK4AK9e79vD4eQOI6Or3XbVtgQFs+ibBQ3MYDKcipV9DtaKZ/rgzPlfDLvy1lkAoPMTqA1/l2wdyRjDy6B88DsULICk48xqgt6Vs0y0lnmTrGZQjIbioHdG8mU4h4uuNjg3RlVN+tFVo7IOqepsoc6lUY+Y0/Q+EoOQhBVFu+gINWW7J7XuXabjmRcCcvaNzwI8Qj+BNX197l6da5I3Tp9ztTGkFxTcHl5Y7zF377o3xSF9fxLHpao34Rxj33Q5GqzBwd1u1b54vnNa/eevD17ycByzJD7S46ONQNuWu9mt23/46cv2g09u/HccJB6vgy4MKgCmyMTYtqoHlsLh2Y70JFcAJUdkRtAJhEwUZBSXjYrK9L7aElJGeEIxonXk70qz7tlpAULSnQPcBzEr7A0V2RRjW9ErGqj2jad7jMxdTNojCoZY2mvOveBXRJGRwLd544oEqNEA/AS+axpUPVOzfxBOyjSQEKtqfYH61FqIbw338wiyBwSR3oj0LWC5msBMj3GOS0qbg5MskQqp90bVlc2jedBN8BtOmPXXYHjB0Tyb11W5Z92Abc7ntt9f2mHPmjBPq7x4lNlArmBAGwGS4RNR0eLd7lX1zkTZxkIpz5k2m57pcDqo5RrnKQQqLaswygSWRRRpgVWZkac94mNStgafZcjgFp2R46Ma95rNCuzm97A6REc/x74yh4KM+KSdRJ7t9lZ44bGnYABGAlvwhdUGUS1lNIA2WKZgKfi21b326ugqovUb9bqhAFTxhQ9tXca4FHptuyocVRLgiKv+mRxSxW9cFVGbWweHgnB3d44cHtU4LTZSADBFrRuiLNYWzf7cCjXM2mH5EltGCjM8unrlSwIwepovsk+6diGc7HA+CAG80pTGV4z8UNgYSbeIvM3Fi9tF++rlqv386/ZWA7pzEH3gh0Wdrc/ti9u1/9tsAVgH6kgniIkhAe2k0UKnm4pMy3EJ+Yi6feNBxo+QKWH8I8+PtO3VlAZBPkoVzb0JjEcY0v55WMUyoIvRXFJ5o/lpSqx4jo+Fsgv11Dqv8ONqfBZNWtFv7/DH6DwMLu4+B4BeOqCYyg+Ek3KUAU0HpxnSxwcY0zrH72Lbyx2wi7ba9OBhklM6JpFnrZv+lVZ39XPnB3rm4GiPRKje7s3vS0o5IrvzqasUa370afrlHBmQXXaQdIv+vCAZXJCKjDKb3DlttcyIrFlqqZK8fAyWveXpL5e2sfaMD2d3JO2/PboB7cbA6dI2Dv52abvbVdverzN9fgWk9fCaFDpRpHnj8Aum51HvCP1N/0pn6Hg/tfXLdXb069WiHRaXdjB5XyY1VCr2nDZHbZ1bYA8MOC0TzJuc485pQqswoKeI1XMtX7s6TubYaI5gjjpGOki9opY7SK7V/MkOE4PyWCn7XdJT0OEw9itG9DhCOeCRlTU9A0GPoosQRDiN2+Qd16RMyPeqvI6qPp1zcEjWXLLhHsMLBOV1PtBSlkidYIy0r5fWDz372zufWS3as926/cgyl5bL9g+/eGzLh0V79chMtQ9fjP7mDOi3zdXbiPM3eTy9Nd/leii9X35y337w6Y33602vKza1BToAmgLlXB7GEkuejMCVAtFgfDVWXCSoEAYDLiolAEReor0CVyovrzTxfPRgQGsDDnszaic9mp5XWIQPeq4xAlwRNaIuuJDimapO7dknj0AqA5qL/pcCQjbMiJC2Db06AsOl1hivlE6FMNh0/64Gt5gWgbad3MIdG/wOMREqPeW/9Vd5YNNxwVRZTrCuNoeIRWI8yqtoaOetz2Im824LCRey6ly0U4tcnADS44oBIoBe1Oxp4TLgkMLm/zrvd+3riP7CPg8EfEKmodLk+aLVlozi9p7C1fdSWg3s5UKZRbGBnVyIvEBZ5tXWOmvjTPrwcAKAVXD/YhiG8yW0p3BqKEKEU0lfg7NDSODIrBA9yRobiJBgWn1z43KwJ3qgiIsQXdJxdJbqZGjctsZWT2RKmEcRLK2f9cRqzOkGfpkitsbDnZAmlfXOiNVaNoIs7Vj1WMIy3sBEKx60qGXDPUIRjumGu8NdYzRkUKWBlL5I9fbaZSstsKiM5orZK8QYyGwWHJ2hVNQrRWp8TDSQ4OgqYGkdw698eNm+eHHX/v2/+qz95d+8av/4C+sNXbn09BiN519HB/hdyrzveljds9U/f/Xyrr18tvHennZImqidTzWosuSCYDFFtsQ8hc8njYSIB7Nft5RypIMLNTlLBZIQJDfFBwllMzOxkfKq0gwSvSNka3eUvqtFH+c9mWtOYyOzzXrl23+qe0F5NnQCpqJTSYahpYhxvQnfs7BBN3LONLQctVwOsiF1u4ukCaE4qRSscJggRZEk6qqFrYiT1kGR0HrKWxxKrkxPouI9L8c892CG9bw6znymePd44hAh7RKHJOsLayDwofFbL0sibotApaxloDny1ysYuY8mTo8oinHtxRxLm1VbeivHwreVENfV7VNTCMMPg7HUVzekK6I6DWUviegycjJMHllT/N1TaLcrp2sDcCpXdO+veQ79tDhDo/62X+Wu5C3WjI5zGfOpEZXnRhrieM+p3hklDB2yQq/AZq/16ZGUn5Fe8QXfkmwHGXpyBZCdcRDEnEmxlHz3E1LJG7MBxlm3w/aAZWYW/Et2NklAvqIid+ja0y2W+QL5GDoGWF7TZXB1I0td6tr8odNH55/HNdTvJGfNcDZbSMGMzKLF35bO/fJu2x4PZ5cnVnoS/Lp93Bb0RxmBFtPdrNftp1+9bF9+ctPWDqSUmqwJSjs8ETG8e+d2tF58lOGsVuGe4+8mpAh0ETp2MTjSKDEFMb1wObKaRpZcINGvjXjTnqiia874G3VPeeXSQ0VDxlM3Vu10MiXfWZUr8GZ0KXVFxmg8n28lUJcACxsYlw7UMmaLA34a/Z4tEuU9NVUrXhU7tRZRBDcC2rVWVu10Lm1DhV9ZAt5WxJwEAk1Qz2UJ/Yz/5dCkQJLRWK2xR0et37JDLgFtVa1/l+u194S0HqEdyIIZ1G4wEbRNUVWmN/r4TofckqfWjtY+I9LXLPK3cQPajQoHTbEUbevxbB70NLT0Bl6/uliBBI+o9TaDHIoaXnK12vjZypCQAwLI0lkr5fNKqWRJiunhSBMo6E/ebPfw8CaKltZ6KhL59m7T1pt1u5we2oG9KgOk3i9QA9UEYctMECmHam+CjAgJe+0t1V/31NjJrPxFea1pfYYtjYis+iUbEAdryZ0QrI6cER6m8ZsjzfopGpCMtTI5W+3Q+djORj80oMPHoFZhZ2Ar2K4SABv9xU5pLnLZvuYS7Z70JsQNKHvf3sCplQIe0X3U7nmWeUIwhMsEpjuUQSn65thyA+V0cNp/9CqoS7tZrp1XojYaCPLu4GO7GIMEtGwCGQVwcmANkWuROZpmljuFLbcwvBlVqg4R1YkrQmlj+uMvX7QvP33W9seftf/+rx4cFBBcenp8DJFnHS/vN+3uZt3+/Mcv2mfPd82674QLyh1vveNMR6Z30/EDDb07B/eQkEuCA/BeOjgtBdAMTqcrwU/ToROOOskM/if6+A66t6ImclArAyVa4BHATHxcNdWJoEsUWWdzvFe0Ysrn2GH81bOmNCdMbTTMiQrEZ3+bwRPlPCUjrabwIhOGEWnDTUhMvsxG8l7EcNyHbO912dlDoJBwQKgN1mAlhR+SPAfQDZzIGjUtl4X6ofTOOL04wvpzfe7khKn+hNBZsm73Whll4jTkvUdDwp3BXFfPtvIsKqBvG1sUf3NfZWvt8cHaPuLZ65OlCqGe09KyLStjadkad2sHCFtu0NPZ7uX3N/3P5OTEmlH2WDo/7JTTHuihym7A3MHwQu9i0oSCFHat0RTXyLPYbjZuqBzf7GdNFEqAzPJSXXBJ5551SpS1koEa/k8GBiaN5oIG+6DLeGgX13raCdeItaVsfSJhSGPJ9xXyN5x0c8/oaac3OVW+Zzk4o93v/0of7+nYE2xrpH2UZ0E/mUwIRXjFp61HxYvoXUQDy50Y9tdZQmj41C8ELhg+ECKDr+kQBBCtabFjCSrudrdZt5sXN57l8czo0pDuTY9YzMuPj+n41QzoceXes0m0TbZeWQ2M9eu1Gr9UAjyiFsK7B8LyX6OtMEFQwiSc6aXM1ji4NONK1dDJo9Sd1VtUyR6bjeKuO32ooeDn0Rx+5Hz0NIag97TfGn0zA0G1ULq/jOPey6ya5CkgQz4zeDCtkRqTV91VrRgKYRtp4TXqnIxMz473Ezyi/jl3U+RcdTNFYSvjW7yFppXi3jk9tCbeAsgARQpQWFBGcSLon72PG4uZymvnGiNDzSu0SAeaIXgFs8DxOFMM3OeDNMuo7fV+wkpdPrkx72nh9DhkoDA90abgaiVp7bItEQw3ZfF3AqtLh6oe3UpifI9onZQTCyRcew+LPJfUswyJJVr44IxJDAG6ULpUtb6XdXcU+pykPke9ke6h1OSkM9AAu2QONqsByUAPJnol9+DZ+0PDaPUogaWVs3m8+wboHwhXGNtB1XphGSv+7DBEkZDgPxUaUQp0mY5U4N2VQDaS9IZHZ23ewqwT6+97oIHFGnajP7gnwCPgEMn6dLouwriFAsAdPaxFuF+4oScR4SHalvpbpn4bzbtZ5h70hWNY3Gxau12h9+rxO5RCxzOeMFImx+X9qIG+tVIPpU8Xx4p+uaYQi/Y7J1NoYf15M1me/aFob/dg+tbGbK3yuPhH3jbWSgr8y5RAK5exujwML6lmonJyvMLDQK1rkWs8M1q9hJMHPME/O9ea7jz/uDCahHQ5Hk8ePbR9pHf1+lxik/rzaME4RobSo5l+PWf8ZFRz4LOMYGovVzmt6fYfVXYV5XeWBOicnH7IK5hdUHnUeExU8SEq2qWv6udgPNdzZTDHK3CILieiLI4rZkhh7oQjHyZf8TZXLK2y6+X3I6ACIs2q4+ZDdW2CkHLd+H2lBTfQFLHmQFXCYBlWCg7kmvabzJ0+pp82rSnAm9C7l84iYGK5ahPVSVd4aV271M9S/+kdFb3hG7KhrGiPQxKmWmSxyCE1nlM1rPhviqxUp/if6fpT5k02xvR9ldV3jaF32Cnlbr42kZ3H/dMppPOR30yB7x1XclBId62363wxVfcZB3ZFX6nPj5KJSgthxsBOGbg25Z2yHiptDFZ7ONhBm7vV0v+ZTDlfFp5t8TEfH2UE2rzin9xc2vPNqa0s+nY4ugfTI6GiZdZfeiQp6j+XbiBZ4z/ne0NNn1/HKJTXEnPTCbM5Ik3DRusNg6cJEnwyFew0jkuD84gMLGKJR+PWzTo3qpAjbHIGIGlKc6Ui74wF13ethgqDSc/WUCdbj/LuwULT4i9eWd2/okjCIBELzgg28qpq7Y/3OnY3btauIrat9MEEcaup9e7oCIYhTaVyShNiR3hsV2t4QsU83EhfeK2bpV5n+5H+PWE4A/UWQt9aTDEadz75fW9ubxCxWR7dYDp8u3fBi1ovPu+EtEUIVhPKJ0R8PT3RtDfLIji10wmI14Ya7+9q6bY0TJXN6AqoFW8zEi3jx8fKFHB0ns719IAra/cwr6mu1m5Q9rvqkdVWxsdi6UOWMmRezIO9H1KJMcteXetakSLHMiD1L2mQoGCkrayXlUOhb43V/xegYiC/AgxWjAop6gmOVe7mWm9ryw1ahFkNuhnyu42lpBvo29GjHMcHKOgOulHHTzAupwdRGFG3QXasQeX7eH9Ppz9EqmDsykBN4LJMUU+POxR/GLwwduv+FN9CPHe53Dp6/Js3j+xta0aGhW2MD9p6mIbqqgyQ+r09EVquVSpxZHui8SN01ZcD2HKHsUIsBfFQB57TZgnlIQW9t5ghOJr9d7NZtO3Nsr3YXdrL7bG9PrT29YhE9REeL5+t2s3WIqTFcKl+qiekTZ1/fFCuF6/1jgTjlaOqljgcwReKs8ra8127GlSTMiCuJ4idtZ/0dM6lZWa0dno8eF7QtXfS+3o7N8p2j1w7gnamidoAbQ8svbtE8gDfhw5CZumPRvtZ0nM8Hb08w+5rvP/1m2N78/ro/YR9txwv7WAtYI7gE+HgJvgkwMP4jh2ych6qXx6A8NHlwSOckOPXDu0xGZ6R4jx37lu2TtgSdKaP/pV6b5SUA8Mh1oLI62EAy/nHrgx53mBUhKFGHsckJW9+6VlgRhDGpSCfTV2DDMQjzCFtp5pD0CS+Bd6Wt4vWNqh1Pq3QBAF173Ae+/V0VPcTxIwB4/eFtg1UzFFM2OPZotn2kkdvd5XApt3Bzg1eEiNHiuEY3IIfP7w5uqx/MB3DdTfqoF5LU2HmO09wrFbGFPBcwJz2Uf6anai5lybp53RNFqpnJ+8hsEqwj9TpwsHqH3BPz9BeZooPJRb8hWpTiWAP1iHHQH9CN045mqseEf426Wh0joVTxLKryovOO5uyNEmZqzktdMYXQ9sOlRh0J5t+pDK2Ich07bDptpp++OR7r7F/ZnuD5X3ogw09H/wUOpbTnTZ0fdvIbADeib3b892mHQ5nxw9o7pC67oT9GI5fzYB+y4RN/Tt5vAtR/LYOqWMGGPZnP3nevvrktu2s7oUeZo0uan+VwhmCQRBAfR6HorGdeVg2Swpg/vTQW/XmjZ4n3DwCzqFIFs9SAiRPUpwkIZ+a66wiLK4/v6e4Ybnd4BEOI7lzic8dKuLQZF0fz/iNvJ/xXehPlcnXly4Il6zvrspBpp3RQGREo4JS5Lzke2p0uha1QqzR1BBCyhR6MUXO60shvKxXs3uRT3N1vTQGLU3QUsfcgF4B+Thq6/DPe6h62nBGKGNu7Vnedk0RE9TLuiFaHAFsUJEeUs1BakUTh0gIAE3mGIkKj6vAZYrGzJujHkzwX7yVG89K5crwA2rCCmUohV/DLe8TxDE4p6ozJhws3TflRnH9PI1mbWgBuYt7wv3i62N1eIZ+bsB5XgvMuY5yiapg8N5lCPhZ2mEFbVR+kxkf3Xx30aDYDLG2uYZhSlBJJMUamvsBkTMhKsuQkmECtFGUa9h7gvQLoGJMeo87EHSjTIiCrqxSDakqWa6iethssxErxFdTBor9/ux20378+X372bfH9vW/KPUxVPtCq1f40AemCHz6bOd8RwZ0t2WGo49c5czltuI88ncYAnmNGz3Gc9UstdyryysqSyFns++X2FNdJZWgQIYxZrSv7lhXBK0+sYg0ENtlJgsKn8io8NpGgh/6N+HwG6NFdF4yg8iimeh7jfv5d0egb9fWiWh3BUNMGyDYLaPgnrrL3uyTJXJ5XnSK/svMqurCXDntISe0bzgON3Kq8wA3ofOw8sxiHcetgusXTIq+vrqOMwztKvfKO/HR+R6Fh0XWgZ5dgbVohLu8ZJQdvmSb0/CC0sDjRQT/lBVpc258zIzc/cGs0pU7KuCoBi8PcLwkHwZFCq99wjGVZSyUh6WFlNq4qdWbG92UGxbjMGwVP88cAKYDGJij3wbzN2fEaM5mj1zs+S/HqOW1+9S1Hmtyu2h1nu/nVdWx0MNowIkWZeABAyHLs2pJFx5Zos+zY17MRKFJYxPcjHT6zgZorxw1MKQ9IryJoI8BoCxxcsrfaoHb6aJ5VEdG8OoyzAyy5auHI0XvVINgg4xUksqi1EJ/9tzKqy7t06837dXjoj2O5Yof2fGRRaA9ZNQ+e/m8/Z/+9/+hvbzftpsT2rSgrzCVZKHvWmqm17+o9RA2vjtSbWN7zUui8RqqMVKggdYR9qUQlq320T7DDTrERGeEMp69wKdKlVrIJU8VBK/V72SETAIvPaLj0SvQpvYzOnRBXabaNIhBzQGHxFzSkIJRVDazgLzkHr1YhEAu0mImDLs7+U56e8U8vJ1TG7zbAUyjCJr9xPsAwblOoYd+mZpMkCMapqrZ6sZS5lEo3UrPRZqeFAdDyZbRY1LbPOCWMm2MBYJuu1u2m9tV2z+iZ6TThvfs9XA2l9X6Nq/8XAhLAxE5t/X6wLJBMDqbB2u34anZRrvubd2QZkA3mGmbQ3jj28bqaRFVgRAibXM2LX7odM/0N+VMyFj0tPASAZYiKAMuvdtpWwv5Wq2j8Ei8l3vnvQ7YkjlUZ6awi2kPVMgdMXfs+SjjM7wWDKUP4CBFueszI/yFyjll1Z2OswBTdBwpz2qFRoUY+4e0bDjV1u92a1G5S3v9ePS07fViHTXNcMA4lm+7aG9ImaMiphGctMdtvQ38KWUyvrSgsEO025+oqazSMyha4Cj8PO5BliLaNuXRBOG3j48etTFFEm1ikC1xsPrk87KtThjf9sZq1+26o/eOFsBiKMCuBaaKPSKIstFb/m3tYCiOTh5PigZWHmH0Vm5Mfff+9DllWJvTov3k82ftP/0vf9z++7/6ZfvrX/4sEWf8zI+vb+VP/9ULn6vbHYwBHYPtm59XjItIdU5D0g/l7Rak4wWjwY5VSGyP+LILP6teMwNlxkss9Rn3oXMpy6SzbtmuY5Nj8QbfQs5DcXtPVbdzT7nckohSjkWjoRwyomY81yJ8QO5HBtp5CYN4GeChjOYsWtsbIJW3rkLZhtT4k+37vdU5o1WVvZ/m/GjZRgEtzrlbAX3ZjGfDz5DOUbO4AGRquCwDKFNZTzSNmz98F5SorvMHD8GmEY31zZ4DMid8bLINCf4SiT2yfqSWCMhS7zY6S5jV5yWofYJQZ7r0KbipM9TU9jDbBcRG8DDPwrX1dBBClCEh7Z5qFLMWTGQacJi8Le48vJzam/2pPe5bu92t22KB9Glbc7uvDAVFJa38z531Tn9J3ypd6Q0kyMJNZC1QD+DYTY+zWtTdDhkjN1vDy2huoMApZTz50g5MQ3cj2jLQ7N+c1V69C4XgnjKqVY8rvhz6ZDjw54iLLfGuGHl2dHh2ogs6YFSvvxi4tES1xmTnQaSgVVyUrA1p65XM33YET7uM7TglW7C+naEqP2KRP08dHvCwEi5h14g3pi8Lzptq7Ho5CvjAxnSKmZdS5HmcZ6dTRtsdkb6YFQIKFvq7VtXpyMpLmJXqc8zNGd1OFov2/G7T/uMfPW8//3bXHo/H9vNv9+2bh1N7oO3wMR7vbED37GD00/zuj1/lmRDIZ+/mYykI1uIDERUh9A7Kp9J5I6231nHlUc3C8GzPnjV8UlLhMrgnkJ3Re5fgXVffr2NgJW3kymTg+xrbyfFUg7Y3PmLwwQRlXMTPMoKolx7SaX4tMJ9alxrzlh5g/7vIXv8VL9u1O9A4queOUzO8KhEgBYCktEPxXQfKGaIK6msq4BVyss7gLMit4YV2JFF4vfFcGvzRfzMHWQLTQbvZA5ICei6aUXYzFNlAu+OPoqZQ2wxnpda9GHQRua4LJG9wR5PZFkvziqglIgexEpcZT64bTVD2Oo8s99t05TJ8JbqczEJF6h2MzDyKpOvolu8ReW107DDP0iPr9CZEtC4iBeNeKs8Kqdz3je/3IN5NAr6T5AMa97vxyb4kJDaYp2KrVYg5Gg0zQuekqq3oTq5bMFvyM2lNdakSEEzZIHPMtMNKkCWnlHBPbbd0b1hQlq788vnOex6zaVw4Q97GbX4fMuy3fRjqNhCAh/1qv8xErepeyN9LpkvJ7Kj1j+DzyaOiQwQdNAG0ZOn32vetj0JXlmMGYy9Pyxg1Pj185gh2JJFd5ACuK/uItD4mS6Ad4NzdabqV6LQbapQJimIDL43OdQdHrNkZabgLfMr/iaXU7CiWpuTr9GAU1+Ca8kFFHMT6FdndcQvuy1DGs0Qt7LOcsjJeRkqJG6nrQofR/Jf3u7pmk52Y8nHoCZGfF2eP0bqDdbE22WQ1dIMcs7IOJBs8W8jAUw1dmOnGh5W1hvSwShg3Sh1GSRszD8qQqh4xroYi4zXQmrMEJ6fAxtxpwZp2ZXZgD8Hxr1r2+i6I5I+O4mHdWdmW3RASQO8yIuAXp5mfo9IuEkdeT+qUnI3lCQ0t9aLKzTs+P8ftS1eS7mQ6z2ber96lu3VkZYyr8y46aD/QPhultFisdyyyOJ4rZPby6Jp1A7zQ7uY8Tfwmv4voe9kyvh6Ml4ifun7pTqS8bpwbqQ40n4PXCMshppw0aoCJ+rdi6cKoP39Mx285Av39mtrl4tx27dy2l3077w/ttFH/CMH9ZQ1stFCpRD7UYI5ee29nUZU//g5jSB/3BkScXYxooKOWCKxFgkYhqGhg5+7PI8Rq94xqOcryMoHAxgVmBLoikKlto4EBII5TF8mMtLdoGaXoHcLZitNpTq4Zz2DwacTVGpjRcwqmjrp0TBej+8WAdkbAGg8PV4RjIGtfJ/NWBFCm8ym6jZsC4CO/3+zWbbuDYAX9gAVZv2VvwXy5tIcHRJKtzhlRFdTpev0oW7s4avPW6oPP7fXrRwei8cjl8tJubo15Ldrj48J7DRsz8z68DvZm90pgHrhxz61Zfa6jh+ZcYL2Amy790Opz3blAFPXw7vp84d6gcSjJUJDRTztSr4c5rP+CNoLtm3dUKb/43h0HC9SooSbW4jv0KLP/sV/vvVZ72h4zCDo1q+xZocRD6NVe4YiS4zQ1NkkgsQqQZ7SPiLpFRYHk5U6StWWfNM8y8IwWr3GyaNihLdZGe9hvaIend5dSLQuCiqqcLVwvgdJpPxpN2N/HPY1y0adHgKK4fYbGU40RqFytc/I9vbT6fktPBQr46zeICWwWB593C4Z7osXFvqeyHYqhagbrE7M2XZgKLhX0Pt5Pl5p3qQsLNZ59e43QgF5uiN4GtLdsx8O+HU+HtrzZeSuOT59t2ie32/bX//CqbY1P+S3VI+D7JIl+N8f9FuJd/WqJQReRP5GgHcnvk+8iY4V7kGnKQE7P1nCLsofs53oN49EMEn+2oVb7Gmc0Q3wnosrW2972/5r8xCEbUHNXa6CltHuv5U4T10/ya6ZxaB+x000Eq6u/CfeGfC2Z3Y6WDfGWyLRSzdVuGlEelOr4nmEkyV5d+BRnA+Oz6I7VPtPLZCLWYQU2qHve3KCHPJ5hcAM4z7ph9MYzfkb9b4lm6dqaLg+dZN41JIRyR/KX3C0y1qNQJQsu+C/3qYAo5fQNzGlT2NkVIuyI0j5njDzXo2+9le80Hj0oJ4xNa09lh4Mb2a8HgX5y7YmxAaywdGJbJpcVe0CvAd6Ny1ZL5d6b7IVBi+eAHy9XxGjgoGMe3J9qZ6orBnQhrZeSrGSQ866uR22sI8XKMDSQxu207w7whUGatMOBMpwJilrXWF/vy872UHPFxTFfTNgYaqGlNqRsFHqzh1C7RbFsE9TNkl+UwAkwXGHsq9866D1XclxT7U3PZOFTAJqWa32xbKtwyCDdXg6urkRLfeIHMDORMnR7vcs4T6NVP5WdcSXnp+oePm4H3VQ2jWqEmVHpDgbYHJ5l4ueLFnoDOWZ8KEWsrM8dVWWPG5/3KPcBfM86gLg8Zite4yvhPFJZGcEPrV5fL+FBl+XZI/3AiiBmhOm0jjFkkWwr4dJ+QceGroTrIzl+Bync6f373R/F5Wse+c26ffFi116+uIUS7vXIPeHoKvzrERLhgct0E3wswC37lemCxejMKBvugceWKF65P4DAlJLcR/bkRcc4QpwVi7GOZ3rMRuDiZUsdUufZnLlP+SnhFIpLNXJjWAnyVPjfZG1gtI/e02RoXVB0fAf/pUd5ra3usW7D4wZBnF92mtXsy+fwh/TlaLWVHFtzpOhe+k/0CxkUW6EIbdMUOAOcUR0qDNf0Ujer7So1+uGwrUiVSrccproaKX19YjoOEoly6rwIw7LLNuidvDDCn6C5J1ZhPLQPXJ2uZD8+tHvN3ks9vefUiVXEdSE0IVb2Wy24miSau36ZstntdygQLmBKBK8Xu4rSCveADyNNh2e/AvZIi9d8h+NmyhrkFMxKzaS+nDP1uYVr3HyLR48EDlGW6HcJOh9RV3O96oySm7pjhMBBhb96RKVyBEXdYj56Mq5rmGB9FzpXlu1mt2ov7jbt4XBur6ylTLzz70cK/b4Ope6XFuxP7IleQYQh2aeGdmYL5WcUQ4j90tjWz8oGOrqntxNRXEbWvG4BDAzRlJIVUR26HeH2G1NOVF0266sdPgseXhzoftrgm9buAcuRnB4igmylpTG6IU3k/S6DhLwjylumgrN/Rekfw+fiB1EzHIuQ1J51oXmh3iGWK4bUS9eevRY5PwChaW0t7d2M1WRBwlHQv9FIuVYiFl/PfjSoLJ2uZCU0AHhLQ0bv0YneIjsVs/AqKKdLGDlKNlMaO0pR+vnVWno2wQXPtqCBORmrcaSsA22rzmnVyVc4YtT1DYGSPq1f76wGjtJBtYZjpFRGfjfqohRFKRwXGMCTvQ6sOR8dcZV2k3fkvpSKKQklPVpO28n61z2cLxF6h87pU8z7CPis6iYHhwIpkzpkOt2KBRu8a4aPPClNSnS6Aw/lLCXgqbr5JI2gDPSpm2tOi3AMwqZtEcmDGQSY7u8n7j3wazmD7GrTPw1H6u5wanc7lPu92R99z7x14B/Y8XHUQDvtrNqXn3/S/tv/9OfeH9OULLJKRseIasioh2ihymv/3cBzJBjP8NKYdQMhZT8ZwSrEqtY3qClFPYSdArCovjegn0+1BPWSebj3flBm6+jcO79ERevFkEwKc+mjz6xhc4YB5GUJf9Q89y7iETnSDbhizFTvnza0fWI9s7O0RCAcEgaM2HePKp3jO03JLRT8xQnAPGuu8D1+sk8IJQz6QqMPrVpD6X383UZvbbX7yJhQxyuJV4ZHj55Vwx0v6NGMCCMYsdUqIxWGNfV8ngQKohnwON/vEB395pdYD4vEIrKoeDa8gbvNsl3WC0d3Pa0vbWHhZTO6D0v/Zz0x7fOzoX5SeYi+wVZUS0rydVRUVI4f3wues8v3Nlq3XtK9YYn6GQKaFRTdRUkfQt1WTlYgfPoQ2PsS7ZOhiBdh6DWvQmOOGin4yqHc5Lw4U69L2AWnOOpIo+c+9H6PXC9B27IxKtDpq9IvoJLudaAYOn3butkPtAp7fDj4eqzXqIneXM5tdbm0ve17d7IYoJshYR88E4B3wJ7x8dkmXAN0yEOyFg47ec2i6Fe9tcMs7Pre0DNfWAPonbTpNV3IHgkgF+80sLGGKW2xAR+8WS2adeA5n1Zecr3xPtAWNTsDNTi2Jvml3bsqAWUvQ+G1GsMj67BYM2ro8WyLhUgMogyrM/a60xYj7LHEyBP2X9ebTVsvNpHu6DSzbO3zlzftf/1vP29/9/M37f/9V798Epn4YziYFBSgdDo8qmAAXvLFhFJ6mThzM45f7lshB4av6/av14v3C5zJW46ZY+VIZ4iwHtBr0pAh2pp7zICVUoyVJrHcEpaCa7X7cGLlmPTe2jZVxKCe3mjSUJNLfbYDohWl12ufjYZhWNiehtMKrqk1a1ithtprD/eXdrD8h+OlPbw+tb1FoVVLHdlRFfE31ya6IOpNyStrRE5T4JH7aMU136fXI3tRVwz27rXedk/iuKTBQEVbCMxo0kH8hnRouCznOlnUVwq9zw+tTcm4KmPnxHtXCz0Vx/nGMjQFqFauURQO9Ltst4iQhCFjfaADBIzlHUZ3K2KmRL120Wncme28xeSq8Wn0j7L6ajnvMjMQARoFgI0OX+/NoZrYC6sAwcL8ehrsEn3F1dzAeuwujH5d/iOLwcZhvcO9jraz+Ix+oUO5nuM0CiwC+Vf1Tl5jP2QU+h6TscoWbcqswPqpB7weR5qwaLg9YG3jBw3J5gyQ1uqQ87lUz2zqhMXYr+uIJRogSD0IDnlh8zUageHMH8oEx0OZK8ZVPEhBI16ZNg78RyfD0px4xFaoDo+KbepyK+Zthj8S9T0zGlFr73NINcsCJR5JZhZstvvEobKEuUPdfqau8HSK2XpAX79+TOaMf6NRCHGO/AWgC9/dbNoff3nfPn22dSyIX77et//p779xhPiPzH5+dwP6u3jv584c40y/82jAwlDklu3li5v24mbdVktLxcTI/L+hJPdR5+pF44npPeuM2WLsFe/mXO14eGbHMarPpJ5bQn8Z7a0ecz2ln82n/ECdvtPnsT3pCQ55F9wjBj2+hKapH428mMOpaq8zedrIF956FEYcjbg03L5ut55XLx0ZSaAgRuRjpgidQxVDjNQnN1SQ8qw68woUgToq3SJ7kXo9ltfOxTclys3aKAcTo7PGUoiZuguwB0YaR2NfTuFurpIeIyrRE28IOTeK5byIG08juUF7fi0L43JCc9ry5Yf5lJc8d8+kpqleNyhTuvds5KmOo1vzcL13BvjVe1yub5DiToiIlltwAg6sSm5k2+ktM+U0b8p5LesRw+gyA9KzrnTb3ogexz+E6y5Z5oI+qhgregibwYDaVij803ULp1Bfotmzi9k9rT2Ben2w5Csbv+zPfj9mpNrW02qhP/9k1755cJSpd8hx+DCP3JOZCjypNZ9n3yWTJh1+/b0LCRX6pH01UYBxrsqO2ILP2ycKkLB/vjvjvOa+by03dyjCU6O8erUaQaqfybiDMynxRdKRMLwno+XOAyWL5QSNOlS+syZMvq7iF45DJ3ekLl3jystWrIBusjJyNSfD41GRkVBSm/2Dskd0L93eLyTOQf/UfhiaA950yP/iXI46oBZowpz8v6iqS2kAAyb+KjwnibmWfYkveIZDGNj9wIPGJbjjOukxo3HBH0Uew8hZtPUGKa127ep4bg9Wa+XVbtIfME6PYlcjvGChYL8RWLNEoDsnRzGMe0memRQzQcnOeL6mo9e9rp/pd+gN28DNUEp6eUgHohb3G/ZmyMIsVJiP9CaQQZ9bOJx3RYHN2v9+GVVS1M2BHAhWNunvlowhKDWQ1IsG1XmGhhcfPkmMhGFty+lRZhBPmBG4MebEeIlhiBY6MOL+HpIHc3ManEhZB+V820o3m1U77M4OULk/AmvjYzw+8Ah0RdU9tfX63D69a+3ZzhRCJL8k6A83N71Oqr5C/VR6MkXwYBxD2mshIrREQDTUvJfy4CpVEumvaSTjb9QMZ6ololJegxMbZOwjmDtPtar1GNGQdWT9Z/ayxIbRvSSIGPmaS0OJCEV/TR4pOCM1xqWzQICYb+zvJwWvHCEF+s/AhApjKW3CJC1CAI6OimHu/f1YGxuo02QcqHfNCHTU0RTXrnsyD/DIh13CnxbB3RjqP+9t3sZHAyYx5FnWGTkis+U/HOXQsairoS9iNmRoB5o15/huh3TV/WnZDg9r1Hs6iKukFbU2r9nitFhk0xk3saPlplyaoWERlXXnTEK06NQ2m7W/y/F48Lrs7NCac6/ltuiuK8jWD9u83Bs8HHXWUB/qXCvzQ+9mtZMpsNNDjs8yc6BzLJhKMukRHdQRERAZtB7tpkfco6GsSZ70hY57cS1Y/28RWyDi2kwo0wMwrwt3F6M21J5xfGP1RdYP2UA31u1idbzeKxwpxyIYPU17PvanMWn2nNZ+c9AsSsjOqy+E8CgbqMBgxZEhOvb0UkPQBkIuNAb0ffZ4/2rRPmGEUtkw6FkrTIbKT3oeiHpB1vebQuk03Pekj/RK3zuZVRBAccw6Ue/qvqY+9xra/6A2y44ffHrrKLpG+P/3//IL9NacBXb8sA9ke9S65XkDq9bU+rTSgSdFD/2Fe0Qt2BsmPxlbJgiOEARConDv+XlnRtIO57Y/2z80WtY+VrdwW3UjR2unZvdcHdGFAS3i0tko2bM/nXx8kcUSBhcNoRI1UgQTURXsC0eZN0yKwcnpTtETIpGGgGzGvNXWrqyzgrcGROR5uzUwUqunbe3w5twOxuP3Z28/pOh3+JxYMygF2deHHSMQEMwMLaPbTpwrG6e08eEtCy/u13YiU8MQTaeev2vtpSeNmYjWXuOsciEleGF7+wt6b2uqWqpRp3TEipZbi3ZcVtAQyZr44WfMWfbutlphAatBRkv/Ij8MEc6afd5ss0Wmi6fTR79vRkeNdVu6zfHSlpul64aeAk60cDkOba3d4DVsk+XSEbPNkW1prJvNqn364tbPcZ3gdG5v/ubYHg/HcECDbRvvNJnPSCcjwVZXPAYKwwgq6OiKeMpj73KG3Ql8vWjgHIU3IcdGrM8VouB8Yk/nOiAbrswZy808gh01yNwbasN2xQGk++kabFQoOHLwVENs9C05P7LaanPyztmrI40T10gO9aOerWs95d6Atnrnjukq9vna5DyNZ9fjSd/yEuaetTjGmLWJPY3+7MURQz5qdOsORGUV0Hnjte+ktw3neXY+nvhM33gtvdEin6GsD89aSO0Ive0dA4fZYc7vZfMUPcizaDGB91tPPWjP79Z+/2tYCx/68T0yoOdctNc+/W6HK6HLi//brCylIVtldMpycb+lR7AOsTZhnxI2hHX11Cr3g0JbNywv0b2fPEbB3fP7vl61RM7i7xyjPJ4Tb15nmNSNcX1iM7BeakbCfrwe2+n8cHLphxUKxhUPjvDAEP7z80u6dbcWY21qumfTozZHPdUJMNaUyQuKn9eCpOOhqEp9TkTj3ECHAuhRaUaQhxsUgdCjrUfcqAJzmVJpypu1MCIoj7qnoQS31OGHUyF9mal4DUpXR6e6TuMqPyM1b1gufS+hE8InaSXyAgI7QHM9K9UnxFmN9fylhI/KNaFI1xj15LxUPrtH9rPQ778gZ5kMZRhMQzXlGcKJdUjmKArLlkAjXN9p+lemzEuxiHcv7zY3X1Oq15h1RbeJ+r0cBggVYsvSi/RM3l8Z1L6E1/Z/P5l6T5Bhn0+g9+zePf5MPjtHHdNn43wDTzHBfruFZ3x6XX/lx1AbHQ6aipQ7Ry8llbu4cXltnhRp3/H56AgCHblSLmccMQLcID2fXaEN45lpp4qGKgJthp0cQbIV3M/DTDH15522IhyObq9zR7NQkBw2o9Azk4cxmEOTrh6+T8ctWbrjhi8NzZxPylDu54oRkc5erVF1fs2/SuVZIaL5nzEKpRO650SdZNe3AdeHLM29C7aZkeu4Z8j3vuZ6SI/p5nLycZfMN+g15T5uA0pGC5yQGV4RROgHHmMEXyZfC5CQck5xfMezhR5fsEcgy2Fg2z+1ToODUNFkGpie4m3p33DWaoI8REI+KLoLg6YqJbxnNfi7cQdh6fR0aIcIHmus3zFSKBpU1kWU+ZXotvRgp1XXD+uc9zpyN+4AzO0DGX59rUbiGqTMH4ivqIn4fdptI2I2w3pjqqbZayDGK06A4ZWqbJ7ou3UMMzyl6hLd/Xm+wOzGL79zJvDcfMQe5euqbCXAJfXF1IbQnyrd2GgPvBVj48M8vkcG9G/jsOU8tdvVpX1219pnO+vpaHn6BvAAYXiwCIzX8qAeGUzUPDDI5w9iomt9vV61xXoFIUlP8RiR1AbyZiqKuPr/oYyoDiJSXuj6d+9O6cGsMkJsJGO7iE7K2AjGS08Yhs5xkGluvK6wRK+4AdOJX6VMtlOY6LD0clb7KEpqNQhtzvBg4i72vkjH69saqRbT6yfNC1aMVj8crVqpcFNVuxVvKWrZDAGVRo0EVIlw6HrV0Dp12NgMcZUosjCGiaKpsehFGUZQHU7oje7BQz2nf8Trzmfr5WypXYu2vVl6eyrv8ccWwHbx0i0tAw9DhMWjGd4LlMqG0ZvN027pabUbqz+yUix7xaOBPS3acgsA9aN5O/eL9vDIWt+CgKwX8ndaAUl6vbb+3K09PqLeWsaNRZt9zjaYf0eR38vDrWho1gM5tiSj3PY8lC8CHf1I+FD1zvS59agG3PvwxpfMDg/kXrxfp3nsLVqO3t5CxsZ4fEcQpVeRXCQfKzqa761ezarSTW9+Kp2SzekcE2RqGuA2o16v7PNk0VWrZH70s9dt4zS0tZQDQ6neP7aLRbkdCXnZFj5/Fo04NXPdh+HhhnVgA8c/ROIQJcPMgZdh8qyJKSMxHoXZ+0A9kyKKT8VXgHLswExSuEnH9g72P6u1Pp/tHgkK5URW+gATIjvPUCZIdfAgVEUfAfpI97wYPxJ0SCBGzPehQW61o76nL+t5VHwp1I4hsewybQzdHvvq3HarU/tkc25vWmuvj+C+H5+I14GIh29/7kX12c6UQmRiGa6EY0tMtE7VR8rgqBolUvDjfCrJD0SEbXsrUr601/tT2xvyse0dcyRRbli0ZbdGj3vggoAELeJkXcE9QkoLWk5BoGwrWlJbseSR2Q5FQWV5jdU7IrMBEVn1D9Y9gPYPzIzLifLBM1ZaOxhozmnRHsxpeVi23WbldcY2x1bHar2DjYfvj5f25pEdIrj3hL692vQZAYAIoTP2MmcyT50f+Z6DEzP0gl7lFvpvdZpWn+KEagat2CPBxcjxVHzWTNdyTOkmzobojfNIV6GoWhtqh+4LVSsfCrWIRiqsC3adWLS1Y48QM6TcXbblxBDygdFgsz9d+Tf5ZfIZRrGNA8bBirIbSPIm07bbdXv+/AaRR5YeLDiv33776DJp61lXhoK8abc3Jl8PjnQsrQO8rhjPRMlPiwXf+zO31m1g0R7fHKMeVQHo2gHDjfaKpUNWhyhoZlFdPdTu7mx7AhHLvfUtDwO62mLACTHjSd6YLn9QQ5h7nBxhJLqeDlkL7ISFu3lafNFHa/VQ6AzFeYLOFflgkkvsf6cJdsiQ/lL6bvAatIe0VXR5X+bI9QchrpNu3H4YnQ6WVXIl+m7H2lDTWRbnhj+zSqzM1OjsrWBfRUXpJnfGgHdSoMO70oB3CVDLK1vK06kdDZckwDmnz8TnJncvbX26tBsDFLP6/+WiPS6XbU/gvI/l+J0Z0L8pL/93ix7gXGs4/undsj3bWUSCXk3eq4IXKf1kLiIN41NGCNKoak3HeISn2VE6CYC1AGhQzT8J+URhLS+ff05QgYzZ9ExQHsdRsNIvCJWfG9HfUw+rArH39wbz6T4vHqn0XpXo+jAD1VvaR5PSg4nr+4LJqvxM6pELo+1cxeX+uKQw01I7nAs4XBYMx5gJzhvT5CPw12lmdSgEZesCmT24BHpFowVEolgPN3XFDkoK8K7YQoOeb/93IigbjS+l4jnYiQli2vpP8bCIcqu6YVCFI+0rWh1lqyS9W6eQVmIZUGEFoJfzko6Q2E+dvsh0ajLxms7dGVIlPbNK6vG9r3GHKoSrYhBmXSGZusurx1ln80ZdWpgLZNX4Gw8wgWoLtxrrPacZCbkHKtFrT+t1ZSRTqYJryJlGd/t6h9jHdZ/T81/Wpd+JNQtlOsFRpT6pexxH0EcI8swpB1f/ZudrcatpKcZ4BF8hLzAl+H5nhvO5vTlWDPKP4wCvHd5aEaqI5sigkvNXhsiUv8Z/B2VQ903CTX7u0WFvVQUD2lJb/Z+DOOVeMD5mhnAX4YpI4yCrNRaVOszKj07Mdhllbix33Sxy2A6MGHtdslVyIYu7vW6bSijAFJHSHRFx9k9XvbdkvPPVVWnppGENhk8/v2WvDlpA3QbjlhhNJr1tOglLRHmkm9q3XUbxFW4Kx6X8ZcWRXoxpn8VqX82wCCEHj2MPI6i8p9pu9TQneZ3ZE+NDFJxIGcefth6StQwkqCez8RFzOm3Xq7bdAOXf39vAHQv799Zn6u1N58V6tWqHJUp2oDIVTa6AUnX6Tql2M4Pe9JISwA5LsK5bZE/MbEvXEca1GxxgOE/rLnrPlltas6r6hXx0GddPdcxLFQm6Vy2xE81EFJsX+v4q2Scz0dj4q3SpGN+9+8nB97MhSuvvOe6zKgTju5JRglGZpCnvMHNnzbb7feWA4bxmL/ArqGFXLY1uNq7O09wRuq0kgV1Cp/k0mq+yPXXsWLSN7YsV/62XnlmksomP4fjAI9Amqdbth1++aP/tf/pJ++R+2263iBR5gMS8KOu1E030iLUaxbAMUH/XuggZ2wsph42HSC3SePwiutEoQKUQe/StEGwPqDQqLvjjWm2JNqgiMHGFUp2Kg8BOVP9d1Ryil3Ofwjo+xRnUmJbiPYxZZ8RIU/pRU0xACFjPOMJMlsNRWFlnHF6wmoZDKw9ODTofxhotubmliDmCr1ikGBxq8WxlXTAu1pEJUJUYvfl6vcl5x0DxCBk/jBrHQ2nEKHUrxklPsXnHV49232V79vy2Pbw5tv1DIpHLmEW019yjVgsMr/LN7cbrq7ZWt2/Pb9vWDpd23J/a6fGEmq2dooqWYbFo7U22PwJNym/LSAC9nlb/asdmvcXnXk8G1HJ/LVd8M6NMaMioNU11KtZRqfl+G3DhQN8mp15aI+GFwjuZyg9EcKCQdumYbl1rnfo68FCAfT1gQHYCbVDqw6k6KKmZQVJ/j7fLFDgqVn6Gk4R5x7cYwtFQrW2QZzgydpvW1lR0DO37QJ6x9TBXRB+i9pCDrNEFV9INHdh/UmkMgLRa81/TolVd171qGKXjkWtKxTfs8sI3RgWPjgJsOzXdlZmTVkstM/EsBhn6VenvHAZU6qkcuyMrgJFScFddrVOr6EMA31m0r17et//mf/Xj9tf/9ND+r//Dv3jt+cd4CGRLelkqxb3Wi8yogrlflOfFQEvo1T5V3xyV12pNST+nw6mdj1b7bDyitceTIdIjYgewbHgDbX9Yard1Gdhsa/cJjMgOR+tmH1v/JgAciXRbDWXbq4Wm/COxC/2cWKOg6yUjbsaT0CmCLfRk5CnSZGWzDlWPbhaPFoV5OLXD3noIWy30OVB4LdK52lgWESKOqNuvu5T1vIEJMBj+5ZgY0gJ5HIwqTz4pHwxmR3/PmDamATPNWR0Xwvhm6nq9iww3d4AYnyI/in7dEpPEaDAeH8o6RcEggv0iGLBIF1Xnj3j/0G+m7+KfDJH2yEYqnUZdIrpzGs42/+do6ou2W6+8BMQioBaAubnZtOef3Hr6NuqcTe9hYp7q/92QO7UDgcO2VkLiOtK5PR4sRcycSOyxrH7MzJ6ziGSM3ZMWIbB8GWwOtkuvwT0fD+ym0L+z06rtEXdEwfBmkleZ2NSLgLWBTZCoOx2RIUPC9BdGoqc2OFtLMXMMYj91WWU9VmR7yd1eW030bbVMCMfVkWtk9ecz4KCom57pFz900PHvwoHRO1R8z7OLSjcmz8rTMyQHK63OOybqk3Fvdt4p9/EupMR00HZyXZn2Rq+X6p7f/RAfeeoe181d4i2wgxCyGYhZ5JHnTfvRF/ft2d22/fLNqf3i1b795d990759tCbs7aM43tmA7iISv+JiPn38Ju9Z3ZLLdne7a3/0o5ftxowNMm552kJxZFoblMJeqa2Gm/rz1fqTFGK5yeL5g0DrhPws8+9rBPN+gVPYj4mfgnmXC/gw1ZNp58sJ4O/PssxJugYjfBmlGJXVomzXYXQeu3y16I89RNs82hHnpGFQ1yCibUx7V3yti0gPUYRuBXn9ZXyvEMRKKe1B1XSGz7jqdZU6VuhLrUw6AcUsB9VGG+80x4UJ3vVm3daHEomLOisoHxon9EGr10dKj9fuu8TF/R3Ux4SXGd6e0cuxK12L4wolMSZ9FBBI2cZjzaOe5lZX3htRVbxnVewi0q4SAT+lOEGq8SZAvGFgvRNpPNjeSQKTdeSdGif08RzxQBdZ+oCtMdbazkTVQtPK1DJEmJFaivFUZT/TkB1QxRUAtAZDmr8p0uQ1hQdUNhBRrmLb5LhyzmqFahiYnYqUU6k+tRNBGc8Q3fb30px0QCZaz8iUKedO9uHwnOEIyuieUejAoxKgpWpM1JWtzjr/2/QU6qK3N+v24y+etdfedmVqcH/ox5j6jj/k5pih9YjyJs+P36gY1nnHJ/0RTpBicFm501G1z0y59hYpAQiZgEKWBt0nZebTouay0L5+Ju6FZCx5xXAf0UofmS9zoYhk3UelTjrntryfl+WAl1orHLQeYkstN+TgSKxOsAlPVgp9ZWwTYh2iX4MMHnFSrivG06P6rOPRAlP1VHfMvOs+Q9S6e07wkjTGY+7dWCDvKBfJ0RG6gLQcgirJgO55Ps8sOkQa1MlXYkjDu4pzLWvkmc9JmYufFl2zFP27Wwu+SP+gNkLmrX7mLj2pGzoQlAE2WXq4Zyqg9llODX++yuY6RzOB12q017wMNNSncmowFIe1jPkvzqSYa0Z+B3HJ0qhet5s8KGS/1kJ9lEWpWUdb1OVBd+O6xedVj5UONVQDxXtOtD3dLt8n6Dl2/sx9JNL6+0ivqTgtE39WJ7zrZ1VmUa7WR3PKjdZqvLlKwe5RycLyNoFAT71h7ugy7KiXzTjIx+ekQ12gr5l5C6eDOZKat7SyEz99tvNxWYZlexxf9sM9PugItNUbms9z045t6z8LDblNZ8hzuQkggiOvVWeHU8mJynvukcEoTzOep9ocfkYvrmhUdVwLIffqCSE4BP5FBmzE64LDqlIyAiuDWrsQ3l9uSKWLa+yKMJ1X2QvUXsB6CAvVM7ik/VP6shAGkxt7/bWlGV+E1MeqM6EdMnIEZnGZVeQiNYTPhD3KulbWacDgZ80tr4VnTsaTISIWFJvCx0KpH733WmN3gKjPdvZXRtpuNAyOOfDLLP1K61gVgviweI+97zLGb7XV5nS2ahqr9TV3qtX2ekR6tYFDYGFZEIt2/wzVNt4X8HzxFhi2dseDdRBeNQvK2PMOD5d2fry01c26re83bX/at/3p6D171bd3sdi25frSNi5zLaWGhvHpmIJZ60KFJ0lAiOLsR+mIq2Situ7i4KxfVE2Mr4ujb/NrD6RLEUD0pdbKh8GjNWQihEdp5ATw/YVuhPDXp7FqtKg8jnRklXV3OicCPTe96qPQdz33pe4U6dD0HqSdn+UdpxP2ribycqwGr1dW4RpLbLGvvE83RmeeaCsY9Hr7FYzDasNKWfBSAtv/3geb0a8qNQNYj1FA50foAZ4vTAP0Yoob5l7sCkI3G1M4afh72XOYEcH1wT2VsSJ+kUa8m0Kxp2sqX0Cng5fkCrFtkZ6tNP9EbA5kdme2VmtnGSypWognyRnoSgijQWn/XRwd94++umu/fHNom4WlDWdl5VUb5QM8hAmA/yqCWC0go01FKwcTpSrxBV+gY60zupJqbx1N22pUDQ222U/jidb/Odvi4UH499jO7et28QjgM0u/Z89o447OG1yO9vX4CE5O3WfGrcJYoiMG2T2QW0qx9rFw30v6e+s2lMt2tb2x/fwBRKhXHaPFH41/W7eFN6f25vXRkcQ9Vd30j5q2DUuL85d0WTNBZGzHttb1pcwzcUZ+NZW1l/rlc2bRKW3T0Hw12RRvHa1Uow4kwlruQEPO79xJYuvFDesI62X9xC0Y7MI/JrlU94DXm7OPLrqpSK6JN80fruh7WjYAwcJwtqjxatluN+t2d7Nuz+6shnnVXjzbtPV21W5urQUBosL2vpbQYk6hh4ejv6sjX8/tBeQquay3KLw7qM+Xdn+7bvd3a8/MOB5N7qKHuTlfbL9A58Lne8s4MyR4G79HZNGhI1oh8X3NfnExMwCzhY43AEPB4U1eH2vPGmTiDUhNEM0BHI3yyvcHr8cf0Yki5OLcQlTDO0VvbjO1HRsDSqH/9kC5cEakY2TG9+T7OdDk1ZLOaWHpfbTlwHKcgN4r1N8oXiFlV/0udWcYyJHvaee7I73Qxky29pMyiZMljQcBsG5ar15WXdzSfbXH0d2AAY4i5yOtXD+1XzYwHa33+W53bC9/8eD70PCBPG1AMucDt6O/dwb022uc313lceNkYYjFahDV10jFz9iINCY65L/0vifqkK5VOifBUOIlRlEeL8evTbAXqaxHyWIL75CMOCr26oOoaz3alelVw0TmLxTWzqACYTqNjc6ALgxJY0jmqXNqo8hhWQavZ/U6xtnFK5g1pCUSQS+unAlKCZMw93lfsH3KnEAojGwYZTHi09jW/8Rk6hzKjpPHsB759+jXTMArF3onU6yQKmagdQYsBtAPgB6t1ot2Y213/JknpCpyPlRj50gt9vUB6cCru40b0e3NwUsKzOgyUJsL7+1tN1YmSK3Fy6lrdZHO4Vwc6pagpcCfkjOgn9/cG/gB48aS15D+HXq4PYOM2fmqKUF1UYqMdURnKofmLMmaQBiB2F+Z3qSfoIFOVShjq3X7Za+TlqsXNqYl6ryKJ10kpbRimMPcV1d6Tmu4pE/HtnKnG/6ZsWhCu7dEtFHoAAhzcUiyi30iAwJp8aLh0JUCzZWlGpE6l7XF4dwLY10AU0nz4j8Tp9SgONdoX02Fl7GciS7agwUArINDUE6HUMhzXTs1HQwt+o2rS4Dq2i0V88YU4VsDeIIc8IZtvwOh/t2wOn5LY4h2YLkfsta5suzcJ0HolX9WhY97Tv1ur5G+Ry1JNqgEQQmNA0qaoYBs1txaxNo0owQKaHF20EDAXqz9ni8d/+HZsfV144ikFblQ52GsmZWPT4UvNVpaPLUE8VNLSynUNMoNKO3xhPaCpliO82P/TUt0cMRTLqsULOaUhm1XOz21UX5t+o69WLOxOJfKxiGfGqOhuUsRbZ6je2V8Ib6QSjpugPsmz07+oVaXKfdl7JRIZ+EfdT7HOQEmSal9prFgqdQWeTYgMJPJZkg/N1lrIHEb1Lk7JiNbeS2X53awiJvq6rs90zsVEIGms8cAozaWHbluj3uWVal1HHuk6y1sHi2DI1qS0rkiR3AaqjCw9WRkkvfArVXHw3kFh4f7UPus31X9GmfEvARIVOterW1dX3Tf8vBwyHfTFSqCRlB0Ov53LnA6yor+t/ylRuJFH6HLCzStG/iIPK7rpvQfOS6ibTp2PZVf7SLL9e8sFbqAlJ6VY3sXS7Xy0zqBOXd02NXxdWC86luOzAw7Nmu0ZLvbbdrr7dH3jxnbcFHOtQL6sI7vnQH9mzkg/n7w8q79mz/6tP30y2e+oKjR4cYPaH4pAjIuxlxHCu0AU1K9KyNJ8gCzDgugT6j1AcMbU27k1ZtL+Z7fmClApgykGgHa4BllihukAcx+tRH5iw3CzUiir8/PZ+TfqE+kh7mmivMd87zceIraRc2a7i1lnmlUZar6dlVxT/TjxTpUXEYZSYCIxu/sAesMAOkGNVXb4xhkkmEuRISPNUJCyWT+WkTQC8Pv01wtisfofJlL7/9sStVx4R5nROZMMKImv7F3uNepkzki+rhoD7805FpD3V61jSNyn9t5uafAW7eN1WrtDBl6772mDc373iLUh2M7P6D39Nn7kk+Fu9YAOKEWITCkeRp5rHk7nQ0IxSKBQsQWbSeN+j/HEiBaLhFGFcax79eGUGqZzXur5bK+m2uPenqlo9c4kpZiPh0hjZH5vafDOV4BDXN3CDG/q1/XVmq+qZTPtFDJlPWkewmTuoW0hvZsZxXyqgzduiw6FnzCtogVO2nPOmkihcVTus2CcCUOdOkI0g6YnU4Go6X1ZoMI8hIZBIn9BstA7xuOaCo19r4Vwi0rxdIj7T08LSHFeqKxHUVaIL3qUo2JEMaKZjLKLVrQOVXZ741rny0/Cz2jaUExQhqp2Z4Fj2ZtyoQIY0c12D6neFCCsMpJtWr3u3X7069u2r98e2h/84uDK6MfwyEsAaBJ16MYyd2nQJ6tiLTX761rtBoDYZC2dtZVYHnxzBlFrMKXR7abii+QfW+2SJu17KMwNs2I8J662Q95LpW1Bj089dP2k3oFs92V2mkFsGbs9cGBXJiFeCYuKfUAxXhbBB4EHJ/R8kpte4UofQ0jqCxPvFkg/l4/uUiuzm9e7wcndBo6CpzBIZ+XiH9GSVPcO3UVaDc4J/Beypz0JWE2F/2gXJ4SrEupzpVHADU6ViG+g6Gd9BO8vpYrUT47RyWZY+mKc4TgXEAUx/yas9l63FsN/v12017cbdrLF1sv+7uxDBiTO1b77BFo6ncbZIztreuFWdVKJyc9WBQZAQDWjtKJuDVck/XC0193m41jm2w2l/b4uGinb22m1eEF5Q9mTBvmSQDS0VAWOrWxP8cYCICsvq3QqM7WTY9MwiB4flqiqjY3TJ+P6oOBFpFogOxEbFUKnnjGYGgTnAy/4x16XkXaUA9u0hySofpIRjjT+bcyR0LnnDG0PRJdHAA6Ry67lbmRyeAQpQaNupZAvzngTkpo3td38ACQuYUaavdmn3A1OUj9CesW+C+xHpkVF46j7hn9PerPSBrh2cnXs/UY1s90kYJWXqL7Tm/BH87A2CFeztJ149ZuNqv2pz980b789M6zbX7+zWP7n//h2/b160P75vW+7S018h0M/KvHnBfnN3z0LpXfggH9+/Cgt5mXWrzTFe5WbM/vbtqf/uSz9oMXWwgNT9acu0N6VK89PZx8bF7vhjg929WzA6KN3i+dAeVPYhpJRnb7+j5dMwceguunn8f5pddujRp3vjtGtCMJRFqufhTFRvcbI3UwMHMbw3jOmYAQGYwraPoh4LJ2KY1SzENJ/9G7kQtVZ4WcEx4xC8ahOk7+RO4ulbkKPJKam96PDQri/Fwzo5mS4hv0wiGWzR11ssH8kpMpPfdk+AruTVYtSU8jJjCVjgZKQsTy8MZgPi9t/XzTVtZGbWkJqZYUiTZPq9XaveSrxyNaDGwWSDlbXtpybw+xuvd5NhFeYKU8rzZu1ABUyMZ6ZBS4b5Mkb3kCbBBh1p0hGVEm9D0UFzPUCHbiXnvHHlj6e7uzxD3fMsC4Js7Iz+14PLZ1W8OArvthCDFEJoeUqwhNzKfY4es+lcHjsCE4hnuLBIrxDJsT6aAQkAV4hUAhSiX30EsMkYYfJs2j0limnFNbb1OSUMZRoME7L7IiCVR8pbyV70Wb2p8gWgCVmYIoSRt1VUU97+zqEvmP3vA+f1KEteeqUCfQUaTt5j6EUyYjDlaLH5qHA06xXIBORxkCtVJVvDQdCjCg7afVL5oMsOPvfnnM6Wsf9gGgL/Zrn9B9lQqajzRYQUf6Rkfh792dJHe60/yw7BqvA90njJ0rzSUKrgixDCTvLeqfQWmWwWoOQDhZ52Rh0mw9aoRYKdtyCvYGeI+eOzmSbCefqx+0GwLubISDWJEsyRjxgHQvzWttw9aOSPTc6PopuA40qrY7cgKEJAsdgXxXMkwcoztZSXjk07Wv9TCmMeLYZQwgE5ryGcZSl8BNR/qEzsQng+dy/w/4CH3AoI+4ycGm2udI1fcsKYCIGb+42a7a/e3KUYbNgDQe5Uaw93VeRcaWG6vu7En5AkCtKDQJPihHgaF4W2r4dr1um/XaHUXrDehlsTy6vNecAcXegGtJU1yPyGjgHBoeaJUGwlYVvGaucvbEhtM85f+cbql96aQRhl5/hD5FWasstVGnrQZ0Go+1FWyvi4ZTXlkXebN5j1K5Nhypo/ElJ4Anj/WBKKie4C/S9WX8Q89hJiczELDhJS/L7Ds9Q5dMect10b3tzxLprrgLmIqaop56OFLQy7PE3+bqs2PVk0fnZBReoOmkw1H7UrwTnQnSaYnSKZRueuvO9bJ98elde3E8tTeHffvFq8f2tbVduzRv4QcD+vt71LDC5YOKQJdIzNtPrR5po4KVo8P96Vd37X638pSDPu0EHDCCiYvppnHiUX2vvFMhvWF9oj4AtVpKWcoNoJTTstsEFqIxR81I8f6qT7Re3o1N1DJG+knY+xX4x5QA5dz29cH2ubfTIWP392AtN+aEqbLs5xgGStnQsJs1OYhXgBEMCOCuICkPOFUbj2jy99jsDF7JyFZ9dSBkh1Kf9ZIe6V+ti4ma3FVR51jrLPFJo7/cixCqFM4SJ1VB5xjDay+uSS9mOF5QT+8f+XCgLUUtmQUbrbfkeuUp2o/nIwWqRY3hybYxGbNBXSeFB9McDfHzsmntTTu0/fnQzm9O7fxggnXpKeEe0fSo96mt1pYHuWyH4wn3tWgIa29sXQKES+nIQsKmuYXUOJtDvpMZuCbUnfnnHnOqppBOQ4oKDZUk9dx0pG879wDU9bt7/P34COTxQLuX5x19YIBaa5Gp5aqt1rvCxBNQLvpxqV83h2h92CNVukAOjcJOBqcyJObkUCi1hc7s3tbvFXxBfa1J8+QJ2B9Iwbc5XBqavL2vI/GiD7ch//tLIriNbH3HAjg60R0sW8EddlwvR/DNUmgosWW/SmOLTAatVpkel5o2v2ffxUoQMaTX6hwYvdlSioCwa4A44HvuyIqUTnkLqhVApbwg7ZsjRFEWrVAYwg5Igj7QjmAqx4EfWcsufgSfWUX/p0awWLRn98v27//sZbv/2UP7L393aIfSaXYOVObDOcDLDHtDzhU7wlnZB5pKMmdai1LYqxAWeVUT3Or165WTkdBoNRqR8u9yiH1qvR2KGdtmxPDetrf8+7r3nF7y/eK/RWCFA6WqRFT65NgiFw+EcqVxZzpqvh3kZUa1ZDTaoQiNaHv/eGlvXllUksBSMWcZEUO7rnwDObSroTM5igEhYzjmOuR8uW9E9qXj9Gtf92Y4AuFlyHHJ4O/KK6RD9IYODNEsd/GaYMN/KE4MrZNn3pTOATCoC9J5WcsaIZxMicmVDfSSk5UvlSTC2goIUU66Y7Wgwxyg7GnZbm827cXzbbu/WTv2ghkHlspttZ9m7CIcuvJyhEfSihnDR+sJ/ojU61B6eHuUU6Xzz84357ZletnnxkSNpk3nsRIvq+s22e310IZiL4fPoNPl3F4Dn2MvYzlOYi5SN7JZGtsOebqxo9BTT1Zttzkyy6lRWkFHtddds52n0vRb/KSI7pxKqCGPWzqvJ5I7P3TZYLqHyUvLGCBPV8ZRvqreceF8w5MQqRqY3jV3qI11OEI8E4795J2I6GRg5L8awJ1HKyxqtegiKCz3svMOy+hj94EoCSyOsSipUnZp6BmuRDFToC9ID/sCizEBEuv9g8zKKLxL2Z2xt7l+bkF4dh/fyR/jOQBRMjp3LBeL9sn9zvfKH31x3243q/bq4dhe7wWM043uyl3qmGf+/p6J6++hAV00wXecuJoKLW+Mo2/v1u3HL3eRr58iMaPNCTxE5fUChhVH6hJdeqgr5oxyrmj0KQ0sCbcKK4lsRCJ10xREGYlBWDLTvwvLiegUor4Vq796AhL1j3oyNwPJX0pGOBTEnJPx1PlGaknxpJFZe0SyKB2SdmlnKvVZPAbP6bzwNJKBbmxhNvUmCXd3x7RVB7S2fKuYw7JY6nFMECi0gRgJCH+HAR3tjyrhJX3QT5FZBYrOyEjg5PjbO9Nl1Me+Vl6MeTAt2Xq1IpCERXXTavI6Zq91QvrWzRoebyi58PYZY39cWAjb2r4AbMzNSJtA4Op4DbWlhNlfJog9ldDvWT2biNrHevK9I9JDdBI5BBCN5TyU3sRJDinVfR6RABJr4t57rtf+8OD33N3ceDT6cH5op70ZlBs31M3Y9XrcMHA0BtsT62iZFQ8nHePd09pTrbxTgjsWdE7PN2q0NnM10nHS3Tauy2QFANIpzZJRLB8bJ4CReNAzo6tGC2YcLlfuPLA1wrkQUAhA2H0sHRxpU/4/r+es6nWv5OduHXbGwDsz0obibPvbgfSsBpUKQuwC/lKznlUvmM9I2qGmhZpklcvI9q3puuJ3jNbL2KhmBFoLLtu5HVKRjhuZQFfLwcK35O3Supmz5nbR/uTHL9rxYrXQv3AQx2ImtN/G8fvK2Jo7ug4NVOirWJpNhS7KeT3CiGO0ZrgAP2bvhbZ40SuYM2RKrEWbzXDesZWQoozunGJ0uhqcKWDwM54ncM8hGjM1MkpJVpdaynsxIyUyrwSKFunUeX/ZS0yyacf9pT2+PoGPa84qYrbqZ2NrFtP5CZKpekpE5zhWOJJynhjA5Lh75xp+N36sCGeZyyFC6Dx+SLGHakS+U2IJ6HmsUCuyRtKAxnvqUUj/TGeH00FpFdatajcnvTXt2QqWKRVBj8yEQMp03ku9vbUek/llNwqrfTZwL4sSr93xay0kzdi1sgKWDlm/W6NPW2OTZbtVWx5b2xsQWDFyY5wkdLTkWrbtzu658sAL2gHTiHb5D9pxBHePPLMkSNNRDGjQKNsDzmy6Srdks2EwStp1bc6EDUMDOvaI8EJGAy2Mt3SauOFJBTIyHtJeq2oUHfV6MYzHpanwehi0yLp7fIdWeb2RKUNeDj/ci+CD2pwDQWkviTZUUnBiJ4DQE/eKukYVXwoz0Spbl0HmsAyQclLOM3TwEfis6J9zwlQB7e1xnjV+Zbf5fHWOAYLy1ZcbaKEvb0tQ0fog25viI3gVO8HqG0rW5cCoLryJvev9rZUkLNuXn9z4vP9P//htjEDO81/r+J4Z0d9DA/q7H2Mq1nph7TAMeVU1n7l5sOG5sSuKntfR9UqDiLuSS/0OSu2IxJdKWT+uKJzsUolRq6iIoEUOU2ClM4DeprHuK+0FsAvXXcEOVIck1L9oA8Cmi3UzRVSPUYnOy1i2jNQj2LXGsPgsMljznrohYsZQIrfktMiHNWxkgALLYJBwHgxjHpHu2bXt4g9yxIT2L8p0ANHkBfLghdEdCmV98xQs47O1Jl477Gul2m5mN3jWgwEuWE9I62/a2nZLw3S5jdQgu+5wOPgzbg1MzMbqkePm0TKnWjOKKfg8Ym0RTdahpDGCetk700id2Z2hZGxW7um1FMgJAwvZYlF9xIaOLrSZUq0EA6KmhJNB9N/RfEldKnsAaeByHplj49L2D0f3dJvxbIqCe2x9/jG3pszAeFI9WKYP+b3Yu9FrpykJsFMU7TCjsK8RFu6XMk9q2thiwEWozSVC4FH6+w/3MViEXvsTzpvoDx9tr3C904ijqOJ/7hg5IiU7eksXDcPpzWvv2INRGQllT2ktMnNl3uARSi162mJOwlCQQBcPciUotTTtodgrXNPAlmN0K4SojxORmojihbWm83P+/ZlUjhxY3x0I+NzoUFgC2ofUoootXd47dbdQGo2ObYnub8yharLh1BA/+oiP6EXUG5dS8Px/TH3hluyO0fx421za+c4DDYSppLnaMAyZGojIqLWU0yXu7VGqM8D3qDAKCC/uL9IS1gE16HDuje2h6sCZ3CAnTy3dmHvLNLh7sFH9dIdlUSjdqPfUYKae1/0byj/1gc7Bkcq3LpGM0ue6SUVKVtRYqkNO59SlUw17+fDGKQIKdt+Sp79H1hGb4uz3cP/Wsi22zPTiP8+u4vrDmEOdPLBkQAtRhtFpHJUWNLf0vfF39GZOs6dGzUEMT6RncqLs2a8Pp/azV/v22Wrb7p5v2nm1sMqprL8lj7Y3vXVAMbSmPNjiWr9zN3yzJ/TxZJkVoD8AgV3awcBMLidvTWk9pm0vuHPdAMwclKm1Fdp3tLPnz/YOsGoKKhPBpt47JnQyyrqVJLhi6r8whgmSngbpTAqr6qnx+mX9KfKrced7d26gM4eKAItYyXUb26rqXWzePZJLA9fkr9rPdifnm3iv9lPiscyd6xl5ntEVTCBwF5QRhTlIDAR027nGK+JtJp844rz1haa+Hvs4ivb7yzz6XdKmKzMeXQLj7qzZY6kKF4vmyvoIKyIdWjaJJBShiivifpZ+gNtapqBZlc/v1u4MsgyOsHdK+dY7HaPx9R0u/V0dH4QBPR6GvH2zMAOaLWdmajV0eDSrrNPEwCibsX7n7ZwK2EZ+ocusvUIa1sG4woAmmFYxyHoDL2s7a31PRHPyExom/FKItqbEhgIhABNK2xkGlfVMRWOa8/Yoou2MzgwAMzYQVT0fAQy1WW465RaX9UIg50E68VgrPo0i2GEMU8pQ3V9xflxUjFmJhkiNz/pIGMFCRacwiGHU+hyLiGFOLWroY1FKPbMR6AkosA0wsq0O0GqSzYDebE6O5rm92bbj4dJevzmwXRUY+f39zq98eLVH/1RfWFPAkM6M/qkLB2Y5HxE1NKZsaU5miGwMlGSzceNj/3jwNOyNtxywK61QqrfAPO2VcsCBVbyNFcgo610UVAQitCK+UtDSQ17S8oh5X41e/5s9yG1sJihPnrJ+aRdTMuTlGXpxZ9uafkwWWVYqbz65RJRYjz2nPE62LB0hXutkNFZqsUUWOtTbG/SYtfW4L50pKzo+4hknN0oWl21bWp60p+WZUQujwR3QJVMZ64H2TTKQw/h17zbfq2SuzBnQOl/v5WP1zIYRvXYKHhhz6e3+QNNdtK47Vc6HNWq2pXTVoQweSaBvZ1hNnelsfyH6wFxdzkGODdklopM0AON04ExEjX5r9ztrT2PlNtba0PgW0vU+umPgm/4R0+jlqqipolUJq8ecaHjqMN7iPUJJZxrLxnhWVaK7rg+MUlmPZTfSQP++V8qAUO8I+sHLQdY4HoFAP5+YjwQ8okwfonKpgNauEsNe4LM8RTN4IVs0bZTCy5mvDt/qCOLmr1GrOm4ZTFNHmvYAjKJwJl4xeuuBJJDegB/3bAUF6wHCCNrkejU6P9RpXVkfRf7uvbGPSEMNx0bQ2MX9wyZe4ZCUY6A3osVz3WgvkXXn1J7Ixef5ulBfkAkgbIrxCKc7+PAby9r69rHt7tZu0ZtMPSgAEf/g9LzhBNys1+24vLTj9uwGtL8rw73HVZarvXo4OcCnyXqXe1bFREHqkdIFDGjxLDNY5VDwFlhl+Gk8EYxU6H9kgmpjlR1ikv602lKP1NklyzV053TEcDJDRtVB4D6K/C7eagTVqYxa98heKyCt5UDrQ3sW+LaGOkH8LkIHdIdyQN+HV1K5ldV1CqO4n2iJqNRzEpdn1sgraBLjoTIHtLSVpliIeTjg0BQo6VQ2j9HqutunvFuDnaZ79/et2aJ2HtIXfVpYf3NeIcByviDUIH3NEOzt72c3a89CsbKcCAbGGL7DUef3eyiwv78GdPEYFjHz9mOxaD/88nn7D3/ysv3pV8+9rrN2iugg6otBBuCPZEjhySvMeNyo6RFSBDONNdipBeCibmx5Suk9C89dt+cy3SwiTTNGgmYoUrPlBaaXEQozvFtghjT4+AjNbOynklaiv0PYlbYj4ALyTDK661FBtpsorYA0QvXrzPRazlZlDtWdVtLehiWeKDlSABDhTmFqLk5bBzGEvB1eCM4LOTZ03WBE0+kS/WpVw656nOLflbDS37qPjFP7nwnXx8PBU9yOBrBwQb2u5d4dH/CM0x7e7u3NCsx/BwHmKN4na321ciRPS4M2z7/A17xNDNO7o2bF6+cXbbfbwYtPZ4tHpN3zyveSgycoTX9zr4RRq5kO6ytyqrraPNF2gbAwJwQ8mBD26JssxFGABJXtV6LEiOQgqsz699S1UqiVcSOSluMPhEueF4powLUSTKfQnIwxzU/vwFKkQzRXsktIG5st6uf2D9bKDGiXDqBG3qHen8u1tUmxtO5FW2xNU7FaadSSB1KuP7jU6JOxASxK45lGorEvy/XBiwbFoxwyysPTPIvbkkjZerZo3Hln0TG6R+hmhV9iLqpGkgyzsgS8DzMhYnuRB4cgl4OsYC2cDWF31X7y5V27+/bQ/v7nj54i/F1k8jxA0zvKpd/j4fgHZexuaJXvJRPp4hoqcvPwValKc5VDmuhQ4IvC79HJ1rbWYzxuhGu9v2jImARbVHWeKewWsLMMlY0ioUpuKvu/ZmiWrFCnfWVW1DcRWI45BRsdkO6q3MKB6MbeubXXr09tvT6329slskG6PV+MaDqkatq3G8XG3s3/57m6hRmRdtWSqJJRreGuCjLEXIkmTq7JPZBjKBM10kWZM/jmON5C60Hf/Y/4Q3pPp/+Mij3xTMyRbCAL2cqn399Og+xkImNcUeZEbabDJ9rYF4dEYS3po8ln5OfK3LLINXrbWhq21SY/u916GqqlcbuTlpk0p8XCCkncftgwt9lo3Mb16CnXcPQAIBSTaIje20Lwj/tzeywzaNeqZtrj1adjOx4PkcUw3YOKRmq/qYOIwG0L15xs38zMCnHN2to6t3WVM2LJT0v/bj93AFfG+p09M6wKZziWpoNSTbjGXHypV7lqINvrbzfqoXtWOVHU7aQbRpi7jCgsRDgx6n5xEFUvA5S8TWmGDnSl1eUTR+jBJWCUWWc0VEu7qHoA9TozM3LyyntRw8qL5jLV8nz9op0hvqLnRMAwtGTcw4Yivi78jKO3WbU+MD2Y7+3t1vfMJ8+27eWzTXv15uj0r/33nY7voeH8/Tegf6UDBsMf/eSz9n/8b/5N2wGjuFqujOhlmgjQhi29xtKPW9u6cm4GFxZbbVoyQpuUK+MaBuNMb7rwFqe2Z5dYdNCvoyIYNaNje4vQdHMThdCOnVNrU4vgiXTUTKvCe5cNFdHhGDAYbbfhErwCWX3FBOUmOludp4NosRbcvx5rwCxNLzdZvymYEnoF8CsZV+UKaefWFNJgnopqMUaeMCK6dzo/YsxmiMYZBbCDj3Ywo5Q+QEXmdIQONCwkEFoB969+pRbtefPm0YFDDgekC1uEwm67f4No68k+Ny+31WLtlq1tLSra2pv9g3tVt7tN25oRvUOE2wxxi2ifDGDMUukdGgrGqqcaL5ft5sbSxi9tvz8iImwDcAFqKa3IiFBaejBSpjsHeE4xT9XtT9OpuegNzAQtcSHFKD72G9LCXYFmzeDKUcNSSMvZ5CnbroWhpYjvP9F49QQVKhjr6OT4cJooZQxKj1J7FdE2Wmhw3xbFshofMp5DvoWvDGdZpsFm6zBdbgmcDydPzycBeY2bfbZtlj1gdGDAMhtfE0+OMYTsAm43KlVIZWNmBTMiJmncasU2KERyIuTNirLEzxEhyKhRXdvc3zmXNQoVqYPXlPjCh0KZiP7v3ROCxynrwZU50t64zuDVRld0qvj6nt2A/pOfPGt3v3hsP//60Wvb+vyjD+vQGlokf8wWqL9CgSZt0Rk6vRdPL1mEXfpyOEMYNVbqIdfMQTwdDyH8OOX6/PtshitrZ10OLwxh2CK5TH8sGRlXgjZhdHmU0vySxODQAMPYs/29NjqB0m8RKDvNjWfvhtDaq2+PjF6tPU3YqmPA69M5k1k2M5qePdswdBi969JcqVh7Czm+cX2H6YvplixzobwP2efy7so6X/0E74KWSBVgrXonpld4NhLxMWTuZ0lYv7aQH+jAYJkvpoNVmpFRI9oynqsa5nBYlpZg7gTmF5bSO2c8B18v8ruCJRs/tGcYb7b5v71Zu9H88pNd++zFjaeeCjfEaND4xL5d2sZ4OoMRRiP2Lq8PR3fGmQxWxNOec3O7ifHZ8e1rdAAI0mB6sVbFSuD2h0M7MAV8kg1EECp/X36HPtgqXanp8fOr7kY7mbLnXHllUe9kCGdMZ5FylSPWMXiSy/MzkT4+TqdJ9QUXhG99/XTLtnxf0BlpNpqnpIPLaaTNR7FRE52vpjjImF1h+nmUZwqSxzPVMGdoxPM243n+fSybxsaujIxwRg33096KTVRkYjxjuHfxTcff/URUnb/cY2Q67FyE+Bvm+uR2EfCKzixDc9T8IvuNx93dbttis2qfP9+1X77Y+r4QGvcsb3tPj++dAV3tq1TWn1JxymqQcKwGers8+8spLWX06HURGva+jUhrGKjD+crwkKFQI3LBbNTfcKiP8t9R6wNhlUKomBjDuxOMwL07RWHs6rT7Fj75UgnKoHeUciNpU0zzrtYqfILVo1nXo9Rp6w8YiXg/3SUi59EWB08cW6pES4jqHZzxQma7AM2OjCI6MXy+BpYWyCUCXZu+Px6ZArtPL1M0NpX41O2lMGgt8Oz4KqIqQGC2VhMmfAC6jPxi1Zg5U79AWYSSR+RJjzIb2rFSbvGe5jk3IBL0JUzBafc2IBs3wNR8tJszrWiubEQOvP5VNcdFybR397Zbqay4R1KZDwSAS8OxGq8lFaynos6AEwPPVP8hRTgJLjD2lPJYMzNypQrIB29kNcVBE1xEKO+aByleBAOJPZAUJcdabvci8spGiRi+g56xXIN14N7iS43TzLC1XHNToPZHoI57Dfu5HZmGLLKHkZwpZukv6MtS0hAVfRaHgeqPg+aXuXe68wWGyD3bnjhkUIUjS3wNgGiRGBy8tY57auxr7MopQIRuwg2yVVcgDRdwM65TzXq5u1m3P/7qmZc0/Of/+dt2Pphl8/1usfHrHFLSTBGsDqd6aI0jOhXa6fR+3bKVnRxrVqwUZatYtYLR1doyYypPrz5gZYaxhYwJ7lC6w1hndLTU5AYpaX+znmRqSF5x2nS1w2HFZ0aaFE1Fku0fcRQEbqTDfZE8Jyje+ITtb9vew4Cmsm1QnK+I9bkVyYhaLfcibkQ9u3OQ1S0l43kBFP7SJqn2E65Gh2SW/W5ZBKY0m5MkU4MrQoaMWWRGmT+wOhs8BZy9mROsjfoTy4wi+8nlr/rlFuCkmIPrR/BqPcsMaEPXdoTtJRwk/OdI1IWtuvFAy/SN8ZazGbzovWwyGxgj7DHOeVZ0DnOPyfQofLx3qS/uFwolFbFH8Ow5g/qpt65ODK1f1W2qbtdfN8xbPANzL14rwKxxBFE5GwZ9zqJ0Ssj+vGZs2qB9rdiJsjgLyXZqDCRZf4S5Wcrw8v2UPSVwLMq5kkURjxqjv2VekQihVp7dIvYzQqNB9Ae6VRlovYrlaCpLOS/aysrzXIcEHxzXJtuIFkeWUvNngOLqEQEKzo+Cgek0mT9gllzgTDFHkJWjGd9gVq3tKTt+8vmdO07fPP6iffPmmPv1AzGiv3cG9HgsvtO5UAQNPOzW6p+9nhNxMtUjB50XA8mu9AX3yJ8a1tdO8PpBARsRHbIWKSGqCfL2LFajqn6QacY6E3dwKQngQKjovUpd+rg0aMagKjNVFnHwgopAnC8ABqrUm16J1X5JY7y29ijsk4BIYsZC0vS/HWES5ISehYNSwDRdvWWauRRU0S6sRp3L5OdwO8oAYjTa8cT5gbDOlhnOgKjhzEX6dVmkh+GZiJgjjCFHRyG2iObXTAO5LdJEQgrl4aDlYkTaMh3YCskYndc+nSzCjGjRdkc6sd7Om2U7Ho5Aa3ZGdXFAnpvblbe7MOGKdLLm9VWPD2ZIH9vhYNGTVdtud0PKdUbfoXSx17KHPEtEwxQJjxjV1UqJKrgwXA8HlKHYh5EeTLwgdvuECAm8gG0JJZwezhhmPG8woswIZcmFukLXLIRKeyePwF3aZrf2SLzNpb2rBHvY5oXksuwjHQH6O4x8f7/VpCY4aZhtOEwBOjL13oWj0FqB6GrrfD5c2sPrQ9vuzm27sTRviXg6nNi2C86iurdzr0T6oF6DxsRIoz7MgBPlpnZgrv7eYAcjFgEnaO7wSD32mLeFUfaL40HAqZPTnEyrOiMiihR8TIByQ5vCwjrtOWP0AK0AE3HeCPnFs137iz+7ac/v37T/83/3y3Z6eGyLy/6DbWUlfuT4ArY39xmTGWvYZRQqEyj67U5uWn4UkLHMjIIMWZWSIVsJy+uSr0J8NrI6VDrF85crRKFdjpA/+TUBIAW6cMCmwRFue8v7+lbnWXXa8K0G/3gZFxR+R0GOlk4AbHTjWdFHGe16jmOAWIlGddhzjqwOcPVd1u27GtE0nkOJpvNqpkWRDrQ2ysN3v0qxGAUOVWnmHp62qcgTcRgci0NyxrONJGhBf+slWjM9tGOiL5dqDjMoV8Uwd8dFMZ41n3BDEjTM5pvlPe9yqMe0GbI2PsvissyU3WbdtluTlUv/p5mVDWE0cbicmonxB1MlLGXb0JkNFMyBWrH+4HPEtjEQxCj/Aatd895YAzgqahTYn2UGCbMw/FqT70J5K6vues8T9BH7rIJ2BbXUVG5ObBiFpbNE6SkdtCAZMvZjF1ZAuVeNGIfK4dcUfTfqsOvYoWc7dmoY0fl94PDUv8u753tybpWSUoJqidQuvjVvcKA+XvItV0Dz0cm04DusMYhWU9Qh43veQZg+3dqyPe7KxmoZsnwPtjMrQfGQ7TVrQ2O2v33trVTvGpGQvpSFhHtllP6ag8WzFS+cT88gPIbzy/Tmm+Wy7Zar9u9+8mn7yWd37e/+5bH9zc/fIHPsAzKiv/cG9DsfBLNwNE8hcSolaPAmTYVCL2QntTxP5ZQUYA0pq2GojAOUh4mPshRD7DF9VzzqSpcsz479XbxyY7pNZWbxS/ddn2DjAEP+wRK1K9ETd0hhZjRcYwJbGOoMhzHgRzU602DR2xgjRX1mMdLiZeqb91OaNqCMfZwnptndgoImBEiE4PobZiSie2pGKIkM3qUe6hQ3hLPnitCgbXJP5yX7HaKdhvdXJiMxA8vONlRGc/YIlXK5Pnt/TDP8IYTgZVBvXLv1wZw9BSkyjcDs72zXqbdiCs40RHItcjainZo7nmz/CBBLgCugWRO0y5I+AEBxKjtPpFiG1k1B4etxtjRn9Ds3I8wdX+4cMgTqEf2cKx3RluFBikxSOEV6MZ1WooEaqc2Uv17gKwXf2yaFwU0P8YyjCkIn95m3PKUkkiIYBrtsV7vUFMElel4eH6HCoHUXBGDgD5kCSEWA+IddzVJEGWIqZqSU+jupZq0oGxH9LfxjVLKqk6Xk003XQOUgfG/Ai6gNR3VyMHOjGD3B52Y0mspuOI2Fn2WdW+U/wmcw3ADD1DMgMevJ/UFI8StHpBa7gi8E5OSVUU/Jo+JExPJ2N0xayyNl5XBq/BbUFqFrpXKJTtLoAwAYkNjzRr0B7AoY+Vn1mwBMLA2fpHLcQ/K1GprYM8PJRdGX0m88dOWpx+iHijfP+YPBX1LXwwAb90UxNCrRXzneonpMTtZ84HWQflkfHej5nZMx18hTNckji5iIa2DkouQILcdgPHuvY/a6DSdM6Zlta7anEQjMjqRF7dWQBQTQymw5TYQifRx1ZNJQh8oOP51TR5E51xE5Zq+9t0jZeukG9N3tuj2/37ab7doz6UQj0c3Eu4zA4+NcjLoH4FuG+mLtCRrWYYg4snEeKzohHJHZkeotGr7yVoKWgOzXBlbIjP5T6Kmu8XhkVpcooz8bTlJJrboJpufmHfp6Yc1vrCUzJiPCPjO+yseVKRSO0JDtcy/Emue6bTvE+fK84nRFCve0C0w3kO4xxdFG4zlT64N7UB8og5Fsm0Hpv/JGwYP0LrlHKbuYLXFkFge+q3pNrwNmQAf4OujEUXS/kl2qZq515SGitf++O9LHhe+x267a6bwOXuHo9DNlZu/r8WEY0CSa9aq1m1Vru+WlrV3YZVGtGNvFFOFooZJpsSmke0TbNObq7kx2UKM7+syMHpyCz6DIZ/oMth8jdESwtN8BZMb6oMr4B/JF+kyfNl6HWMk9TgmjqK8MAWCFCYZVu6zMmKUwrUbERYb2IQB6Iq3Zc+r6IWYqdzQfjrnp3qOk+ylioR6W4/kRmepS7wTYEXCGEbmaeCzF6AM52zWxWHfVwfY2NRklwSSiDQmt8d5wtzEYanJNIQcS++m4aIf90t/tTKFpERlTbI+Wtmtp53u2XPJa6dbWu0tbrZHGezku2+VkyOardrMD47ao6ps3e68rc4FPYe9jtN6+1hHN1vS8aI9HQ6G0vtJUoqN2uCiQRXSq/+7xvAci8tmrFyNV0BUme2bsL6sXUzpa37hVqbQjPSKTw1LRAYJ24Hwcjo+OjI9UJXltjZ5Ys13qH0PR4fYNx5csSwoZvA96dEOAplBzA5ntxry+J2qvK/KlgI4yDdDW0AWkoqyRsUG6ZHjtZCELtwuWbcX2S75HCMoRndQMZd1boLS2//rgCLDLGwIcno7oN2/zbsrreu33dAAyaVJPyKOxHhFZ/cB5sNo9SxGznqc6x+ck5qgKfzgl4p5D9K+62PG91SoQi2ApOjHnACuPg2+KP4I+1aqmOjbqeup51UmGVj4q5xCaq5uJUZsNHWfZrFPc+nJoq8vhg66Bxj4yHiN5VDOLKG9mCAfZedM56bOpRrnSy9QqV6Ugh1HZ65+8UYkoMdsi2zNl2YzbFNbWynuiJ8l5Jkrpbx2GFX/y8rQJi8LqpG7vQSBRjVFk55k9hgTOkgsvrdE9GY3cPxq6Moys2jN99lAEie2qflNH3RN2uMOuRMzk5KzDqwa3v7NQuTuenfO6s77IljXD6LPxJDeqrdOE4XSEEy6VejMUldVnPM6dEFYzzDRlGdr6KadDwXYMI9oj1R65lbFOlGmm1juWxmBE+3t6K0AYzAJuWxBjJGqfP71xWbFyOV4NMoz19QMyaDyLSJoiQTkFCCaTyqfQ+19liZpajOqwebH+597Nw3BN1qt2s1m7Y9Qhy0yEeOuvHhhaz5zLorhGF7HGwz4I16vmt55/pX4Xuis7cpT8nZBt5L0JEMh2quzrPDrlfE65l925Uvh87aeO8zEoV3NKbGtiFA9OPeeDR9CltfXs3ufKPvSSOKdbZMsYv6wZL53+XVpkIWItEM5saxcZq/VZ4YBOR1Bmz+Ttgb+waIuDlfkdQw9HCWBmcPizB6vODG+7lSHAG3MSf3Ojula0KZONPFeR6LSgvstx8f/e36wdiftmY3DOeIZK7z4EG/rDMKB5fPbJXfvxF/fti8+ekRiYwpZW6/yilVypGoHqvg9PXkZ9QxGYuK74I36mpw+3q0abMVf5f4Z2Gx1nKm11otYh0fzSG1aupQLjw5Q3V1pIGPemoFbXva4nM43P2Bt3rE2erVXOMXSt8mpbChljZdSj8LUD/RQzjUfPg+FQ/KV0pSkDIGpmOgcIjdt4Bg0ztQXie6bA0XplTUiNek+Vev1P86ua01qbCR+GCxKzLy4rKDoEeTLmtxC4zUoRZIgpODGYjulAI0ARdRAaT780BNOl13iaYeTJ1OFOZBSZoD7gYYVTe91vEbV8ZUdV5+pEXa+cDWWOjI6cIReh0ke8euKISIPVCKssIdK9apsxvXun/lJgQGsyYBqtn898B7ZRvK0U4nJkaQ/5KW4sey+LIFiwEGg/tYVKzUopFJ10Tlqp2rjTdaHfcKKprENC1yLvtkZ2vi982URWisC08PBuF8NRYbkwOqtTL6INsdxlijiaeLd8ETm5RO+dAUW+mSszTSnkG8b6SXiCF4PvVbLzH6HV43y0i8sTMimxj6J5hsf5lO3lZkxjKK3L9undph0Pp/aLB7aceQcz+jdp7PwuDihvyVc1c/q7q3nWGgLXL4y86kSusjH2RlxchF55VvnP7BE8v/D4oKXROO4MZq1XGnepnorq+D0dVegz3re807vA8Uiwx/C/1fcrr2d8in4DAU1NjJnKSgdU3MkccI76zK3+ud2vNdoZOkV9H8ka3TP3voyk7u2iNtiyNFLBjpI1Ro3dUGY0rKZt23fyo8h5Fb/XF+UCwXkomaiobAWGK3uXSM1+sAY95yIj0kJb97RVlp2E06W0G0TKOVtQ6l08o0ct74TI1c9VZMewDMsdPOyfbE5vd+ikP97/gzKdNFDgr8/sG3eUsxbbUOb35kxmNB9zURBFrm6huS8SDE57fDQugx6KfFaf55h9MYsQkuOzimNL+6w8R4awF9Oom0XNbojSwbI+Vd+iwyqCUTVtu2QtiA6VhTBnPOsvWzf0OEYrKc/SCN0i+5bbR96OrPw9znqWnfRyqMr4p9ZMr+U/ZEAP+9fHXADx6sy7vCuwPngvdTYZbRJmA1jGAztk5D7HQDJIPrpECr8do908pOcW9Q9/Wwq6dVAwpPvN0stuTI9Bpcv7b0G/9wZ0lc//9s++av+H/+2ftxfeU5bKmZiEIpUDM8qUZzUIZ+pMibI6E/S6ltJLtTtUs0lSJPcOT3wRkv5fYOCHVw5Kv+6kNAwAD0X/1q7GL1O/PSKk1KXYERlljOer9lYvT7hCqy+UZyGARGRcybFgdbd+rmFQuqihKYp/XVpV9SmErlwM5MDDNpxompvoblHeV4wzBbgLKNX0+QurBRXHSe+v+wLkGu4MYAF8IUXYjBUhsKdSiLVNCBrWg6kVkxWmoqJVixURUaSFedO0SIrhjHtz+e3a+uKZUWThDItYsLXUeod1vEGfZ+sZ6vVlm43f1yLN9m5LanX7PTyp/Ljd3q7b7W7T3pyPbhBsN4YWu/I6s/3rPbzeVou1WbSFR6+TWVvKPhRAojjLlUlao88wPctaVk9Ltzlk2iS9psYbLYpL4vRr+ohV5ngB0MuQSw9wDJy4h/RkhvshEMz4pyrB9YKjwHpmKouCjhFG0O13wzPQ53Y4qJoAfwR4YfvMokZ+I6Aeeb2iRauBoIa5NkgFRlr67V9KHoKfYMT+CRGy9RN9IAmAVYTdwup8qSyYoe/va4XzPpVo2+VjMNJ/9BBFoNJqjmFg6H5p5HtrM0VHpKwXh1ukzNKp1Dk5yI/ES8z7bT8R1U8e4T20HXwIqdJSEvnyoZjAnc5dfDa0eILC+ZhNHIkngRf3vbZzHK4sKELN9bA1RLQePE3RbR8BsQYsne3Zdt3+9Vf37fl21f7z371ur/cWWXr/hfl4eN0kUw8VcdAhkq27MzIuCCYVf3v2hhAPeiUvbsafiADq71SSykfDNSkn3LCS4ujORKbZMiJo21oRyHRklUhhMe6L3Ui0aj02leT8Hqm96MWOllb1+jrkADZzHxZrowkUGRq++tkztdOAIOcMmHpPl3kW2a2KNG4Rh0dx40KuXcFAedq/0zuURuXXgSDlfLB9XhGdHT9i2W632PO+hVcWEVv6mNXvWZMp5OnQPYRlqVN8PyPcvYw6c3UjSUvVjdwwxBlsQJMKT3tW5FmRab/mDK3CjeLazkrGCHmJR5otDd0wRtYosXp4OLbdltFqF27FgOjKfKhnmLy279ZwsLoMc/rAP2QIubjvoDXdobKC8XxjHTZkmJ9W7dvtqu2PJzgC6DAt5lb8FgB3V2gq+5H3QZnYKjVxSXXSjJC7Y5q05V/P0VXpFaxMsdS4hjmTA59bYzSgUe+LdqPuy2B2lv2yYUafl8B5ZlTvMLL1s9p18Q/1Y8+5gK6it3fRZJkP1Flcy0eEIuZD4HBayvJC6ZymrhG6+cwmFFL6OHEx7zXr5sohCZatu/Kekvs2/AD781IltTroDwDnMXuB5YQZ38+SV01mdO4hv9N4R6fgwvUaYp7wQwDk2e+muyzb/c2qPb9dNlNJH48++gQSvHxkBnT1HPy2vPLf+b4GvLRatOfb1mgndF6lFHLlGVUpGw1rnNA/orrfyQWC/EoLlrx/3InKvza/qFTKBVAdwbjzmvDEVS9VOjHDSM/56muX6ztOFR69u3TgcEMyGqka2kCGKEJYtUrVY1yjGdVz1bPvec9cKtwRYSj8KKeg1u/yfqNi8pSrf3LM7NwatQ7nR1UI88QQTRHlodFstdJEUVRGs9uVrgBAK4ExYZnzXmTsCoEZHmszllhvW5YpFEZlLTjqqXprGzO0lhoHtGJzBUOKbC0dkDE3KLXyHKrftfS/8GSSBsJgSXi0cLBEzVolWDolctb672INaw/B7vOyTKWNnBQceemT7PQe/Z7A2tRshax3z9qtzBuojqcKiALUZ/ydfUp7GtJ9cn/138MZNL5r8Tm4Nk8FhQA58ECbhwJv470hlzP31U3nBFJ8Tp5YZxkvnZ7+weFX50zvqH9oVVSUsToP88vd76+qICo64Qb3ZIbqzStXTfoQD6lR/ficT1lYacSyffHytlki3OpnD615L/brUnz0lL8vkehQkouBmZGM3sGK86kYhuI4oLlXr2h9SN1TQ1Q7eCN/1x524BliaoSRhABV/C0FV50K5FyuZDWCAPt3fYek+E+XNTTMlXjJGFkZqSKyxpib6vTv5JMONDiw8BIBNspBS2oEXc48p6oNyX/oVBh1lEiRfyrK3Rsd+c71xaZXhH+syB/124XRk1kBwS9MZ4g0UWFxqKSLc8Ge2BZ1FW1gejI3ILpyMAsm+BTlnQMqKk2bRqkdtYQW0U+9nL7HPBkWAloGIupr97F04U0pcaiTZA53gKLREC8yQGCqK3e6olWhG9QEB+v24AztuZ+KqcKx6lUPcn2syKOyN+eOqpPWT6sDIHSZulWpDNZkEtBX1XMS/I8dXgu2TbZCq8SVEVqsA2hr2C+FEWh/1PVU9LR+Dx5RSjdAbEE70rF6kSg8mQzO5HzRsIwSlF5HEn2PCxlkGXySz8yN0a3L/FHmeeY7OQKcRgp9dhmW4jHSEQc+hj35Fj1hnA9hOok5d8eiODLru/dZPrZGL5/v2o+/uGt//y8Pbf/tPsf8hNx9H473PgJdSe7msm8vLq/QIqhtou4ma7fU43ZGse1Qr8fPhEzIZ9a0okjxSKMEDjxFUlK5MA8lDusfTPTjhdXXWKTs3LZbizqqwoaRNA+mXWGUpSatCv50BpTebPpSaI5ddAAReo8suVlm8H95HzGTVlFxg2+mEe1z/QSj0HnZqj0/d6ORii6YK9xqSI+y1he4s9X14RqAaVGeRr9rBC4HpZAvnLwG3EPozJoPeBWtVtUmnR7lBWs2bVwWndTJ2vvGsCn4LG3axrremFd+2dabhXvn7Zrzo0XHrB4aUTenRnO37vDX+XhwgX6z3LmBuN9bZNaUfSBHGy2gTcvJ0Wnv7jdtt7V6WIue7tvDw2P75us9hbFFy3sF2dbGItTo95w9Lm3SFU00T6wrn1Hriyg4k8E9Iu3dXF2DMs+6IYMfkebk6MtGr9v07hiDsXrdSrNd7RayGqAAUkgoOjShHdTbGe0BSI1p42dTVsylydpgj4IdO+wBG6Pfw2rNTVE6Gwos68G9zzJqupEBwbr10wlvu0C/Q/gJ0IIFUYz1ENlQ1oKiJoyU8jlyPqQEixmhUmM3viDqtlw5wuvh1cnp32qIbN6Oe0Q9tluKJzeia+uhQQC/VThlqK7ucdDN2N5JjgPtMzgwbA85zcXesv2DyL3vEXnn/f5qrj0HbWQH9jaebfsVkeQwkjXDPv/LdjbaM4A1d6bg3PV6A8VeiKAetkQExMZzaOe2vVu1/+o/ftm+/OeH9v/4q1ftmzeqBHu3I3AWvudHzUQ2ZU7RRPTyBILxNdlCn0qYHonanPx0emlJHS1s1X/yFxjFxQft2Qd5h2hFRQMNbjxexwhlnE7EKDmBVUOrB+tZ9XT0GSAgrzNmKZ0yrlQ+kuNP5dPkD2mdUZ/TQeUnON9RpL17wsKzfgKXok6sqyFTY12DuUZbiVQ87oesIZ1byHAqKCWWsirescM54GWWscE2ZObYdbyJ0mbKZJyhVSuLQY5M0yOsHzL0HWjxhu+A8SM92bNdTMXwnHoYNIWqMkNK2QU0ePxziGZkzXA95KT2Z9WItAyv4l30/s+rZXt2u2k325WDhhlwlw31zcOprQyV25pWaEQgLMeIYKZ3cZboFPBM43smmx8fLRvs3PbKEiAv5NJ3tGXfP+zP7c3jqT0+gojgQ0VJ1cn0IufzyJDUhVWDkjytKygZGutTMWTK3tb466DUrkt6jQC+pE8oGixzybPjjL8QS6R/Q2aFeaKkgLxQF989W9PNGmhPYlBphVdWZXtD7QX73WravWe3si65/qZqB88xPaCUtAhBekUr08btzyiBjTKk4ehLDHXOuMVt4GFIFwfKuEXTZTJ/wHBGDf7+YJ08JiGkAPFDu0e8h+0o8E+Ho4ODSCVyzOLxnFqinV97NvqUm0zXIGlHiY8us2Uh5gHOrRzfpa0Xl/YX//pl+/FPbtv/5f/59+0Xf/nz90B6fiQGtAyy9FgPEdXJ2fMeuq7edaJ7Zo/LntbGViCJlighUKOIGRmbvoEuSGZGxTZufs1dlO72iBZf5oxWnl5u3zuAsmYsxlru1VdO9a63y5XxhLGZQaJYgKqO5Xyk8EyPpdLVM8KPehvOV/Jxykit0TBfSjfSWqTELufI+FbBa8VTjll5S5C7ROY59zWaI3pwjzl7ONt/1UIGHkYY21DqlF4lQ1jzcHF7FcAcvL78zBSv4nGmlQOwtIzooFghFTdMH42zojzCh1GQGS9Z+2Xo2xCmuMDreOv0xpwNDpRBkEvJ6DJCite0UF+nnEdLONwo6BCyn+9VFKl430HRxzUlEtJLq0JO14xT1VfXCMJwRq2p8tNrXbE8vrQAuL5Cs570PpXzKZtewdknOpvwtZ54qyJwmZmP1NelTNXUyIF/LmZ4wtX9WXb93FSyZEM3q4p1P8KauQKgoKrDZVaQeJYpFq3d36/a/ZsV0oHfEhv4LsdV52H73R9DAGqmjm44P07st1JX11gIOn4rSvn4/I4OQo5qf5SWeTIOz6VDQY18d5lJWffcvQWZcyHDrjYRNZY973HDYAalWBFpTzmt718eK35YDSplHqF1VSLk5hi0jauMGBak7NvJvA8adwSeZoRS1AdTkQ25OjGWJ8tOXQRGYTyHg8e68f07nYoyjhH5yiOcrztjr7W1nHk9v+JSFHCkfopkPic/6V8mFrabO9FLgJ6FwYHznMdaeqsBex5PpQ5ZkeYlssUm9bBKH7ebs/xBxpj2hNfd9MP0QrDTsh0OZ29FaT/VOi1wX4b3SlC90ekx3+87jOX8ImR5Xee5oxP1dW2H0kSfOzlnInpfeTvXS3pfyRSq61NHE46J+vra99wbsT5R+pj/QYJDzg2eXRwOnAvVQCPVmtlURX/tWEvlU93oSuZW6eghh0OeXnSQeNEyrIluwV1L9Ow+qBDCPYNgmNzhs7yfnKffJeA7pyJP8CPauxyLdrfbuMPsZq0ykBnF6D08PgAD2hBx2cLKNKP1NoIdtj4eMSuC21Ebx6VzXRUFLaoHPRmMcXjtAC6SSijan8CYqwZAsm73HLllkfVW5vnvvPmBQGiRPnho64FonNrMVBO2AJnBMkJg2SJdAQGqWkgxcKFp9NxJQ7Goq6dssyYWdZOsW4nU8pwvWl4uN1AanIm9dpMwIJzBsuhU3kNWtnI2OT9qkZXMElIV9Z4eiXYP8gZRRQsq9hKfE0rgpWG4Plfu/SwKTRBCLiQizns/x1I9AwnUxlnTjvBm5UZW+7VGrfiutcVGaDzLAAJDsgDAolY79kE+obn82dAVl629eW3PNqRFJp+Zs571wWYg7PdHfGdKwAaC3yKTx5MJbqsJtgi1zXeoTXx7izozsm410a21rWcSWCo41t4UVhjrqB1G5Jmp37Y+9s9T70Bbto6byw4M2m9sqKGYyoOUBF+/RVtsaaZLEIY3G3tJEXZP9/MUdItsC1yPxU1C17aWV+ZpZYQXFceA+ARzBkq1NHjbXz5Gg8Q21GmrqSysD/3agWyJsmebD9bH09mgFjnKjvAacH+fguiJyYttBmWV5RC2H31/9YoI4NJtnhF38KiKjcWiHvdr9E3dHzxysrvZ+I0NVdn7rluw3xHRaWCIhlmT7JkU/j7Zozd62QZIlEJwqy7TQ2lwgd0fbAW07wjPtuAemUpl3W6FfAU5ErCmS9uXKxs3+l7rmYrqQbITFC76uAvllZEZQ5e3mnRnZ4owI0NDyPAeYbNaaKuvJn3YZ5aq6bTugCaLdnuzbI+nRdstT211sayQdzej34fos45QdsPCTctYIEj9uYl14Mjv18Ka4u+qn1Q1JHkIolhS3ApibvEopwHNqJRHkig7j+fgU0rhrm2OUk74yCETaHhsra516AsOWkFkz3im10XqFMvYKaBqdl9Ha6bMVNTb/lkk0ubHHJwDILkf25ul1wsLBSNnDKnxkj8ytnPyqbOUz9icIw4gGF+GmsZpGRN0CaW+6/l5ju8dAedFKQq+Q+1zpsXesEuCWufpsPV93Ft3B8wrIs7sJa7+3vXJFrU2RY08xyNizN7CULLfvdLC0WoKAtirNWmonst8utZQ6aBQaC0Jc96wtPdZee228wPW53q/cRr3bx6ByfF8sWh3d1t/980GSak2bz5ek6/FxMUeubTzauGtJQ/nS3uwKLxGpdPLrPgeOZ7bw+Oq7fcnoLh7lPE4RZ6mCudzbPuCUVTHnBjofPYg2jJ+zdZhcpIMpqqmMpwacHSEtplt2ijrhE/jnRyYeSXjL53b5Neh5F0Z6oxR5tfpMtK6g9oZ7RX6l2NH6p8ZbIpMd88gHogBWnmaP/WGmPVqRL99cqFTOY4BshtU6mA0w85n+S5qv8eotwIisxPB703fSwO6/oTzz7LAUNJQsEK4l2F3UCcQfkO5g+7SOWHA0HujnvTeBRfaU4GEvM7O/mS7a882W/9nmhdyBvH9+wwm9isZ0L8PBeJaHZoRzM1u3e52lnpj6aBQwCWUpcSlZ2Zui6ay3d2faUnp5cV9n8yTKmlv9Wy0nZp6/qR0dJHvmeFdm3GJl6vqXzh4JZ3KVzVy/dajhJUmXl55PKtY6XzAKU6jFWi+v466mZ9+195Z0Z+Bd32KQiMVqPLLbhxCTFA/2iE/as47pxenEKlyqHr/gjZ5TSiEjFQjJVWozwZS4zDtbWHGA1sXmQPHAEfsXEvLAZAWU+GGlPt+bhKfFtFXpRVTOEYUAkxNAsWV44jU4Q6qy/W2cKH9aapKv2wK4ACan65GT38RfYGR3VFTRJfmPeH9gsTNug/h+5H2KuOiuILr/lCdV6eMSTmAAi5FrYtChRetj36H36widHcKTHHtuZRN501GjlMhcLRZ8rcUfvVdyRnKu2k6ehTucg8h0g9rFadzuKKXGk1I4T2uSdai9QuVuyimol7SrV35SSVftZEZ1SuDnTlkWNhPy/a3OshbgiM9sIfv+24w16PLclAGzhO8vieJ5LN1Bvp0z8LHgjjGQeS9084pTxmytMIPc00Gdg7WJJrZTA/+Z/BLd4q47qEhRPSTZVhu/BNPSiJeYx75lva7G5tyWEnudcbzPGJxna/4vZPX+Tn42HTvxVzzuzn7SvW7Y3ZGlZu4FgaBG2mLMYqZBpJ+1xjznv2mzyFisrwvLKrYyJeor8lZCbdjTIR+KyGRQi/ZIaNTS/i7nDCIQAs/gw5jd7TBsDoamNzYrijmdFoHWmddc+6GnQGLkcVliV+Pju3t+haWbcauGoxA+7oEDRTnV4k8a3jV9JkEKcvcSdbFdT5NIal7Llchx4t+qHHHGAa66ssgq77T92geI8xQQVK+Tw6+QmYSyKFda5+5D3I1QF/+1ZjxVeeoAADyBmlb9HMKGg2FYPLuc4JnLjMkedjAy4ZxqeuLpjT2WGrche50aRWihXRmWHMnM8cjounlXk+YCRe1RSXPQ2p42l6WyWL6nPVcN9BbCxLsjeaj88r7eXwQEeif/tEP2r/5ky/aT390j/pngvG4p8lrBi4zG72nHI+oeD+/VLLlnVLKbNccOdrs5GbzNjTKbQr5kch9FgCsx7n0vPS/Rem8NoSvI9xlDUpVPoPIDTnU/jb0cdZ6IV1SzOzYjXtJxNuokWV0cYRcnNtffq6j7XI6+N/JuXx/zwyg2HMQJOZZVgMoIur1b9W9deOg8GRrm1wSjSJ3+tQzX1hPSXPK4fJ7GhFK+U4lsUD9u5zBALTc7uk1tEmvlVVURMBfxsxP7bw4IshwRq2o9X404X08gPE8Ph6oPGwwBptrq908gKEdj+YhP7VXr6xmaumRZ4vgHY/m0TaDG4Fa+syhCDHSbLXR9r+trT3bP3nEs6EuuyqxwKxybOVQQKNPsilVNm6ngSXRj1GSa1lsXh+IwDJQ31XzZPVvrGHTIZwArb0jTkfbIn2uPWARfgpEcx4cjKZVtpHY6aH8UGoDgToVvOVq7YRlUW6vT/bo8BLv6+ECnFixDbSPUU9Fps/oVD0CwJRosUl7qYT5dpUyQs+xlPVMbzISOUIJU4Hj8RTr4hFoa3yv9GoH7err/DPCr8/6vp05J6ZYrtrJ/md80BFmgfwt5UVI9KoT91pooeZeiYKMtXVAjnJK6pQD75kde0/lChXvAH28VaJS095QygAUY8ucODASgDp5pvkRvdlr5tgOyWKEt5tF+/Mff9Jut7v2l3/7dXv1gFr5D+nA/I4dGfC5QGnUlsgOGRmI0GVd8TzwHbIDin7vtJlphxnNDpTY8nzd0flTYCNlLnEo+3LYyBAtRcW4Nzl3tJYyZ4hEncp8Kp/HlorHsVDWM82I9u1RRy+R9OaNTjfuz1IyVygKZW979wga3HI36lzNL1OHp3p1McUqSKj9TRap2I/TswyIcAqV61XOFhGxkSaMUScgpeYW04STkRGEqG06/lQOROWa0XzRkD3LHVvMWHP9yVGo5/EFLOOg6hAeNS8t71SO107oG61ny2i0iLDlFEDkYNJQApW04I5bz6SA4WwdKgxrhM1LUF9qrHV/Qur2Zdu2my34t3e6uLSjQ50zu8Kc1QarTT0mnl0m/5OXu3b3fN0eHi0t+9IeXqNDhtYYWUYWAkV40CKDHrmXcUcgT1PloEfkfvKIZimp6bMgZviwjEN3EOQpTsdO3xegxIdXNTfpaCvOtXPSU5HoiAbVlsnmOT2hOzGVaTAyHQg1UrsoZ1RaGCHz/tXAq3IfTQxZelWMjq1vsncGoXvY5jQaDTDlvCxbZjm6jEBpWsXqFE5QldF1guRgqHvVovIRDdZ9pOb3zDS/Z722O1SIWRR66uAksbFutsCECTbHW3lf8hD2Y60l6NlUCFYNTteVaPuurxxOPh8nk7XmIOpnvXmXItoyzk89a9JkSXnPRWtffv68/bufntpf/+yb9jf/9I1nbCR43vt3/N4M6GtTds0h8tTx7HbbfvDyvt3dbtLpGEbotefVzZzIi6M51RN59VL1hDH3Jp1PbPR6++3q6FK9EBPVXdJTV12r00fjlYWg3Y+3O39GoEpw5lkzfSm7qG8/f3FeCLiZ0U2H399/GFO+08z54zvFdfXDea9gJ+/qn6KZULam13dRMRFB8Lb050IHoGInj211wnCtIz1Q9kNoMlWJElgcI59McXRgKTOgXThOZon/NeM1Glt2Q5dSbanp8umLfmZeGq3CiHKpc4Cmq5ojOlW6BeE4ImVQvcRLr865hekWp0rylO7Ri7pzFac7p99RPfBTbqWiBXfekX6PVZrraGYcf9krig4Hv5i81zjPvEU4z6h4VMTvOh9wr3dKRgVaebJOO36Ts6FaN3O7Ju8Jb/MQXRru13mvY806NkeluMZAcvXSQ6Hr50c0PqPiDIjn4tfsNYyfSOt++WLXHvaXtv6HMUz54RxRUz9ETWu2SpBQqeGrkaKn5LK+H3S7lAvlv3puXDvH/PPSMtA+5ahGM5MOiuwMGITpHlDUJ5TYUIqFpQIlXd1gkoZw7py+h65HvWHsbbmKXRKswe87KP6TyRPeRva/1eAzkt1Htev7yYiu0akyWhiQJbtFTReroZKtaub4CFdYsi9YtPid2juiSmW6BoNuEY4QfqC6WneMZL1q6VIMoyiqr0b+3fNr3auPqiHXzMHlHOAT0WCARqYjR8BXKH8pLLiMPSjds1tAOJ7p7U7sMk8R8UYzTDM6oxWaWjDVTL5izEaZQQy/rku/A0OP8GcM6xSAb2xXRIYZwYiZ1Z5dv6LrTfXkVGJAg9qUWndqG0Gsc/fhuxdR0+1HkUrPUPKnIiyDHNT6hczxDwqezhVup3eeGNBl0ufSkef4Y7lkODMH10X5q5CsvMQDd/P7tN8Oc0wr99mYi4BtnHxPch+6bc2es6NXBIoakR/y/hYwsgi0ldnMlZ+8b8d7G4G+lE3yg0+37d//5K5t15e2b0ePdq2XVl9HxMxgYCjaBTNFNA21fNaDFxsIzAzfVxXcuCx6Aiv9B6MIp50xwiMifl57GIPE4ah//D28/fSkXxbmr6sN7EuOFj/qD53p7DhbT2mbeJRNIBgchLzYFLZdui8GhQttwtjjEjWaKRS12xABAFKvo/3Jy8RxWuCouzcfzIYb8NheThMFWNFS1S5irOCs0cYheiwxxKe0L747Igv6S95d3luSLGryCmuzHx4+VQ6Z6IVjwyLyVdIoiuUodUU+h176y37GlqblyOusWfWafbYB8f60hrbNVO2FQYAa8jOUOUPytp9W1+zGs9X/npfuwfal4vuEkeAphIhe27FdrNrdYuPnPRB1/GhF00VrdsAv98C6CzYCiiuLyNg/i+Z5xNa8hYrOW5UzUeZZd24KxtHgM21sFhy1/LyT44l6tMuWzhioxRkMH8DW6IiYVQHeUATS9tka6fQeCvImzfAo7wuoBlG7Qevw8ksUBNnyM0cbt7Ecj0TiNGRxjr94qbWkHglfVWdH6dfOaL5qfSOTgx5jQ2yPbUWe43vDHRBA/9ZelZHvNefOZLin2d5rbfX0xqvY/QF9VpHm72exMW56v0mSJbW8U7W4l1XPbbViR5ME59bWB0a1VffW1UojU8fv4S1b2DPXlyuj3wF4lhoOFUfwFgQjbF8aDaGOWcpVKDc+BvJJ0ufKsxNUu5tz6tkdnRHoI2UpAteDK2zRERfcq7UDif3Xf/Fl+8efP7b/8W++br98xQn+UA4aahE5napY/l+htjrSsoinw/OYVylRa48FVyqeooa2pyMzp/ipwtAaleWwm5IfA5G7KmS9Ka+odiD1FqW43rqzdaqhqUwSvwlq9d32WV7aboUotkNRlPcwwCeAyYO+JTat7tk6L6DPKgy7yayxcmQGqLgYpET0djpPtFuJo05XZWYPjN383Bym1mO4rvEwDL8OGVRlMaqWX43DGd3bjc5Zuqh1yNS16PgcdeVIZR8UdkiIHL4b0PZP9crlqZ6Nw97F0DnIMwajPLsgIEPPsrHsoRZ1NuPZ6kytHOrNw9HHcrtZh8HQ1Xz6TdGFRFMcpR/82zEXDG9Bf3MsVnPrz/KfstUys9B0laOVkgTgROGFjFBnJLp3pqYmg4dOMkD40+hZjVi0uJcjspdUpqXU9nF1lbXh3Um6LMxcT6HOI7CMAIHrNwUhv9amBwmWjBA/hzqlphZoz1ND3eTSibJYGCaVl1wKbyqNLNPEL84xGIcgbgSUdBYzKuwdLGRbMk81ZqXem/xHNhwDBTxPWBKKRNsaP2U7igKcj5ie6B1gMJ6Tp/dxDv0xwwadVhw+eSSdj8lkaVZT4wAOjuHUEAOmlS4/nr20XhFoND9HPXh/2H7dbdauwxi6+Hca8Pfo+P0b0Nf5/HBaT23Vu7FbL9vzWzO8LCXTGGymC7tCKmWsGqWhf8toGsJEI3HrtNh0fZ1r1AQ+8U6dvjAU/Bd1Ja9jSqcc8LNH7PrBQ9XVIrFl1qi0zA1uKvOv/JEjj55+7s0sQbGhHjyszs6urr2mS6ufeAQuqEvXCeMo9816vHjrUts7fpfPL+9WBEGv26UzIV5jomCU9XNNcfAq6LeuX23OhRQxteMRQFkqF/L80UDs6qH61N1IcXR5YqniZGY0KASUN1lJpQDH+byK6xIOn/hv7DLZP7H23qLEvbq9EixBJ3HQe5Mro2U7GRtreLA133h57cG0pQtsqKdxkS4JqCavN06QENIeFBpnXff8j8zypPmej+iPotMkz0qbIPpUli3Oc6rPtuwaKdw1pU6JDJGSV8Yyo6TORaLTYy3EbxjtlpJf8RLiyuINVwkMbpGODO2h6mCc+ATblG6nLClXqa4FVzFeWUq3xlQVlqzDz3Z7ueFAW6YLffbJziNFa2m7M0dNy3vb8fYzfg9H4ZuzEehQE8fzy/ejLCuMc4rskd/o3l7+Uu6J0od6dqrsco7JQSXxUE7L1SjvFgMtLW863l+UurjiSpYGFMK+LEmiFrRWFFg6rL0qSvNckAlq2mfQ7CA/tE9Fsy7jImV6RnB1eyL1Eoxdv+f8jxdqL9U9W4ValnZdrvASljN1rzLu2jrs8l+xNq4JHCFFEYc/rpt3ALwKuyTzi0KmMnNKIHbV6TFR5UJJYWq0GbRMRfeUbotEM2VcrEOr2t2nv2lJkojZ7fQLL6lh2URW1iRhR/eMgm/XqYRDDXTN0quzXSUJ6Kj/eyxbS2qNlIzurpquGtztOHLVPSqda28QQyBoYMyMmElOnDhbOp6jyZhpy+xBCO7VoocGe+hOHuZlwuOrfpslLd0Nyl7B+mS/7brP61V1LfvFG+iLzAv4dkWmdr2wuQ8mBkIvPX1OCiH4tdpPISjr+y+u45eQIV/K5oirqv7ZT5M/2oJG1nbMHHwBTiyaew+N6N+/Af0rHtq+3nfMI0hE4zWF+3R2b597hlgMEwJC4FWMwMJgybTHjZRVqxGyqAfTa7wIPtpjTQsG5GkRUSuKGs8eGEAHgETDJaAxOjnEHtJKVy3Pk2IycMzuWeqpit+r0qTa0jRaPZ5giKRMB87Ic3/P7p0jbbR+JuVa7aCScVaekUYICnLgwQNqs9XG1KT6PiU05yahh8kCJVSUGcT6XwAOJe1wZvG3Rc/ci89qdIuO11pUoU2O01yMnk4ZJYe0aB1AwZhtUDQDRekVld7d2LNZRHexmmeLdECgex2/07OtGetYZSu6p1nRek/YziiE9cptl/bLy75bd7WH0fOzvyjeM2jN+3bKoM81U/TFvPgAOaNhY/XEht7uH7BRKo3XtkF5xcHLBQz5GAawMdNqqBHbuRn2vMeorW6aNdCRRuH71epwj4Mgl+KCXDubM6w3EeZZn2nXesSUIFy63hQnm+ugrgIGV7d8JzBHQRUElgYC6qzxF3okZ4/ofj/xptorNDwdXdjWaQsIakcNd5pizbAXzFlkGs+w8+1dgxfFmMXn8AwIMPTGDlJmWE/vpWwZu6eu6RxY73h4vWChMzg/0IcTzgyLIAmfAXs/ssrZFQC18UTjJX2K10pxUcYH6k6puBYlrxvTsrVP7w05d9E2QuWdpPu9h1JdB+lL82ilmx7FCl7S1zT6vjea4bJ4VJrvX6ON6fQCt4GBQxBE+8brOnr4Wa/PL5gbE+UxsvZzbwmECX8i0wTlyqRJklOkVCtTnQ7CSBFlVpKOhfqgen0uo3tmNB0v7bC3ukPjHen0cV4ucmJqs2WB2FjWW2YSraaGvKM2ax8JwZs15mlcJRq6Z/gEFgpq1GWMhZFZ219pgAMGgeeyKIMrXr0/x/UZFzege33NinaM3Xko6nTUCST2g9Qg8cjipNwMhoi6i+ja7NPen9fX2ZN38ld/Rc/qYcnRxboMLNvSkNsLezYMHM+yQluSuCfaQl48vdrfl0jXdp7VKR8sAn06uyNts7EML5VcRRpRGKdeH325tD3li/rtqq+63c/Rk0VfVhcv6OGySkAtJ18ucsUz+jaIcu+5r0wvQuo39NqAOg/7MEtUZGA5uWhvCO15RKQOvSb3p7oiZApvgo86LQoSO9KxSVNEbDfHpCPeeyQ6dY3xAM/WJsd5ctJrdIFfN7EP4Wyofb+r/BS/8Dtbbb69vy/GnEMJvZD1CH+mD4NGc3EKxFA6w30oR3MdR90tokk55qjI0zDuy7gTcHaaL4S5Jv8gSr2cR5PzTOuJyC+/93fKuVZ9vW8HvO2kzA02FoARPQvR9TvroY1yPemQVQ/DOiaf4k50evnx5zft7qa1x8Nj+9t/+rb0jJ5o1+/F8fs3oH+NOfNUbfVajAQ1GpwuRMXwmXJbvVC1IXI5fEHNOEgLPWD6vaZJjGjYRRBuVxTLuRy4msumQdUNGh4gsrcxwlK81WX/VRouNy5GQcr3HDvTP3u4/2QYiXmpZ13J6SvXhV1SPF6Rpl7mrr6+M3lPlWXKjKdc9mMa3yzeT5NRDEMJ9DT8S2VsTO9c7+nr1kFvyGcrs/4QIjYYoRsqrtj36+Cpp7Qz1YoHUXwIMTcgrYUBUR4UUZfFKcHZuWKFTExaNoN079pgSYuLFK1cp/RliHnTaC0RPV2rTIE6S+HRVEOgEXVIbRuOiKx4f9U0fXNOdA2XwoHKRC+MYolyYu4V+p4j/UpjIbH6eljebaYeRxp5yU6ZLHYZUS4Bo2D5fP8X+tgCBmmNhOXShGJhvxOMHWtExSUMDWqOprgFD+iYgea2PqF8pz0y2vycmJj2gVfERMQ7SAUrTym12HqWeEAMNea/8qj0hPs5yhCSgll4UtfzR28b45kbQ/6u77ab1nZrKns+36Vv+7DYlcW+P0dqjHKkXGudIn5SHZe9swgH7NF+XqskrGscnxZnU43SdM+v0fHxZzh/84zYzvGMAchSGUjhcKzRmyR1P4vGjP7F/ioyBbIp97r9bmjLavFU0ZAnMxA1yci+SQMygqEAeRzqDJ0H8DZWTuPKeRgw8zypyomepSWPlGHgyriMnGKK+b4zvcdBWMkfyx5yOrpMn6GSge6TCDxQuVY6rO6nhSxsYHytfD7bgQXPkouHrIORam9TVqJy7mjWTzqxYYfCSa0IdP139BoZoAdrrJDb+N6MbnxBoCUGAVBHzWh2h62T9AG+iuh3pZ2YQy/tkpxVmdAYgR7WXeUuFKLx9gKSHVsqBb1k4IaxDD9W6jhR9b+iV0lYS06gjaDpMSjrAyAfgNdclwkayOBNOCYCmG6k1/kspYlsLXt5ekLeoHMA1UnoHssgAQ+10KsXdbqCOcTdYBhrVvSgfM/UN/LbMSsowIR5Qid/o2tPDX7NvUfqaOM+ynHDGen9u9meMotGCj8tZZzuxAw9cTF5XsxQyUaMNW6t3d+s22q1bfc7azUof/3728rq929A/xrHv/rqvv3g0xv/h/k3hd9eCQqoPCpeeqdeyKod8ab3YMj2Jxgu6kDlfbcjaousv272tAmqlHIPoCdudhKjjqrcQh9kZID3ESG6VyfU+wJaq/sMCj7qpcgwmboiUENAVOjBOWyPvvm1YDse3SGyowYbdZ7d/uhBmGRcVIAHfY5bVxAybcjUnEOBsnqxJjRN9p5eMtLgQoTj9XLkMsjgk0onKcIpDK2Y8DgfiL/2LoiuIvqsOdF3A+wUAWIQ3eIZRDgHkIl5OAsghiupFkFGurS5bOG1LenWQmc8QjFab7Y+ho2XL9vcWJsq9NvNLqtSVi0qKzhOex6i7G6USpi3c3uwymtXdE4cP7f7GvVdKoaKFHwhm/seSn0m6CC4Mc7H/Fkdy5mZA5CabiAzam/V33ahvaPfy+bbPOteg0znlNG9o92yJ7Ub/kAAP7U1kcwTZtJoGDWWFBB0LiCNztBWtScVfUWk2qPpC4tQGAp5Rn+j9g5aJfYdnXJQz1KFtA7S8G6fhugK/tt7cNP6lIraCftqh5Y9HdvLase4LsHa7Ff1BectEBFhHXLZX9h3mFd0EUhBOxoiUmgsguDPsJpDq3RX9oWiZoxAn4Xqzx7UNu+6X8zAoKTIKYaIcDV2iU0RqeolcipFk2UoaYRn6QDuxd7kBejH9qvVvVs0ZI2wGGjSlNwD0O7tIed2aPfrU3uxubRvD8t2cFqdQT4qr/U+GNGaX/AKKl6+OQagpMl1CrolTx04P9lA7WnOKCodftPa+zEC3Ts3UomsimNvUCszBtkIanHUO1nqu6fBTkdcZ6hU44rjPl7aca8U24wm+rFBxNYy1GzYSEEUQY2+nOmkykFnPCZLavp9j7rVRLTFexglgidZX2rJIVxb71Cf1Q8HBlk2lfYosYc5y+Uy7r2EgxoNb4TMvsRoYQAXmTX+PtC0AMeCDKc0aKYHghGDfuQLKxuEXPRc8BNo/PZTS7wWW57yHjbujXeJAAJ4NbDN6HUcDaZSez0y72tzdjic27fnQ1ssXzui/263avd3a7/f/c7QuS/et1nrZccjOzYcDujqoDZY3746IJOMshrPNtmF1zhdTiEHXT555h3uZTXO1k/a5Lch5Nh7CFUZRnx11KTtBj7Zlwz4VFqnjmH6uj3twKTJ2Wi6djJN6k04fliGIRR/ywZwNHbWQTteTQWnfCfuqSBUypNKMxlpTpmV2A3z2ZgUWfFeHnnVC7Xr4wqHV4B0cR78fcsOo3Mmy7zG2Z0+Qwa6R6JLSdPIOSCvij9Ajrjx/nPTGu0ueW3p5e5VW/rd1oxD1m2Q8ScbaerB0JuuPPBjcoU4LHT6U8pHUEUjtj7sm9WufXK/bZ+/2Pr93zyabQUAv/ft+K0b0CNJdJHMX+OwNf3k2bb98Is792rEXd09q5RuGqRRE1F2lwZAhJUKwFUNhWBAAs0adzAN1+p8CuO68ysK7KnWIdTz2dM1vEb62RuN1WEbhiNfaypOx7oGKZ4y0vQaKqak6JoxisukDJ9W79kwiFrb1K8e06iqccLPdW4YqHMI/IVbDN67NKxnlLP4obZkNT9I6MKl3lq97BSRIyMFxksyc/UwjCpZF3CQcEr5FyCS5j8S1P0/BhrGWiFyNfTppLlRUi1rfVVGAJCG64716K8NgC5/im4uIeOAOcW5EEyzr3W2dJ0ybbE/FKGDUEuFvM4nHCRp+MtxoJY0QZtaBuIUwEgNM9PTehVRwevCA8oRlLXV+tlAlFiqHaTnmXMMqfK9ep+OHkV+PZs4wYtjT/T0XDzRnTaTmyD/S01Pm1e0zb/dpdNFe1WTbQoq7+HZ/ZB8nmYbe4AKlVIqqeSqLip3Vb51RoUGpcrTIRLPQLMnj7faWXlSg+5X2Ms1pbk+JXhM9G4dpq7s6S7DI16jvAdP6lLsyDRCiaRDQIp453BjMfnNurXbdWuvrafNKJ0yFee9OirHxhomnVukyiRkd77mj85dOC5oTNXzgnGl4offM4orpbDeuBrP144x+h91npGqX7l/IbxYz94407vLEMPfZd/whh6BjpZCNGS9PvaSkZdwUqfRIG7b0fDMOkz+TcbI/w1p9YpISRlFQpomgY7FkDu4UO9fxHDsXy2HynCCA+qkzngSQGRxBHaR+6SVlMc9v5ybjGmmTxHytf53cPDEn3WiC1p3XggZh6w6SASdC7EM0DAZuqr28L7BLIl6/caM6EW7vTFn87ndbNZt26zlpBnQdB52pRH43J3JpJ03bw4OOgeDB8ZwSMQA2hMILMsgitHk9xENTDJ8uB/Ku/lti2oU668ynl6b7Kc/7C3KV635JIuopyekFKueVYZz6kpgxZ0GcWUEdSTT71I/6cjRv1Etvfhd9xTVxc+g8ecTB8d3/CxGe41I693E14InlmyBoisE7ykR9sn8R0ZHnQd9nh9VHaScFsw+votHF92R0a70pWOPuEbkjmQFDvpMrnhU3dOyWRYpY6uYhE9xihtjnS8sUHi7Xbe7m3X79s0xdN3rLuuP1ID+bYblbZF/+pOX7b/+D1+1T+/Q1y+eK5TFQoBSiOvoaPeAYFh7Ci9fz7V9U7AwQmyzAi/6k1gzYR+rPUGlPzzjmu0nRd960ep3EHrXb620OJBO7rUd2uCu+CccvU7zn9wQMix743nKtFIxwnaQ42BMica96zPyc0derKl6YTdp8lyEBEakXe71UR4VxnYSa8vqV00FlQUP7aqelEniT2WYl/ezKLFHkJnSpWyEqox54gKdMUAGzzZP2y0iy8dHeW+ZI0WmpX6Ffl+LAlsfyg3ozKMol1KKYK2JrSefI+JazRQi8d7r1+jqYMLZxqy6XwoHsD+0ifJooQlwowMz2gH1qei39T0GE4eJ6mNz4d3TwPEIVPhsAjrVDrGv9o7GnYayV/rhmYFWn/SGaWV0MVA5ie5s9dreU9uivtmuy+ZoYxHpM9KeHY1S5eSm0HiEBiuP7AKk0s15TRXNtyiyo7176DZVE6XgYY6KcAzFEuuYvc1rSl3W4fpo/FmLtvE6cqTqK7KKe9VdmgqJ3VcpdW7om6IUaLyQfob26+UOyPNvy+2GAh5/W82dsuXSZtd8yClIEcrlV9VoZHQ4LdnegAMD6aOtXbw3C+9h71X2S/DSif2puurshTpXt6VMgqgF9DnOmuxse4Ee8sFtOsNMzrFckyhLEECRr4uFpC0itW+btmx/8WdftM9fPG//t//yi/azrx/bh3B0hsj4+Qi1wVpOw55AjR36ear/bgXYA8cGr9OaBQBSMSxSuc++6eEIk+yQIVptYRquNRJrn1mkSUqe050wRmLdSVtz0e1S/ulZV8Zvzqp7PrWHx5NHIx/3qjXNtNkagVt1Ebbehsc4KaeROtI5dSy6GDWdM2slyIge9IlZOkXO2piddbH0wJ6nqLaPucJFDPdHX+hMUVX3Q9UGI8uKmCgXyxSy6OcJ3QPCHwKnnvHf2jMcQbmxtMdNnDAY7f/HB4vKQnbFOerXLfktoLkEQnDZjtAIjNGJMcFr699sCoF/mthyDnMUO/PJPzk3pwvN++P63PZ79ThPPi6kZ+du1B29YwbDhiXoB8R0/wV0dQzk6VqfvEqXb7G2kEHgfRrg1EL7iDDOwj5kTXAfrTW5ImdMYgtUZ8TbNXVGtaNtc3ZfkXFpepQvGR3RcjAFv5EH/Z0OpW6POienhO9maeYIMnQ+nF73Jl2v19TbDUMkeJGtJwxsBlHDLpj6UXvDOT63zBTZHSx5wBwnyj/K4Up2I5/vpQNF5oVuTD4ieSgD/Um/w+g54SHbH/M0vlTyFa+ZVjbJjD3g/EOOkg1rrLmkqhv3JL9yz9hwdNgpSPiDl7ft3/7xy7Zefd2+eXVsbx7hbHrfjt97Cve1CPVbj0Vrn3961/7kx59aX5vWjof+SzcwizE8IbAKKpV5y6ezCVB+Lk9XYCEJ4VGeYCp25BDVI3WZU5J1U/948MqZ97MjXNSJpl8gFRP90ulFbCPkP+OcuQ2VIew0kKmAhHILA1XRUz0MLWBoGI3LUV3Suk9pXZB5gJpQWdN6kXKNMgUigl3FWx/B6Goy6xzn2cVBkdIz6pMpWNOrWY39fp2rx1epQwY6cjKPtCuUqSiKBlU7o+wFU2B8/Bbp4nx4+pOnBCqKyIjZigYMEa01Zo9MlzpkJPQVY0Hpjt6WS4KLgl8RGr+2pPUVw8fTz5me14cAeyq0NGb6yHkfM/7AQTOFTDXdmJgQFKQNjBeALRIuphxZXY4rIJHJYUqTBrhM3JyoEwZojmgV6b1SfBlNYyrrarnluxMohrX36QiwcUsDnQoSRHDwvdKOxuga6ODSlusVgMOslVm0xig/ByumS22W8l6kOejO3QXtfKChGe9IT3t5BB7ZZ8KkQVAEciB6l/nTeJgd40YIwXncTyJFu265wkP0nyShQo+To09lC6oknSotsc5TUqTaiZHGCihP7glzWPFdrL2cra8TGxTbf/Xl87bb7Nr/6//79TRO83bt8vt5jE6GyNKgcec/p5giHV24gVYdrgLyaj2flKzt1rBEU/V5KI/426IRdkM5R2Rg579KuXW7UBlmqYNepX6P/6rdWolAewtAtbGE81MgUgAfZSupgS9i2mqULe+nX2BAcz84/6WZJ7TpITo8RuNrQkv9u+qjZjyDBwFQywESfTKof1R52t0bEaDqrRAtwClgvMWydFRadmknc1ocraCmz0NA1MpqXgUK1u/rqYwmH7eU5APpRftbhhgNFI8Is5zNjbPQ49huqctuKHwhHll0KBougZBTsg5ELX06ObKqXESzLelydUKbq1DwC38a9BNnKUc4IKEyVp5fziyYEBpXOIUKiKOuQRSVn8sxQ31DxmPql5nho1eD8SNh2e/DGf/4cOQDcHsBNqYMGXuod/bTWDNc98xbnhntx8pRAzYIIuRLIBuwrhGH7rRNEM6hrQXAxiysIPk0L6P6LI5eJ2XDEGqYypQhj/K56ifZcwNdJ6vVZEWHjc/Ft/Va80Z0lYZ1gjtdfXQyVBnvRCa49KRp0UfFb8FcMiDIU4Ps1Novri6MrAQint1t2w8/v2s//+Vj221W76Xx/L0woH+t43Rol+MDa03TZI2agRJJkrJwWTMVqqLthtLIHnZDbUnYB6VXs+qD/C9u2C56FSmSKcg96si6gXhyGG1pSEp/SeAFPZvtf6iw2CEvrtxeqvhRPWtWIKTdLiXKa03VRzkYA8/tFOK5mqahnrNEAFQ/GKnOmodQsjjK0uvW65AdYReoWlGDIcMmWimQacYaZbsnGZkwHJiillKTRjwV7Crs9abd+xU3WkFjRp9ECIzTAal/qJcLKktupogCoxbr1Qq1Wadz2zNXTYrQyiLuBi7l3lGrIcY9TdmwQKMpNvbPvOLm5bQoqseRPfKDlDIZov5+XpdC0VIjhL6+iH6jGkstZozxQXmyNtIepaEnPgVHYYhhmJdJc8RoRshDu8wdIG+1r7qQS1VwnEmMWFUSlvITUBGNXtISJNpF9poAvil7s0SkQ81RzeIFFdY+D171wb7msgxE1DVNTjTsqcAE0IhUqMFY4PsBf8HquKHoeoqe9/NU+mwBMyvOhoxA2xflHagAGQ/zmuM9DQOEACGsT8u22KFndeyBAHQrRn7BNIBgJC6AG+FK91LMR33jVVOerbSclU0EJhVmRcPK+/UbpD9qq7Leqk+nRK/E2H/K/pcwHx7hNa57gPRt1xuk4hLMztIyjR//yQ827cXNod3stu3SHvjew/ja+3X0Dj9mhRgtqiXQoDYri0n8zmVVoLgXoyUcM5kiWJXG6lCJyHMYzWk82++KwFgGDTBBINuiRrscyjqqKdii4FDeqcxWPUD8PqiTQDjGaw+PiCxaXWtggYSjCz3Xxb9hy1l9KmqgB3GIaweygUFhkVDUCo9E5FvW5VvRR6pznCj7/rd4p16fNcdTlPGseZaRo8iRtz+ua86HmPPAettv1c+97iPj1WFt8b0cbRn3BBpwolU7LkvZ7/KRu+xiVwk4p7Ei1lc2ZWYaaoBGIP8iJorKxFRmpLp2tensgI3YwSBEczEsUeInx2Om5YuHwJYAf318PPn6G73oxrA3hNLcV5znA7HfzMlu97bMLgcYiz7a1aVPucDMK4GQKetQ5wjjIYDllBFHglGvZK1rRECZtUXxF3TSpQjHOMCLNccGlFeN8TwPbhWibDzB1yWzi+Hu6o4EyET5unqgdCKj3i67JdertlqMaMlI/+m8BY5yrabSzUFrqEE3ZgBnUzE6S/ZnZptxLnjvdM6kMxF/yavGQ47Mbtyzszf5JIswrx2Xt39S+IAbxD3hxDoVJYfdB8z5rEzRJfSc6nDtxiaHdZaTCYH/5fNt224X7e//6ZXj/qz27b08fqsG9DtHk3/Fw/s+n/ZsuZBCT71yRexhPNrf6lVc082C4Pv6qT6Vu09LUEoz9kmRdlV7EMMPokdKUKavyouo64RgHOyv80SyhXsoGdWzF89hlqQr0Hx51TuHIdA553plpMqxOpcdQxKzZvpTni8PmvxwSj3NeuBgMn66mYAWsbR0ZUb/wjGhAZw7I1ppnc58dRv/qYhhtjBRqzK9M2qJJbgrinNOQMfjNIyOQaSQMkPYW1GEAR2TCiZra8B0PwfXsPoPNxy1bjIqlUZurTGEIo9he5au9am1thbLRTt4wdWZyuLShZgDeMWz1R7IhDvSgWNdXB4IpbNSLTEEXMrafTHHBqqjFZ3QBb0DtVbG9CIH4+M6TA2mjDQpwOtpypEuKbqBIHOAJ+GQ+FoBWR+1Rrkn5UxRTQ8MPgLGiflXx5ZFUSnPcr+jMrpyLDnlXDgWwxO+KkU06xuWvUrLUpkLOtEU2PTdaX/26P2KyiMFTnyMTiXVKBeHTTiNOPW+L7mHopuAtNgq3KN3uqJjFHnlNMVILLNgrM/UXqjo8rp3OOJ87caIyIDArAfS41757FQVSAWpa4ESQHiJTJoOCVN+4VByBcC+s+iStxZaNuuk9sNPt+1mu2m7zbqoYXNPf38O7SbJADu03qj7rEaX9NCcf+i2OFepvqLNxFrgM4rxHMKk8Oc541kpvZ6pMUQ4e9ksuySj0+X2Bd26BFA0jo7ks2DIgeS856+BP52dr2YEPZ9JXMTg4ZHyOUbHJwBXSe+R9k3TK+aMByRfb0DXNWR3MTisKvi2D0IpzzlmHUrjdYDG0tIuzimBATPssF8KIppk8Yx2rwysSNMlv5bDIt6fBqUZLceDRf1ZmlMMgXS58d7ID88Z0Ti48GAniRZYqLhkknFu5UDpDCvyueKIM7lsbZikc+m9ZBhZy7RTsZONFjYrzpmXzaWuVSfMo/7e3snKkNBi1Y1npe6WdZbzVE6GWkagEwO3rgQ9qnKqCHA9qhEN7IxQXTtnkezw2GN0voSBNRxdcCdS8EUfuXai26zlRbgd+DKyIN/NVqiOC40rHOMqNxlYQGTIsOQRHXqk39VIOnRdZEDwvSbvzT1XjOia6YQzyqpSpqED23V5UsccPFSXdBtBIi9ya7QC3RDz1PyjUzsqYJi9f3QSyP04NtLK9n2MQC/kfJiuXeyCkikpurNrn91u2t3tur2423jbs6572Xt0/F4j0JEq9I6KihZhs7w003Nsqa3VgPA164l9oX1Gh9Gmyry6QAvOehYyQDLp8NCHYTgdY9085WGF9MyISOakqFxEieM/vF9hMLDD+xpi8Agq8OH0VaSo9Qa13otMYbABIxqstl3hRKDAqDqQRdGqwKkHnHXodYw6jxRUUhRio5IZ+/0ZYYX7l9511s7UkYpJbcxNVZwder2IgDC1uRM25ftYr05kvQPTxkIMPXJrPwj2jx4UKqQ4Wd2eogDgyp6a7ZheuJefs1TaNBR9CBo4DKxsGfX8rMey9GWiFvv5jiKq9OU0Fp1G/J56iRDpfdp78dh77bALB9a5Wj1k6dSXyMR9bXP/ztl3vUasBFAS6+e3gpfBveicZkSZsKf1mWgJCfe4n2P7cK0RhJRhbQoNIpeYJ3sPpOsKbyeUPUvfPKM2XcremDqnWrYwHAbAEa8NDuWsp6de7tUsjicE6UyLMEfXxuJz7pHWv9hYmxl+7D4T1K0CBR2RK4HVdXu81HK5USCwpKqnOrZCiUaxb3anHEsBGrI5guT03oJB5fhFP0qHH/uJltnoDKV8RvKnmFNH8SZ4kMhOSppXM9geFbp79jdml/i2XJ7b2uRKO7WNo7+/38azH0NgIN6o+B3isLmiGFWkXwaJymLBc6WMydHHSHJ1OKpNbWkUwNLMaF87WVMzaHV5UeLLq7BFTr4CfZFxPbdBW1pHBF0nGz12r+15jM16PlvNs/d/l1Ef9VuSjfNT605TAV6RSKHck7cr8sv06NpLvSd01F4aVzEDzWnV2BWRffsZwKE60wALG5zfga5rcrPUNkvh9fFrKCHDMUMPD/tE+jZHi0VdPSlMSLs0Ppdjfa6MkL6NovNqGqTWX9lk2emAtgFOb+xfz2Qpvkgtv6GRY3czpV3lNuTLjv0RPCDTXt1YraVoPAH9r5ERINHnor0EG51OzGiWYUgyiPXmnFmuVQ2gYh5yrrekV1tP+9v6zXuhIYnb+4ivDPcmgfdQ+w9+bEa2IYFL5+v2wmgkz5Npm2x5tpZiZ8xuX/h5xcmJobLe/nzJiKxkhJwRkTHQM+XUT3G/perEmU2QFjufrxp9r9kmQJkQtoP2tUJ1AhadEQ8dondVgRbA+wvAdF5fzQW1PCvOBdgDJVOiGNF1juEYAXp/p3tawbu6G/BkvIX0h3yloEGO3uWVnNDle6WeT6iAH8WzKjaBeEB9FvEJUtrm3pPeb+sghHXpDYviePfvK2L5SJAesaaMLoNEyQS7sNBB+YSf4Xt3/N5TuKsR/baINYjn0rYrg0MHkIkRLPWm/n4ZlOiun+uFK68lCGxw+WmTz41bR9xIH6iWMjluF6njBeG9FXrfQHgyOuMxgeLYt4/KTahUJvMop7FTOZ3u544DGhfyOiFCbPmO5YWIUos2NYlMEl5K84SZsBJglnMJOQtCe+k8Wxo3mHg1oLtJLKnH5sXdsJY2jcL0/BVDudrHXV9QMtnv0HMu0nSEXlimsrLN6JesOY06EYEqkKF7nS4YuBiN1z5bjRbTFk8nawslQCszoMlUWPe2aBs3at0oZZsLR8vmgLytAB0FoQxqBlxoQTHSnMi0RsRe0SWow5Yy3hf6jZyx369KFcx9lffs0j+LI2TpYE6ocZUfVd/FlkkrLhQNebBNZq+DxmAuWipiKMD2Zub+tQiCp53Q0ePPQdsRX+eSBta9E9+9L8dIOvY7STMpF51GvoIJCUE/pqfWA8BdtQejooJ8slL/DSHHxr33Pn1otVPGHP24i4MiBRcjU4qqMa0f/itkOfj57G+B1EEhg8tI6DNTqhagNe4cO8MEK30yFINh/wedziKogpDCdaobFMdO50wzA5rta7z8Yi103DXZj5VRnNt6cW5rujhHlOr38+hlS2eYDtOqtahr59Naeh9HWYOiZaHk9Qa0Wu6UYXTGx/jwaDbEm0yWvOBExEddpxsanEHyVY5k6zMfm6Nto2WRpW+bE1LOABm5aqM4f6CsppJcOKQsklmQoypSt4nVsQUNMmiQpnw2mcHOcAA9ZXq7jEkZpl1rHd5nyPrQs6PmmefDWC/RQM6Zo0efBYZpoGKWqmlo+9xnHmnVmGv0VjXM6ZglrmdkBnmpkBmLa/BvM8p9mmVAu5O5cAd+rgmCko18Nu+x4mNFDXup10v65jNTN8iOFbDxTE4pS6+nW82zaMGea+n6cf8kKo9Ku/+/6HgyLuyfRdg21geZY3ld6NVB8bg+pj85SJucGTSePUNiALWVBO47NmCPD+yzp1iN3dtNQZ+Imt2h+4P6WmubWiaaz5WpAyNf1x5Qab3WrtCi5kWI4qjcG2rZzavFGny082J5gDuA9A6DclyOCL5EGQacpMlXqCeVPSugYe3dbq7GvHbNTdWBhnrk4CFsj9YdViJRMsNSSarGsbA8xKerGV35QD5v4kwo8jZkvvBmyn7tLfZpFohuYnNotGx7N+rbmZGzkB4SBnR5/CjLFeXuVEjcIDJkWOL2PlnQv1EDekyf+U7XvoOyAsaxbD/9V5+1rz6/az/47EVbW91m8Z14y4dqi0aLKkRQ5mSi6LT4Xjgo+ohKCw0RM3ruFmMsNqGMpaCiMj/4Gy2oSx9L1vEVK76oofypMRZuD+YHY1rpdjke3RuIy8GdB60mHBeR0sfPJBDZokAPjAhZ3NSUcEsH0DuneZHvJ+EQWL9Ev/ZdhXReta1S31eiaiv9xhCkFe1OvpK1WcHwak+dLqWwMD8pGwPoWm9s5/fxvsXVX+nEjFqgKj168yhjFN6bkHXdusZeycBqXLkotaGRrxZrTI+0a084UYLAomOmcLmHXZ7WLv0laxH7ncN6YwFn+ZrLYMbdPe04FEf1Nef9qTyL6bkRynnPuUBFFFo5CIyH9etugYEGMt1QBmXO0cV6HGu9JpkdSkOvGQ5qZw1lKpTIC3o22yF8HdWLyQiUQoi5KbRSUgEldBzULJwPjIjQkJ93KhQEYVJiDUCFER1r0PvhIgothVtOorAQpISYko259Vo7y0c2ZHQT2HRoVWNQKbqgmUxHVR3TSdkHk4TTEkEvRu/czgGLyvnMjtw6NVP2g5+NRo9Moshoqc+gY0Txk5K2rVCoOVHkQMBXtYcwa3sNc0AND924bl6b9dXLXfvZt8f25jCtg36/jl7YOa6BEMkjMyHFi//pmQzQjsRidVrnQJR2NtuiBlGuoH9tJLXmqTDA0rKrqGMZS4fdUPZNjKN+TqMHt6hdMnpD2g1ZR94++z+LPssRGRkRovNikfq9lbFFh3coqNW4ohzVpeFnKp5XGT+a/1FvMiPcv6eRPg0taE9BoQ0DzrOZ0oCTXAilNpchli0y6CIg2CvpseFLqnYY8YulR3S3khvxnOShLlmk0zBd1hB83W8u2OOoPcZTVY+pj6LmlTQRfXhNCVPkloam2jmCZ5IHBBhr324n5Heh8eBZigMIkFN6QIhCRsMV3aMOZhG6m531nkeNuHdg0DwHL86pFbiXOU9QnwsUeG95VTxdnX/X54NzHu9fttAQFQ0nAS9OuM5KT/31wBQJ5Kgu68IdRE+o612H0DZU5YWqwzIrlR2ZwUyajb3txmXueYw9zMmYw9BFtQFV/kaaUFu6yvMozsuYoedoHaM+3ORI7FFlPurlIFWzdV/G83Nv5RT6uWH0aiAcldrh1nWjzlUN/Jo14SoYnV+6nz/Lo/iD+TG00OozdOsv0nWlt4uX5ZiDDywzEq05lzMtqa2gqNcB8HG7zbK9uN+4Xrz9dtmO7ez9zz86A3qwFd/peCoKM3u+E82y/es//bL9xz//QfvyudWvqeVCn4qCPcWIbWFEoSwWgzZu3rESklmcw7tHrVchwdjk5X4SrMN7qqpRSnEdQKZHcmzR3oD36s6H8mJRNdR9KfKnqA4BIFhsqhriAPDSg6SoCI++bnjfJMu2WKMOVIjDlaEhiip4iiONL7alSnzoTBUy5OtIdzPPk6USGMjSqaRwMxlPCpH3baQCHJKCablKEwwwaK3BaRpBCOdEpp/2wmU4t2OoMqb7lQRH2+KfvcPy5JHBGoXA0pnRi16R7tHzOZM49poCIi+yFRFTgDDfiF7YnxtHZz95a5GjK3xcfym1ijxXplsV2aIkgJ5tDiwZjS2x0p3OzAIiYYb3HMazDH85bvSiAtfSovj7uOJC93UYqjIQMy1Z66M9iPVhu5zYFxijwM2QaifJBNoypc4ob+1pu2ZOMm3XowF+cirLAuZiaqD2oiZVAgsATEP0hftpIDBcp3osnmuGG0BjagZAuYqOItVi6VmVsaagZETAcAMslZC5ytv1oq23S08fs3NXF/PmW3swzGr6LRJ1XhEmX29vkwJasGvxKPyd1eUpXPW6nfksJzPB7FzJqJ6BSoGlTRG+NBA7nVIBEdeRNVCqwsv2kYZDR5opPQE4hnYrkgwWhfA0WeM7bkAnvRqWxhef7NpPvrhr3x5etzcHdXZ4fwT6tcOzd9yZVYznyUny4SLyZod3XvDvBplJpbVDny1yTvxPPlvnZwTwMT7YYV8th32DDN+kVwIg9dHedDQFqy0p5WNGG4xD/DNZ8viA1G0zpm1fOi9lWngqkOTdzL7wzCCHISg6Rjim8gBnVMS3r0mFGMmskLkjeGoYGHpSb/T4vQWcq/nxiG5RbLWHGC2DIyD9WEpxlr8y3knRtQCgyLRsN/oIHbWmAZ2GIVvllE0vd4PxUO+n7Zky7GdfDAOMnynneh85iCUeOBbRKebonI5pOk/g4OVYBJpanP+jvipWorXU+enML2MTj1OpyyVpfrNatvubNeU7Di89olHq5QMq0YvWYnA8O6aKMgHGtG2NmQad8Xn7eTpA3h9mUl+lOkaDhY56+ndP43n41tU5zI7XyY8YPleOznajye6l7aa2ecIUWjsqnK02anLWmzMI0ckC8BaaYV+WZ/tRur/mVU4VALOl07AOUI5ZYJ8oHZn178wAUYakyuIiaEEHczXQfVxD5krocPyPv3PZr3Uxeoc7bZEC9hn3rNeTp+oZ4VwKlWy6UpXW59YsgibKGvUJNcdzlsoCjmUBcEJ5JObu6k4RtB7tLSkchsD96bOtl9Ls1gj2+V7+2AzoMa3jt3EIXOhmu2jPb5uDOICRQsmHJ4dtgbwVAZhRRHvCoCh1FzpcghRBHsbbnJgTONDMC1dh+a4TMjwDPCzzkXIDFUO8eHNceKn/UZyJjRfmMlEGI2obgCK8xgwSGRXSHHgnbylRajZU2yQgL9pI0pyLscXn1Dpxf67WhfXmxWOHn9mvOhSA8OhJIRhSt8NZAWNC5StgXCnQ452paEDw95Uk2VZD0efUOGq0TqmR1hu4XQ5tZaAiZhxvDDRE1aew9CJSQWNsu13jW6YPWhqhG76upanvXzprgLZunvtFM1+CpXZZ/W7tSjJ6KqtgrGmAld7wKqGdQIFVzar6KncplZbW58RSlzgcPkEzckCEUGBf76CDFNYguZL67ol6aKVF3PmM1BYnk7QsjwIApSPWE+PKxnB+F1+Kgr6p1DIqK8YzjNnDsKvgS1NAKc+eqP3uylEdFqG0OUBhYL+W8oChb3upI+/vKT6Wa2npbedQSlRLRO+7KTueAEEUW2VTMCXLkFXNu26KDHpKM7Jt3usa7fZNn7wu1s+LTRPGJNe/EF6Zlpi9YhlJme33etZGj+UryvgJE5oZEQJOTC2+qlPo+ev+ADlg/JWFLs50fi/1XLSvPrtzevirfzm0yyszryvewft4ZA1lAM5w3/kPio3RmYzsl/BLwOiTstaVzFQFUSBU9Vbiu+YkTd9aeTTkTpVdMqZKppArt7wYynTSTPZ3Th4PcujbaKlMxlNk3cmUtb/pVqRS7aU3cIRiX9F4KMa73lvGVitI4FGnbOnCNSJzRSUQO7MTFLGEMpwbKRGnyZNsH0fKMIEqaWw4QvbQkiac5WWdAyAxVzHWqwNJpJxYxzPRL5zbKq8r9dQyOMoSFFrLaC4QzjNKFc6RSA0frDzJl3DqGBqwyS7j5UDK8M4M9r3riAU8jfoGuir29CIPUse3gyBpUPmfybfrgoZDwwHJEqT04gB1MiTzWe5gYQlNqGHKSi9t1+oMC7wpviEqtbWDM2N+rJcuS42fzAhTpR6yNYpu5KCZ+EvtWdH9Ui3BFO13BMbE2CBdRgZ3RKGZvRAhdDinwxRTW0hOTHWQ4fli6gBRhcjPbit9yyRRbv17/qDkCMcGLilgV5obA2xVL4qCRB7p1VLT1bPZF5D8siY+zq1J3YsdY0gdKX/UnPhiZJNH6cwM9Az3K7gWfDgfW4lJqr/21fSda7bKos7nE4ytZgzo0QpiPb/fth/94N47G/zjL/etPSzamz10v48uhfu3+87w0lkDn2e3rb18Zj0kpcBXpDcyd4u8sNVNVVbTOJ16hzIyovfJWq9OsQ2jIImwq0+IFkztaqQ7/gxGnkw02jaFmNF9aCDmlIRaZGBqdlTlO9pEaPMF8y/7KKJp1TgZomw06ExA+P9SQ4Fp5LYRWydRy9DXxrA7Dxl3P9J72XaJP2NpokeYfdYbXp3zozOg87MxPy6WVs/QGM3r6VpEMaArAyf4lxwCqikOQBbO7+W89+jzanN2wbkJA1rpy5hTczQYKJh9t7vZ+lru93tX5g4PhqZNj6fVR3HlLDJiT1k53NHSI2i21seTtQQxBZ/p4sH0Em0VKLdFGZAm4tpDFcoyIpj/KqECd3l4YZFmtWKvdPbIXAKdOaOlmTaL1gXsA83U+45HqOdnlQ0rayvEdk+cB2imrHljhoKMbW87IVRn0pI5I2qK5UbtmRQpC7heTQBT0TeWerf2coHT8RiOuaQppQzb5Va4Zyt8eide6HtDWAAq/9DaFOde5TNV+cy1FZGyJcSqtdMGUTtbRgPHeSCdWWWFG9dM9VaRsylh5uQxhRMo71gff/ZqhTk8eqfKYoT0abWIWuWYgwY6U01zUVrclUg73rPvJIB+6Qx8MDYwOiTkUtK+Dh7tr8cyhaV2ANLAz+xbjf7dVlt4ID0EQp3T0Z/++Fn7/MW2/Xd//bpdfv6YaaDv8aF60PBt1Bo7OWSKz8admz7/WAVJOrWBySPpU/pxDR5UfApPlS/OK0mbSLfl4c/lWBiE8iG4jkhDu25dRZvLkOqPoFtbR+e/JyBve/9nA2AMx1wkYHWgNwDhwsiUuZFGpepzyV99nIiIq/YZf19RLodDenC0KPJ5UDaXDJMC4EPD2Wp0ZUDb5/a3lXPMae5dei/rNWePAsYtZ4D9b7NcOY9BOyG+G8WJnW7O3X3oTQWgtUCrekSqIGO7IZ7gNOkQHrBhJ4cWw8p1PFMgFfxN8Fl8FiB3MsmGGn2dIVBGn0sOSjqL9Q5HT+mMRIM/IviCVpXGW1FOE/AhzHDKUhbpZIrouniDaBbXmlsWj9T26dMqaVoROM8zPZ5Ycwe5ctmq8vH+7Fr+EM5xtSVjEhnq/5nyjI3pg5fxHNg+MeySwst7QjXI9mNyTCnrz/eQwFf9BDmU0liUETsxtt5hu0EWF52TZQKQx+U7N6KRbaGxxUypyrAYz/pdXFM+g3cZU39EHl6+0+BX93s7z8kv6vgG11Y6hK7NSVXEtG7jMz0rMbFWFuLRM1kdMcZicihDSPzjs09u25//0ct2asv2tz9/8JO+frVPO+1DNqC/y+st3vHaqwvMaBC80fB+Rulw2nIlNVqtj5RmgdgPFGIZcVmDoHrdkXGFtzRQbPMNVE+ov+o7yISs3rAIvlUDsHqYOg5fri2RJSmrYBqlFjmkTp0yKpOjt6h3beX7+ISqcIppnkO5S7ylGKHPOY33GH8/ib2nika7IwYjddsNTbg5izLVA794hgF3Y7GF5XtIJhpaEJXy8KtqPjL9RCY6+MbgbQ+Gmg4QRD6ynjNSwT3b9eKG82ZL44cI7IgILD1aaIqbM6Bm6Jp4Z1fi2LJCNbHpccxKVHjGkYIpIw6pbThPUZsa8ekUhLRCSGsixow21dUKGi204JfHBpHRw17KChWpNjoAOzDzSrNKdOPkunDipMhKWqF/O/aqpEgRGNzrfgfVzlGpU8uuijYKWiqKkSssx+gP7v8L6VAIV4460hAyHRAN82sijZXPUgQk3rYI/+hNyr056WOZxmQQZNlWMiCyjyW83tbOzOfX9Tz1tiSthkNJe8q0oCUdIMXlXyNsBdwwE0gAcFYjNTlFxYHl1g8dMYXdpDnKtP1qaMW7TjOEZDQjoSPnIzI1qhOnSHYhf+orKV0lGz72g112u9u438icXO/7oZ6xcCoQzKgoMSBhOj7l1KCShTVBGUflJz1PKduV66Y5nnNClySk5NvkWb2yzd8pY8wp6UBTQZej7BqyasozYk/SsWbAYdbPFxk/5Q5KFY2Iswz16hjCicOfMB6d9akmearFzEVo8l1KtLJr21fOo/GM/ryqP67OBMoLNIAPBzzUih48M53Q4xjzebU9leRjZJ7VlPuy9so2j65CPEcYFD0OQkYhU36MY+mjraFH6cSBpuwAP84IpeRdx8oj4loJWGOFEWSgg0uLZtNZoDFP9FghZ0fJijlosM+2G4AjiUnJwDa+56BhfLxHzA2J3Epw1ubUXBaw1GKYdGpbbpJI/CmE3+dV5FhzgqUvlz1S/kmeTqh2ho5x/aCPRplcaGzdAwVKJ7mU0f68vq5VXf+iePaZUnqxElSTjgfAzEITKWZ4lbKekgzFs5YLONqMJnpk7pQ9o0MmNh/PdXBCH8iUilLvGXZkyQgdDfGqs9ZqwTJLE2sqhhTnJJ+YN36Z7VW+7DIzeEgfly7dc66iK0fZnrLIFp62/eJu2+53VvZQ9tp3MS4/ZhTu73IIvdiUvtVig3Y1jNYKjBHrhwiEop/eg/B4JOohInmW05dF/4XUStQHxMLEqTBgqvQsUio8kWmo1U2RBkzyCCknnlYYb8nCFW1O+95C7RHgq4xFqaqpVUsfRMpvHad2jozAml6ryJrGC3hjB8GyOAThF+szi0i1uCjuR7RjNhkNK3vCLszgtHoo53Wm8puwML+u1UAm0rfeR5sO68AaKDJKpHuHleThxYX6sTijhYHuY42ef0oJxPss55Q3ImRXo7qwVjAudsJ2z+yqtdvbddvtVu3x8Nj2x0PbWPRz1dpms2hb+1yIr+3c3uwtAnZpl/3Rh+5RfDJ3MDTUaIra0EOzGm5MrRacKL3jCXSh8Sa9iAYrtdm9vC7U097YA7cyL6eDjNKK4MBUvVi7U4AWy7WP0b3UjNTifej5XqjulWvEIj5lQiC1NtFqFf2ERUojOor+8J0DfNk1nlFgHuRIGWA01XqB5UttF+vw2iI6QcMz9gE86z77nZKtiLvVcR788RuLCFhaPR0gRyku2o+s83IwP9Ijohi9Y0vbxVEv2W4jnRBsKaNmvLFx8be3Rltd2umwt0oCT0vGXvJNGbX6keURkVmrLV6z5ovoLlQyPGIPbRkIwUkQJJFj0bRyswYes0+ClLmi8qnOMRwhpZVgbXHBqeoSTD3KogcyfaE4ni4ekZcBLSR8OLCiho7nA8/BgObEF7EHPnm2a9vtxpXfWaXmPTqUFmn0YFNkVG6UBSMho3AL473ep7439Fx+lvuFk0N/19kpCSjwz5AXeRue7Crg53iFRjpNTHqw8xN5RmYp2fptd6ihU5RqYj9rAOIDVPwjwkZF+HA4tYc3JzeihanBK6PW0hyg+huOl2H9xeeSzFjHShApGuCYhqdzFyK2zI0BiJGLZcYy+wiGWG9oLr3OtvaWjuyVUHaZbRPtLRk9rWvXpQiXMfk9GeWu2A8juFiZDxjLKBdTNw7/yqL+/vB0dvk36kAhw7xLQSq3pjrRjVPnkHYiK4wyyBzVGWlFWnfNNKz0SiJLw45Gv2FIAB0Btbk7z1qZM59xgJcgWGN768FwTo6ma27h/HEd4+T9bo2vVIRt0wdsvrZenrVqh8O67Q+g0ZH3YH+B+vmaHvFHIKdvOxj+A633SMayQ2MaIJ/zvEyXfusRAGn9znTnV0Rty2hKWZO8LlH11znz0yG9oi6ZWYTTDMQcOXRT25PopZ26D5zd+EyI+3K0V0A+kQb0AxrBy3NkJXSHIHvGCY53sLXGc7yN2tyUhvEyPcKnrJoXZR3Q0TUOCXg5g/HcObrHB405QPM8FhHpHsPlEvZujQbOWeNy8IV7xf97f7Nx0L2/+6fXvjeAeF9ffIZ4PzgD+toee5f3LgQ7+3VZrNXSWliZoVVc4YpGRN4JQQrYqF4cV/5OkUqmR8byz7+CK788M7zrSocrnrWZ66T8RVptMaLj3cpHQgeOh0WT+WGOh9MQqawe3MqsplON34O1hoHaqRQDSBA2yBQwqfdzEhBKYGRShOoihxZdblMMeRno6XlMaalaOf9GzJ6AQSkke+MqnQLFqC/vnvNYarCi727/phD0JdpxqeiniA6fThjBZrlsu21rN5bOtVlBCWwGImZp2Ivm8tEV2BItSEoo9xfNsu5YRiyZqNYu0Cu95lW3SlrPVdM1Zc4i6sTXixzClLRVMKcqpQmS5xAZIqitTZTu2GdCtec1NWKeFDnXtiPrC8cpGtdPWRdJb3RI+Y0KmkB5hgshj+7wHQiUls8ZauSrF1YtwwplBYV1bIGMKW+SjvSwORWZLtcG7+Dv4fYu0y9P/qlvzYG1Snp355EB3Flqdyk6Mxrs+zkzYtitz6VLRfe2dr5P2FpIaXCqNyzvWZ1oytqg+pvp4bNCRCnGBUAsjHIYfsj0kMHMFgfxXNIs+xKHshtZGIuJAhBp5L7f3/P6545V1fpLfBKndVPPXagpKvtkLgLdfd9lZNVbjma3HG7KEijdb7TPnQ8xEjqDvC050TsK+td3x7o5J4/sq8tMH05NjBGOdbagUrZCHQsvgEHJ/d8BU9G5FnT+dqMjziipj5FtxLGxwCjuK2AyRcj1fM1nlOhUXh4sLGuSO/2hshrV8ZZyuPFcfUR2St4nHsiUZCsbcV4L7JQuTVx1leXvqnfXCFaqACln8uV6ItM9qp4lI90QrjNarfrpoh+NlmaoHKAXN6iZYdDNScHxsPc1wzf2wNpKZBjEYTuyrE03J2nWO+geyFaDE8ZbftEBNSWat+vN3fwNn6nmuaoys9fHTTAhfp3AOws/sFJJB1Mz3cNfjFk/07vFc0W3Ub/LLLFUYencCzC8qnfojjm2yIbphQ9pgmNiejZzRzv3Vqcadnpfvd38vq55psld9E2RoHxImi5v5xN54x4Auf+yJ4xUsZOX5Ok8fy6TAEI19fE5jCdJbjr7Ly6DGU8mU9DsRq1nN8Tkrxqtylwi/b9k5Hyfjef3KgJtE36/Prf7rQ362M4naxcEb0hXH1uiDKrkcgimLo1PnstS31oMzrr1DSDKazHpeVEarbSzMY3Rr8GF7ezRub5nYtTMKJ08GHgF2kpBI0kePLvWfIc3fGRWma51fZOyxdJk4GJTGjPbDFHT79IqQwMpyN7mHT1tU5i7UYe5dnCqAsiVY0vBqAhkPCA831BmzdCx2x2J1IoS1IwUqgULiopkQNvnqlVNZtdNdlWGGHX1lB8p8a4YRLwKB5Xx1frSVhu85n5/atvNot3u1u3Z/aI9v1u01cbqohftlbXvOC7bw6G1x9eIAnnU3u6hVaGxlA4BwFbWhHbaUvQIsq6V0TZvSyRrzueor+H3tx2kjbevUpuKgjoKZTKN49oDpOodnk5oc+P9/OwdLOIFVNHjEUjGFlD3JFy6IBUpNK9upVulX4Qw9ewMtrjgHpfzKxVYjVNgaEpz5x4PBwzm0vuQGjgIz1+yts8GeVmsEa2xvRvCV1Zurr5ForUm7guxcgQ6i2CwkV51DZBhkBlTUu9hPCvlG25w/yj2d+5xBIfJg3xuCETjxLNs5yP3QTGEZajaT6t73t6qfl9pBZhXyxgY6yNRr8zaQtYSrxLqF3Pn2TFV4YXjAdufEeywelg/LlRshJiTj4iw4/mca/FwZiEgmmnjMf6KdfTe2etzu3hTcIcoR+ScUThL27X7KfLo60dUYrXdsedbptLxeGrLy9H7Qaup1/t45C7HfoA0pAwsOlSVUQoAyalQdahrZSE1kwv30/c1ak2FqvpQ1XJJMtcx7ErNcG3JxMFX5SvED8db61ztUL3z4fHcTgemb1NuKL1dhs12Cx3B9oju7hHNZZ2vNLAlIZVLYexsBNTqHRYzh0SV/iwXgCKXvnIetRLYVvkZt2E/90TJnSrZUSYxQDYU6ef/M0Rtm39EI5PXhiOP5UJA9pdvktFXOhgUBbYsFhigx05vV1vlGB3vV9+pZrtJ96prjiGnFS0669seca4sAsja4HQoFmtLL8JuiqINYzGON7K/eEnHZmNdDRI9Plitw4Vc2qtXB4CHPd95X47z0ZryMOJstL1etR0L3uzJK2ulZkY3Ze5pdc6a+wV41ZvX6IIQOJ9l4fw8uzEEzzsdcirF9F07z/4RoARlWvkTQGaLthTQYKzT2fWZKLcY7t/JamY3rLbA3Ng/njrQOmVumW5S17/KiM7Rok4aRYfVPDnGS3GQKKo9xvgRrVZ7tZ4v+qVDcl43V50bqtyzqNUub9hqU1kabz1iDxZ7o7NPFOTLz7LsAodaUj9FIuEQ8f7k82UolaF7i7CF3506CLjfqeBUuMPvMjjkyhxFCaRlC5DXRuaPbCK8UD7/N3XMTv9bPEq/jgF9eerZv857veXaUKJWrX3x2b0DvNzdbAgYwy9HcJPRGI1fuu2SD+g87ayHK+mzOG1+oPO1TVci2oP3N2/Zn521Qn29QQXv6gv+i6eHr5B1W+lR7ZUjEXTd+kNkOBNr8PDqVaxjL4IMn9DjqrHSgMGPGsbMUcjl5P6swuz0u9pCKwDbe43rOpR0dylmw6DLNMY5MCpKHYxqx8qrqU7G0ZrLNJlx7AY0jRBj+lYPbYa0f2f1TS50HH88Ugtr6rlH7gp9SD2rswqlLqkkxqz6O6//qpn4cviUW5RSgAn5lTr77ojrgXCeoQ0NVoidzNbw/Vj3jBwhifjpRhEjxvgqF7Tr9lg+n2WkWszyd7Y/UrRURhnuHajrXtckoa651hh6IRR10XFvjnSM7stIqAKtKrXFKZb+IwrGWobhvgOKHUaJcSfxNhiKMCxyXnyfhIZaah1pSIZyWRRN+2Z1pOPGDFGB6kVbOUH+aDLm+9zHAtRNEyBRlyd5Yb1c0eCoZWc0y9cvFApkZARCfukfWmmlJovUCKp+j11QUHXts91q0e42i/bm0NphHifue39kllU98H4RAR6+u/5Xb7hOZFfNoBhKEqPBRZn7OTNPQFXTFym8vJBdzdi6zK1xgPoM6MRk/F5P3Hr06qo4StEluxwGTf4kYE1tbe4ppVYnMj4U9kqe9do5pUo5c4HorRZK1ck/M5EZ4XtauarLX2tQtYZFbON+tbXfwA/D0TIo8kIEhjNaX8yOpssc6tS2/qzOydZdHlfnf/tfBz2rPKQGNjIym/SMUkBm3QQvSmeMHd4+sC3ciW4X7Y/mxEukc5RJQCYZPZrBcGL/Z6eVpUDCYHSbvzC7eYy0k3Os6htnhca7bZ1K5LrOC2g611a0N2svxUXa8NQXSciOes7UcawHHCbmTBaGQp1rZUXEQKJ6oXTRCbJK/AzIA9V6Z0cQhRXsfHXE6sRKASi0MQbUSPxURheHI1tA0eoisu0YmysNKijnAH+5sRwZZVV6qhy0V11md2o13jslTc8YENm784seUVL649tYzzIupcUrw2DMBhycWJfYg4tZx0DKa/Y4N3dSQSXryrM8aSPLUrJZ0Mxe/00dEz338uFGoK12+X/zX/1x+zd//LJ9eccKX/QiQESCEaUAuSGys7dpsUPB3ohOC915oF6lZg2SCeBP3Oz0iCn6PTJyKXZWs4dblp3NHQxPIGucSkqLTFrHFvY+rtVUS4Ol/qwKjQRh9OFkOyB53lceefFqjGLQIArTMWgaz4h2oaC11n/4uXRaJNqmInLUOK0e2ZRzKkxni0r6ZjOPtPVMJsgGHee2aVCPixQnGIKYq6NFVrVgLijASJUepjVB1R4yBhCMTicAola93zGUZjdCKyCWIm/F5mlH96ptrQbNvP6eCtva9m7dVtuFe4sP+3Pb7Rbt2f263d8v2t2d0FtN0p7bm/8/e3/WZGlyJIuBfvaIzKwFQKOXu5B3RnhlKKTM8/z//zAyD/NEDjmXl7c3AFWVGXHWETVVNTP/zomsQjfQldU9HxAVGWf5Fndzc1vU1M6ncQxIocYvmK7ZniqeNdoJAeqFGmj19BWaAT9k3GZmImoEI/PMCCCjgEBM4DmDIjNquUjQFrNNJZes2+t7RTbNc1ATK5CAefO5RALnYEXkyb35EMbm2sdAL+S8od8qI+pb8KQGiwjqcDHHJ9Ziptw1BvyAE6+DodvR9jT24vzR5XmMG9RZ9Svfoq+gMgVZguBSedSnOxqjiDrF2LIuNk4b/9HeCs9F2XYIxS3XmLVwXNtZ/dVYuc9yWr6ST/u82qwMqfYGPDvQrGF1mX/cA3qBRj3Veqz3WiPfnyO7vl7vWPubOoOrMuTBhjBghOhbukMvUWRpNgF1PF0wk2DaxA+NMTo/xQPh5891Uloyf7ubFLI/5Nijgewody9nCcOmeRHRJi3iADvOxUUQTGUYoF+iLi6afmudRmrOBiVqRDdBxIPyd5z2inY2URvKa/AS7OtA/XdNmdmsbuM371bjb75ej//6h9v4fYdR/oKONHDUvixeswWZrKyzLpx6Fpv9un2CZEmTfc7AoOGcPXNpGHG0mavrW8RtKNOAJoP8/TNUPb11c6/5yyBBc5zdrzaIwgTbtoE9PY2g28j67bebdHA4btSVbkfk465NUAvW4oABiBrlRO7o/pGLjP7XQnHE78eepE5bda5BmOrMTJ8f/zSnns/l3sJvhvIXV1oFa3VcDnQR7Ww5X1Fwybl017hYOxmALjTBcoy7E9jnLW+2RyrTxqmgQZGGlRWUGEB/NWi4iaKaIuytBrbbScsjAtstxGHUAfUOgt6rYBcPnSk9iq0s1KlspwjMqi1iQLBXt3HYb2gvyDlGFht8JigrcKATZV/INh/QH3u1G0fwncTbVcMNNNc0CAqWw0xI9a5qJbabk92hJwqXHucMW4HdF2Bb4E2iLNjnuSaozb2GHyUtM0R+HezfW8G2ScxnOxZdctQn2C2wPCeJZKuxBmoh9EcQsDEQzIQD+0dHZjNKOpwg4fdhCbHbiAGBQnoJTWCJik9jTQSbOpFfts8rpm3mawZCdirrcBImgGktUYd5DhZ/yQr3ptrXKtDdh1VjZQTsI8fXrPcl9tOk3C5E5CFpk+tMeiJ0s5QdOBRiaayp2y6B3CqUJy2EsqsTwHJjJpm3Lz0Ya3h2+nFkOzh18UBfZ66BeDvWTthvZkzaNURAlNmqpe3tNp636/GE9SVR+SV0g/7pDvSDgObb6v+nne6nHZwyTAoKzr/5sB87w3PTARa/aPSA5gJMmKcybT3T8PlIg4y8Zlyko/zGfffoUmbPenTcCsdnmEJXVXtYUO867xyDahnKhV9NwpA+SfO3y0GfF+v8jxrv/s+qclg+eGXr81EWZ6rYWWMSrIHhu9dlA3qHzNKyztdIANH8gvZ8U7Ze9XVVl9cyTKpxTmdZZDEmqgnOkN7qSNdxJiBIXDbrsd3zs1sQz2zgsF917oIqVdKUhlyQmyz2eGYVNXfxDI4o+Nr3itjPsogH5pjbcLv7TspjzVnOVI5TjyJmcWtt3k20cq1Jxm20mzQojTqt0w4UmCPb88v131oMBeuejakucfPS9nf9u+7f58nNdQIYSedMxmmwqE3jOP3hMXE9cTMO+ljxtXklVcaj/Xv6SF/TLcvVo+Rtzv08OfbTOHkd2eE0gzCJmpyRphwurz8/t4EI9RxzRn76um+i1Vg9OOXdWw6U9HXgsgUXzkagoS+ZVgIxkTdGJqgx59gQL5s9x+/rd4fxm6+fxz98Oo7V6/nPFwX/Mx53t5sZUq3xMP76guSHSqZmh22JyFlcLT+Tb7811x0W8BDFMN3yBEnsu1rqQKMWfE4ZsnToXYpwrxOD+wB1z2J/zTY2C2bjeX+bXcHSuqW15r2ImZ2meloGeWkkL3W8yy0UGNKX02lsDLp1vbeslMVW0aao/Nc6w93thNM2Z5+XHTrarJQNlKnadhvpgDUHpgPqJs3V6srbc4ce6PXy7SHDNndroc7UvRDHjqKY1krqqiYyehaT7/V5o4NQshD7PMqXTmTxJm2tCEwtHwEtZ0laBWAphxmEQWeP4LWAM1Rz6+ssVy6OkBH1D+fy4qdYr1rrDYiAQF/5kcPJrR7kvb64lhalv/diJkGgarUjaFuIj8yIM8rQdEfZ7mmLzIs6uz94RptUdYlwZdQUtMs5r9hbjsEkqQvzIGWzIxgXiJRZXzWd0+Xms8dixWRWt7K/riN2Xmo2aXo537xDeywzWDTf5f257l5pz9rGI9EsbWy7bZeHod3qgcdWZy3a2TmkGjoIBxzvX319GK/n63j3tB0vR7RqRdjxz7jn/gn2819EBto92r56tx6/+rAZK2gTsXjiEI9zZOiimAbvXZiFVGCyHG3XDy4O1oeugrG3iMKasMuytUC5TtQKMu9VPW/5lWllJqTB0UL3HzZMrBxp13x0FTn3VOyHHT/eN0YCi4jZN56LmzG94ea5vTXebYMzOQgifeI49uPMgYOsq2zGa1Pa9JUWLOZ6DdFV9hVG/QxYtDs8jzv1BjWN19s4oaZWxjAnoKKRuA42n7gYMk5uLaE6t2xfhSy8apyZcZWBEsbUGIcn3nNwPyKSh8grekuiB+Z6PT68OwRb67uvb+FEv57X43xFmyrJhDO8ukXCv1BbiZon9uiFiDjDXnsF7g1hRbSxUERdwSFH+XN8Vy0jktFpZl2QefMYGgbD5+ZNocaTVwNjtup15byXz8l5ik3KE92Ip1jszFrUqN9CnRu2KGXNcQ99DVgmMH5ppsV18R33/nX9N56VUdM0XN4wD3sOzRsIM/F1xN/OHCH4prF3NiX6mma+1tFsrRG0IgujlTU+7LN8C18xAAEAAElEQVTZjGgABWLgPdm2LuXjZe9MRn/pqK6zO0DDhucR9by5flTvqzGhw7uNb0TddkT+gQyoVl7+0epRgIje5u3CDAmQHnhluwOuAmsADaVnY4oqypmb0gnlAFQGsIzhum5/PRXG/QSmbrYdlbaUUiCE4uLZTjF/a4So1QM762jXIOcz++4ldErV84PZjtaJ9UY+jzIVQSIXb5BQ7j//+78cv/76V+MfX/7L+Lvvfz9+qUePF8d6gqEetfJAZ83bgHcF2eD8fEtBB0pJLPo2yOef5og4wKI5bMVAPRYy739prDeWZiFsOM91jvhUp9jo59f9UN8yCx21v679lFwi8/z8BOQOsjncE6LjBSvuH47n3DGjSoqg8plQnEs/6nursTWcOau2F8dsa2YXCLd2Ye0p+76GsxO9fLlW78yF+epFRbmYD86rjIh2cBragtwUQR/b3lHVqafJQ3kzSipZ9idDHx0qpM98mR4s92/XzPYsXRp0vK/Yf0TgZccdcx/j0wmmkqgN+y8RAb7Hey08DyUviczmatxeKY9AJ9BO0P2bNTyQhavx8sNpnF8uY/N+N1b7TcgbuwLge3h2EocFbHU1xml1CW4XsBEjQI99FKS5+P3Dq+rINQBE8RlH2aYpnFiMiSjpvJ9fy6mGzOL8+wB0saVmSMeW2cvjyaU/9uh4gDUcH0NmFucNUj6gPaB3NzfyCOzWmShgtlcM/+oKYSAWe2qLwLLLGhAfgdBStwf1q15vF3W+Qi6hRv10BjpPXT6MSpRj/VZZQ/xNEOb8fJDL7EH9QBYeNGdIxEeTy8fhDeu67lfoE4L5cy0SMYo92nuiHWbacSwNQHDCB9AOvhqZ2euIjPMEp2/RnweHUTL53Ewwy0M+kzsmEWiraYSAMIzvC126226ZAbe9inWpvZkoH/o6f/Xrd+P/8T//9fhf/s/vx6fzGP/w3ev4X/6P75py/xM70g9Pd/szOtB/xkDAT7msaxgC1qLXHtljD+9zyjpXBMdvfS4IXgZ6d/ruPlR3kbWKs5HpnZ1tmBYFEHJefJqlkbq4UP17qoXx5jFnvfLTWeddkLd8JgcHMmTn8y64ulukP5/v7ZREjVf7PZOQdctHz5z+vaJp9cWajzafPZJf41d+SUJwZbxktN5Rb2cdEJEVPBCtiQgHJymXmTDdf5yQafVuJGpagRUZOwGZZ80UIVizU9UDlznHORVUTq6bImS2nrUHbHuWw9FBy1ZX5lkv34Wiz6Wzjn5dg65g6Bwt6dahA5OGblqJt8hir5vRNEjW+XpkqmPgKoCUMtsj00sp6/dAzydJThxQya/mGtEf4rJLZ6p9TtW2Gt+6pQQh9oxXLwfXvDMy34e71Yu/tWHlOPc5fRA5znuZNy0H9vzMnnsNSxnQ8XohGzLz6jH0BPnh482ZlXYO7M0zM0PROl/CDE0pDeL/3j6rNPLZY70687xwVHL8pDVU+tH1cs9Mp6GzuI7H8f3Tdpxv6zB6C/nz47ruSzpmFNSDD9ztez3zOu8v9Z03UAY6oXIndU3LzVvfmAy1hqKSk9bXIT9637am3ZqeoiF8cvu3I1VOhSHb4Zh2gjL958GjL4ZrYUW3/eVuXDKLvGjblOsgN7gcyYkQa2Ijb/vXpCPrvFNiT7Wgziq+NRd9WPMRvM4SndLnxHNUE8TrGQHYkEmtRGwe08rWe932cUvdNe1frkOu1qG95GfKRC7tnUlG6v2yZ0r8/HHfEk+hhEJctunbBQqdTgfrPrOllvQvx4+tKPEtZILh0MIJ3IEIUUE8lKgEbPnCemp27avzcPw0p9lbl/cZ21FGNizz7o7S1L2csiCFix/1cvdz9Gdqz9Yzx5FtFs+sa597FjRbjdqqMAGbP9Nt3TTiulT2vYT6xOetkpEewOtWZpOn1k3HvxMzqj2qaUxKZMIXhHTojkOT4dofa4040NSXdsLB9YpHpWzjzhReZoPfT7lte5nPZX6ZGU2xKAtrT1dP2ca52WZ3urklQ2oPuM0GVupc3auCVJQv+TkdMRRjxn32K/SDftpF2QMRGAs/5Qs8fiEZaGkyFLQdz0WmpejFBrUoJHTlYCvLs4x+4thukXVDRsON6gvixetYwS3VfeurrEm3LWlGSre/2YLt1yCGZKEsDeQNQYGcqf/yZMumtOMfynNbmS9qlpORV1nCSIJmAg/iKjZHEwWYgVcnjftrNTBcMGBQxgeY8WozkouNeyedvIJN+dO45857yZ7M7TH4b5BuBVSAICFEzJAl5WIO+uaYLz4r61Ndz4vM2RSZDAObm9O06TLlT6i1HORAHSBzEDDQ29huULO0Hr96h7Qi61sQEf4ejvANtc+bqJnb7G9jtTtHjQkihS8vIA6hptxuEdE9j/PLdex2+/F8UHXZaseMX3QKljKZmHWYmdhG323Uor6yDkVw1dWCaZZAbzwH7zXGH5G96JW7JYOoMs3lQEVsOr7pavWQlS3TqGCq5VrQd7LFhDxkjHvfXTUfqA97OZOVerVizf3E4ugscpMNGAw4LucTsyjbLeE+Zqcu7ck5l+HBu5b3FyzMrhFG1PvIeuz1QZuaU1Ynrm0R2WQ51iWaaSuLdGUrBdWWsX7bWx4MhMjTjtVmpyyO5tFtcaI/NM6jVibKtMP4SaslS8vVRzx6LHN4MisVxkjb6LPNVEHDaQdAPk/x3aj9iqbqLfhyOY8djK/cyCOFJLlBdNh1acx2RwQb7KlP8rHBBg6ZRJaCxV9yPtRfGtdEZg8Z/Vj/nQG4w+H70bbveAbKYRlHYvAWg3m0ZFPAg/3IxcZuuk5Zc+z3eo4+4Jv9OjKs16Ozhbyv0Lq9BMQGieZC5YBam2P8+mtwGIzx7ilfnR2M8cs4ZmOn/d2ybs3XzIgy1n4yDvstw3Yx/I1LYEKsKDgV3A1yHLz2a0MSW3Ov6W1z4pVuKoeoo6y24VPG2Qa97iIDKCsHPJGluqEWvju7ega0GHziPt7ZIP4pB4OqhfzIgA8Se2rtB3ROtMzK3snp0+ieZKDKtmDLoxI2d0XwcOE9kM6naSxosD+D1b4NdgrW8UIPuPetz1FdAxw01LX3DCwEb0Goj0JwWS8RKsygMlVywXfhOJ6AjDFqr3yQvN9gLo/nNqEk30knsc3X3XiL+fp4OsUaJss+9ynbWvE1B0nTDLRDLS6K2QUo+dB4G1Bk55XHNcYWqLg8a3it09SH7Qmr6+V4iXHHOGmrTah1OMqojb6ux/PYjOttlwHpgG6fr+N4vAYHEP796fWiWlY6TBlMhWz14BK4LaC7oaMNwhF9SSePwy3D9oKlENhFzP2WfCDBH9EcMn/PZWhbZ6LlxK4DgWcKc6L5wsNQGjlsBdynUKDkMyiPk0PSghJ4WTaItgDNg7tcoL/yNbqBER1wm8e/FeSHzAoNhvUY2dwrxhuoRhG56tqBUgUC0LZHW1MLMQnLWATushTK38iEisaOwRjeo5/TtemzdBZZoLbdbIUWe7TmGUka2/zB6iROm/mhx72ES+GbiNOhFyYo57KdRwfm+nQ6JWqTtjR9hEmnB7HeNXhgLFsuf/QRayLM423I+IfDy3jejbGn2V/3+0t3oH9Og4EbnJRi2yxx3OtZL592TDDDbtr522YvrjrZ/Gq7SNX43buTiq217aGFs9L4nzfxcp7rOWeARzd89F5nMyzLc3I22mDMsaaumZZ95SYhDTVyH66aHrtHoO7v15bB/C7/12+j7rmi1x50Ow6TgacBqKh8KV/v0p1Ne7qzNmYdaho2uiDOUX8kBxsOspVC9CQVXHSzQeuqmhi2S6lauoi6BdwcGzyREzA+iLQug7wPbMbgtRnRiJiDP5z/GTI7T0xaofP3elazK+scxzpHZU97tdHbOoxrguRMXqfT3C4lpBOw6wUadzLqe2Fdi9T27/QI8nwvxZ7frljrc4mWsFW3iCb3lsiaFX7f6BKNlw31DH0t7reG1VZL29D94fay61LvMrYTSmbOCFvbUL59t4TZdt0Vb9uXb3fhTF1swdrwaXjIYb8b4znTV3rnQYbu4bGUJNectrtqWfK88bCuSu85078U+byHDPToC01dLTOos06n3AcSxdxvX/Ye/tOOKerfXrxbX8v9ra0NO8z3jRfmz3QDeN7F6nPdUFt6SxNR15zVZROAR1BxnY8b+bQfPLxPG8auS23Bk7zbhZx8Tr5DNy8YtMKn6roqM61dt5U857pqe1uhh/xaLT4/nvfZzE4306LumR/0n8udpflhbWwaCqHdDzPozWF3qY1qArwsl9wYdanil6if+6DbhBZ5gHxwYMB7pREGmaHzZ5QtnizySe8+ms82r0a1LOY2/9Ng+wZSddG2PQAn2hUl/eIB/xdcP4izUGUEp0MthfChww711Mgf0VXz62x/yHK02IczuCLn2uMgFK/3/HmPLl3vNqlOyOQ85Hpu5/RW1cokHTSL9oEkLV+Q2YmNvmdLa+FOstL3fN5CLxtRHW2+sJi7KJVoe0pHazQdVstjznJTDd23qJ1lROsjt+TlHl/f7yUsSxek2/K9jCHGtSPXcr8rlOGE2LEs9mvViJRvo0TVnT9y98ds+Fc2vu7llg82we7ypdTl0fEAdi0D2Us7LQKLamFIrqE3FuYXdnzxGWgM+mGM8Y4VqdN7iBRB0YQSFQt31Ad0Y6l9PmpjVJu5zEz3IzPXVrzZs7lHoqwAPNMXxFwpw8hYxkVsiLomU11F/afI0MgM689K2UhJ4HJmP2ZNNzNAM4RiYYCksMvwV59g/GnWbbLfcYR79Ded2clCmiEjvk7UnLfv8HxWIosWPxFNU4R40V+PbORqKaKMIiJa2WVTbIx8LilHDSIzYNjEi/mU/24BgNhQdN6EoXD+Uyes12N/2I7DYT2en1F/yzrY03mM0yufbbe7jO1ujPcgsjsAnn2OaPDldBqvL9fx9LyPeltkEBAq/P3Hy/j9D8dgmAS776dP14EOFxfAwiP452wi7m0XQ/d6YkYW0hQGmEXFWYWNmNlbVjedvahLdo9zRvpqClyX7D7mZeREGr3VEiYc2IaLrILoUe3emmaGVrQ5AAKIcrsHQbZZ6Gz1Be/ubNaYS9wbXlshE416d9XHzcocEVcqftZobhqrJFhOke13nf91XFcif1LggvXXZIEPdsn0yHj+4jOYXQ2tiJRVG7zcZRlkifX0lqGuuuZYfwu9U+ugjIdgOm+NNG2IsvZI8tLaWIBNnaev0o+o/xe5C4ND+OCFDMVR+0/EwvGVz7tZXWI8x/aJ7diiPg5812LyhFwvHQqtm14+WUHKrp+WfpmLBfv3EKBwbT6uFd1lRUTCJrvRCkfM4EQYMPpvimUigchA6ywOxYz6z5H8SarymZSplgFzeX2NntBrZPJtiMv4e0Al90UelltWuxtSW3ZO2Z0LwfXekdaespBRd089cFKANQJmGGefTOJt7hH+Q6gIfMaZ7cla5XV8l/MTiNHeBFY+ZXOSqA+NJCGcNNdoIBfmUhA4K7s9GLjLCaUjrWedstp/5Jg7U75wuNNRbAzS8VxaLvFZ1NS2R/f3uScuLMoOb5cNUv1WK/5NZun27LkOZqd2u0cNOLKhLesdw+E5aJm4LHsSV0sGN5glQ6D4kS6MZ4EMNcbzcshLx7rzA2QK+yvXeCsz08E6Zl1soVctC2EfZoCM+nppMWkI+JyqUTd/SrY2Ytv50mqwDWCTrdiVAyK2k54NgEwDLBrh+PJ6jmznHhDVYCvm0O13m7A7kAl+2q6Chfv7T6iHBnQbvaFvYajjdYzB6Yx73DLDLUg5OFNcBxzLTOzXRCSSDwDcQaET3zB9of5jurE9Yn5hktzGOB0dtJ8/z+eS5bhm3+qrHH+g+fa3wDrRyVdmEsgnirJRgpx7r33aLmVvey3iHrLa3D5jX/8hf2+VUGiOpZPeks2fclh3pg2PPwXCituqLZoXEwjQznyWUHfkSbMPcmzTQxXrvWUJqARQgSDoIuRYhEpk41OvpEE4O7Sy36ATQ6xFVvZjh32FRAy0e1y5s2l0DVrWRaPUQa1oSdcSXDmwf8OOxY/9Dun17B/tFxd2wi/agf7cc/ypzIk7xQZq9O1qPINYYbEweoDy7jyLYEl/4/boQ5ONZ+evvkka9vkeUy/nxyhNZZQVHLygihWyun/Wt0bCptsDwzT7WbcocjtRZzMsgWzW7GeF08RpZXB1p6b5ZtM49cdwFK+iw4+zF7Fd9ZYVrsVoWqaTZ/kunJGwL5RQ14S81qcfbgC+R8PqW71XKCkgl2XnrDdsYwHIFWBOQfSVjlWDKWocYICfzuexOW+CrAkbIOFPzRgyskAyB+KIcAobI3llXCtk3+VznpfJK9F0z4GQ5bTf1zT6PBlWKdlp889zu/667Qwt8lq3Moe9i7hF0e4kLclKn+k+JtzZAxRIZTF6AZeNJfeZ6E5pjm7V6jUG695jtir0ysDOQFcT5ul5+lhmZN+Z0x/fEWrK+phlaGqaB19nkvalmkgIPQnxotRB8GeuF5OQweDxKvZcakxaSciyzvyxzdJlsT6Y+mCWpFbw1ar55DB3R6N0akaBiqNBlAGZmBB0cKnP++Fnzadx1gjwMyLbm+P8xx0/696/2AP5s/Cg3/yuU0ulc2cVUIiLvksur+t/5Kk8j/WWfitol+UTY1EmxHZqJeW1p1qGXFOZ99SQST0gHP640ESPdZXvdV6rC3NhPjqTfollK+ldDlaxarv6Yco2l+/aeB362X1KBfZ9Kn3u0T12+Hcbxgo8I7gB9FU42V3/9bnov9u9yoF+e5XVycw0nQHWBbFSIQwksY2XozYbkyNVx5XUcf2eJjj47Z5p+cEYJYGiHIQMTl6Xe2jj43F9+wM7YzRnHveMIMUGkG49P8YCxGF72Lkg4lrDVkDgE/aAJD16+5BgLILh59W4wFBR4HbahzWGREVIYrJnc83pQ/uzrRkWfC1EbqoD1hjo2mED4ftw0ldsaUVYtVohpmOoJFVVVeX7UU/tPTvVUBHBTYGJvuu1NbBEguQ0TPrugSH06Du2aG1z5FbUroH9skBSU2BqkVzXy7JnJ93VTcKO0qzklu8hZDrn4WHbjo6BWz7x9LeRO5Oem67f11TnE7B+1FUSUVC20P1Fq2VW7UM+V/1+YGp+sceXnYFGVG+3Hv/D//VX47ffPo2vv35iHYVgO3FEHQnqKpixuMvwLBd9KlXVYdjwslAEe1yDidg4npyxtrlIwXGed2V4heHn79owuK8B5DW1TCbpbBHo6ONGdXYFyx1Pasm9a/zua/Ks1Q02BDfGjjWXUXeZWUEvAtczdx1jJciso43XuPtGcsCmrGXFRv1NnwwPcsB924rxRhkaiNkKEj4id5IVGo20JE6iOxMrLAIXgh7VyjM5mDe7WuTlyNt5RW/G03hZr8fvPl65qYHYA5E3kIWNMZ7fw3nmtXGPYNvGZofsMmqbkLk7vipDtmZvx5eXCw0LbCggiY9aPET7t1Hrinog3Nb5euQmuzpnnUzOcxovzhZX2rkTapDIQ4EDzaUVH+VsE0Ym1khRyrQ6XmmtmjUwovdUx7w8nZNjrTiehQiJfLdB+Cwz0ymacRnRSGSww89lb0czdNLh41gHYzsyyFGrx2t5M4vMLaugdQdc2wFSEHNpyuHEfs1e54ymc01EsjOQEIjs4xmZaXaN9EVyy97ihYiILKn6djvzwTpe9Vpvhnyt98ndrrn1vCwyTGDEp8HCoAAYVnHvuEf3mmXdtnjzVWgVmYCoLbLuNBOpaoEDPcP2KkQZ8jsRzFHP+lSv0k9K9lf5gmuSJRvdSM7MlXRdoBaijo8H6qQogHqu9TWceYBRsAYdxmbmi8za3YglaKiyz2z77nIOyYKnP/tZM+2yugHf1IiJrvuxvm3H+91mfPs0xvenMV4kPr+kI2Q1s8/z3hI6s2lo9pTvtc+lI1g9X2cNOF5zJpxxDmaA3EvafSwid6l7nPtf1jYD0rfl/fizqLkMyXaLPGW/jIjNTlWYezDtQ78qq3jTd3HApjg8AaFjJ3p5sD80EWuft7CJxpkdUxufHZCVSd1YBkSMsMd0z+xKflsAoB/RoQL6yPW+CgjG5XEfoSPcdUNBoMU8hKNstDXuIdjH4TiLT2bREaS6lswGeVkyrvpsHkRGnObP87ncnxqIIPKX2GlPKCyY012T7e9hz5pUdsAesijWmctuwFfbopkHIMah3PHp+VZAi+1IzxxSLvso6k2hj+Lf/Eaj7MixjSSPCEAN5ybrsNBbYz2OYI1Wj+jDehO/v363G7un1Ti8W4/D63Xs1+vxeryN8f05nNH14Ta2cJ7XI7LYv/9uFb/ZzeE2fjieot4U5WW4Z9CfhA3lLgVBlsdOIesI5DsTXbYQapYDZRakGrUeoyba66rFjD3mRmVtdZ3ocQ1TBQGAABDKnhNbdQZscZ/qM+x2eu5Ows/VfAYfgMa2B5rcgSalrCMZ2oF1kDQIMo9gSt3V2/cjnXpnVyuYZaRkBJsgf5HVvY21kDYndQnqwRZb5PG7o2K6o7q4FwdA4n3JEX0g/K0AjDO/tv2ybzwGsxGDafLsEKfsa27MV2G/YnlEUkhkIU4UbCiSqd8CRRjdZAoR2tdIrT/wM8zs+h5y7MQ8J3VaJpN+JNjxy3OgJwH45x13UAJHUtfr8e03T+Mvfv0uoC/xWddNmqgnP37fIa2yHX0SepRkimNVTOhRmnTxd5rHPeRUGrk2Fd2bs4x+Bl+nIlr9Lnwf/YKqbyyXYXF/91EoP0ZtYLU79/uZI0g2ZOd9s6LyU1zsDtrtD88KoTuF/V7bDTpSmRZA+15Tkv63gwJ9Npa6s2c46zkbvebtHroPiNQVcHn3EI+MNOue4SiHY9HaL3iTouGutiLJvSUyssBWl5FgmErAaNwOKiKLhLPfVYTlsPL9hMFO41+yS6MjXYsyVc2yuShv9XB47cyKv2D+c9clBT6UNefQ2nldHGnYLLIsbQw57w6M9Ln1tZtsySjK21mIbJctB7kye9qzjXm11i+2IRLys5aFJp8k51rdrVcSVmHzGhMs2F/la2/v2pPuebC28nkz819BwCixC9iUx0Z5hAfqlZus4l0OmOXyKOKfqAxoGcSeSfQt5rnMW9d1mddz1lY7tbFoH+P92+vSQUi1m8uV4/Fvsp/sCgoizdnCshgSphuvWfOSuC+kLIOJDB6BOBBZoReTwf1Tj0d+2p/56PWnD3X1wth0q6g+ZpT5VlfXHJTVT6i1XmZwU6W3Ly/PPawfg9yx3avuzYHoKbuzvE6uDRGK5Rfk6KClkPfl6UH6vtt25YXCrPX+NslQH/t85Fx3Ljcy0ZBlmmUJed1+zZa19V6ce7wzyQ3GzZLkvg6ZoQ6uA72w2RUc21k8OySFHpv3l3oyvtaRYakSvW1NUf3+bc2Fxw8OXvhhjb8kzYCS43nrKRn1/S7lry58+wnmq5yjbN2mZ9OAbIJVu4KIy30kR966R6gey2E4WsrMopQZEOcYgw0z0ECpbQ9qoIa6xXFly6gIBazDOXu6se3ap1cGPoIw8XYdr/G76pMj7IHsuVjmqePlPKkVY5Zs5ZZmB0zRKHNfqvwvY0nSzRmwcmvX2L65TxehrAKZUUajllTdDnbgQ7Xc4ootNnBdEw5qBMI40bXv3jlnbylal0ZW/bD9xZQdnXCylVMP4vrqbdwSVg6o+7ZwIDDxCBytYav11255ygJPX7TDOp2lcl2CY+dYeowaf0mi7FxK58Dn4gbNvSPDtG5vsrvqfCu3HW3f7/o4fZvJTi2+gL6HTIEv6KX4QRDGRtU/Y+/9JWSgF3vin+xA5Om/+5vfjP/0N1+Pd8+bkJkgY0C0R5kiywIWcHI0BNuwshmaoEdGaxb5T+HNfPfzRlOn6o8oKKNp0bfyDSgJo0d3r06XyuTs/bcbI7YLcx4DC/2s7qcXdcadJO2G3nlp7b7ZZiezR82wzwzugy0oFK0iw2nc6+jkI34eOlSI5NE5C/cwIiJkVjaP1jpr0kuxM3ih+VO2NJzR6CvMezbJBPPts2r0+LC2fDV2+h1DemWEN0Y8MiGQRWxeBe1D3XM8Kxgp0f8QEU044KfLuB5vAwnP7Xo/bufbuIFVPLbC7VijBgT1VNiQ0b8Sm5FqrpIWqsH27NiXIisjobmbeq95NQk6TVAOn1kM9am0cpeiYZPnVt9Hcg/QyApRyMxGnY+tl4kO6cGOvL4zfuqnnLfroq2sa9U9KdKcxnzsdldl7RX1zDZU6q8aG5wzHJbLcoTZO7MyB1bokQnBd0D6djkGU3+w9XfFPkeyKltvY0obavSAR8YgNCsz5jQgzAQdtKTWWGn4psHfari8XonCUKa282ElNBDZ84rqRhAGawCMl6QSSAeEa0W1iKj73+1IeBf92FFn9wqC8XiGQICsXVvMzHQa7j5nil6taY5Pg2hqzbNFm8w7O0Rin8dFttEODvqdDOePvDQSB1FCk+U5Vw7kc6NglCGXWi/ZG1Q1+1fU2nsSkWmkfomxvN0im4J18R/+8n1k7f+f//t343d/++mf40L/ix8ZQGsqofbpCu7SRqk+y3fnUcayGzulP7ivsDSlI07ma6a6eGMAl1tzZsxXyLzRCUCrExwnyLfq3ikHs9OMbCGyYGfoYeheZTPDR9wws435/TGDJTJmKtXoxjaOyF4jS64sNmrDXats2e1cUbZPZP42lm3WA97S8F5YHfb+DTkPpxfBXVoCobmaszqtQrdJwnNgD1sru7pejSd1MHEmzG0TK5DO81TbrTJKcosRZLePY6AXwL0RCIcplJJlLF6xPC3qZdd0oAWFBVwZmS2UPB3ttYWumQmjHgUtqs87Pxa9IaCXFwEal05HL/nIjNIOIMrBwQjJE/YcIM02YuUuCYmf6DusiIXRZ7ZPutA7Ywv5DAdUcOzt/jYOX6HmGLTqvA/UPa9eruM3yPpdb+P1ugl75IfvTpFFPgAddwHC7Rx/48yvp0tkdOM5j6txXt3Gh/e74HR5/XgZL5/Q3WQ9jrt1EJy+ousGapah41W8HkGdHe0blK81n3NssZZk3yEIEAHTti6qjI1jg/lDYDLkT32zgxU++hyra0y2ljLWXGO3pv3egxR2/GINdd2Wdva9gol1l468yDWFcPTrUxY6khiCpCfSgPdEjJLIZmXGRO2vSv7ifCr7C0cWqLBItqgvtnwXI+CMuuEzLTPhXiV6ItgswZFQStt2zdKDd0kD0GR482KeIMn1IobaElIsMYg/7QAnf01bye1c67CdtLaa/mF8vNBl88EgIXZ5rtfyYbbb9fjV14fxermOr9/vxqfjZXz/ifbATyl9+ycfjm7+kdf45znQf6bn6c44lPc3H57Hr795P3brk1ohOYOgTyqqk5kkxzfbTjRj/CV4udv0SGIJMu35N5zopjnyqs76dCr35vSUf7A432x71r+n3bScgcycvhX1ntMvi0uZf693mfc1Fp57c4T6ZtVravu9+Qhl3CDgPkfecszXolq6GRr1NwmsqCz5k99YPGJuzv3ZFW1Loi43AM6MnNsjERIa/wsYq5Sdssn7HeugqUjrngHRRvsMHFEnZUjT5UqyunAOYOac04kKpYRrQjlfqn0aErd9uB4aB8v+e5bteeRa0KKf0euiDASdNAXT8Nf+jfpIgo8YtEmGcGUttJn29WN5dQTeAt0dRP92DXQXvUkMmyXullbpbOM1QRgfhp2mJWwIWLHmG451AU4g2tuRqI0lIRo3j5EitCnH03x5MxB7asD3qqar6jhZMpCzUZ5JPrAhY+EWZnRW5nev/9V4E0Wnnp6eazvNQeLSGHbj/mkswXiFcXnW/QfRXDjjrTZ6EY2+l9MHPAsPSkpsPJcx3dA3MLjlCAVxWVIIz/ViEQgR466DMmwrxnutLGdFy7lV9FWCF9h2zNUOUW7SSIcQPsFzf/1+P/5yjPH0ty/jNj7dydYyz/AIPtgu/C965PbYIXspOLXR5H7Vbr0leeannOKs5UizzcqkkNrJFj8P3uY1J8nif8MhI+GUCWwugp5nj/rFhRzMDkIjGcE2FA3bnhAU0xVnDZLlXIt7NjGf63mdNVlaC7m0JcPEg4AQ1RnouXVeyXm/mOngW1Aq21SVrr9XI3ZG5CBGC0bCpuG0dz0MhFQ4Ei07WA753AmDz9iV3xxIS0I2t5rTACRNS5Mr64UgENKrDMaOAQ5Iquo2op9jgNJN9qCNxzJrebNMo4I6lv/gOklEEefY0OMgaQphVNLG9lImaNr5msvXs2/Q6YFQy77QsmkwP3uV07CX0NiAuXC1Gs8HOl9RmHS6jtOnS8jZ0xblZQwmn9bX8fTK4DC2Zsyjodxoy4me9hjLG8innGFeEcYdrreD2yYEi0q8jjqR7RGZbLWXW6i57kjTSWXACE4/W1Wx9ettu2xR5pO53Mc6ns7XZKenWdn27oY2eksk0km189yz4418MGW5KU1vbwx1lOM6lX7EouWeb5Z1ohd5wxGKbvaoxyjEWYR5989QQpyy9qBjT/rP3W6T4mdGugXDmnZ6NGYcCzrQb+xi+cG4tVUOWRuHeViyRn5yV6r3tokHfUBW3j9vx7tPu/HuKeCe4UQjuM8Sry/r+AJroDl9lAEO8GZ9HtsNep5ekhXWNW0J2WaZoQxrnskLhp9XXYsExEaWP0jm5GaUWzjS4NXt9d/uzaYaBNQRmWG0CxhP1OoL9DrrBNq6cK2uYKyipBAUyBHiYummYrehumhLleLrrFxpjCjNduQ5tf7SmbVCsapitpsKlgawoThRM4PPCCJ07zzrfEu/38pT13O0MaG0/mbsZryxiFQKwq9X5BqrBtindvQwykDIGI7Mlg2KyDwDHhXPcRu342Ucj+cwsG77jVg1r2O9W48P20Owb9+C1RnyuOPYjdM4hR/MoA7bWZHxMiKsMHFCTlFpiazBemyumxgvkIsZToMDkUqKSV+SZaBGpC+tPkJ0MyKrTGjItlhEa41ovvMwBLwdyqJnY/IpABMx1tnIRPYCWQY2q5zWS08SUD7JNhq1pqrR423orIaso6fzwlla+P8JQ4ua32boxHkiuhzdBjPTU3uOofPi+iQFuvrLcqOhuMgQxmYfLyiav2jpAeCGNwVmZ/AElA3Xnzvm4/7OqV+iztHzyvud2ktJ59Hqcws09aoNaAsHNuqsgm9hFf03IZpgt7SjHuOIzAImH18Lw4zMl6yNYuQc/V7xXbRhw8AhKx1dXK8nwQ1V3yW5QeaW9clWY6rJB3N6QKE9nyAjs+6wQ84ZiKxeOPpk2ybs2s4rmHJwbzAsCVM0pDtqQKP2WWQzkWLDXNngm9ENcV6DbFIpF5laBLgUuYrsBGq5ZS1FtnK9Gr/59v04fHg3Pvxv341f2rFI2MlYXnqxdjAXlo+OGS7PeWKySvWgdxnm2R1N+L4znO3o22MEqwwZVdbn8LQNZA+CPMj+PR8o/4C+Iov3fTC6Mqvj0gscl9NtnF6ZXcsLNUf8rUw71/+99YhncGbSQQI74naeyYD7oNjvJxwORRYRrwJK0SQ5V1h2EYhPZA9gh+fqwGcxJrhvZO0jUIY9Tdnuh0+O5zF6rMVBrIv7rBa+x3jhciweH7YPCoyN9X9CJvJ6Zc/pWLuy5WKLaXaN2ZlDFfsMlMXkTxCZVsKK89KzvNtm4hjKflIA8hSBM3Y7STh8jAu0O0hDmVXf6lpms3aneQTNr9d11C+bTCyuriB5oJNslV3W47g6jy3O/boJ5us3vZZYE8hKr8ZX3zzFSfcKzq5Xr+Pl9TK+vd7G8+k8Pp4v43S5BrM3pvK33zyNb786jN/vTuO73Xl8ermM1ceT8Hhg+r4iWR1OvQMN7OsshyWdS7XMQlZVaEAmWhelepOO1fd8XmxF5ilJ28LzVd1i8NYZ+3ysR5URYOylSxyUx+dRawz9Hx14FsFdHNHRxJ0/5Dj7d+iNdu/VSUCBHbHEh/W8rufpgaWU0OzVLCM0YivspuIe4okAtR3RzmJ5dryg61rfK62F1KxFGKjfoT9j3dcaiUMsuJm0qprXnDMH63PJZJmfn3kWT9uil2DJRyCvyjF8vuRIat91pR5We+zWUdZQcv7h3W785//46/HXvzmN3/76/fjH74/j//W//X589/E4/st/+4E9u7uC+lMd6e5UUPFP7kD/8VvDH3PuMramkFPUTlyjzYrrRGmztvCxFG2PFtt5dvSmHMtWndB/3XnIFQ2rDaCdwaGriJYJutQyz/mt9ijs6VbGeEaxupKXgV3wzuL1iwroftIOo3bAIX3heh4+3yJApJUYt5RFV7ODXxdxzLm1hpIWc2zaUUczMk7fz/W6cKLbz8LvnzJGmblLKJlDfXKgvVO5hFZjGqfE6gzFD9kRxB5OU+gUwL41RlB2WJyxYRKCtt2yRuApoNurcSRFju5jHYRutDcYmAlnI2DcLQAAZxPMmwHZMeETor90uv38JXVueOA2Wy2QkP+UdGX2mNBp1iJVNLTCC/xsSdnMrJtRzsTjzSaTlftcc3cfwOr3WIaggkAat5I/ZQgzK+FziAV1ob8ioh0EIyrIjVQOJzz5scN5W5N0ImWioUumzLU27NVtwHdMuLSzomZ4bZvWpCeitwQ2Wf6Jhk9pyKqUhL5YjQFvx6z2haLhsmvZaDFdVRDPWf7EbYlMRGSFYZ30+VPQT040u6o50xiQDj4LHEXAEoW0wOcR6MGIXm4ktRNSNh3orHNqejeZJzqDuhz/hPtKKhhg5EMiuBLGvogATWoDDBzGtdetWoeT1K3XSEseNL+Gkd3Vk/Vopo0Zj/uNhgCRDBpiOdAfnndjt1qPp928Vd67g//ye+aPHZ1AKoeh73NejxrL7njMJmLtqzYGbRBOPvO0nz4ag9qBrEIWar/0eJCI0XkO+GdAuBm4gXyCJCkDzu1eTJJ4QcsfXYgqUvXGEUzShTLQV3XD3cHqunfZAcT7CElyGrHQ8olVMjL5F9OprBeWRiqfuW11zBzHZqa5azX9/bBpYpskAvuCBvfSoD5B1j1s1TQ7Is39ZClJBKRbZXLv4b5cGeXJLvhfOIfYF8NhsR3hvanZOemMdbsgdZCRQbUlTgPR7qePb4xlgxEFV0nYmggMu6SowhPhg6hNZOhhBG70XJQd1f2qxjmykHV6rR/eCcoLgrT0hCACAj7Ekyeo6854L/0P8juM/3PwTdzGDx9hFyO4dAH6m1sjAiaiUPvwvB9fvztEx5DzFVnr0zgiuBQNzjjWsZYQzlRCoXS5DeoGRs+kjfdcI5rswdW893XJppFz9hq/yWdQc0riXY6l0U5hE6n9qblmOO2WwFuUNDgy1osaM+vcHOnMPLv8x3rLCRhyb9GGcm223rvX+l2DTWaT7IBWc5xm04zS8zMYLWl5meDd5d5K5lqSpFbYJD5eZ2EjZdcQrN+JK7yhBJtJ2ZS47bL+aD4uCvJXOYfkwb5EeeKye6RDWL5d+lvPgcDPb799N775cB1ffdiP//a7l/H3PxxjH/ivf/9Ri+7PUxO9mMlfZgaackfjdrO+jQMcmeslamDTENMKiKyyvWZ/v29+hRlM58JOACKWXsn2HflHg3/T/4l/RmT2ARN3Qn/iZ7GZdJiHIob2R51pzQh9Y/mjQ4cviSXbN/NWZlcwPAt9OdHFrDfXcpbSysso+5MZ7abkAvbTBmXysxWp4+JTFniyVbtytCM1P8S8n89qysrOWQPDntwzM585mfqkHNZ0UHPThGMcRnu1qXKG7oLMRDy3MsugawS0JBgux3j9/Snqd46bc3znhPAvIuhH1NrBEFhH9g+Le61FBScOzL5gQgYVZbSRuCKyiig1wMKth7Ytt07MluXifPCsnUmYoI0DyXBjW1zW63r+IyuR60u9B92uI/a/yzz6chJx/xENxgYLaJhlKjb9qs0umK7eC/lmLZPvFBnO2Dgzr90CPIJ5zQ485c6butEHwdAYzLFMF/ItGg1mBY2M7SRn3nyjMi7WYwQe3Dc2jCbChgKJhRrhgFeS/KXWD1m2qch7Q8hqcOusf2RJhRrhV0tvTPPkzK31RvNMeoFJXxNkG2Z0Hus3YNl4xh0CQReiBNrGQHk+jc3mGj1wz6frePl0jsAEkBPIZieoACRaruNrAUvPDNeRjVqvW8mISYnCOacOomHEc5nUhtUUtE5w3u1O7Tl2XIfLhrrsF8+DsFfpRxiOgjlaR4QMqNd6jKBY0FBeQTuC8xJZoVDbMNBuDIjg2aJmdDUOm8iTh46/z/N92Yfhy4oIlaHfdX+Ol1VQZf4C6aDPWHZLXRVyiOvgR5p8NQMSRzF98zTRf9cgDS0jrFKQKD3vt2O3WwWkz84onu3y1S3qLP/wh1PUiTrgkzXR9Ri5p/XWqOmDGUrcg1Uai54lSt2q+uWEccsZc3BoUr9C+folBAMOWwZkV2DAbjKV8fQMFhEhY8poZjXLpgF8db10NNUJYBswbQYhgNxg32HzENTYVJDgDfPRMmHOA7Ejs/f2/F3LCJFJ+u2sXJ4bOsEOGGtkP71eoiY37IwwyhmMPoGtWsZGrHfBh+3wegITrNayk/MDSI/N5ll+N51D6PUNM5XsBFJBloAUK1bnJH2eSo4AYPDBw/LCQD16OzsIYlhy3JvsRKDXMKwvp9v44fvL2B3G2MuRu55W1M9RUoStuAdRb2MNKP5YjV//+jCOR1zvOj69YH9eR39qD8G3z7vx1WEzbtddoCigy8DRMo7oMa21p8lzXDp7uHfSDTmR+AxY7DFO55NLnCzcyj76e4EyKtg9dkzC5Bmo6PrAl0FZHP5lZBcdscu4RZcOMokzS13JGG6VKuuZyd89eVOgbclnkLZFeyVacJ0p6zDh7LCDYHa/Y4bfiI4sJxEyxU577GlgNlcpQ+bc0k4vwbUJeHtQl22H02vWrPdhW7nlY4N0037gB+N5sxuOofp0WByPR0eRvm7Kpnw7AGw/bCU0XAZr0SVFnAoRBEWHJKFdOdfsC2dbNM+10DsYt6+eUQN9Hu+e1+OH13vG7j/L8Udu61+cA41DYMCxCxgtokuoG2GOB0cGNywBAR0WaZiOXixvwzQIDbRLZfH9pHAbA2Tu+D5hpWrTSfAtTGyhrWZhcujL0KQj592yG9Te6JWxyl1Omd1+yCAoZ7nT/vvBWS/YH2VZy1xGVHvOBTTcwm/IZI8xx/JVRJaR/pk98e6Wl2tg8bfP3YmV+lCl820l2ja/8v5cqFIZRIoKWRRtuYXRjIxWROVgYBBGFm3IArZDpXz+eAkleoIDjevLgY5WEeEgUCHEbd26gcEfQLfxGTJyB6hncsiqvrg2kjRcLD8go+qru2Xo47pLXKI3+W4g+B71utfCtAm1sab4sQ0SM5cFLb5FBr3OWU40v2M57L/jDrUTIMNbdUePhYKQ9O5Ql1GW6wFQYY2VDedwbuP5FoXluSnwJmiEtXkI6B0ZmSEBgHjjR021cpy5ptzzfTHu6gxgWDZbq/kJjCrgM+bcZs84kX14ODxWucW2ebelIL4BZ7XjcgjH79yLqzugLmEhbAqZkOMr23eFHF9IhFekZ9kJ9EHWqumZ9p5bprhtVX3G2SU72M34dfY/6v7GuAZTX0sl2JmxcS5viJBwr9+uZ1umPC6tAF8EHGxFc0SD5C0HWRlokU2xpRPqVcHA6ht5vMO+Vfv8c7rZ0XrH+9M0Ta4Pn3uvTiiIZpzm1mbn2fpZa93olhTWxUNPxqnEwufx4WxP3zdZDroahx0cwPV4Egw5nu0Kgqnt2G4u44fvz61FTTOSfb0W/7UDmAH2uq0WHGi8RAsiUMM66TA3+Lazva0Xc4ztYk6CqAp9gIM4y+UsdQ+JmJE+CiPU49w+423MSKM4jRB3WHvIRob8hpGv62WQVj2zg0u0T9bSifZ9FCLDy9qgtYdHc54NnfVtJ7xUTgKe9Xi6hKxaLoKQDvYeUF2eQ7RHkhyFc6Ha0Qrg3T/B/GRVxub2hv6uzxsvYU+H09NbY+mGjdLpRJt9tHx+lHCFY7rdEfXg+3LtvtA2GHo40Ue0yPtEIQDfChy3yycE22/jWB4Xn8K6a0d5+7DaRsD/h4/bdFoOrfzt3R5dBDYMAGzGOB4v47v9OoL+Hq/wt1ryhvHb3LTSzoxEBiDsCIwiaBlJl4UUyNnU41YWFHBzyajbHebotfXioF8lROpjIceqqc1r+CMRRKf9Mo9Yb104Z6BLXBckWf6sMtGxLQfyiXBx+gm3aF/K520+ha4pHjGWYUQZlE4sJ8b34jF3RjkCgD3hpYf0bAm3qBImEa0FypEtW9N+CBIz216zQ56ZfjvbbT/1qOaTpNnRwscy8G829N03PRObsJ8uicrJU/mfUfdcTredcJ/agUaU7Dw/bcfTAWSny24Jf87j9st2oL2L7Ta3AeRcsSh6j54xvwkcbIsy/nZ0pXVX7JHpHvmR5X83eKzbmdlFQ9BS6wi6bahkfGkCJDGSHKggOcW6gU5YkZt69Bdm9JkwqYUi8R+R2es7Rr//TrY1K/q8vv4Bp5jkWnASZXD1iYjHNIVCE3jHtJwKM1w4EZXTQE/3sDTSyuG3U8PWP1yULh9Xn0pkHeP7Dqe4pl1nUoYi+vE22Hd3SsNIb/MIQwVycgZ9YszBJQxn7DHnzRhPO2Sggso0roMAbmx+IBFDpBwK0pRQaVRWXRYq98+rS1DyR+1ggzxzDOiQxhiqDvneIF/I5jT5esmMseELoM5KmSXBXlBTyjadhrfP7Qwiy6ZzcOx5L2EkxgtGgdgQkXJWmIK16KxbxZUyg54yUpFJoykMB7OVYaI2GFTZq91172K8dIsbeo6sMfd6p4GurHDWJpRz37OI1hxB6KPnd3Ah8/wxX/AqT80LsdTeGt6Ltd4ZB9HYhfNNb9cedV3dykiLYgqitc3rziHRf67IACCLgCBNyDQZ3Tf79Vg9raMVm/Wi9Y891yC6g/UWmpVMY6xppQedkLIUN3Gxy9EstH/1oc3TaxAjQi5mXTsdMfXgUICeY48KQblvQTDDTV2ruXluFZ03uZnRGauoJ0wjAU4jelmHFSz9jeCAMhsurQDJDqdDJQAi8GE3H5pArMmtLH7UbicUsxmYX+rhHr7ul5yWvA0g6fOJkboyNH45dac0k8OoMScsSZ+GAq/TNywrF/Mt27NtAu1opXkYczjL79/txtPTZrx/3rHFD+RaEFjcxx4X2bpcZaEb2/m9XRsKnk5DCwbY2Ms2Xku/wMifCMLaWVbf5DREG9lX8kF1W4X3YARUht70tiHWwc1gFIcIxmL+mjPRYj7Uf4x6MTvZMs/RrksM03SeHbiy7q55XzbzjFpdQ5cX4xHfNbN9Osqsi0cvWKI91PFZnSuWB2NhzIiCxNDM5nlvCzLMjiLwvuU+yOhPm9tMxs7KdsoMmWTFhJnu6OIHLLdlUU+r60b3gi2z6NTtahE1Zav596fX8zieJFfRropjGWDGzXWcjryTf/zuGPr0ECgL1Dqvx/N+50ZB031Qx43xw6dzyNLTYRPO9Ld/tR/vTtvx8vvLOL9ex1nP9XTYjt0GJSjMWJ8/cH1//8Mp5BP103+4HWMbYHmpui20riyp90PU5AwjyLyDbAECXp0RLBvdhbU9gaABdH4g5IVmWW9mR9FXzBZbEmvWl4OclagMiiQdSjwnECF4zraB5gk9PZaraQ2kM2u56PJj/3BmYkwEmHg3Jk9kctTnsoWIKSWMvOurZnFPPEYNwZkfJdOHZSH1SOy3Rljy+8GGL9TVaoKFX8cKyDWMY5QtYUy9t6aXm/Z56JhHzuttwnu/kZkmbMHlZ7Q71X5LnZLKseemQ9SGdTKdVOICv7wt94t0oB392m6wMASbURsVB6YqgytevkXK0+ZfBciqDpSbD7F63kB11qrh00HG15bFdQN1S66hTY2Zz4uSzkLLJBGVkrdjJ7rWu4kGsoX4oqbYN8EWM90TrYxcH4el5a0IdcvO8PUS1jI+/AEakHX0KBtH2VnuTcBfcwQ0XvOcpJOZ9S2VvajMEV7dTIqKkJP12MZu7ABCBQtYR1G9jFkL5I2vzYuj4OlUK/K2Lgc6TD0wSCLqvR3jZXsb6P4B+DGO4ys37NOJZGHX5uhVHRwV3ClicQhOwDmJ3HMOYy83CMipmVmbBZfqs8vxYi6mKW4yHLJkIiXVv4YjoE/GNVurkZBf1RiynInCGwRQtDZaIKI2jOhaptoaG6OIFvfbnOoldV8lvoYeNVCJdyqFBLpxzsqNNg7Z5toQd21qwCVP3qmDbxSEXAYysEWAWsMcdiDJvpLlZVE/xPmkbHIBCZqfhFa6f2++Pn0OxnwUCkX36gbMy3mGzAB2fWIAIDbAkFuQ8hzG+rCJwA7bF3NNGRbKev3VuAUE78K2Xqr9Iwu5x70b1RzTICDLcStnIPWYIafJ4F2GZxLryGjKXuiitr1tg/67atpzL/c6adGDmP8KNsVGDMOdwhjkYC4xYLu4DLOWox8nF6xNtbEmduT60W+RSzkfX6ahjIxHcJu7iR3/4kfIbehSPtOyoYT9hu5vdqRUEO05ANnKdvzcrrPl8prHIBxF/MNrTcx+NmZ7LKnFYpgxjc4HdJzhQL973jKovFcSB/MMdNqWCJBW+JInrJ72zmTTqV8yLfN3lb70LCnflDGaLaoc9HENdJEbpfPcMtFm2m6JmLqOPBO/58/vtgxChvMcKkD3YLFvJgpRGXSiWesIBmY40CAMXLPPc8h0sv5pXTRLx1btQoxTNbca7i48dKLLaWY7PUFGdQ18F6RatkuWGUs68WbTF2Rdz1W2gwVXeg4fRymRSnAQxI463ubEZphLDo0dMmfsWQW8gMr2CGhzXlLqo6yQsoL9DjZplEbJCSDxZGXXzq8EXjM2twpINwJBhf+gvoUD+/F0GXuUK2xGtJ76i98Igi/iOGtkJmhv4/yJcOH9+/XY7dfj63f7uIePm/M4fn+JNkBwovf7bQRkDlusAdpyCKrst+sIRG3Wp/HxFd1txCfhjhhSFmEvuTQg2Lk5HphblFUEoOc4AgFCbqDm9GkOY44VNMc8RTA3iFHF0SFlkBZPq8O26RPttnCOiD4U34ADIFeU/8Q5G7qz64TGxu3DNdH1yXs27IyX1z+awy1d2HVqH4M2Dn6NXDXt3JOzXxHLysr2SGAF3eKZx4OONtl2tvSEzOXSkiK1o5GMvZIV6jVnfQ0YSr/IRjfbdfTPt6gLn0FBJu/2jaOJQb9C2/pUyXW06j2hi6fi/+9A/9hxwwa6Hf/j//Cb8RffPo1vPrwLJeBRnjO3+neb0HkR1MAbBqiLtFYppdDcGiU/o+/p5C2bhKyy4Jq5OfjeTESkcwhKMTnTcpZKJNpCzoX2SFRanWS/t/68jTWYBp4/2vOaJuGqa3Ox1HPT6SFohAn3+VoJWemLKTStWkcZWjoNYfXQnYyJqZUHjOEOtfECtgvu7WSm5q9nxGcfQU+tnMu5pzOhgUJGrIXlo+ZlXMfH03lsr4QS4nOfLmCvlAEiKBOhSXL8hGNCT0Y417HJR3/Zx5H4ODSfZkV3T+M3CWOnR/LzGG1ho7Ags/FRMR46ExT9K+N2l4GkOQiTLSUmK9D1pYRkGX7JYEojJ9K5+DyFAsdmLpMgN0nn3ckwKzlwoEXtlPj+vOnwWlpntfC4mbbHocHqIA4zPQme6nohH5B/r9c0QjC3oJEjwRiLeA0PZja/G319vMgERN2iTL0NkXTReE1GtctVsSOam3cYE4D5CX7JYu00Km5psOt39kVd8iAIMqY6KTxPwLe7KjJLf3IQlDOFzF/GE5oOdPDnkZjnaxLCcGoj6syfrLPM6e1lLGS1JzQNXxaRFcYOLHAnMsSOrAnneNtgsVHtH/QET7hNPIcd536zcsAG6lZX48NhNV7OY7wkXvgnOs8/6+EAZ7XkyWduDLq9lUjtaQs+hea0pSHo9SzCuMwcLb4TjuSW2eOOGr4Tk/KBIxMHZ3K/Z82wCe9QaxqrJjyg2kNcb98zYHZWHAAoMrDi+lg68HS6+7wmZU85u5lJniMQ6UuLYGyRgJ5RGlkb6FClrAFlbdhekffi3rT9sM42CoAh9wckYak5HAwg3IY7lZMKdHJX0WaIcOkYs6xL50NK1WhfgVMD54k953GuKFCCl5SywrpWG834B7Ljy3vEx88qsk3HPZMS5Vx4/LC9BxQYWHU4V0KaJE9GF6eWJaNPUvsGwy/l4IBI9BjqfDV2eDcCJG29qw67l4kE+aBZ7tPj8/VNxIj6WconghoYLYXdxzihpIuptjVQFq+XsfvDKeT/ab8V0sNzp5ZbqLX1ZKrOGi/sDiRBXb+ixIylJ7hn/Bt9n19fLuPlh9M4fmT/aLdZDH8qdKYCx3cSZJLY1m8tGrPQAQ4ZzdrwblNLftJhrBc6xDv2l4yZFwomtwytadqkBZZmAic+oXWJAFJZTV6PdY6Sy3Rsc6YePLO6tHCeG6eSODnMrO7XnHU10tD3N8HH27nJml32DG0dPR3QCu5MsTgcgMt1ledsiTstpA3wgCpnnGv7xSlgQsLURQv9kYiEBp1vfaJX1k3a+zkP82czqPCgZaKmsrLetlN07V6JlmiAL+T4Mh1oGCy7/fif/2//cfy7374f33yFFg7KmLmGORdGNwp79Gsyr+fYRbxk8qPmPPcsqI8J0tWuwWRJbqxe3FTy9apWmu6xLFM60MoFqh7Ul+ACeOw8exNK4Vw825TRXvjXk9xyp56c9yKGaUZSfAm1wusgcui3YqcnmSv1Ri6QHm3OwbBDVfc2Gfyqg7mrVQE8NUY7i0iU4ZLjqTEmTDRzWHejZy1tZydYfcPoErlJzXK2y/n+eIyo7Xmzi3N/BAnYFS0vaHQjs5yKS45WqF28Hv1IGZ1nlsNzvrQi3e6hWNiarXtvcDg7P72msc1T1rhasUOsLpJabKo4IsrdyHWWg8ZNgNHdgAIq+xzjF+0teI2Aq+vGonexIbcR9WYGk1kUQbCi1phjF7Xjjva4RQuYzg3Sd32q6uAnvgPLow0nZaIj6IbD/UbSdrKsKat6uwbHgscwxzuNZWRy9jHPl8tZsgiPzapERW2TQ2Y9xTm4NpRBrBrX1CkQnOEDxwEc7LJ1k44k2chj34Yjh9/7jVi2MT+EcLI+mIZXtMuasgJaI4ZZwviR8doDXlQRfCFsEjmaoSeB1pgwpZ6Le7hnF6bMqgPKdxKyQGz3ESOdVIb1bW+VxuCaaxRjOo/sGcua8M24wjA8s2uDs+nL+4QDHXMMiFMaAvPdusYaUv6MFjIHnuE1oOe/DOeZWcKFMdtgucFqLcIbH1zXC33QHQITCFoB3cqBdiBpEYeJ7FVkVAVj7EfLPZXDHS2YNpGJBgw1HNLQ/rfxacW1V/uD5Ln1eJ1GIbd9nsNafkIiNAMtYINLfZtM2M2JewBtDpsgkAxubTUfjl2FTnZfdsPKIybnFo2SPaE8lpLW/fZwmtVVgjrpUdi1LAXOh8o7/D+N2zosQnDOUJ/7uiybcTE9HbPIxjKWJRSQsoFuORV6zqzTCnY5M7+EdSNjG8a90ALxmU4zp7EKfLF0dcJfrtHKj6V+pefiO4sa9i5jGTwxbBwZ0mgHiMA3vxdwUhGWht3QHOjuL9eJnZipwcvdB+0tUXoQdkORSmFf2eC8O7T+U2u4y3Ecdptxfa86Uo1XlN2GbEkhc7Dy+XbPgDLzpcuRshTlOufLOJ5v4/XTZXz6w2m8Hu1AX7n3xjXljGZftRr7WG9eu3Jy3ZvK3LkutyvrpWcVmy06OUset3KeIpAhM8+lFslILZvM677EhzqHgYU5yWYCSGds83nuyhgeH0Qcl0yHg49xRYnfRftI/zwCFi0R17sW9DUV99dri5tQdhs6ZW36lBCjHuS0XVSrbf0mVAvvg9ZUJKeaDWn98pjHwwG2nh1v97Gyw90hRbLv+vJ2msC6M9+jwBEhI2STSjscYIkATSc4/oK23S/SgQ4A7/o2PuzH+OppFURiBmrZkK/i+7YmxDXvuQkDUj2Ul6nQgmslKEKZMxI1OANMUii7ihKE7LXmTamdP1YbQ3XdAeI16QE48mRSoWY1TMJhPZN1p1bOSfzSMsaqia5MkBXYwjD0fSZkpscKvUJ0O3aWDKsV83DBVpRp1rNSpzXyMaNdfc1sEaPWUuk25ihWHD1JJGbjN5xcMTkyKDaHEHL4NPAtNpe/swY5a7kNIXIt7dzb+BKEG7dxPMJSx99S5Bpz9u21UmI1NKF1hLfVfFiC6o7y7nMyDI9UZtbM2jpHwoxyfMqYh8x6HgMm1SLlfRqyRr0ZFwwO6j4UVY6r+fpeGx4rsXZ2IXcwReLI13x/7sXiMWg1U7wsYeLtKnGuqOWyZCjzYNlzwy+uA65VxquIDw9IYJfHVvPEuhxBGwUxKjWv7da2Av4ZDhlrbEPuHfySHrp1o07kffEkAedEgInEWCzJQGadWewsYHAQLUnltP56mi+XOtnuUWPsYEY4Mahz24JUTezU00bD86Qm0307Ms16JPQqR+mEm5xoww0nTE6Ke9R3p1OGc4hlz4C3sWGPSBngSbxWWewIwCALrVvjNQ3ydiBEc4XfkFGTg8EgiOwOAhxcc+U8q1ZAaJ/K5GiNP2j864x81JNLK/zm/Xb8p798Hv/r3x/H96/HKZvxk46fYdPfHygHqG3EkpiyGQ42qQR+hhXKIJbDugwo8XM2loQJyoAkZXxCgkk3UPeTzGgKjrbDNhiM+x++P4Yx+vRuE1lLIIBw13vUXoLU8Uzj8P3zdmzDWUXN6WCrn/UYr68X1vmHblyNDSC1a2W2oyaUwcO8doP02l5MoJch3nZAW6Ayd9J01K1sV82Y1HcBUd/2+mmQhLmu2uczsq2MYCd5FP/jMhIQpiaFgQx2S7BTXX3mC4dvvandJ563l7spQNrrkJvBy2w/uzrQ2RRfRWJk532lguZCCqiOt2ry2wToO5e2R3j88j6yFqFZ9AuBstOR5k62lUwBfhCVkP2U/rI5RJrtkH2ECSEfyTEwZxdj/4loZzu9dDU6dqxANKbACQ5WWSHwt4lM/CtG4EY4PjKqWMsYP8CYucdpfHAPAWuWrsTaQoYfXRgMdw/m7ev4+MMlap7Bbo71hfZZWB/4YZCjHEsZQtwZ5FgX87nuu5HfMdhDm2/KPyUkty2cZrQnisOfVzeZTKJohJg5ba2mJstf0pxJF/kGknWzVk8TrWvbO+/37OVSnAwtayqZCCf53OwFPYLRBhlc9ZhaB3fYuNpGViC6TMGlW20darl0IJNyxWckm/rcL7t8CLkXkTDqSNySdeq8trbEPO9gY+77EuZVR/em468z9GRclg1O8YsMiM8hl8UcRTnPdhwO2/HuAKK8MT6+nhOR8HMfX6YDrRZWXz+vxq+eVyQ9jjY8fr/BlDzXGSkpZc23q86TDh53KS8M0NDzaxbsnk2lA/Bok+SbclgmqShntwLUblelM6VTY6xMM06aJ5jCOEU2mxMfkTGz75EAzOOT17rrqWscTq/lvBdEkzl5bIJKKR3orfw3t4Sx47fYbL1z+2WRaJCwR1dWhpMwGVVKxrxYadZ48rll2anOUu5HDV1GnstQSIfZxzQgTVFbluSY0M9fRasqbCKXy6t66KLZBLOnhEkjcuxIYSljZ0N6RJT19OUU1IZrhSEoGSCmcW6QU60JJ0vurVnhetNzTXORYJGFmlntmpiLW7UtovPe4BjcscPl6hWRfSVdmHtzVwuH7DOMjwUjiYJGOB+Y15psJFM22lOEnHMtZVWr5Bf3ASfam2GMt5yn7vpEPtkkahf2675ATgMy2HSENkDem9sllXeqME0lEML5ZUQ8DUXIxQ6EcrZLcUJgqnF+RolY39PKNNTSzJtvXC0iwZ1w5Jo6KX57h2+wJmYInGlylJb3sT3sxnqvMRD54XIN1lTbIeb9X26nGNPdDYyt1/GC4oWgX+eajx7cOMmWLamIRigHmpoWhEGuD6XchikcRCVsscJ6WGUrvc4iZSdm0IlZCWPvIAchhqyvJEfCCoQygJueCAeH82zonCwjmqYBH95EYCFQNCH/yAXR+O2GSUkBo2R4NBg5/+7b3biOD+Pj8bvxX/7hVdnQxaB+YcfzM2XUZIeAbybi0IadodBW30YBpFPCfcU1wNMeIz0b85vVIJQ/ADV8dJ+KyA9nr/SBqYUK7wnEUr//3WsY/od327Hfg0mabaye9mgbCAIkGoNfv9+NM4wr9/GGzjjQCX99QVCFZw7D/Hwbz89wyBnYguPtI4ghO1oFa0rjEg569wOE8OjH0he00eq1Ek5z1CeXzEG37sog4bpvZ6KD7f7XzbAPBmcZ89LBZNx2gFq1z6VwJ+e575m+zmQFmGlbQT/GqpQ4UNYUY+VEA2Hn7mU8OzfWqggUhEPTengX8WqNoTOFODfsm07+5ns1yWqMBpXzhNF1Rv0uSiO74M5vbw6eg/fpKLehmxAYid4t5zkzrmlT9osTdXQOqDSClSR/5PphLfUFdgRKFS7XcUKd8pUBIzB6h40BbQSoNpxa/AM9pBPGHdhuruUXjC2ZkHG8vl7H99+dxuvraRwBUz+BxIw/R6wRkbc6JWvIbfC4qNSm8iDam9ucMVlNJzrh141xPz+oH7YFK52Sn1cAzralg+dAy9X02kGuWQytH4Fr7ANsOxgM2N4zJ1VdpW1xpVbm410jHycdaNuSDtQyyeayGMho2G19FWXwRgGn+KkaaF6Dgf/6u/gbHMBI3bmAf9e/q8TOGed7NJWcYVUq2uXI5IKVcP7SPt4+08tl00a7NUROawXoYjV/fiZvvXeWKynXk0ks/Xt62gYPxlfv2Kbj9QRCuZ/fef4nO9DLaoHHqf9/2hGLcWPmSMEL7R4rQlJwRPUZtPHWNvZJ6PoG7foALS5D/Mj621rC9HMps+V/exTun7+coHYLqSQIj+Im7h5tNOZaKNan7YK9HKAUuVZj1T5WsMUGq8i7LvItnz9Yb7NnaruVhxBFX2yR1beRH16VszvzfNE57Q6SNrOuiTNQwM2VNWu6XoMCTZHBNFiqnU1FzTyPIrTo89o/l/UtlrMKRHgUuGYrc4Aepa7dwRHwL7V20MhWlNZteFJ2y1jkCznodH2NVxbrThJFuBY9w8Vd0mosKoHvYIuU1ASt6S1oZmnrz89JY4WbQkz5haxIanLJGqZ21tT2dYX8joIkHEc64EHI1WyfrL8Og9BGPfM0Gfhokdl8OmcTOjwXBmq2Map7iU1HQSHXdtMUVwAO0eYW3aUc5X8KTdJkq1dr1T21sgEbsSnjPXPb5rNBtOjT2HijM5JBpAVao1+zMtudTIzmggM/Lm2YdK10U5ZINHEzEoIxiE7ClGawWIHL4WCveOleBzYAu4vLLAkLpQuSmd/kRIJ5RQ24+5ITtYIsTjyVAiOBANiuxu6JmflzBJWQlmXgtOvPkocwdfUimyo+H3bj2/eH8bT7uHAPPn/8nC425xi/GahA5pXtZ4SumJYmgxfOWFIGegZ0aZQ9kLElfPBRXWGSXvWXCtEA3bpbbyJDvD+w/hlkYXA662J5qrZHVclPZma9xU2X747d4u/UUY/hkiEmxcXVhiFXYBmx7hEtUjQGxmzcytA0uk3subMlIVlsSzq3+amio4IXk6OiZytD1kZyU6xW29O233gHpvP1QF7VvTb1m/cwPYsNsD6elbpvzkSbPwcKVO3BMuiGBX5gl8h0ywzflFHMwJj2mJD13kLIdknJLh0lk2AtZCbxxAs51lbp7YNz2/ZXMT+jTjz+jhiy2v5FVp81rzgiGBwxPDqEr8droAv2+yJ88r4U3VOiQwUK0tVSNAJ/HA98Hz2lj8fzeD1eou82nBC85padeb5IVHkvEIx/UU633GW6NRnzmzbG0i4wzNv7vccW6+K+jGQSG8t04rBLC9t+S/vT1lfzyabzNFukI2ey3Zo+muzprTVdWqNyNiPII+RoBsN9KV087b6FrupBmik4qdujeyB/ZdkuzAKl+vG513I9a3PNVc+Psgv7SvK3sod9WiFaF0s7pAVOy3wfGVj0Gr3zWxS8RP1/+lImtS2bhI85J+L22834zVdP8cdffPtubLfH8bvvj8FN9CUcX14GGhvNbjO2u01koQPW4pqalhFlncQ5Mz2dCKkWs6M3ggyH4ckMEtsFidEznB9lShYTmsK8cKwzQ3cX6nGUXYyGgrXCiNw98SQvn+jws3VRbZYP/VU/xzREjOTadDerdB8bMgfnLbXr0JiqllQSdu9Ld454iyz1Nzs5mbsGTSRrKC/kAklkV5Y0uT2Ss0uAf5FZNZQQDD4pLkPs7gLJbgWisBqYri0/Zj0tY77GMZwzZcysBNOBmUKDLfIopXgR4yvYuJGReH8gU7zhKphXoLzJ7snRImlk73NnxsEMC+nWpBAkzmBRxW+0b4isZ2Qg1PPYc+NzZuCmezZzoCuNmxZYmAwLfyM3fkGPpehsXjhgheC3Cc8wGRlNNilLQubQVkhZY3xajBAIEMT4nLGGkbncqp0CM5eG0RbfDq4BdlojFVpLljSakpZFky+eg8zuMGMZ2dEWBMK9RNZHssT71WSIrfx2JFHOZr/PxH041ChKy40TwQCtw884T7wdrpM0NuOZZ3ntc5zrGs5jGD51MkK4zXiZA1BEgYsouo17Ih3ExKTxc0apDPsNDdOgub2OzZ5y4ShNIT7IoFsR7cAOZFLEWbNAq3Gpj4GepyBKAZtylATMOowfqpII1z2jJVX0a40a8GhgHdYoW8XwPCFtYtXePa3G+28gy5txPO0igHlCzWRAJIXkmfKJrZBARHNffziM7WE9Prz7bvxSDmYg1bYOBvWBnQ2Or8zO4nCWLm2f/n2z3T6oD58DyMp6pl+htn/p5C720dqa2rW4LQCqjRZWqHt+/34/nt9tx7unLTOQsyongiOCKJJf7e8BOQUg5E0by/ofmbeyMun836cHcOQ4TPV7jwadmV/2XhaDrBBdgG5zTB1ADOvADH09jE612o11Q7G1VXQ/OO9yGSwQSzEMW++jYUv5IlG7/uhh0k1YnJ+lHYbEbs27yYoKP35m4/xN20J5ngd8G+FcuoukEYMamnYqbfraWPt3AxrtdlZGYdWRoiBY+Gb5AT9rGn3uN01ZMc2FQ2sPH8P7gh3yRVeWhJU7aAxZxb62J9s21yTrnIE6iB3izNrwj7fL2KBlG+Rv636dq3F9pX3M+CPqGkjQiHPHfEW3kNt4fT2Pl0+n8QPaVn06h/MMZ5qIC+trxRYzS9qCGk22ets6FyKW1Vf1r/Eao0r5eTjzFZd3dp+kajlWXfhVLjfbpf5k0wlynjMg2DKsi3jdFGAKG16oGAZHKuuKHFus2wmq7N8K3gavA/YcBn8rcdByHKrbTnupHUjc4UhiPce52gJ3cZkL9PpEYMrRvoulU5bfpswb2gL6B6fcYP+E46+HwTqeykz0sI/0XGanmx5c4fsPned6VhOXoayO82N7UU50g4Z3J/rpaT/++7/6enzz4TT+4fvb+G//+Gn8f//2+/ECpr9fkgP9IJb8ZzuiG0kwwkpUNTHLqGIIjYqVtE4zQBmKLxXaXG+ZkVT3K2vCzs8vHa963cZyD5R4ITNL1m/SYSjXzjTtygerBQwDUnUe8VpkHZuaUkO8Fl+TA8/rOwKmv5rD1p67KUovkIyJhRVZ0JbKGnt8rULsULa6Dyu0zJq2Hc8TImWZ4xKRqHuHPBeX6yGd4c2hWCgoH+4xk/PSWg20iJbHrtc+pz4WTPlRsCAyaZpjMj2yLcV+Z1JK1sRgjk/BAlKKpDajmfUx32wN55lp1q01OaLiMhu5Qyfd1G/GTttUcjwVsOj3wzrdYoNNLmhDm7o15/M1GfQo0bAkLt9bDZzU7gAWMuANPaLp4H2K1CXkkKFot4quNWpoyf2JODxtMS8NzUUMHcGmUBetv2QxmEtHyCqIrEhOSjmpuVGZ2Cqd2Ba1bc4wg2vu3ajWUlMGWqzJdnA8sbm5NscmPEfLc5PjjBbX35UVEYt4kDOJ/dvOhGSNo6yxkIKEqUZHQzByjXU3tykTRpKoJV+c382sEAhiUCiMKBXMpz7IJtP+b7egmJayAx19n0EixEbXWdNMB4Vwcz+3dbyNhJSFzjj9yNIKrrHVOCgYCmOpG0pf6lH6D8GnavcXxEjDBvviYGeRh07zMkDXjazMgsawwwiaoa+TPssTOvZdNcHZV3mxX1lHL1ZuOjcMsi+vsKgkvH+7reN6rRvKlhOqaa7X7ij1MSqJta4o2Lf7UHdGa2agK3v/8B7zuZVEaIHD6bqLDDWXrG0AIwO8j7b9MDektG6yHIj7lQKirUzO/Wdt25gIyc9iNFFmLG1cTwNmm66guXNLqftB8Gzafun2WsTRTGAmfXU33bMB+XDv8L314HIGvG+PHcich0foRCHsugyHvEJnqZ3WBqUoZ0C3yfh9bURK7iltxA3qljHs561+x9/r4AkKYsczohlqUYiyluM12mkdXy/j0/EyXs+XCJqC5MotoKoXtkV3MjRZeneXhXbJZBP5DojrgWDZiGy9RDsqW381Tp+SiW5rt5NklreZlYlorEDTNL34T0ON8LVmQ7br8N6dRNODSJexa+LssDvZnd1pzAU0JZtbkNl3123hvF/OscMITNhVcK/vsKlTTFSYnCPdd22DpIRerfU+Paribq+XOqh+zpblKttSxnuyqDT+yYlEu8OJgZ64KbSgrdjGR9LOHecBImlziU4Y6JVe+/ntl+RA87h3K/+0B8bk9Ygf1rqlSMXqtFLnT5BxwFB3z0HfnKJWNM6aHRSldjLJkIm+c5SrjUySi2k15F4bWa7L2G7QWkOZsEhUoB8fYv1QTKyH9MIUp9E4kzyUz+UFgjqYIEVZB8SG3yEo3Q6b/yazi2q4A5ZXD4dIo5+Rx8xcm68q8spMbCmUKrfkmFPwBVPRrmzoEMnEqFjxkWRMTNZGRfKVqMo6TRk5EdNzb1Fl47xwTXrGWkrWRnPMeOpoIWuYUTeRbPQBjt480MqmTfZw/SPIQJrD0fth23Bp2e7IkuzQA/E6vv56P94/rcfxfBZ5Eb90RU0RMlxB1mCobAvS5F6l2u8gs4Hs1NjyXPrtKKaUCpM9ZPtmqyYxEwdZkxhWox+n++wFX7gcJbULcUzT9arJYFN1u85oGp7MNegxbyiNNXqOIp2o7k7IFIMKFDVCYPUJ1m1mallT2x3JIi11UiCc1MBUFWQ5nHLNF3tEI+DEUex2ffyTQpI1ltez4aGUO3hfjEOIRf0MRtLz2O32Y71FXXSHVImYJUh5ZtmIenhdtNAxyKhjDlDZ2LK+2lTR9oLVbpwrwjo3kQkzLNs6hXVplfGwHCvhOrbI2oNYZsPmmiuMbQ6CasJ9XyYAibJ4NuTC8+MckDGSphXDS7TqCsOBTOirK+rKMR/ISNPZxqmBwGAdvDZCEY/EZQXdXkX/ItT10ZFmlHmMY0C48XkWzEb9eCzebRLV8KyU08jl4f1oWwXj8BTIod3+Njb7G8L4wCmztUpv5ZG4czI144djo81Ctds2mPoa9f6BjRu9Uzfb7TittoF5Cdj4+HIPl/NGTT0eA2zn0kXIwpNYrKWDpXOC6Mptzd86JFdAicVy7NBTrCkhTuw8L111oxUAzY5MrfrlIvsWmR9qw+TfCL3nuv8k0BESrWcec/LeNq5IchZ3kfFu97st3Sxd5G0WSCPJbjr3RptloFvxnVFZNeoLZg7RcYnZ2A7dLpbcN1GJLTY2P1V/pU1WNtv2tDLwhXUamWgHAeU4lc3NPSR+q6TNZUtB6tU7g8hwD7vL+1jsPWyjxOynrpHB4VZ/FdlwBi5JRFZPgUBD43brE1fOijHA0beeteuRgGg17HG+NzNpBX0PfVSe4TSyzBY7Q94dmO4g6nXJSgbqkqTKtqP5KeYWpXtgRGAHIgupPfG0Zp30NtqKYT3QAHgBmmBzHZvLapy3t7FfrcdlN8b6pHaSYdKvxunTdVzgOH9/HsdP5/H996fxux+OsfeftF6OYj5HGbVLoGNo1SIrfWMFREJVmEPEa1omuuMpdpbsUON1jFsmFVxWEHKv8eodK5qTWyVL3SEuW8pJq2ytls6ZulsoGGizNCl7O59pa+XoOUmEiKkDYiD0MBgbB1MUdGd7UHcl8T7PcwZc3wHp2OuKpHDK6gvdEGWIng8a6qVfcv2RUyFQOVgrbCQhG8ATVxGGCnzaybeDq70A9x+libQRzN2DcXVA03KPQHI6uKtaBRmAsb3diIV7kDTkBuvdZViyw+JRxRMxyQJsx+12PG2v4/1hPd7t+exfysb7Lwbh/mPqpqEsQmGEzJQhG4Zz/1oTZP3J3wH1MxZj3nU+G7lQ9Jznqux0/27CrtqCzW1drLppTFvgm/xOe17et1vc6OOuB11smeXYF+EQnBULKYX6fkOdouSO1Kmncn40h1aGiaDhy017mdmuay4jZCadasKeC7HOWlfo56iev/nd4lMiM/SjOWwBrEfZ50cbad3XHEi5e8nj38aaDJlgiWcdE3yv7VlELota1oqOVtbBke0+rst/K5heyiiNqSKgygDB8rF8o834ehCXz2uavXJmbp8hf3P0oTuO0IjJ/UHZWjZebNJEY9dD3zxgB6w6GsORSLeDK0nLG3OAI58xa6H6ONKaKch79YRmBl0tMLqdCAhvYo8dQGu33MbdRjmOYERPee8ssYVwKAfFT7PoRezT5UbVrfwiKisL2z9zBoHftPFfi5FR6Tla3ueoTvGoLttZ46qF9H2aldSlLMyAEXaZ8p69WInowF/Boh4kY5Zb65Pm1Hoe1cUgiBhVthGGcJNXZzgS/t1hlPmBLsu95VOlU9KgS8l+2zn7OZFb99duqrfp4DBA4KiGMbiO4J8DsD4eq8q+n0kmRcDYxz3+2T+T56s0aQYkW5Y264cVpQoottmGo/Fv29PG3CfYa7LXH9MAa45klH2VgRiBORtjDt718+c9PR7Vrqb9uSjXkmNs5EcYoW0tFPN75bp4Zsn77TMzscyQt/lVc4sH5ZLWHvP42R5hQNKB6tpX7CgQDdSdlm6M1wndRCTicOhyIBsjQWStvC40caqsWuu5ylKHlUOkSayhEGFUEgq1TL3HxH/2sfJ3w3HKa5Sxb7ulAE7z2uC9uL68nj/tuwfT5on1dfrWGGzmsOeCpXk11kGy6KRDjanbSMGPBcke/v36uo51giz2JUoGUMqyGucjmLZZ6/wSmefrOIL8SskHBEScEa4WS7KnuwHlPxc6RCuu1rNJRectN6esIwO401Xms/agVopovWzo2SIoNA3rckFk3XnjeHGmeOJJafbv8jxNd3i+7isP5Ex7PJz0pWLMUzUWp2af3J/HsjXtvguADO3H3qaKzPt2aPn+8kHmG/ce7bdoFjU9nqbYnH3ON6bB+vzR9agROffHg1LYSfdW5rvnwn6+nfWf6ED/tCH75x1YWNtxGntkzUJ7I+PHzBFZJ92/GXMJVtEq0HckCVFIGAVR7zhtGt68lpnnMtKqlqvOm8arovns39y3Am7ygPCCVXi725Gpr06utayNaqrxY/11D6yyuB7KsrIc614fGsy27D9iCCYbtWIMlB1u9JZLAyAj6NMAWGHQyWifLkXhCF2Gh2VQxp/6jtoh0ZjgucwCzXVux7pVpuQCp0NAVnEbW+05VAcWL2OT6cGFHrlqEA/f6wpZSWdLJlgCzire02kHrKnLLKMi44ZNI3sCdtidM2owzlbIiMAopTZFTWyPOHfHOgMnIbN0BDzOGVCRM0HAF7OPkTUNyK8cShHiOVLJdlZkcw4ikCArQc6xGcDZxgyRZWX4XOusTcdEV1lHnJvKvIbg2BJKhoyNjS5hGUyClgGxPr5tPeI91zCqNgjRckh39GR1H2vAUZV1z7lBRneNOrJtGASn00mO3Wycem1sVmD+FpdoZNt2jCRjRCM0Kjl23+sNej5yjePcKjxKuHnEClCrHmtjG/dEToXz2G6RJYb1c86sc0RV3ZvbzjbYeAV7d7/uGBc8a8yvDBzNZfR0NOv6MgvmZ1YgImHNrgPPTZJZBepMLb9ovUZ56DQigfSR9d6NawSN0ikzERtq8tROB7hExS0CThhZ+8iYY9XtMqrNPqI0HIHUCcPeSCMhVgLpHSoRGStkr0Algvk4jNUaLLWUBWcfGCwhCzNYZymr1mPWPbxmJ5Ws4I7XAgz1C5FFV9CQMVD6JWzgP3Y8usf1FnNzG09q0Yd2T6cHhcmf2+85t+Rl6FkpVoxrOPsJROwVwBI575Gt7A51C0ri5fPrbZw3l3E5XsZqt06GYR+7aNXAO42AsoJSIB2L7O8ihR46+QZdtQp9tcY527OGvmo6g6iVB4HQhvS3fQ++DxiyWMPI8tJp5uu7bRm30Ds7tOPC2ssUXvMtPitU3RJp8QzVZsMEENH9ol5SWe+FA43vR/apQbYjGNYOZCqjblVBABMC9nv2jlAMyuK60EBhLyBLOD/76v7HjVemm8QBx3ZAQGgGdHVY9tYGygttmQLtJefZzrSzXT3gnxBUPFfyP/DI/rzRUIGyCYRjn4+MgzrIoLtmu2o5GyEzLZZElZSOk3tVyzzIewmdFk2z6cADrRPhQXUmCCcNawfgxtVtfHc6xTOejpeogX152sbv5/UlalrZruo6/vHj6/ju42n87vU4vhfaJG4JezbIxbDPApGVNd6TaOXUxL3aBza0Oktf+LEEUhgBqjHF/KEHtW1PBlxFVhjZzwpmB6LFgx3IoIWpna1RHyyNRTIn2zzlS1W+6Kf035TfKcRSCY6QX/kH03UVaFGANpxZdQqxjZ2tFoWySDRDnscPU2VGVAtvBerUFUXvQ9b24R+1AJWCLoyJFnQ7kbpG+bX5jPuPUjnx7KiMgDrBwVbZlrGG3Jjq80d2H0ieHD8HS9eYab6f0NC96gMPNb8JrhmV9OWE/4Ic6NkN/fMcTvV/OGzGh+et4A4OE2bYs76QAu6QVWnkhJd+9mkWoZnFkTWcCwx/vvcgMmmj1ZtLD9xUYKjtOuGAUriS1KCNR0Z9db9T/+mOiPLwLDLQmS0xrMKZ3AdDevd8fZj0w3GtuFp8L5mozd5bYYuqvXRmz85XDyQUXWJm0B0FbtMld47/UmSqNqpSRDnLVsLpXE/D3mav6vWmv6WQpgSp7qfPJR0UzKEg1G770gxyOklq6bSoLcmI7jLCmorf2R5Lgb/m4IbH7hG6okH0mtPQJ5yyUJB6jsV9gGVSXX24E/rRApT9RvMcrZI+vi/56TrlLnDVopNTKNYZ87pMJZ0freled9Sy94EjWtKE1PseoKh9zd7Q6hqdwRhtgL5G1ixIF4AltUfSPRw2Iqb5YU2h54ViPqc3PN9zVWDfZVNsWkCp6tMdAS991ZPPukZOlGTE8NOMXPt3/ccfD6ffWQmBWQ1NyGi94N5WQg93laZ37ITTKiDUAcaVS1FI+FPENCWE3HRdI9ud/7zvBZNwZQhwziLu85PASawO3n3u+hT01fJZr+jPdjgQEP9ufXjpAMghavWr7Yvp/JgspmrsnP3Qc/lXF9ElxDXrb33Nuc76rR14qtlrWYiYU5ecSNiNeMiaQJEV1tOXHLlW1lDOXPkeH+/X+V4+1HTU93SHJhmT0Zg10M6KJwdBClST76Y8U1zS2uSvvn+ah2Uif+tWWn1vlu22xjtb9XTtBp/NoL+WcHcyuq5PlIx1eorQ4s7a896tG2uG/pqyhj0b67p3E8aJd2J5vHXt3LO67jW0ODx3B4HncZ3u1NluERY2fye/0/V6ZSDv99UY2nDoxZqtsgRwO1yDN4KBDASn4bdYt0MPHaOjA5wMEOIhsHWLXtFHtMFCP+nLdXxS9hlwbR/ORPemf8txWyYbE1XSmMXbgNYDNdvNdllabj2jKsWT+0YtpkIBdCFruma6dDMqCpzMuv/4an/At8392jeXy3Ca977POqPN/WVZdkCrkMGg+/L4uQ66J7Vsez66VyYBa2vuOiaRWk0157w1RN7dc2VQxPbjfLPkohGBKfQ/5E2osY5WSDQk/k5W8EYQ9vDwYNdd1b5QY3Cni7+Q4wti4aboPx824z//d9+M3377NHa787hcX8bqikwFIrZkJLbAPRIETERsVhGx8Is8wqALJWwjrH01jXn9bWbfuOZNrMisZ41AXjiGjZjHkSiwHl5PVIyZbcqL8H6UYV0j6o9G4XuwjG7G+XSKTIc3LdazklWRxieId+SkqZ4T9a6uA4HCOCPLkw6VFREOtaFp2ah4VWWTRrJFPYVaK6KXp0rPC34WZEB6HEk1S8Hxvtizp96qjCDlTmGFatZkKSBn3SsD3SfVynEEfX3cpwjkqlaiHIKc73aOjJL6nIZTqecyjRxGArJ+LzL8kkyUXQpF+MzytZgLSiPNajTJ2aI+Hq1YNmMcQeBxZlYT84pPoKdsZxxmgh33ck7Gjnkj8fTNtZlRLxV8IciHyUFRrRvQCawp5ljtQHoUtfmM1F8u6jMczI/l8KSItvVCaJblVkoNYktrQ1ODLKG/z5GrXqYm26DTCe6AEJdIfTb2VkkMs6zssOsEAIlHyG7LYASyj6ovb0Z8ZFE0qHTOXOPNEP7ldOa63tChjXo/fBw3D+ZTZYjQ79zwNhV1j80edbyXcUbtMO5N8nbEY0RtMdMrjkazh/DVKQMSseCL0cLODreRKewxHUPa1j7Ywa1DClLF0TK6ghFpLdTIlhdcNCK4dp4dMTPbbWQMlbmJn/W8PhnwTWLAIJ7qLVkkD9akyP2vVxdm91WUFoZAnAhzjvs6MzvmTTbWxBjXnchaDOtTBax1ze2IBP5t3F5v43bEO+cx1uex2yLbt43xfj0dKcdoTxVOjNcQODLAPI15UA12nNeLSW2vVP8d9mpcgr1l415Dz0KPbWNt41mxWqug4MeOn8eJJvS5DJvofbxmb1nubW43ON9byAP2HMksCbDkGKqdVAWPpJpkfDmpx9ZN5r0opAnWGJjP47qLH1194XJwr8P+eNjttJdeInP2vc0p9RjfHYjWuN7O6gltTLONRGc+WQOKWlLMO+41OkYINRUoCHOK2EN1neVqfr7Yf1PezLbNfRbIGXzOvBRhQ6hnL+NpRq5pzxaHRrV1pLfkYOzkCPQxTpLPtw8TQrrW0gPiLKw0fX4eaLqQk1AWKr+I85Aa2/dkGH5eB44eYTJpHyBIE+tatZ1R8zwxFvN3t8jKUFYLnOiewmAYMuLoZRztmY4gxSpHMM/RS4SaaE32QQsqWC68x0UgLrhRWuZ5UeZgB7HKDHnOgnbzv2Aqxw/XSbOZEi3gIIDIEdE9Yn0buyvlBSJz1J5ImfRaJmEpZO3jBSzd6/Fhu4kuISfwelyv4+9fT+MfX47ju+N5HAMVJTRQrAHIvxhO+mAtYvmZxHGnG3Uj6eVnndOGaldlWKFGazXT3Glw3B74akmqjeYAajiDWc1G8XVi3YkaI2Wo7WOx9uyj5TXnej6/v16iEXyN2FNzGVDujcTyBi6BT56a/v1GdOwxLsK8OYiYz/aGn8hSQbP5q9d780G6zWvnzl1iaHrMQZM5qKOLSkjLFyJKInyeCBSsAr20MldNC6IlCgMdBxpahFXW5oXwuqb9EfcuxBhsFvpajdsm58mEhf/ye+nP7kD/1Lw1DLVfffNu/OqbpxhIzicGutdltAxC21TSTGmX6nDZqo3sR23my2nJTMnSmZOGyQxspSN1ixWB61nkNhiKIqoG0EavF/fEnlzRNTuXExypRb2TxKINQT2/nH6fd4oC1hzZ6XbWuEeyagz6AN8/VyqAu7BfH+H7RTDHD3P05zF7VI/8MJLSQ1eLDzhCd5exrX/nDGZNfM1l9UZ0fQ3vBTAVtCOItj2ZuVk+YWd8fHTfi3tvsu2ILDM67cuT00tjqk/vJLetdqaySvf3cjcsrV64X7SDKXJD6DO+qIvKXpv9fnvwqjNOt6fuMjRlR9QnPkfPAzs9z+LvvB/X22k9z6H2+XgwRmmxxY7aPtqnxusg2dPv5T6jrYsg3nLZWId19yM3zjZk/Lf/WCJnHgyD5VsDeBf193VyLRWbdw/21EkWK7+fbmmo5fceDLmDBiJNi1ZoCEy47yVg8Mlg7jXd7q+vtWSQqUHoRm7N0zw/XY8GERQ4DwBng1HxoB3T3TM8+Ne/1OGezLVFLu5BisClKczy6TuesynDUQzLyUSfGSSNphEA0x6cKmSSxc+OyCMbqSdpbQy2LCprn90lsfqjEmFRxn58NzKXvAvfP/uIe99ue/viWe70p29v4Zz1rJprn7O8qCEfEvEgGSyegFqCLBXpbrJJ8LLKZ9apjwbaa9PXqRt/OPwsJ1kgATIA3ue83dWCkX85d3cZ73y7kQ4tv6prurNg1sWrXGja/wyh7WbTNAglL5MJacRgZtpk/2Q7toZIemDZTHcd6r6hfBbjuvx4PacDsEgWwVFBVhlJE9RF1/fi+UA6CbKwCIxTP8LBQGzqFI7nJYIOL6iDPhOunSgdOdBV81yO/U/xTbwkcsxakK7XDfehmbay5sTO62k2faRe2r72YLSFaLKeS3vCCSKvrckgWe4Bj/2TXLt573UuzquCyk0nFSLtraPJUBszfm12GtmvvJGZ+i6S7e3ezMl12tmzH91RfrHY1cOcyVa+tIeoMsrmiLG2/TvMsmYl/7iW2TMUrdt8/y6Vsn/yQH/OY/ZgB/uJ8vqFQLj//AYAdMTh6TD+7//Tfxx/9et34yuwq66R8T2y5jftNEvsXNejnSYjjWlEpsPtGmpTpjeKedVVThBLOLfI0vFiE+RWN8L7Vl32vKGWkZ81w8KMuSYx+tpGtpxEOmb8vKJILOoR1OTeTkjU8dYNMqrdiYfgvLGOkokznBcxf0Rtg0dTEXVmHbiBz+QPUfsT9Q6o4UZtqaNtrT+sNOKctVS9x0SXX0YLH79txL0eIml7PUzsN9kdtqnGWRHKVVvA1eJIjrcM6TCi3AswFUpTm6pzmxZpvxfBxRxcwHFCT2BsVCdE6mlU4hRPz4f4uY7jOF+OY3dej+3J/flYilAZgKqvrHsicQ5ZWy0zGluNe8m+BFGZxOh5bGhPjpNqh5WZZUadmUmcjsiA0ZgiH1GfprUa8ha9oZWlybGelLbvQc5Us3Bi+CKTgegoxxOwMrfqeOih6usmEYIcgzEbD4uzcPMxL4I3ZLM5zwfZHjX2OG0y9zLMjbWDQUkHvgXf2HNebafIC831rZo0P6BrjIEMYLbEbPjIRmnTraejoR9QAnzHxGO8x/T5VBeNXsxIaHtdICNKRkp68iSHkl6JRUG0A1E75enXPlU7EJ2n67idmf0ot5zr0E4JobOoTWN6Uklu9sKUpxpSEczPyPiOsZXMX5D5h55rBbL8LvV2sMcn+7YJxca4Hq9qWXUOnbhDzdcOzOVoJ4XvnELG5xYbztqTC2O15lZn3eQotuvegoOgWVqIlFP38Zys2R3jw2E7/uKr7fjdp+t4/fRmo+Ev4kDWAM+5uTJLQSeg7YcyZPcH8HasxunlMk6vLplSpksZmJhuBBCkchw7CDUVVRBk/j+LOTs1bEvrPPDT8rCWIOEQlUqLdcRrL0BXBUIIDsFlvB6vUdsezMtXZJRR9wzkzyWgrLv9ejw/r8fxFXXPdXEwkL++XCNTFyWmsZa4dk3CtVdAIZ1cMQghgNIzK9ZRNtpjjwveAfXCBtoI+zIY75UQ4LdW44q2Q6rFjcCF2Y3lnLJXMbgdmMlmOxqWLUT96w14GNbO9nLqmLdg29eeYjRNu+cl7DmRQOng8hfYrZGp9EtPyK5HAAUQ4FWwQNPC0NjieQUrzoytJjLI6ix3aY7Pe2687oxflASr3y54Orq+CAhIb4fD9w5R116Z80gqNM4Tfzqycdrb4/Y0b1GXjf1XHTR6h5AcvayZ5R1X55MK0Nw0dlMZRfe6F+fMPTPm6xrIJjscsAWyzlXXwj4QO7YISzdX8Oisxu9VmhB7xfU2vovez+fxinWC50PW3jXjiz1yup8/Irq1dKJd6xtb0JaoE5cJqTGIbF62hyx29slPjAO2SnDpyE5Iro5F1tY2kp1pD2rMteTa1QdLtGkEYhOd0cYg2b1n3RVj5wCLbpYm0irWRA8CKFevosYb5S55OLg/8bft+KZZiNgP3ZRObhDHoQuQbLFAis1lIT4D1qFrmAPwIOXmNqF9rAMpoAxz9K7XPm+dk2aJ1gr5aUZ2LDES1kfUVNdIZo07O8XcxhYM84CCbzdCQsoWcYQnHqRQxFMYOOP0sn1+Rif6i4Fwe7ihLD68O4yv3h3GZhzVTqU+l5GVZnBXex2fy4s5vtGuUb8fmNfzq20RvFVbOpZRkwdaZ5n9sYHHXzTSHCbNSH1eu6I6/J7rbeeIu8893UOPkstQnM6tjSENThsC+UzaODKr0x3MxYYiB3P+e7ETv3E8jljZaeI/Phu8aVny+rxGb6oH745nj3T5ThepUstQ1zKG4mide6NApDDaAITzwgy0YX322excFvvw/dCkKSA4pOKAD51B3kiGQjWFywBBe2QOdmbSnE2Sz9PkvZ63AT7qd56sbUKLXoFpDLhObLG6kghu8VNR8KqzXNbI1dx4vFrG1FDBPH85wL6r1Ak9szLZeTrjFDWv2lnXGTkCbVlzRJbBIDvrfRwX+mU5/RmVL9KDtj0vxr0yWfnBvMbjIx2mxdzS4OnZlWbQ9gmzW9sc1K5j+kM5ROFvZXsyOeHVX1yy40v050iDQZBz+bcB8JY1YIIWj0cfMa+3ebAbiuku692Dfnq2DBSWcQ8CqPeH7fh4KhC37mB8mQcN1Ub8nPrCQUHqg9W4CErpzG32vV/11/l9xHGzz6fJ40ywqHlsKukzd7ecBq81wunZakvZOOBgwzEhhDscMjtRWuN8Ts4b9DGgrpfTKhy7dgmysjcSK8dwZ6Pv/kblx94faVQ049jbkzfeJksdiZTZzQVJUVzLndPbzZiYB6z1+PEim+JircyNc/KWJn3w4oP9ZrFtlmp4QLxW9rx4TxyQmUVwGqv6bltJMxl0BVQWe1A98mIVNvvH99/VTGXeKgtXc6NgiPfIfiE5ULOMPNibVM7TyZMergffXO6jlhHWKntN5IN4fn2f4QFxEwf0PhxlONAJdec64fVbxjFt5OUTPLAhlijKN+y6ms8uE7I/NS5GieT53lKd0ulpxnfo9uJ7lqdFvjjftEh3OW6mQCPW9Pnn85QE1y8u6zIebnd7dfGNLIfN43/3xqyE6pINPeLv1u+2Z7ez3dXbv6GLb4v/BltPTni3PwvB2jPVj45MWDZsQEcKlM6bxyD1QtcStq20DyGIiR+Wn/Z9/4vuAz07HX+Og70K1+N5uxvvdiARew3LaX3dMYp6YW1i3ocEvSKsdkBK2MphlBPjf7uNoCOVVpyuudBkme2WbJyECxbEcalkbtN9Rd1ge7q874RrM+oUtc0gjIjaS5FNZfEW7xXXDwKPgJkhKseIZNQ+hzHA2mlE7ELgVNix3qC+F4ylDKGD4ZakE63uFZlAwHzU5iBhFh6k1DrM9CFTF8SY6bwxq+UMZkaLEgbHV1MJth6vBYNebKTdYumWmKEmq8sM0bJHyuLO1LSWDTJMqwJaWjKy/Yq+mdSmPFvJU1hbbCaI+SEBDlib1wG1QjL0skJd7G08v9uP7R6BM9zDSVmEgtrZIKBRaqSA+23WxsOMp8Yu3WjKRTmAquW0RaFMfN9scg1oElwvs9ly44RxGVHhbFu+XNfqB+gaebKcpJMJGcRPZLiRAYwa7z7VjRBLMVjkdzlvVJ7IzGCMkpM9IUG8A7xPqC4ytBwP5DxgHJxR0xzOrphxA1WBoJT6CiqCiewxzwWdor6NjGbUxOh+I4Omf0f0H5kIM4k3497bakSBI6PBGvbouSuuADKpc12aFR88AVlTbjhp9Ibu98KMkreReAfDgDSYgjN9Iw0nYnUdW8D4RCKeTmVrHZPboK5Jg9UsypDt1dihj3JYxerj3loBEoaqxpqqj2VngFXdcS4hrkVADdFiJZAP77asM3StempSMnVfT8yMjCv7QIPJHJnnyLacJTuqV8cPZCDOJ1K34Bq4naOX93bsVSMmlIJrnl0f31r0xPcXQYtZF8kYuI7xq6+exv/l3387zv/H9+P//O778SUfT9hDUa8GQk4E9+zw2MCPoCrGjvp797Qamx05CrBayeq8Dsj60x5rnRkljCcYfkWOHGOIv7EudhrEi9rsdD2EI52rRfzCTnpA48Hoj4+sV+Pl9Tz+8N0xAhfP7zmXL6/HQKLgPejJqNXVebznQ94Oz+jbvYlM6OXYLhZ1x9zzwA6MbLXriX14zTAbTF3ZHcO3ao6tjpnlA3cKx3F5RG/cE2G2zKDrjdYzdd8YvScnVSklMgsQDRCJuWD6rRPljoL7V+Og2LPnLaKOOC3XwVrM0Zh78Br4YB9p1nfvcW9R0lD6iLoDmbhaYxwSZtLJA9jqvNt9lJn+uVDg3YhzX8nxodOe3R0sjy4zbwzgKZ742z2x0zmyDbkIpLSbc2I7r3ytc8W1JJd3lR59rNppa75WwSQfelU10jFmAGEF1cVqbFHvr4VUASEiMoDqekUbK/DxxN9z26x+9KxrPo/2lyna0OzbDFlP5UL1fuiP4BjhfGMudgfKkONb2alFkPR0UxfC0B1+vw5xTH2C08b9qrY36pANPa4SSPoJ9ax4XUAXykwm5uQn4P6FnEomfpVK9nOkmWpkgLOnzbm0M8lJr2zqHEzxA6ksJgOb83zFeMXea0RH3XPwsMymsuaDNkrsj+fifvHanDIaGnN0PHLNsrlkHEx1+7c1MskOLi8IK9ktI0ZE9+1nIk8L5BW2FktPL/JpKHjkIOL+EZavkBPginr3tBu//eYQCJu//cNrBIh+LEj7rzoDXVtfGZBaEwU3joiIDNLWoHtWs4sIbJ62MnR2XlILdkdDX+xwoOWREZ70wmfH73GkbrrFuj+H0vJ7C23V/m2DYIqCZzPxitLU59M9zU3fRF7RkqI78d5BGseXAb93u1hXQH2Me6AiH3GZPWzDPc2PnWk5tX2sWx/uZVxxru+4n8vJqX4YoSo4Y85bn4vp8WfYp+87VWFo5gCEZdAhYb05QC0ToZNXtZYctPagE8zI47DUFN1qfPScU1ZRlGC93qhfL++hMvf8uh3e6VRtGOZwWu4v/f5t1CpwEtcWBKitRl4/gyw9I2E4szenbpVTybJu06Yar9xyD23t9+36QQCs1adzLfSBrjGrsdEsynOsUg4RtGXLtrYyep3oncfm7Ea1CnHWO8daA2eZjexCtsmTeZ/32KS2BrocjZYaYQaviIkiqzXJSS/daEyZ00zWZRJqZRjZljDf9UnwXH0y3N8kFayMegQ6ApLIQM9kUHQ587pqvZopm6VwIojW5NJXTohlfLYbXPcHPrvfASG1Gwd4DV/4Aec34k9wggq/WA5soh74VpLSueepX5fDxPKPai8mfjD2r1WGKUY1ArgyWDsres6J9d/8uv9m1q4MJziaOM/2zOCwHc/sAbyojeb5FMAGSRiCB3YKmk5yf1rq7/ko1EGhw/r+X1LkL8wZpVj1+lxvvdQ/4XGc7kuD0fW0mvblBxoARHDM5sgs17wOtq2ZFY6d2PZKPnPaDeJY6eMSyQGVPmGIWTfOENoc+q+H7nXJD7fjN458pDzXo7mq81p323Hm921hVE13ZZ8XTmKORJ+XhTZYZgnz1lpW8DPPdPuMrdgz+NyujHqbe/+Gg22ovOVYNayxbkQSxsDA54fc9g7VqIWsDeYbR9lYk4GWz+G/vXZy7+92w8Jx05sL9d4k9GGQs+axcpdFPrR6YO/1+/dn+55u2z7j7N1mmp7j0Rh5XfVuy3XNtyzS3JvTjpqDN1Ngw72ptU9SGdzmoIi+6zrwauFYMlrOdmXvjciIc2u/yH2y92cfi+fWxj+jEApZ0RGBfi1/GndKvW+CT55tv92Mw34z3j9vgxDvH77vUdF/ow50P5gFRKb5OK6XjWqAStKppKt9Qxr8hhGZJdiJyDxxIxKwcmVhL+sP4/NS8akAq5dbLCBHoURSwYUtApYFxDvw/8iGaeWVc0mRQxS34JeAIjCbGhm93WZcwZYYq8AMe+xpCcIcnCwgXKiHdlALUbKMArvmkldkHQ3rpSOjjrgPIj6ojY7sGTc+9t507SgjRAkbwgkaA2VCKjLsoDpDsG/b0Ih7kTOZRFxl5Uy6OTeqcmtwL1mfHayVbAh4QepAD4hPByF6znOvBfFczb1DOfXK0ucOqnlT9BrtqOqU6j2tthGMrioTr+7Mr2C8RA3lhnVPr4jyoT433QTWzFr2curVH5kbu57dDkxP2bQt3P062WtyHbITTKpNZhnZlYxlTZ1boAHOyAxtkL9Gz2JbE4b7V0/v/tuBLVbmC0Yowzt+38i+7axofDGKnswYCUM8PiGn8yporniXw97lA+BTwVieMidDAUZz3O9q7De7GD30sUwLwIECr7bIIGzL0awdnkEkZSfBUI4IbqxZFbW7XJ0GrCPDkk+dKtjEIZ8oDpWhzGi4kCoqbASbf8yD4GusucN30ZOaiA6uue5YWiY091ZjjrhfTrMcY6yxPKJwVfjP9IblXIrLgIOqlRZZRtzHamxQVAVjG+nsirClsWlbOhPTkMe4HNaETWgEPDdjG+MO5MBlbHebsX+3HRvM3Qr1y3CAgCBAxoAZ6FvAY1ijGs4RHO2T+rXi/Yheg0WazNzs683NN7I8yIipZ3Ss5uRkcE2W0DWKyk+el3QXdYad8ejbI13D73942o6//OZp/K9PH8cXf6g+so4ZI+w904YbEDXRv10tv7ptHI4S2p9vwehPpxA6C2AbjG2Q0Gf/bfSvpYyDJ4JomtYuTWJpxzJJwFvgBLwMcarNbbycNuN0XY1jcB+ofZFQOuWsEK4aXekic7oOWQZr9Pkp4FJRBx210NKxOM/Hj0d0YB/v32E/lNaI/QY1huzjjAP1gaWLzGDsbLH6YYM7xIOrFBLk/unZ7OFpCFRrNKw51O1GXS+tmZ2QMmaG3orczN+1DsE9ZocDjEfUdHN+jGCZjXfIv8Y1RYLZ4PVin2HQoTloOhPmH2O7Q1ZRtg9XWwX9AjWiLh52SvD7LLI/hpod5GohONTFGrUXgRnZOGGrAfFVmTN/F/eS+03Mm2wqJ1uCeR/3BEIutW6KFk6F4OG2URF0/B2kW+g9DZ4Z7cuxNbnfffPY7ZTjOw7idgepWHS681x6tQJVRDoY7uwARgSwwuZbjcMB9dDr8de/2geM9YfTNZi4//D9OTgBXoKxvO4j9b5FUrX12RGwxCAZ+y1r2Z60EzDKfo35DFuEY+eSK28QDpSlCe8MZiNl8xzG+urmjh9ec7UMAMT5fB2XlSjLXuqulEpmsNt56AN0lejgEW2lKJvQPlqOdgtAuvxlvHEsooObHWHR19OFSILooEK9OiU0dLNhWYZKQRlK9GuMzDOQLcFT0Xo5x5aKv2MTNCqr1h4Y3G072Tltl2rBx5kIjksI3CJVAupH833fdI3Q8ULH9pKnGo5aA/497UyReSZPE4MVwUwT39uuWDb1n/76q/Gbbw7j0/l1/N3vXsbfff86PoEs4JdOInafaXz7s28fXeAJCc0Yx2zv5VXitUwdVoSuva3PLO5xMiqsNZfTvShI8gJLJTvdzF2dtGEbudhasI2LtNXouZ5sgmxwxTuTlWfJDLSeS/LTEkkPonJSBLEQLOj1uVJucnrD6cA80DmgDV7PWga470uOmx2LPqsPQm19ITodUt8z3LV51yJNqXN1bdvze3bo9bzL8O7yProj38f90ddaFL28J/4d0BgQ2wQBExxaRR9bhiHNUWdBZ/F5M0TszScjgGllKkQYTow2yhYkglOBzZ7w1eb5tKh7KdBMteo8jUTK2eDGnh3EGIHkzQ6/tUn255gc8NpkDRN0hDJ7Qjeoc3Yyaxv7sq4sN/poZzVfb165DuR43Oa17jmKtdH6OucYtalKojR9LBxwZ2H65m850UPE3BigoIVSKqdYKS0jvRbukVBwfQtO7492SyPHd6kLl5/R5isysw5Vc73+0hDvlqZr0M2p4NEiaojSESRvMAa2DCStA6qtoJKAYpSDWjMZMY+gggznaOtVDjGdPEqfOxpEq6qJDbbrLYezbPQtlVHJvN9gdNxl4LeAtKLVIhyJL/9oz57/7ftg21OmD1IfVCiqyYic3nC0dSrGojUv+nfwQqB9z8VkbiK6EjSYvZrZEzqWo7svToHNqxiJiR8wmaNvs5dzxWuRseaDIYMddfKgGgTMeAf0AyCMXj8s5YjSJTvDzdGIH9WEx223msW4tkiN3OZwtoGM9uH3IzidRuvSrihYKJM71I+E1WvMtAq9yXbkQM9KGb1xX1u4lIp6DjqZVlm1WrKWvO3hEWgHkZxIzSKwqAz59Py5dhdjZtb01tKn61X38M77lD4Na8xz1p4rZNIs67JBqIdtTzigKclPh6w0mhFGzdrIZza5pUqhczy6WUG9rj3epUFNsXB9Wbe9OSUVvEvdbj0q2C7GHEGL3Woc9uvx/pmBDFSXbc7X8XGzGueQszYJ7Xc5feWcLsy4e6/Gg9wC+qkPPB8pS72la0NI+DuS1eLTLZnnOCpz3PZW31Le38JstyPN6zYbdNGUew4Y+7wze3b4053k01nzHviajgU/znSPC9h/2nAMwrg6MhMzD+1U3VTCngXdRqIvkV+W63rOMqUqox4dQ1sNfN71VE+9YFHPzLN1+8ywPe8sq6yJ7jLk7wTSJbNGbctdPPeUkdZrLK2hDn3/jNJJlFHtgwfDwc2f8/iiMtDMGgCehdqm81idKWXIskVkLKIw6OtZxnR86waG3GLCDhKmyCh8xokyDE0ZPS4iMxRDSB1zrUViOZhqdHWOfngziqxHbAzq1RxZHhnP4LhWX77KGsq5NQNoQrfssPGSMER3e/Zqjoh7wsuQQXKRvu9J/U2jRhqLEdFtFLLpXiNTrgx2Y6O248VEGZyxMW4Ym2Y8B9GAFTz+GUzfnT6s1CvHRd4D6kDjhWbELXYXEyrlxqf7T5iuN3fPkllyXJ+7cPhLNvpCLSUS46+MTX435s/jSybQuP5lG8Wm7BGeJsc4nxmxf/l0GZ8+nsYrWLoRWbMBwJ1wdvdlTCHS3V83C3fW0+LakifLWG0U5R2nAxL9uPNl2sTqaUzHRpu0aqtwFhtFRD+UZ5H1auorjTXoisr4Wyyp6c6oTr4rZdQs4hP7PTOcCa8OAeO5U2KizuYybiD/iWqY9bigNUesKTFxxlCChZnGb0kPIpnHeD96Tmv9hVN6JZO2YUjBtMxog+RdAZkw/lHXTkM2nLVg2medjveC+FEAC88f50F0Xhkc5juBJmFWhllnhQ2W1tTiT48bI7MdpooadqIbzmfU2ddaIVr8Hq/nIFzUSKJWPRiBWU8a58BTrlEzTJh9sKwrIJA1+vRMxmpLHZZrZ4U1jyj1mu344lrrqB1nb2c40FHthPyV9OVMtBQ1WbYXWl/ZlYo7z9dj8A+srvtxXammGaib7XWsdzBakcHfjDWQPOKwMHnLHDh1tEf3SWlpY9QtY/0nrX3e4NNhP75ZAUr2h/wonr0bHl/KcT3xmS/QVeGcNOPeujf2BGZb04EN9q4o5oz+2xmoko4IdQLjPZ2h29grExh/Rd9tZnhvO6yFa+pGrGPMP4x/OGKpj8U/EvWeESBjp4WQF6XKsu+xnq9DDpeH12A4wO93wWL86eM5epFHdlQ0wfg3stIvL+dwtOGchGZoctgN0uhHrIBjixfFvSJTCai7M/W7/ZbZoz4n2fdZ4xqM08xAr6NNm+4/9VQ5w4zHETYdtZ+udtBaZTyV+notvZjZKN+qUQAKQEX9tYKQadukZ8IgHdYn5gv3iXneT3WgFRC1Tn/N7gbNcQ7zQHir9MDqLKyRZs23QxLIWD/ML7UtLzkXHXgN2L7wIteq1Q+5amaGb8HB7UmCYIMhE7wkJfPSkYpNNmtxZCTCSRlq2y7eKthGaiZOi8sJ6ZBleT2wqQDM09M6ZPMvv92N58N6/Pa3BwZm/uE0Xl+v4/bVGC/IRuN5MXZYw2AuB8cIOtkkuslzIsRTC2bE+EWQZA6cZKZaetDrArIO2QN6y6zbwdXhQIC290jaL5j3XMecJRjmMZBOSHKuHmt34K2dapMZe6Emu0O5yJwvRcj8xCafRXcHE/RloMrv99tvAcHpqYTIS92az81gY+gQsE5jfUanG+q8eN6J2Z+NwjHOkIstvDS350Pg9klya+p9cXkUb45t5tudXcO9XOi4RVCHdnB3oit5E2vUtf0oown/6iYdPpMb87vNIXdLQckHbjuCcFvYDLMTzJpn8bPAIMf39kKoHXnNd/t34/1e3Ut+yQ705ys9ftoxR3HsvKnBu5xgO7kBsUyPprMEO5bI1gOTRnh032kc9YgHF7I3zr72vFFW9sIQ0ceLs64zv0kYK/7FXczwKC8yylqZB1OcB1kchZzt7OVzNGiMlk+Mna6qe6GDAig0a2daplGCTch5izxhR3b0qrP+OuLoK06RvHnD7uZO+d68TmaNmlKej3KIe6SsjXDVPz+CHsSYTlj+lNpyxtu73YDwC4v5rAyZ5DSg/zx3tAIIEhySd0SAIx3lOSs+BxC8m88beQVQ5iihHabpxi2oDZZmmc6yBk1Wby8i1UhJyfmYkQw9mB3OfU/StzWY11wEALhRwnEzvdViRgQjZAyrjHJuUmsS5Pj1sMTk5NnU6q15YnVBASu7EA6vnSVD5VVeoZhFZShq/ODug8CMDP/8Xs9Q5fKc1FeVPZiEm1BXem4ZqHsge5ON4gyBltP0WRN5yJCY6h9tUTf/T+phvllFtSOoEfMigrkYL0HpC1OWOlkz23RVriadszJvMb6YuCAii14yKVfLdZyBtu4dxRuc8JiNG5xwBP6kNNWiyd02yDAnPZq6d2ExT8bzwqDrl21R+knw0ZJrsx5P++3YyTGqgFZF6b8UJxrrHMMSASeVn6QItOwzGbY9QOi73WrQFuWeHQ1VftZCVuAkHlWKEeemc02xpg4IaGIQMToApmBLLaUmMwpe5yTaoX/Acttq/4m2hWGstk+na7R9jEBcM7KDjA7ooST6qwzvpPvSAcpL1R5oQiT9JlssA3h+Bv6uUhLLDj+jBEGZQZmFtG7rdaTZVSPdz4KUsjaSDmTteEvhKL3Gx2s1trb+sySIc4jkQhKatTHwXLDoqme/mlS0zFLaBmka8CmCuK45rSG7d50YdE5eKPd+z4Uz5+zl7EyyKQ5nObaKWMpPPI1j3YshS79f5Qp2ghw8im8vRNIBva73pkx68mV0u6lsg5Cl7Wrsd6vx/mkz3j2vx/O7TczF055GxgE1E6qNTtKrMjvmoG27To5B+6xNScUFcq5ylbekDwMDGsRmP8UepaAu5bW+ezeX3VJ8tC/2Z8ksttZO9rCX3W5IvRJLP6aKi0FFwQp30Zjd2ckWzOBsZlb9ufq7Ei/eD2XrI8BzVWuvaHvFgKM7HtTEc09m0lDvRSI60kOsc5/20wIRZufA1FV1v0RgsNTFr3dZ6Vl5c7V01B0RWQzSraxs30pSLo/FRpK8TosJN4zbY4K2djLmQgB2m238EAHx8x5fVAY6ouG4KUenox+w2fBk4IPBLTLTBWPebvaxsBC5YDbYDqn7Pjc1r2xT1Ru2TB9sPmQ67AAgk6KaQcMlnbdKpW4ooK+QDlJ7NVJ8qmGOPpR2eGQ2KLvjOqQwYFR/wDcEj5SBikXn/rluCYA+nhE9lFEbPQgVJOA9MNsGJYzvnJQRuJIpQAY0FqxqGQU/PR1v48W9lqXhoTCj76scIteOd0NTw902KGw0Th2WkT2RVuQ8VH1KRNXxvL2AzlHRmA5nMRhONCu120yUOhF2JlELZDF0xjnuwsiGTprCm9If7BHsKO/vvruOjy+YKnJLX5HhvN7GxxdEgjes+RJ8dQf4zriM7bhEzUqUsbQ+5kvYnY0N9LrN+zBDi5g5naRYjrONqlB07lXpfsNhWGualGl2VBc1KGkAmX0yvqA+iRkV5qohyy6NgmR6NCS7EfMw0aKoPAzm6LsLGUKmUoEvFaUBosQez1wvbFXgAE61qgHp9WkgxZYjljAlB6HOwYQO9glB++Kh3U4DWTQumEIjEINqnv0w502qlGys1dc5MuWqV1tjUgOmLONKxftwwiMzq7Y8dqQpV8007Mw7vj9lCNIpjIllY2XKBlEJUUMZrePV49nQ8huz32b9pCFMx8+R/2Dzx72dTq5Mn2S/94cPHbBhSyGyb3sc2H8+OBzA9xsZYSCJXiPQt93t4gFfj+dgP3bkPLOefmy1gAxC8+gStQ552G1Q74doNAMaNgQvgRHm826kH5x5YoawyAATOS9LLvaF9netO2KJ2dcyJStNvOftbey3t/EOTPb93c+jZn+WAyzVBLzA2DbCZoS8pGHnHtcQIfVRRtYZ9Z8BS9qCoRpns1ahoKKOkogVziGzG1JEm9s4HDDG67EFkzrYqIOVd4xrtB+RsyYWbzAHZwAqGxp7D69+wrcY84Ysk4EXtfRuHfrAaCaRGrNV0WPYrPrJXq31kIgjrRftyf5czHEE16VnDGvXdXp21W3AbCMyY8RAlA9aE2SzZr2p9n30u9YzYOzQ1xrzdzggnU9GezsrcR/pCS2eu7ZHwZbJ9dARXQtLJQ9uG+txCLKN5oD61pqtn7/Mrk2vlfrHvBXNvrNj5gjACjol7oP7a1JVgFMjdGwjQmoOeDnhjfipzYXRDNCThNyXcZKOYX+OBwPRs4i+XGRz86c6uZRcKKmxWnol9+ePWZGe97jEstsXfBt8hV89rcf7d5vx619tx9PTJlitIcvf/vYwTkBQ/NdP4+h10oKuJhTr9d/5XC360wNADqJk8HyjOmTXGWvwegCoJx983rCTFxwadpAsJvmTa8S3JLlUYM/OukNn6VxNNmcF8goB4IBVWy+tKIn6z3NcDqNlIh4fgMNIhlb5ioAblHnHmxx4CbSp6s3d+cQZ9xci9oAUxckv8XpFMYyGcCIvkSYJVcc5q1wKooca+G4+wibp42xAYZoXzc7g39X2kU6zbVIOuoP04sqNUjcGaUatEwmP59hdfrpzPssd5ZF9qZdrjuMG1JD5dfCf5z1t+IdtBP81OND/tNrn/v1q+A0BMlwqJ7xFdZJrV9kUQiKcPWjRolQY7dWAe1iA6IzT36pMC2DOnHxBS50JTTqZdt+t5qKyPY7kltPhBcmMQKF5abRhMWg6tLp560FPks3erRgMzWKdlowgKFtF40h6Uv0BHSMOPoIINvBErBlyTRM2ZxBnVLQvIOLVU53DEc5zRaZ8yxn+b8QRUyTa2T/Df5sDWZb6LBAJfbktHBc7VXJsos1Tnr+cvpyL/reDIpmBV25DBhSjl5NloLkr4xtG5qcXBiKMjACkC1m942k9zheiGKL8OBxIKM3b2AmuyhrCAOSV8TgPlowPzl9mibSL8CuQVUHtYjz6E6vndNvcTJhHSLCNVQVh8nwtUt1/4Stg4NVaSYOmM5E4OttJ0Nq64FAS6h2P5SCC70VGU9TfwpiCQxjBJAVHrLRDqTOSOgnN0oG+ooUbZBv9ndR+qW0g6gQmR1YbR8vIsN7Wa9uDrtC2DLZE8JMouNAYug7bXJGV2BtenUPXSh3REBftHBmf8vWixVQrY2ntNfjxVvoQsPviYnCrCI9dyHn0WRbPuYTBCBs/XpI0ZhagoVJEWgcytPUNDXPoQCNrjH+jbOSW68OIARluk0FM5zfmnLCDuAOgZiKhrWxUGQLQ467Tb1F4cbe5LpKyP2edHaBK8hsLRt8vco4qF7hb38bT5hp6NudwYt39cnb30xlkkatxgQes/TGWgRjB7BwkUzcM96hTx/8I4ybR3izX5DF4kMVpwxjQyli2yJZAdBjswXlhDIZTJagvgsGR0XDwJ8+rw0WodrgycKNgOLjFGppque9YZv2cK5F12WC2c0tUQ4UK2u40dXqZejI7sJxfLE+kZyud7a37sl5kJj7uZkvZn3SwoM9YrvvDgsRqsXU+OiyidnCNwnEArZkry29m/2mM23lRO2wnJb88eUE23rUm0y5rE9sWfpSRTWuTKj+LmiITXUb45EDn7Ta7b3LMOsKwIYBa6IBx5Xvuk8z6OynSA5ty9hj4Ln2S33MAOzPO05lTp3j1pPOYFB12ThnAOuyQbV6Nd+82Y3/YBPwVdsfzh83Yna9j+3e9BMXXtANVcz7brU2OXYrXUA6+jbD9WNExDbr3Jm4NnSy3ghnFQzYnVzJzOs1nR5XmFlvO84NlFh9NLLVqvL1nLuMWE7KoUE/R4k/2de55YRMoUGX7WmufJpnbXhVaocUjErIcjmYgCFoG2nIhh/Xqkro2RLbrveeL3pB7raJQAbbtwf98zC6vQtt8RkfMcumF2XhlprEsp3c1rRe1Xcu/aBOkb9VeN7KDpTrdyuiONuHrRg/G+bZj7C7/XC/zX2kGGhPybj/G864WRkWMOIHn85k1bmFc1fuEgTGyncLUDCEfsQEg5O0L9kWv+s7IXPYJr/CSIM6zsDpaXRLaCLAEU7BDakoQ3hPgUFL8hoZduDhJrFKZDUscs81URwE5C8iTDCHUcGxW46tnOP7IrF4iwvPDCxhvcT2y0354Byd6pSwpGXFXp9XY3phZR99M1jJScyKIgVrDgAMe6WQwK8h6MD3o5JCyJqoMhOVRG9Ls8DBLL3KY5oh3YyNqa2POWRdvRbh21tRz1DYR/u1sqmtuTV7EgzLj+SkoH40sOr3s8cvMCm750/HKzKPq5ZkRBMKA7NIXQdCgM7cwEiLDVpo2IDyFw5nXgzJjdVvF+tqLcpD1Zh18iwgq0tLXhx1bOhuZluALuNEQEZ9XyIIWxfT4IyIa5NHKJvd15o0yxBoOnpABhmgPMXfGb7DhIsmlOqRgcI8NBt8neV2QwWyICMA4ohZaWJAuTRN8NgMDyIonUQl7L2PoY31rfC6o392IsDAsNih0OGvzLk7opjes3k3L7yswEHU6R+qWJzFnOliEvuWN3T1lVxnVMr7EqdB9ajualuV4Hs1SZHCYjYDDipTeekeRhDNsJ9LP4/koY3I2pEk+R0bcKrAQBbs3ct0ba5qYPXOP8Sj5kHysdySbOzvNh/uONPyugjK2kvCCvns5sv/z5Qy+C9buhj6EE4i5Vhab8H0b6PfQ6cpU9jFf6CIJem78Jm201+h50Pvb9XXstqex25zHBs8T12WHgD9FSdOf8nj5/sQ947oL6PL+ID4MOJCoa4UhHjV2rLOMHxgpm+AyJ3Px0coePBlAZPWsnFBgwb3h0gXOySlY0lnnG5BujVDUS4rlGL1GA8Io5mawrxvtQTuzsfgq+OOaUHuQsXbYkmBsV1ca+gqChgnYpgRB4l1AS1fjqKp8+k6olSUPiA9DHBWfcdw4mfYNTWXWXm2dlEONsQiYJAjKSjIi49ICOsGsHM9VTl0/vO+EfpPDELEPBRvsAORztK4U/Vzeq9P+cbAiP1A11cvD5yawplEXNWeSAc1rthbLtaQlRFTczPo8XTzaYN/GKRAqrSBAJ3CrscxOtntLq0t7dZgkygbHPiEdvAok4r3TltZ5O6e3CI5d1Zamrrdz6hpT6zF9q3FHtnM/eni+Bjk5wSkRPBkOVdStKrCA1w7bVaABonYUDwsukYC2ag/Ss6E8AbisYKbQ2w5IPDAzpjvplpLyE4sESAvktvs3y/h0thYgzoBK/rsyzSaAS7lp+lZWa85JvN6CUmXj1VgTTVIOOoElvs/+jF7L3fEsRz+kBpln6RuoGJcvsAEOS7OmBJ8eIJy/tP1FeBqKEhwaLJ+M5CDkJ3ReoWxz+ByIsKx1QmUHhHSY/CxJFVsQPtu2ZZF6jWMFHSpgzvcqEGUTsTvTUQONPWRFFnzKA78dZSstoO/rsB1eZam7q172Je+HOtXR+vYZjVvY/nJClrruF+VA/yljAdYJ++0jPb4qMjGICqIQitrE5hIRtl5jWBCTZdYhjFOFiBLGFm+2+syefWzOg8+xdKCrbnk2xiwAARuLU8Hys4Nm1m2Gr5AxjkWkegjalYZwOhzXoRsiITFsRu0Fng7bsd1cg+wDkf3TdTPO3PnjWs9PIDaBM3IeqxPIXaCsgdIhAVmQWcRmiu+A6Y4KBNGiIsEoRcXDDpfrWNtm0pzfGtT2TH0xpbFSzrgd4mI1VSMaK+CM8Pb+f37vej8vMtR5ToHx/YYZLxaH68dNkGQFfTwJRhiw3Ba4EYQ0oGeRMWCbF55LbM2OFHbSp+aMZg0xPd7EPRBWU04067Bx/kbhPvVRVBlDhiJg5AU9zyJEa5xQ32o62Vr1Uo0x9s68QAbwj7YdZ82qIEtyDmEsc1jVAqsZZ263ErekBD0RBeot+yA4NtWWB6EXAxZxAHIvKCCh/ex3GygNl0q4zyYIl3Qmt1FzmCb1i6lvM/1c9W0BfcVmGyeh6Uk5685zOeDMdM8GSdWq1TY627uCVHoDDCcWcom2VkBieD4rq5Lj08PRLejlFWHPgBsgnem+U9CvaL1KzabsndLrCxF7sW4zIIZ/mXTPEDNt2r6B0H8Yw8u4oIXVhbpptWMGkjYInXI/RjnPXvsLj/dHj6XTbQKpJYmk1+U1gmEbIHXicpbWMAPHl3QcP53YhmdLEpbIWqk+1Hoae0YY5Zgv6Xq3KLqAlCimjgGoAsC0doUKAvtA4CXmFsFgfZZcGjKSDZWMcimHlNW39gTeAQfjGKRcLbJj9w40M+wEAJfDHavY8b1GyGnYedxrOtB06Hv7F8I+rd8NhihYq8eCLSVZY51t/aKMpZGLSucbteXMFKDbnzuyu4LtBY9DXzLeJzMjVms7z5MZznL6lsujq+/p9ebIJDJmUQ/rIGDBpGdHaP3AgS7Oi9Lv5zPJgzK7ZdkKhEwhBHzeSXNJn9phqJZ/klV1vxyfcZ7LZilVlkM6P9YUhKwtyWVG8/hM7mmOQQ2GEwZ57gi0V3cF1tMz8UFYcERf6EBjrxMPi00Pr6v8ab2idZcPgoo9ONCd53v35NErU/a7O8/JZ9IyrE1G7OQt5cYG4ew8N7u8BfYnB1ZlQEZ7VHB6Dry7Zt+JBmmlItbS3rYG0ZUQsZ4HHwGOM3mZoU99nSpbzGy5atR3JFc9Hml/AKUTnTA93n2NWKbDZVlAc3qgQePNwIc93i6bzcbNtV52eSJJFtfuXLIlE3wBgcE19kHIpNdaJEDYXo/nKDvNHQ1867mzau6p13opQEc0WVDEdB/jPRM3j3/rGWhs8r/+5jC+/eqdYA3qCdYiE2APZkZFxmAjG7JCswNsoaLzY6OtZU/SsUvsaGV82w5R9W3LELEhIIKFhRFJ5ypaFUd0mv2gEckKQTkVZGmKeuIzPTvUo0O+mu6LGWhWYseCDngJ2I1v4/A0xoevNpFt2G2eGVTYXyJa9OkFmUo6IIAX2yncbmN3GgOMx+dy9kjcxiy1iV5IrHvP3DfB5E36IeXn1/u49X9n5lIOT7AcS93NARov8Bbo8N/WGelULK7TlKhTCo4Kkm3d7bqc9b0tssDOcjorINkxlGfJrNk2XULQaUya0RwBDSqnxyHhkPGebcwWD6UgbQaSiZ330w3DMF5tKXuDNey3DcV0PWWyk/BFRE0IANFZELGf5yZE1Y6+M7HcwNShl9F7fC4gzvq024JUkFEti0mWApkG1DOcXkEHDdkKlvkb6naZRUtrJ9cIGYLj3lU/XigEOgOGeQX0M/dkXivkQYZbZK29CURGgI5xXtYTjM+qnUoYaqoj5QiQCplMpR2cre7S6VDet1jh2tG6crBQTj82r4SOBtO1gxTq5a5eGdy8uqWq8YoTYoyYjYqNAJ/dykFVOQMsACyD/YEtJNDyJ8bWKBXX5KvmeIPxjQ0RHptq2SNgAScDDNro46wWPYgm4+sgwBGRE3Tk7bSOTNn1dorniho1nCui3Sveg3V7yCmcrUUROYv1SvdPLKeP1FEPSNlpU69wSLl0Ofal18t5nNTXW6G1h2blz32AlXeNzPERup+1s1iPkfXcKSCpDAKeZWs4sTIaAT08rGOdBNmc9rjMqBgR5QyE64dh3+/I/ht8EUgWyOiPec1q+zKn2HO5EUmpTATr5qKICXXSDI++JWsw1ljj4mjHEoXQwyJ07NjDN3r/LpC8aaD2co3WPptZKY5dOfr4kLgdAkJJfR+xtc0qekM7o51bfdv2ofcCbi4rBUY3jFL2mvdzNCfQzyKW/SIL0t4tgzM5IhryjnBwhxeWK2SurfQmS7SPnfly3szg5Myz65191p6JdpPSMHdsfed4Wa1KhxpivzD4e3bYcdqoT06p6lw1HNPJqeqZ+F5ilxHOhaM+my41B4vxqqCAriNuFf6/OEcW38znDudfRLFg3wZs++uvt+Pd82asDxvW6TXvE8GFl+N1fHylvdbpYrosdLm/I6e8m/k6TNJlVGQ99+oOdJm6oGc0PQ8mAS0f785pbNNV9x9kwjxvrIioGS9UVve9md1dlkE8eE7DrhOVUNlO7jf8HZlnlT0GUscBQgP6RNbH3ttyBsOmr3KZLrOBVYq6dvaoj8DyGsz89AEYTOkZYiM0LkXsmZ125IhablNHdiTuvVO+dJ7nDLBmLAI1RdhmXwvxmgy23XRhMa8HKin1Q2v32Qf9M8E6zjdjQhBQ6ONA+Tg45KTdZ+T2F+tAz1Vgqz/+Rjbr8fWH5/HVexT6VM1r9uBUzMg7DQMSPeNcm0P8TkfPcMhWRKXFQiFt7XOmiREYalroc/ukUK1YhBG5J5EOMmuceDiihKAGDBUC8MoHYplhhXZoqMKYhZcRVbPKkvGJ4tN4jEhria0z2hPgXHCCR7S1Qo3U8/t19ApEG41ogr77FEYMIA8nJsBlwPLaaDGCVwGpdQbcxBjRciMgExoDwfM4KDXHjmy6ZYfdNOU53zy8kMpZI8FLh5yWu5wxd9v+83z5n41Z+eGOl0JFmAjlqJOb2Rlu6j+h0J7/2rT5uxiyNaXaQPk8GDf4U0FcBufSEUtBs62I0yQMBWkJMxPuwkn0hhzzxfymFZYhqPEqNh9tQBmBDXKXXlQmGVxmJ8MZ4n5taGaRg9GBS8OrafRQgr21AoypSwG9DBnKCK2YfMMQ3dGIDzozt97SbgVZxzYDJ9o1kxW84VxlkCGUO9u1ofQjZCw21iK6qUwcdwrG2ugo0emUQ63OrFFHn+yeHmxBA+VMruAvR0wGTjWrSTlsDF7l/Sps4D2yoIVznaE/W+UsyKTTw7MDTci5Nt5woA0bz4LRNtdt/Wmy0vAPxk+uiVPIiHQNMpKHPeu3jq/V63RyTLgONiKis/NN6VZmd4XaaMl5GAU2oEEiR/IwOGvIXgbTejjQMDB25BnAvWnMQzMgmCXl5H7QNsJNLhPr0v0zloiFxnReDrRYyQB9cFZRdcL4ATv76XqOUgRnub6c7Xw+XpHRRabzyLkE1B9bzH6HeSLsntlcPgGelW2E9EwBXZSMnqr3ejjR0c0Bn7kurHK6RtjPEbAz4VLIDs6aSXpqXrOZxHmF1OIPybqoloqlvxz1xryc5Vj3gYx8rdQaZb4tBwaVqZszU5a61DX+cqTsMySkujLPAa9eONE+V+h9yDbaraEFmAmWcl03uhTHfKJdIOYLqDK1fFF8bHbz/WzV8tOwTWf3piCvAwBhnRK7fZ8LlxOUDOh8rVA41mEtON3SjH4ec6OF8xBxkFbv3vbYvGbLmoVs9OnMulx3Z6nrJlS5z/MkB2nONYe4XO1+N9QJVeM9SZUePuQy9+QHHqAdYfxPa8AHef3uS04sJzTK2WHg8LQez8/r8eEDycPWaLOGCHM6Vzw3iPhQUhatwoqFjUGGjgx48+judfs7g7dcM5nZb3OyDC7lw9jJzdKf5TjXXufA/dLZK9nqjnjpbmckfeF4Vgcs4iRtv11ExrKjaA9GCTHKumg50EboILgfdvXs+EfAVUFkZGaJzKo+8l2O/C9AnSNAr+gz7O1L31Ybsieh6IkSmD3QuJYZ4TXfVZvfVtlbmefF4W3dgZ7grPFYp4Pfrp8dD5qN+kZnHdoFb3vQ9E8YSYLv4f1mLJEK/5oc6D9F7ddhvxv/4a//Yvzlrw5jF43PfPJa/G6TQmhU1QEtYdq5qFWH5D6v7slBQaJhhQWBI5g8tSjKRS6H+25rzmwSmW1D+SmC7V6xJNpRhlMZPnmiFUWPNiO8VjDXuddyy+5FTUC0J4ASu8Zixn1vBLXb71fjw4cxnp8243CA8cKCezgTT7dNRPa/jw4wjIbjFqK9R0TYNuO2XY1PrxHjIgQoWlfZGXHhpzYULwAc7h+s4rHMQN85r/fHo8U1j21DDtQbref22z2+5wz5YkcVwbgzTXRQi2xIpxbbqjIqadiU8vG5e/bd/b7JBh84VgL65DT3+py7+3VUMU5WEJW+2czOj7IVfteOk50/14b353Iromz7xNe7ku9j5vXA6KrbqBVxTjpK/mo4QS0DELhFyo9r5aK2tmUvfG2WQvDW5B7JyLTBJEdRzj/HfoZFs24Gf2wn2YEhGgaZliECVaiJs5hWD2ArDjeb5rVDGsPPIEgX9cyhNnS/Mc5hHXrXZ9/r0A5bcg/E6MXGCHnoBg5nygYKr+fslfREWwO10SOLyHqXGyzzTIcWkZ8ddBv1VkE98hyMyJFBg3MKsiAFbNQfCjosenaGMyAnZ5JVrQlk8y9wIq5ji4AhxjxqZlkr5mBlBCLAu9DqwRmsI0LndjJhoaL9JmGTleLnd+9PK6UkTtF/UnO3tbo8qMrK4LXA9/3MCKfIFAihAMmBynva0WAKFtQv0I2OzMjtNl6PqMVFQPcyViCqElllp1nMUqYSrywTiXWFuvq7CySOImuhIwvsN024BWdBmUIGEasLRm4nVTXy5tZBnQ1mfshoI3fSSQgdZMeGAnY0B8/Pmw5x+kOFTEujtzJSqf9lvOuRGtTQrNvueqBsUIYJHJRmr+cwCzLIKnnFmIh926R/ho5G5utB1rL7CCvPN/SvWywKztvd1Klfa7ebptPK+Ub2m0QthQbEODcTQBND+LYCw5PD2DL6JWczzDmZyvN0bU0u7s1+o0fX2VHKVzkcPsyiTlZg6tmoyUfAxJPTzz3dx8K2LS96yvASBdNCCZYpwf8zI1zmxQO+hunPckrS+rThqg9cF2UvpfKrpanttnkG78oZZx35wIn2PCpoW63cuB6mb01BRb0/ZUPn3z0JMU2C11/X5X6WZqfbrvILrpePV7TInL3u9gvXF9EubnO32ppnh84z7Ob4ASGibW5CtdI5VY4iOB6meLVLRPW/aUosvWqzVyqzKT9tdGRP578ZKK8TMQjc4P4e1gVZ3nJtdc6Yh9ng9OIrihGaVSiuHmQ8RTstRA7YnQN2RNp3sd6MFtJg4RzKERp9Oh29PKazf/fba4EJ24w/1/b7xUC40aLhP/67vxi/+Xo/dqh560aMjN3tZpvKAQZqDrJG0hlnIhgNN5FyD5QuNiKya9tgZda0sSA2TUBBLHxKr/OoLCWMQRroJNUy2YngD9EHlu1k6D15tls7Djli6C0ahqENfUMpIvosGKEW+G6PbAEd6OcnZO/X43BYhQMd1w2fFmQG23HZXMdBRGCvJxqbYIWGwnC2+7Q9jyOIx+Ds5dATkm4zgEEHZpb4BC0b0BTx0rG93yyWSrvicx7XaeNqpwtW6rjmG6wni+sWvN+17rXhx+ayfqy4Qxm3eqbVo3tfkGjZgQ43y4yucvaCTMbJrQeL3RtFtorSC5m3XSqRtqlwYOxwMeu5vOdwgdqFb5Mc+jMLZ8PZE2RO2E9MMOIkr2/9x+VAn5g3cnSeKRO2NIl7CZIJUWtlRstZaNUbqprUJQOccD1rwpPcVm6el6hRB0lVPg4NVm52sohR2Nl6YetJGLBCmcgNbXHoAOfGnFYqSxxsa0QbOK3R0EHpmDITFBk86ANnsILpnsaLn2EyfMwx0Eyfef5LXtdbsFvjWse4XzBeZ6TfMEiNb5y6tWTJWRNsH3rwsroGczk+vEbWN64B6K4xJbf8PqPBNfdr1ESBiGkv0sHtOkjM4EBzI7xlqUQ6vxJz6ufbuJ7QTos6nfoeWUy33VHNgUmc0guSWfUjG+gyqFcZfUMLBeNrC5TLBvsJZ4MrC/X0glfuV+P1JIKmL9CFJoP/GC8vl9g/9psLyRYNh1Vv80Q4NP1tuK1bmWxAUBLsX+VxcP81IZb01yJAaAigt4RANYGcrH2O/Y+12lRRdHdIThB4AZN7nE/knNbZbLsHskDpuuZEZ/93QytdR+/7UkDcWfa7rcX3mrq+YIuuS2UnDAWXBGdWR8o6Ta6HZtQqxn4+UvZgknDt+bysf3243fXtSz2tw14SQZuH0mUcc+u4xw4070n3kqgzPb8Yi6lf6lqZJWs8KXkVT4VkxKEuXz20lsfNmcVFKUs/D2uu9Vpuco9Xn/e2rdQHn4cB+khcmMS1jYUd3LZbthtxwG4eq36vdqYjpp0BuJqH5Z0uAUIOKon+7LET7YnNTCNrfDN7mdf1neVuFkcEqSdEQnOUGl1cGwEGX1oiosa9HKH0j/12Y/7uTrR9aN97jmfFROt+J4Op0uARIFLwwOPoFoaVgVberMyI1AGxtmBD7xh82+xakCNYoIHkRCAXjjPJFvGT9q10FYkCHQT0CTxrdqB5P5lDS6depnrYAsWSRx3C50OXP8sxL11OcI7fBNtfBKESAVCzaTsuOQL692zjNQc7A34gKw3IulrsoSRIbOJBlhxw9wpc1A9ZWBNgG2NQNqiDYuYQcJDRstqjT2HPuPxP47JMMP2bcqAtrF+9X8cP2s5UTWVFMGxI9QxZzwDWZLRoW3cOmqPHTAgztSFeINMK6lrfVc7yQqFk9Q4N4MulMUeaiEVQCm9mjooFHK4Rl0UtR2GP/LyO5tKxMOTJEFO1ndG/AQUBXPuwB3Tb2LK2oQhbBmgs4hLnYG/R2ESNKjeSMFAXZEZ8JGXHwgJXiaWdqSgIbUa0WEyzTc1bcItm2HQniJuW1a+CIi2SRQidLuICXs/0I6fd8tMMdRtqjEZOHQFrlqfIXBsRBWaMMDAJWCo1ZX+T/kus3Ekwoei805YFHe2/9J43QhXK+XWS5VUENjekyDgQ0m/oPH3GesZs26F346kjAqrIrIMJhjC6hU2erSKvAc0Of10gezjwCaeSBvS1pIwLuVOans60INma61hHumYsSQ+Z2qmlCyhl78BFvcOZDPi3e7pa5jS/PYXCVgmVbuKcZcGc4IQKzEm+e3/LyDizb1I6dms4GimuhVYpOaIJyaXvTR8fFYlViC9/W495c7MTix6S8W5AQ2tX8fPEdzVPDHhk7QtvAJufsnnH1ZkGWNRZPopMV3AwZJ++sFp/lTsQkfcdmI7XBVmPtzAeRA9Qhl2bqb7k0pWCCFDvoO+vW+hgnZ0VpMiWQyRQC8RM7rELY6u340q10skjO3tLZVbMgGzLgWdCVSoDdx92+/Hb98/j9x8v0W/5SzwMUWTmyFmnep9B41asal018RGqR20GIwWsBszehF65tyIgLc4C1DrHfsFFCxCgHRPDeCuI5pQms57hXMcN8jeyhbS8jPQCrN/QvtJOvF9mlVh/L5QJ7lVG42oZsFRwB4GAlCEZlnE+f747az247cyzg6qPtr207ZoSIik9xxSEeZ1McnGwFtzmeLXgijPKiYA+JrMvghPIRKNmUvXU6XvbDbMeqoBpjrc7AKgrSZA+Zlap3bsCk9FxLua62LIVX9WEzA4VxoYrKCgF0yDOe7ReNGlZDkuFEz1NeA9qlrXe9+PO7V/ru+0dkUAQsWoQbhn/3e41r50kRyZKrHNP18nnqzrhfH4NbpeorltNxJiyZaRNOz/GKuYV5RiCGMd7KM8D14GbaMiWnGXpsWClZWM/Wxwb3SFOmEiXofD6ut3WnDdbG2k3iMckPUevu3Jw41eiSeucDmxyX3UZVxMqkema/K8mo/6mw1yot8g6K1gdzvEaSSeWsuDH4oIDdjUZuBUkjCAkkVrxXLq+qiAy4MFnEv+HUX4KELHOGXu2Q9Lz2kjXX+VkgWoFSiwC8Vq9sR5pO/XgQ+ls3V9yHtiG1l+dQ6J/We+bRduZc4sUGfHLFvYROjmSnODYUFmWUTxeE/JrtB1UkOMu/f3jR8wlSlvATL9dj1d0cPiZaqN/dgfag4zIzq++2YxvP2zGRq0W7CShdo5GTdX38HhjwEoLhrAxiN6cV/csxUJytvtYcNMuIVMtdop3Akwj04SWHTAst1tkyMfYPTHK/op2LMZ5IBuMujFDvkI5iFEBC4RaMiHUsRmJ6TVqWGNjioJrGpsBmYAQbaNHILLQEUGzg7vm/UWUHsrggHG4jVOGpPl8p9N1HE/MPPOx5zFl70xnqgg/vWwuySCY0Pjo02atJ/h3GLYLRZk2RCEEOMcVgebn5ELJgKsI3Nw32VXShpE/cp7TmcW4afE5OqwvSLHzQjSIFDXzvTtiGK2cNIdSGnbQwOAc9TP6EqOjKjxX3yFvNmixlOrNjmO8btg+BTmWQASRBKVT71QbfmGwyLGmYYo5cnhOKlrOnR2BdCgSSqR2H6pBNAmHCd36mghpVp/ekDNspPi7+xCQDStH9xWOusnU35lmCpfEcPBEkxQvSWTR4lpcccjoZzmlxmVDXFVdXs92iS+2V53ajLGtfsexOTn2br1z3oq1gvBooEhCRm/rcUUyTjt8yHhMLZkDd0C44B6PyryHuOp/IctML5kQxO1HYoijfopcCowqy0vtZnxwcxG6fd2RZG68clwcWoduI7IFPaGQDTYmqkjtUGcc7bGxka+u4wVyGnWoqG297/No+CNbuYlwLbwdQte9SUf6bMfsNOr+S1c74w4dfi6DW7XPIdfI2qv+Ka63ZwPS6yuJqIy5JMTV3nCbt65fGkQ2H2N6HpEVGhWkNVIELHKg7WDqy5uxjTZF3x6ex7//Bk7hy/jb708/y+b9YwdFjW0UXb9osptyoONf3DdcBuAgloNEUXPO/yWjf6yj9bgFgosOK8Z+p+AxWlQlj7kMqtngRX9bBYaE2fNVQqdI9ULOzkCbOTprzo3YD++zsuE7A7El+DqJAdOHSnignz8fV72Wc59ZkM6Vy2pDf5U14yQxq8/c+S4ZBHNZlKObyjy/Grp99zhxgEgNeofQae03TSfAWUYNLMYpAvf6mwE86vXscuAtenGlzCIHX4qC9yv0EicUPAjeAMWPoH+NJeQJBEiBqLGzo+eznra4uMYThGvXJaQWGUE79yqfsn0w+UT6A58NXpEom1u0AVoMvyeHJYA8dkJOQA+ytlS11D2mJogwyx9osPOctYNO1/B8CTFJktH7kF7/F+0Gtof0q5npdaJIRHfRJuyFbdtWe9WBw8Y8XaJ9Glq0ERVgO/mRhcxAenVx4Hiy/aT2kbug1Hz/kIPJZ9U2m6hy62K1pIPujl7v3e5oAYa3XKhity67gc5ZDTzOiwBOv78lgKSCXTRH0O4VsgC7GX4HaswDnu3kfpxuNTaAdhtZglLJzXrsUQNdS5eB3GhxKpZut9CBBXRbRfZ4QivoO4FWVXbeXWcSd2kkB96LlqjwBUjKmQ6uE4Y9gSVUTRCetjH2npg5g8lpnRMrNNlcMmIfSGuxzMiaAx3QPbBpXXaCsQv7SFBxO89OEsYRe+sft29qZGMonrbr8bxDtyGUTL7pDX75DvQ/hTTs7ojdDNBJGI8PwhyrB7Dcz55P8qVsK50e75bFVBUMoSZ6yExwK4BXBi+7BBlqYEGIGj3HXOm0rDbX2MAFqmUrm0wQtXZEaeRRM5CJuiBR5cSzptJtrSrr0+sAXFBGx8Z9eA1xgzOEzDjg8SL/E7MiFAdhmoCIZ5ugfHy3DeEOyFYcchjlWDvQYePXtZtLq8M1QSYFzih6t3qXx1ui1SKiHqM5C90vvjhdizRHRtp/V3FGXZc72lQLHUZkgztG5jmyZt4FxfAtY9JBk+CVb7U+eS9iGOSIXGc4eBr0D0Q8Q7Z2JlzcI9RET5n0MWhz6/cT7pVojYKe9Ux5woXCcWdeCY4YFlI5v15rJrhqczyZH3KEwrFzfmWWP4u6s7GSekWTnXn2eMjwVwQfst2BeLFpGVrfMtCEvwl0blb4HEpFbGUAkIgMZdYG19sbacGabPdkhiL3Ua66Il9rNeFVK2jX4fYJ1/L9taCVDU5Jpi5JQ4iyXZZKXx4+HYNJcISkO5x/SZQPonnmaZiJ9Ji49L0Q6mz4ftjSrrHzs8Y4koiNBi1KROA4X1k773uC48d20eFcbZRqh64mMqd028IWKIMg2xy2lmyWwGzthmlRH8tEQMwsv91QKJWwGof9dnz94Wn8wws7HH+Jh+vEgtxKJRJRYHK6jNPrapxe2EJut2dtX6p+E6cpqIQ1HoacV1PW7dHRSk6EWKds2eYsaRrNsTeJmCf+zWiOl4iNssikOUuFwLJNAzneXNe8RwYM+ay1pk0/JpZ6MfKH0xE1+HX43iyfOKJCKFE8TT/mvx5vSVzaDjzNEF/u/SQB263BqN1qIg2lhVzrpiit1bKPgC/qW99Iz1FGPDMyz2BhFjy+PWEEWNUKxyU3HlffBfursoVckAEmCoWrHFwpIVPZ+stZ81sYkZARXB96spZMIWcoN5SK06LcwWZZU49V3yn7y60TY+3G3FNPBnKpOVoJa22OJ9fCvEq7A5cBN5OutTQJa9f5Yfa+ZTvLZahkCT2fZMND0bLREdBx0Fqy4HIAtQwOe+F4vY7X83V8/HQelwuDq8hTrIP8dYxPr5dxPCIBIh2ncsXPm8dNxytoiJlRExZx9zRkmva27FzZzlJjXdnU+FGAK3ZW1+k6edHGP/V3gxH38XQ7qjRLwrusFZit07oeaAvU5WK8ljLRbtcHvQfyX63HnZAWCPDYfojyDH9+B5Tnpp4V9nIEVYoIEQ50bPnR8WYVnB5GMaRJ3xCGtGkY0LB+y0COdIMrS52UyPHQLDS6Ac4XgvZX3DNfNDVMZfdb5jvHu/RqoQma7GqMGNSSHlrN/CyBlBGS9gLbN/SGyZAfZKInHfRYSiufV+sKpa4gVvzwbj9+eL2OT+cXBg8fm/z/ujPQPiLifz6N27lvPo/7JHYH085Gfy+nFLYpevXCICO5d+wkHSoK+LVhYTDkpv7CzhSJhdUskmFEqv6OThNEG8YgHQ9ktZERZAQfRspebN0n1QJwog13oIJCpI7suglHSlIuZGCwRWFBX8fqsh1XpJ/wdxibbrnjllp0XGIcxMDsrNbTAdEasG6DkXU1Tmtkk9djh7pFjCvgEM2mD1gL+ohig1URrxVBLIzI1nF3QrY1xk1kLml+9AXbHfAeKcyaSBvu5Xj2ueUpKriRzOzT+9N/NJdLIfLrbn1GMgTM2UY9+3SJKPCLP2FEKpiBA4QJ7APKgEUQtsRcAm5TSi8JJaIlFYJEMkBzJ3LP0nTrx3bHWn1ci07Kg6BRhyT7asgSZNlC36XmcHRfN8ySRxg1Px7fj2BOjXdmKVynGJ9BSynWVtIhNhy86nwYUEDmUgPvnwYvJTyQ8F62rXKbMQJD/ITOQwUaAhvFQj66E4RsLxW+62ghn9exW+2S2THq04MBk9B8/A+IzwCM+r5DlzASHNmFLTZTpPVi9LQJMjROv82s62NsYHSFUV51plzaDsDQQO0BhtBFNVE5X3TqKktqqyO+xcXIDTVSjdAV4kMo+EzeA6VF/Slxb/ttsHufwXytLCODRpcIyKH1HfRUuEhCt1C/WFcBWngZFzFCXaOW3E4sA3Ws/2PLqmAi3a7J8n88R99nOkzsKhD8DE+0uK7xLKvxqgxbxOm0vruYe11b0fS6fqf9rLuwrli7ij7d+IxZx7nW3cOyL5/SKGO8e96Pv/zNdvzdJ7baKmPkkXv18xyxNzjzIsIaeATHl3PIMgxF9Hp+9wHIKSAuHOyi3vez0KlQ2y47OREwYdaGPzN00UWaZbzyj6g5pLebDk7spyGmYn3H2RWwdMAu9iw4dsqAxX11iGIkxIW8cO8GEV5xURLNpUipQ09yWus54SThZB3Ucpv6QSxtEgXt7CibIdrwcBmZaFuz39N5NtP5aMEcO4C8R44lxwZBJ0B0C9m1TLaebli3t3E8X6OdkQ8DtsO+gR5qBFMeM2e/TnDCsBa1x0XGWZ/t/W/DScDzqe0cPrFHazmch60X2rajfcPBiQgiQ6WUfnOWMoOjRoApGJJ2mOQjdsPgaZFjJa+OCQE6j31so+UdnKM9WeMnaHbLbvrvgMKLQC2Q/zowfqdxIat9kE35Gu0znf3Z03hXCtO+Q0BhHnhuZLmzb/a4jU+w+45j/OMfXsfzAS1K92Ov0hac5w8/HMfL6zV6aGM2PS9JpFVlx7PM6gXzT6QcJ/ooekbmXoEVGoiipuHsuDmbzXZZBbtOB721K5jCxT3Q5PZsi/krp3Jx0fYZOuw2cWZbD8MLvh/uk+ojv2eXmsMz2e1BlBcZ5tBni0lbgQV/E985HLbhRHv8nBTjszB0GMGk6xg/BDcGPxrbMVAavjd1dHAwioEC8I+w7MXPlWObNtliCv3MaV9TbwRfQqCOtH4XiRITOHK8BE3CtSYnWRcxaWKwxosHXSg2Hw4Q4ONA3hrBE7QwO46L/bXQ2YZxa2ON+3eZos/p7gspGlX+BsLpd0+38Ztv3g8wv/z+42m8HB8RZ/wbcKDt3HADRDQIxDOy97x4HCW8g+koa5XKojka4afSACsh52yzLsabc8t8ugZELLCWWAqOolciATK5CpMdlXELJQR4eEB9hRGTgYDemCFEJ0K7EzphB0uO2KpR4zPYWRln9yRGNBuGRBAgqM+012e1yKqx8+ZJApCCc2UkzPW7MLgqRjn16gyqnPg8WvroJpuxmc5WZtaLfMjzlaezAdwWvmGuNoyzhVk6hE1m0mmZFaodONcmJ1mYFUlTRD3L7101IHZZkMqASrA3CzkwXQuORCQ54HRHhR7rO7NeWxtk9mEUNZQNudJrJZ/6PZcpVODAYte/13wpKSTKNK9zHznwploExPqmIWcPsV9Ugr3WLEQgMj16mIaRLNl2lNKs13a0q99sNiHq0Ntg9C3ZSLxlGmbSG1bMbSNhVtfC4+yCZbPYJ+4CEkJJWLYyBhOBKXIkRJAsoIPItiSLYQVrFC+28c51Jpmuf97JrNdbLWQv3I7kkCEa0PLaWlxrFUZnwjuKDCTen4zFFsVPTKtj3tKpqfsIRYw+laFDOGblAijbGCgVempxPQdP7G6FoUweh4AYRiYaTpuMJmXISAIloifdL2DlQVjWeqJ7rkxk1utCc8gbyZ1nwBXRrofNoNUixkZj3q/VWHBYb+OwG+Pr9+vxvFcI7+fhMPnskRkXZ7Y03ZBdODNwLjYXMb1Gf29pfrGs9yAo21mx97prf2Ovjj3FAcJufPGw8e6AGCGRcrJxHZQphTNgQ0v3rnH22rCXMxlvzkjlderfk261im/Zbs5XvZE9YQ1x1f6xdH66fZ0OajNyudcqApckfjLc23jxul5tIjVtdaP1IK3uMHp4myTVZEosF8NP8k/oHBOxjvYCk4I6gAuHNNtVmgslOB2clVJ3hHBmeCOx5tiPMeekQ7hrMEqGPA2BMBAxWb/fCcVYW14ORT+HAx/W6/ytTKe+a1I4s6Hj+QxtxY/L5LJFZ0N6JcBnWtO1l9iw99/+vtsnpdz04V88Hs+xWqzT1jVD0wsGfXzqh5d1rFN0WjnvSA6Ha34fHAwMnAC27+ftR2V15/Gd5qvdHIIIJp3rgcSphVUrPXL5qbOlbYHdX1vfLd3b/64xa6eY6nyNIJvuqQVQ+to3Et6tNC/BJ9R0tf1ZQZaLQNDwM44BYN5wuBHcsANdqAEm1hDUiB72IOTFOnq9RTDObcXYL5oBH6MtFNerMVByicusFYU3wqySRP07FsS8juwzBNlp7ntle/jRIgiVTIo1X+Qp6ZD7Inl0y1HB1UbadELy+g5d6oMguhEOMyqy27iTaLTr3r8XQab9djxfbuObrw6B0NjuVBq7QLb8m3CgLQ4RAdruxmG3H2tljFDLQy1uB9oLqWUdA7ZSEbdQr2nkk5reiiltcJNVQahVP+F6nIScqs7VvZHZXoobILwiEgjAy1W2UVYdSUx247a+jPX2IuMQNVzr8fS0j898PL80JwX95Xje7R5sqddxeV1H6SVJdKTNr1tFkqhp14CTHNbj3TtkjwuyuXY20TuAILKRSQ4naRv3DsqgIApx31tErK5j7JDtiW36Mi7IKskZxEaLn6hl3e2ZrT8f6xoew2YA9dqOfF+Gk5892430sh9pGCvZGHlFwCP7mwGSMnzibKn07BPQxYvFDHImYWb6MqPYqP90ZMBU+xgaVy6AicImpnGIAaHvB0S4Q2fxpl7HapyiVpaqC3KMCHGxvC/gtKkc71ub9VZNGjENXfZnKIcPEygkA4e1OxdyYhdrgFKiTDTqYvF3GNOsp+5GIhATGP7skamWPiGj9jYi82yHGEpc/AXAMScRDuZNjPPJEMAfGPYMYiyKxzJloMWsfs6p5uO5XIzbLF2XacQ6JmQ16uiVqTLSgeXRrikXwREHL4i1oKSvZ9ZzRTur45mX2GnDUvY+iMvUEx1rki3NlIVu8MCcTzk4qHMkwsMtpHTxJiNkCIfBjGwplDdTIagFxx1jjQQJWNbuM9QdsD6WaHOuQicZhqZMQ+SQbO4a7Ish51ifkLFVn2gYCfjhdPPB2J/UqRkGIlnOL0nEeQIKfh7X0yudNZTroMT8SGh8QH+RcQayIFrsyQHZb9mG5oUTWQGcNpY92mF4ZyOZ8utT7/IYBmVKG9Ii/nbN2MKDivV4vY4PT+vx7/9iM/4//40Mvzi+NCqxdN4wZxEY5d/QR9CJuyOLo3eoody6PaT2NunAwFZFqxfV5WtfjGC3+AfYDoZkG4TM9kCGSpPwGTDZ4jwq+0nYrVqkmYSQn18EP1yjHTKr5/M1ZNBi7X3OjLLuy3aCOne1CyrnxmU6RYYjOW5s/1MZSCfmMmJGtZGAdQJtAZ1gxu50YNCWUg63a4B9r36McAAi6wpOg8TMjxvso8s1ILzgMjFcuT9v6LPYq6jjz6LkQIbfugRj/vrK375oEFKKWDJkBplQcKgcr+N6Qp8D7nkMvmgWesvHjPRWSMB9svcYB2TMlUi4nyfqyzsrWoOi6g6OoRxhBoD0WvT1ZheFqEEdYxxFkko6iFV+Ho51ZJyjBr6hvFrgZboF7GSthKuCykWgia1gdhQcRJKD5IBu1HKrbhQwYRPqaR9F7fV335/G646lSE97Bp1Rh7t/JqHe3//DKZzs7z6ew4HGczprOd+3fjtradLAWYHG38eTiGOxt8VNz4PRENTxKpAh2WBGH7fDFufP7PAiNuQ/m0PrYAQDBJ288B7ZEPci7oLYPzM54M4AXNG3V3B3KGu/Wo99JyOO7jdEheAnpRVrHM+PbguHzXjer8f+aROw716zjuPdfjW+fReWfECnXkDq9sN5vKI17OUcLN0oO4guTmiXG/6F+EhiPVY2OwNc3X9WQDntkcWcWt8wacLOH2kDORhq8ylKqW3PKegmWzJLyyf9pzGX/EKHW//FkTKkOmTNYaAgJKtYEFl2llP3yEXm0Rm4+4FvAP0C6Db2kf/wN1+Np3e78f/+338//rEh+P6NOdDzpMUmKCfHzUGKk7cW2PzlRVuBKdqiRbRMEWS9rld0ZSFasEuso/itWippn+zlms5qRR1NxDGxLUvJx72ozjkPb9SxWRvf0MN2JXhuz2USHij/SHSjgN8kti42aeconWNntkXSXfgfcHC23QGrcECIQQbU0o5J7PGA/a8ygE3hLmQ6DVdv7DJ4EtQ1ZZtV49Y2q8XEp/LN73TWaGtnT8JdNradRvAUG985dtoQmkm4+LJrtDyg3kAMX2obiSF6i9uIQE0j95mflVHgnp20s91vx054h4HXKZSRXlxz+TTLOvIMbrYNzugFs2Ky9r6gSX7AhR0tA8I5STlnnhYZRfF+U/i1Dvn+1CViMqCVrZJDnRkCyyzW7nLCDYfWWSD/zlrk+ZvvlT9tXfE+Z0Z1tiErpId9+pgXON+tDUaWHCycurpum4u8184m3Bh7ptpyo2rKEe6GYWzKLdJOhvOmYxbL1gEN97Kt4DwdZe7Tcr19Xp3E8NuYG9TMq+0HWyKRgdjCG4/rdtrOhEhQ8jFT4O20LLkPllJd8ueHv+dL6EGmNicOCnVUn15HRuLd2CSpzL/stv3TDtefZau4xf4YcLtwvuDc0ZHgB1RntxgPDh/h+KjltTNY8rjw/LqhrHuI7DOYukU8FASZ2jg93igZiNCdW2O1vdWZy6k0QZcFVJOXrzaT/nyQXwbhlRymnq02C3ITiW7gd0hjknGVyaCyJQeevNYK7eTWT+4vXdtbgyjagM064KafDU2Nh2lBIpWdmXDIAcD+DAxwwkHwM6m2VGMAJ40t9WbdZ/1GCgQ4Aqwhh20DB9pHwPqT1+M66whxp+DJkiwxYeMpiRWizQA69Sht9KaJmoPljKMnIetgmy1YdckOvuC8CiU3p9eOszOodkDzZ7F3+h4SMbVA2oWes4xOh5ne9d3W7ovlQg1B1+QOTv7LC8f2h0+Xcdxex07BfUBXj0f2egeE3wSg3eYIk7JlCDtaa/Jquw2H14QKqnZDqR60piVj7qbwIOCYEuf9oC+uduluZ3jM2wpd2BLL3Xzxt6MVQuO59rb2s9KBboUVjqcypYyLwelmciv6sINkzORaStqY0RvtDMHkTR2CpN16fLhuwoHHvB3PLD/BfQREPBxl75HzfsOuOxWA4KC0DgHtmbMVqe7XScP8qJM90pNlp+v7TVdx/fX6Z3MDWfHOcpI26FrtEPVc4Ti3tROlcVGCUrXQvuUlh43fM79GOdHti9qXMA8fnrbj9bjL8pKfwX/+shzo8/k8TqfNuIEZe3Ub5xXoJrA3sU6NSnKuBWUdRYu04FwhrCYMEVwowqQt86A61jAc2+FMtKOxioUJrQRjCXkGpE2YVUn/QfCs6LX8eqKBgPprhbxxtk8fkVZGZh21mLgat2MSfGGBYtPBFU6RGYms6ZXQOR6ucxnj+LoZr7vb+ITszW01DsGea0cwd2Vmv3OsyrjAQsW1IvJ5Q2bA0SYy+AQpCBQ02MQVpeYGhr50qnWWMxc9Q2Mz0phKU94ZqYb5CWFgpRHRcMH1DG9zwIOEJeUMPZKbeFzvVg5sKAtnSLyLb2ZF1E3EMi/CcBehBv1u1sFCFvrmeQUqILKHmFdugpE9jGIqzNNqnFRjD9lh33E71oZCAppldtwiAGE2SPcYjkpGR3SrRVjmsbX3Tgh6eXs2Kq1UXRNzv47KsIyVosuxpkoZ3CghUDpVjD9pPEAhIgoTzqKNiZyp3BBi0w22HgRn1AtRTMHENXlWmBUz4VPJ0AybJUO39yJBDX+EcTY7LcfGkhCXcREZWkK4vYxQtoH1stWGjIKwMDCp8SPRjg0kPg9EB5EcqF9coY4dkWYYVUCbbLf5XD6CzM/mesiXCqUmg4AlJGD7Dx0XWRYS2HFtY54oB5BD/puEIhQHrktkDuEAQtaC4Rd6A38XXU9z8hk4NAQfPcExdIgEx+oBuz9kOgiaLs4NsYwFSIzrZRzR5klFhSQ6wkCtxgaMsmACV6cE1u+DS2Ad44raaO7L9LZAzBhIARn/JLkRRCwJ92QQOBPuuZYgOnDnNczPUgZKG6gePuTKZSpqLyYD98NhNz487cf7p6208pd3AG6IJ4oav3SMSp1++ngary/nMPyQcXx+asaqvdYezFT5DpznDzvwCCgTkz6d9mcZi12/BDEP5G+/CRZcGP3hwGejAxumbf9SXWWsZ20E3MvZsi8qlxLiXe2QfKTjDGjr+TqOr5fx6dMldA7yQNSQzNZgXQd/iL6vhGXuFT27aGfQwRiTLQnVKBZfPReM8J32dwTPfEplPGF8wtD28uSDtEl0XWnEm9CDvDkyqKucakYrS48Dge8TYPqY/xakxz0jaw39c5QDPh3NYT+fRvRnj3Hcrsb502VcXi6x54P12XPncFb0rT0SrbI7kPci2nquwLdCaPhJ3Br4jwnJCpUmaGn0gac91OUrso1ndg8xYVHsW9EWqHaOZJnWtUTfMs46WbIcS1Yjk14+eNVKZ/W7njPOZZvDW52uYQdVcxC8jBmE417Wkw7RchJ6c70eAPAkFGKa/ts4nW7jd6/HqG09n67hMBj94ETK738wEzuvQVI5buDJfqzevf6xk9OPcChjC0OLQ437IgNtvZkuroP/Dg71QLPnzpv1wt5O0XPmUnKRTvRCsd6JaksQGVwV8xrPGKEblkMa9dHWSegfrIUt4fGuG8b4QnPu9+txeFpHBhr/ht4C9Yl5Ww77Md4dxnh6Xo+vvt6ZDCL2+g/Pu/HxhbwRnyITfYoSP0SyELQKfgO33tEcRZ1xOJriYsoic42H1m7ZUhy4EPNkuSeqgX6Mo0UcFLe/DGZ976EZYi+bK8afkB6V6LUyVcuvt4c1fQ4gbCKhdyIJIVvoMfiD33sE8bJsTozlQKIs5cEWIkjYhH6yj2Yi00CxrNbjb759ChbuQ8DqfUNv+wq/SAe6R4emOpf2qmlHysFq4TOe5O6fOeXNIyqDV5t3i/YqmVj1k3WCFgarCHBFwOotn4h6SdGQLKqQMvGG7Z6aFQ5tu7J/qUVWRkIVnTUTeI8iNsmlcr/GRnJEC62xHkcY9qDml7FsZ8J9pemU6bmcWe2N0l3TFcpPUbBQQDRswnANGJ0CDN4cMlNY1ov17U+R41QIrr7sBttCYqybnXmK8ZfxUZmoHi1b1uPdzyg3TLfFKWeTpykjPH2YZcDMrVAUMWNLqWo15ahgjbGu7tpzcVFFa4hoY1Qbdwmj738pjJXp89jFdT3/uVjacz+4fw6510ErRF4ELjw1zsRNc9RRE2151dibk1MQ8B7RFmzH703318IbZSxb4tpGu5jZatHBc/bGL3VHPr+cLjmyqPNc3HxdI3pfd0PACsZrq+7bzPhFINZ04OSc9DO57qzks0mNshdzIXzWF3Xok9d/zo9hoynkzgVlTWV+pV8vfy0gWyrYtK7O9dP0vJeL1axLbdj+yi1z8B3lfezl+fEiKGqWVaORan1Nm74tMM956sxmNVnneYjiq0toWUlWLZ9mtGSmXYy8D4zQL+VIna7D95n9uXXz0R5HcL6YDxnc5JioPRRjB4MBhpDJsqZ1nDrj7k4eSfKbh1sa5naU2eFaO4++30Xf9+L9zlnn0s3WCCoR0nNGz9/M+DjL08dObNj90R4a9G5XySBph3tnmEYOfq6ahixxFoZOBe83HLV2vQi6KtjLesOWWdc+FLBuOLXibAg4dsCn2UoOr7ecYwZak6gvoP/o6831aKRUnNa6yFo5gyfM6oF0Mxx2BcjJV+856GNWGeSeHYw67LD8nbXzTyHwkriqtp7cE7qq69nemEc7yA1NlxnrKbNck2YNF3HPGKTeq7rvTO25Wt/uHny3E5eETvltWYZSxkTuFOEZap0RkLBjzvdYw94DCkYKLo8G1Mv3baOk8+K65lZbNW9Vfp6WxeyLryos87V6xLe1ZZ7CApivL7/T99lWdqmd0BlcGzcR+HRv4+w77rIvrXnIlfg9SBLMEYktSd91Jx7WPbOP9OFANu9AluHDanW23Y2xv67G84H75vcReCfhbJxT5XLdlMtxbgF8yjZ1kgMzRHst9LqDZ9CdkCsjGqxEUTqgtrJef5b9u7pkC6jaT0XVnNZmOs6u21+5a4nL+hYz1ea7+2oPRD6PuGQgChfTLlXjeyCq5yHo4V+HA/1WLVIdFIOtetghs7LZbrL2WW3JRf7wwJFIuZuvE5EdOCbIsoqwIq4lhxB/qmwnz6EVl7CbyA4pExTf0uaGxDV+Ao4mR90OSGTRA1JzbP2rfY1bwGjYS5UWCuojcLCPIrIuXJyIMhLuzbo1950O/iOzal5AHnEZv//9GJ/QC+28G8/n9Xj3fs96aIX2Lydkmli7FBA2R76jhm01Nmc9jwNVUQh9GyvUwZxZl4PoW2SE1sxwAX4S2VXcs3rxxVxv0AN3gYHKoMVi3ttLEbkKqBlhh+W81vczDy8nUdWixXoa9dpgWlUawG3CsMlpJ0hl0pyegJ3hme3wK1pNOCnlz0aJ+xhHPXlm3dHzlPXh8TqYXDHOAa9ndA5yuIt0iduVqDYYMrqnYttfNkFycZQVUZuSHJx0Clto14F72xihzOAANpKk2KTlEDb8+DJGxRfl+LQ6qSQDk8M/zSKycimfGs+o8WEpAhHMvgjruKKOLz7L76zXO5YKREbeNZeLsJucTeMbopdw3jMRA1F3rdpms/QyU1A/lh/Xt87GjxABycLNtnHMdCPjrIePzZT1xoWGEYO+Ya+R0WPuEpktnDWiwhmy1RKJvqomGTQ0vgVCHE5frIU8jaK/NMaLtMy9b2MTQp2+CAcjS3Niu6mxPkeg5aIe4BHdlo4k4oGZXef+o9YV/wDkOoi+WK8cBcDe6aLcvQjIkNPGS/gmenJfBtJZUHjrgG6foSdjV6a+jtpWkfFRRAiPRj0jEDmxjpuujUCHNYPHxWJhIXfhl8jOzL5u2SFRJZE4hUYgM332PBZrd6yzWOe2Epl7fugzfiFHynjL1IbThJpbsa6e0dbquI6a1NOZta5Rf54gFzqBcJzfRTso7gvxnq5i8ikyMfcBaWEqO0gdfuv7lCOUJFPR/p2OglsoJa+Cek47iOU5T4Sans83gT0PGVf85uecJaaO3WxvY69aZWbtWD8vV0Z7Dq9BnX5jxtDr0eUfjYcFmSpk/nfb7djvdlPgIEYEWSgwx2Z6k/DOhEaKhRn/ez2hjlJ7lMfLteyXa/aiBhP3qWX/4ShHtv16Hi+n4MlOpw3Q32wRxJ10sqUcpEPWLZyF45WBkzd6o8QeLgZvjtNtfPx4Inz8ACKalqFfIAbIIN01tURDKJ+o4d8gw4WkAUvhIKsYEuy1vfbbgRI7k5QtBhv4vN7/ZpfXjni91HcgO+cMABI9Ja6KdtiB8HlBrxMZ+LTbusPKezqubmML5xcINc1FxB4c5Gps2iHH3xOVA+LY+KwQa3f7eT47R5SQ+p7PMfs2782ZZ09A8OQISmF7h+uunoPwf6cZMiwk+2bR3mhxX9OYTS/wQ4speHjYH0veA7fcap5XcCvt1YYqyMCA1iSaKIIbCsjg/rBWiIITGzb4gEDGpbGzwwZkz3a/Gu/ebcZXX2/YMQL0RgExZAcJlEw8H1bjr8Z+fPp0jR/Y60C4IZK0VauP1yaLjSu4TFTGoQiDDgWorhkhVxY4Jd/EgH0OPhQiT/q8v0IHYv0okA3EKK9cUOrSYBWoCh8qus2QMJf6zZBzbbOMdrVez4scaGVq+LfXUXCqCCXMnUQLjohNWqC033u3pc9Ea3/5DvSPO84+5ohRDm86tiVFUxKtLWJnJeaz9rmSAknniZKaWZuWZaFxWqzgGe3waXJzq4hiOc/KVPZwWzoC/L1xrV9erzKeZhxvPB513btAjTbJgDOtsM5F5gFYik4Qqw0QLBrizoinos0H686s6x6WYulok6CWdmqTAb9Iv35MAh5FRfuo9kimHYr+mXuvr+Yvd59FDa5t9LvoWDpV04t1icV37qj7G4MhYSdiEc5MAKUsDBBy7HBqvMGEA0KCibOcvpWgaCETD0dpvv9HuZwcx75mvG4eDWHKmO9ZmaWEh9dJerAq10jPRmXQ5O62+qVycLlexNJ8/4h5H49mPbM9i2cqSGEZM/2mStdwvTtT0Y3cuk3XBvU7cM0u+0NX7VvrFCChMwt21k4ydZMP22vMZgSGXotfbn2lsoYFmX063y06y1ucmYS7HqtN2/PgIbqbgHYFIxuCUruNT5PDLBu23nXE2rsqnCMSm7G0pZ3L950C2YzdnsXImV3W3jbFzQFbyESrD2uy4+/nGLuOnh7zFO3vssXE6JfqOn8mE2D2fDnWbs3IHzLNu25wmUkNaLvbNflsWh9dFiOYFw5XyXdptMq+5MjWYs1jktvVT39G76n5rNkOZ2lo+BMi6fG6SgizTLccu8Ves9xP+r7dMsr507Oszj6narrX7ZlhNdzScUp91CzSDifCkQzjuGXc+bsSAg76BnlYU4tq1tfMnGLxz3i4a7pb68Hco1tQm60IlcWOQLLbO1S7I9VmKJs/2x3d8bXcpPMq3hf+iMAqHB5nvj12nkP97brpfK2slAwyPVgjtiWyUKnXDi830kT+tbinoMRV4132ZbwuEjLXLtshSbXaZJqlcZOQVXywRHkp2pOjabu1f8Zj0a9Zar1qawmgLJu5I676GHj8722ApR3/2YS0PlS94B9lonPcNagxnr0tmjs6iIPA2ejqXV83OfEi6P4c5HHQOntIR120yj7YKyuDRHHGIAnD58Y478jkvTmrF30n1Wl72/R0KQM9019vTCarTpBbX9uSk2RXNkShIttu2tpxedK6DBKS3eD0E6JgTAgK7hXzTCXaqf1NHSUyvmiRVTqWZTHm2MmXU6/mhX/CnvBvogbawoEBdVSsH2RMrNejZni9iQxu9EjOsI2Vf4duzyuWNYqqfepGuOqDtsi+RsZBrRGi5QqkZBv1gAFjA9ss+7Hc7aKIXG82OzGLkhG76ir3aoMluBhvQIUfYL3Wphv1XciFMSqcEZ2eGYyNCLUb7OccfQrBxviH49jtxnh6xzrlH/6AqDrqidBXuDESRx2rGFWDQfisyJTyRoJdkTGSWU04fexNiV7GrgssxE4GELISZfNgptuYa5KCzdXuZq+dy7YCTZFkr9LK/Hst5T2kRnLdUe1qHbYS1++1Ov4tp6nNanzZMCq2QFbkG+TDkTl1WytmHhGQA5oHovL+MMZXz4rgAcKDbM52F59D207UmUG9odYJRCCR7ZdZpE6m+YD1LNaQVdNsI6m0sR3gMoT5ubYmGg8Vrwg0iNoCQDvgK25qnAzlXbNpPTn0iNp9eXD3RqHYKBNuT2MrMr1q20bimQZljIfGiHN36hlaZvNH1GRG4kvLkTVAZkWvZwWVBT6AWtqQuyCxwHdd6dqCQ6plj6xn290Siq3+0NwsHDARLNmwbfAZoJAPH7yQ7G8FKCWeGaQkUfMkYpsWJPAcO+KaIukNHnAwrD/U19sdkTMX8PiAx1QdKY0Q17TL2A35JXM03ARGt8vbdq/zIBW0utDvCAawgWv5FGLmNGGVe2ljrGMTN7voZT0un2BVXCNYxAkkBbGhuqWTwd4ZgyeHg/JHQ2jLvWJhddTGr44I4IYIPQWdjWCi2NNVw12BDRt+3NQxj3iC3R48B9RzgZAIGDNZyA1n9u7zRbrSykTaueVLlPaY+6BrYOYY6KkX1ERH/SmzmkBRuXcxMrRkC0Ypc4fCg8SIc4GxCU6LDfuKr1aX4AFQs4skm0GHgsjuRG0cnQNDMXEw49X2vtFQXkIIGS1x/8z85Ro/ZMrQUsb6Ictn9FmIxthLYaug4AR+EyCizNLvpWTCMfVaNRSYMPDybteWPayuM7o18FmRdTmjNhI6Prol6HxJZhR3Hud8OWNPxv0jc9WDANbjlUkM1BN6fGO+wcZ8dBaadkwg2iQHNl7jyCzVTOiTMo3MFs6hAYDj8BS9imtM8PssSx31lUA4dCg5gvjB/ZIla5qHgL3SSwlnyhASTXpuZUB/vJbtwMwza6k/oeYyAweuaa6WS9wTy+5JM126KwMMhjyrDj+CEXEeQaOdjcse6VUL7Yync/geRvf9NQLO7frclijaIp7HeDmNSEXCyTr0/H7vb50OJOcLbOp2NixvPXb4UBlpjPmslvWC9AbwU1n8OEWzOUJG1MJuEZZe/GbCBh1NoCuiJ/Ebx+ec5wQKeQt3X/g3ns1M5oztOhjNnsjBhK8WVPybe+9+J14Ly6nWBxCxYedHZyBxEwWnBMnC3u3XAc3euf0KGts/tefUwsCcoIYaY/182EX7xj8AKekSCCW9gphPwWQXVMTe3MoBQeYbQQmgaoO3pHDVdmyjE0JUV8Ge4nOHvgYfioJWGURsHSzZIQBPrSF3l4Jmaga6BPwtyvAdA6m0KttTZMvkW4BfImJCnAcPAl6r5Bzgulydr2MffFfwTZxVrxu7GlHqo7kTtEceRDH/tTrQj6uW6pgdsPpWvdvPVGyWvfF4MsAuanPmXqvLIZcJ2npmMjIWTVWSwc4Ld+Eu69qOpgkCEvCvqiWoyfaDZtxb5DvTIFQbjGkE5mtV8K2YP0PwAWlCRlpkEmE4XBgVIpFC1RtPUZ8c/2601CbYQqotEl+w2MzoqL8dxs2Bp64oHwRtJ19szvSVal7WUkxjVkHsfK1Hb6cMWVf/+VI9T+2w/S7nm04ZVUiP7Xqkz5KJ2c4clfhB/bo3UtroCR77b/CPsc0CyS7mmidex+QcbT50D8wAtGi9nnt6lI5t7afNqKVr2eu+/ZP8WilzywFaTqid9vvr5feWxF6CHDvKztlqc/9ATfb6GL+f8MNHX+hOjv5Tj5kgsPnDd2OtNdPG05DL+H5ztB3E6dFXQqSV2Wt8cM581XBYJ83T0Vs25nfq4TOEqFuq17V2aey6Er0rmJaZ7fewqKF1qj4eU8YY9VwbNrXF41rQdad+3PauW83EYh80+24YeVIglfmhEemxz7qqru4fKvqsmJcOVSBHwdfiVFjooAUyof7dIePLor8v77B+z7+bskwj3QZdxuHqaW1sWd/Xs5fs1FoSoaIIcbJe2hZ+BqnoQAWcMotu+9yVcesMYN+D7uQ177ZO4wxuh7JOEQ8rUGOTTY43DZ52zC5j7VbLAOiSsri30AUi44qWhoK/ArodRQsdtkqHyU6z7z9b+hg1MmVVUUrEOukgKQonVga42jQ15VRObCKI5ox/mlKLH3brcE9x6RSdltUonE8G2KtG1ttxBRtVLmE+GWekc2JKHxM9V+cK0k0Tf8lxDqfPDnTWjlYwLQnmp99ynpNF2zJR1yIfKPGlcW7I7FQmWkjEKbOX+4cxkq01Ud5D9cPGumPMttlRCxisLMDGkv8G0s+625tEm9fJYGryacSA7yeO9b3t+RgX533x3tarZ0jt2z6wPNEcwLn/YCE4pg82xewgUJdht4Gq1oSS/d5poZ+q6yt9B45dOOL6idKGyDq3Hnj9zsUizyy2+kzLWQ85bQzwVf/fbZ4qDytYdMkL5a4QFtUJ6BHVeZv9bhcv325jm8ErB8Lw00n7ss3VumTGop+VkgUriUCcyNK6fBRM3E++NNzsr7Sb1D+zC8TP6ET/bBnoVI6wp1zvE2yGyBMFKj5hJdlzLMKgjgKzRgEHozg3OiiR8JFxZIh4RHlVQ6O642LfpiVLQif2ew1BB3HsFfWQra4rorFFQDL1gUwHPkJhYx0/dg52Mh75N5jq4qPRF3JDJkac/sQFxdpteFPSzO6t4IETBD0W9u5MZuBWI4z7+3hcx7iAARBvgP05rlF7BMUObys66/6Efk7MSWTi1asuGothESO7MBBpRg1jmEvKHmmriAw9ary0wQckcAmDbQtTdb59M+ZE41bYuPJuzXsTVkNoOwkZnXcsrymnaB1g/cLizLqQF2nchCTHcH6TVKivYC1qGd+RtaecMguHjRbsqkxsvH+3Gt/+aivSCaShV+O2Iwvy68uIfoEgdQHBxOtxFdHl1QqIBzKOhssQNaKsP3drIOzuvKY3aDsIrg01brwbR0ViQiMMBoLrV7RpbEno5DYD6MsbQ457ifS7WLidv3N0tAW3XL/i6HsElVSX6/Vi4zONFWSLguBexIItEBFZLQQawFrbG1FSSDR/fG47Q0SmlKlteXCmnsy02uSQLY7a9bony2dIOIwbEVnxCpIz2yiGIyoYEbKP+rZn6YVIc3EddBJzLcFaC4mQ8DkFJVYNEDsONOIbrNH1OUo2ovos4OFmFJVBEB0D8PImIsTo735xL+2oZRbjdxowmjcZw3HfqnG63E4xzhvAExDJ33HssN6QUYMOBqP/BVGl2yaCS0EehEza63pcjqsxXqVLVmSARlDJvb1xD4iI4wgGexWsrhDxDtKePiv+5VcnsgAyecYGIsbTyCDzk9HXNjgx2OEhES6RNb2NzQ7Prtr1kG1B8sPmX0Wbv9h7sK9sDuxAcMXYfHnH9S2Iov6FjhTn4yoQTMhc7vf1OXzXduLI7BTLUuwQGxkU3BqZKMDedhs7jWfUyAXcmOeFHHKeSS0Vw6ea19DqqpFrNqXmsvpDLw9/tjJq5P1AEPkU+3mVNzR3UnWHbN+IwGaPTjmQSWoO2gEoxbpFEfQCNTJFDTl6oV/BKq/OIGCofvnI2n+8F61xIksnHgXPSbAvizFckOjgAhBfCPdqjnnorYAAF+kYM849+F0HUZNGnzGgGzWNkWlTSEjzG4zEICcN9vX12GPZo28uWrnFXqeA1+02nq9EUAWPC2qgRUyH7LgJzfD76L8Bv9K1cu8xaRnOG/DYIvGMtltCM4A9PErW0Jc66kRnLgJns1MVZK2msnam4tDnIzlsFWT7R/wu6Its5w3ZPSdKuhxG3mNBaGR7p7drrOSEA5piFY8WYHbOxZiedeKan243a/9Wp7C7g+fQVRqZLdmPHTQTH0BzZGgP6OOmTtnV/vnIWWFCo7VacvYfa8//7gu0uULZp3xBDGjbwLwGSUg9ueDuVV5zsAxgEFXq+mfVc4esl83H0hS1Elutot82+AuQ0MW+hiz0u8OWmef9ZuxBHIa2VRiXmHQPVqvLdFsQdcWJXvBmk0Zi61Ss6Q6SebwjkUzwahCU7XebYJ2PXu3KBiMTbII68v5UUC2JvaKQnvZaBUY8z60VXZSCKuAWL4tXSHpEKGt+D6TFwSslmz9a8OD76ukuJ78HA3A+IFPAer7bbkKnmAjtjHsb59gL9kEUVF+LYKP23HjOJGFmRh29uU9nIKTaInwUHPilOdA/LSLAGintXco62CnSfyskmN9ZniMjHJq8tzJfq2W2a4rWlO8l/zcgEPHxaGHj2sa6v7euk+cVjDMbD9p4ySiyNquEbVffDN5HFhMWsYDu389cLzsyxDoVsmUKipEMVHXv6WsuAnhlXHgrWmak20+PuCoinpHq+E7rX2xCq0pjyu7t2TmxJWd2yNc0x/WDoFp/0e/1VInGiszYLRvYiD4yY9pO0pnAa07bxZPi2i60dzE6lP6WlTsMDsB/ACGCQgzSpj0CP5wnOLCIOUQUGv51KDIYXSLE0/UtRpmYW705KNwcljSGOfxaU5KZ6WP2ASUHfSSmsyn6Xuvqc2v+kVJ7EK52mKax2ztIxecW18Cj58kXpUQ1hx180Gum78ZlUT7Q6ympJlqdQBuNSjpVPaA3EP820XPqO9c0txrhpd7Pte0MckZ36jdRHgqdLR7K67Cg23OE3URfVcbwaP5qbRn6nXmERcItN82WrUpFo7UfwR+VxsSbblGTV6vaNTsxLlvxuJtzPOehQb59nbz11j4FAa0aQjrmpRaLg8JWTMCDc6oFjc9Tl6x2SO2XdswBy7ZEuiWuMTCHRtRiNqhr2x7Tr8zsXjuJ/+25MyllOEcIVATJn/qty2h2y5jLhgHkcvY0x4Jq9wBTpfHqxWlnaxB+Zxfdq5inbhZ+O29lpoVA6+/5+cxzkhwCPTPyyMGoTBLRI6oxD+ZrjWvL0PVRfcQ0bUPbjqi7ddCBrtnK4GSbwI6UCWPURERqcWWiqERWJKRyNf0w1iYIt3uMB3mgyN9g9MurI+fLJDApa3SGK4jgc8bzCzKbDQ31PFX7LFlVDThrvTXeq/s57iPbVu0sA6rN7v4Pl/6MLLJfJCR26u03VcDiHrpM1crSdYKglckcJhJcmmPCKH3/7kS1oBdW3nwr+nzXYw5MTLZdf2btZ/mdB1t5v1oz6ZQ0WnCYLLbRVOMLPd4H0E9WGe1ald3ucOA5ByZRpc4ET+CxSiqEScZgBH7C2XVLu8a67ezz5IQL8ToZ0tUGp8aoIwJSPxWqpGxPjqhLFEN/4lpg7ZZwln5rPdTbOHrsw6F1R9NMJHne+55pbgQHGbv9PSlBZsxH+71q9pLRMJMOlHwbug2EpYjIOKfuQz8T8vUM/PSc3YfwnKY/Mf6t1UCjFuE6vj6gr2ZF9JDpWRqxPDigyB54c4kjMshihU1NxloPSyxb2bj2tdUXRpbNjN23cGSiJLjVGCEahPodbvytBrMdAS26XAiVbj2EEOkByymFW3AH1PQgy4FFoZ4h1PubiPZt91s6VO6BC/puNOVbOnbBLsnl8yJo1OHE/n1XXSueKx6U342G8GHYkG3V7JTPT6tx2G/G8UTYd/RZDDpqQ0WYPYNDHtHeZlCSwZiBB294XALmXtRGMGnWwqF6w6JEFIuoYTd83kfcnwV/SeiOUwbetPEIJvbz3XQt2m4p6nGtVJsDZqgUmc2FWAjjg3UgqHVjrUbbpuP+18Fgvo+o5YY1OjDko7+lFDRqZFZjPL/j+6/Hk+qbmKH2xkHliQ2WocmSQzskdd9W1pEJj4256t3DsBE7+PkMpAC+REREaAMhQiLwooxftVrJ2ezltU2BkRcgnDMFs1zrHPXVwZ/Vump2p9CRamVmmU/FumWdMuqGUQsnKsgGyyuUgHLPWQwdiJZJj6jGSfPFDDug9IwCu51PHq67dTBhqvkxxFm/I3rqUO0Yq1c9r/oirg7MqDhlvcG6BuIE/RO3m4IK4m1Ev9s6LwdfBq51Ilh8z9dxiEwyGF0Vr8sf9ZnH/URa4czs1A69m2lVYGx9pUdJNOgqnAO94qOVRkQXV6kPIyMnJlivF44PM0QIDgXkEvrkFeNBnUZm+nUYy8is4caZCce3qTcAcIlAYKQtiXIgNLQ5/5MBwMwS1wA4MtjrlizSrIVeIWWOMTiTI+LlcpSBqsyc+nyWoUJG1uwBLeZtyCXqoDfX01hfXqf+u1/KYdbpNxK2eSAbgmzRYX8Oh/YZKJnP2SMKnmSZlGQt2h/WRyJ7vx7gekBl9GmctpcYX+xZDiTB2Yp953gdLy+UKaxB6lMEXMzuXIEnyBXUSHRsmHiVtDZj32zBsCBpYmZNs3enzwzAMHFUfy92H3tO2QWD78UyQsmUgrTs0cvGnKy7JZtFMIND5qJjwOxYoYtDPK1kDkzo0U9ZNdCo88XvyLoqy5/zU0TN0z0no7eC8dj3I6Ms2CP2JDvBnD/rFXv0vAoyQ/F5ZKmVCY3EmwjG4pxxURdUrsfz03ZsMW/jTFsBOsDOsZBuyCKz+8htnLWOjU5yJpA8C9mDJL4T2ezo5iAnQr2N4YyHsxOiW6SxfpzKsN6mXtOeiFBlLXLSh7Tkax73kAGPX9ZAu+ypB6La2ZrBD3qM3V6BiO7QuSU0+FVAPoWxl51qMCbGjs9CO8/P48BoFYHXM7gFmDPrYGzP1mAOGtzJUw84PE5Q3T7z97TScm/oPDXltIcMtE4hNWBEQpJATvsUdE0sWAfGhBxUb/EYuyibazBtGSzYmzBXu92OSBj1fz5sNrE+np/Ang+9BJTMJtYA/kbN9P6wHmvACoFUCRIMta5yrbcd5+QUUaWmOEmMggjb/sb9iciTHtjAtTZjB9SoJpyIjNYqPMaEezNq6Z2J9jxHQAprHnu11lnozSbQ5gcKRFUjGKYPY+JSOamWP8fEoi3eahzBKaLHXvc9OZwBB+pkiwkVhHsh8gXcSmRtN6oO90SOCyIo8JmdKQ65CaQ8g4n/FSgW24zZivP2b4dELGjmdyjWb9m8FiF5NBY0mLrTUEpLr+iDWrMtEzHVWTyqzcLCjE2RmR0qyFkNtpjXQllYXVS7Fd9v1yImHLJjYiqygCIYvmNkSJJlOdLka7hWlm+eo76A0egwdHW1ACg6etRguiQyqzoNRNZgzBrSY3+9j40j8BHg6JnittBirPVc9KOaluxzuFCTfq0WQGXV/e7nCGMSQp+WvKaBu0pO3OrBXSw3Rj9z8/FbAKY7KJSTqI/R2FU2we+3SGU6hope29EVjA+bJfoH3iwLAaG149dv3ln9YghtPMntOdUxu8mQ76vEyLt3z863wEaFfXOCnKXQ1dKhLxGvhZc+sjI3NfGVSn80J37bT5Y9jlu0vG6gDUubyCnB3UyZ4lBoeiI3EM1d29R97/Oleh/parVVkW9j5LQGFsoj9tV4Ww1kJl622cIutIff1QvYELHehXZgB4HSac4oKeajKLCo4rTwOW9L6JP/3eqaMn2R06MxVisuv9fFxTWa/okSgNLdgTyzvgi0CjdpE0naYeY5Z+O2x17qtosxdql7Leqs2SoIIxwbHCRGI155mmcHCqe6XyqXLBEKIrzPOJw/0+HIPbe92SnsNxxrHORWgtn1Oug4NPeTiCjzEqexkXh94HhqjIJAyyUM0WtdWUYEx9YsrwH8H/fBPY2cHermOOkTVqjc78a62fpvysuCyTZlxI9SzuZStpxRy/NZPXWV2G5ldrwsj3CgL1G6VTq0RsoZQMODo4Y5gnp0mGF0MsvMvx3E6xZHPzr7N51KOtD4HpzgIFACOZ6CrO2Gcy37mcKZdcZZbc+SeE/nz31HYhEtpxA2UZu9MMZhTyFIlptt9Yw2UWMiqkInWSeqS/yqHGiuPpfp1Fx4imqNNkutZfnsELqkIV6bMqCFIpvnU6/JjszPa6C77JTt9EbWVraB62KnzKjqy1l7SxsgAnsqOXIgwjXU9pOny3RbKO+jMs7qnpiyV8/9Y1rsgRXcF9t0Cw/GUTfMLgf9tKvPnqs4ABRkT4SjHcZuuzlw1M39Ra1z7yOcbaGYfcb6CIbtRF3op9c9O8qRjnk3sCQf7SWqnJZFb4mWORlHhzlLpxLN1g0A7Y9OvMlQ7XZblCHAPoDTGiRlWts2xz2Wufc2e6PPchfO9oy1r14ZoNaHKf9lD2VgLv26QnGwK0GtVt7T3O6tOiCMxlkieTCxojmRfoZN+GdzoMNWuV3H82Yz/uLbr8evvv4w9ptD1NZdV6wls/GSqDwRRkSWqxl32/1mrLD74n2xx2Zn4zSOKwtHuA7VRZDqxKZA9RcM39H0nGIUDgyyJPpdzoHFzAXKwWWfsKcwZhXWQ50dFQB7MVIQVc+o6B8OZkBR4IP6ZQigiyJU84yITUSCeK4zPvNKxmz0fTudmAXoyvdZ9YWnyLhxA8UzkdGT/QSjr2k4m8zi8xmQER1je2RtKYb1dCL0MfqvxppiBsARq8OOMdgToMlBuBFFJMFCHnWnZj7PBaN57UKRO4kWkSDwj3zn+Mq0qNtm1VoTW356Drs7Rz65uv7mHGdpiT4b0B2dNMx9MdSi3x8SkMjeI3oWHXOFRDhfL+P7l+tY/f6SLI6IeB5iXFbjFXUwqv2D3H311S7YuEPpHZHpklF1OiXbIsngeCNmSme+pv4XKjE2FlxPDMTIXscTkPUQrbViHHbs85fPbRMkNjmxh0aWUbDq2K0cb68sc/US7fMj5czi0erBlAZ2TX2ey6y8eo7IWJqVGlBQhf5ZE1wZE2QEKVuCSPbJXwQU8G8YqbhWymfAERkJCf83+h1X2BXfCj5wZWA6Lgyx4PgQstuuGb+2nrSRebpGdpmRcmR05ZjwwbOvaDjn0nPcdJnVD5hTMHmzZ/wWc4LzbpDhoZPicmbPR6B8BIm8blRTFL1/r2MVFgOiu9SnxIzgpOoHnT9IdrNWdb2FjrixJ2z4UJKJaOTM2qhAqZxZO3g+jnF+HeP8ghpo9NNmZ4OosZ+o4hqSIgOWG/Wn5nwFc24LRuamn5uE9LHnPTZg9d2GJ4apXZO1t8ty7EVi3nBZGxUo67sDxbPFj+40iBLRPhA/7Fpgs/5LO7o9UXXLPCJQYe4LEAEfz2P9cYyn5+349MOJNe14B1wdkiOWp6fVyLYsQcstWJ+LHhfHNmqMmUVB3dthtx377WacXlEXfI1aafyNjMLH6MGN2t8LASdAKngt2egLuGu1qMHdGKZNxEE5y+6rOwFpxKaMmjxkY8067oNOKtiYlZPu0O4Hhv/Sj0/akoCWMIsOFEYERe0kBZz9qlpgtXWLXs7cn3/4xP7Pr/iuSw7w37ADrKUxM/bKmzPWMs/4CYc5Ar3q4y12/cQamKgss418SKo+6hbM/R3yyAGFNixIyEVv7P1mbM7X8QL+AnBXBLqDdkIgPpSNi0yo9iveivgFlFxwPfKybMS3+chBJau4jPLQcCxvC/bzuxKFItGq/adQBRMjp78nJ5SWXPeU6UyEbjO7urs8aJAckAhYvGHwYpG2PIcTp9r0GHshCKz1YEsEWuHUA13FCu8WZ5Yat/qKQIyDZBrftGSbOvXx/yPvT5YkS7IsQYxl0MHMPDwiq6ibuokAEEAErBoLYI8FPr9/AAQsgAUG6gaqKrMywt1MBxkUdKbLl5+IeWRVV4R7ekuEupqqirzHj4c7nnvuriHx1CllXevlXylZaoHZTcOlhuyxI+W/mAZgmV8dH8P3y+nvQdLY8aYLgrp0jT7PL54/QdoifVONM+Yz0G7U8hNlgWw05hzZ3yAHUQ+NxEahIe+8amM279MtLmByocsKs6Wn83g7n6lLixAwl0g/7/zGiZfT6UzeBPYAB2Kt9llCRLNNYK2GzyTOT5CLCTRQvtihzngxs6wvdrZ4YgQ3wbJcuM7KcHIOHCOxOlPzvbYAI4v4usAKHmKfAmFkmYa3xMFmgiGIJHeE6JG7bSL113j9JznQ2+jUttb5r/19/ZsyJ9iwoHh/fnxwj0nBnwKZvI0gNus7Bx5C5uEgEq70qWp3qqhhUzLlP6Vcof7eIYKby2zGMrOz8+eSA8lm8ZIqEprPUH0MOlqq6hkVA1BtUWWRykmZhiKcSzjRhGKbGAAkVKwto8MPAigRfcBZo5lrgxgbGj/Tv8aVKex3NMovdKygcEC8Jlg7XoQWVypwzlEiozHQeO3G7tkqirqr1PbN4kHVOlQ0bZv+64vSFzMCYf3R79nUy2vC10Wu+lrvg2YtaeSFj7Dx6Lk+jPF4FLwoPR8jOPBeCL+Xd0Di0eBetzqiLOAKcoUgjqU8AREidAV1gZAgKE2QJeYaUwuabgTwDcFVZvhTnOlMLT082trJAdOmyEb0nstcmaxmjZRWKmH5zXS+nRGtd01lOm3YnI8sZfbUujcY5eRzNMe+touJoloOvkdT8/66nweXGsZkQGi0UUAHsaE5rWx9cQNsbCkvdDUKosMnRe7Uydz+19T9xhJ3/XmyNIFNWSjRCOMUzQ4C0jD6WvxJ75/CApZTOfejw+4z015HOc7BjEQXHsjRRpZzLMzlmfGuFhUUxBmQ4gvBowxX1T93ArRc0SUimd/m5NROaciAkue9VtUGTAyG8ilSt3qdvWTvaSm2DAypanvIkCQJMjjH5QqHuSYl2+5Y87/Sq1A5fiXr8gUwBwABAABJREFUMv+2clmQcAvEVacLvwMRI+MFbUl8fsqK7GcVZSkOdBJaWiNo91Z4LZlMksY8HseOJBCJncYpVvC7d8bgaaR86jpEP1WnHAuSjkRKsGSbxcl1CZGl47K2xLr5V87PxnkIJ8P86FQ+RZzkUizG6GI0W07wK1BKlBwgWGoiJxByERWAzLMfO+e0wqWZ/zbPPubOPMuJTsue+ZwOymeMRKZM57GOYLNpYkwvj9rWOoGYnCM46YdCCrim0/BaBKviNC32kmuaWRKX3tZp8cXWgBuVbfm4vJYMcOTC6vxts9YRz0Wh0ti5u6rL5+4GU9qOqXlqDkH+GAKyqiFPECi2VL1nwtk7ezFXwcFv2WTNfm18L6Xjeq1pq6uPNmsxSa9f+C62r/XsLX9piCNvKuvFmTXse0VrMANe3Qaut7Z632Se5zinsxY9Xn3JbV7fWij6HYJl8DuyRzDHDKCGLdvw4rX2v9se08bJNcvQzEZKkIAlSEaPEEGCs9xkUUdspX0YLyWdyM9CJlOX6q+rlknXF3XXqLOA6UerSO6f/dr2rspfJ6Rbdscq47IP+5IvqL0P64Sg2BbLoH0+0uaGr2R2nFl/76kscrq2R7ttvwmefd/b/Fefgb41LDA1RM/vERECjJu0cTyAMianxKiehbFYNiebUSrS92rDaDGSidaL2aqCTNhxSMTMTiTGeUFPPtYfafOjhyFqCKodrItGljo8MyFzsQEzeg3XqKHO6Tt7YDy/tVRojji+0oqB/xHcjb1iXdNXxD/WEFQyCG9ZkXLuDldF0h8Vl1Z0F2NQnStgUHx2FnWppyyJEWBCIkuNzx8Q1UJtruu9WLdolmM41RdtG/bpxDMz+eQe22biFPvpZFbVukxLpx+mDhPZRpiLiHkjYMeipGa/54pRfE/QU4k4ExDJV9ow4+htaVSL4U3rvQTYod6LXx331/EAx+jpwHKE1BWlBgc1xq9o9viBrIu6e38c0eOW6URn71WjCfZfZO9evp7H22E33k+Pyv7vzuohaoebUTus91EPvIdx6W23wqDaYQEbLDPKhq06pFzviPOdyS7Yz+bsxrCQBJ31Swgm9JYo/OoO2YSMlTHTBCyfwxmSW8G4hWS3Gp5kclMjmdg2rK0WMEk7He4XwwCVHJ7GRkHzugGxGGPeby7XrQx61YWqjl5oFbNvJx2FhWTKoe3fRnI3HTL9DkgGMd8brmdnnFDQCypLkeXYM2vMzyF9Cmfg4YE9lElwzIzLhdk8nHU52lonZkhSk04Hx6gY7xVT/zrDnL7PqTVE/RiQP5oEsvVDtqBuGZmR9z1Iqcfp5TJef76MC7oBhNHzSSQsCLRpT7SYdwXd4hT/wsuBJ84LN5PZjHg+Zqaj9ox/z3ln7zlk1ky258AGa/RZ8uCaLztXkBmYQ9aEQvDZMoBEfxqXcSKX6G/slb1vD7PILYvp1+cvBt8VKKbdeH25jK8/n6hHvnw5FtOzCKPypcDswbJyD3QF0DDUBSYj2zgh0C/oHw1VD3nHrO8Tekrvx8vbZVxeUYON2kMEa9XdgLX2GDz3fdPfcUCqW4CRA2B5Rr291ztZzYgjbAe8T/W8GA8QOo48teB57Ugb4njOHkAhegV7iOz36A2e8aj/O/UmUUSXcXlHBraWhA4hSi8EeZf8jvMB2f6K8TtrLRk31zP+CYfif7CvbegDiNSYsFNm41JvGBg2nNf9ppexe+Uk9pB7Vvuf+eiLkwN7ojqQpbIEvysG6ebI2FB2rJ7dQ4hESf0tdFvaU4X8zfXOHGa6ofhc3iQ4EjdxjS/vaTnO2mns4ziPKWnxk2ibICFhSGtgtnaqFfRYrYpyyuNI1PpukDUJ5iXjib67JqRSrS7Y32ewtkjV4szZTqHzZyeRdfXswqI5eQfSp6MZQzjn5xYTPQJkOh8kcKvWY3Hg7ogQdy9RZxGH5b8DB6ygqDcEH8cJg2KIKTt6hXWjB3N3eTNnM9A6URVZb5+ccprZEcKLRXkA9ArnWc4w9TXmjEEzrAE64CjLz44pz8hMo3bYLdXCVE9iMfu0ECzvVpuZL6ud2odQBG/wA67jH/9yGS8v1/GP/3wa314v4+Vd6xDfA471+7ZshtcCTxLql41gKzu4BVPa77TPZhlfgjGeTQWoG9v3GiUrI1x8JwwauN2q9yJ1XgscLB0S2muyws+SGY453ZHckk7/jN4BJ4y6LrCLTaJY8H3CWUFIun0WO9WlW+6M43cI4U6s6PbXpJjnJoQVZojjJgZcUcPQrBf0cWYXZNspIzvrW7rDtekFujhkVpz2u4FYJPoqzKSlAGXtyoGK0p0OAp1aYLBa9o1tGRId7kK1ToAN1AiNcnoPIgWioTM/m/sF3urdpnGfABOdpCHqZhFHPcZHjOFAulaSAJBjYdMqMh8lOqVrYNWVwLUmCaFX+jNGIFS9aWpqW/Zire9NSLpFwebSzFdfshaMKKGbN4XlJD+WUrTRnAbOpZUtlWNcNMe9Z1PT/mi+B0gK4QnZgcAZNwruI+D4F9H4HxSIIBtx0Ac0eFzrBGH+BAMdrWQceXOLMFH6i4yBwySUXjBxrmfqUG+cZ09SChXxTwQ18E/iVdc5rcBQhF8PT2uiHe2czvNiVHgfzWXLhfvaTMUXCEjOR12n1ZhxHirM29dzRtfl8Dq76rHJqZ3EEmoxNuVGnOg+pslXMA2igui1Vhv3YjTaq86U1B/FgvNBpzeW6XptkLotgQwXE1AkGh7WQRMMKJJoKVlrw+XwIdZuqY0en4X9YJ1BhoNpKw6GWQwQyZZk0mKZhAVbQhdOQckpvk9Geaxrkj2BnMUohst5x8wzApKA6X4AMu7l29GRl2KMAgyb55zqvx5P1hlqtPHNUFCtddu4seBchhqZU2Q0If5xyYFYUCdfRNoQERcQ8irPmpr6yW76deLg33ltlW1zAONE9wwbjRIE6U7X8f52YfYzl1HWqmXJksHxBSszCucRJT+tEa/OitskGUFDp0+kH9RFcFxiHDJobKhrtfZpNbMebMmMLo/5OOcmIybvY+mAZEPU27VlsJteqt+k1/GS0XJGnFnXedJ7xhylCh/OOmE+A9lNUIHvX2yU2UIIQXs6es4YZmyLRRNV6QACDP9cR4iJ5kQ765wgfyDueIm9e5X7shX0ryAy+NkYTc3+liFrGyHG9VQTt9niQG4d8ODbML6WfSvW8fbdfr70TRjDN/2ra1y6SLvvltHc2XLL+W7biVm4Zxdn9vruy3opkjE2ZdEBtGBEZAn2HJzoZJ5ZKmeZWGthuypBiNhacVDi/LJ3dAWC5/NmHtMDXFnQfCkou65Ly0JuX+llTT1svdC1Vc/m13tUhkTE4yYbfGNSWL4sv90gBNb5bnshvAWWG/WmqjFveziowfq9ofSpfyYHjUpNsrEiK+K0Yh5T7hmSO46vR5hwpk4iwfz6eqkvtJRFcoSEaLZXe/eDtBFbOkSEA2QOqcmnZktvSFlviDabnZRgzBQo2ruFMAkvT0oJmqxWNw059bsNN0vu3tEZlSBZ9rHkZ5jvOa8+owzUWIb1unjmDkIOu6n551iZwDMXzz3P/l+3A333VPILguQf/vhl/PjDs+pmuKvYbLYK6WX6Y9KVcQqDdmdkmzWvE4Qoj02/v24K75d6BkZUZIS903CSkKHTAuKbFhlC5qJG1ZmKm7M36dDSeijORvSee9Aig8PPtF6YrusiopYsslYwKjEUGUf6mVKgagkpf2g4ag5P76dxcfYETjJ6/ynyC2W1r3siGomsw+NBpB8UfLiHC4BgUL2fz+OMQ4Z6P2ZB3xyZ070D0TldwTis+sowSOvQKNUxN3avsogwttCL05DqLD8nalH57kTMs3SVxZYASVQrQmFDCeS6bQs/r32UU33598wmzqRb3ZS16oiauUcmBYzrZJBRftufGVVEFvDjemSk+eHhE4U02GYZ2MANEPXcH7VfiZGc+4aZDJY06H1ogUVjDwQtnoMzXBD+cj8JQaYdNb+01HMumCWdio01zRgTDObs1UIDu68wnQ9n7xM86q9Ea11LTTjRAjH23EYZ+Ksik9kZRUA3UQpqL9KZd6LE26IUeZ0IRujcEHVS6qIMKc5pK6gTZNrBhWKmXA0E9gN2gEA72HLENcd0Xrty873175CeCH0AmKvEh8YB41Gl0ckKmDrNVljxM7gm6Hy+KHNE7gPA/pEJ3o0TUCc0IiRDAQmlI1lU9Iaom0thbhAz0DYvXoU0+JWQL1dQbTuzHqOPFAd24OGgy2mC07AfpzfIoDHeXy7j+qpm5qgnVv91l+kwc6wezSI01IYRakXrk/ZZfZ8VPLf6i3qfWX6WOIlxBWSH2/VwLpsxVcym+M4shnuCpi+ujVjNq+aWzOREoQD2t2fNZ7Uw/i29Ns4FI/w2Ntpb6k2Rxqi7+/ptN56eD+PtFVn3MXaPQF2omAIB4VQLhMyLmgx74QlbYD/GNzG+M35UkdYJVa167FajqLtnXdP/OIGu24cTzFK9m7V9nfV+VZYnPatDjHkTT0Dm6emgNWfdZGNSvhO07QGuBLkxJ3gzMtlgvVXGEOcB8lSOy/3X1D8IiH00Q/r17Sy4Z4N7K6M2O4gECh8nOrwHGXt2a1iaxXyvsizcFH3aY4v80gsAp5AN5+jJOou4sNO5kEBpvcAaDgRcD1HeewXSrxILn00XPfP6djRilFO/XFyXjc+Fka5ngtOG1LKcTqT7ei8On8/04r7dcQoW3RPNs7RHctCh66mCY+sXSBRhv37+dCDzfNpABs7dW2fpmdXzGn8Dx0ogyn0LyS6l8tO6pse2mZfDPI4APvgFkulMz98cTe2RGaypeai9hCCGdNVUFZEY+m+C6dMOzhhbyY6nx5avUFcVKPdt22e2r21glehJ1C27FCOyhXuKfwNce1/dBVj7HMd4c865r8PibcZ6cgalI0CZQQgOXESKd7ZaBRIg1zmP8f7tY7y8Xse3r5fxigCy92atiRnRay/GBEl/cv+9Sl5c470w+JfySxJC36HrFBMOossOspnhAe3mOGrxfKgTTG0Tr3+qlzblLTugoMMFOocI0UBZmOSZOx7R3qndJLu75ttByyQFuQ/gZ7xfxn4PBOxhPjPRpd5zXF/bLxjTfj++PD+M//P/8b8Z//v/zZ/Gf/9//Xfjf/gP38bpgqTVtuTwP+313YDZ/xQH+pdqmv8lf9+8mWIWC/Ll89P49Al9XhwRLzIZYSPqqt2OqizhtNI3Maz2mpCcukwvf6Xx5RZN74YXeAMze9QSR9L5wb5tIIKt1nC6/jodldmqbJsUQCdpMDftNBChWGPg4+PoocZDJcNVkSER2AhePZ0IBACwiWFIQMmXoQ+HnyRGGhsikhR8rM9UJE6kLDKGP65Q5mingZYzgsFfLyc5XSQgSu4K11LLHrbWYgesPPscV1+lHM78dh64aazSKKqGkP57FyLfOSTTuYoAMXbIUcclIucNUcI/e8PSfhojHn1I1gMJ4jpAcMGhBXxQ/4sjv98fx+Pj4/i4Xgi5vxyT5ZIBSNQCIg50qFKfPAmhMI9CA0gIYT3FrAgH4GgnGq1olNOTBTotmShZBaFm7X5lI1Ijk/BTs1angZ0MfxzcHJxmgBcL46oUJSgdxd5kMiqiWqy/c3+kvrlMsOj1fub6H1IygSet+t+enJ9y4pYc3o7/htwjq676uIaOyCAiCopdx61E8r4UKmP9XPPMe7O3lMbMVl2O2Fff78SEDXnEGAKiEvzTUGMEYR4Ogp09qF0MEAY8bwx4xHlO9E4WH/vytiWswdsYFMFZAiVqlTHrq1O7B8hzMuAhaZIyJVQQ5GHvIsPjXoa2EZNREShmbyqGYSSBr7OEvm6caO1gkYjmWoJacw80mLz63MpkY1Cs9l2rlzPLrZhWJ3R1IlDMHl1yQ0qckLfUev3WnOhmISpbqq0g8px5AOttPn8krno7j/c3ENjIajsSPTPr1Ne5ibHm9cUeoJJynWLLqCVDq3IKk/yECchjTgl7ZQuXeGB2q9fDkL9wSySzGANqGu+3mQnKPgQmHTSpGsqtE92Cfvyx1y1m2ozqKJQZg+/CMjfQ1c2rnDsGxkSYA8IhOf8zKBdHjE501TJP53muRQuMLXJSjhP2Pwm13A7rnhM9hyqZQ3i6ZWYcPMdcPedekw2j7slfW1m6fSUfgmejfvLeiSkUgq9ysOJMM6DcPPb4kctOmUFYZWRbCV0b0fdtx2bVRue1oG26pCSA098cpzoZfDhxLBt42I/nZxYxr7zXrvvm49BpcH9r24k96VPjXRITIgsrJ9n7ikR1JA+7rb3lSKO3lgjCdKKT4DD+pv19neM+TXV2PNnTWdOM0oGqszOdyVqv73JDbXkd4iinr3ljzi6iNkGRQRiILHO5z3nwjIV7ZF5bJSq2cKvcSBPHM4k1OjsJ0FqOAnl1ev0Yb69yCqEL6+GrK0UvMeq6biL7JDdk94UpdrYbsy0Tm+njdr+ps0T1vZId7I4HQvgEYdY2RKF1Jr8D9b0ZyEGCK/kaJ1UthYm48Y4IG7iSyHOvzMCKbZC+x9y+jw46CaadbLBtKMSTvhDYGF6b54fj+O/+138a397O4//xP/5l/Pt/fqng0HZf/ktf/yl+7K/YxkoPBojrlx++jM+f1ZONhFeOkjKL2Wtly6ixEa/fyvFeoibZrLP/c+obe4Q5GS6+1YYX61tdU8vfhTzJSjjy+uZprKwLwtXT4n1ciGyxxqJ9wRGy8gsDI7M7YAemE6ux0aE3nBuCgRFqhLtSU4RMSCvhZebkik0JFuMDsyjHR41FEbt9QdUfjqp9pqAkNFRWJAlIQGwF5f6Oa32M48OjDRjNlcpOFD1OI3Y561Ngr9CKCdudNZe9isjvokLSJkij9SXvWWf/tsVVHDxlcrGe2xYNk8Gvk1NJ0AQe1MZbztrcd1iftA3GPY6PiIgfGK37jCjdeT/OZ9VL7/cnrleuqRY9IOxBMAKf01FkzT37iCkj90FGWgsQ90BnHohEYyIQk0DcpFgKL9Nkd2XbA8F3xs9roG3TjeQIMP/MfS0jcb5UlRcnr6+3dkUCEb6Hhxm4UHin59gy/MCtFLQhVD3lGq6lq2epR7YsYPbBztTSrqo0tDMbE/IdszzM3oIL9b0Uxd6jCznzctCYqc2V/DBBy8QhJfCD7VwOjbzKyphGoLCQcbS15aQ5z29nOsdwntHX+UNaWzhUICCY4a5SeCsyBLp2YweSxZ1IAQM9S3BEfRg9/0ErWMnCoa8ksCGxkA+sKeSAnU1+B2QbpCfu3fv6MT7erox208CQJe5aY+87BwgTkWJpQW1icv/7nCUY04NC2rdcDkLaJ8w9cFLtLDkNOEcdEjnh2V5HfplkjYgfCVQF3gLpntBYyWFFzB8PROwR2fP3hI/91VcyOaztTo9cO6euV0uGnYEmk7wlkARH7uu39/Hp04MM/gSDN84CfmsKqpp3cDlgjkne3mv4AjW0MwOkDgjLvr2dxtfXE513ZMuU5WkO3mT6LEPtQvzxxzizEYVCZerbrfexHRQRGJKVDC92aC8clI8rYabVUi+1752x3FDYzdTaCFV2S/MnwrVKCNqJYR0jEQwJVM5gheSZkF6vqJdubVkq44y5xF4MomKzzOqDrMwbjMqpClpw3lmcfIEJnfvaBnTQcpXl7K1h+nO7jSUSDimrWTqa+H/sW23HLbXHYOMOJJtBY2dL05s4CCrH1Corl523MGVnPEmHuyStAinZlwmo+LPpH/3XjmmL+SzlAfde2Qu9zh2vBIkCpX9+QuYZfbIP44mQe52HQNSxh8GGHIJCIdU0XjAw4+cHDyx14d/e1eIM3Twwn3gfmc2JAkwpQDgMHHQ0RHY65BP9xzmKFx9xW86I19ldZrI/+VmUXUwA2wxI11O2AHuzxLBc2oLe39abZNFvMn86+5va92pJmPNrhvn0Kg8PEDoKvJ/HAYmycVArNzi/mAR3Rtmfrsx6xn7/9qoWUCg5ghoFvw3s5tg2CT1RJ57M/WH2c8hD7MU//HAYT1ibKzLhY7x/Qc/73fgKhpPTZXx6Qqkfau9V8gh9Qv4cxVeyuWUPejPH8e7eRRUQeD54bp4cqDR66t2Z8GT4s0xZjNRK0262n/L4hOTPYXz+BJJnIz6wX9mZ6IMBcrtWSyAH6xGiYpY5IdnWg8xbWLoHI5NNg0TZqAL1CsqqBWIPZOoiWG8Epp4xzqfjOF/PtE/+HgHtX8+B9npjI3/6/DyeuUDT8SEDXdlSMeBbX8XaXH7LPSe6/2yjtmqBfJ/UgaW3cVrFTAc67MWTOXfBSLWoWRwyZgYJnFyI27XhXQdGp62zbDBTyY6u1c6AGzodzmEIsP1U+izqHjAyBYWD4Wfr2WEq+j5woNE6AjXR2NDMAn2IOOFoxYIaXpKNaOy8pWvV0LaG9bi789ifT6rXYcPOfTnQcgq1+YsEjsypVtJb3VOaOV8zpDrrV/OpyTBdS15nY13jXLwEbIO93eMjWh22Hm1dkKLrB9qOKmPNgQ8ICQYbTPoGQfl+MlU/4O2ou43B7izJy8s7na8jGkBDmZpQwra8GaLRNsiO6w6t0ATFJDuuHZFZ829F4ofrSn3ChbJm6cuHLOiS989M1lLFWVWN82S/nGsk9ztBpCbmljmLUbwQzGzmuSvJDjX3rM+skhXBPNO3EeWq8Wz9xGfQZiU6AiwXWSSRWdyPQmKui4ypne5qsYV1nivRajQVzOOnYixlTp29YVkA3l/BJGNSSNyHdjcXOdBEl0BmqXmWCqYdsS0Awgz0MDPmGslAraL0MrNcPZKG5Vh5jQOxbRljsv876ly2JUifsNdR+4Wg3Ot1XEEcBkUocVFf2XsYfzlWlSFrc+1wxKL0BWkoVAuj35R5kSZrH+wcW4GP4yAZ3VGGt1FHDhbIuhS2Wz1q89lkTuPMqO0gDKOjuxso2PfbcKLJk9AZUts3vFJyUXPhNQi3BkoFXl5ONPDQp0prYZfWMj9z3ItyKLsCtws0kN/munBNyDArx/H17TJekXmFw5lAbEmjaey1GJjg0UAUoBNFd6CrvhBZDaO4EpRq66Nzgve3AkY/wGSrdiYm5CiZW9uagoo6DJg9ScfOZHZ04jWnbFHZnb9sZ/czfUvmuQJBLsHC+d3vWCZwb2elfJR8fuEWsFOi+5gMy6296ATnw+wVm6aBIHQLuHbRzm3M4jdJHXidzzayONCQEciox0kGpDuZ9WQZ8z3kknGeo+vj9NEvblnKnPWCd3qNtxM066lb3+Pihcm1DL3uP1uPFXqi5mLrAjYSNcv3IA4SkAghE2yDT8/H8YR2lpTHuhacriJXaoipOMq417s6/wnRFE7Kj0HH+WSHmXPuADxKxcjgXmdJARbJ/1vjJrJN/DUNclHZPDtm4a1hYmImcTP/NY1xnvOfQqnVDC9IL5YQNZsF8kUnOh1d1nVdgigtSz5tixk8OtFO2423d9nOctBFfsvMNQgt2RlFBQmQXbDDQWyIrP3j84UBQdjtgA2HYCyjL96kjzFeW5YfQeMvn/fj4TTGy6vkyednEZqhNRU+/vQI0t+0QBXUOQSlSuSpHARytJz11B/PMHmz3ObaTgJBHSi2oXVA8e6rIW3xH/WLP4ynpwODPrOe2pwTO419Sz6X9eCITPR5716TFEXvyZZUAkmBhEqA9DZhvZMS0JlEGCAoBSd6P76+bfTG78mB3jpTmBwIE/akdcYqC0WmSyZYFFGCwSVinJV6vw5wc6J1TuemItg4Rm+0PIVfqF9mrUAd+GaF9VZKEZD+g98/Sax6rnN9Vu8BQ2xU9O57u/ULs2YwQHkOYkDng97AackS8GSY+WhU2KEO+cFR9yCMh4rDMAhCiVKcD2IOOGViZ2QfStQ6X+Cof4w92A1RM0VH8WMcAEGm9aGoY9pVgzUYRugsp1B9UuY2PQozMVPAtsBJmhOYXAyO6HSY24TaaujXWFIgXqA4DHIw22o0MpnbqKb+MyOmMT4dyLFzAadW/e56lrPFBFxbDwENmG16OxckhwaBmD+/vbxzfrEuiuKK+TKONGBf6lv6wGf5+nWM11dkN+4Y7PwxdYGzr98MANk4cQiavXKbaVCmQs6L64IETZ5rpTMVdg0JvWKKtwOXeksqgXWUy922MZVp4s73aQln8Ov+axK65JWscCxWlSjMqHvJpDuWY4+Z94x3ueNGxFyJBGl8CM1ZLCMjUGHOrYMJPSqUezoAx5IN+LSAlcCAIjHRNBUOR8D3HZCjUxM8sjKqRCkcL+xOxkRNovKWByHMqoBCY1zfwuYrQGIHgTV26JHs9laIRIMl+fKuXsBXkBkyEDRTM8sxxZl4fnDv4JUWtOop52/6KliBzr2oOXXLtnrOuf49GLM4MK3WvrepgtxFFNuuogNSalGXUohkPBD5/sMn9bqGKvltuM56CR3j8h2utYI06CErmSIm6kBowamA8BwDszDK4di+nMfT47EcL5XowDhPrfh6rkNUxVQONh4hDXkJVYY5Iskk5NjLiV9woOFAqi9oC47Q85NRLaLFqGdlW3lSAtc2R0rp5w61bkGY7oT3F/dlgwr2P6zOWWtvV8/tW5YRal3hXsymWKiPMGtMhl2cGz13PZNbNTHwlZIqEX5X657op0nytToVeoehsDF8Wxa6nj9ZHAvgclw3DnQCcqnLjhRa5nszmWnZU+TZtlMUdHZ3C54nB8WS6cRZPCogL71hm85InZ4bKf2/rSdFAMcqu3/vQfI+U9uf63HicGaD/IJFO23H6N65DgrofNDZfQbbszt2wPYNCZIygHJ6388KOHx9w95AYB121bR7RYjmAHLmpumZIuOb4TP9vZB41jHhAbHtxFZzMLkcmFySUs32NYBhRjvuzs2colsN0K5np1clObe28z3/K88TuPbD4cD+4mQ3x3kreR/k6kyUEeHahlL7w2cJfAaQi5+eBbfHd3QKYva5yPls3zk4A1nLAIZlUdjkv4KPAaSMLM/IWcj8T1K/guhDn7fA+smBawVHTAhqMjPsiZi8Id7iNSyrxOANOyLQI2WWZQNMIuUZ3NjUK0au9WRfLcx9TVelFhU4Ue010Gm7lLiU/Tb9szjcWZQESLFUKrvC79yJKEIqlO62N5EUpJ1sGb61IX83GejuRFORwzFg/Ysi/YFeSNCCaEzwATiHrAv2wZ4RGDl3vHZNsAVlsWhuTmFFqGS87XfHFnFeR7vbXrfVHFmcNZ7+VofTam3pcBlKQZIca9uqtYtjjANerZ+m4pYjU/rOtaxTOCowGaZYO68mJlJJkRzo9BFmH84HQVMitMTmKCEPdBxgJTyUMLjYbxpw5Os4HEVOBOeN97Yzi4b0CHqwxipzl8xpVr5lwDq7cI8Ch51UdRyJ7q+1Qst1EvXlhnLNUBxo7BU+eOEBZ5aZSGlHUldzoQIANMw3CkLzLRIDBH4c1JxqoWrFDI9/QGZacwfDnOttvJNYDdH668Q9/hlcAAl+OBOCa0EwgEgM9dS4EbJDgD+qztU1MI2JRDOgepIJGWyGgNnVZel0i2pGPys7ygCP93N6PBqyh/ZnHdrM9mgVSFLPRdk3DShdc1mm4Oq8BgiYOJb3fhhv+9lbESneC5sAe2q7Mefpuzy9qk58koFPFsiq8C+ZMusBE1Th86GdHNtbxfpN25MGhbSzRyUWyDZtGkCVajiCalV/K8D2VZtxAJzMbMjDsH/WJrlOmcEm5WU01wiKGb6rjIpLPyz3ehsXfq7mctadzohUYFRg6nK0nENU/yo8/vntY1xg8NF5tliEk41AQPqh+n4olTk8PlCOvF9Pzr54DzkDr+FsPKBsEsoVEyo6I6B1WU9y22YNlhn2/2ZwxqD3XpklPfobc+2Vjs987NiWDg70C4b30qCG49d/sSWPYZIJ3uL7w4P2AuTJ88MsitE2keFMUpc3tNg7j8+fELhOQPDKUgDoB3LC2TabLxtjFIrNa+FrkucA3nuCg/ByGj9/PY13yzPKa6Igphxltov3UuAxa1jBORP/8Q5Lj/EpgwtM1rfRjQc9M88z22Ibo/R7q59sNoUCnip36fWc1LXp+VzOW2C1eF6xdMeYzft5f5Lmz3rniPdsLsIsnVyIyFleCRy3/S/Cvtg+EweaDGQ9TW/Q0Gqfk9GtG/Q5rAPlezubSQfDwQSNyY6fCSfp7phIkTLRqDGO1SUjeC+RWXEeG6nTJA418g6IkBCsNXui29Jb56zW61YVKfDQHYjcb3nwtuYJync0nAm+KDfhoH06jB/w9bwbnx4O4zMMCeoSlTB8e7Hz/GfYBoLoJ6CAuUs9s5Z3hecngCA8o76XusN/3D6tEFSOEdQ+MicFWfjrXC3xo+LTmZHkee9lS3Rd3efV/1gQBdwGnss+vX2ms/cdnGevcSYW9sxAsvyxYNZNzZfVIgTFbFzbgix2ZuGL4FqE2j/tmTX+9NRbwWkvq9xCzu2bW7AFMo97gH/o52+zhRhtap+HLkLy7EputyiIO1/SDGBb2NQZm73bDrSuZRuYQffUYl+JBFVSw8i3QjY6YVdzJHThZoXmj1sH+jvkiFejSeqjtjuERrUMr15XTna4XjqGdvYazgtU8gX2kckQp2HQgjs++/Cv0u9ek/K3h3H/ijXQejHocgRsQibbGimetTLcqK6nEekOxMKESy4CLNd2LfOiMPLuaiTepA5eidIm61bLrCvHqNPmT12csNXqU7ZuvjWaPUOkqs0G8ROEnR0LOn6oU4TBYgeLvrlrH3LSeuRlqdXS30Ppz7op9/5VLz/AwY506ERIhagQnApE5ZKB0sFixOts43efWiaRhMXgpnPenrN/z78XYZr9HiIF4TvmTqgU/nTe2vI2/dwgVxVBNXS3DLZlZzRjuRPg587uEe5nC6RxZX7WlbTmMt7BioQrAy7Fz0AHsi+z7gXIEBgYaQAc9oxEot6PbcYIl8J221crA7KcO5ufNleCHBkSCTbuR9XvPD/taHhRwsKJ9rzOXJ7QDJVdTK16yefs6K5loknbfhp3nI5a30p4Gt4tcpB+izBLHxwASRS90CJ22spco/M271NDMcnWx509Vm5ZZU+tLi1MVFPjFjqdGCRjsfJUVjG1fLfGQNuKZg6m9HLkXE5G9XgmRFtnLsQrqedTACXOtRw/Rf5BADZh4mR6BmkgDGwwb9fzOABykANtjVrdC5iRs4OLAAd2aQJQCTgI5pp2f47YhqCkLXKUYdAwMbYA2eYxZPeCvdpUOdWkOjb3VmbLvLkptC/SSQCt2foemGNRHCO9JrPG67kOfZnmuK1Oe4CS/R2OyQBJUZjYeIisjmHp+TKzv8plJm9D2m7Bgfzy6TieYMwsdWC//kutoXx2uEzJNntf0ticBZ4Ikqo8aEbAIJfe3i/j69e3cbk+ENKntkUX97FVbVvZVzMape4BMDzRktzOcV5wzlHzDJId7VdDshsWfMZLHEgEfwcNgTiHqX0PWkLfSf6DrBTZudGHHYy5csiS+Q5J6NuLzs3jEc8F2GLqmi0fKxirn8PdEGZsBs08bLUVcosv6G0TPFEOUzanZKbBlT1PlE9LnZG6jSTwEaezHE/Wc2vOxD48P1sQ1q3TY7uH6JTFo4pznP7CDsaaHG69hhmjG2x22m3O8DkTR6eBiDZn5CKDFqfLsrH0yAyClWlW8iHbcjpHLT4g58ZkgMlAVT/p3ne4pH+cpjnnyQRW8K45OSuvwkQC1B7151MWkUwlgmzYT88IpMMxe9yPL08IvB3Gj19QX3oYf/jyUA409iQ4U3A+AdF+I9PxeZyvIoUt/bk4HdP+3QZaZjlce856vE17NDPsxzJTMHMTgChbMXD43Df8BhPWXlK72W89frXNcOe/+dxN3qvWOj9L/qs1mEkgyei+bBmf4LWEU50kwDAtVA6c5MfUqOO7f0Z5o3pzt0x/RNFZreCQdCLCwAzX4nIANFutq17Z/1lBSXYIcGmDfNPUbc9zlBdsAfa1D9lO5jodQDJ3rd1cxgbZoICUJI2y471lWDsRZTfP4HUQRySjQw0+eXkMqffXJWURKZGgfJ1qIPtQbWPVCaDstErQxEafMP587yOtE+cEQ85AOqfgbOGM4azdQy38/hxoztHHeHi4aNN7EYIDSDYVUAQ4Ieot/KHecs6IqO5JSmG+zLS8RKVXhyqGJOHh/ZOBvRX5xHSh1zVx5rp6pCkiVJZ3e8HI0I0NF7fjQNgn72mq+kdlh+lktSbh2KB08WKg+29iGnRP0kKdSwGkborG7VXkPphDZPMfH48TDrcH9FQQi844zmgpjGLSyosIRfVpbe5c5F/CzGzLczLXjcx/tmyADkHqwu4UMH3vxcea2exEDiWcu5Rv9R7lNG6da39nwOCsiL+d1jBsbjaHMeuzyfvrm/s+P45xQLsXh+ghNL+92d7b7ZQ1BlEMnR60nkJ9i5xmMDWyRomZ/tmG43A8yBGjYbcjmQ8CIK9f9+ODNbFwmADzujJSR6M3MRZnpiuu6Z632aKV3W2Zh64sqZwq6xtzYVplFUSiYpltUdIGYrqpqmki9DcKN3KyGHhjCNi8jBEX7XvD5tqDUzMLPo06SlqfN90LwSOcl7SkUv1jy8jQEc4ebjV+m/ty3bOfGEQRWgPPSI4sG564D2RV2oFxpE7MITBF59hzzNY0qGkHKdwF5FT7cQBhAVAgiMSoeaRhx+4n+oD2VcjKnRv5UyCtkzV81iqaVyLZRAYl5nmhrG0kPlJOcbRNuKdEieUFAof4ch+n9EfhG13bwY2g8yQ4tEaDUeHsp9HYMrtRrFUXmEBc26eu24QTTj99IU/aEMw1eCNrCLEXTOIzA3Bhp24bJtBzk/oEKqf5Y7UcGZxh/H6GrEShWizT38ArbZzKSAFRpM87W+QBvj2bIKuVEwnuyvSh3H99PY8///RKZ+j50yPPMDLTF+oYQebAp7FoUt/0kWzDu/HybYz31LyjVvD1PP7y5/d6O/dseoHZ0tbSTCZZrBnnHcQ1NuwKpswH4JV81lG1jWAj9if2ksumrsiefxCuTlgsW8LB0T+P44cyWEySFPOxn8rt9qIaeqKIzjMd45YtBroLBjEMZUDSKWvkoAoBkr03IerloFlGMtCHo1UOqOwhSjD2yE5A1E6751ZoiiDWZikG5ZYjtNUz199S56q2SS7PIY/JbcAyElJlIJEnzqajDZfrcd8IWRXaYAbiNkHp1V5es4Ee3/p7ncGohl58RCgvLVqjbOxAYyyhsulO9JZJnr+bVTAzEOs7pJ3gssdrXhxcSPskBJdsj4HcCCVcaKOEDNkfPu3Hj5/3408/HMef/nAcf/jTw/jjvwEHil5ff1IN39PDheP49iZ0xpt7CNe5SBChEFupZe9RhZrmsmliOm2fI79LEBwMG9Y4CzqtaGkERupLWWtZNkaHRcTxbgGL5bXR8VsfqBBxPXtrxxGkW3CCSUTsPvIz6JTrTQ4GMffD2UYbSGQud+Pz5wNraL98UZuxz58E4YZjJgd6JheYLQcSiw60UZtYI6CwiCiUw/pmh/nrq5AmLy+XsqWLLJDjl+0RmHde8Hne3s93gR5w7POcZd62dQTSVfsDAhD2Z9jOE5heAwJ9HZBwk52uc32hL4BEkEsrPZ9XB8ZUfqrAQDLKyjzHucfnJ8mmsWYV3SA/U3S/+45P/yfB8pRSmZMEfA0udcXX43E3vjzCgba9EWf94/foQFspKsIr4VTR3RJa/rkICew4J7Q1ESaMQqhv7qyPW+VIohlTEGRB5suO+A2hxHR617BWS+nJ2px1ux7DhPNMx3NePOZehzxbReB52kb1LtM9+JYWGU80OD0HfbiVUFQ26wDNUnNuWdagvjPci2tDYCCwod/tx9lQGVneMD60hBNmKsGs5zGnisbVgp8yeJbp3sz9jBaW3G2CuzLw8QCWqOUK772B7qSnbIt4ZytlozDiH3zuVvEgYOAoYYQOjRHAc+AsjOv49goHSMYb5gBCFYI0tTeYHwh6tadAMAgs3ROGRWgv6lZTD8Na9RhT2Nv78cG6dFlt4o5SPTtaY3GCCFk3+Ubty8xlPw36OTXLmrN2/lij28l1DI9rgaQI/6yToHOJTk4YeqKZjFiuPrEDIT3SHDfFZyBO8hKcmYbMGi6pndRGODditWeYlsdSMg8hXERfIc6qaovJRq3nMmmYr0++BvRMtXKe+0rXU1DBbNvJVFEZOWyB/WCWYLUiUxYZP8MJt8up94PRMhlUD0h9401qV23vDDlzK5qgTKqbAGqKAqNyJk3KaLLppjVVBSNZ1+oyFKzPyYG39AjvdVVpl+S5yB6Y4nLtDzqXy2yhjVCpZEEULgWKAp1azsiAMNmEP8ABxm60xQos1teUUsh5KCOpGdBymMHYnFIhOY8wYp6ekP3AWDzu8Rt6tZrPOJpwXmHEPUL7fwjRQkcaeuKoPvPcEwC3QIa9wdlF1ljELnAILj8+8tlP5zM/8/n5QdBj6g4744r0cCaP6JMK5lbU8Z0FtwN8nM5szkTLfvRWlauV3gKAJOabH8jeilMluLJLJpI5cT9UJeLTH9Vw0Moept9oJxxtAbBGUie5vEK/laENXL3XDc9FIQyXQTGPvWWNPWXz3XcSAAyq29OLnJ3fjXoJL0s5WQkQtV7gm2CPIL9Tzi9DiW3CNVmzzulvGxIqZZ5N6Da3YnlYVRLXEUtLNllrm7B63lOX8PvzTNTN1Q/b4+99iRu032+o7x3uq72SIIadx2bH6VK2IfyhqBMSsba2Suk5/PSAoDdaV+0FCf58GF8+H+moffnhSHKxkmnskLIff/iMYO8YP7/uxvGqbigP42M8PsD50jmAw9U7ibAcL6jIco6cRc/8t41YjlbZSP3wtbmx4NimkGpReyymm7e1p7d8GhMN1WHv5Tw1m3EuV9ZoZi0XZzq1xERfKtRBok3Wj8de9SA8EZB7WCOsDzLOz09icsa/wQ8khE2Y6cFVA56I2ZUHSY83lC4x+aLgUYjz0HObwSSSuYlPAt/hjKp0Kv+bE1PBW89NSHkXs7dcjwS3bHtt1kf6SjZT8j7L5m9zLBOiogxVi852huQnuYyHI4L6IIVM5TYIGoVSZbeDxlmRc9aJJbFXRXzqwG7VrG2AjxFY4exosqhQdDZlVQaZPYTgGc7Sg0j7XMj2t379ig60a10gbNxvMOVUiRxBOSVbTOOWtc6blkXuc8f3U+kGCqrN2A3++nUphl6Yp5W4AtLctFjl1QKr5thzhdlgHf/Zq99QHeo4xNM3MFP3RpArGZvMgI1fZqdWI2SH42tyLR5qSUxn9wzZJJN3WhG44TsMvWeTDHnYcaAFG5u9XAPKphPI/hFnRdGPiPA1I5bPo8kTOYlM/EQD1SM2UG0rcoeFbwIX3ajuLLF8n0aU9iIq151hTpvKdjgjCFrmuIzyFuywoJ1tXXTHPSNapjxsxBdR0soSOnuIaP0pGU73WcR73qAgd+PTsxgZX04XCtP9t4/x5dN+/MMfj8zgAJYleKSujVJEXPuImlFkHVyXzVgMHeXjOOwO4+O0H5eT2G3xpwfU4pCB2RAbZDsIt6EVq/0GCGPaADQnmjPrs4XvqpW0UZbljYTLVKYdsIln4sZijfF71A9lUyciz6Wi4AWbuPY7syrO+NLorVouhdFA7scz33rGGpjVAlFBARh0WlUAaximHG+XZ9T2bWBdiQshP5Jl2QMd4Ox27TfWyab5KlAEKTORpksbuikDdDcQzin7Z9mW9S0onAwjMmx7rGT+PaOUeTfXDmcZwbAu57yvL6cTxyGW/9nLyV2XCnJVxoZlm8qVrZxcWkGHuIyracBrdGDb1nsO71KqF/SDRM4ibZ4CcY+lY4Ej4jIvB7OIgazNzC7zdIXAn5bDrHlyUKJ1GwgBzqxPFVlfOATyHFP/+DfVVk7n7uJM4/4GtdIgtJbJgNgD4vfl8248/wTeLGdtbzrr/sovy0lCuhHz+xmt8yQrT+cjIYuAZtfeJUeHMgswDL++nMfXr+80Nv/xH1/Hly/Hcf5vP4+Hx/14eBIiZvfHL/wOXczOGgdAUmMkgcl2Nx7Gdbx8fR/vlw8S/nx8OjK7dn7DjBk1ZjWBxTCwy4Sa+gfX0kuSv6d5bvQKUSRFruQzmUoHn/tyIC1D2SfWBjWdaMOitZdnMCgkPOC/kAMdx1q7j054tqhLzgqZ3uJ5cDrRJgzjZRl6kdnZmG7Q4iq18ANJFAWNIiOf7P0hG2tOcJznMiarPaDHwvM3M8txmOc1EhCrofv7lHsynht0m47Edbyx5eKawc4YasESPJ4m2xKglRMdctl5HE1RUeuhYP80IhkgdNkazvg5tduZhqqRthT0fKREk6ZV9tvmNPfHkY7THoMsYD2uHWiwFyO4/dmEYX/4w2E8f96PP/7xYfzDHx/HP/zpOP70x2NXpBwfsp7/5o8PbIf5zy/v4+TfxckRskQ1uDjPnHeq8pQr9t7UM9JQTlbnCQjqs8mKOM5x6OZ6tLZVbVPccasX55Z7rrePa9/jZDnlVA732jc6Pt9KElkOekBOttGAVMmeY6Z3A3+ODY2gBpzlL2CZBqT+8wOdaNhpgIMrIOKOOR87IgC+IeHhwBAQLCd0nfC+D4QbpXpfX1zL/noWhPvlrOwy0LQuU6ss+WbmWNyJ4CXJFKdfVM6tpyYgEtnwM+0vPZkMruotggxYN/C8efmt5ktCokY9ftAZAfN6lhyl4NAmOCPjDvJQyABmns3gvsZV+P3orHJIfasjUnvjskNiErQ2i0In7sbFNmJgJaKxwnl7HF8+w9n/tgTcfr9trGwlqf1KmpU7AlWv7TSsrMO9xrgLal0qkYwmnxztXi7dlFP1gcyipkF6osOL8ExtjSn+W7y26s5CmJHrxyD3xWakUPXa6WfKjEjmqTuFNDLyHve5NoQd84iN3COBUvprPTk3PDevM8e2FsV4rWhyjcnZL0FkWyScEHQZYck4sxduKtP997lOnscecdxs80Uc20igGCg4/mTW49ib5Ons691xkRHRYWM9qNH3ka/r+syugGJwPD/KeabB0NpzVcQ/rX7cukROpOqfHo8fhApBKcL5RT1T1bswM4sAjHoXIyuLuZTxLycXNcR08AwBhGgjYdf+QqImZDORqQRMB7BeMDdf38NYL+dZWYkt6qJNfg/92gHqsPwVJm+jpl2g2K9n4nWZXynvRIPL3Vmgt6t6nf9aSOT6721MdEtg3WN9b631RW1HOIrriO1GNCwRnX6dZGvdDzaZcl9xwg5vokXrfEYWwnmWMSfMMOqOtH4O3gUGHbOOPdECyVK2mgGnToREw37KwDIY87wFuKk+L2ZgnbBA62XNTtjvi8TGu2DiR+tYL/K4CG8Sq/R1UvPviBVtvTDvTr/6zma11dsQDbptsiWpOdUfyoRqUy4F3sgFm8PCtxacP/spgQHRLRKps0PW4pFkgmP3/p3x/jqv4qso2dj7Q5iIxoafsgITwcR2bkR1ua7dug4ZZJShfHs5jUdEG7zX4AziPcgCLJI8+4YDahnjxLTMtSGCr02rwnbu5krcGuLzlfs6K+ufcEw+kFlHIJGIoJVUVI6waxEN26Z0ckY6EPLu1M7Pup7ctdL9zxV487PLyYRhrXZd0+wwP0l5tc25qGMwWZcDIUuZV2qwEzIsByNzvJ0sL0yCh1NdxiaJvhfCqQbk2mfsfu0dOwMuhYlevCera6JrXtbY2oIM6yqgy41+nQYJt4+w2G0C4kybKdnNPHtQQlrfKaPr/U1u9xIcDWu+d4EDG/6fIAwyydT9rKXdjU+fkHlGr1pBhUl05r0xN77ukHmM7YHrKCup/fj4CGit5fFljKN/j4oalH+F74SB9UwpbY6JUPqeoArRX5/7PryyjSlfp+29VZO1Zt1urljBbmnL1c8u1wrno0P387mNXsm94SMjKI8s5/reiT6Za6adF2RKeAvy7/ycDco2Y+hQYERYSgLUbs+ICxLEyaFEZhaQ+7Odacg3dq3oBIMxfPwt/crVekzvZztI2+J971dw13Ob+MBa2twW1/ZzqYN28ASXXo/WJHJTAgMlh3g2JBRiENGRvYZnZ+XGqSBz/93ygwYhWdYs8XpTeJC8ho1VO3DuxafzF84bSiVypsfvyYG+EanWEIhMgeiGZp7hhXxv70OywcVVfbB/SZjexoHWLxTJnr56M4Y8htT2sdVEHGgKRLSDUgQGkLZyZrJBvJqixcfmwq1UD7nArWzc4troEyxbHbXPqV+erYDIeugWVxB9agFh2LbJrdiaILWM/I+J1NKaxvemXGKtn4xMKe/deD+fxxH1tqTodtz3iDE5s/SBLBaiTYimHvj78/VAuBl+HxggnXGQjCHjbOY7sAIzc4E0KAt7V0bzCUXLXK8GdmUHAzt0YKCOC557afXTdlfrdVk+eAsilIB2Y/Zkqtf9QuaX5RqEZrGtwRh/+uFMGPs//4y2BDLglXXQoTU+hfMCVmJYbsdxHCDW/sOXj/H09DE+fUaUEgzphzHQ2P7beTJUs07FDOlPD8I/XB4UZX4DU/GFzevhQJ+xNxFmP54IsYfhiszk6XwY7+fDeH0R47fqU6ZC6a9OsNf/VM5u0voYh6GuOcnpeCQZqPpdRvpd11skfAWJDmzc9+gwm+alis17zeAq4hu5mqy2BHw2PxWtlVNg1dlj4iiYkOFACGv/fdfj6c5Hs+tsDKtuR2NCH29lyxWAozxIaYqZ3n/pVozQ4zyxZ/ORwY8rCZZQ5w6GbxH6pf8i1YidWNTudygfHQCgKcSINBVPwd+o/rLdRcoBqJadcMqs88VGsYjJDgfsRwX5Zh2jyNOo3GzphKi6B166XKKMd2cjrWvbf0w1ug+o6/m6TvVM1ReDmu5tqudXXXXl0qLYtUhlUE0Geu1DtQyTwZ0OuQw47Vo7Nga0IEsZk5fuuqh9yh8+/zA+PSHq/a0N9u+kwX/htc28YLGrvMmtyEBQQ/nN8hz9vsMglcGZBJ4gwcG8/tN/fB3Pz8exP0JH7MbP395ZN4g+tzyj3P82RLnW3qOpk/cXx/Cu812UDZYyBHVA/sYAXlsxu2fH6hlqqQPt1w7ao73N3sziS72gbhb49rEFLuVIq/1gNysW/eTno+5zlrvYxDYHXQy9FxrUyEa1wkxnduBwKdcENAf2PwBOaltj/gisAZWcHRbeCwGC6ziTWFWlGhgHueFoOpj5unHC8LbRbyQZbXKueqzaiTP6Lc9NmwToKzgHYPk1Z0VIw/T3ZNyT7WzeS7qrGPGUOci9K9kQnoZWptfj4L0uV3MrXQYpRYcaepJzNctnWkSniL6IlvPvo4MzJAVa2mT14daYP8iDgOuhBhPfAQPG+UH7Ixj1X/4gNud/+NPD+PGH4/iHPxxZA12IvonF5XfMzwn2Fsv4tD+f4YwbfXl1RjrJGzhoGD3q+9O6iFwc5LTwehoO3MshyqfdmNrMJmKvtfOWgFP08uQNuTMnzb7u9l8CUf3+seLS/ig8Cuq9PntxZ/m6W9BfbAX6fiWi9bOVrZCJJhULn0Y51c5Wuw80kbAAAyB7bTIyJas+xivIv9Rsgl/mbbXTDrtdchRw55++Aap9HS+AbKPm+Zsyz2jzGOLCPvmRezw7aF9myDfrpM2p1JNNVEGpuMy8kQF8dvxx83C/B7rNGt9BuwQkZ8nsjEmlVzpONbmm0H/+NMYbg0P7cSUsVeVkV6NPFLiPefhXwsdbX67V2MtJzgB9dq2L4hvw3bYF69z6Z+ifL5+E3CAac6P+fp8kYoZb0ZBrBzE2TzmkTZCF2EbvjbTt1/VUbxZqLkGSVa0uqI2JB82RsUB0svEk4BNVnhKE/4zUbZElDXFGdfPeMvyjCJwlvjXaW6/ozqia8RQJk9+fHrJNiDH6TZgFGKNliO+hnA/uNQvoYnraWTjkqXj4ET1zlg01NolMpp9jFB2iVHixhs7zWM5bzcdU1O0h6+8rzNKMofWWHj7Lx9tc1yUTcZxkVAq6rpGybsRkK/UoNv9NQhn0vgYDtmDtD49p8+BAhjeCopc+7HRG5FSzBpX9HmfW7nIR+3Yig+mnjQwyXrgnWRnZuk2tGeiOIX0N4WbnB4GQj4/jODxAcAgePvf9hGHF6BPSQ2Mug2U5Gd7IDVW2LFQLRgQJkRmYtqOMOLKPt89X/fhWxpahNfdd3dGGXPaysqbJLcXYyY53YGQ591OuLLcthEOgTkG+xMWcQbe0YJq7q49y7qHaPwkAeOr7DDYxVI5ijnwFgYxFT3Q3SAz2UewBoqBrakAJ8DlyTSZut6Qqhmhb+eF1KAYkDYKtvoIr84JKtsUZnkzAyhb4Acnk1ec45zI1Y85m9LhVoFz1Y4wp1xI3ZTtFh56hPrVcMEbPNDDKKO6EgEGKaINVNqAH5G7r/db7aB8qePZ0OBLSO9/x6zvP3301OZla2hnYNBw5UGVm03blFOVTZIZ9E2kajET2sPWeCZz1Jpi9nIFbIqleO7etgYx/Vzo85QEVnLNRtZn5G1Ou1U92pR8sjGDkzkSTBGqWj2QcuX9lnINQ8udU+9wGE11QQd7pUIrIc9ZPl/O4eYb+VStnO/nczu0EXrfnjRHt9eE1Wm3lWoU5x+ywae2TRR5uslbfs5kjnade2az3jY7xDuwyYXPtqp3e3Jzf0uJvirO5xg46aGk2mq3ZDX3epx2w2VXhGE122KUPrKklq7O+A9INaPkTvh7xJcgw/g5HLYHgqhP2vOBMobQBDlnGgetA9sdOg4LFXnt+P4wTiSdlV6gMw+gRK5wEHvpKB7m4fQXJdOP4boJO/f1Li9gmlrf8KhXA3GrQZifnmsvCbJa7mSC216dsUO3udLwlaoxEraTyPLuyD+Okt9KmLh+IDhFiJ0c7OhbBhgSPWBOMTituTZf6YPZspqPZEKseOz5TDrTbnPVMdfbZGm6YpnCQobIhAwsPTHrZtQ0FFiThGvhY1qKtL4N4TpGH54gYrI+tVMr5nLpf9eOlYqcMsfwRGavWK2BCyp7WylL235QLJZXK91MiRu3MXM7ZXzfG3+/AgY4BIrZaZa0cLF2yFxQscDx6FHHagHo1J80fKqa57eHMSp6uZylMeEQ9E+oUKyl9eI5U94pctHqZue+uKJzqkh5GLPNy4pmdgvdFx9Idacsad9Z3nJxldi10UyCpI2WGjx+cdZplKLfaqRjRTBs4RIVLnt5P43o9j59+Oo7Xt914f0D2ZD++gP792UznJD0A/CQ9BM+i40et1oBCeDRsFZloCQ4cKMCRIZAZpXNWX5kxtzloB0oPte7mGBfJxPbs4HTslHXbX3vj0ZY18WWRma7Pcf2QQYDjD/qHAN0SzGg0Dg0qUhFPZqM/xsPjdTw+fIxPP3yQbfY8DuP9fTd+/llEEqRVQ53f8ZFtpiiRAZe6nMbHGX2fRUyBW58v53E67cfrO9ZkBidYH3LdjZdXMYkenR48o8Hgx258AWnP43GcCOG+DEzD7n033vdPzKI9PR35dbqcxunnd9etKCu83wn6HfKKSM+CqlrITToA/Zz6vllaAes4vY5MqpU+yDgvVu48pyBQmfZu1SCGLVaUTE0cGi47ySxitLl1nWUE0CrKbiMiL0SH9g3QCeJMmBRYS1hgMreHIMbYxumkGgY3fazat+LJi3Ced1DfUSjYo9t4OXtlki8Ro5uZfO5aQs3ivEbp8X7IHmAAbhtXkRVk7B8fpGi4nlY+1V8VRhNa8QjGT47osK6zhfFK0MRlNISXhERe04OpVRHV5rr7JjmbyPTgGkiecDvswVx/HePpMD5AZncS+6cMNwcAmkJnfepVc8MsYbOtL24npyCQCdE42GbIR5ku7FFdhDcYbPavvIEu/pUFDyt3C5sE8pj+9cxoM7g5e/XiwVHRvv84jOfdw/jx8WM8H98Ulf9baer/Aq9tWUVBuG20QZ2ps4OmnBDU/Rjgyj69xoWWzPrpL+/j9H4cP3x6H+PTw/j4wyOvLWKe6RTqI7dzomyU/+6MrTKezfD2NziJi3MdfDJIJ4rxfz5a7KXF8fPvG+l4BbR4XilZDoTks36VmedZKy2/yyHY5mDDeQoJGX5G1hCMtdwrLtJmIJlEg7PmUV03cL/Av42Ga1OVRHZab8khngzTJOmCiGBWCnYS889zHjBUVGUB6mvdTA4EE35ybnzGiv/CAyBpaFuekIHJUZ1HbzrWm/XlNVVQUW9vgXfJQF87wRdfg/MUiFN7pbNKtVhq5zmIoDPKXqBnm/zH82JP4t9qZmAngFUYdkxawBPfk/Xf+nB0UOnMet2TeUbv4CeRCoIkDPW1P3wBt8Bu/PHTkZDtP34BcdhxfMLfn92irCZR3CXXN/SAvox/9x/fq7QCcvbz5z3HDruAc2eECLg1kP3E+r6inh5Quf0kdVNwKFB2Z1+D0iqHZj6fKVPKUd0mgTa+pf6Wyp3+tw0EdwbtbvfJVkwUAq4nPHKGm2iYaz8/C1n27fXKc4l1UStHB1zdpaTaPVkGhY07ZWXbEZIb4TDGCxEzQVPJeaa9fEK3FZW2vLycaBe/vIoXBwkr6lnKhNnFJnYfEClYV57lIuYzuqTLtE0Mh/sX1yFRrdrkxaajji7dmvrzOXEVEAkWfHOT4hPy/BIl9HExiXACE0F+eUhli7gjSrMtE2ChLOMcqN9q0IQUk31cLokkfNx15T2IlRxCNV/Yq5UoyyQ+dAZvXn8jJ/rv5kDfbky/WlShDnJ/a81UUja3gjWH7V60RYJgG2IJRv87Y6rsdbJzsz5bLKBrn9rJHtrrq3sbreXS24n53oR9Z1y9vqBFlSslnZ/741qJI8NpZ/jkesbjuzPQ7l+HAw8DnHAh9/KK0Zo5rToO3kDQkIJf2EjmnCWDVs/sLPri1rQs1b0dvhUc7eH0xPNQr3M82zrEi0v2bn76djGSscV3GknsJwqY+nx/wfz36F+utlckJLMzp/mesMdiG/bcsEaGEJ/ajuWkpaCNmbki3kiQxDVbMPVANtbb7myeJpHeql9et1HNu95bJ3CZC2UJZp1yXbi0Xlax9c6tIzqjrN4m62zXH6dmnQq0CYLNEpXBVkrX893aHswSD72IgqgjM+GI87MmQfOcZSoWIzx7qOZpsoXH8d72ZJ/KP1wHKzJkzU57rejchdF6novZc74qxxtCx+OtLFOMY7cCctnHMpkFGfR4AgHKGjDQMTOxlQf34GNHT6PJpSjNsZ0R51bbbC+I39yvw094Iyu+q/FaHXPX/zMw1i2trXbY7sH+Y+PhqJ1pJtvwTuR+zbCs+vd2zn5zbnTJg/aKbmhZ0xmjzv6Y7LaU7VXCExI4O9+tpjXiQcgtLTqCKkWYYwbZ+Eg9Cx5Uy43vvWzdWGseooNUy3tS65966JYl7s9vcEJt1MB9k3nuxvzc//l7stTtuZtjGTTElLN2wFwjy+92VqUzJmOxDP4mT7fraV6LYr9GIGRvtA6QEeubJ9KpHI30IrLNUuRlnrOtAdLaE80zds8J666t1+Wudpk/T5tpfism8IYo+rhjn62m1URS9EvGNuFTOQasYPLUAxNNsLbMyrrFNhDCwgEQZ7tQcsWMM0oFjiKnQiaMXyj/elCbpEdnootk0tfmOLyOyUBO2HK6CWjGkL3GB1jKN9BjWsHTBHR6hneO37I8svuecOoBkr5ObRtUxnZRblMGrztG69Cz+DcIwOiWJrK7DthyCmxfMVuqnGJr02/UHf9qdnT2dnbgg4SBLhOp6hIEslMf7wsAFcgAY/Vy1/ljoIOQa7d6bfXOnZ2e54QVLHOdw/8gLoF0FmqH/h6Sx3+u9mxVmraVE9NxvQkLNAem9szGkdbaBGXaGLa3CbFxc+NuXvziGuKCbEvFjjDNt7GBN890zqkCrCUTC/ZtdGidg1UOldL++FeegV7rXte+rXS43EO13p9DhLeZjr6IiOodc9FVb+dMcYP7lhD1YqAn7C+9lO1VXYl+gZOKei9HiV1nEYY+ZuIsvK+bLCozSffm4WZnTaMvTkHEQ4d+TdhPFJsMFP4u9QIxDpi9U29YPNH7y9u4nN7Hx/mR9V7vZ5FQBZr5fkJUDHU8YxyeDa93r20wDooUQVn4ZMHhdC+8s6aODqNvYM6E3rr1Amona65TR0HyhllnPqNSU90udVwWvv3cl2J1DwDV2JoxFXVDhJ6wMair6KapFY26A+PgYT8enx+oBH/8AoFr5lS2aJTAfXi6jMPDx3hC3QVJas6cT/QWRe9PwnlIKqHo8QkQ+tNxvLxexp//DO8Z11GfKuwRkIjtT2gxtB8HfAd5A/YVLT/XeCELid+fhAJ4ZzH2WeQ0aBHDZvVhJ51EYHOCpsGaGujAzrtTkLnGddOqpc6R+5HG+dzWsqduT9uztVtqJvxUlGFy7wUrnbAP97YhQUEbBxoBh1Zbm96FrtuVcHX9ngkBYiDlCFfk2goL7yNEyZPH529trzJnIk7SSDOHgM3hPJXhE4cktaA53SboSvsl8iAwm+z+sOgVfhLzPf4t7wBrjNrMPFLSqTqHqJXk+WbqwI5p9bBH2yvUVUejmT4dP2NdH8UkXtYxTFcsBYjp8Fa0TWOk21kwooHUyg5XVIU0Wqwcx4EVmOf6rTDdbtsREjum8oXXupB4asfMNSPdyx6Y0ewZu9GkF9fSX9GH2dvT/b/7psWaFxdEi9Dwj5D7TR+3/S6iKXEA3LN1fs2XugyszgS/9xrGQCDdK/mwvE8CFYYmMmZ0gt/WwBS6CYBTw1Xn9Tocrg72KRtCdlpkZ3HPA5LHH+N9fIwTsF1gcO8w7SuQMw1V1Y3sGMpJYNMucDuoJQCjzBMzvIC77q/jgnq+bk/hP3a+YfyS/AlZZX8pSKoJK/RbAnAeW1i3Ezeq7dEIRIE840f2h7F/RAkQWhS5ZRYy/dbhp7cpYwivj9nRDdhycqXTcWnMIcXSuDCbg/7XqM2vdWpZqfR7BnKK/B3uVwyuDtYbLkGQFfF377Sxd63Pd6Y06zKd5+Y82b7Ls+BLBG4qHYtphXGgMyMD9M5KV+AuQcJ7xJKxk4o1vekbtorUqGDDhPQMN8BZiSyuB2nJCkwn9odNLJ4JZJIF25YD/eOXI1EbT89y0MBuD/vhy2e0eduPP/xw4Fd6idc+cbAd+huwbTzvp097ZtPBcyFKHDl0uA8lkm0vYGGQAf3L1z1ZondnjFFJEjxoIZ+8H1mf3oPVzY6qOuE7taNcVzv+3THraMksqJeNurRzLrSK2/XaNvAFFdZabZOjeU2Sw86TMgO5DDZQFs2uF7nlkYmH3fj85Uh4PZACQA0ANbg/7sc79jH6HR9V4/vk4Bjr5A+YNwWI9zw7Y7yCWAx23vt1vL+ex9vpohaBJFs0dNuJKcC6aau6fOL15SKdGhsk43T72XWabhUL+6y/X0RmxrK/WdpZJ/GOPur7DmZ6svEpe7wbXMnyurVV5vujSgM2rOkJOv6CPnTyX4izuqb0tToJ+WymVJQyLi1ArWuLV0e2yCcy8R+Uga4uIzfRt99PDXR1QTVcMhFBvrpBf+dT298nenUnrtk/Ot/ffjUFQI9YrAQYK+tzLyDo17Oi2FhSyYz1sc77tQjQEmOdWl5PZUehFFKPTK8OZgtJuP/afDMN/vNunA+ihAd5EGolQ/RzhsFsMrep8AKrmjCT/jwVU2iSdDKFr8/fXIn7C7Nd1zxblbzJuL23BxQ0aONrAbL7xm1qfWUosTsQ2nehRgn1FK5lQv0xUdmuH2YUkY6218I9ZMXKCAhUF0b6O0kn4EBD4J5Vay5FGL/G5QxuH7YHpIhGQKwypVGV/U4XJdR9KBqt+q4JLwSrd3ZMsqSrpsuczXet897fdxvD7Du1BHaDWQlqF2KWO6vc1qei8L5Pgj8xyuaHk0lw5qrt+TLA58EpgZIyhxlAaAZYcSmsW6Y2lGXCktnoSuqOg9LHbAl3N5q+qRCf4TKcxdZzpTLbhO91N2XeRz2rAwHN57w+9NZnveYVwQGjF5Q0brItzwZYdiwhTfaNQr+LIskGSLqx2sdlPS3sGwx0tla7zY5MYpH5cw2h7Y9V/u++C18ug3F51/Yzc7y27fqvNc4qX2iMuXek+N9Ib/+LXltUztyz/lXVo7UMMEt+ss+D6OhXnfKVhqHJpFKHtw6gy49NNrUyR8uVJztrDuTdB0vbx1y7qe1lsJHvdvDjEG/EWghwJGpTC+3McgVteqDemeiefW6fZy10kV/29ZiwRcHDV5HM89pJnir7lftOxNlugw5KJh9w90Nlop2kbzbkzCJrXtjuaWNozmTDIpyXca1HRr+o0jvTJ2e+tCaGfN5dzlarnX3bn92bcLrcbVO2c73aZRu5bD0vcZYyrY7gWx+Hc1eLO1t/qT5exEa0DVx3mZ7CzEA7uxkkQ/Zd9RSO43fPRPVj0Qk0aSxJKD1z1T7XU3A+Cu6bNk6rTdy4H/jMWztroraWuWr2bP/D7kamJEtzuxfuvTbLsjzvvTffs/H4+6bLcu9Cg9w5u+HR4Xld2LZXfUIOoGSg617Sv6mDxnqQkPcya23Lzo3917LCZUJEZiLW1zLT+vuqf5Mgq5KbrRkUFGgrj6zpiV6sZZjPFzESvR+ei3urlv257NcaweS+uf/6nn0+faMkGO/V4d8a61NxlC/E/ey/NXEk7re7xv7vw4Eug521ecdx2e/HG/vDuiKSSQoTdVjaKx7RT3cORi46d1aijAOM2InmMrLlwo7akzr8ZY5uds+ORaak7mQbGdbSOsreA3TMSCECwlppZCqcCUr/wJ5BWWeCrNYY6hH1VmS7Q92LGpYvRXvNuA+brmDjs0gl2Ro+J0mr9PuLnbsHR9pRG4Reytfduxh/TUtKuDH6uoKFlBkhwZTFxIcM6nW8oWcn3o+IV2X+zPTZ7ZK9mLD4Nj0p1+XwAY5MjN+s1WVUIQMxo6bK6B2c1Z/9WssJKtts7ZWp9YgQUey1EGCLksDB9frykh/j6XGMP/0o1vKHZ60H6uNJEoKCT2Tvz8rWvZ1QTw7H5IHzjowySRb4QvQfxhFioPgf6tRQM30cr++X8dNXsDRC6UnjIWuKtXw8HMfTwxh/+MMYKDV/+KwQHeab/ZAfTkgHjt1RTM2Hh9M4Xi7jE6Kpz8fxdtLX7nhlBPwK8rGPd9Wjm0m5lKIFTxiHr9yHGnOJ0q6Ne7CktTXKBqBgdA90sj4ju2gOAbGg7u4qAO7lQAcrY5NzNbd/SpfLnmPfc7dbMBs3lR57F8pz5FVdr0tWeFYHKkPMmkIynNpQS9uKYr2fPVzdN0EZaZwbbBs7goqipu2FG2Qjd+KgFVkSHGlN0nfqSp/x4MaY5WDx3rii5odRVfRVHswSsx4IXAnkjjDAMZTXiuhYpl3HHuUGuO8D9gPOUZ5T+xqtTgKsSR06W1SYIErpLJOelF8+z91UtviXHG3IMrXbagIrPZ6rCa4y0ObB43WVVVeG9xx67lKw+vfZjOCzVVgzLDb+kr5F2/YiPhNWRl7EsCoIq1vGuDUW06TVH6eVS5jV/rrXWXz7uI6XN/AaXApVMFX6b+h1JyEgCKFkP8pJ3oE6qGhrex/r5FdOgAsyLNeP8ec/v6nf6duFNb3VVS5b07I7Aa4tSXUgleyj6pZ7V6SJPY6eRdy+CrboP4d5uGpq4XzYIYYGApz24+EoAxgoKm9TaoqzuAcegKbY7cfTMezbuqiYYGFEyw6Yg7guqT38FXsI8k/PrlpotCGEiIBjdQRTOSdWhjbqIzl+ZL7s3eL3ajuIOmsxRlCX44xirshXsJaiof/yB7JSJvxRNl06S0g59EPuZ7cdS5IHwiYzIiYZYtZ8ah7ynR9raqJtsYJdY+yYb5Ebuc2VyUUTaEkAIX5q54gQhH3eT7fOX+5AT5pMkH00LxY5Hd+CdlQKyXPxDfNQnCzpE3dAManeszPPqX1Gdhl7+Jms22hXBed61mqqxhaoChDyfaeNZO6bPfmxZ3/ww5c5K/gbsmz4+1fU2LJ3Peb5g/ctJzr9sascobf6WoVm5r3Qjg4UrH5Ng7cvztSq18Ol0l8VnPgFn6ZzZIQr5Sao4T2XsrpygOM47cHXcGBP98eQ8/lD4iLw5/O3hszDuUJHBd4baBnrsB+AJmD/bX32cX8cx8c97WBk+V/eMb/qQpGHJdeAVSjRawmIOIny8u5+0AvaqpXCuLsExpL2sP2osq767PeTa6RxQJSH3Jz6Js6RHCInk1nG06KPyL0iFZxrRXSNs9RETaQspwUNdhti0DzVzT7IOWQKwHoY14afwXKKnLVZO6+grsfWAgkx0fY9uWGfiPJ3/P1evy4LdzNk8KpD1gRnQQUWw3PWXM1znojkelrXmuFcPyn+Fq2oC1WINyKlXb9ckLr2nVvOy1VdyXShV1dzZsym6NGmSd1dvacyirnCdEAnjCWbrSudeZ9AuBikoDQNJF6QkBi0EphTI6U2MDUXEyrnjMFm/vrzpmaMYypDevtqvbyX364GUv/9L1XH1O2n7ezft2wplYoZXOGkkD1zVA0T90dqpqvmZH4Jwi7JEZ8jL0C8hczWPgvLImBzZF2ks92y1IYJ8d6PYxwfkfWWEXogLNnCzxlpkptZKYt5GlD8tCnYPPwyMdv1uTt7TSjN3/TPRND1X9SRzX7zQijoM7Namct7r60TXcbTNnuWzEGEdkc6LCepD7ERXlQQwJO/CcwtY6rnTz3jquFTkzzl+9z7nJdm1NQTLLXLGnyYP+WjzXMd42/iVW9XK3NW5B906IFiUEsOBiurL3QI8lqdIQfUWh/UjWcRUwIM8wmnsJ71UZAhk2igHJxmCPGzC1fSLYPFImk3e7VIxPoVEiDIB5f9kyvNtb1rzFnGlixet/f6Nv9LxFCXcbqohKK/67fgPhd6iv9pZ8e/nRnoueeKuG1znQ4hTrYTxuIpZSr4nhpAQ4sXmHix/8/5TC/eCujZYKqgiw3k2wVrGcq0M8uzGTVAk6yOdzJIMh4vbCM4M+J0IrohmJhZblW1zoKEd0eBPANt1y6cEy0jHV3D4Ge8hOoGsjzWnPe+l9sBWiV8Bu0zBx2NFk5G3eg5V4b5dSZXeTnl5LQvsoZ9nHKK2gD7vz/WjHTzbW9O5JrZ6r+fTMpdKXzHepi/X43IelXmtiWp52o1eVzZ8KxH7IT5N/V7nr2f0++ZdbXuBa3yhQ1hVQLHLPGZzkKykXE0td8Cg57ZfJwX1FET7v8gsshzHMkE+NpU1vxHhnuNCswg43vqspYRvHWS18353Sxf5mmZ5a5im7PZB9s2WC9PvD35jeTVTjLXpJ3RxUHua7lpnbp9jmUv+G+FQgjvAevNgfwT43m30ftZ6QRbmeuSsd2W6jZJ6a8gLu8HJKYsXm2yssGy3W5K1TuvQ9P9y3ysa9nnsuavyc2P7pXdU3pR4eXVNnI5D7I+dlcvTxvw/sv4yl5vvXnumqGP3xULN76uZOBWtGX2jCTbdXqecVHxLkR0lE0OBFPIxN0dRa+McDf6q1e082FhmCwlzxqFmfFENLif/Bl9ve1fzDEXYZazONYOvXb5e5H06QjDGUrmvDES50y1ntHTAEo9uNWS7xEyEdVyikkPtm3VUZ7MvLusCO7/QNbwKAzWWpyRfR3jclImOmyhyuRO4Z9DXUQqFuqsDUX9F3tVqj5ExGN5pkZWU0ZXs2Tu7Z8856ZusgIKHkOyVunHPfeePq8M88d4eBrj6fPBjin6eStKyEjim5TcmzNhMjgBf1fHy0DCBHFXRgLM5Mlevb6fxuXPb+P9fYyXVz23Wn6qhy8g4+gV+enTbnz+t+jnLII3DBe1+hj1I3tLit0a5+Tz56fx/Lwbby/Ibu/Hz99ex7dvL6p/ZT1VFDGQEV6fggxFSfa59v72c/R9EQRIV676rLJ094R8HEE8HwUwMelI1PicWIqWAWtl1HsG60qz6eFUAD6Y9SzzXCZokbWXjbDyCLjd8ESyNCeD0erKdqP+XAyXXFYawoqi7sDiT9ZtM/cyi5vaZ7dT0SjK4OZvLNPYdiRcr5RXR/ZavuxR1zRzdOpjKYbvHYIqNNqnQq5zhyyT+4/uH3zGUbiPrJsjQWQEsGGaAM8DLTiGtqeOCWkN+64rs849EAZNBiVVLUmHmXB9s2YnmnGZ56SCMSbZU57ZZ95zqem3CW8ZX+UimyxkBRfiYMUjZ3bhIC6N5pncM5y2OzaOpHo9eyz8iM64j7LHYQMP/UHf38efX76Nl9PrUmbzW3ghy9bn6cYXc9ufGHu91ZHOhDL0rM8002uI2ZExpvz6eubnfvrnV0YW//KHJ3I/fFwhx2bzc8gjMSDrV8zYPR7Hy0F8yTNDKeebGSZtvKV3bOkJ1zjreTQ2tnlL3WVRWKvN0B7ZoydkDfckcHx70UZCEIA1z8jmna/j/Hoeh+tx7J9GOUdBfJURaTIq3IBjZPYXGUFla5llTJtBCvujSoOAJHEwitMALoQQdZKQTfocAVjMcYiHwiexlk/1YPzUa4Fsn22Y7g3Pr+mLXClSrFnfTW4DBD+oZsR7MZEgM9NTCp7Aprmz5kjmSxnSaYslSLOFDvNvvhahzi2D1sSht4BbQm5s7inSbffEvHYvcZVhRVSYq6YF9RKo7nafdNcso1HHBTnLT0+ocd6PL5/0HfoYGbtHyOCQjNmZxgXZLxgoPv8+3BiYc9aWWu2ynOx5DoPoRteqP5rPA2qK7ZPAAg2W8f2e80yb7hyUVIjD5GhaRPJL7UibI93nNj3h8/cmNJTFjVyZzmOSKtXnpJNqRv95DXpmtAfx+q5exbXL5WhLTpgu3sLgBdbiYT+ecF75NZFhDFo46Lpmr81b0jLSFP1Yf7JgJ4g8qp5OLXdhL+7ZfeEIGXI4M4NN8l3IW05uult49MW2bWSMA2rcnUUEVo86z4l1fQ8JpWY6qlbX6DZZAlj4gJFodRb9Z4zPJRyFsrjzCst85iqBRMoXmQsjAdcyGXdbG3DabOy3nQ1oop4kPnKae/cToX0no3ed8dL7MzgbD16cT+2JPn7XGegI/l5fZGM44TjXtdbG2nx6rXn65dcUSN/5+00ddTOsN1nkuyqjp9emVX6ziqvA6lmVdpntY1VErgmtm6frY9FmVBR+RvWLTLwxqs6x5NpzLDFkdchXNl/LzUUQ1tgWi21lnYyhLKcnwYNN1icPWHPYfvyXvO5ZjBzobcQtNcVkLtkr48vG8+7bh0gvHWm3/KkIvdsh0Yiq6K3rz8yqQIIapqDR9svo2IKDWrhDYT4MOvFHGG4gLDNDd1oNUGkV63agTIdxsmKtcoVi/Z5WQAXxO55iqZW3Amz9ou1B1jSWc9BqhpfJjZO0sWooZFvbjNAGrh/d9j9dT3kkwrq4bY+0Y7hcpjIgqa5rUV6TySTYPQfuQ9PP771NVzWP/nId+3b4MbjXP9RhvnklKBVDMoGBHk2/K/HSY9tGCg2B5nwkYCENHoK+aYgQVr0M3++1YorR3BIIbS7cdoMaPj1Ge0Bzff5b0dbKAuqPXa2avX/52y/JghiPt+/Qr35ZZ0yDZTr0PSNTe6YMTMN171z5l5Ayf+tXH2OtZTmdzUZuzkond1J2IEHhecA6DwEE2vkMWOOZxDyAN8I5Pp1Z61BjKSfdCz1rQ23heV1mRqahGGrE/lcF02bJj/a6d8WS1sX5lzMImCfjRXASwQECfZZWPww4J/Aze+cSsJ0sTMbRYusBhtDYa1adgg8r6RERQ822TcfJIktrpQ6RwZ2jok/ARi02y9shJRMxqYysB0mbWGv1pLluv6/k4/f2b+Yh58wj9H9KTngOrt1pjQ2Sucj25HKaGXwD766ZsXj+KwnQ+rcLdWrPyL9Jq7omVLpAiZ3lRZ7Z65lVllMhjhQ4cWHd7v3DlaWeAV+xpc/KkIjnoDZ4bd83HSEqw9ray2GwuG+NqTPGd7VS485636tnnW/WLZstujGX8rnlXu4B37tgLHpls05bTbgVmNMP0B9b7HUivRp6VFVjaYcUYj7PlY/DoqdvbIRbv0CyLfZBHGmRa1Z9ckGN9T4GB6tN6BoYIMO2CetudF8/m/MASZ9aqEw7JcRaTdM0kyLvW1f0VteVqdYv1eTSnJdpe4QD4q7I+dgu5Wp4L3rRc9bHWYG5sg+CDprdf6bts9kbduhzo1V3b8fzO3KgC4KAWp0rspNHktvQcCznSZR0lTlrhtNSLxP2QB6oziO6Ztm0weTchDQpfw9bq74xFqusThNiYvZWffDeLM60IdpzadOpPy2yf8wzfSeRmg2M1lIK506o3Bx/N9JVhS0m8EvBo9UyypUsxq3N/tCq2fpATSyFo4rTLo4IFZFSbWrV8wJq9vC0Z2QdbH/nd2SxUd8KxxyIAGeYulsWYpiN0caoOmDHqCsz5EhRTJvHznZNJ2e2zgrBUcoj1SvSTNqcn8baXZCpTqK77qViU0dNmUPbSJTg1+9kPhYbJm0pZtvNcvjRMH0l2CVUyNTOiCX+7yw1JTfqusVivWM99cd4fLwwKwGlq7rw3Xh+2o8//vg4nr/sxvEHwbcPqDXHvj/3wi1SSTqSZ6bzcRrvWFt00YXzH6ItDCkkEySfEsFMb4obQyJmhtoKTeWQ2uXex5NI/EQ1K0Wg+nmuo1nRQh4WsXj2+qafcHqoZ6uz9tjGwUpUojkWykGwKbCUJ0S7xLvKOfpo9b3zTxUR9n/LsChPSJZNSKG6AaLeqQ1FEhniGmlBOaexDQALWYBVee2OqHMANM7JA2HTgL3kNCGBjfG+hO7b6bWBnUi4hgEED2qlAStTpoL1y4T5q4c9GLNTkx7nD/sFe4hIiCu4s/d0Hl6RSTPrts6Ue2f6uwyGvXs1T80L+SNUkM8rjcK5Aoosi7Ecz+ziAxkfS8JjkkgFNZTz3Q39Mhh06iN8Wq/zG2mrjyag0BiTFR0Ps6dkOutB8T4X1pbx4OODVQXu4MvjGP/Vj9fxP/wT7vrT31BV/+e9OL/OUNCYX/4ai1FzhwwZNmECiiHDSRuWGLG5bpxrsMb/+//wMr5+OxMZA04IzC8catSJKsuheU1wRk6tMtFPYIInpfc8yOLzkBOoHsX+nPtTy1TQWLASPLfO6ECGd6OJz75DjaTk5tPuMD7tD+OMTDS5N7y+mKd3yJgrbRCw9j5TbqecJ7ZEgkMTBYLdDxJYZH6FXNL9STSFzDNkNlJjLZAn41qpapb1WB8BaWLzooIIOWpxIBNcZTYbooM10al/dOaamejJLbMi8npGPbp4vgQkEb9EApAcR2Qi2L4f9mI130GX6synk929vMaEvqe23b/3wyXmp25eU/6yLzc6T+B5OiFkN96js9LFo6vsBDt9PfU4tzNtHbK1z1LWVRl7INXQeQN2EbK9+/349Cg25x8+H1n29fkHOdCqQfc9EiQCh4pRGIcjdKXmqyNlWFeNTdROZ77K9o3NZxU4ExN22k1+ymwoESi2qSnjJs+kTvrM6s51VzDUca7FGU8gs0jRuicdG3uTsV7mlImFVgLVEk7fC4iUNPdnkn1cxmBECxEBO9RA9+dpe8WGeCwg9iT2JMoutaxC2Vyvke/BZ/83PVzSeuyVGWb1gCdyJF0KXoEog+0VgjHZlvWFPWBuAH6m6TWpufT9FrqBjrVN2dR4b4/aJDdrzryfn3ZH0LVNDybYQNSo783WbM4ac16awyz00rhdr8ipzJZtfB4Jst3b3m+yYPmgu4mwG4+z40DBCfWjCwc5wtZXnAfzWaREtcO56z+/Mwh3HigR6Vl3Ju8n2yLnrIeiQiDVN7RN/7EJYG1O5oxwdAk/s5/2vFpWKvCt+k0JW0vl70iLHq9ZsxAaaYepprXEMjtlMPaay1yvOapNkdT7a6weQ6JpmUv3x5hQUAcWSCaGT5oe/6q6WvUzDmQ8sIumVP/aMgdzUu29tlHQOT839bktutQjdN+9mS+sqchK9YtsLuf3SeBJKKAthA6jDRE67zOQoiGm97WzbyBHYrTZrYoqgKDjnsy96qNkFHgnUKChCTwUH5xn+saA68bnt/BRZH46fgk6BJ5emYCqsW0R0Xtz2/bRqqDnXuuzdnuS2l7s72lbs5j2fe+4kR2VOZ3g6UmtEcq2ZrWUc5+vkKX1LNbI6hrtYuU8x2DrwZ+GpChHq81BsyZpAMbXhIJIuUUkWzEGew1rohLdns5zPQKVute09UdMYKnPf6E6SnNMQ2E5L2Uw92BFcb8tj98DeXm/1rSz8moOdt9hElUgsmWPfU9N1WQZ/d6J3pYY1M9ZkD5GWqST02F9NZTLnIo2g90OXPdHbeRmzaZ2DPVwMKSfH9S+Jh9oEuhXfS3TMJVkvfo4y+mCkZMnoQ4IFN+faY5sHVeUt7wpgPf6igz0hT/jRWKXyjLPM1PDCbTvjgW9TbYk2DHrSiMrrLPr+3qdnkWB7FWnBQW/LmGbzw2rDCGQ/d7qZb7VCPayYbq07KVCyVSyvWTVTLqllAM1NFBdWlKyfaP6MucdAbQtTRBceV1P5xXKkayBLe0Nff2+Y2xQRI9NfaLLiCzNjrhlx5LR7bK6bbvuirRH3aylSCLnequVI+Do21ZYlTXMM81NOu2d7b3icKZj3bJZNlldD6wjJpLtZPaZZGLu9fwo6PaF7RXlqAQaXNvLQfHdwS2qEGRsMPG+5oWeYvw0a6CnSN/gCeXVq9dDz5rnOR9JMKw22Had7iEc2j4pduaJjOKYmh2bPub3LOPIyLkdt2isO72quy6uLdxqoascwRBpy6/FZnFiY56x7X0mqiXB+a6n8h5CoJNxdvnFpTNrt57Psp1Tdtoyzl1+JKjRnGhbTYvpr+XsOmzyD/Wz232nktGb+ZxnQ4mBLguC1Fhln53Xxi4+euq3r5H9g0IRJ6i30fV9PtakSZujbrNF6bSsc+2jjnDiV99hebD/8k70r+hA961NpLvZZTE/Zl6+pj7KM426HCugbrYzCtXqbKY1uyrfUvx8Sxf0Yq+W/Ne1Bb3B3TBFM4O0Q6aFmk4rJccr94xDkpvM3HQidxKicXhqBMvMxPFZgd0am4adbFAeLErzTiTZrNw7sMZGATP6DErQ7ziuH7vx9qb6LGTHydR6nv2fVecbo3nW63YHPtHgGOgYF6K0qB95ZcZyQgNZU8rMPqJ3MMTUU3dCQBVkKB6yJnBTA15DL+mzzp1qlw2tKzhqoraau9cXCUJEDfF5jCGCKxlp/CMwGkQ9qTA5xotq7Y7HcUBSwZDWCAbsL9VOPYhohOyOUJ7n8fxpjMdn1WHXcj7YMcGPbHOqOd6DXR0RRBfy7ncPrPsUIgJvPI/r6cSad2aUCEdcHZDqwR2yuVbHvHU0llf13fM+KiF1R1g50BIhr96miHDKLJhQpBYgioLowa07/XtvAgGuW71+Z7zZr/qwIcbL8ZlOdJjJ683NgO+/T2bmyLmHMXTis+0+3Ava/ANsT0ZWf9c61zqktnsaqen/Wk4zHOg40Q0ZEF+fcwtmVxjnma2uWNw3O0RGao0ChuAs0TSsyLaZQEpzADLGlFpEr3EOvbeUT2wKu7SYuCgkb+QopNRAYzJLfq1nnNko89WBbrtrcfI3BLrLKnU6G66a+9cvgbw7nxeXw6RZQZ2sWEtjewGdcqbh/Mc/PY1Pn19/Cz7z8mLmmRm82DEzqNNfRAhRL7lvuruYyUhvRkcc0QPKTVBr/sEsLn4HfpL302X80z+/jJe3E+cPGSFl53bj6Rn9OdXvG/cA6eHL2yC/hjSAvjyiRtqzG5dTsoZzn+NVWDMgqXjWtB+AuMBJojxmDa4cZ2RT8PWBr4f9eAdCY1i3IfNMNtwLWcB3CABgTiCnUSsZuKrnI0m7c/oKqxJbTgrkQloeoUbzUVwMJVnAjM1/SB6kswdpM9oMCPq52f+tHEr9x2dArNAxbpeDf0A3kZ9jcT5MnnnjJc39XkSkjQi128zmEmVGmGqG3Q78DEGm+b3JVMYhADIG/5Ded70qdYP+Pvs+y5DHHKvERPuHqjWBrcxXZIW/s/bc2SpP+fKccH6x3eHsitRTL6xXz9Cl/zPrXp/35CL58csDM8V//HQcz4/78W9/fFDLyyfzcDw4QOI5hIMNnZ92cSASVXcNoxeAHqK+dHaykipTL8ZJRKtNDA08MtDv//iX8/j2CiK/89h9XKiLsPf4fK7/xzUurcYbj8cOCd1n8Z7hPfxzWNOzcZRAANLJqIwbxdxRXkF4zgCXnLCJUCo4RZ7zzmtDRF32JOebgQsTuOGAumvEOYERolKIqZkrz/nGuVFNM96HuYTseDiGl0fr8goembeP8QiOnIN6PmMe//zTdfz5p8v4+dt5vJs8Ebwb7FSDUr3zx/j2clE/aLPYTztWAUl2MWDnm5yzuQ6ZjsWi6r+o7h/aJyfK0OyV6e3HaV9eKeerQ2T0Rua2+SpVWsKFMDqPAYH562vn1enmnHlnyHvUMtLVDakMTn8rPyFwcXVOoFaoDiGSZVUDvzhH4KG4iMjSCIA7+aLfHwt33x0btb7WLdZ7ZxYkLnQMTH4qxtvWpl/k7dZxdJSkeq/qd6VgSvrKIE1iNxHXXlecsfd7r5mP/zwra2YKYZTKaMzGz3NUD+R281lf4Q1tJ5PBimZMFtyDQggN4HciPghlPun5TSRTRtXafL3ORT1ji1a21gNCkZt0y8UejMA3hzlzNaN1yXzfzsz35nYJQdQ4ez1nI6Ui4ZUOKb5LiFSg0nPTSOIqetbq+7xXQkAUqEpgkCFkADyFkG4qOwnuA9tTTQOHc2SyGo47/WFicdU2TaOWROGsqEMe04JKPXves0GbmcrKLVFf/a7NbcUp7hw0n2Y5cXZdWvaiO1ozhmSHe13Strbzb1HO6x+yx9dgQa19v+iaqK2H6xn77UNP23SGOaeBgF9d3M4tUXkjaeg0hznFF2zB0JyXqWSnU9efcc24lYSyHNps1Duv9MeM4xoyqFrHzuK6PPzU2utSzzrRzGnWoFa5ghPznE3p+rHKzr7P7sDS2h9Xw9mf7XIw6xSTfXGivfkWmfzdWUtwYAN3Ld10JSQNjmIRZv2GXum4IGevGbEbgzQOUnoHxxDl7yN3Np8hVLURYzIIfb2OVzvP317U6g8lAlcw1zLYOFcVjhccCcYka/tkZvsoUVriemEHgyoovgR5jAhq24PGFsmwJMsZwEzakXBIyF4FcVhe4GAC9Rych3P6YmeDes83oAvm1uHIiaarLE5YmQkyXOJxv0R0049SJ9BZ1yC6td1zY1BOWTsRGFMz33n1UoV29he5nb1lno8EWYIs6jmMiTpptwifTEj+vT9TzmFVL9QWdZ2I7lTF4vKWHtOJ8d0+P+tTZ01x3pwh8b50JASHrvGZXTtPnjZrgGPDeQZsHZnmJ0CGD/vxTDI8de4QkgKfUzkLYbsNbhznEjYVSuMyKBjhsAWA+NuxdMZlLc4y94BHcjWXdxGFvrxdx+u7nIagm2Jzqfc0MvfToVH/X89nhzoHGm+YdLWRXI2C+l1g6bXdqgTvvtO26pbosmmnL+p6YzsvQ6jseUMCsKTDdo85bLL/JM6aPVz7wxvESEzx3bhNk+0okrShvR0CHFify468sa9v1/H124Xfk2GOcyxCOJUBpvZ5nsHpbMZ53trP3nXLlC9AkWUdmt2+PXc3paWbi9Vk3K5zOdKbZSzHu3n5H8157k58oPPlt8RXavbz1l5XXmFDJtwGGnvxTmPU8t86RH77+vg9OdDqUUdSYQsHKCszwbpe9QHMSpipk+pK4dixbjSTTFjxdLrEOOyMxwGRZESX5j3LoYih0F7lFPvaD59gHKFH44kHR5kWRHTdu/dhP/bHBylcxkp4lcV3l4yYJDSB36ROZ7Id727qtfTbCX32KH0sAjVJxknsupWdzoVqc5nUih9xnRKyQFHwNHKSfdRH0Nf0RPYsGBKI0o5xfZexDpZujsTWzwea43p8dNJtKMGpgCJ4fBAxFvqmqse3SbdSz1AOs2MVPIAySwIfvHIN1CJK91EPbRBpTaGqHspwRKGglHVOJteH0HXaMT4EsQtDpIqhAwESdDuO83WcyBaMzDNYytXvGPUaFISE6cBQkrHEelDsVQtE1M2rj6fqjK5n1FDtx7/94xjP2GvPJ2adx8X9Z5+EiwODsnqJHhUxddqFZwT7zp4Qz871ND7QUgcQdNYP2vgLpanbloVJcQqZID8a42rbw/lKFr8Tu9BEYfYH33EvCzBmU80HoN0u8xjrURnpkFlB6aWeQPcXREyw3HLy2h6rU2Hvj4J5K2MqANYMSjuv5dvxfeYJKCPQZ7Yi1elz7aAVjHGeG2QWzLJtI+7C+uMJJ4vFzeAJViREb7KOyyngo7NH2sfYX2DUwcgPZF/15TEWxbrp/WqII+uEvKjMOCKjbFmmfY8vsWVXkKH6yiMrATgrIvuKGEPmxSiQynL3Alb+OiBNJm85HApATLtbBk6vYQ4ztjPPJanCaNzM9jIKIr+mMo0Ror8Ln4DIP7KOjjTN+soW+U58obNsU+d4Y+j5Zi7dxRklIzB+GEbs7+qAIAb+ifW0D+PLM3rcQ52mePXXfymWIdZz7BGy0lcgCGupicT8nbIHi6l2BgjDVcHZtRHDtjFwGJBdZe9mOAzX8fXnd8O5VZN4Pj2Op6c9g5KPTwchb/Y79kNFpvrl5TReX87MAuuVYEcGOj0x9oe+ql89RUOEUIronXF/5CKFNXc3Hnf78ThQG3lgf+dIDyKFHj7GO4Jf+AF3gWF7uoxv397H48NBmfajWZwTbcCnAyBBYNRtCuFJi7TeRj1TgSb2awRWJ3drALoL5wus4IKFWmfxnAvZlFrqGwekfU+wt9h2k4HtnubmRWchDCYxxpagxOZudnwnH4Yk8WxbJmdDsn9mrbevXBv3hgPKXtUb2f5+Ue02M7UMYIRwLd0u7PA4w55ARWyK/gCUdn3Pu+yqylIQQCneiznPgQLDYf78ObXOe/6M78h4EqJtVmg4WJGRaT0l3im1nJRtOaHBMK3kz7hN1naN7ayIl2DOI5CB+P3bqwL9768X1t0y2MMMsti/Pz/vxvPjGN9eduN1dx0HZwrp4MFZxr6EPsC+OyswkU6FRC9Qhxn1VsXqKfcR8iFzWmbm4ujZTvN+mA5cjnRhCUtO81KLrm/7pn5pOYX1x7lHyZvP1fv5qgBZQea1X08uxWApSQvw5h5k0GdwZozDKUSces/b+368Po7xcDiM19dBtu2/fDuPn19O4+X1NH7+dhrfvp3G2/uZ7fwoy+hUC9XDbgXNyaVt5iz0uGPZb2NOsVO3Du76w3rOrt89c+vcdttu+/6UfLCWHuu3ENS2YP/QvRei/KZwy5m/ir+GMo7dS8LZ1IjKrH1DWKbHEzdCnStD6PsTEwEafp1tsuT3nIFWadQ0VpIlDTwSxik2CBRzGPBiNOssaPMUM3KLTBEuSPjjzDpwwVsac8JT6sMeFAiv5PRhwTtK2GBzLXX6LZT4z3+TfWuRr4b1v5+F7k50Moom8on1R+NZsMiieKrH2WbPGglSxIUmQH+yHInTGh8rVyJTaeC/lAQ23Cmfonoji2aGvoUOytUhBA64IEK0qtq2j3Qa9SWYm/I3t/3sKOmrU+gZMmujGEoNffrYIIgwoY5gaFa1NVaMjwhnhzhkLDi1IOfYLXxMDiUndNbA6N/7VpekII0QyaqBZlP4rBkCArsxPqF9FlpWPIBdBBpXcL+kOXpUPcVmMggMNwb0vTaYsycWdA3R517r3RjLH521aYiLrSKfexjzYEKHJYPnGq7GHTCF6TTyCBWvmpwWOXQddx62DLYKPmxg+s3JryG2aOz8bdc69RBzF1VGqwqM6jkV7TTBSNvRVV+c2r8OUMEJaL2Tp2Hk4B6N4jtzm7heEYTMQs44erU2m9KVD5ZJTLo3Og1BTyxQZUFMI0/m0+qTaieoiD6cKGXzOqJFD6Xg3uy9C9crMjlzmg20yF6vMdUkvZ/5+FtIcdZJax0h1s5b/bln7qdhpMCRnBYOp1vGBVGtnNkcR8lLfTJGrYbr81XtYXQWYawej2hjEwqkv5/y/muvPFnV33VLtb/P5CsIbk5ERfal9VkROzVHS560DH0YRhe16YEBCccYuhPw6StbWinIzGzbcTdOZwVoEagFSeXaG3w7i+kg4SdKVlzbSGcmjiZ2GKDZDjThC/L6YezHg4nEHDoSSQ1Kv9DXNSQ5bG2F9kACfuK5aEswC95qN3sQLrLejsLsOb1XkKllRINyS3CKwQtybsiz0v5Oz3kHe9t+36Lo5OBMwsesC1HSblE2391mlI5pODTmZ/l9c4+6UetG0gONeg59zbdP+2Cigubk4Z8PRgRA9syUgZ/4uh9XtPRjQNv2ni37srb4fDauE+Dw+3KyO2KhP1zYfdOmilssWfqW3T8e4DQj87wj2Z0y0Bh3+i9PSL0kYyCmTnXYmS4HsJxU3bsJYq/dmlUMyVnOQTKeL29yoAmzbpnMZJ8JQ//AOUO2ezrHCoJlsOiJjrZpawCjurd0ZEOT6d3rmntzuz/X4zt3zZ3lqBKyFtrdiqrFiUxwt6lQZu11ciqdYwda3KlYlwRM24Sz1EUZUyIQExjbf4xXty9FaQtaj728fIzXV8z9ebydzpRb6D4AGDfWAbKCmeeqgW7dCzIPhkAvgeCyYdbJ6bo7eyO/z/N1R7PfZzt/uUb2aJWF5X8bUynnppAJSfZNwTR6mner9fIo3STjXOC8IAmD5ED3eaJrNxipvt1ql1TCzfug2htPG3f7+ls51b8NCPdYuzigjhTfySCJINPxwIGekO37uI4je65i8hTtyWSjfpb1dWSkVNZ0Jp1DmNNqMKYHPSGG/n5A9PkRM38ZV0Sn6ZjgmqgtgeCBoQCo19gY3VMQJtMng2saePfgBXmV0uysmTZ6e2amF9nntRKKzP+2dzhzFefMCjZFkVGsS0H+WlwaCEY3ZlFfrT/meMb4dSsTBjNcZ7kf4+1lXmMGC1pWbTMf5eS63FWKVr9ISyhES6m07Gh/fCTToD6uxeoXDRBlOxzljVNq2KOU1zRq8DqiwS7ehVoYRHWpPFEfpXWHgwKDkEIXSg1DINO53V0Ymicot8t4fLyynunh6WkcH5wh6qQQJ2fpvccc22Y4Fc73x9nkZYa1gdkT18HePCPTxPouGWbqT91hWXZ+vIcCc9NJ2u6ZBj1sG1fZGKzhtUX2bQhWexfVhs/dJ9bZ7O+bvUvFPRmm5x4Tk318sxK8iQFsoEHKCq+CVs+ZC2hzb1me897lHDFAciejGJKeHTAH08BAcEltNI6K1NOY72pBjmmMkuW+RM64FpDfFelHL/DK0jrqK+MYmSutAR1HZ54XxRs55MdWP2chOfY9M13O02H2bjfbawINk0apOZ0OqHEvKa1VXg0d5hr3XEvFAua5QllUh+otcP94CMt+sAyolHd7VndyWMnhZh9p6gcbSBIDvdftRAdp2MpmZ6slUCWovluFpVdshQl+S68+njxBm+fUsDm4NWvHmkNZASDDW52p8u7ROaOzppQ1av6gk5GJfn9AnTRQQeiV+jE+PR/HE3rmPu7Hy1dkbs7MvpKmo2UPAj2PlM9+ESILWZyLGhKQJdmkjcg8M0iVJ0PPXDmyD71He2P/gg3xeDjQyUXvXiIZ2KoQ2WFUNX+M08uZMvcdjjhqLc17UQ1v42igQwDQSYYNi1jqQFQHQEVh/I2DjfM364S1r1E/GUMwQY8EXIWGaKZlAtvBTVS7pEbcVjDWBq5t0b6sP+YWXTk+Nv3Wu9GuuJHu11uSzcTFnd3nhVxaSRHtot0DGHTq1PvZB2ICa0D5iS4WsQOo/mZAgfW6QSOGB8KPZ+YXI+2E+sq0zR0ynQwiKpojDtTE86f9+PR0GH/4kjp+sWSjawb3laHd8YOPS0069pYQYLMluTiV6WixTMwkta7pxRo+P8nxxWeQ7QSaI3Mse82AizJjUqs6nSFlW6V3Pg8Er0xkOsDzchnfvuo8sq58D3vBGdGUpDlrjyRSBZkt63sP3mKJDwdOMs3LDqoNbMc0Af1J1pVL9Y9tnabJU6KkFhGAzMgLvZH1JKKh25C+EFFER+3xd9h7e5WP6Hlsv6GbiZn88Pw/8z6YS/E8AM2KbP23t8v4+noer69ndh54ez2P9zcFwoKOQDY8ATzaLw1gt5JpRZ7OIGeLRxiJN5GxOUcVXGnQ+3vBUR6JCgglsafPlfwsc6rxrOSSCaL6HquPv1NgxmucZ+vnK2c6L62dA50sxm9rngBTyTh/ngOaZVj9M5ARx5Dpgr27Q/5rLN9H4vwmHOit2XA3o3D3c+u/83NgdiBpwW8fCZlVzSxIvNhZJNnTmukZjUgjg7uOakGbmhFIoVxMKxYeB0Xx4JS4dyQO1/5kx5MHJAv2vfq3GcHrWfDvr+YU6zfwp82PIeLZhppm7cDtPXQ4pImienPAI4QDx1tvG6cm7NSpAXY2W+xD1ZpoFkd2WFVqcvBvKIW1DqKyfUsQYELfI7hnlihQTGfpkgF1drcimcTVTWN5iss4jZMFfUbM7CRsHKeDLWYEaj66YKLi1N5jhNg14ySQsuciwSX2xtTUQMkdHh7EvJ0gRG4PRhYegoSMsdewNhIocKwRGaV6NqGEAhSCzop8KnupZTh7oHLZi81DbVG/kj19Py7WUtjS2rVo3DiTUjfNvpzQLQUzZtlDAjz7Dcog/xaybCW8yIP0Uol67o3gXIXvdLzKkN1EePV4W9m2KhGaRH6OnK+lZjZGaRNw0yiwY+nTSCXvaFFB+1pZSpYhTjACPzM7n7KEyVI8jSsrG+8FsQ7IiJcxvxxXf1Yw2R3ZpHzemrGfNcl86fNrhHjbO3quRZMvLShY9bRR8jeLdmsAdzk5oYXJFrcASpRpZQC9lgVzn68EPNIir0f05zmapSebEY7f2qsbHr1cJud9ZvHVliWGbc1LSn+WwExMds0HjH9mok/aj29vgm3jvacTMnjE+ztwsmemGoZnMmo3bXBM6FcIhFhW+K05KswuUC86DsGzoQQMTgx2OjIehCHGgfb7GQSBE4dWg9r8aENFWWOI7QWZaDwXA6Eig7pnJdIx9r/U8ggtvNDmKQauW+akpVDmvYLqqoudMfMZRIqtsu2JnPlI0LGcjta7mEHj8HTUYOeBlDxomeUFYbC1X8wp4AsVvLw+0M5zG3vumS4WdPBJtKa2UAmW5NwfAOEmM7lsqwOChIQTKxDCYF2yvlVOoYvHCJdKd118k+1+6rEObToSkplDpGGfDuP58TA+PYLjAHXOcnTxRYQBiKxS99xqcnMXV4RxyxHB5gCzamUTnBO5KteXTnnTld4PPVfCNlPR223B51HV/1hehPZfbhUnUJNaVb6/GtFXGUbZKItUzx6qhXTGPVs/iqQ50Tfba/uLmbfQEXIgslnidiHb/quPzzNHJ9rQAxJ4lQ4JWmEGPifzvrz3fSs5CFqwiszcCz5OLETZwkFghxi1z+g2AOcdAcCFK8iObbiyEhgklLvmY5JEK3nh5wxisb2vTNVmMpQeCuqgTc+9eV/ab9YC9uv5bDUnPUZOyuwqilOKcFnWuYLhL9i6L/V5y3ie55UhfsoQDVC3zfntY2hnlcgCSQ92VGhOgiXr31Ql/6oZ6G4kcSGPh6XoH9kbRV8cBadn6/ppQmpnlpQVlpV9xIauot/V6IpCaYvfdx+IIODQBC6Gmi3A9NhnmXVLH+xXOYGdq9Gt35j5sHoVT8Fw71WGY55nNp5e3ieo7G14ogcf1ldjjfUbA2GJ6ZFANmq/+Ff0iuuEAGXw6+8xoDhuaoipNEUItuWqRx25xnDYg73R7NOsm53OVhmjjjQJ0pZFmhn4+LQh+EKQg8aU68cu6QvtbK4go5pPsWJ6rn1pKrNTslITgklFb7bQKIcIU3G3qlaIUCyymR8E8yMBjYl4BsoPkIW8ElYOx/nh4coo848/7Mbzs5zxPWuY5bAEcn5+9X44qe5vjyyk++nJDlRv1bfXMV5ekb1QP2oNVTDusKaH2ZrCNtFrKxcJYWGhroQCT4c2Z+92c/X6F6+NncS+1/DyFLa5mxRMUVbeZO009S3c91OT+nMkDeUx11QOzjS654mYN0kAxPRBJWyjvKnYTEoidMnMwxZ8z/jCKPnpwDpUE4elOdXJ0q6KYTLTN9O5ObV29sG6aaKMyCAYDBSNzhCUw71Y280xJkIy2Ec7UTibiN7D0dlh72gfgbPbFUZzzkmoojEsvMiEus41Ekv7vDfOf1Z5gfDX0Y8cXGagCrWDjqko+WZfyqAvAOxmj3j/+YyT9C2OcTMwCLszuV91lC1oJ+ZooiA4/+wZij7G6XX823GgXXpZ+1NEX7OmUVvPxIMLB8aM9gfiSqfwgLpK1/x74SBj+ivQWGaJL9cBWx21vvgsoI7ny3E8vu+ZuUG/aEEkmyo1vFHoBwWj4g1WsCjqyKR9NJDx3cYws28IvH/od3nhfAHFFqOaqBxSSCMbehyn3YV2g7IZev8bahqPQBuNcbxI8gORRvKxdsboSFkpYdsno1j1vXCkPG6Rr8GxcTC+WKdXdOR2J4knYrLQmo/TZVaTIEqy3/rxO1ZHuXmWlXTMcO7Bh2Lm8u5E+9269vU6TphL6FyPvTsaCYTMzPM0aPMzA73sUz8Dfsls83fMaMqxSwx58rRo/Xh2nW0s5FrIsvyQN+VyFZVrzn/sAcvD0n2u8z+AJOxxN374LIcZiEhloFEbOzPRj08moeIeDt+Ka3VRI46MMuqWT63tEfYsGOKZjf8Yl6d6jEJiJNvIo+z5e3rYE9kAIjE88edPH+P5UVnF9FfHWF5PqE2Pk70b/2yb+u39Ol6+oUxhz/Uke3UhGnqwZX7LF2W8ncns2UytVZk+0/ytulz90BW+2rjJTvD5N6s+znJk17J/42x1tmmjg+gIM6liQrF0FsD8AtJ+8r/f4VMQWqKgi98LojCiBVEbDZ1jRyPPhrnD1zvI24y4IRu9AyM971Iojc15zuMsOY2N6ZxJjSxA/iaUSCybcPBi9wu1z/yKz7D6zvUhXtvkaXznjEcVie0MqqzksjufneBOwwalnNp0mLVmLdBT5JUt8ZXAdGvnRruIu7TdtJ4vxVYaIIJGQGF2efW3fv1qDnQpiTwjlWTa0cjxxIQoY+kWUq7VTUtJkjT4d5hIOtGm32f9bhPefNFQlBEaB7rqJcqJ342dtR4UCiKRKqiXxt0f3S4oddBNWpezWlA0w1lLCKzRuSX60hTMreOaD6zPU3PHD8bIWPfZ6m6HKCNSzsGFYtZOzXMbx12vZj5vGT1zVdu45Iyznho/PmaNZw/GtEIKPE/G3Fp7qemVEczII+dUtc8skwdMLvVAGXSy0ib7CcmAMvA+dhaayJTQqCrHySyhgEKnvq1qLEI4JAGrfeyJgBENopvM6XXH9iZwfeE8k3X7eB1Pj7vxmVBGZfPh+HYqUHz8/KY2FAMtVT4SRd6LrMeoe9wdQvyN8KHDOMOQ91i4jHbIZmgv587zWpI3Uefy6IoFdRH6OUO1vDMoJLRAcW9bsKdUwDC2IAi7QslYunK9pzC7VPc4asNX6YSJ6Szxxa9wf99W3U+L6MbZXrK3OVftvTMLF8IRn+OWdZ6Z8M3drTnCMJvtqvNnCGeUUDM4p/Oduvt5umvayon2mHifGRASagP7yIRyuQEMDRqy+3EEqsGyVX00Y07JSe97SNkLnYUCExjVUQvZ/lvZcCvXMBNPydH/bYlS2b5pwHwvEqnszozS98w39kQyf9m7tf1qgY1MqqBtg6i6BVicc+4f/lMlPUHyfE9p/xpuNaCyi95ozlk0S4zTivT3LEgL3FAeog0USeZ0XcgXkMxsdRQuwNIqeoXncT6LbI9ZGDhpl8N4ebkwi8NPc8O1uscqUwi01vrTmaU4UbE+RWxnh/ID/ItoL7cn+3Ba1hEWbXlI5wLSARkjCNMPtAeSJXDaA96qTDzkLzLleA+eGzdmtoNZ66onkqMK9E+8L7YzlO0iFJLknzvB1JnFfCJ4an/Er555vlcHrkWLbCv4M+0d1/PamCfCqSznVZKX+DT8liBf1MTi/sygh9yvOU6eR0KQkclsGXM6y0UQ1VvoNEs7kqDKrkT+VYGqOBSuk0x/r1SRtQpZlRjYnNB8aPMYG7c+bn/8e//OdVprppQn0Jk/Kuv86dms7phX9oFG4ESBEH49mm2b5VWG4cfDg94+IdA9mZqRpcQ5gSMOpw6OuFrPuWwq+5xkXxqrCBxV44zKQgTmsVefn4S3/gF12th7JEYd4+V9MLhOJJORh++wY7+d1UprXMcRJYluyRaPbBGxbQk5z2YX38q0e47i6i9PfaDzbFsriChvnLILFodru4enLVJ7LUZGdID5UyuwDsf4oLk/gB8X9d9OAumxJPgQcBADNwJ+IGi78r15AX7PYCC7tqTXs7Li+Fw3XQrdczNP1kObOWzvap/vKJB2vjzfqQXeXktHrnWa2arPuvBUwLHhJFscyGxVnKULusjfzREHmCBkn/T3xgVTAJcBM92vsukuKSjEZiXBnGhpGfEenM+DE86N6l864H8fjfvr10CXBRgyMQsyRPgekLH028CwbIX+4OwAGAkheM5vovWPkgwTax3Y7nQ6wjwF6SotVPgvYxLKEnURRablftFw8Pum5EFuBtkk6Or3n87ljRGXaeiHgL/MBp+W61rVFgunp/7uvwpiY8NYDux0orUM6ZmkZ50E4D1DPLM5NY5k2IPyHGuGLyRcyERk/FAAPDCsf4SyQn07jPc5V4kx1bM5Mp3gBoIgtMko0M0wu9RsmCAFUclu2Ke1TjMWPxYjnCHbYmcW+3sPbOilumKxqLJ+zk58rq11QZRX/XxBQvJvfjww8/z5C1q7DEa20eKF7rsNfRhsr99UGwiIG2TK6XLinj8zwoo6HkSOd6yTwn1BaPHyAmGvrMp0npcF8XpNvlax39sp6PVN21fb770n4YQaNim6veViEbZ2SLW0/b99LVrtXhMV/atbRHFa8/m1a+xUQCF56UZb8+1m5r0RttVZd//rlCMojFYuojO8k/gmF63n6Ae8Sg9Us96V23TAZbaoPZnrns6qLdUvtBFZI0mEh51tkstpg1egy+UO4Xmo4JqjA4SCgiWdBp+LuTyW1GLK6U3t3uQvqKfqhF4to5m/xTCcn5nrV10JvgPf7veY6zllbOrgVcYwneWCAi66wDJrqe1uemJOS7uGwgndFCF7ctiSt80627V+DReaTkb/RXOge+bDib5JsNmDCrNdeRk/8yj432HtjgNlmT+DeAjyISOtmxO+/S7445TJTQ9aRojhWJ0HkBU94B9EByiESWZ7/N7+dzKykNo986rHmmUeZIJtDETcN8wyASnk/Z+yHhjHo0MzFeg6vysTR1bxytZauJBxf8LlFTCGw6PgFXpmK4N5cMDHAYlGQCnItd3Gqf6dZTOHQcksvZOlaAGW8NB+jFNqRz3HMRdkDmTGcy7dJaOc1W75+p2Gp6afbbO9S8RXaVebf/7s7CgYeBn4zl60cwVkDdububc0mxI405YgQ86lnmfK224VaRjTuZ+zpL97amZ1zgb+Xs59CyLoXiolRLaZwaRnOL278fyDUIqHx9hk5lIxmSez5akQDIu4nWfsu/e3Mb7ymS68DsdxNQEY62pVUoDhqqlMEHnTByIjvgn0YDtjX+J3nzE+IzXYYeT4ND5/3o9v3y7jpy+n8eefT+P/+x/exmkHZxF73/Doxo3SrMNFJHfVXoRt65aZ52K/0ftBfzV5w7dZZk2UzzYJNtcn5VwVtKGdnumZ0aqqHYfdi+DFSecPzi5+XuwX2ljiQkByAggbyrD0azZnDhnimyNNmdLI3ApN6kEv1D7b5jr9nLSdmt+p+8lM9oU8Lx0RgkrYviqQ3J5tWb/oRftbC3rO+rPWYyqFkiUfJZO+Qx7XnOvtc041LHnJtrZm598GWvQZ8QnUXzbX7Rwzf8/Xrwvh9vcILRBxcArciy+EHUq2fDBjh0gvUIaMrB4vY/dm+CnqoriBQx8xr41XsonXy7nZbt2YatFCJmfgQO/H++U8rgiz2/Jg/esHnCKydqzPU9nKXL7X1+3uGIBNuXXnLA7gL00aH2rW39z+cfOrON/2FqafHOegb9soveaE9Wyja01rxGWQdyrV2a4GGiMEWzAe8Bb2WmTUKVlhZ8QCDWhOU18rKGEdYBlfdKD5bouXxobB5SS0zfdyNrT38VRQY0J9SWJyRosstCER5HQxENpqwiCksnm/jDMDE2LaXpbE6Xz8jMzzn348Eur1+Uvqla307EDTID9fxWKLPf1J0e3zhY1mxoWETfvxfjqwxQIcaAhzZKFfXqR48VVtJvuI216cexPZR61bOVpxkpsRtZYoTGkfISqaku/EclrwYhGAzX6bszrdk9ss9OYrgZvm5PQ9k/eUgWqtJdba1QlL8FPKuztBk415Hks7kP7KyaFCJ9qkEX7U6Jtz4sPHvxGqNturVXAvjgQnz7X3JJTbTQfaBGKSm8iwHqrWawkveCCVcfcDLf8z8zePYayNlQJWZS2BjxeMN6s1v8eB3uyYMv63cZ3AfjsMdGsQlGFSt7ndm3Gg1SFh/m3u2XUvBdY4kxuTdb0Pu5y6+uX0ROPoyPn/npP893ee8YrRNrOBHnp6l81lodgtG69aB91mgVI6w88lS0/SuaCHBAVmva+NWlzvHfXO6I5wuTJ4SnhkIYZWo1HZfpVS0VnGtUHy5dIEOs2UmEKHJfOcWj+yyVdDsXAcTAI63DvBE3IAGC3G7LTtDZADcvzQT+bJ4LFgVw5lgIHaYJ/g7r0XkV9tJ06Y7AnM67XKBdAa5+KMSTIyLEMyEmVTzDFLpdrp7igJEjomGObPLaWXRlnxV/EevdnDIL4NFtd7fA/NgSHFs1y+Xguq0NozxJwZGeZLbOjtM645RVb7PXDYcp4N4170sPkhUrLV/su7bs56/WzZrm4q8yX0WftMnLRuv0G+IjvPDi278fCMFp378fyHg9totXnAxcFRQbJRZdOjrzSHcp5Zk+w+zhgZCUXdfg1OcxFTITBOPMfWuYoPYl0ER5pliICzHsaTycRCaPXly378290jCfz+8uU0Hv/xbfzHfyYOfLy73iGOsIJQ9w3RrmMD23XsYJnD+v3qA5djloWJzE1ZmT6/fpCy2i1HO/Fcn4saSoI4QdiM5kCzt7OcZPIDNy4F4ktJ8iaINlpTlezwtYVwTSZ6Eicq/jvL5XqZUuh162G39dXtObqrWtlmt0qNPuvvy1wfvrNQ95zYWV9uO6ZKKVaESC8ZrVIo29J4yc4EeeLtTRLU/quv6G870QwELqUjY5bw9MD/9jKNI2f8zyYDzRVWaxMoRG42ZOQo0ZIt0ftonDJT4ybljMQIEwoli/6pOoCOmSzwh1Z179v2l+Co+DpQeJEQ4KyjhWuDTISs3sW+6bhb0za1KVskqRzUOxspsLrpcK1u2r2h5nk6pCURIT1zz/zcm2sJx15PyMhOwWAUar/n+AvW1GGQvrvHXhHzghH371oT3g9ZfZBooO6XfQsBZ96NE+BGhgR2Z6VH8nQNR+VhqLluR8LIlRjbAIS8otv1zvyXIZnWWBJ3jLKTQXEKUSqM1Oil1iuM7sygq+81IF8ZMktsMMdQbseDvjsLjvpJvFhbz6y6AkBAX+A9iHBCUD86G3OGYv0Y4+vXj/HtRXA61uC878cFcG8T5QiJsS59alWydpUp9Boyis3+1jZoWwuq9aWAhwIRLUhka0r7MQQuik1XC8YMp665WZdlzF15NhbtzStnIesz+6h3h3X2hUb0GfYOmPTpgO4ODJYZkG9ots9v5swkG1QqVOKNyIbGqfsId1+yZXrrNOWstUyN2ngEij6zSNmT7+9qSI7gHeeXmTxHhwhN9n2qhl5rVzVI5bT6qm5VpUSzIJts38GsCUiX5CAw0GWlVukmP1xg8mtbwEnGprnvsmxtQdXrkqes6YGL/GamozOXKsdYd0v2YSdcW65tmaBzn0PfHMksnIXxLPloDOKUi3NxZNzA+AVK6bfR+/l7Bsw9dZDlUWBJIbBkNlMmVWcoNdSNYDJZyH5o026IpVLsimDkFvUN0FvXsT8L4i3ZnT0xibJCDJV+6HAqINMg+8BMD3l6PezHg2EgympOR1qETa6ZR5CTBq5thnRWQMh1j9rVwywPI1xYhhvkAcflDgYIAFwBRf90XNhj2c8ZBjnJ/npIamZ6w2AtFnw5JrgHe8+W4y/9mnUptInbJJZaM2lnHBc686lBzOfUBWpyTTggoeD5JALtRngPRKRkKfXRF6CeElx2z9wu5vpZXAMhm/1o+VdkcUG5+ZnlNBs+W0RPvSDEtkq3Y0rQ6h2RLVV60soRSpR026WeY7a1CrJBDkQriXFmDg700Wzc0PM7fNF7SfYUhHW78fHOOD9ZglEW+BkZz4/deNmN8a24TCyfz+AyEbIRzgh6liNvA8IqmmQmpQLJXTMYqw45jg5zPQgEwf4It0ECp4a7s9UT60XBMP4w/tv/5hM5CS7IRKMNk6+xwGS/47Rw5syCLJkz3y84cP497VUdHItf2BxJ5DQHs6DC/j4TYXMofQlLl96Mbn6PlAvCQ6V7V7Whog7WfKFWHfYY5kIkZeHl0L7lvnQmG6hKZqC9V5fN1gLwxa7d3JDVjr47tTXzE4I93cNMtUuHG4Hd/HjNfzubCzK3ss0zMBGUUVjXo7NT5zwP1ZgFXuXz9LVZHyz3y0bpHBIfW8d5U67Kj5ppP/2ga90zDyiHNPLyLuT/9+lAj4okpqZwD4EUDZ6sQFoVMHMpp4a1SrJwlVVC5A1tplLTy1dzcm/CNvlH4NFSonTCcSi4iWCQ7QkvQm/Iagrfo9oFaTRwrNLQUYh943YFY6iahW6NppFl6Y3fJyDrh2K7XepuFroam/u4kvHKsAgTjzAw5vCyGG1nvdty/8Xe7T1YFYuMsf5xPRRhVTw45qnZN/JCZQ1Y3sPjYXz+chwvO0T9FGolJDBKvN0w2TOy+KElRBWDKIOLejM5I/1wuvg2hyrZ6V4L1nreIZNHJwHGEwRtPJBCaSa7kpp7pydsOkHBordz3hr2SiqLh+NANyw9XwiIMJ6TetMez/z9w+Mj3/PTzy8itnl6YDYmDvRPP4/x00/OscDRft/zWihRQFhwnbeE5xq+ObDTlE7AcCD8az8ucOaLNOt2xxX9Jueqtxjaxi6mBkhUe9n9d/E9TfC3v3dOrDK4F0KpyfhdisQLULLAxD/IfsDgvqJhCpwi19PjA9jBM/DtE1vQVdVyqg2AWNFjLoOhvcT6EiiYLNyl+qYHPfub27jmfmnXoKJ+Rd4B6yUkjGo7hdbANVlH2DJg2c8+MWWEhtwGvXagithaBwoHRi0Dj/uxM4wv0Wyw4epezQmmQaFMXHeUl8zBxkCt5S1kSLK2apl199WNo9ZiChm6VTlPRxwyeMqkO/cup3063eVDN2hhme3eYxxruBvai6Ub1/Nv0oH+l7y6E80ylyJuzBuawYqsiwkX9fNGT+XImtRrGp64PpxndK8Ym1ZIGkB+pvNqqC/1MBxlOn778X6+MHO0eziM4+FjPB+PJg0Dz4TrQ5tDx6wN6hjPFwca4RyEtReEjnAkdktGLGOAviBqik7qZbx9243zYT+en9a9SjZlOkiuwTbL9N396/OIcmqIaegqOtT7HdtdVRA9DMkhj3IPP4ePq3ZQ3Xjk9GFfJltLWW6HKtlJ5p6JkkoW3nB2jw2lQuyVG34F991WWemVjhuG8Q7HNk5tqdPVdrmXL4h7nSA/HX3GYXMPkZLhC1loOtBVTzpTm4UCCarI1w07gasEnDWZd48DIWN/BvLiWCpgJr0wS0D8b9cTM8gCBCQIwx7349PzYRxgq6K2sHdOovNqm+2sOmnUun+57MbTx8f4i3l7MAFyjhX0hvP79o5g+Z61zNgj394SEDW5aBxm6LKmH1OWBAIs7IMntGjrzlZ3QvGcYIl/PI4ffwT52X780398H3/5y2W8DZWOhQPgX5RBvPuayK1pEEz7N/ZJ8YcgWEaOAeuPdsxmVrSxrLeM8Nxfd4cxERqTzYP7GbIMr+PbZRwu2EHyFk8oDQWyD0RhJgVL0GkGDpHcuPA9KTNQMLFBQprwrP12B4HVH2CK3VlmGqRgd0675fS9Z4/jfS88zd8yGWBUD8waczUlG70YXZbnicNt736liOq6YztK/ymBkaUUqMG2K0HY4mJ2W1KmkITGEgBzGQ6SIt+PSPxGHej/HNy59KwIQhIiU3ZHBAmyy50BNFnT7v3IzEmiuTD000g+ilxOBpzrKnunknx4PHKCz+/vU1nzz85WGULMGliwb6K2GoYkWwyh7gEMne5RWdpjXeRZ+5NQcRyCitvM9yVDIFeteR7bVldNYShMk6toU/cIXTfcozJa1n1mwuU0TWNhBhC2cZuKfjtClZrQ6QCJfTaDaLdIdWldS+0bWh24ayqhuNLbUMgDkXH1sZRDU9HUxufclPg8V6lDnvPe/cfUjdQ8+LEqW95ruciwmxIDOc4JaVbmPoKe8HRBsXCWQTCEN8lhVjYExNpvtKaUiWEPazSWh2AxIREMTfQdfHvdjfMZpDhjXI9jvBKyPcbr6xjvQF45kgsuAPUF9Jr53542sbeG/dnZ6dRCJ3jFXq5wirKHm5PagxE9pLItRyi4Z+YzG6suMDObSxG6b2FaoZnFXHdju3MEcDOOljZWGe38dyLi01BWxjIO+Yx4r9K7mMvbs/W8cpSyRJYdsnKY3TSqIzoM868nstMhUpxZEhGlxZZ59dnJZ5C1LXZacRsuhDuZhfqJkyxSv3Ji7KjzZ9esJl2GWmoRC+ZQt3Xm33XRaThbvnBwyeJpbXSJGcXmWUuWkoGG2V6vLXQ5vurh3AVMN1ICb+sOcc/879ZWfllFs5IHPTPXZWL2lbibzMIKiAk1heALc4pbAoj2+nvXZeX1naSM/zb/kvPE+lY8OXRwX25/rVmeuQeTmcmy9HumVCdGZ2UGZ8FCOdKRw4ztNubw6Wg33ce9CqccK7dnsDuOQnr6XpBNc31i6p4R6MhRpj46C1IdB6QcaffGFdoNe1j3eielMQqGVEem8puQRuqccH95izXOxGpjlXnjEUO28YiynMPMjvX6wjY/kcti1VAcz0dKdokN2SIra4GhA5A2LM+wo0mbKogR7GD8EZlmofwkG2b5kkiSGpw1vsKy1zaIvPZf/IrP7/ptOjFkf55ttgLb5l7ZBsh87kufuba1y1EFH8PaPeHv9lVdBzuz2tJD8xQsvl5/+Zd0khAAedwTMQfSMDrQsKLjCOYg4OsBpQcuiwERKDpyHHfj08tl/PC2G1/f9kI2OlASuY1rvA7/Pj3BHcBMNaElazkisCmQUEKZAH5+gWNHcjxxrZBk1QkCyEDCjpmEMlQeYzf8uzRbWtd9V37ZBt0G67uTVovTkZMbuy7HpTZsdNu8ZlBW6XdOREvWMtdv+zCjyJoruOUuFmjqDjZt9F1H8AhZfvflxs/MPDMwaqb05E+8t0nkivnjnGIefZ4aW3ovxZLObvNwc17yvhZgiMO9TsgSixAir+m6HI5fWC7xHMTkaJaB21aWE52MtJFqDJpxP9qudvnNR+UB2iJHELdx3ORKGgI0k5LkWGqv0d6tZoDcA2JLD7JCfBSxP+NLfF/n/a4y0IqJyoVO7SiUEZznI8gYSHqtnnnIShLuhehasRJdx+lNNPLsjXtJZM3Q25adAlTl8+encTmfx9cr+v0gMu0sm2n90WoIL0bdLoDYiMLv6VH9dc84ZO/6+2yvNB1VvDrMN4qLgj5tkPLw5eyl19mKg7vdAPMQxShX/18HAOoQtciqL5RexgVpCA1oDxT123xssjWe9yssjINgxSSWp6HitmM+BHLIAF/K9bROkRwQOokwCTKrgynFKaKvA/pug8kadZ7+XwybegajEaYt5xq2Ms1mJcSqzOcjpmYoc6QaQP11yargzXTmMcl6FvRfLsbHJqw1TgVdsIevbwi8WNEfNJ/vb2c61XTCnYkjg6sDNXTWAWODo3zajW9fQRQmQjv0ofzzXz7G69vH+PnbjjXQaBFWLMCOZqttxnT8OTpAIcHkzSCGPC0xmYvQJY4dCeZMTpVsRZyTubG8FqnVK4RFk5TeiKVc7czEFdTET6PoNk66fSUrnvtP82kGRQLh1s/FyDpdNju5hpUbYaEuFSlbmF+lypbzZQM8vVz9draY8ef7Veb+V5Z7KsXpALMKRU1sOTbIQdTO4YkIEX1DTT4Ci8CyypjHSAJnA7EMic1wbrh/UsfYnF1uTqWWKVdJjqQNK2IgZZa0dZCRzpwdXRbAG9cJo9jx8a5SkDoPMvHI+G0Z3supFTgMyZl5DNh6ZaYdNE3ZM8KslyPd91AFUuac19luZ76yzdnr5LDAELEuc68n25H15+8ybt9SBMHHsd8/SOYlNdUF6G/gtRXtyx/aL+K4pgc0pXjaPdr456uIJ/O5GSQO8ZCXtG4KfY5/nGHQZ+/UICaBT85aVM50lMxobBZu1d6p3gDcJDwfFyCdEkRJ66gdicsAxUTgk44nEUXo+eysL5MVarF1YMmMmJXVqUP7DIF4PZuclddXfO4y9ruH8fBxUN9eo+K0kT0JPpsu7FgC2VP/ql77+elBTi0y3s05zUsO1MxC8+zbiATuJUiqsjlKF/efdW86Eb18IqIHzwDuDK8Xz+x+dk+gfGilQdH7tXdSb924UrrRTDVKtIvqrGHHvcMecO03dSMyenZIuiPU1P6CcMpp01ja8zRDOtI3baNwfaokH1shAAODv/+KnU/nFWS2nw7j6Wk3nj7t5Tw/bQbD1mhIA3uVPeZHZKovY/z4dhhXZD93g3PAQDszaMmkKVmTe6suVy0qZU8gWKqkxcNRCITI0JQDnF/O4/C2H5+fD+Pp8TC+vpzHt9eLsucuW8AXMv0om0NYCMjPPcvq0tZTMyIm99tXOqbIJN/KvXXxyXVjRnPu6f6RHvS+A0aivUjmc2ch8R02lJNryCZ3yZvgk2SaapVhYyG5Blvp7VWw6+PDhc8PyPzxsCfvAT73Ak4bOMks+3BiIpuYJGLX8f6qsp0wb+M63RycZ9HjUWag0GU5Oy00fiOju5jeBjG0b5MEWH9/d61KfzaUCOUUzqQTRCxPmBeAvYguRBgrW9aZjlsyICjMSXrI+8dO39Sodz3dnzHX4Vk0ko7a+bAbT0/Vh0SBRshoHi+d5fOLEKKaYwWIxB8x/m6vXxXCLSM47YYCnbEBXN6d4dF0bqE0I65V3wRSnRmFmNHLDm+Bkj2d3s202dtbTaNdGamJ9yhTmE5FFTKtdQDNqVgjSVsDttHMFwFPMxJqU2/Ilb4Dos3MdIkxIeD3IVRzOGuNZf2tOQ+TdMnwNN8rLWLU97jPnWCgcWlXaO7qdCXzONmf4/g589rqv+ahi7EFYS3LvR7P8zTNsTyre0oWEgCQU2Wt+W7XfGb8ZeRs1lJC0aQatpE/kPlNRiv/aY8MQwPkEmRqPH2QZRtBHLa4QDYETiuLTvlEFAKowyE6+KjIP4w7sjy+DxKFQfkdz7vx8rofb+87sc+jhhfzZkOwvOiCEM2X6uC2hC+etdpM0l7dSEldGBnirZnUI73RgJYx/Qux6hbV6VnC27/Pdb0x+vOnO2Wr5XA1uO02O15R36rwnZHbbIesa+asY9Cq3tueYzoFr6/0mumcpeWKzd/5V4FbIp0EgxV+GGGmgFi7xrTqqzMp1jIrPC6IA5niu6bMxA/m3uupJ1DhtsxN92FPhfHM4ldzzLkoXfZkP2zWLo7Vdgfqfb5GZSyT7dC5qc/UNHUui3nmFFhb71D7uDnqFelub62PUaap7jDFhLpXgpXTLLv3LCrxSHbrtwrh7iRpeN0qhu0uDVEUwxyA8Rpyqq4D8zqqoZfBIkKwW42Vc7mkYq1O6RR3Mh3PueSDe/AakUZIcmUnZkBYnzT5KG8YRmqvqYM+qX8m1D7w3Nyv6v5sZzCIhY4P86ymrAo1jwwYPH0Q7ix9Otl/k03FZzlncWALwr0SQWl6ohtRNhUnNaiLmWUrbpXEKmyAC6Ldg+ea2HI8HXDsGyGB/vwn1C6s+we8tfrfNge0Sp9y7xUhUNdsQauMt+8H0Zy4UtnGt8jT5rP2TLZVS53LyPkEW/ieclYmvoHnO3ah90WhGbJeCNwDAZb+03TWptMcx0OBfuyfRD8UqVH2OULJAycopdsHJZBoOzx93o8//HgcL9eP8fXVnTC8lvazzLA8ywoyz3VN82ZA/4c5ndPtWmy2WNpdWW+NBMW3V/VdP6Ef+wElehoiHD8S5TlbTeLSzHGzX7uMWP81Ewe3NudEOPH5qDqbfm3mbv06z9g7gnhNWNphB5oBT+u/MuUaYmVxYHP/IOvcaSKZ6PcHO152JLnXF2vS+9Xyb0K6Z2Cm2xg5VyGnzZHswcWMr/MDtcctWRT5NF9zX0VPb/Vg2Qn9dz3p1xx7ISA9Xo8kDPSwW8nmTtMQwXzU6sfeV1vLe75q9320zkt0b6OLpuyJzEd5BAIaLClk0FtEeAii4LVXrzcFY8wHE3GvFlnjfwYZaFvAO9Q0ObLEJvBARiEKTFp9ZVrQ0xHkIe8viswVfyJXkCkVRaShzOFUeBPkhczzt29vc5NyoSbkTnpwOgh4HVHTiLfTSXeUxJE5X2Sacj2U1h0Ts+axdg9RQoQPWW+EzsB9nVdjnrVHhnfFWLuFNPlTwW5VRtrv2NhzlR1yn1OMIE5jjBxE3tsH5lMSWiliNQpeZKK7YGpONGU4DH5HJ+d64wCAJRhzoS7GUFys16XDqC/yJPHLc2dFxBph1sxs/BDDPgN7ixHV5yy1Z1VHFUE7LYwGMU0kMWtpZm2ywOv+cPZ5hmPQL4cW8P/rOH+7DoIdoDCfd+P5+YE9G0/enyQTM3SarSy+IhPyMR5+0BjAvon2FmhN9fp2YS0O+zq+fBqn03Gcz+/MhOwu6HdKwKKJvTD3pMRdhTJ7brLbIlubhCiMsPSC+zkHbyup1i81Ks7SkSmcxzdG5Nwz0QdlSKVXY1oief7VIGyeF0QVRdq1YLB/+bUJhmF/SQH2rqrzX1R0VsazP0kY+tcATOYsEO/AjKMMSgZ1BUYjDc4rfkbLk+/J8vn+/eEwDtgLMHgeoJQQ6AHUBigEdlcdB2Y6BTfm/diE1gG/PvfCLo4duhPswXaMLOmBLUpgZKENC/vlos6dfcn34wKLCygez3/VBLfyho7myXolxRMjO3/se2b78DBWsyZqy2WF6F/CQNVzxfE3sd4S2LNQbg50D85QIZtDISR3i1Xfx0NUjExW9rxsgYPUW99z7PCCw/xxPo3zB0qGjoWA+df0unfMeH5oWWUJ4QxOQwekOiHbwZ7Bz8yQ+TggAEhZ7w4MgOjyutYtysRMCG3YlWMIZwZpD9iQengSAicENyRAcr/QsXWgcTIN7QszejloDMBfCasFCPuBbX9cQ412VK2GmgSlLXgTEqHX1/M4Hq7jiWRie9a0UjsGgNIyRwmRxkAUU+0m6JRe8ngmGqlw1IS4E/TcLQlb23Y+ZwuGlv9WWeEp/xJoiJPN4MFo4xR1yOzzSkf5OnZggG5Y8jgBxV8Yx7Qc/FXX676zPC7zKE4RnenAnRWEyfcph3vSvu3aaWf1+J7tIS39lFtx/OOc1yktWK1KyGL6qBbUmV938hP68TJeQeZJ5M6TUEPIMLP4PgfJ+W5a1U2PHV0S8yIH9w//5jh++HwY72OMr9+u48BsMyDDkIkKwG6zqND1umq8HZ/JkIU6ysAO58gqkgdljNeT9tfL63m8vlzcfnE3HpDhe5DeC3LgE+r7P8b4y/5sQqe5v/rs5+x2B04O5S0nQoZG9SmjoZBA3CG+x8UmC8jU4jAXsgitax+UHRVqDHIEtdoKYWcss+/2PIB15EhOp3KN7KvXl/M4nfblLKaneOFBE4D1fiFZq1uVSubp523ipfZXtkT5O5tMdFyYTVABr7ThqyB4S2Ctp+GXIPab92ayPRaW3iM7f5z+BH6H+Xh8RH3/fhydBX4aeyaErq+wXy9C4451JOuaO4G1ITbbvrKXclwQxPkC2eouTHCej4BeNqcfBwf2zPXRXBoketMihx/ivmv/O3KgKyrTMpOIKEihSRicvaphveuCuju7at+gSUyUcYV32rhkzmiqG/WrzKZMTe0aFrs5HEs4aR1HopbrQ/ofWwe4xfTqnrqK/3tnA2QsdQnsdrPEZsz9vjUPU8voYxOaWxFOe07ND2yfmp9WVj7DmUa3/u457PCrErQyhsNiK3Z1Z8thLJD9UdBhOcox5NfDUMIpdWZxAFtk73beppPluE2bphbGsFMw4WBNdZg0DL+JME+0PC1OMieE+Z8UDJAgSXZ9GnMMELiXsGqbJI5OzsS/vKItFTLQyGKbHRZEMSeVH/ALztJCmNfqax2569HrMsao/WUs8RXIR2pDvccLtl0bLr1N9RX2TN2uRUa7xeVIduoCtzVVVYXTt2nt9XlG6r6b+/Ta1nwuUPxkkxeIefZ7C1rlPGZvJH5SRkTSP+Ust/6Lm3EtBl6DEcoJmaQ4tUb5FOFtMqATlFsU8pzOcgp7AII/BXZ9COGi4DydKCsHUq3dgq5xDXZbj6q9Mwx/4VIo43YTcKiAn2eoBEvrL5+lXdZkyrxkFZLPTCYqzsF8ewmRKiWoAEeMttSJ1f18zTJUUgYwnefy0SvtFXmjD02RHmddwbSKY/5WX4t++QXjovbcZJzFi4Znyxgn4KjazbZX3VSaaIr0FdUFOJ1hHV6OeKt5TIsqZoDzZVInBGbhOLOuEyUtJgMMKeCsmJPzAGfl0ssM2v6DLISdsTW18m+WgoE7xX1534xeU2Y+unBCtCub3Rza6US3DgilcGeMSczchlLTSXWnibZ1K9C9LuYc824VQ10fdRk3T9Z3okq55sa2mbJr2lS/uIXKkN3KCZEXWuTU3wuKuRnDvZrG0gx3/nCDZFqep5HV5fcWU5F1cKYja+QQpua7IQ/zvUS9dWfVDjW9il+lugMZa/wJJGMoOQSy4ngYe7RFZYsx1fN3jkQ9/8a+i83Y2dAJL5dDyQxtNc6W3RCm6ICdAdwM7DgBIzqS1Rp1TRjeddwiq1t9L+2yNt99D6tDRA/ozOtXEqvWMUjFSeaGwFlaKx1d5yESryxY56SZdmrakS2OZhxSwK8ZQHZVT6ApFaRoerP048IqMh/i5segH9ce2PnOEXUzZ3Ov2GDRaQiMLCtQCJrlQ5vXTVpgQa5F1aXePvICAQWQ+z49Y1ear+TwMY4OHuz3ILstS3B57pt19YYw5qTUqkOxhcIDRBtt4XBfrBlQm8w+u6xEl0FwSNHxvaM1KjcKuk5X/Xu9flUHGsICIdADMiOHwzg+YeHGeCKLIXI5B0YlX0+n6r3GBSpHR/2FEY2Ct8Ja6s3k1QYhckt1nxJILiaBwCLcCtJtV1lmLhKNAUPAjNWjgK2d0yW86gmmc1qWWPWmThudeO3TMG7qlr+cBGj3Jk5GbWAuMu41nJZ13bTPqUm3IlgIA8k+7roXG8IRaNNYV6dl/j31u2apWiHdMFrQHgjvX+nwSdRGp98QavfYvJzO4/IW521fTNZ1zFzvCoeIBlHVlZu0hVPP4rV5ULuTwdttOsQ14y2Tk16ghJKSlboFM+DknvS7L384ElYIVlhkO1+/Dmab5fyg5dl+jJNqgwjJc2sOODhqPXIdO2QXmc3XPALCjV7SqAPFdv73/3QaL9/G+PYzopy7sT85nMp6f0C35bWLrMLP1gQpMv37w4PbrIgl+PLqA3R12sHzzzrXzkbcp8YHKM82jcfbPSqkZjL6CVjoontDfrK/mOUo4KHXiRH0GSHu678EoCqr0hfS+5hMshLqIRaaLc7sLtlg20KfstbJOAlGZYica6TZQgbrVqZzYPMGXLmwLnWcVO62omfV/sZh83odn9Gm7Do+XtRrXkaRkCEyIvS5IEB4Px5/O/gkovsY++cHQQt9AwUNk1GIlQ3G9g/W4rEO66g1Y1Td5ErlIFHOKSWZntPKQnv9eZu4L2Gwx7ObmdhOTVrYrOiWaZ0tPKNtLxeTswOFqlmEPBCRF2GM1wvnhQiXtKDiJeJBxYhzmyKIe45N64V2JpQzjQ15dlxwSyZicpPZ0Ooja/T6tqNs6JnA38Jryxg+X9FLM05w70Ub/Hylo3o0zJSNqIAWiPG9nDFfnftOa6bMcTIRPBGs44xlzSBiEA82pHg/lL0wAy2iJjjJz48H/u3T8chs7jMd6TGe7HgKSq2gMtbuDUzVuwvLXVi7l+diaQSyUWNccJ8Et5K8QibkcT8Ol904PR8om7+9noR+w3Oj7hSQVzvv7FXtlkesr67gmn+GOqDjOGcfr8wY7EPw5TzCENzvqAcWR66Caald7FdxJtaOUzLolB3ZB43Ztq93R5tsX42DtUyWW6f6dlfhpbOHgScH73F47Mhk4e9EHLbMYRIJCXCmPOLeTWJ21XmrLgH9vXMfiil5tuAKWzr3LfYJxroToko1x9CbQADgs2jtxydQsCROCKM2KavBIvrf735QUFaE3wKb4RMKoafxdXg6jIdnobn2ILNDgIhnCwShzpwnyRG+DSND+nmjzQJZzl85wrOZB5xXXPdo4jFUIqCuNZOK9QWZ3Zm2mRYFgdjshZtpDVs++QIScFQ2MLbCEgDyL3AumQXfOLPT4dZnWdd8VaZcttieMgGOXZjQca2fvp7HOwWKxwxbPjfHVBDZ2oixPDfcX0Y/oif2vnX/QY04gnUJms7gs+wtMRBZF/Hs1UXvHopfAEHNM3nzeycfGjFmfAaWiFD2pAPKL+ucm7Xzv5MdVo2z+SMQ+DyO8fAJnXEexo8/PvnvYIi/jjPG83YhEmeM63jHDl0Ca/fiWkncBIa/F8oJ7dYs7yHbf/zyOB6fdF+87/gon+za0IKSSyKFBKULDCygOTkvkOnqGWskwl+ZmH8tDvQaO+1bJQ7vbBEDmOt+59bsdvh08NoejdG4sKZuX1EOYY6b3pL2oq3awD99yBaSHBOYqJZBi+KYSbMAcpk119vHsYyp/W4Le0qEJlmqbS13v0qLPZbz/Et3XaCVG+e5f6Zs7O9FcToCICqs+TBLNrRBTJcoXiBxIR+vdV6vVVkiOAUWHmBGD1zcMQsvxQxYbHyqgl7WHFcz7/mOzfS0mq5mqLjHpqKhcmarBjJR45Z8VRsQRX6hjLG35ewiaAOotfsJow7rqmzxt1e8d4y3NzjVsz0Ca/9JPY9gUStY2TaYt7M4M88NXldFK22ndj22kYSbaZzZ3pVgsl3ASsYR5HXrNrKwbZ++7ghv92Qvn2lvn35XO9dlXX6/7VtOTx/y9q9lovLSLVUUo3Mb021jK7nludC8bm7Sfo6g5740AYSgy5YJccZJCteyHH5W+4TzH4ahZYJU1+U9sYWUt7YgOU+VNK5htgfLOeuW0VzA+UCLQdSNqI/vOHgbYsPvrE1ftYK91S9bw8o6g1NOFHuhb5L9s4b+jELYyo7NOOoMgQgRxi4MCwqm35YDfU931KreDNIL31MifelN5CXiLbNqN+MtewUZefXBtcPkUpnIo2TU+viERJoQ7XChpP+ufi8nFd+VKdvTuKbDHeO4PDFD/9nqB8NCTteZPbNwy4naWCO1H9y33mRj6QvMQFrJqom4WORSkFWFx5qqkLIjbNq2YUKkJ5no402ZsMrZ7+8q2xLtp62Ib6s+A28NzbKegVrxjQxfLxiboxOS9d/j/QL3d1ulyVaKvRjwuUbKY5rI7XuwkfbWtzsHLvnB2p8NhVWfTO/iX/p8ejQn2+BNslg1cZ4ZpfB4Clfc1VPea6sbTsrTbnx+li3wdkYg0FlRl1ctw+Le6bXe+k/mo9BC39km6dlOfVJcGZnApj/aOSz0z0Y2L3vHQQoFIdUWDi8yJN+xEmS3GwXU/r5R5WvJULLI5kQgak+GfXEXBB05r96mrs5m5E1b6ybLSEQfWDz+4MBH9qH2y4S255p5pr7T57LlIdbMbz3ZhhSv/zCd53XAfe4lX++v+TL1q7m7BNE4DPM88bHZ4gwEia5D9rOfGfAKyVwC57JXvrfvonrnGdyWdtrvc3CEfEG4D74jSMLxOVDgh1HCDnqAPTEU6K52fnPT/D308N/cgf5uXZhhI4KTImV/HM+fEHmAtPrqOkazC5934+qIHEkzCvrkw7oItXliiJ8/HJSFa7JSES3E4uCYSHk/f1JkC1BaMnMCdg+WxG8P43xCmlDZTWTrWGuJDJGaWioj8V2TvbfX0YgLZuWMZ/qgEspcbMDjLvxpe5tykpaSPRGY1FzojZn2uyuy2FoOi3XyiP5KbVk9X2P21ueRn8PfzyYvcq85HzhGQ2GQAZp8ljGk2hTVsSsTYTjGQdHBh8NBUEkz70E5S7A5+1pBjjjR65hSi379eEczEjmyyF65/jp68GZuzemNi6kMaUZDTy/n8XoyjAgFTfk8jTQwjaoW9f3tOl5Q67TH3nlQn+kP1LWCGZvU8oxyA0r0H/58YhuFv/x0IgEZ2MjJrJz2XyR2Uz0rrqMAj+aYjMqBqqFGKPAzW7kFSU//YtchVV1n9WBIFFcVb8gidShR9lcM48wVqa+aB6ZsR7MI25lNOyPV12dnJl07NY2yV7GemjLxdSsjkJp+Mueue1w1znM/6xxOK6x4860pS3nzZ6Esqp62DlUYv5Wy7AELrr4mqGCqgVtVSUiMSLLFXcbu8DB2jw+k1P7YA9+HLNyDeq9SeDmjB+Xy+MDzxJrB6rep8hc64JnC1Is1OVyGZeQgore7y7juwWiMrSaFBIHJfQYjxSR//JCLINkOx8ow8DzelGlLyATtxYKSZtpa9j1GWvp3cw+XTLsjeHyhynB5n8mxMh8xOAZsbRMtELIZBqZlcJHgqdootv3Ua8q7gdSDM3mLyCDG2+t5/PmfTuPbV3QM/m29tv7zLxk5NFJbiU7Z/84+glQK88d90HsrOOicZNaVmfwYYmLeRdyQiIb0/K2AV2tPE8cY0GwbykAhMcN7POg7+AJYE3cYj/v9+PwkJxoZDIoI1MJdXXN6/SDrMZmX387j9H4Zr4cdv3IeiJCqYLzGwWxVmxWU62C8j+6dHoI8Ot/JCLml1JxNGfkoq2TQwc46EpKQmdx35o9I+Q4yiGGPZ3scdqzIe7b1ht9Zx5DlL0RGXh+X9oRkN0iL3i9a66E9EMIwnPNZOtlIPUvur1nigpqTvK12ov9oxFpgwsgQwg9yT+rsBek03QYiLc/U99sS9mqZ9V3Ng+zFk1nU+XMP9dQ479s4VboCyCpkMjpl+AbzKr4hIzjtJKlZwu1LQmeMZ0X+f/yHMT5dD+Mf/wJLCSiWj/H2Itp791lZPkrxasasBAeYiZ4AoZKdCPb04w479yPZdNhMadmYEEdD6KD2lR0tWVua1lYzOFRjSpmdneaHof7syFQiQxhytLpPc4ijFwVMseuLNUxfdjZJcGACZZ1HtTViFjqZcUz1C1j1pS+JECLEtzvibl9pJMw21ov/sDPd7mM8gfcIaBGPHU6cSp1mCVGc15S0xF7AuRGs/iYatfBwVMKn1mU9rzXGMGPndxkzD0ywEH7fd5XlZhzer0sgJBOBM8jONjuytv/ph0faBpDH+ILcANJLSK2iNxt0ZtmD/r7HWqR+sXtSRmBkKtbz+flxPH86jqfPRxKIPT0D4QlEHvwsEObiO1mTeK8EOYIWvaAu+6psNhA8f6Xs+tdxoO9lke+g67/7mfsXjfrRrurxKDkBqUHJprvPIB2jeBLa2b3uZAU+CIratair34MDKgNUxrbaWrW2FHWnPuYpFboNeS/qM6O5/Q3rs8QY/pe8lgxestXN4ItCmW7u+n29Vpu2aV2XNpoZg6zS/PlOkHFmlP2GMtr9D2Wfp0ZkkKRYHNeRJuhQAn65R+a237//ITqu7awWwejR6eXVjIN62lbPRYi3jR7WJNeQM2cTTaBov+YCvzlDCPFyUpCACQJahS8I8rc3EYgx0+OezLlvsvXzfmuWOc7rQqrUPaY826bf4CL1m4O3zqGPQ98jC1v3JoJaC7X5eQ2yugVLCxj1+/BNdlb7ZssgvHHnCZyGYC1Zg0jVXWqzL8vtdY5R0TfdNnCVfdSfJ/DD2/qom0Rt67ue/VKXYKSdeGoRMFXtUF+MyB7/Z5MB6vWNd6PTwXxmLHmWClSsDmWdr2nBbjLN0+MqBE8i9/35Sz4lw97nfwNrWIz2BCySRW9Z5axP6sa3c9Rk8lxn/XIuSy/9iWk81/ymXjQOPmGhHyzlQFBwfnoz3b+Sa73NQFeWr+ufO/tDWdH7e6cMov61kUl5H7LRgXNWK7MyEKdDls4bCZYp88zRlSHJ1W8kYiT+gjHd6p+virTVWWRPY8D9mOH4YN3k0W0C1Ypsbs46Au2Z635La5bO+dFSohl/K33N/AY91Y9ayZdWZ5vMdJ/czGvCg30d4sDfX/t2NidEZemdfFc0rIu9scymw1zkYdHlW8dkc+4zZt7Xgk+9BoSwmedznttFjtf4+h7uZXC3h28xC/rc3DxjHDzz4rTxdpNkcThKDjYhNo3Ku3bI8m87hYB0I9MG458Vg16rfLrPTea+HGVfb2bMU55w60B3hR450GeQn2UGPAHkfM2a+aoC7ynYPq9xEn1ukulO/X91eFi18bxUc7QLDVIIlPm1ZJK7PIldF0LI9v68t5+iiMMgDdW6bgZ2CQmfs7YEdrYbrU7Vdw7XjQ3K+xut09W557dUcNOTuZeCd37fX3Oe77ST6rp3SW47aCN7aQaLtuu02/7wMT9f8xGZs/GrtU/DLdPWu543a7j6L5lDra0ClMqOXxXsIfIp3Em3XV7+VWagf6mYe1YSIHL/zs2ETC8is6x1Pe/H+9srs3tJjB0Cu/Frhf4cBYelUYVICqJJYJjzr8yAB0KmOBpRmIhoPX5CzRV+g0IVkDe9jssFGVRWfXk1IeyRqTEjdFcsrcctyXvw7zCzph60OdvYpYjsUJH4Ob5bslb3aHAp77g6AHjmQJobfHhrzk85ugrDqqOyc0fGPvRkJvGUIHCqF8QGdj0oajGZFXXWwoVTIQojxSepMUw0g8ggs89qJ7IDLDnK2PW4UXtQBOz9d3zkM7++n11XmqzROluTeXQNQhC6z8PqbB0NsAfWFWMvxPqj8EgD6+qJkAyDs5CsTRvjp5/P/Pe3n8HiCDMNm0wBG43F6202X9RyPP/wwMv+85/FOyuUw258uR6puH5+VV/zn/8jsg94y+PkJWGU3nWcbMGwc1Q+9agOQFQUfPFMStHX1mnEKZzJYpq0sRuBlgCCP6f3SWijhqXMSGcKkgsuSA/RNw42OcsfkpJEYtHSRedG+cBFaJdd5pTqsrCuuWVEcq497ot78BquA5xEZzYFfB22825OX+vgXvuAARIMltd0/ToNfqEmgk4oOHLqxfDcDjhhP8hYNGoi59ffFe/Dpy5jfzyMx88/sPfz6f3Nysb7j7fC2cP+04Kr/n+3aS55mMQDdiIma7gLV9n4E4zEqE2PQgu01NBvowO6gZaBRxZdrhfVMy2KFXN8YdQ6rPrM7jFCCTmXZi3et3EEkrXiswlBxB89jmQKJSnSug/jEKFJdPkeZUDOSsZYX4wm972OEtbODSO4eQGqJCJ31AKEXE3W5sd4PZ3HX07n8XKBnhAN0H2z/e//uunfmmzKd4YX6du1Wp1yq7RkmuM/pEfqNh7jXkWiRSqkwcx81hiBLkKrlJxywvemEYm4xJu9XdTO4b3obft42LNujgRiHjxlDW5yljGMrCu+gCZjpoSZIvd4BbonY/Y44oznt9gfjySp6E7D5GqgWDAiDtnmZMzVYUCDSr0+584yNA42DXbU2qLvLHpLu+d29rFpLkr0TfTOrNUuYMTNmtpyNfNxHiy9EGh7eD9jtLJFTLpGvqBJsDcdNWTn0DtXNtkCG7Z+3PoXKfUqOdzMl9JX0bcJz39vf2ajGTKcYDZVvCMfMotWAqgFOHR306+BuHsnmOShCNp4kkjSpQUdA+2Q+IY72Z3cOJThCWggYfM8xv7LGA+vH+ORbQxb94j0unWPaGR0VymrZ5xtvzRudABBjXmCfFmPxzDXN4e/9D8yiBcwzF/Vm5scH9rHkzzNsOwgm7dzmFHh0dJKi604Z5yhLObm3WzM2dKjyW4T1utzD0hxyeXc1jZ0bH1Vs9nuQr102o/eGW5pe/+DJKuwO01Wxl7czdlElQ7PJHuim4W7lVokWWff+26QoMf+mUzeMGsXYVgrL7q/h9OKD727e8jl++dn691vg6dhm0evdCCO9gySWe9egXjbetD9dV1QjEALietmeVPZjuSQgZmyEV54//t1NwDMBDcFbadGeswXzZvdeP44jCs6FzCJJU6LOv947X7nfaDrVcLiImioD3R6rN33AC3UNxtVijc1zzI4KZiT4dxMKmy6+qICmCyy1S+29fHrKiKKZfsqAV5yfL3pnWHoc1WbFEfsFwyxTQa6h2JFKmSnyf+btRi3SbX59vK+c9VloDXudohk2G4Hl+yUJAqVtAUFp8Z1RXzejLFPcddp8QnaWq/Cu4UIWiRsCW+kfqVlV3XtmoE+7KqvXDKHmSTAGWF8cY8K1sLHXJy7TEyrRY3NTSmkF0oYjm8ibgJ8G1ksCoNiem0+cNWp0ONozzCdxJsMU6UCPE/fgavde9XebnOqzy9Fj1PAt3o5vWu2ebp7RvK978PNCFoStN50k63e/Kv2p6O7t7Jjnr5pz3kH9bRy/+jH7ecVcOgWQFPq5XSmrtS/aRCw26E7/svAlNo3MJpa87yBlpsEh1vVRHoVCLCiIxzOzrCCE00mlRzYpOerGmKGs37ptU6v5yaP3Ma6Rry3uzBWxca6yVo1o+MWEOCe8otwdwbTwQC+q6FO9M+WTWj31Z8sPUoW2Ujz5PX9Cvjty/uJhudvw22er20pUIzXyl7+gn7ZZnd4DWdrdL1pKNY+8bmLE8J/IQvd5Hus6bkfwpC7CV81/ZIvsemqRo7kYqzJMwzbrR/1Rp1P8kIRgqz0cGWxnC3O8Z1kWh5TbQdnvzZkWznpQbQVs0m7yJI9qoDkzD5lTWaJzayBXrJOS7/myNbN3DQxU2P/3uFtdbR1kV5bbF0nmZHft3p36+6J3urPk0suAnPZM/N772s8Zefujg7l3ujB3LY3ln+3z20fPSe45MzNmOeYZsC1VrbWVCLA60aHo/Xhc6eXGxlWdONNzrR6aJYrMIBzqw8TsFM51hx3BWyj2/0w6lPcIPZtjyw2YP7hmujcQ6RqyRf1vGlf6D4PfW6nQr+XPbUpVCjApZq8ncGcNTnUjcm/ybSgIEQm6/s3XZN2Xf381TovOjc6onCWbQ/499Ehvl+nWpjjb+Nr6M++f2bSKleWjbLtoT3LhqauWp3ejf7sKMssyHdfKyJ060TTCnELPZKXBlnldm4JMtwPxH7cu92NOZrfdyK5BIyUsEMwST5gCF9r5Nkb+BlrjOOFgIcJnqs2+19s6f6rdaAlQeBkkeXtdBl//vPXmgBM3OkdtZ+NzGBRONqAa/dIvaggmfz8GGekWpig1kE8hAoTn0YvvE+DEerj48V9drVwwN1fXXAC8idknj8uqMe1M+4GlnFebh8vB2m7kIkOzuKh9HdNVqtfL3XSW8Kx5YoWsiXIyvqZsMZOOrD9rGfXSl65AAoKRjLxW9WLxwBDf1l+hoU3qEdITYRCSlfWhrsnINdThZOoZVM2IqHqNPDA+1O4YrI2C/b3dzF6K8Gc9U420RlBahr9/RY+GzIw9ZpJuwdk6T7QCXTxkgWdDVQHzL7cT45gRljTWMZ8Xg/iHA6MqvrloiYHda2KNCNi//PX8zi/XcfrtzMVJWqFEDF9/ab1OiOaBlIyM73uD7r3CeQibruCORCBeWq9tT8oeJgV7SQXaSnWWr8Z5gLjM/tIQRvn9F2+kPcTecCMq8ojElzSDkmvaWVZ2E1tmpbu8e7MFc9JamKvQplYxAV+qT7QdzBDf+W1hUx32Hx6+SYqmu/zDKxO771zUbWvZqmkU2sjRc9mNIa/lGn2udWk+nqZl+8IdqbyTqodRsj8QUzA6A99vpwV2X8Qy/SHo32PPoeXj3cjFNRHlbwOHJ/JGdkbMF0LJLgu2GysL/PeYO2hawenn9NkzTpL7KuKVYUTU2ig7CkFHlmbX04/3c1mQzZvxQqP69PgiR1V0hbY5TrEbSm9XcaGa+JtPPHxEMAzmZrel7PgunJGq6blle4Gy7Onxt1nRIkcoZy+vfw8/t//4z+Nf/wzsuC/NRd6vuKcaV5T8rPKy3IXQuKVusFKKG/qKtnTdxtoiiOYEGbrkcyDYb2I9lAOWhO9knKrgodoL9ZugdwCOuPxML48H5lRA3M1j1jeZn0M+abgG9YKBG+wxnAvdZpApjniC7NApBN1720wD1ksXXPWmXIeq7XmhinaVqkyX5Gb3ps0VaSLUJV7/riMszifiTJ5Yp21nktw3l9e04Lxxi+MYVklRN/ZCwuQW0+7lYm9FEzib/ZT/p5znvHoRE65PB16fyjBdAfRi5Oj+WDdURaEVzoizl5MCzifcTTnI8x14R42G3xmZdnFvU4c69yebzo/abWqTwNBd0QQ/StSux5kirWzBygs/POTIVpzeiUPIb4fd+PxaYw/fJLcfHlH9g9ZN2Xe0sL1/K5nQnaQnD0PJrYL4oli/ZYZdjqeWenGsG5kICkvzh/j3Z1ueF3aaa4aL+ddG03tsCaxb1qOumviTTuvioW45pW2rqF14rwRQkTfZYskmBDyQK6xAxR4/pdv5/H6diG/TA8cwaSstneH2+efUskOuINvDJZZF7JffGjtGUjWPKhsYS6vLF6d936eksHPmSi1n2w595a9F8yH0SaOF9X5Ww9XU5nVBuqOv9yDHht5vVzO/b8FWW+BO9icp8v46af38fB0GM92TM8fu/H2dhlfv76RT4Lo3A9F1NKlZhOb8rmZY+kvdlVATTvrrsU6//Wn83h4lL+D/txnNAc3Eg7jA0s8ET0MkCqYCtp65KTOx8N4fT0xCZX68BYC/PUd6Hse/f9kLz+T68jO+eRmmk4XZ4Mn2jEd6NvwSY9uusb99mY2smr02DhW5DmFONCqBVEGlWeIJF0XZXnu4XuWzX1/TrYERN3Zq+j25i0yuDf24zak1/45sybb4oEc8JZ+6kO585qRuhmermijNdwShcu8N12pjxUudMkq34SP46tb6eV9syVCMuOtILfVBEvZ98FsDYT5njg5PXPexJ8/0vpetu9S1romjK55fWf5/byCsVtJuGF9oIOABHNPNcFK8ibWPSe6+bHUEi5R//n4871mCK/Idk1qq0NpRlI97zJNedDcvxNA9M3Sao/bn2If94jvtISyqZtZta3Pqfv3FOam/reNocpc79a7JMvWDLI7230qm7ltKuhyh6m+z+Xc//NetQNN5KK/pT2dnuaWK2I5MBV8YGSVfAwzGi+o4jTq8C/yOlXNo+VVLMgKVkyMZVxkQu0zzy3dT9O319DdE2lTjGkdl0zASkK4iL46+i1z12Rh7bpihL7/urd/m42yvGFmD2c9aO2mSoMJuVMGTwijWlFs9nvPVIIc6+vL+3h7X4Oc/0X15H/26zvj6Zn8no5smZ8ZilqvNPVC96PWw9U6Lk/Du09/jWPu4TU1O98/HWh3P2hflaFh+c8MbhVZHM2I1GMmWOisT/paxyALxDRrW5m4ZKzn/cQuPgmclrlt/7rJFm2c4l5NXpm3cgAiAu8Joe+/yk0MWmj790U2bxY49aA5K80JSKCybLGOKthuku1275tmudncGn3+q0ay7cCKwy870RmnJbnQdOOd547jk+eqz9RzTgOm69v8W04tHCy3AYQce8oe9h3j2SQiM3MDc4B5PMp59MDdjYeT+o6ThZjETO2+DtrCecUlkLNQ7acfsPWO3hLprzp2PbPVRSQM+W1o9/Ze129xrLluaH+UeY0NsNRQT1b9PueVMXQAbZIKzkxyrV3VqytDGmLCMrt8PTmi0T3tRNYGCLfIOh8TeeizDzut9eLuJQvTll27jfT67H4+7sGK+7oEMXUzN81OnltoLce7a/3Y8Fmt4PV7/3cPlGNO39G3ijwTous9gcwLKEm0bmUdzyapd0cO9vne6kZu/cDYub9x7fQsV5KFSCIi8lJ+NJePn8fvAfeGE47ETOmEf0H08feRgQ5ZmAiZoszZRxgLiWwcsiZkVu3WaS6R45SN7w3uCLN2MVi45bwo8gOsvJp1I0P4gQjzMS2fP8bl/Twu71gM9cY9PIHtGEzLcIL2jL4gQhNHJWWzqXeVgzW97L6MzIi1A+vYDesB5Gi5Mpx9lNN3NlTuDaM1L8LvVO5bisH8zVnVvbO+s5JmhSnK4fPIqpDNcPDuQLKlUrxbX4XhQkX4eU5QW4zfOyuc3qz8v9vxiKONRdEyti2QsfKFIOAgVENtEmZmvfVbjZkOW8Gbm+Jw9HQaaYoXgnSAWVVrtq1BI4iae8AmrU8sIN6QGu8IRTPFsz5pQp9Qw4da1hQwf5xR9blnhjnt0/AcV5OKce3tPPNn1mgm7e0HZzEUpjyV7Q1q5BoYiDrsMZ6jwsnbQLQVwOcOxLcCVV6DLPLJDMxpaVHZYgQNHLYMhwA+Q/KNO8VReKvrzLNumafiNjfsBhAcGU6ud50bs3nqGrhgm2pHthiEvn71qO7WT7fuykje2H74D6LwOaGhPqCcDkFF1kmfZ99BrGMZgwqq8GcsgYKobv9gOVUncMpC/o6kJWCTRFPO3fg4PHAfHJ5du8q+qrtxPZsdlL2eP9gHkSiBN7BRKseMtNzpfB67jwu4UcnanoPEeT+i/hnlBz5fG8NKtekzjqF65DjkarmFvVA54nJMY0D4Owu0IHMtH73fZHRp7yuDjSCSrlHID7CiMsuy5SDuTsc0JpJ5KBmgxGOhEWT8uOLe74sjycfj0TCihXIoK7RbI/dMWivI8fJ6Hv/uP57Hn8HC/xt7scSk/bzNR5QcK2MscMlN0GDz4jG543/1NyT7UevRdEiywDB8Unv7vTsSeQFAxgEZCDkYRTrWCELxDGDmlpiWLOHxgIxHJhr/QqoC7zlq7Y7oqbE7kMSJLOBmALcm0FqzVc5+PCIt3MqhsCfBf6Gz0IbtdjvY1HPXSoYCxwW25SJSS+qcNPcOZmFukJkh476yMdmo3bmJId0Nc86r6ypVNg5o8AzZSYY7L+Na4oWQqX1ndqpKI9r6mjNC4q21JmyrF6bvdGkQR8IMCpR9W8/TIKut/nUJevbAVbr15Y+QHSZ80t9K0zgYaLBbI2nb+vpkQ0bdpdcNfXE/Xi+c0AdM6GmM49c91/3TJ3S4uI5ntKJ63I0nyHaqgVy1lS9FgWBBn/wdA0rUEyjILx/j4bofj5+urKP/88N5vL2pv/z7i+zgN/Skpl2ga6PvfD8pzHjaDur7o8+fYLlqVg49oVZTc/4SNJfMb+UGVgITCViqwIF9wkVoD17q/JCWqHoV90CI5MCUGOEhYuY2JRbuIMG+zxZU+AjseLxQRncmP5L31mEtrWlx5nU+fD5iUwuy7FXzRAVBAdVu2g77sZ5PIE9YsjPJAXt3yToLva1S9rd/hs24BH7aZ5b5qvLANSAXdmzMo3Bda6yjn698prcju3lvXuCceLuMn8f7eHiDryMHGvbr+XQZ57dT7ZudbyqZ7oCdL1ZnOKVgm/ZVeUEmX64n+lYfj9iTe/GToETn5ULEAti5geYB6APEe49PQNVZ7nyM8XzZj0fwZh0v4+T69QpIbnXT77EGOmyOgktMcrBOkNAzA/XaBoDLTg7zXxZZpCJ4lZBNNCz3DFuoMfhUvqWo3RevOrG3k8nrN9KZjXN7Y4E46l8Hsm0qbbSVTbYLhbp1rJ7MR7X38UFZDqZ/v6FUnYqzeRM+ZPXO8lzjkLSMJ8nDYgh0p3LWWZYo6ESgvk6J2U1NIX/VUAJlP+Q9d07EjHF+Z87nypvMY+N1bYV6M1S64Zdxr72OraYN6S3nKJBnt2KjgjaEej6IhThh8FLguW45BcYA4rPzHo3UqWWredmwznjQ2f8Z+6yA0UTu7tRROdQ+21e0NUyg9HulAAXb7OuZM5k71xBTV7osZk1+Itg3S8XtPw2F7avlF+dFb/bMur4V7S2HQj/EbYeDJwis7kgDtU3lx0ZD5XN1ty62Wo3U1jmT0Hf0lZ4CuGkSBAwSQUGQ7Ae1qxLZWPYOe4kaRo5SA0Z0q+55tlSZCi6jMFxtWbFMfmOubjVe63O06Hh7r5zwKYeX9ZzxOv9yEhNtX1Nu9GE1yyAJ8MhPwv9a7XhDbNeb22f7/pmFBrVJZiCX+1JGKLLPbIWyWc9f+0Wd1sRiXhWl77/b/H7Wf67vKtnTavq3dtHGHiuDbckGuchkuef2jpUBDht2YKLdQIqMSL1yEoDQ16rjS4eHYvBNpheFKA6uJPspeKCzTt7jsQFg5AcWXBnoxehtc1heor7EqNLigbdvqUVIpq4nUpYprjrAW/mcecw5ma2KNo7EHauyn6Mlw5wLtMPfHevo9oJjW07mHBbBXJyKDGQr62v+LAOLIXm59Z3dtQ5z2X/tGnWh2CebM9Azi3CqEOIOFw/aboKc6/0EuOl1HHd7OnG4xCNQZcTC9hr3CHPXSXNTeRCVX9FmwL46PO3G4+VjfHrajbd3lOfslJHz1Sr7SfkfUHGzpVq3Ev1ykqxmL4QQKiV/Jcvu1POuPxfOfdqYW16DrhO7WC0HcpUKSwY155HtS9s5DPLDzdHbcJca3Jy5Lsr7XlmCRPdMgyC3/P5KUTCw1eYhm72jxZrNvQSzljEEobCOIRnvGvNmvLEjN9t0vUeVWmz4Fbrv0Nby/jnKRGhM8H+QJMQFADFP0Qmyz0h2VrJqZBqCApjznF2y+mu3Qqc6EJDEzWMDkZ07OOBvDxftbXRZEDdr44NJa08nEtNqrs3q3/T16znQiBiAj5VMmXtmbPaeQRnHc/N+mK5tRsm2r6btWAMIQ1K1y3v3c8YMT+NnjB1+D+V6RhRkjBdEkz8UVcYmUZZEPQCllJ1lvNE8H2utcjl5rrZxY3K+Ezezcpd8bczcCwwpdb7BllvibvRFJ7lYDmMjirmZ9hhB2783eMT6dKt0wefCxihjdDcOj/Kgk6X62KsGulhdQuQWkM+/gH6/asRtTK8UPRPivRB++PDc3SFWHIh4ASLCViiHmZWqe1pJKFpoFuKaZz0fos8dfs/IboODXS/OCKpEvBiYGWjYH+W7XB8YkQezJ+o2vr2cFAlFvV4LGu091xkbftQcLl7Yso4u4CkD5EIWdWQjFNW9MzmeVT1AQRPxXE2y8xjZGF18XmYV3e87Y3JxVgwatZTpvmyc0+7ER9Ej060CplD5bVIOE+6VXzXFk4xlsr7Vt9yeYiBZvXY5Zi6MatTFoh875pon1lSeMgoDVBPagnMLY90ojMSUkGCAYX92ply9tUOY1AxQ7KXG5NlNQJHTIUv2KOZPI3MuJ2VJwe+AEpTDl09jh0zy+ZWxYry3BkJD8Kz1QXQWex5i5eFBZNyQw4hi20ikwWjyjgrkNcMJcnHhZOAY0a82y94j67MW/XulLXyeapejzx1Mm8pej3dOc50NW19lQLXtvIi23ZVzwDNgJldMzK6y3I1F2k5WmMk1dsmJ7LEEgKATsL7v59ts72/hFU6j7Wu7FLHzu9EXWbBer8D/G311Rz0lm9h6Pd8Yh3Gooh99EZxPsnMD2no8jE9PD+P58Tge0f/5OHs/h+06l0xmmr9H0PJBLK2nw0Vy/3IYD3B28BwXSKQaKstxkH0U0+903lBzihsc0RvXwf2UKXQ5uN3d7J2a7BvOmWU3+0PDEd/tWMeNsb8x7emez96XVd+LrB6pf6eRLTkSxvh5bwYN8h63AevO4107fFP19Z1jWi9l1NwqKcGoOjde1yoN0ZgO4f52wCO9pyO8q4VZDxjMOO56/95EtLyL1XmgU8rGtUCHeb8C8obrmQigikbc9kmBSD+DM7mErp4+xusL+ssjkHkeH+fd+Mf9YXx71j2fgRQCcuGI/rmN74GbvxX/U5E485xnSs00O57sxuPnMf4IO/WwGz+9IAN6Hj9/FdTpmfvXdmrqwMkTJD10QH0/5taIJyB/limxw/GBTG0ClMZq9XpxyuGeYbT+VFy+sZvneounncfpmVcnAG6iMYFu6+uBuglz6O4WtoGjG0hg1TZDnC4zvdxs7hmI2eiCmDstQZdS0bIxPTwiLVu8Q1tkZuGXIONNFLGVhYzbV6nJNk1d/5dMS8/pCpo4uEuiv3xUc0E0Zh4yl1rg5tlvm7G0eACPie8FgsyP9+TjIYcgN1sbu+v9xITuZSSXo2XbOYAz/uogk571oO4ptLtOCqYcDwUXZ8vCL3jSA7sxkQuoOAYg65Gxxt45msfp7/P6VTPQ2rQzJyblZNO6sS7GKO8QgbpGrzkpr8qZOEe1AEUKgQoySRJuFnQmKcNmIcmOyZoCBY2vyBWrCNE0+PsGmqQe9xxXjXZu5JaNXJ/G95il8NOJTlQ3UdWpcfqVZnT1jvm5TGGLoLUft9ea/2gwTk6mUpK3ucBMlAMhU162KOnmiTdpKwmXWTNbdSk1+f2z+b0j4H3GNwRsPcrcn7uMwgQ2ai7a/Mxb1407QiLz3rPIGSn2Fh0Yt5KQnk0G9lLCaW+SnTixFFIdwer5SFR2u/bR33mA2ivdsl23w3d+G/K1+Tkl22egqt5Zk7nOc5+rfp18bjrUm895omdWYiptrdcMVuhDd6MCd8zaexvQyBcL5NrJlgFq1yUSLqsqj8EOpRnm00tnigUbJ1z7nrlrmFnvHaxxwYVrQVSHnBIJ3nkfqJwCFmF0P0LJHu0cs0f5Zdk3KEVI+y1C1/C8RQwXBSojqVoDbiDdVaec2jf/beswyXh2QLMMrdt/91Uq5zlnbi7smqnoH9o4yvMjUyn3e5G8jkiiNTOT98U4URCuRX6WMSfTObMUqom8NfTnUH89t/pekDL6o7ux05m5jT5sr7A51jfXXla3DORtPeKq2UpdJLCU2AwJ8BDoPAjuzdpQOWAiiZs8CHWvyhiHRMy2AEgb+VnBcLtpO5d6kqelawcpvnhfOdYT1n/n+Zd/txKpZFQ9Rxn7wf5U6rFFujhZ7OUI3d6jO7036+jVpX5oDOG59+2Y18xZd6L7ZxNwjy65yYwVPDV2SX1yZsGbU9DHOpnH12xzf9Uy3w0ENCPdc821jGyeGsXv8RwZpq55bll/3zDOFQLcBwThTmOcdvvx+kqpOV7eRJb45V3eywM7J/SN7WdO5hltO/uGn/5Qy0Tvx+PTx3h83I+HdzmVEPt0LlplEsv9WEqUvs+WvSFR3MxOzgdIcGNbTHPZWBujI7d2RWW1v7cuc/uU7O0ONPfMXR0997iR5TznIYkq++eOyr5NFK1O9CL/l7KU1XZMJl1OY/usIceuVuvx6HVe21XLBsRfZuzsu/OWaV1LKefmyTPgvLCs7M4SKBEwt1HWoz9t/9jU17fzMc04BxTwc2VsGpncxiHfJSHWD+8d86veFwJKBDGD7g2zt6O+LDVgYmo39iiPik/njiPlHeE54MXahio5+PE7d6A14Xjo6zgezuodF6ej4EENVipRvF7EMzXba3TiG9Q67cfh6TB2cI4vJykoP/H7t3c6qfvdI39GCy3WWzNCGPFuaO7uYzwd94pCY1FPMqBE6AADd+Me7HLqGrY5ii1Nc12sz8xUZXf1+xnRV3Qx9XYz4GojFz8j88Uk73Q0W6BwGqdt3nXN9Kh2xjtGS9VzNMfTN+b/CFt2xmDfFVWMbhO04C2MPvgziZqhjzbmuVNB+vSW+1GT6PwjU32OzDt6rRZFVolhRW9GP7PK3aEjs6XeAyNKkb0ZhbQrMc2QGF4LdCg1cDObqunRcd4fP9TDlMaXa2SWCKAgYcziPmDOduP9FTWtH+yJTdita2NkSE6Y/jbogJrhBVrlOZMyUn/gzOlkRVVKXDXSqwWk4bVQZLIC7pE696gZTqs7s/ZDCV3WBrUobf5bQtjZfmb327lxkhl1tTKCkSFSbz8ofb7HZR7d+L4x/lMPxjnT+akgip8hvZsXyH7ILFy/jIQBs0bS4mN30vwU7BS8CegV6eyF3OVpkLOlAtA1NmaSSdfz3apVBUUShHNJi3CBZrVWvTX2x/Xyzu+n60Xt957fhN4B5P4JbO6ncf44j/0HoNtT9jhkXwYBayUd3Ud/V8IUETRs65E0P3kZmFDB7O7J4l17oLaSig1nH+Upc6Yxgz3qDHNkDiPPOJ/KEhFu7vdKtkcu9v3qPs9cytXgc2Xa8hlALvG6fIDRPFBB1avuWmY9rkjYthXIcF+5yMe6D3bobnxF3dj47b0mhPv2nGU73LM1ZGCvJDTRw92R6a/VOZoGpOZxOibq6zrrnynGY6Rli9KQ3o3H/YFfyAo/PBzGE7/A3HocD1jDjAZBI5Ma8x6+DiURziw/s1OLwAfscTAOryZmWiWlHArjw+9Vgwms3Ax89lecrL8aOAkUHcgJOAtkiFcf64eD5BxRFUioIAt+HeOFwX+T5FjvRysSTdGc0QoeWN6otnzaFTjb2/XaOsB9HaMjA1NXxmwa6wxkNE7SzLtGZ6fUCzpLstb7RUZwvTxOfrUkbaRXi6sqO08m/vkmkhnbccOZBJs2WzWbaKsBZhYbnwE1s0DzK2QIhqETyv1+ZW/an7AWIDva78bbCUb/iRnow/VhPD2KKBQ1zARP7ZBN/aieyFqUVgeVVDoVjpUNbRjobtlQgjQDcfExPj0fRUJ6Qf3vdfz07UwHBL8LKoJ7HoEZkj/JIY9NhDMW/hkioppNMVElkZmaHGZ/EzBNkqocqVuIv+bQgZSCZKujC+3madJUoCbPSTlBueBOLeYEUMeR+3sn8r30S8mQZLdtGzfnvjzFeMYcU+zsaf5YFCx20URBri235pma542B7CUA5jfSTrftnk3Yvkf+5ZWP95ZPPFMeXw8CVjCgXTLX68+V+UhP+CpTLV2Bzkix223b0p35YHcQnicQuO2QD3b3DvIKqcSmD7XrCxytlA7IvAHfCwImOsuiqJCNRblDVO+O/FNsH/sGm0b/Zgc4k+1xWtGuMPXlN3f/nWagZWhBeeCLrhd/r00wsxxrAGwb9/F7crhxmMrJglNzmJlBH3IW3r9bGR1NiIENYTKrHr+RApHVkQi4zknbpu0ULRmWbqEsqZJtFGzJc86na2GeitAWaU4VTM5LJ4jQhEHmcs7YdAVbR7ibdam5bOaoUMOzxzYzYrlvQ3qWMIsRa0hFHBk50I1pc6a5FwrJ7mpMfo5O/9yCFZXx9c5ptRW4CiO2JBYUPIgtnzZNLW6Mo1qDuNdZi2bIVwTR2QsKEDuRzXlOZoVwIZDYPHjOQLJlWJfqVlfnedknGye6baW2HQJJnp/vjowsVhkNcRimd+sIXzfIqr1MCFh6NrW7jDG0sgfnjk7Qpw83f9zoYN9Tzmagn4uzvGTF9al5WnVBwLDxYoudDjeoINYKfV/QCL2NU5dBDOAgMGQPpBGPTKN2zgenspxykd1lH/YWnvpMZka9mifnQywCB6KSDWWkFmUmgoaDZFFG2dEtxxJAokqbe7YMXGeaFdNxb0tl20MOVUeRmrOzcjsYVqQyNnQaWcxteGBdLY6xIUNi/CnrMNe3Z377Jpm1n5Yhd+vEZmairi1ryZMuKHfpCsvOaXxt5fw02vBCYCISJE34ag/+Rl5Tb67zN1EeXbBOJwYv7/abj/cLzY4W8yVneRqzgebG6KTzDCe6+j+3JanMq52HGNZuZcOyG5N9VX9mQkesop2ZcOGN241pv+FZABMF/PuKYKUN73yVloujZesY16LheAPGXDfcnWT/8paSYQ0doeCzyYCsO6Bb8Ywg/5rOsViOC8bd5EaRsDWDXoZsfo8gX0OjNCTY9shMEyWyxtnxTVC++DDSRim6py6of5RBvujLhl7pmXbvs+jckgyNd4GywR/geIgcmfOasRuNLVSRHfgVWHEDw3Drtk70OJ0hwP3PpAeWfNyjpRSDqWNcTvvx7bOywY8PcCR2DK7CEcBemzaRdQaDRbMErZzoEiBTowoRIbuC7Z8Gkk2oUd21NmqTFb2boiypKVPJPCwXmBpAYvhWmYri9jC6LXH5yvppIioYXd1xNpun1S5n7OQNsD0Q6Hm82nkmNo50ONZaYGA9a+33GXDmuDvR3UbqbP/bw7qKx5KZc99tbZWNvdxRStlXmatmB+cNM1l7qyljc63X1l8q+FPn6nZOypQreT5LOMre6GZFOzNz708Swvk/B834gQ8hJa9C97L23/rQHXnr7GQmsyeKo6f2rQbEs2ybJwCwBIBRTsezBh8NxIref0EaLVvQ7dToq1nO98Dv76gGWu18cLjQJxcU6cqWtLck0mIp3et89QZ/z0I1S5jwHBC8vF0ZeUYUA3UxT88PNk5VS3I+o5+ZWgZIAHXIXqKFgmGirh4126rJBgNwq9/cjFu/no4oFzw1wsws25G587nbC/obGT7dZ+7DZgLrqmFgIFAQw7ljTVYG27DRysiBwHL9hEmbc/cV+twEvrPeitql+B9s1tMxSd3KnqzB0hnlDvNZ4oE0oRYHwgPgrSq7pxrUvsZh3UyYkL0JWQQSjdQt6wjNwOCtLDbPGMZv1pBuxGVngET/5tRRxuhWsFO9JdjioqK0zrj6oQKRzSPXe0ExyJs7GFBlBDH9p/M+herM8NRWaVE41e1PmGAYol1a3iKmqRm2Q9G0Y2A12qoyZJUp7O1MBClelerGta4epd6VMcZiECWgY6czQfoYiuw13TK0YVOdjvWU2LNR2fYYtXhtFM2CUgizpp0kGPEfDY5N5lLVPLO+GoE4KiJkqhQ5T9kBFYuzIKystsNGpRRGSgckpszp5nHGBqsDIVg4DrDMxApMpQWeBuwdyDDI02dh4XYPqBMyc3Y142Y+n9dmr2efGUSO1eNVxjAYvkkUouLBCqBla3p7ktWfdaZ7udzq5znX/GZuaz+ta7Itsei2BkaMlyq/Z836Yv43ZySw6ixvz3zP9in7xWCrPqShW11O/dxDMa6rcj+WjNER/1peHU2TrEaesnGOzWxMe23dx2Qm+i9joM3gkI1COwIlq24vVuK6M4Fjxz7s9mTYfjocCJMNOaP485SJriYSLVg5GSd1LTjgqKOmHCfTu3kxLh/j9f1CzhS8m9nxo64BMh2QRo2lbGbqjxi8yCSrbltINVwDvwtbhu1MJSKB4KgAocbJjAqRQ8rKXFE1gkwi/s2xWDAyg+0+061DQvQJtZiDD9GtnPcHTbRvN9crDn1zuLP+fZ0jWfNb3ccsxYsR26HU83fZfEF2xY+6t8eSIKzn6v8u0qx17+aHLLvYY9RlBTWTLKMJE3WQRQvxWs6AsrxsYUR+EqS+VJ/O67NLxnW8H3bjctqN90cxZyMTffk4kvxLiZYxxh+w3z7Gk3qhmEzMDGXs3oFMHtpzuWbfTi6zaYQyh6dBTgERT2Rybx0yTNRW2XyXXuPa6um8BtrZouh9Pl8WKk4T5TG73zgznnZo1nNbUZ1zgS/tR0PRMQeWy+Sage4mqYifve0V6ENSDRAJqo4NM4iy7qvYEkKotbrfseQAypGqnEFlz20r2lhRtn+D2GxAvMX3vSO6+t7c7sXRbMkKBBXK79bXWc5Kc56nb74OoLsLXebGtkrYj3H5RbvlAvNBl5PtuSHaDegbRnD2RAL9+IcHjgOEeufzdfz5p3c+I5EGRvxM5GrT1DVma/XoePcpS3CG5VAkR7Xsc0kYzuVffn4bL+j1fL1Sjv/44yORSc/olITA6nE3Pv1wHP+n/8N/Pf63/4sfxn//f/n34//2//wz/TaWOozfuAO9HeIv5yLkIRFYmkkztKQbJR0Wsfyj6bI4fBlFRYzcWxrZZRCFyQE96G97cCzi76oXnKQ4a2uIhDOJtHFTcdUxQsAZatkc5e0B6AaiehlPp2MzWc3R87v9uzqgiZT6AzLoE1pW261J3PX9Nqpy5G0Q7uD8zshuTXGPFHvcAZTODMaMSiriaActUeko7FqzXL9DiHWdvlMkaLwWdbLbOxypmlNlh7PWInWQ/T63kr/DkIoZ3T3p6pa7tVaVz2VIsxSX2Br7PoUCDOSt1/RlvhjUBSTYdpxYlU265XZjyQ4vS9ichZlxWDMjHctgU9//til0x2iZ62OSMTxTe1PB/lMfWMGDNdhSDnQzwuz2zyBXFHYbRxeyaQnBDHRDPKRGqpBkdeymtojxNTPHfV7WnbZVJhk7gwMtywmIUrW1orENo0aaOX3hBc00+3Uel060kQ+Qc0njhwU+FkszXntmUIFTt11isAj1QofqSVtZDGfHFasS6/AOMDj2kpkBKxEMJfs8URHq/ynCHO5LtlMT/F2DSj5vxasIhUKraJ3tOgfbFEUt0+3v2vumbZ8oWjyjnqEUDl2xs0YG11AiZft0JzqR9jBAt3sT7thh/XdGW4G3srxtVN95pvap5bl+rVcXwc0FvOEPwN8q09FUbfuxrdGsX12uUcbk3Ms8vxWEqFO3Hvz+mfaTHEI4pPqqrWH0ABxV9T6fsmoBndSzy5hfSqYs78GizsCdDcEnX+sEhnUENysTdmv4TpZwOQ50wBskUm2cvHdbkD7zkC/MTxzklM2EOXzWGAo6HSKuZKl5/P08Kb3JfQKFnYOeCc97Qdk5tnXlk0Gq9WvRk8WxSgbQG63muyufvsHaWnczTx+bKLi48ovz3OCp0ZfawyYzgxGeWlYnYVh61+7ZkyblvF/n1dhaEnNO51m2huQFSll24+Hrebyf9uP5aT/ODJ6o3v7pSQ/x8ODkD6OW8wFBSIbuHBbdzhIrEcCAa2Ni1z5QQDYl1dp7rntu+4DzyFR5a/bRHGhmz+Hg9pnvvByBYC1lWP08zSBJnQHv9zqvqWP2hiB8lw7s7u6Ki7TNCL0FFePMth7YUzcDCJ66kiUhROMpvlP+ltrx2Lj62Nz7vRZ67lPv5xsjdSqa5anaD+XMTmjP7ZzW51qIv+1xPkN9YOrCZRq7PpuqSQic5s70XtfN5BdxY3sgBblEthi5hz3/+bNYmRFken+/jm8voDKFzJINeObGW22hVT9M1BF/WmRIoPJyATkC71+sG7gH3uGLAfqN0hqeMQRc0IpQe/rxaTf+d//LH8f/6r/+PP5f/7+fx//9//MXJwu6T/N7yEATsor6kd14YKdSQa1j4BEmUFSOTeBO7W9jffavyytCBxGv8+tZPe9gGZ524+WrBaN735YO9yFCRAOLikwTjVdELHEdwwHO72L0XCnTG6tuq8cA+6vkzYQwaEehA2XIyjweKkkxLpZwjyG/aaeFzBIiv4TyIJpYTkAjAHIwQvC17uSodx76XDOj6EAAPiSoTQyRgNp8qHmRQJM3xg61jY19PXgd1u5gVYogBnh3buuSdky4Rqhbc2ZrI0DqqSteMOuWSo1sDPMZzbOTFHhH620oJ9ZC24I80XCxBE51HkFBce3bhZlQDgfgAgjYwAkyw3xGbqLytPXBOvAzhHN3yqkm/WpfTPhknOR5rkScUpAuGgNx9P0JM8uKNd2tsvjds1daV1B7MtgDLhbv1k5N4EnK+e+X3C8BA1X7Pee/uWCVBVuNGGds/HS5JVkXbYCm92M56lKXpTx6lm3dM82JrgKn1kbNax8jpHrdRvZUBzTMsXjF2fOV66h+ianvjROBDgOAALAum1An38dkGGXkVjD4Y0ErNLsGnM+WjZpMQUuBXhDj5R7MsIo6zLp0KEI2XQd/A5xdwa4uIMVBPR++qPggF3KOlFoKjUBqM3lcuMxCD1U03cGVub/9L35gMtb3dyRA0AOO+Wtq63MKyFtvJeonmTKtZb9LzvbSj8xRiOldn5i6NzhfnG5kRtyvO4gI7pTauEGTyLoUcsdtsnZC/yze2m/wFZuxWjM3Mb7YhpuyH77ljvM4lfG8Tr59dxZc/6ae9tMxgMziUmD63RO2YJ14P1qrvF7JM4GMA/eDZecpgZUmeyWbtYHTFznbFc9ypDPyMU7hbkAQivhEZCmhE3X9r9/eiY57P53peDGz2/QR9s8jneZkHrcOtuuRLev5PPhewbKgfuaCKOO4G8/Ph3E872ioMsGwcbqLj6HJ12Qlk8mnzkq5RTPo8fw3i19xoQ2HQbLNkB0kYQtEKAmC9XmXJELrkSvHbzprCTLb16txbH1sd9uugB9tMq8BOWCyZ5Ph7icxJXcMCuomCqRJa0putfKrxmSeZwFiALYqMrOQubqXngM22E+7j/H6IEfj4cFohMNuvJwP4+lpN/6rfxjj8yd0mXHG3jJKtcUOSsCxxx5HZi91sp4vbn/IadihbxcmhbJWkV8xYeTI3i9Rqnmyg609NRnb6du2rHxlt23LUXtk8223Dxxgy0kldXSGcu1cD2e7sr3Fsu5zCw4O2LNBwpkLgWeIMmEGUg67h3F9Oo53IkRgqzuxb8e57PM4aUGBkt3Z+wrBYTyvUQnl8ZVdPvfhPXk2gxJznpQ9TwD8TgzZ52vyJuguCOyxxCtomm6rNPLKOWff8cI3Ya9flMV14BLE0BmYY5NOxF5RXbpOIuTZ09NhPDzux+HhM/ft+yv8oo/x889vzEynfj4v1SuLn0D72XOQoEjyCdFNCFxZr6ccJW/EGUGi4+dvp/GGs4Dg6vEwzic5yu/vJ+6Jztr+t3r9ag50/Bhg6eE843+ipTFdu6NIpfUXKTD/cb+1lReFdYKGl17VyOT6KsfoAcQwzZHL/0gawn6PZ/c8A3kOlK3eB8daLXvA3nO/DdU6DCmbuDt8f7XtcKsBC5Gqvkx9V6shozAwVIatax7khKnNUevDUlfSsT8Iu8Vxa5xutwVW6Io8IzMgSDqhnC37GcKlckka27SU0XSMs1R0aFIrG8VWaxhYsqmV4vza+YnzrHkRM3BQqKtivis97EytsPUYt5rTrWHY1q+cPWcYs2b1XmVoNbYcfqERuJ1dRzotSUG66Yp1Vq1eF11ZSFFfESXeO943jbZmCjLuLiDneSlHpuDacqLzrHI2sxIz078I7yi6hOS73iwii3AXBOavG2pfJNXh8XCrxsiNkTaJufRUs/Y0zpScZ9cA5YHrAWt15rO19hrbYE89RGnFSRqodemw+VZrO09Am8MZw6dMCFSbC2qooOl1Cacr6GA3oNvwGjqlssu2UGgDMts7I0EZD0noPq7jAdHisOkogmhn3MEtb0Nkq+EAs+Y5UG47NmWiV+vA1o6Ml5XzrHVPe7oWJFnOlQmEKlJYrrV/nAQwXX52wjoZDpJC76G7qahMX+Nce22nM+XWPEO5hsatc5eMO+ZvBnryLCXdXB1sOZZiSwonOWt/FXX1K7wmAiqvmSHoYlTT1hhY/YEYwRs8zHr2suXWG21HUkGqBNqI4DCqahIT6m5x9EXgNeg4sHTpMeiJbEq/r3uITc4JWWG2Yj+3uxzpfSQ5cgmQHXPoWez9n1/faRDCaMPYaci3OSPM2gzh+lsrySi0yBTNCVJGHvJ7WH5APNRYxAFTxNzIITFkva1LDPbpUIdAbdahKlMqcik6n3YyltpS1xJ7+SsI1Ve5KuKNmKHo8+eqJOn+zmicDzGN5xm8cQgSiGvZxZJzeX/Ob9ph5T1NGZZkigNXzGSW7NGjQfW1/VvZs1b/GbK70onckNgjOhWHk9B8xyP2g/YJdDnaMn1+vhJeejSSapb6mPPB2WmYaEFjlrzxGAXvFqLyAjK8BLtnexmNI+i4jQMzx90C/SZ96ks39btthirj8ZyFy6TtnfW8oUbbB9uydCIb2l4PD0clLzReJKd4H58lzCWdYTvQWRU4ZLzOq9YCzluuEVK6vFeVk0IF0ia2E59SqrSVjSIrNIdf1TbtDrKNH+PAZ7u+OM99XpapcjC4ziIDXeE/icLpelG6rFGvlDy5fa0aaJ62f8Er6IO0D+M9RKBJVKWhCQhKgyV+t9uNT1+O3EsvfzmP0/tlvKOnIydNAfmMSeciPaXR4xy8ApYBGamVR3Jq7IBC9FHa+VpM+hy+vF4ol48Ph/HwoFZzGOLpfFHP6jmA3yuJmKOBJHVqdZ35e2RIba7Uj06DN3VsW+jd9Lln9hcO0JGLobonCSDt18A6kGGm3d9IxSoStIuinGyYqunZCH3X1dHYAnStG3Yl5FtLFTjqafdQDq2NcByco3pisp3N8chNzWz1PQfwxmhCD2CNZSqOOc7L+eDI4RqnqIx1NGqf3TbXPt71wzSgcvB7kGFSZcuQ0XVkFASe1Z/JghXEHL2v4DKYeS+v/C0aoM2TxjSNhBv4cQk6uiylmCekrBkWqb10aoMIr80IeU2ThCgIYCVTDJA2DkP61JznMg5QY3s4tHXLc03LLFlLTW7a74VcTWyGU5xM+DwF2mWtOc0J3EJvssFS71S2nLMITf0uWVXGfprqiZ1EmPZiFE4YUmwM+SjO3DDj0QruWM8/Mxm1L+9qi+aUNrb/BBImY/q8TpDWnR6M78F+9DUpR9jDXoqUJ1nervUxSkVQJ5caaV0TbhvkAggyQqzR8qZzvEXk1+qovPewJwgNn0xN4otgsbLPAoXbDCwg+wwH+rwX27acZxtu9fwJtPXptCPt27GXNMZAb3zKZo15KYBczOlej6Zn24a75mkOOiEDUV1nK4vZwE7LiC7n3IZcnfm4AtMU2sK6IBN5XwEJan8rU+o69iYTcY7fPw7mefjbK+z/nFeM5jznlGXtDXi135UsLL3QAiXOcuJpFX64kcrLpUmc1wI0cprnh7I3Na3QsfkSXPmKoDV6qp8uY/9xHW+vYLffjSvrLNXGjUfuTZs4mRK24WWQXfeAgYeaZvTOJeqCLYpgaMkoQ5aRDPC7y3hhVgvwbdkBM9skRQE7IgRe1BIhBWsZ4OklT8MmbZW2s1SqJR60WwiXcR1bpGece3C3rcHBWXHVZu9piL67t2/J8HZu+Bn/Mmo25bHJ2jpfW1rxo7GnSy43hy1GfxtXzpF0fycQ9LxOwv+lDCmv5Tr+RZAD89xH17frtsL+Fe3SrlYcH13+zbIA+oPxsXyYWPLCOmLZikQsnNEVAT2hBeF/ebmwP/Try3F8ft6PH35AveZ+fP6k73AqGHQhO/ZMJgCe+sMXZavfzh/j9e06/vGf3tmp4/AALW0n2nFJqfO03pSthDFgXVDvzxaZxaSdTK1erAf2bGdFesJP+R7NPizPIJBos7CksSIcOut4FhGHGO3oOuiQNVoWV41+2zIS19aftt3I/oHnIGpS/diVkbTtaHJBBJlU25xr2NlP4qXyHApWFPt/22UZQ0qc+t4saHTN1SrxEnwJa33KYDI/sc/LdVnkAMoKIGdEINi3aZ2bpk9z7Y9/gYHDOfcAAQAASURBVKzvK3tfSs93pr0ZzQlCTrSXsB8/fXoYj+holGxW/vZg2/2H4ziDUO/1xDV5cwY48iMs9/g3ynE4EqB+XJNeMxEbpCrcgBLSvJ3NtM2gCtb9XcnNl2+ncTo6aXcd4/XtPN7fL6p7dqnlvwoHuqKU/0kfarU+2mmGoEz4YsgORCbW3aU7jHpN4a+3kZPO9gdQnmf1dSTUVFqBmwkONL4reiFHWAdQYwiZzAeKVwhPvH0FWhiCrt57lALMWbkDGcGkBGSc2lEUzrCgsohePjzi19g5B47tjMy4x0M0eo71pu66nEBHktSgXk4f4VNnHIqpUW8y6SFtsoa/m3FfssG3M9IZegMh7xG0ZB6yg9qqLdHgm1jptIGXue+/WDJbi3C6b/LlwHeChQjFbQf6BDyIcojDZchcz2qWBrZy2JUTl6+ZVdunCVNJ2igK7bsKFjUmmNV4yfcJYUodK43EYh7WvflnY7dmz247bZyG1eDSHpoCPNNNMquNUTTXzRDy2JPJpth5Vkuy5qC7/hkz0W3KzInqFPugbpXgvXVdncNppNXvN3umpjnBhkRoG+BjZwda1Reaw7SBS5kGfnxgm7PZaDrPxAwZo9chGutjnosaxzHOIBTDnmx2RrgE3paUTovHVG2oM6mXg6CIbMUXJ9qZlNxvRobzKznUMpYHSY5kuO1nX+rWJ7KWvgKCq5LMG7tBPFfy/0/eny1ZliVXYuC+k5l7RCaAAlgljSKl+6nrA/gN/fHdDyQfmkI+tHRJsdisAioBZGYM7mZ2pxbVtZbq2vse8wiwcvBMnEwLc7vDOXvQrbMuvUPQltOCoIQ0mFV1DZb03jnm/ZmmKONXhor6ncIwbGsx94N9V2UxlhLAtOLigekAiUjToSKq7xmSf8yrcGs2rsfxTu4FXAufTZ5QPZMft8C5APZOoHkCD2oZrr1VCQ4iRlCSIz01z0iWHtzHNZWyUKphPN9PMBIU9z+/XtFNg+VZUSil2t80hl9vaTxHSnZlXlzRjhIt1eFJSn9n9CXbxT3mtSklk0an8jCGA6VVNwYtQ/dOXjtx5l3lmRBjICilrooyMumiSNM3xc5cpliy1jvpNdIam7vVByslXGUPHr3mZxx9X7Xcemw6RtTHlVGr1s8ss0jOcp57oegW957oRw6ujYt8z02+6k3ra6UP80bTvZj1tKHmzEYHHffpH6TcLsdTlnnCAYlsK7z+8oo1fX6CsxT8Yoxf/+aSRsi//pvj+ItfHMdf/+V9/MUvj5neHT8JyCgMjUgDj2jdMeo60cbshx8v4zffndOgDl0wWwyF+mm6TO0hvTdh7JxO0bP6Nu6p01rnhWXeALqqV+Do6ZSwNFDjCvgo1MAzbZzOpbocv5YWULbtjLOq8kOB37FtrXiAAliZUNmMpoIFh6zbJhp/Yc029g56YBuvU9CDNFHZBuI7NcgmRI3BQbgmuphU07ZCnH5TKzcdrPQOW+PJkVNBETwAkeaZoWocOKsz3g63aHu8P3k96k3FHbRe4YQ7HsbHj8cESm1gUmQJRMlCfDaiyxFV/vADymtS5QVT5R6tSPfQPyNeLZ7qkxJN5L8DLJUKU2a/sFXbOXCsskYbmcPS0V5fr21Ajz+xCPQ/J4UtheI9euzdxlMCJ4A5qicnok2PSnIc8FxbRpFXRXpO6TOWLIAoa4cg70eB5ogZZR5ICHK02MqIdBcg1gH170zGmoAdzOCQ4djKIpQKP1A4KI4WDYZ5Jvpjcs60QhhJT2VhNzkigDhZ+J9TnWiNuA5heHEiUt69pnN9lJ5OjpLJ5gacpXn3r64Hd1ktBokIEVPA6BxQRNA9mLonjL+0zCj0Wsegn8WJjvWSOvXsHa37W9p1fS/XMBCw58j7uhdgSnzNvNTaP9wXc86veghaxjKZexmxhOrHPLqup88FjF58gEjEWYeCVBr39LcCK7UDCkKlHatEwcoCsCRtBXpNt8876L7aEnjfaKW7FcftlLIyjms91W0Q44Ld1ZBUEUHFHLRwthoW7UL6VytgfeI7lVd7UGtr/Ah6jxFN1VDmTI131A4096g6PkOjT8cKB5YRf7Tk252uCVwT4a+cZ2IQED01U6zB/PNYVf33YkDmMkjbbmM2+GHWrmkm7l1P2kP/j2pnl8I8FoKx/uoVfxvXXUTGPeFBTp+dgdk1B2HydI0xleaKIrTCU+cpIx6qH8AZ2KKZfDKVXlSRw10A2pDBgOckPED2o2QUgenTHZEWndkBrGYcRJGtyF4veqqEk9gyI4MLgDKea6Z4SyELB+nxEGOOLJ+vL/q8psbrKtZI/pSvad+d39l+1z0VpYk/MoKrFMSOMBW/XaR3GlyLsVQiRI49KtrC+vCuAsAZCJ4NSkngvFsYduIX+W4/TwZupF8HUFi0I0pZxhInRU85F6V747u4TwDkYKScH+leZyeMizB0YlEjuh2ANmlwVDmElG2MMaLlH0/IujtfD4kBE1Hw4k9ZRxvR95DtqIFGvXjjm1RKNIEzfUm1zjJEiEkJRPB0qjW3VxYHDjm9hWTBHUmHwhtrJz4AIFFlUgnV2CwnriGxt1xs5JXOKRGgylZs31IhD7wZ1jy7PtGcelb49b01E3ERbSmXoB/xiVVO9OiM80holwYZ/zJww/ydvIV7FJmHR+lj93E4B2Jx7DUyCiOb8BouwqB14m7IcRKfec26+0DMDrrCGoc98srX4r2OJLfc//ab43gKAz6yFQ353kuP1E1kS1OHfkD+5rnQdmQbGKs3wEyxydEsnTGzHBlFLhBGlQpk2rpKnlgqJvnNoEeUDUV2SCDiVwePcJqdMZ9wioUBN4l41wU4J5UFQU1kdhb1M7WRk55Yx2NloStzWy+V6JmjRqnrS1ykZFH5wVgfXZ/jLSUDAWLcqq0kvQY0ne15SNP+1F+2f9IlBWIYWQzPp+M4heFMPiBDH+DLuwQ2zXGFXnK9J++634+ZWh2vZz0/10PJIJIB0FlYM2+0tK75tGYCA8usIQRC9pmu3fp/13Cvc/8zSuEW04wD83q9jufbfnzI0ezG+RatpULIoX7XFzYRsVMhi1PXBkuljDYlTgBMEoCFKievExrOWaUDE67Ds5KtJGgAq+hdRk9bYhCqHoFTOlfxENXuObHrMEtIEaSmIr5kilk/uc/8/qhBiJhRCOzTU4BThQcGqHf7XUC5j2SeMU7Uakv74yLYpXre/FwqHqyGZX4YAFEAGBLOg4rMJn9dhLYMHC2sDoN5k2Q81/OlJLuxo5Tm1MjaUJPRV/bVBnMw8VtPaN+5KYI0wLBvzGh4OKz3ySO5ipsHJhVaCiONsn3QG1e9SKH0B8OJ7VJqcu9L06mEOerx+pmZmUv4TY9ai9nNc+9Vwd0Ry2U5HO/RyoVGkPtfUYQQ9N7DVZFPKgmTc0AwL2xlEdtXAlRrhBN4XNXbvCf6tAq0rR0eoBI4o/jcQnzUGW8jnb3EqGRtRzLya5VerpKQde2alhJd2+oME/RFv+XIy2oLpPEleFcaVTQWWGSWikGUhaGoC8qnELw5aUQxdcYwH9BY8MNItefZzmySMCCzn1pHQRwML5cepkJb553OnYBkUhpprIAA1WartRg448S7cPNs+6QyBDoLY0LZcoJZElaxgR1R7umyL9G3eyq9kEOSPCNTdKlw5RolTw5epRYYcuDMzkjMB1k+5bChFM9uDNMlI7oVOJEFMgm4BujTkgZOtK8JxN39Lvbn6zOgty6Zo1vV2lLKHl7zv80pSi5ZwEWVIfLgkOhsjlZz+gOu0BYCNVP+qnSHkbKQVbdr8KkwKsF0s+2QQAatJh/6BeTXNWpHrd+5G8Cq7UsFXuiznKOcbgkkJYNytBEdcjIUzfhu1KfGvzFeQiCrfxXLcdHuKtDEYz7H8Xq7jrdQRAmGFpdkeIzpeoFuEankiGi1foMx9vrojMpZBwA2GIABmRJp75eyAreMaMsuYCusBP+pzQwHgYGLRrQnWpCqBaMRDPRs8KVsCGAcNs5z8QG1GZZDIDKPmHmQxrkr1qzx1qOqvXXZ/dI3ekGaTvHAlCcClDOCd7TiGijB0sAzWHaV47QaZbvQlx44OTnvJ+DpvJ3bCfnjy2Ecorb9iPKbnGvSBVK2Q1ycr/fx/ScYhq+vI43lsA3DsI507gCVO7+uUXSs9V+c9uP5w6Fqm73WO6fE+0gd27IB0+jOZMfmu7iXG0OyErm+dqPSFbm+udZECYSsBugqRVzdL2WbjFehlUe5JPnGPv8dnWe0o6ilzU5jNKBhIsxAf3KaesRWZziPqTIiuCCBy6QdltG3xd1XbWu8r6KyRWj/XXPwYITOgxn5dRuuafxiAiv5sGXDbWYDLbryBpMXJSMA13X00ZIvABsDWBlZpKGDyEmOcgVl5ya+yn2MU7SUOgZPuAKN6ExnniN92ziRgfcIROhrrJNbtgIzQtKplyUC13ENnXChaD3zzxZETFMNph4+WBFwpDarqXYp+/Wt9ld2XzpnyJIk+KxSW0qqVn10R5z9t2SJornBBENJAsjIClhG1Fsq04qUVhqUUtxShwthpl65GyaZebsmtM0kmEg5ay9VjDwA11BLdmRqXCgCYCQwtPtEdsSS9eR2wFfQE31QBfhCic59IMjKrKT2unfkX1GsdihMhupsS5ti23swU8r8r3kHmqkDIbtMnenTWybSyuXWaYk5qOyHFQTmqadA5cGummhONm2mBJNqwV6AFdMcejwSUlrTuhawjxlQbF2d+wMz30xba9Om568DkHMwLzFRQ0M5C8969qWstKNOIXOOLwGZf0VkFJTVqeJaY2N2SPVGdoCyN9Lw5wYYkPs78Bh2quwtrIP2YaaGNtxmbzB8B+aIkHFZEbhCWIJCqzZYERpLDQaAGbl2TD9keTJ5Fr3rLug0Np0X8kEY0Ex1o8KnQE7pv1nH2dG0e9YxBV9giyrVQVNByTGhXwRbCJpzoZQjWcFr1Zf2r5E7c69Z35pn0WrTuwwGayojbCHIXnhj4xGJgmJPBVhmoFB5i5929Lm4eiFq93j13QmUkFutz/f3Z36HM9LGOOrMuwJha43+WNf/9t01z85ff9iNpwKy7OhIH3E///39xrawc+MKG5VTlWFEGYeAGruWr3lf8gspQJGOqfukAwg9P8PwiyhTfD5idLfsq4xK+VNEayPicL6mkvcxQft241RYCepHy5KGcDBmTWac2wjt0UGdz4KBGecxjWCmZ4fjL41snqEYTxrWUl+zN+puHMNqH0CffYtIzYcjDCY68SyPs+mCjsKIamc7oqnUSsa/eloDHyIdscIddfkh2zw7N1QIng7EbdNolYxYe6tNZTcIgZaC/9KpkToO6qnLJcd03KcAB1Kbx5IfNEa2ZKqdfakdMZdqrSX2vNioq8GiCCPkDPs8O4BmyVxE8NMAUDZPyXL+p9l4pQano84epKwqOdM6fZlZGBoQz9U1jbMGDgvdLN78/geV7mEs0ds8o3zhcM/PIcIcqajffX8eL1Gzn2U25DkTUN68vp8+BYDSPftRh6MiHC8BsBU/8e+siY7ooPZmqUXWyqWhHZ9LvQNrKiwBOPO9jGbVyWgEViaJ0qgbG0V9n5OfdNVR63Lip6qHzefhzHbWJo1zk9+1JizT8bZNfqWjKR1yDS44V1dsaZszXU5Yr00JD6/5lyVK2KwDmQJ1MJVVtbWm7TDreTZf3iyt3J7Bu5cV01RteTjzlMIf6xTI2DmTOA8HpnJrXzMgCfrIAGLgWMjal57CvUf5DJ2aVoaxylusg9loD0xAmb2EEBf9ma0m/er+52ZAoy3NbpwTgRvRz/AwRa592qXXJaqsy9o1tfrtraTKangk5fxaeLEJwiVKtuQgEFCk6oVgDCLajXuAilyQWg6QMBqpZMBS7CYvJgs90ermnmjCEjTGve3fqitzwDHW16ZgRU1XMMCoP8lascMJ3m8K/nPk+1h0Ueu3RsfVD1A1JAI4EiWjppGp5IWyTFErz/oi4Rr1DhGCmWItMu1JJzxVrmi3yeI1TdtX17Vq6M4G3YJqhi/m62vy+B2BvFGgEGCuHByFQt1fqfqOBIQAnUS0sIHUBOrF/Xx4anu2Ow0FNer5V6WMGdrrqmU0KdnUAVCRu+mWAT9bu2GopvieQs70PkYaxBUollmHXEjuVPAKdatTdlXrVMozvQ3OKD2Br4DFMsIKQx3HJ/q5+35Z6vImZ1xTlRSRcOrDvcRs5VwqI9oilxDm7SQoI1ie4EThRlpRPmF3TCOaidz01iKtER5ZMQg6TVyp1NhqayNtFel/mbpU3jVFajmGTJsyQMVIpzoFwAoyHwCUQw/ylSUdVJAOURMdxmoiZdYKMrE0HBeT2j0JvOFthNIgZ+shIhmLj0R9Pya1traaTwHoR1gCSu2+j2OCt3WP3DPbrK0OwFoeq4H1c61UPu01nJtthPmnVxwH0UjyzhhZzM9BXL+i6//9D9fx8TjGf/9vjuM5EgYWcSPdRmDim05E/leOyqnmMWRRllFBuc9IJ9uERdgxZRnvobREGV/hTA5E7farIEwUdXNhYp4veyj9RKIOwzk+lqm9t1tGcu+34zixviN7z0bWmBT1uGUalpFrwVaN3Pc8j1HWIFGRrbO6hi7rpTOyhXrqmHOAPIJvo/Aiox7X2/j04znl+vPzaTydjnAcrDSXj2YKZBRgMLIK5PvV9KAjIvQFrnECqbGf8+SE5oJmXprA76zv8s+5/JwgQwgGdJ4xZQIkGFnjerg+Fq/HTxh4b4lU3mVaLboN9f7hbNFRUG2TrFe9Kd1Ni/NVSO1cHxl5KY6oV9OnmHwMvNcBJckHCMSSUVC2fYw1yN4KxLLJkgHpZEETHH/xm8xGMXdd8KcMwmCQ59fLuL7txj+OMb7/dM0WPOcoXzwdx4fnVhyR9Rct1K7j7//xNZ04EeRPp0ucD9aWOh/Gvozx/ffn/Pc3T/vxpGyITHWG8Zwo3pcw1AFFr5aB045QTgZQmZC4pYfl61nOaAS0ccW6JQ3FM1QOYNkkMOLbWE99Scj6RpxJTjx3wWiTnzM7D0j5pXLU58Xf8qVFB9CfscYRwYQxpzE/8r/pMgJWP2tF0Asyx+Th+rX8N+V25gRyDvClq1PEhlVealWFDh/sotUh/F91qfb5tM9Weu1UQfZDlZIcogQWPEI0nnpGOtHDNomMO7QJ0xjz7FzDOQOnUOg0+R3ORdgBPhjPltoqEc4afmZ86jmIlMs2+P3VQv9RUbjjikPzFkXfp924MmUUdZ4PVsCiGuWLX7x3eyHtcxXhWw3rFnaZhpibgvSvi5RsKZXk+DicapUwG3swHuB9Q985fpuIzOlJyl7ADeXftcVWH7yKm0rJMddtLUXlcW0Yr1LSXYD0oaeOOy+cIYF6IpRSadsIVl9Cpnex3qQzNnlDIkGqBtqjj8V0qjWNhjJnF8yGdzsI2pEB+tBuYYmwD3istxlwQwpPUx1cDUV2jk2jljjXzEBRmJ5X4CZSq5W+mIJCAHmR7krF3KLzrSCJQbe3teY9U8Q8jzKwzbCxtOuKOPnRslYS/WLvw5yuBjCZPZ0E2iORYbVdq5PaiN7ybyBFt10GM+HpWTI9ca5ol+LzsbZZi9j1rzOy9mIs+AwqSOA8YeEmOfAK+RSvkWIOx58+qic4iRBsKOrdVN9LpPIEnYpUbpUndFlPDViOORwz0nNpCY0mWhkNnF0iCJdDokeUEbcU0Eph5eqWQcGITJbGIGnVHZQew1VqpniNKKBZatd1g7RhEOi8akz4H/ENOIUq69AzlJHC81A+0Xes1ZYOMjCW6DHPftN4R+B020oEqxsJXEngJ00TmT62kVHytVxliFiG7fSm0a7aBVbqpPZwkRlzZxBlFvSWKJJzFRiblGfbsBJVyo7iggf9tsLTylACESVwXTdOU5q/AGTCiIsoXtZiq8QkUj7DmRNKWiHyhvLG++o8KZJL3glwLCm0zevFQ+DoB1+K9Mbn52OCRAXvV62izZR8l9F7a910VYo5U8vFW2wLei+2yF7HUPcsoEY4oCiezDiVOMMcCxdDCPcJBsReuUtkWuc5s+ZdTIjjpdFtjuxFl8hzVjzO6okrPXbVx0h7rKEV+ytuZ/dCGYf4Jiac+QHV8urRqMHf8055JCzvwfr++krh5XSavxvQoc6JJpPdsT6dHVPTmExdK/o9v13Hy+f9+PFpP85PoEnUkwMdOvTO1zdE6OInDeAMmkCvVOcMn4Cf8Wy7Zh9KQyWiz1Xrz1QkGrYTW5x0I+AEFZj5olt6meRMFQTTymbvnYnmt5gMHA+CWH166z4CHGt05nQmZyBIrzUvShom6BhB7NuAo8EucE3Np57ZBIKAFYNXviq+VjX1RTcrS4XgvdKlpSf7urmOpxeL7hfEbo12Mmu4OZMsWwbrf7p+5E+VAw4OMzgSISOjlDScDggiQYfdjfF2IWI3usQgS8J0Ld5P4rw7pnSUuHUV6bhLLoDpFTinyJyLrCG+1fyhPBn68u9XOP8Ra6CZz38d48cfzyMcGG/RmDsyrdKwhAc0Pyu7UMLgfiCzJB5rpf6qr6g9Z/XwFrUw1coVYXosk8kxjez8ivTTyNhqJdHcTXxY1q9YWV0KVwLOHE9HROv2ACLbRZA46jbe4I3hAMpQ7TG7gUfFoMC+gpOCkIT0S4nRDoLJHsI4w1O9apHOxAAA3hSZ9BfP1DKnJ3896Korj8wBetakrLqQj7mi90l9RqcWdkIbAIk0aYdJRoEcK+gNB4S+imrmtjKSwBoy9Q/G2Ms2e0/tRtoti7FS8GU6YGM64VFKQ1JtOG6oyGlELQrx2gz9MFzCeEI0L4sWyGC13gJAaOWwUQsdvM32rk5SDR/RBFmwWXdiRp6MCue0EiRUELxGOxUx9h9WjWmA3kRNE4wKRlHV/gBkmVGZVG5Z74R2aNKsmns383TsSXYLrLpWIsVT6GLdcZ9qqWLtR+CVbmFaMnIK1y40QMd2to2TZ7gL5biuRMhca7wj9dQ3ILNEIvoAUA3VxUHBPQJBeEpVwe9sUFLZNYiKIgtAjgIwCyXNXLI+sgXRcwCX5Txu4AucbMaQd/ss+0AKJkBdBLJUyktGr73XdLe3kdPpTfyFjJKd7KvNja40QDg9eOgVDkJajhyMxaZIt6VcgWlNSrzYrgMLTQ4l8f4air9n6MJt1zD9mGeJYGeZNcTwKd4LPs46sMzCIPJnnM2Yj4o4v9LLyHi+yt/KNxelHIaVy1/L3+YFmcd9VIoesUZi8Z7VG/nx0ZNczwhMWt8tNDJTLBCkQxYfd+NZzs9KNybYzdOBgDcHgGUxwyHslYpERjuU131GAV8+IwJWRnQ5e5ktEgjewcByagI2bWU5neIRXTlFH9TT+PYXz+P56YjetPMMSWRYmMBBQHq4QKHu4xyR20wTJ16GobH4PujHOHntRyKJy+HFIcQcxFFlUOd+EWsh1zDQbGlEA/Ec+yVj2h2LUIQfU7Lr/Uh4CcMuyvHWjgw00HJJ7YzCkfdgk9UlfIjgrY4ALhT/djoLh4PygQa06t1ThWmzqEEDzYiOKK+300H0WtlB6sDAdS8Ak3nUWYufJU7BK/BvGN3BI8KgwzPDEL6c7+P7lAsBGncZT0/njIi+RJZb9IM+c90OSKX+9OMlvxNpsdnIlLpHBQNc1xv3TPueDC8PNpQchSxJANlZC5qskkuMxZzita8LDdS+6X2VuCThmS4vS5VOigkvQ0jYHDui/63DTYZ21vrjZzJ8mRodSOQ1PkP6jvUUneR9bJ1KsxWtJ1bBT7H31Ttja0H9TbaMzmfS4fIdLx/TJeeAj/DdpEzxMp43JtlORvd8p4XPmBMtMoni3aBHONRQzvLydjaDezfeooXbYT++HU/5u2rjCUCrzJDSJ9nVJrMzKwPHPQEPK1vxK21T8M3gAU8RcDUbrDKCLfW/bbY/0wh0KOM/fHoZz8dgCB/bp+WePzJcnTu8LSVUCq7VSi+Kkt2pItBeR4JL8POzuKp6j/zdkUzo713fkWkMkSbHw5qvHT3Vl32cQ7kNJMFCQDYl1kl9cQS4cQEDSx65uQfrXOcZF3toPxgNrdzKOk5iXNpvlFtqGUcqo2zgOwOZdAFL5QlYyn1NYTFkOlrU419rIcbW/OgdU027Ba58a9nX0Z9r61hczVpCKbKUERCZqjYcs8iTvae9BcHWKJXdfghp+3QsTDSmtG5FvozR1jy0znMfb33HVJX+N/dVRoJP3T8pDjOD+vjaefwZey30SqT6PdJF3dEiiOFYaOHAlMF6UM9Z52vqp2ojkFMBtcRmSE2VqxqtzYkZANtpvHqt5+q+is7C6Cpb35+KqPPFMkroZU2hF0KNCLBQMrt8Op/BfZCBiLQ17hTBErXbQPSkgc/34h0Jo6x9TiOd9c9pG8GsCOM6Ae3ifWsnpzbkRbzKthbAm2pKS7lcDllLVcSW6VnmLTDGimSS6xm/LlZjNV6rnwdnXWTpqNvL54uOZh66pQVhx9iyTfT2IHA9PUde81jbQyKj6x5frxVtPNpfFT+Vgy5fnc+MXpoSndb3xU6JcIB9FJtlTZyMS35O/pQSuZF1xuhb0i4Vx0rtrAiwoXVHhElgY4qEL5FFDJS8l3V9Ce4Y32fZHM7lumJtxkvpizGXX43jjshzGPA1Bl8lXx8pjpYx5aRWjy9e3XsCXjqnJObnwvggeI82IY2PBNzvEK+cqiVDpJQu4l6vq2WglHxiD9o+G/1sYGvMgp4gkJVurWw4V+o2LluYaZ0sdDadOHPyxG+vMRfvmG496TU9iMko1z1p5KmsSnIkdQ7xIMsoipRV9ZGOOV9z7yKAArA5DH43ThcgwwsZPQyUSwRVwinC5rfRtSFrdZka63OYWJtnc/jZ7iNXP6X7aoPLGTwv/pYeoKV03YwugvoLPLnryMv5TXE1JSOt4zevGn61LrmoohjLFM+ZWzEWGBezCxQdXe21bRIUjS62CJdsWpyp7L9zIAsbpmjDDBOrQa9pP+juvsL9sAk3YdtI6BO4MblJDbcPuB6pF1Ty0mUQ831u1G8ClTsyfbpFgGeo9b3LVlnHNskSMw4ygIM7zHqBMvA6y2bayy4l/71ef0QDGgvy+nYef/cPvx2324fxf/03z+N0PGaNZUeVTDNbCEYg3ELdm4whj0Y8cM5A8kPMyGtJoegz4le3iXpp9EkNAxrdrZDLlF7uRMSOfP+INEMxTgRM1r4EA8Cj4u9T1l5//vElI1SJELt0PubQp2s1mtIASWbcuf6AdJ8PoIR8HgDOp+ibf4ufhAc/PKcROYgxgvmxjQg5HlB+pcTfx/EZLq7rGYIh55n7JgGCvyP6lsp3KpvGeM0IRo3hDKpSxozXy9JIiPZdaTqX1jsLv6IVvaYIQgW9lxYvqjFjB8tSUCIdKiOu8qJqPdCKRONLA/p2TrpqI5kKZNbaQMwkAmnGMgn+hsKqItTstVeKAJUmqzc/LOjBJlpqDTIFUenUFk2uNgKsB2wGt1gOlb7X6LQlc2Pq0VIra5xgGOfrlQam1MC5Fl1LByVgN05sf1D6BAcJsBGeJ5VfE8LHPbpRk3jJGgh8vozivL00cyLqm4cSx2e3GNHNW8QzMsq9nEyfV3b+lSNNHmaiesqZEgrULfrFJ850uEsDHHFfPWeDJrLGO37uwYy9vVV8B+cqapvxD85F2eVBl4a8cwaC2Dgen8budBjXiHAEUuk9+udGNf4NabAJohQtsSIcojNKlYHIxgA480wIrFFE3hPwh/gU3cJNTiCtNfs1g+B47uj5z+1MGBekfhbsUadrgqZIQ/Q2ptGTJQTRek/4DaqxU50ulFYZ0F8KD4PPC/CRnRMqw6Y4JZUxMBFkRSQe8bjfT+PG0f/+qqx+B1ezl34pIkuVmmnlCc1Oi1PL2EqOIG+cn5dSAFuRUWBarccShCmdSDSdUNJYSnFGg8PIOKLcIOTLJTMpIosloiABKQZgpASnCf7wIQA+99lfvWpgxfeo1XpmRPDO3dNuHDOSR5TpMmw7nRCOJoJ1MlKsGui4HXqEwyH+/PEwvv3FkTqBONojLQiYTKmj0E8Y4Wx/J3nybo6aao0VXQ1ZfyNfqIyzjqYFX7kcoiaaHDB5xpw6QPyfLrmhnIj1VVQ678n9yyCfMpVmO2eD2Pp3zCl6qQgMMs/OlUCb66kxEWS2YLexS5ptmpyeRAJMZ2GknobROdG73XBDq25cFBkF3DdGppGtgBsJPDMdlupYkvX/xLnIVhvIUgi+kqnXgdlwCR1L2B1hHI+xf9qNw3k33uggCcP5ynpyTTR1q7OAt7o1apYYSseQcViLiO/L8VQOLeJoyMkYf8deJPkev2RytE65OqjmhNu+Yl0w365rx6MVZOlblwFZnW7cwDPetDwjXgsjxhrylNM9skxSp4g9yTT4pWBsMeQnhwTPm244He1YzMP2UVfbTwQI2oEgVHToJ+iD7bZvZC8IrdrH+P5OPI7Xzw7O5fZdtjnUF55n2TNry897nIPrdXz6BHvriZgV9V05m0wnyPZ0hRr3+CwZ5dIp1FJQ8kblJepCmuCp8U/1+15p9P5nHIEO79qPn9/G588HRkTW1JwGGKpfi/dn8alM7ojJ8KrvSumeo5wTYeWJR62JDJr6jMPvUaDnQRFSMjWD+hiNAyls09irJrMf7nb/5OUX0VJIYq0Mwc6RIfWrbCJT8mhJ6owpml9/y6FgKVw9ZoGEBPNiL2qPZJc7jmliBgxSH3nn2jzzu3VzmkuIHVLNeBDevWDLzaz2s+/VDBu9wrE58sBh6txXkVl5femtN2TPeRrKY/XF1L1szB7yMUIHmFJzm0r1qXV+pJOelEdpzQFVaVC+wI/OHI1dkSo4QrqdU5Y4LY6JSpm3nYEAst4LzuJ4hmUbqoa6Wzz1+JQt4aJeNbqJDMkxYazLTPyBkwNla+31nT4DsGEtVdIQIuvWDGWWGuPKgOgro8IwsFErBsMzu8EySqWSkqbzmSp03+5lHZFnTFK1j6lUREkBhVAlVSjdNo2OuYq7kPbLunGCnnnXVCOqWqaqZdbXdsYHu5Ys58kacfVTXbM8OmfWyJlHIZ+nnD6TAWsEuQ28xzlULRZBxFp5eWRCum3fHhF+Ud/XbELLqfbPubSOlZ0hjq6yG7zcn7WX/Ox3lBLlKa5sewCwlGVtsn+oZDYjzwFMQ2Ol316VAvURf9xvyKXG4cD3+W8TYQA9crBJ8rdIDw3gp9NxHFn7V0r2vIot1/1HXHsBt8GZdn48Xzrv6v+siF3xca215JbOtskwcaw1D6q6HejRteYS2oZquxF59sjwynibN24p/wvChsmn2lbXj1ZAoMmoCoc0wd7obGga7Xr9uu+yX3NGRc91pU/PGMy/2acbfa+leHIZmakFvzn6mGtNz2+38fZKQLwD75PBGvzUmlkwqeQJaSXnm/TQ+9LrN+OB2LL23OpcGHDmQoKVui4dU9k907o96i7rs+d9902fX2o5MG0I1dYFom/Zjw5c9B5GUGvSi935M62NnRLxAZ4tJ8t6xqwqmHBoPXOdvOgOgZ9+CwBYSG8px887LLvXvZ+zZgUwxjPZLgvbnv8oX0E7O1Ax2pgkXxIhN2bNIQOzA1ulp1CvyXKTpW1VTdcyNr323eckZzccfL4BksqtVxfr+sJa/gkb0Jjw69t1/P3f/zBOscDhXjx1SnJ6fafuXtxM1Wpm9EI1SsE4C69aVIooYeTbM2IZ/myvr5ZgCLxkna6M/1ywEZkKpL6zVQtlEe+ImD8dxz7Qww+syWbNbCqy6U2XGyZau3STiWytkEa3UKtZz8w+iA8uGh74FA5RKJ5Gu0WA8jOmCfaKcb0aTCwTOgliJcGSYAnBGDN904Ce1BbLGETUpR4PJ7TM2r2wHQ7cpT1d7EUCPsGq4RuP1Kx6zIlCKk2c6X1Vp9brMRm47gxJwWK5dtamJxY365FVu2sMEQiYETFHxgGeaI1BzBOfCLwZ7QViO8DvEA2RYBcjK6KQ9WPpL7HOxyP7HZZRIqQ6zWkuUBScVUQ4o0ZZqPFspv2gs+UsKmdYxqUxVrZgyuGh71p5G+HnRi/jWJJjaApRznBor29Goy0FcO2yqznDc44YfBM1VM28D2LzGX1G1Brzz0j3IWgtaqqRIRAovq6oA4E6zivuXoYWz4Tmv9aEarVavZ+Zt1KY4LxCbWekgraur/IPBHpyrRVuUf9a1pllLV9mNsCIzuyEiA0zKoy5CPwIZ7uCR1y75EHMOkEPxaDk+9g/HzKCl21Zs90O0HsTrCizUNrpUcbogXgSgSVw2xM8sTEM0vSuNLxVu+oWFGrtovY7zS5kiSksydq4iHhnRCBD7ziiis7oyFZZA3tpk0dlTXeeHdQiJ0JrAEblA5zy2rlWCp9pdfFfSQWkquv8tZMk2h/l0Bn1kZF1OxzHdf+U0fUjuVfVwX9lF4CqHqy7h7RlKSgVlVwiPkye+eKFTJQ2zqrGlYBMyFqhY2xKCURUqjlSR9qSt0XUOaIbp/04fIzWKtYjenNerOVl6YEih9GkAoCZjA5R8VPESIA3al+lyDQiSLussw6wsr/+5Tfjl988J/r2DBu7aOVal7ZDyxgLrIw4x8A6iEynR/+B31fozIoiylhExpOlHMuA8aicsjhMgacPId/PDDQ+lwFWQ7g2PfvdtG2NcsuRxHKWre9IuebgauqW+prI7My0k3WhNQIJSAaEXkQDNDqVWDeIzBooSEvw9Mn2sblqDVdQsdY35okIkwF4Nr3/YpUq5Qsk+egfrxHnnr/dx/PzYXz8GAEkAY0i62FdM+0/nChwSEVddNe6qtSBmDUcWwVSdS4tuUbGUp6RCBbFWrFxdwEQLrgHeWbqLPf62ye4H8hKTHTyOK/+yYUYFBRAC1bbE/6kHn4NUXGrvYyfMNiyBrpkNX7S8ItyJWY8uS82I71WZ60xKYpdl2S6oqFVumnfYyTaI60yZn1VNMIo+Xh0tBFgjmBvua+Ja8D37PNtdytooGwr8Ds8qwMKyCqbOZLnVrn9mTbRHuvzesFah+6uD8w7ZpzbnRWvkMmn0zHZIvQTZd8AzyJ72ttdPAj4np0L3Anw81NkEm0t4nppn35PxvNXEIFGyvPn10sa0s6sCrhh+TzMZVCxvA1iCpVWWAq1R1HMhbTc03+3t6W9aB1CWetyTUFTBJqGZ0cJLYVU7XJWj9aUX+TD7dM6ExkVPNbOTrZtLyG10Nkw3aQlgXitnmNvmyEra/G0V/3PO+VMGJ8ZtjWtruf1PIPl29yDvrkOPePbPtppTMsgpsWZ6Iq0hn9uI7SX51pobe94z3TvGvnyzIrCbn2vEDGbqeDZSjXKppK1p1+8zMapelN/czojpqzUMskj7dEKGSBEay7Ua32fZ3Ja6nWgqkml06fowZ08Tst8ZvVXp1tUrTWm6BLGqejrqoW2SvnIeGscq0b1ziw0PiDi+z1bkYOTzRwiFi3urAxGou2ecn7IoaZIMoaEe1VfckP1TcOatKvdBkhPR59po1BpIt3xwQ/0YRGWBOQQwuWmsuRoNi6TyR09C2iabEeUQd7krwUZ3FlDamlV99f3PalBQHtmw/Q5FEecsw9kEADB3NpzpTMze3WYGd6rhLVP1WppJfczBPsf4XpkW2uv68cfCdeJs743PfEBndM6bdOhagPM8PycINyAqteNXkph9H6p3N8J84B05w7XikxWIWYzQIA+dSlA9kHd78bTCW2dmJWbfVGfjodMVXyOvs+WNqiFmJxz1lViXTo45dimsqLHvZ7q+6szjuyVdgiW4urn3rKBPFrrvZudNy7Hsbay5X1/EGuqcz3L5JW+5vrb5oGtz8y+/or00jhz3cP5XNVP6izL2reIp//o3Vz/lLGuePEfPi5jfh35XSe3kGjdZlaC6vmsDd0RaVsZWhf2e97vo+xGkpbzZfmYjLwcgnrmFpDjEkX2tdT+8zPNA23+JQ/gsO13J2mwNNy0NZiydppG8p+PKXHbnLGAwR41wIqMFwp2o4fXsk/z79Gmn1sOCQu4Od1tTGebjZOPpJEpwMyfaONVDyyepaBb98S2jzAynSNHqZX0BSMyN57xX5UD6GO2e1rzic/O6qd/Z51LZyU8aj/i4eO+bWPk8jDKHAGCKhdKwEO1teznLLe3tbF5W1AKNsgDx5m3ws7l7/P6o0agwx8YTOQfvnsbv/z2TEAWNqyMaJeijtyo8IyBCKU04s1A2zudduPlBQibkz7DZ0X9U96Wbp114xC9ANiDkijSIx1jIkqoHM3x1ahhyL8jmql00yP7UWZqTaAtMuYd0ap71F2/JEGhwXxUdtEz7h5CpZaVJOxWPetpFSEW6zWDtOTK9tI3QS4CReA/oRpWz06mdANtWynrTHWO+lZUa1brCC1SCqxYq+g5m9FXoANr99uAdsE5zzHridKjyPZQlY5inMeZgg7dlFSpz2qq/jqj2xa52O8DNb25bLUi0uYzNfDBy1hKOYUf5yTvZDEObz5PRf0t+njuduPpqWs/OJr8fYiCqUT45jhlSLJFAviYvgN2knRp7oQ06uidrTFbjVn1DzWhlPNnFS9XqcGgsp0Ao/p1omH01Rqb1MrVZpmD4oRYe482MfuivKeqdQ3a45kI2iOiea4QhU9kRaSnM+vIKEBNyRQYhXywhSNgwFVfugRgBqW964P7AxJ6FOYRpZcHPVC5WfOo9zNmGuc7shcCK0E3UVRMgl+KLKOkx0TlHuOcEaxAwQQfOkfWRNyEaK/X2wV1pYeoS4r6a7XPid647GcbWQwJ9D0LSzl05DNK8EPO27VqtAhBv2et7rsgJ/nCPWv/pDjlvrAOm1hP4C9ZT64xsLZQZzLW4Rg13EJwjc+r/VxkYyiSyJpo9rT1/ar6Ko47skcIw8D2hchIOjwFr7MqZ/a1vtz34+12Gpcr5MbXaTZbr95ESF7kHgcNYK3JVmqti/QrNHZnpZNS5pYfGKTZvl0ZLxpke/g0UjOyYOOV8Q4kfXYiiLNKR0r2GGXGjXiW1zoLUVpZP5JdEQ17e0P/5p4F+v0ewlFC60OGXtSn/uu/+pif/+EzvvOv/uJ5fHg6jr/6y6fxzYdoX+Wa2sxXJyOurVKsQ2BrJN+/j9eIOnmtH+n2JfoGB8owo6qhhMqoRjtMAVsIGExI88bz1X6zjGrguCTSvDKHchmwfmyxW3U5mlGinR+B6QLnUhuXqmdXxEwLkOucNi6cELoZOieg5l2dKXJ1ye+ypjgDItDHgqep/U0FLtUb+L5kWjAFuj5IZ0ny34xgccLBFy0KquBGogNb5Dl+saMpNcRe2yUwm3y1p9F7fX3DHrzRKXPgeYysyKjVPl/3CSYWHRuCtqJH7suLMiDacZK6lHSVmhroW6Tg9LdSJbaZEWvKzIN1lhBrdz9nvq7uI/P2lt6qKCPathInyFaq+Ikvy3KzjLxy3eBEwBciE0T8JHh4ZqlW1kW3gAz6SHRm5ZGl/FsexvOo49/7qDTljbGVASz9KEDdwsht2v/SJcDD2Fs55RL1PrJpdnv0Sc7oKiLTnz6dk0ftziGf1cYMZyKyRGZbwHUPBA8wDSmufGv2EW2P82Fr4jmR+cEFqCQbzFttRXfW3z3fpf3wSowpZXG8nq+5xzpntiW9xoa9UMGCST4ou6mfSFa2CK3FufU1GNC+9r/LccWhARNRj0ekcXSrkpbYk19MoS73uiyjm7xxfGX1EuIrs+EwG0PwuKC1Td84+HCARKANgOf7N+jS2qvvwZNpD8XW9zgw9UZZLofBF1a/58o1qY9KObYI4OJ80vc1xIqs2D08cu5r5JkAPaf2iJdHVwZEgQV1zUMfJB0AT5+yWrIaTkfKZr9cL0GnrPe6ybA151nNRUZ8s5NlvV0qTSttiqm+wt+rtxPbOPef6PFt7C2NRkWD2/PLted4JyFl9ATliV5CG6JuXUrupBh7tE9R4Lm91fSgSVpj8pXyLzva1qucQ7343HeLNNeeWPpthacF+NcKvoS/WomB9pfJrWNfzhw1DCOppju95ozcaWA91n5cUavWi1c0U0tgMUytodetMuIueDGA2bSwyv1l/1rorBhRpjqn+qpGZjOZzUqWbdS6p3SUPEYfjW6Lh74npe2mMq6Izo1nLn2el0dUxMWN1emIdp3uus8d+bI9WyYzSZGqQedDnY/yX6EMvKQRhB39gm7yx7+Kp+rf61o8Os/cUJ6VkiUVswh9vhp7wxTxLfFXGU06+/bwmb135EP380jOOl/jL4g6s+RGThfdho5MpIVaLSkfrFaUz1HSNXbj4/NpfIi2WacAMKMSn1UdS5vBDYagEwBU8XYmtMzFB+VUzYiNR6CtI4jwYuSY1AJPnGk5A9r6zkYxOpiyuuTgK5ZYa4VWfnS4MV3Yezrj/Iqr9cNBJn3KsA4ti6eoPTOnBChU9vAWk13/noLmCiQQhT4zXcRLu05ZX14j+9Pxp9NcmpHIzL49D8nmBX2Q3xMIof4TgZnLfZyjBCVaBR2QkpzGRhnQ2Hc/P5Ne4dG4Vd8oObEcQK4BIryLbiq9YNnXelt+C66lAl16BAA1+0ZiEfl7ZQJLRLjBKBcxZOBt+Tl7s+XoNLWq3f6C+J8+v/69pR+38N7SJRZ+Zz8FdkmelYY0jcOwIQIMMT4X/CZT9cMRFGeMc9d35SzoJzod8JfthVPNpHY+jLtLWKSjdT3yNl0NQ8Du10X3LN+kAY05qVPOfVsGl35nf9e81MHGM6SWdbd2m5v84s8xhTvz4q/RXzR6Ir6Nt1BM3uDLS9TMSnkgqqtJeJHP61sAMoCwshY1PuV1EenBiwh3K6yrEow7aXOpNaa3CaSUvdGe4/1svjxOT/dxeop6EXiRglCieX00Hn95uabxfH7DM46HqAfA7+A+99sZkaMCsfGdjoblofZGpI9C0QWSGyWMBmc9pOApH5irXsMrcspZMKHmjov1r4noi6IsKAjxrMQJpkCKiLq+jDy6VCKynycsGXm/JSSF2Cxxo36dmn/8F9F8s3sSGam5l1pGVXp+cU/9Hci+RH1e0qFzP9X7U4uQzLo9HZOjQjWzU6PAbv/TGhrHZoKEbnwOS+66ZkS7RHXFOtbaMgOAagnHyN6+gTidAF7RPp4TMydDRskSFfyaKIfVnpU1m7ne4XWP14JZU2oWUzJaaSGBXYr75p6otYxwsVFEi5pWjqfpClI2WibJ2DWZaluG+Wb/cNfFlXqSBwSItxkxTgGO/QWQEGmOextL8xRKyNiNcwqcEAroL1dALII7ENVNSgXG1TuONOtQaHJLVctFZ1pEBHJ3OSdVy1fqdhq0VCAzGszaTfl/4t8nnOF8hg5phthZVUt6wnkAOndY0QJdvRJCN2qfQ+Hex/cjwsHe1inKMj26HQ3wWLN+OpeA/eEzEscmrUFvABEf98yiWesD25ztlh9rGuO8uIoQpD6rPtDlOW0DIyMO9HwDEIlcwzIKlBpX9f/JM3Ge2qnHQxfrxbNY+BURCThiI0V7yfaqF3jTcvalb4Dy8d3n6/g/Pr2NX32+j9ddoHFnD6ZFonxdl86m2j+qVdy7n9c/aHRlJHqKFAjpdnbWxqWINhCK+56r4TrpSOAUU8p/pv+xDjEd66z9zLrkwz2jzciAsjh30HYo4oTSfn29jvPbebxGqVhkFhifDrl8OuwTECyuqEuOM/TyxvZ/0ct93MeHU0Rh9+O/+etvMkr44RlKcIwpIsSJOFzl94+ugkT0ZtT55XIdL5fbeL3e8u8qs+D6nF9xvvK9jKwhyhfIzKFjjETlJx7DLXpWoyMC9gXP33LWS75mFJJhY/Gt4J0ZZc0QJ/jXBBDpmQhgdAZ8FXwQIejEUVEGDekN6NEt/9PRpxaheTQtsmzRR8mCrAe9oH2fcAi2rkTCpnP1wlrOpBXcFPR4FS5NEx7W3fuTteEZnwoaS1nGtcje6IuelUNK5ao5YtBFldhI6yEmBaJ4t+SvcuoEoNjnzxfsORGjAVTINoCmC5chmvKE2QdppMgoldPFAgPKNFuIIuF0EqMDkf+gZb3JhC+cdcr5iPRWZo8cWJFBJZkdmQrRSUM15exVniCfYgzk6xFRFmBVnx6cLTyWayWvsVQD4xp+6nTWiuD5u1Qy/9yGgVX7Or3nxjtbNPr7FaEWfyT/y9/IXM11zSwORqKPWOtwxKGXPToLZP3w03UcDuexf41sGQHKqa65HY4akcDyRNLtwOhJ5RoWKrvZE9JlWNMupyD29HF9ALDb1td1icAXJkpF9c1BI31AOqC1qlU2Zw076JGtW5TpcPAsR43AnBEANd6Nl/MteeU6tj+uAf0oE37W9QAMtaFioAZIKT3WPkbImKJ+q/crpZReDgED8KE9ZFeUHyakt96fmAgUqRjsV1l/s2UKb5ECIeDo2bcvGGOmSKbEBpiWhPdDcKOG0saTe+LagNyewj9ro8qoXpyXSqf2D5bC3YBlkhzw8D3uaKUm1wrO7qKZN/Wn+OWuQ9Lz7TZ1uDWHvlHPx+/F3r5lcE62k/vnVmeKQL3mceqhc7p0vy/Grmc2o//yaS7v2fIs1Y1q3NsYPsZ6VJvs2u8GTTSYbu+P/70sY5VOKJlVZRXdO92jyq1Ue/T/Peui7fbSNIiguxr1XtHY6KbpYLD9QH/qPlyl1pgLefIRbA5KSvyG53WRT/PqzrW6vQ1zpkHT+2y/u99gHVxFTnT+cs2ZocAU5oSBo2OksgA2LlF+RYC0fnl255p3/fTyOdPwszufDV9nfNTOCGkqo2CKRNdScXRM1Zuhm+2zD57ofmFWsnu8HY2eo53YlVaAW+5MO4BP7UY6eX/zw8v49HpGCvz7S/1HvzQfXGXBPpYgvHt1GK6AiHKpiAHgyNxTJLmB1x7GJJ6isiUfrE6617MWGTbIaMsm7ssCMikZmyn3F6RDWvld43dQCUuFvmgCtJAGSzrB0TLr+emY9c+Z+kz0L8g6linZKnddqoxjnLdMy2RbJG+WJwwOjNMMTLWvYmQqHZaFagjno4DIXLbrH728xlTtHNQhZoo8Zk4e71FIZSGZThCOCvwbupC2BSviG9F7KAMEdZ6WWcDnLJiJFakGnugX+uAWZoeRknhSCX4aI5YgNQGfb8gDfW4yXHgD8KlZNygW7TXIHJ+MipyPHNJM0w8HQ+45DU5EjcmrJlnIchPb0+ZcjtZtumSN2Qwkw3yY1kgyzrI4SotY0MARZ9RzNe9GgV/Xc0rftXV6b91VgFHr+KD32V5/4XqoTzdt56d05pYZPZaHccpwXns/VzCoeU3/253A/YM0/zCom1kVvokZnRhbZ3/qWaKNImtFZemEqexOZazUWNohkt+38epwzzrqjmNoGlPmMMjIsEY2VnlT9qyRPZ/JJI9bT60x8r0EYVOq+Bdsu68+Av0ICzC/K1aJg7xL7/D5FkIKKGtYX5kNVn/DAyyPTXpL6akJYRmwL6cQaNNh60Mel5CXVcfrOfe+g4nsnfVxz+PpdBqvL+dxfgtoQQjqiP4cD2rTcch6vusLCT0NaEQaEw33pt7NIPyo2WQFS3qydVEeLQywQbfKa7MN12mz7Uv9a6MOM1feFYnSFzpinN5iMYWo01hS5dITGV7hFJy8t2qeddMM2dzHPsL3C3xhG1cyBCgc7YAUOiom268jUMbXjxzLBZHJRDlEP15FrrydxU+eJxNS1b6BkqXTynV4H1M3VdOdGRSeoi4HSAFiKSVuNYn9mWwrlEwyNkGRIGYnbKVu51AR0VTkHMYUXIx96qDMZR2cPIoRIc27gtNGTVN49XrMYuDwmqZCEzS+t/0oY1WomrSrFc2bLaqHlM0se4hMkvSsR40EvOwALrswWk9miYHTiRXnD/M/PEVvwN3Yn60/5qRELeeGpNkUOr8Pz7wraqYcC3xlyXZQtEFKS0aLMtIUiMJ0WQcya2ScRFTEmRVD2sJlQCYI1j3TEuMLsb9SrjJlPVBeUUsdCNy73XXcs2lzK0PVi5aRXp2FjKLF3oci7gKV7r/8f0S9kgxBD6nsiT9OdAt+V+qJ7+/G2UsDJaQQg96+trGHyQMy+wB11plFkTXJmHefa53Rjkr3udNpVWRgNtqUruZpYFBmmu8pyq2WVX/3q1+P/9f//P34T98FAvqU0vBVXRkxyxTBBx/gttLpgqNoZ/27nQtRwx+XgHqCL0jJyvV20Ena2vEeagE7Uh3/jVUMUlD0RvcJ2tzTMX09oG54HxFZ8sAwZmFHQFqgRhjnJDLRXt8u4yWiOUKK51wQbQMviwuApkS7ZsbGMesU9+Ovfvk8TqfD+PDNCbyJsk1rmXWRmQEHJTQCARllZTp2RJEjovx6u+LnGr8jYNDAYOl4l3F9u2WkOl4L1NrQbz6/AsE26vOzJRh9S8EOnsIBEH2F83xaXoh4m1hmtaxStNodS9QB5JczKqnWhOILGVHbj2u2b+poT5aYSMmuVkyQBefsWoEIZvyO2u+Yq56da1F9uZvk3IOS+DJ0mMLY4FtbSNFJZ+z3sDiMHkDJCm+i/XVK/wYtzHohMrvm9HMdnajbtWB20wi7Y8aIsnsMw/vh3HkAupJ0R0oMEcrR7iodxpSBmVlEmdb6Mjs/pB7Xo0ZyDQzzzvJTVLqR8YPXoy801y3kb+4hM9go37IfOdc404s1VyUvxjyYlaGz7Ea6UvTrt4wqHdB3jOufMpa33i+xan+v32pjl+tl6ceaw+KxrcgznPaobddnJUd01tbWVXElbhJb8sl5lvAbh8hyPY57nPfMbOpyEeE45ffNgM/MAc8WKZwdLHz0Gk+E9yvSxHWXwHEADgY6q1RZSzgNT9Hjvuvg086KLOFr2Cztb0Frqjae5Wyovy3AdP8Ze4asA2Q/RtRemZRxKVMvxl0J59Yq6/vXy/jh5TpeLSv3j29Al+Hg8vWnSPmnbtl3KuXTDOPy2HFB3XgTO0sBYhGbNUK00at7eaUNFp3bSceviIptFKHxb6ngMf2KwBppHBP9T2vW4MlWg11pEK6d9LpqpeHglyCytVfNluogH+bViknrr7Y4UvTNq+c+ufzbPFN1GwpW1OaQyRm4msbYdqhLF3kmnZGZtmZ6dntt65W+j+yPNPqMJYZhSfFnfNpmRY+uC+dppboXdu3dA/OmZ9iXUnu11lQbkFE9fo0EaaEn437RdGsz5Ego8VrKUXtYbY0t5bbn372Mpyfp4VK2SJ8rz6/0WK6Wg4X4pSj4qrT3v+8bLYYo6OIsKku9NHjfzV6LHI/anwiIjhGZEvbWs1Lpq35vYZPNe70Y0ZO3lDV104R5xic3ud348ZjPvM0Jdklpa/Yj5ZaRL95PIG4yIUtgFdk1fVWKlQk/7Yf4MCdsDMfu1R/oF6YoVw/6veCmnCalvBFgHgku5sGuAXq5jVEbAXQwt36ef7qPzzaC9GTc+VJb5tNU786/P7+exz/95sfx4+v46i/xcf5l/33vC/N318tJE3V57YCQ02GKWor+JjmzfW8fg6dyC2RL0cgEnyKwEysWHgaH78E4SWV/ilx2xKWcnqlcEuhG7SwJWBZR5zCg06ko2WsrgiPeCLXKqtNPjDcz7FSLbe/BUOif/jzGkyBirIvVTwYKsnWNWruNcSTQVq2x2Oas8y9yj7zMkdO3jBZ+SUlo9GvCOUjlOpxq3h7LRbciYKj/tjpwy6PtteqIfY2ZODQ1NOOnU9bBIxkx08U+oIiceM2U8WNRK4u0gp+tBGvS3w2E+s6CyyDZVt1TMBC0v1w2Kr/eOqn2IEtJtEf0Ia86ipCrXXfQ3WcRZxG8/nY5PJx2NvmA6xfaFMOraALoM1bfdQA3Vz+U0TK9aeO2BXmXN70TJXF5h7+5Z1PUtXnO1vfdqTRr73PmzTzcd7Aa7ENIU27+li8Xwv8q/XxvkRXoujp98+OYZX3apwA3DuA8CyiRVynqrXZYioorMp6/6YBFEOm2ZNiMcoT0WhlFaT4TOO7GMiyLB/WJOp4bZjX+2bsrh1gA8kUwNlvB/TnXQM+K/W58czzmzy6jbTJVvL4Sn/ZurfnOPTyyUfsKT3t6DZUmJKWWKML7iMykV5vozjUYRusKhpLPINL221vUUF/H5RzItpexO0c982Fco94yC1nonYmoF5BlrAie0WqGWO5XWAdqXaHIWVZ+s/1NepZYWyz020m5zXpX9pJc5Z1OtisvZIwqqTHe1klT6XHHP6RYmK1Ye7A7XBHBv7Bu7BpRmFHuxjbpFRrAtwu8a0PQrS9GHkEq5hk16GhqRLtDqTl9OOVtLz+e04MSCk6oU3WQ6zATkpiulIz5SgsoZb3UZkP0C4wP9i7RsoaLn6PDBnOtNHw5SVQrRC9K7kHUHYvNLjU0qeixT3BXZLYNk3WjZGSop1akmMW6SVatBBaAAt8WkOJByN1hXao+PX8Q0YuafHjHAyHS9qRQSFUTDqWtujAnccOjnqTN2u4coYSAgLECTTvHoxQ4GZtaWRyGirCnXwToqalA7SKyc2mlKryk3xyhJL+0IEd9K35HhCYjPC4Y8zczI2iUqk5xdoy0EVXpa7HneZwwxqzTjF6lhSCtGjuzyln7nCws1j5oiw6dyEQp3Q0NysGrhJSdKSCR7QK+ss8myoIyj8hyfB/x4k4hC1fyjBoBpTUwGDrVStpo1ODn0stpy0JllLjuUOOY7XwuiAAF1kRK51klRyQC9OUqU2VukGCqXixQgRNhfySATq4BraHIRorxnAMkI5XJdgDl0hcAmSmaWnKCqWWOD2mebHPmeSS+K/EegFuwG0eCtmjwu5QXV0QMjvvxdt2NX/8YnngZLubw+cqu2iHz67z7WRu+IpyPFyKOimTGl7L+16MsvgyTLt9Rks3xgBEBmTbRtzvaHRHckAevmQ1xG58iQht947PIEMG6Q9RG8wyEAXqeULc5r6z1gxwIgzj49cvbJaO7by+UZdEb+ekwfvGLU7auOgYaexypOHsEo8LY6UBiBC7TrLMcOJDaBYJ1z3+f71HzHPV5yPiAZEM9srJ1Qun78fMFLY5y7Pfx+dM1sVUikh7RTSFxR21uYEyAZyPyKbrNjCDqEoW3ajQgB9wlggDMy85TKD6GzawyGW2Ojk8c0dxyu3/oXHGPGEM61ZnpIoTlchBkJklnr2QApCLQ81WdfDjm7DPPaJ9qS10/EehaRv2a/My5D4wW2Xuuj0BHQ02wnBgTaaoczL7TvyWzG83fs2LkGJHeF+uuTi768WOz6nOJpVF1o0zuk6FjRjvq/sUr23xvp1XrpHnUaDzVM6kz5/0BdFLObGRIWOtEaVaKrFsKMx9Rv9e5dWDKjMLccI5F9fIy+HzdHfRw47r9hPEsh8vs5Hu8qk6+9rL3QyVt87zQljf191mtIV5LO7cDNDnn+nIBlgIdHyrdyP7ezEyQjqXvLkNhn3FGw/cj+4rHvoZOjLJLPPf0GnZSYBfNXX2mkhh1FNJeMsPg9Bw6BjJjxnmMQNC8RxbJK3rZPzocZueE9DyVAIKGDI+EvNgnhnEw+tyNASAXJjwA/M6ExPsYn348j19/95pZR6p0+aMb0A/eq5/1nZ+nTCi/Hx7VSL2GQtVRoSb/Du6QAJK4C9QfqXsFcNMeMqUQd2CF32cqznSarM5AjDbaT10yVQkEE+mTqVPFcw6RKjbGPUAjGIHWmqXxrPTQdrN1qmcdCEPKVlpohRFbiskzTl9Qz3PZoPJIaY2kvJowlIOCg2Ikbq7VWNwcFSqT936ts+kWRr2+un/9dyWkB8lhXsCKsM9tNRIIS+MxL1UaCKyIbceJPcAiSkVCE4cmO7c2LBrX5AXj/Ho5YdyVYl97o1ZTy2lYFkIK+MzMyeq5L133xO+KB7o3xOzDyeFStGO0sA7Hzlh7LtUOigAgpJxlVamgAFQnhXBuTdNqDY9EomGrhrLGqig0vy8U/HYEqe6Kyn3gEAQXC0UwrdpeDqFWKvpRmsakSU7bOY1jvdqDalkIWhGdY3H5ScqpDEFr1YOEkOa46QwBYquQxEkFijRbm532lnfLH3y++jF1pgnpEWUW4j0WKZEtXPuyLEHRlU6jCq1musZ36RjwetWZFJumJVSF2ScUdyr/qhFUG5OiG67n9OxJGzaAEmVLrIadTayrVbWW8zgLnjkEeqSu3lP3YSs1v5srhV/P5UkRX/qM66W5XCYv+gQa/9T6NjkYXRo733hunzWVC+mDjX1SWSR02gkEUm2dotUbnIYoUYAbqY2NzriwXCcqiLp/Os7CMM2fzuw43gHyEz+IzrSkc6NOcq+oyHq0V9mERZwn9O2KOrNnO1v6ZM12YqlExBk13DCeu71nAvsrFbb4HAzMqkufZMTjpTVTzF16VUURuReKBmmPU7mVNCE6t3hypVsKFNOtlZqz/T1pGc1Tqle9fS9TtxVx8x7cJWbcYLRT6OzQMrSKjYtGVoT03fJl44t6hnSpHj51ynXZrYwINGYjNSvJuzNM363Mu3Ak4TkJ9LbbiARLttq1GjNih8UbmnWW0e7iW1kVLjd8T7fobI5ub4nGpX2i5Az/O8VCKJTez2wiwNfGe7Y7/d/iX64j2bPslTkLyQSQd9Uoul6ipfqoPQP6CDJLhOHk7c+ExC16rS+aHK71tfFk4CDKUqLtFfvUA58BhlaAIgc+TK/5blwiHdvkGAzXzo/FeQ+7jGVjCSFPvpN9nbfobHPF7TWzKzSBVfZUWQJfaRXeotWuLeMn28C9RtssOCa/IPL+1FG4/Qqv5Sl/sFaG9LpIfb2mHsEqrC8GQU6evypSqzxqREkVDQKB9EFwwszfJLyMKmckiwYCm4PvDwC3SKMdQMl1qceo0IPfg4WbQQGooJoAU0RTAgIRyJhgR3SmGqA0NGUo4jNKV4q08/yGvEZCE7aUaWdQYArRo7jD9VnzHB61D6yNOSOClpG+2s1mqA484cy7PskDAQ+qb7RSAcOxEhH/rq15+3xOAZGpebEPUSSXMbtO//La4/Xy94FOzTr7tY+xPp80FFkIrWCVh9X2MZ/GaHK3bpD6R/WuAb67dnAR+TJW0R+w65vw7327WVfvqC3rMuN6VgZPBNCkVMgAg46ojO1Z1LZJHUkjx+v0SS+5ahkRiZDUGPdj19incpovE4mS7d8EMsKZklEyBZ7M9JznCxGVQ8TIM8pDjbHqJyMb4j6Op8u4pxc2ant24xwBy0sg5KsOGWM+FJLnrDG0cj33D14ltQudookFQdZT5/rrvH+wkCwzWPqA0zhT6YfSmeM/Ge3dBd3txnhDxPwWQAs8u3HfN9bcgbbQYz5WVQpgZM4AZ4Epo0YeUL7jnq2ciHZd6KMeG8i/8ufBqIgwCmhD0ZFKp/Z1mYxoS0PMz8HxVPWMMoCZtqmt0tpnvV5qtqhDXdcykZTZpz06OeDcLMejehKy33MW0uLc6V5pjPDvzIBg1DERkq9jfA4DOjMDZgTfr+2SQqQ0wS9AZ5QS0iX/c038qg1nMNYA/bbup3+UTFOUK98AoVU/YrrnkleCtBjlRG/u87iPtwQNGBnJja+87m8p1hNPIp4TNXLZHhMid90aAXKJAiJK/eOPb0wT53CVl8yUxbhXbH9EuIOHZdZOjVffYRS1QMKUdn5LhPzIVoguIxGFjh9FZqNfbUbLLzCc9ZP1zmFAJz3TsGPDiHh09MQ4eu1qRr95vuVMoLEbCSZxboKfmrZhBU/QUVSvGfIIadpAOFdEUGmeWUvNF5I17YGWHjcJpGsZ8znOTCYTSveja0mo1tqb6mhAB6jGms/Wgwvl2Aw+Of5ZPhXPKRQJT5MXGdLAh25EvYEYHDKqM7NQzoPMVmjDfsLFWFCdwRLkCNh2XCmaG8YwMgG8U4mykxqTIb/DpDjoFKFzSk/Vvus+XLWSta1fcPnaQHocGp0VJiP57w5A9dUBHRnZTNKonTMd3fUl/bZaXTm8qjZ+UkaBjSIHil8ywoqnTEbW9hzX0pKtq/TYie9pViQRZrCJH0BOvHfThWZolsiADvwSoJYD70OaCQD35kwO6dSJrBJI3s8wnD9+QLnJx49PyLDhfr5GZ45EPW+wwvRNv41xPl/pkJK8g8zIaG88+w14DS/kS+f4+3LLevkKHmQG3rxfHcgkZy2nBZ1uyrZdIb9977j+QvNPTIIkBmb75ZjB94Nffv/5PH7z42v2nr5/XX2gt3wJv4uLSvfuMG7JsK1fmEVLJhfXYuRMwDCyG3lg9SncTnWdNNwqIPVQBNkz5ymZ8vfFSHUD/V2pNq00zmmjdpXBb144BTumrTfwqlJEFObeyt/Gb2tsZd7F9mrNyT3v7at5RQ30SQcsU4uyX86y0H6HjbQTMXy9Ip6k9GNRGlJTZw8gQI2gPKvtE36z95x7Uvl+3Y/P8bHV7xI65b3ogGWSQHsIpnqNIrKuxsIB51vuYRXNSWmo+tzm0u0IIkOz5stgJl1kNp2BvL9qk9edbfoFGF87JxTNQAezrr+vWhcJGZGL7RGG1inhGpOWPoxr0CyjqJWNIYfQXPue48lJMlWSllzubBhaptwLGV+GzTjBEFTaTiq6TPmDQDVkWDx8GvPqyAKpU8U0x5rOkdbu0d3iREYhnR/vSDNS9rxMhQ4OpQOnYop9jswG9KOKNGtvcoh1ETBYZY5kqx86Dh1pW9EyM4wnD7eTi6bANOuiT2obqtlGSy69txiqixHt9yzNxPmCYHz1tykq0/nXeCxbqLJlrHWegMSmMWlOPn+TH1JYPWLZYyniYFouzW96HWae9nVcriSXMvjFz8vomlfeSGa6B2i1b+5idI16+3vVS9bLJbiO9bq2mc9S3Swiz0hlzmhtGsMoH8l7xVkQknVF++YaTAFE7aishgLZp4oOPZMDAANTxgzKXRz9ofhA1ThT4U2wPaZlJtCpFNeud9SRjnkkwBZ/1MIGRh7rpulca/CnxiUop49VN+TU04q00rDF+nAnh2dLeV2naAeZUChhqa5dAYSYLgUbT6szbPeF9nqu57jDTmCMqSjn72I+TZkJZoRJqBVgRaksW0ER7PimcnE8ldMxQgTg1jKv95J2tckJ8RaOaFEmpPP5MTFtYLrqEZILwoKozRBfg8NGXyoeXi+1Tpr0MKWCz4vsQEwP15ohN6XPLyVnm1+f69Ahc9Y7ak9bj8Q6SpaqnLGBLlF68/OMUb20zsSfVSNBMtHPuKSLvf+JWpuKzj9+eI7jmJ6xGsfMOknsBgtYNK26Af3o1I9zEaBbT8f9eH4+os2tMsEiqyXBOHGfLInJQGSANMJJnHRgadU6UxFpTn6bTr6OPN8JklhHQSVcGlX1fn+U4yt/KTus5I0f6rZ9QJfdzqocCZTLb5fr+PwWEejOAv2zj0CHkHkJb/IY46PV4AQxZu3wdILNCG4V1N5fDOzJYEJYPyMnJIzcrKy3YrSGoVAv3U/DZDlx2VM07x3ot+ElDgMrQxI1Tj60DTIbKVLfGNlT75o0ZNpNCoOfaWnJTOaa4HGDL7EiRN5w1w23eigSry4Z1YrIXvR9JciGawNavxwHkD0j2p7CUtFLMwIRLkI0uNLGJ7qtfChNftkr/gg4uLIDUDXxeAboYY4Ikx0gmXVKtW9vbIMMlIGcnt1GkU10Y2znw1DzrgyRtcBlBkQye1Y4E2VT7R0coAaHHjQb9BKfDYRXoMjbGnDxpMzm2A1ucfLW0fsmRROK3ah6WF+t1ehP41NB3RwjkHChQIFBJbUpg0GGa+WYGRAYESChqLTmkevBZ6Qnk7QpQBg4EpjQk+8RSVcbnoagyjugisT8j6f9+ObbwzhEH8VAiowI+lPsIfr1Bqm+PY2xv9yzZjKelbWRFVhi46tqxSNinIVbGfsbF4xRZhSUsSdDW/Rl6Kj5toxNbSiEVrKOyHJRFDrPOdd7h6ycgOfs8hQqHdWXUk6T4JdxsyjO7QyT2vSllipbZGcOq/Gf2tkZIbcnyj7XdHAkWyzt1NcBho3uB6WePanLaOUSiKdUr0pEweKViCZ3Vg6dZCJHtgYshqNxilYtLRg3b/CynE4pccbt8fDe50ojDwTwGUcia7hVU/mVXogkqFTJIqb2Gaf8jibPn609E/d9rNBxv8Z0ue7opFJ2krW8KqOKX6mS4xg76wODhjLyfIwI9DUPfLT0jrr8QN/PbA8Chyk92QcpB2ZUPIfRGjXGGlfW/J0IoEPzS/SRPXtjQOxMofEqVTnqmbNv/C0i5RG1iaMVyOHR9/maCOKfz9fMsBEqtQDDop4w07VpYEcEJf5+iWhPIoOb/0nlLfEarValfyurJPhl9jDON+6J3Iz6QZSONL0jvBNZHZdQsJVxUdy989kClTxpiTFrldicAmgty6ru43IIxPOthDucw1NEEXPsAlMr3RsynZ9ELXk7b7Jf7qHRjuE8xfOFbP10Ctkfa8/94PnNtVNU1ThCzVCODOtQUIa0rqkFWr8ldUI10+XwqZKcrVXoO+k5CSbmIlolBlYvqoMIWcisIXdyPKhKbZDUkHXmzGEyj+nxyvVHihjA8Mw8XlPCJVsyUhiZG1Z+ZiJmXhO+UXeiTF6NYVMtOghR6z7fuc4Kb1mp7vQuPcSe/isu3UeR83AWVdZmdAJ4vY79/pZt8LQevSewAeA4Y0q00VaSUaGV9xrISYYWb8SNiJ72H58StyGi0HHOgbh9Hx++OSJdnJkvx0TBb13wqoydNI4B5nw/RS+ZjnwzBSP7sl9p7OO8gD7R77sJUghE7QMyNwsMLwaJhHfRvd4VWa6LB0kZIYElhTa1YZ9wk8OOfL2NH368jLdwiv4UYX/tfaB/7hXE8BbpVGlAq2YND52V2I3qMiFIrlLbPDRTuqTfQa0t9kfqt1QcrXF6KxPtjcqUjfxQW1uZpkDgL62Vohm4Qw2r3+MbioBOXnopKZxzElYCDoSwjx+tTwg7piDXo68bHjJtI9UCRnAzHbIADpzLanCIWCptSOd78sDmc5FftAujvmoZmzlOq2hb5TXUNU7PDOAcikFaKASAYA6mppYLOGhp8wrZkXMLz96U8q+9UI4I71Pcl5sEECt43HQya2qpYPHQWz9KuD7gnfcbig4RJaOCPi2L3Vu1d47ZVAYCCAMKrVpaKEXLo6dr2hPBSMxZAaY8uQP5awZ3WR23Uqy7Dj/ZOt6rkLNosevI4FzAoDJzTim7eSPEDq6Z5UBlyYgj/CZPz/ts27LfR6uFeC3avUQbOczlEO3l8mwj0pSlB1YnFy+qj+Lm9SUBW0oI7gmhkWofF4XryzS8PoOUVqxbrvheatKeEQF+Eve/I4QUaRcoJ6l+om3hwxnBs6LULwEiTn4TgCYhyqM5GIMo3tP0iCGRXpVWoZvSA11bY8aziAM0wOiHL2gfY/zKuUC5UAZBDonpxyohKCdotC2Sxln8Gr+Viqb7dzyk+YCobKqnMhT62dijCyBTe5ugcwdplJIjjK/tEglMbVTWYXJK05Y8HA3fKJPEWo5F+ffofj7SBZF4uvWC9ojHNERGDIt/Zyow0pxj/+o35Vi0uArNMM9BhbrXSTaYTbacMqVVuocckOo2IB9Npq5nen/fsmpndU+maAM8DMZyGMMJIsb2TUjbZBp3pHZn3TOMynjvXLXPiERPclzn3ug5jRa5qeK1MDYVfaWzKwxrOXHLmZIyDewiDU6FbWsXCNKTTsxdGuU4O1LOYewGmFs65YnMru97hA6AmEp3x8tqdTg5dMrf2FGqBC5LcDmk/DvAXDp8wyhQGyHVvhsPq5rqycHTOCMilQc2NSXKrFkHTPm2ZxU7nH2S07NnjdCi11PqKtPW438MB8N5JzC3dpr2mDb4T92Susek3c0G9nuXG6Lgj3M6tl538NE01ugRQQmYs5AFOX0pRSsR43qI3dfrbDtSTh2IWGSrqKloqvGrn5r3z7okCjVEN3D5OzJcEvw2fOGB20KarYzJlKNtROuqWnz77Rmd4ovKoMtU7qcjOwYwtVlG7BOCTcqESedGRpUJvjvUJYD95hkYyfNdjiXDCbh54IqUlQCpiJp4yU+rDDP9qeWtnEPZHs97T5vtNtOI4TaIgfAKPvoyRaDHv4AI9HWM73+4jKf9fnzzTadXKMrsaa1ZG0ClrnPs3Vhr9tSGswxpcO97FElmTUWNoJRWd5Fn5Ex2ssZhbsKsWchDvRu763Ny4TTQvFeTGT3O7HRQGpzDFY0+IV0HwXrrNBDdimLLpMqkbjCJFJaulBgByhoTKiUEp5GbTh9Ror1mGOOnl1ARMI2/Mq86HVIL2uBLJiyq1r2/MzHnVP5aIU9FIJhooKmGAZU0Acb6Fn08hVTpe8/FmZkqlSh5/QrCH7Ucx+cThvdG4DjOo6PWajAM6SGk6LDudlM6j7UTKOkZzAxePyhEmG2mI1e6PBwD2ZYJhXftXXCFVQZCGWoWIeT8SrCZxCueo6hsa4hN36ZY1PdR7vxwZd207fWUgbNcSr3XSc3UxfAlEmExKTIDI2FE0mhMYbxPRNzQpt4CbZUSJpWqlE4xhjOMcUbYsz9irDXat7O3Nn6jFdtjshlwC3QejWZE4xR9t4hhbRjhWs8C2xMtUvEFjSIqGPubnlxz9uEn6v4RZYJGgI0K8wGPlLMO+4aaw3uioXfdm7JJJG17fK06yTkW3yBPkhVbdvJsBHUUl5ko9ll+gPKytUlEmZldEeuyKumrRiMgv3SstDMo+bGGbtdhfxjHRJQDbUFJEzii4mm+Rz7mbVUKRnvcL/Y5+ETsRwBVzuVBX/el9e2/NpXHn1Qomze4aOu/zVpYe1Ytd5GISz4bgDen/Xh62ue/0ynKrIxgNIcj6975/TAs7/f9eD1A9r7sr1nSE7zzFAZe8KcYyvlWKZFK5RdNqv4UqdTkrxatR9cDfiaUTTOW8xeSRYqPCgRMGAZCD9brkS75OQxogoKlAc3fQOVGv+owmD9/wu/XNxrPaPs+OTh8NVFHzahktXrC96IuOdlmGsfRczgM2HvWTsMxSrowgD6lQsKhDAdvRyvnqJIipBGnSqyLjFLjfqrIUCYbVS/sCZNjBDgoEe110FVnredJRhKvY+pvb2VLuYdCYuezZH248bQSvOYklGdykZI9EpGbh/4dZgB9cS3I6yhal0z12vtRQ9Q39C+VfukbXXOs/Y0rDaBiy93vueTROg6Csr1zVFdSy+/k2khXdKPYlqL+UQ4mS9ffWjsuvpyX0otWK7gyPdT/mkSI8zob4EWz++7KkbeMDJUsKcBnvfGEDDmcCdykU4QfDf15ElwmpRnLoax9DiyEt8u4Be1mdJg6EDNHPNO2jVWnjeW3zdM3r+r6p32m0ylpgmj2wVvTljgl/4sORQnkpHJFZtyIB3YKN7N0RxvDuYZVcodskDx/pgPNqfi0afjvWKfAW+jcluZ3bSZIl8eTz8I5UG90Oi4/n+MHSOf3r6cP9OrP+d1eMfnPL9fx+ek6rs8Eu1i070IBdqKuEUGdXaO9/nncQ4zx2kXvkZZS95NRyO8WqK6pDMWU+Fq6kvdjf492OoDhhqJnBiU9cW5UuqEsg+9xuc2Dy1RhzqQ/y2G1AW11OoWWyc/k2GQRVU+XMpTEmOkssjEsdTDBqNHjppj3NP5Zs7JrruFRDUOjh5Wn4YEze6AoDkoetQBMIoNMpv42G+JlsDLl7YE41NqH9ZylJEQbgGcAlwW4C+rYZggUKSsFYEGOLSCqVKLSW2oJLEW0NMKv7hzCGGAMa3iIkmZKEA3BLgvbMDjMKZLPU+oPo/H2YRNo/GwpMWTii+dzXbr5BQkDo+l3dr7YbgZJcXMJ/mS+TEnUSVUaZvLnwyGjznGWIrpzV/pSxEaPRxg544wUeno088yTyTa9N0L3OtL1HPaf3GebT+5P3bf3cV2kMjYlGHmG0oiIFmDrN9A/r8bQHi5hkJf4lAeFBrptFje01m7J3vEoTK6RnEg9iGkuFSXJqKs7E0yBpMTreuBSyznSeWxF57YCFV0oxyKivnVOKkJmGhrlwwF9DAvUTOObm9oo2jNtkTmVZnUXTlV0esjzlM6M370M/H1ezU/W12elZmtWGyxcJPf4GaubXM1rPH+R21nGAuX2FC3CGDWJbwbvVKqqZ8tA0QxjFCVUZxZth+GmzKGkgotkVPMjGROVskvRk2BxMr7CiKeVKITv/H7pBKRdU5QLayBIhWnepBg6FiPyjDpnpWwDIOyWqYb5O3qXCkH2En8z8jx3TdTKTbI7U50JxKa5BcmHYi5gsHgpWuEF70seq/DVFA3sdPcujWu+5ga0c61ylhZCN6JsnRjSDgzRgAzsULZvK4q2IpyLgSuazdZLzTyQ91MBCijwVhzePFfTwUPKKITazu/YQ9eU75TnK+Hb15ynTh9YDJouN5tPV73H9GXoD/DQ5JSV1kzBVLof76baekQjyRf5t8tw6Yig4Qb4ah64XJX11GjrSR+L1fwe/wAWSRvqa9cYOEP6fEp3flwca6MlpwwNb3965XeRruI8hyPubsZ5lrvZGNrQk74u3JYGOJO1WJFNCzg4LwUmCWlF2ZhR3pClIlEOqRIJvJ5p8aELFo+awUknL8v0j17TXqJCocl3QlPOvxXlpf6TZzX4Sxjz4YiK7L3gmcGbBFpH1H9FpcOpd5tKYwb3l8+QnZXlCI25km28JuqTlEC9t8q12v6wLF69bvueFhzX/sbuNzHW4HfhkHwNAEa1QLv/C4hAv75dx3/6z9+Ny+fn8bfffDues0ke3kv4dEKml6JYHuU+iWKeYLxUv7UPlCAyEsPbES/sabjJ8FQf4L43wV71d+pO1SgpazGPpwOJL1LJpGBRQTbDuM+a6vAw9qwpysgYxRfTrMqkLMbJv+WjYWQr78c1CQGtQyQrGHICXCN7+xlhyqsTYwCxy6iOuTDUSAakMSI9TlEpa52QCn6f5kL8lSI+uXGFGEmEZ8MDLfsqQ0+8dQXD5c1GimbA8oNZ7azHJxQU1Igx+ld9aSn6U4kppIoyJOVAiVraywt2OfDKUuDTuM16VUaX86n7YEACa+AEaBSiNyaYZTGQZS4C6xLdNY1wVfK3Ut+1eYs55ATirc24Z5WGFrRFuqhMIaboQ1G8j/O4Zs9o1ZpqzdCXmJ78DIq2AyFwn5W94coUgPYgiOQ7v6+MsmQMhUnU1KnOS9HYwzV/gIlwGLc3RlcOqHE+nm7jtr9mlPnzeZ/nEelAqN1X9BdNzgDQhbNjzizWr9ceFpO388sZVERcigO1sz3doQn81frd9A/HCMiP8b7J04KuQ9CzlyyQ6CO7ZYwDU7PjLGbPSWYaKO0K/kWmxBZgHhyLLY9kJPfg7EiWwlwlBzRWVeuk9YpDkEoOtWrsNzzHTOqE+YBG3j1/9/Br7ZjePeNi95XcVtZTaaxYgwSdVFQitWi2kmuytfR/grPxnh5hr7Y/+lL0K2f6vRwMWSawf45KyxSdcOHJPTE7Ab6ma3X69ev9Mym3+gAdytAZjZgtQ2gFgvGn5sfNn9OjaXThiCRGTawiz3IkS4bP6al4YipbjGRe7hGpjcgiZHpGVCN7JMH0ZsPBTRgPnmUvXLZFLEc2f9DzvnzfdV6Anoydzwwo8omIuOR3aAwCbI4RZ/4W5MAr+0G/hAF9Qb/niE6n8sdItaqKZLQgwssI6wO9zajVDCAXb8u1uUQNs9Ik4aAgAeBMac/NWQY0bn6Hm9oOcmaUEKwxM8Vo8XeK/BzBUz2+gCXl8EDXeu6t6WT5GJ7j/G7WupuewV7TKfNlCFUCTZfGOXinjGltdZfDwfiX/Ew7ih0Nsi0yZedE5pahNeF39DGaooYdjHAZI2d1EyvapqmPPWgMBrWBkfLDqjevGlwD7oy3kPre5zF/IlNp6Ze9ZQD3PM2AqUDV3G6uvm9nzueN6LgMTnNQl1WNeRPahjxd+g5RupX4J4e/oL+Nocm/Emc7dPQ438+RuRa6RWBxRu/3lwsdItQdTYdsuaaMDu5HOv2BlI1yqkfeV/zB+qbXUeHviOLG89QDHu2stpzv+q7VP/MhRWekyYwskxYuV2EmNe4MmpCEc2lf5z7awUa0OXSixJO5HrLTwI7o2ng2+FGWl7DdXzgvb2WgPko+FsaWVi/noqL64rX5vdxPZAHBOcayRj6/sm94qIPvT6vN50fqtrJ55DTYOo9/dgZ0LFq0kvj7//J9FAuMy3/3YYwg9tK7EFlJz4ctnhZcbitXBHBjY3VSjvj2fhdsMQzoaIwhZtAfdY9c/pfGEozgqqLMMTw9HdN4vt8v8LSlqUEvTYIXGYICJswx4LfSjS73SBO0Z5r/twx4Hlh4bRvUJ2u58+DQGKMyLaU5onJx8xPrBjst4jZJKCgsBO5iHWeiM3v0khquxipwoFpwCm213ECrDecMq6rF59VoNwQQv5JGbwIunwiYxPUgiBWAG9QKoaNXqHfVsyMFk03qBQ5XXI7zin7xb3hW1seFs4QN65ESqOHuaTSF0RYGnricAGLwbzWE1+yK4igNEgOWRnp5Tnn8BfP/gPI7k7q7ALilLdYTqCwFawsM9WzO9U/DFHfYR7OYzG9C4iTq0EgZSu8jk0zQHiXeOBATmXZldVQKrilF9oPvWC90ngtoZfH12Ggw+ktYzgoKhuZ1uY1DlAdHdCXaC52RQv8hQMSyRZHq47t+X32TXaHQOZMxm5+Ch2QCIUJUSkhXpOyqqYU7PCPrzn88ZZoELew98C49D8pSmqAZxtqnobrL1jwUCwKmS8UuDGg56xSpk9dJamyP3ddaxkAqs9wcfarTqXk2krbvjx52trmAw6d5G1cK/1pggY1KymnxPkKsTHJG1/NrSugF71MavhBc1RIpAdIqLVCaDjwCjnC6cP7JAYS1ijMO5X2/exq78RwcqNLyZ3P/K7yKT7RE6xkDbIrNHaevpR/YwGqaZ1nE0QxpvDur4VP5h91DqdJhOMePnMhdt24RSPJCOCy7d3iWd9x3GdmNsR4jkXi3R41uGMUan4UGW/m05WHv1MpeUwp5GsZME3QSsTpEP+cysug6otFqEedqbQW5ECmG8fMWbWEidfsFkedwCCbaOOVMRNYFJBr7lOBgG4p2GSgt5ZB+rkhv6ibgeceswyS4kyJFE0/GK7KtkRZteW9mDIi3IU1cBjhb83H+7qtCDXQYD+CDtbYC+ZKsT0dE71REsQQw1G3QYHhnuqZtKjJqyGJK7psLRTRgNNxGKfm3n5oCyFzL0mYZJnqasSwaBXxKyyV/Liey17nrntRRtEZqRTcFygU0tdAD8as4pm5fqXVBmSuMDS97f8+I1vgnu80dKzLCpQrqeRP+GvQZ6L5c8BkmBU6yNKAJrOalC0jr6LsJRC99zayvzzd0boFKHef7ORDoeCXmQPSm00xqnQgSaTygTAztazphhULd67vSgzJVfEGrsi7wDtK5ZhmTLSDf2YBHWkN2RY8BkVg4HtKAJtNIw5ofzHMcMo2yMZwL0Spvf9yPQ+hMgcq9j5agbcMIMCxeCx18PW/rpT2vs0Wnm2yPDqq1HZFyluUzVJstg1QyIWeyPAufCaP+bYo8b6BZ/rkZ0BKY58t1/OrXP45jphh15CntsfJM7TMVUxtb13trVExMoE15l/wvPEQ0OKrpaQtH3VYoyE2l/Kw+noaiEOls021+ne7BREqlOTBNYqrRxpfskfRykYuUouKuLZ8yjRbUQyKtGXSKD6PCAbXUDgMBiBzlAt1TQCNNiuLUPMjy5mp8EKTLJvjfzl1tvkibYw/ZCabK56L7UHSzRraUOrnoibOUXmzrd+spaG3MvEMw9TrzGIx+UoBSG6xvlwvN+vqW4gcvX9ZT0asuevAZaj/TWLQWIhownERCZm76YLzElB0YNDCisONIX2zG3B5g3r7oDKuJxAkY6gDdMgpZwfDsjD7SoVK7aNiEo0OKnNHivL9OIFBMI4ojRHAhTMpplpGdqGXKM4fU2ssRked0fNzDBxeuGyBDRmpSg7+JqRtlVH/vxYho7t2zU9aERbGlqOd8UqjLlOjcg/bet+DAmBA1TQ9rlZhQ+GZTSJZMlJVOHiYvsBDn00PbUYoE8igpNtMdaKcjTcBy0H50JkYKqw3aBVBZePNDqVXaNFPWGCJxnAZ37AiZW4vQdXiRgg96rEgMDVq4O+kOKAJuRV1FlcVvDWIVW2LZL5nRIa7YDhDX1NQyR45U7eL1dhjn22lclG3zJ3LNkefJhVGANn0quWcPrbyWg64oQW7zrNH33eZLWAxpNEft8zGAdRqB1XlAGrLmrImU1FTMWGuHDAREHmMQl3BwRtpyOok7E63H7ibCbEXn89kzN5+Z9e4A/4l668RmKKyINhoz4qd0baI4I2q9S1kbLOo10rNVRxjdASLVsFB1I+UQAGKhAIZyKgdt1/uV/vhQhvGla+Za8+sZrd13ttsutc7AkVBIlnyh2uDNoFxY03mHpcCnwZ1AX7hP953tiCHojplJS0BBekU0JWijussLtG4p42gMCWRNPxW9T7aAus+Ucat7flVT+JDy+RnbKBWwJ8/9sbaRu42F9xR8k8X9cXeqrxtogZvag84EEBerbD+bQJeCUV7SI5YlC8wqTBqPunghtjPtuPlCLbrJbm+9OV+5DswSyFanrK235aozI90MqcrdXaSdG+ARk49SGVFW2ljGVoodfCfHoN+l6faEKuiS37fMDVjd0+eaJm2e8sWyRqGi1P6ltJOxB41PAJpdaUp0VMjaBsWUJMQa5FoKOd3zUcyqoqH78uk8jsfbOH0ACrccz1iXkYZy6AbHPPvMIDxElB7AqwFAdnuOjNprtfeLTBl0AphRwt+7ZHjj/LAshn2mcxvovJPTGzaLgjbOY9qpkDoyg585f/4tXg0664H9fk3nr8SA1hX1P3//Tz+kAQ0AoI7aKp0wlVIzwvr3JvsppQjRRiJE0+0iMlaMtg4vCw9KsS+DhmyOUkKMKZl1omcyAmJFMzMoWBedgC9SLRP6s8ZRaE/muWE7IRya7sG8me9R9V1CQZ49+xFvj+sYSoHYIL2BqZxwzbNGKv/DdCxGeEpBLoPKolduYJlXT6uX/7d+2kjDbyCvMsj6JjhUyYF4YPijKFxHfLudSKEVKrg+eX0bNXiudW1uFnQmL7Mb3YWOKIYv+vAfeTHzoDMawmK7abe0VkqnpfKv7a+1JJR/GkmJYCpVXt440aUURnohJ823GTScDJy7ag2FMMxIXXxVfT7lQ4lShzJgKtqq2z/SYXVcppIlA9rRx1bHSytkTLdW9LBqEw8dyQ9mfoahFP0N76f9OEc60m2gZUQq1CekSZ1hQGcGS4I/gTbRuqt16XU8beDPvAVrHJF5KXctbUUzAhjqH95Gil4ph1jTUNCzZ6PKBOTACfKOfKwEypG8JF85Q9nGvICmXw6pmKe7gH2PLE0z/8z6pvbqdsCuFec0Ye28SPAFFznuD+N6jewZ1xyXzVZ0nVH0tqHB3RLkJA1xRBbFEbvUhSzF+F6exxyHY06EocMzXu2mkOaO6KW1fct7L9lBOncpLoA7gJpOiPbz7TBer6dxuVmfqz+xi0kdeaXBYxXiOs21k1/QQsC3ddMtcTQrz/XsiDxH3XOkb5/w46fMyxEmh9CiYKNzQURqaTRRcb9Enkoph92qrK0bjMzPQOwz+kdrXkihDmdc0NIx2loxVVt6a941ez03WJhHocOIfguQszCSWfscYGJhQIciip7RqNkLIybTImn4Jf2auIHzrOXD/1njWesXka9IMsp1iLMQDsZwnCeGQPNDARLByYrUyrklGFeWNKUe4hklj7NT/i2PRFsxlVr6UKcpGa59YIYZeB++lYZC8HzyX6S72/yiLRn1sW6fiKdGOVZTpy3WRPn4S6nc9Vkuyrquq8281vdChEzms7tjZz1jGlM73qUGVTR02k93Tppz2AaqnuN+0GJvgBB9A76KsvV4j5MbJNYCbHImL6uB/QzjtcG7al14PjCethwhNpZ0Le0BjVwEp1geRkdWh8SaD2UEs0DFpCu3TqYrSyFSlyJNeBi3kNfWTemPYByYJ3AxGHiopt1yFkCnSv5CXkY/96bZUinRSzwpa5AfiqLbUalXMjX90zmz7m676E6CAEK89/R8gKHMvqKdOYb06eMxnhH7ADl8fgvQQZYxMoUbds5PJ0XfOUGcOzhnsuUsx5uAZmSiCBSD32an3JTRj9wr1jBfzd900GX5LwA+O5bzhyum+tkG9M/3e/7zLo/2hocsen7mwckUgkbOgLiTKU3qTg2RCjdrL+PgFFpbHU4ZOlB841I6w7XuCWYhJVqRrkx1SMWYUW8D1skDEUQVXvAUfJYmLAk7GTLmbjJOXMA/tcRiYuqxWtqkWRRglVCY+RGmsMBQldJZC2B3xr9uG8KsU4Z9LKL0Zuwykdp4XoL0rOXWbPN17Q/TciCg6RNeDkzzFj6bPRLBn6CM+0ERY4UwjsPYqT/w6KF2oxRyTyFxjyqjsJJAWpdytXDgs6i1n6oTyxWe0q7ZcbyilKLjWlJlGzyckk63DUMwLiDFqs650dJLCSUNoPRgKaLP2icDL6NHsWuyA1PV81i7R2rtI9Mw1bJEtX+YEerS9dkcDw18KbPlS7UItk543jsY/TEiSbexQ8iJvc4VMfQ0BOzP9ZVrS4FxecUHzmekQ6L1Avq8ik8IGZY708Zru5cnGp5p1D3VbUTjZe11UMEeER46b+DAqfQEfLcxw5iSrIhYvAAvcLaU4H7Dk42es2ptkt8VYnClb1PIOuiV/m1sSGmuWoeO8hrfUfQvn8laxeB5SGspFbdYhSEJ3t+JfnqWVWM+LCmBxm/1PZQ5ABwuH5NnO3g11N5YmXQCKRopZrA4z1Hn2U+v1DItZioTimzdxt//5tP4T799G//lt58fs26+8stJNK5KcXb5PpVYzAbE9Nei7EYpwUOJCfE9oKRhbZGujWwSAIZtcLtKvZ4eUZgiSOc3p5eivldgRVwOIQdhFOgW6i1cczBFdRJrejAtEZTgsExirDAf4tc4ZVLqg6+EofzC3zKow2gVaFmcI9XtPl54TbJcvoMuWsBnkp9O6ZBdFT1X/rUcRuaddxahYVNp8ayb3MsR3T2SIwqVfaBHy1qdgfS330JRjvIqODJi7WIHoh194S9lXS6B1egEVwUVbBfSy+E+Dgku1PWUimqK/DJ6Gq2+rqP6PguYrGX046FXRtlK7/NqPbDJ5bx3/+a5fWMzqoqkFl03rQdvmmq8p/EtulpOX/fEfiiA8/7VrQ39iNXXHI5GiU4JYgXePtgjHR0QpJ70ouE+0BfFi3fT2ZGO5dlMG5mK5sgv3UhR9/E++Gudg4WnaQjQNWwviUmjT+W5TeTp4BkRtOubg7dI3/MVbZ1+WlOlffsaP+gMPIN0Ds035T8U+KnXTXe0oBOWSHtAfJfQbbK9XwCAEUTz5VLZeqk7sltJ3OApDurTIRHBFfjLzBdm0WpNo348QE7bpnoY+PgSHUp1wLzZVqFKQ7zUAYGAoDdkY1rAbJL5rUMoYyUcsRlFP1/YwWFrjH/mEegg6PMtPPxsqm0GTvIORo5UgwLiiSMO5VJKHfoCE2zAJCOYQqeFK0Kbym3WT81+1YR1D1RXRh/CsM9nW1pZpQplCgF+QsLutKyagMaHoRA5KMWv+SLbXCz2YIqEDBrg9pA5mdZ9jRpfeuCEtVOMv1a5VaVqS5P/6RrXE9eiOloVwSotU7eJtB8YVkrR8mQAFwE6/ImszpQaeJj7tFa0fhEqOUcqHRU5SqG7RIOFxsjQ6TWailehFA7n5XxNpS287AUQ5PVM2bIDyneuJV9DiiocPOlcWbIepOC4jYoboy0A1vpARibjqD8HowiOBGFPVTS+kMDA+LJOOQ5LaCUqSjus661Sgla3tHbJcAkuQW9E5ePn/zKcckrDAUBYVg/MWwjVVTU08b3odap9hHLTf+OH7oPKQ1etfhUt4dxlJDIiVKdxDLSPy3ncb2erzTetppA6o+XNLvvA5jASAAMgPTHql6yLeawpRH9oGtG57qZ+KkOEZ7TdA36WdMxbitfZJL+J9M9qsMr0p6ovlFMvFP0wjpUiSlCNXVqHQbuBiKbipfYdBPhH7k2CZJlWROsC4GGg5JYpTRPFWyMuCyarQo5qayXaU1222vapVn8oanbs6HmbKVYj7JkGnHsNgg4CQXFl9pFZy8UP+JVKOzNejDYvqOVPZSH+Hc6SKz0k6cwSxKRnm0ibER9COnEjA2EdBKTyH3712/E//Ie38R//4cfxp3K5cVJ0wLrKLDMhPoJfk1FpjshJ4V+MkscmOUi9117FtqIeEQa0oo/+HVeU5sF0po36mCvLQ4BSES2Jc3Z8AhNt8EY5ey2jwltW+FSqLQ6sU7TKu41T4CywjYFniXnWVZaL0Nh8vd7Gj1FnGZEVgobhNxTooCUB3tS3FwNB8CZKee7gWOO95J5axEypsWuFF5eQoJaN6xeGcs5X5aXMlIqgAPQEjE/po8kn1AeaBnicvYgc4dyOcQoAvnAQpB6noIRoDZ+P3ymijc2o1Q2CjrsRSR63cc1Ifm49UydkiOUavrJFWOZ7R9S0AVolmyaCNuN2S+/v84H9LBaw4SzziKz3KdfHp6CCba70QFWZvHN7PJtip5yM1QP5cfyVqjyrnYux118Tdk1ka0BngF5wPHUWVXw2VA2ULVmpU9GnYUaoDOMhG4Wp85v2TONt5H4JeIHPRtaCNPwGk/V56LM1d4HBsQ1tvpLdVKREYvMlw9LRYxFoW7pNEyx1A3cmZOWVvDpbc7T7sfxEf/ubrkuv19xb3GQjAT4jQHGJMxDnLnSt/RivPyItQ+V0uz0MzJDh10jTHrdxeg5lGQGqaAUYZX+JM0UZf3o6jMP5Wpmd82x+jvEsQD85MFg2JSwBfjZL8MLAPqB8NJ0bBY5g+8vIc3y33j4d0nn3+nZOm0R8azOz48/VgMbV9X/924lFdcAzU8GfbeABch2IvTMD6w3p1k5SKggvb14PFb53pKk9Jno/N4s9WqWMTsqhuawkgIFM24xDaVGeRjcvC41eMitjJ7z7l8nEvZWqXZyNGdQElgkrA7+8XFxHO0GrJ9GZutrzlBCawESCsBvkaNX7p/vb30rvEhpupJvE+7c3N3t0r0aC1tYJabXapLhAE9O09Hv1puwkWxokxbzbswc6oHApYDJEMff3MMrRIgDrTy8vDRTVwXfK72x4uvDQQkGoo+AuH0OwdHj0ZFe2kdTp4FRUrEF9Cx2TSkSGRAaIkFppSL1Da6KTpNVVI5C2YsdB6Yial7zX2ZKKtKaaZZ2xXEMqkFUn2K6pzDDI19hmSEi4APDB50TGaerZumTf51QuUbPt0VCboc1JJQS2X3bisw9tKr+mYGfpQdcGiQ6nNGU5jqrnYSPhq5apW3DJu684QJ+dzjxojQqR7SLwEki5Mor8lKAuNYkeZGYBiKyUqm4EJP5RUW9mLzQtMlrxQDszDmw/u6MopBJTiJvr+eenLSLSvqJ0lnJiip946u6x5QrBIrOPepaQ3MePL5fxq99+Hj+8VNj9676WCJSMJfEwXV2swx0szd75Km9hdNMrvq1IqSwFKMDWY5nZK9UfVJFMykkoSL0n+bvamEBJEm6E8lMyTZW9R4OPxO8LZViyX2WlmSKaqaF6ilI/xVNkEGWkE2VRUJTNKrFfgrfJMYRBn+mhSM3O3s/XriN8lJ8tpzoPFz9R+63MHH22NmVZd08c2doX0TtqEhtLhSevnXqWxZr8hKmwTHyr1F6lbSvyDicJugaE8yH3hfXqABcFoSVqOpG7u1xjzjo4EKUdGSQ6m/jBut4z8pxdCOpZatvk05/lKqK/j0aMa20ps9VbdlEN1n+VWtSqKnmleBV1Ehn1/bIFHyQ5+kYtxmdTsT66sr0ABFNHA3t/Of6P/Jc6YLFWBR7E42PvKc88O0gBCDnS4ZQmv6mewwVPQaf02sYOd1PfbU1O3EX6bh8Xen0nxwBoWePwQyARGhPIKLM7cjnNiGCiTalc23MwqBZRuroySRZJuh7HguHgGkDnnuvlu8MHPjwFo+yESx9znUN8L9Y49Bu0yIqzjQ4ZLL4s+0V79EY49r2QCNOjhVT+AOHKaDRTqs/nC+qgWXqp3xPg547Lvfka9A7Ua08hkMos0aUuDHIkZHBD2BqGx1OOIj4nWVJmNUWKOtvGzhWk/zIMaNWuqp4IbVycS5Q13K+Z5ZWEF+2kYuMvV4t+RTRZqXi4RyFj6070jqgfZL1u8FYFUEMQC3myu+nL7E3r/ERESI+RNhGeols24Km0D1OxeVj69K7GjYxMgaA1IE+P0e+qSzXl4VjIeuNUjNW6w82ihXOQSsGI2uBw1anq1XldI+panyOaK2smEaXV8/uJEmjVQ7kEHmqJpXAFs9sfx3j6EM8IJMVgLCbxs783U0yZ7p37fURGwePliOSKcrTQy3lXxgB7hyeCu6XJs+ZcaS7aAwDPnFCDAvc/lTAU26EWMICToHBsCRbQW4dK6jRwLxKVNer9KKTSaGQHuIwIMnU5W0NIqBVgTxt2SQFUjm4R9U1ACkRiUQe6eLaLTtsY73wdBbUt7YdodvJyS1Gs3Ac5SOSMiDWLMywhHj1UE0heRmRDtgIdU+CC2hd4vbPGi+0mpC2iFqzXUwbs/sHQ5ISr1Vptd72l2v3YxykCzcMqPiE6FijZVDe/odVgflS0gfhXiL9yFCJtlD2SNSYTXFJofODFTieAONQGl6S2fWugQ0Rkg4+CNjC2iDzjXl2yoXOcgGikA+loK7/C44FyvqaIbQlAN/qESVB0xn7gtXN3ZJ3EuT+dTuY7QM15RWUj3VS8nocQxhkiz6Um7Xbj1z+8jP/vf/5ufLp+2XD8Wi5JFe9vKtRcZSqZ62ZR6h/vpc+Le+BcPO6UXomyt2hT9ZSp26jzV0Ra/VvFg+K58Xp8HhEvk+sEssl9vtCAPkaWjBxTSB+OOUWUN2W5KbC1FhUZjMhl9GZmmmq2URlj96R95zyI6BptNuMsRQoz0gSZamrRNhnq8dVz4LqMMPBu4/UVBnREnMN4zqw19R2ytY06waS2bGgduA1YyUiJzsycqud83xCa9Y7H/Ut5sd+Np6eWv2WkyA5QHan4Ic9zYg/lfEU0MIBDGsa830KJHWN8fDpkTXdgOWbfa5ZVKHB/YZ/4WPPcB67b7C7BfgYM5PkeP3CCpm4YaxkGerT+ChwI9T6m81NKNeY8Cy30esY7yplYTddyJFHEaE+h/8ml3jassq2wliZXF22q9B1LQReWRJ++RX/zPHIvkdmo5U45U10H+LqQyI1GZ5rp8epNn4+GUMl8dIjl/KhH6CxXQpuMaF6ZeVC7G9gh3XZLY8jWjASaq9cXXWPBAZ6M6OySkP3bIeMBrAajIkv3IoM1i/77y6GPx7Of2DYyjMcs81ocD+tJAoq+jpjK+5ZgBG8gfR4YRuKfM5ZB8VraFUl/NH2UJZRBQePXVCdxdkMFiJKRt2vWN6f2EbXPG7XK4BuB/A9J/OFyLCKJ/vMvUfZGnvr6eh6fPr1ln3qVnimoId56nwhqRSWXXsY2uIW/wf7ai/GsVoJp2zAKjjgUeG7rS84DiU0RzrbjaVyDr0UwRBt4/xdkQMtALP11c/7uEnJwqDXXT65SY2KyzvX1+n5vZdurLbzX2mUIEBpLlSDW45sMDbW80qNtZ6uPcH2TjFRps3UjizxOnhV6hdxYsR7ZNX4yVs1L0aatVJECgRD39ZqMKarYn5+MGq6i5uyGuHte1d69H+yedTzLI3OaZ3rvw0lSOS0d8cxtYd5bOtWYOgJBaRy+aAZ/QGAgjbbn2bXStvVY88wLamOx9k3GHj3ruotWBJGYWNsDSgTIZNqAaoCz2sOC7qf4pJMIwMdyMljkILeN7mKm/rWRqLVVz2/+ZsR5on1LM+r0TNUhE4CPBmkrBuydqDrZavvQa93JvXOdk9rEqZch1oJ9pTMasBuXSMfNBRDNk45NalVkljl13T6kP69WMu0UkMIuymTip6Hztw1qtME1kLCY4vOuOXlfbmUUuxCQkTqdsy7mQ8aKSKR7M9ezeyEfD/RyXqeFKl0bjh1wMtEGqdYi7H4jZVknvVeLFGZECODPnGIQ/DrTplTk9/m+NHk+O1umGePzsh7RLz7c+BTl1Ml7UYmSR1u8npIc2TFkczIealOQfaQ0Wu1QGAShYxCK4E/jWgxIaSZ95ieJsvnlRS9cPvHoRNAyVn/pJdVTa93y6J6gPmpj0rxqAX80w159juUMKidzIs8SyV/ge9mrvo5OOTuRkQUAsXh9HyA/KqswvhVO2owwpxMU/LfWMx12WNNsWRWO3UjPzv7OijrDOZNGkyLR1i1iXmvw2wT7IRiaUlF9P5pD2/zbzGrHpPM61wtM4UfrNziow5DPNPuMAHebsdILyhGjZ1A5TmcDjOM01qnLOS8Rb5HjJbPqyrG2FrS5tkfHOoHX0A+4hHLRspdAVsaKZ/tUqdWEfPI+/ZtOKVrwt1YdCuyn5bnWeFWdeu9895dsOv/GpAtueE/soyV2Sp0hjYgPuLW86Cj+tzsY8r42BDmLmx7sbz/vdd5svilvWy/EO71XtY7lMNBnfXwL/s0765BnlXzCMQRqfMY/4BjbjT0t1aoQW3dK+vZEsRzZhkHp2Y6tR9inLN0fLK6BRitGMz++l87V08zgRuQ4I9AWJNAXYizBm+K1UzgFS9jv2E6vXVkRkQa20+9C2O02/zmdzanEyJyrufWyt3QDE2qcZIySdvcf7PpqDGiSLCLP8cPaGXvTIMqpnvGQFSfLGlUwmIioCEwmLnmjduG9DiX90LWxcR0jqliIXa6cKRpDBZMcGDXU3YDl4eLXUVcKgs22Qtk+wJQ3McR8EpCW8fw+IQXmQaVO90fhv+oHKaA4H0WewtjKY04efDwcxm2/T+92HdQU0GSyRMuD2kE0TLrb6tE0WjOKn4wVzE9IvrOxYXtcnn2zLjLdyOq4do/PkpGKZu6xflHIijqPqDfPOjtGozJCHWjGnHdGygrCcpJrUKyjp93lknN+en7O1ODLKxT97O+sdWUD9wJcIbONz2XE/Y5aLRmEwXSOWVtq6YnysqWTgrA2Ml4TORg1X+UMiNkdgH5cwjoefsFZEGAa0JL2YxdaEGFgI/1lj75U2F/LulAfyDtLCjIVnAZ7RS3jA1Qq1UYm++9m1kKERpDhgdRnRigRWsY5YUq0jgJA+DxqkTFPRJW0Gbnm0bc5Pn9NcColL2bboLTaEBLqOtp2krXQJFKrhFzwBfZMTibLr0WwKdPTidYqL/I9xr7bZwZMtY7YiuiwVRnooNszJPUSxE4OuwTlyXPZUd1yMcvbwk1G/0jsWsbRVRhfipOieEcizF7JG+KzSD8GKwPS75w41Uw114I9kTNNmeCNkPcctzId8ix0lF/AZYENoYh+fC2MoKCzS5yHyLawmmUXkjDa0Z9b7WJCGLmSL6MXLWqCLvKksz9xIJse8lko1zHwwlLc4AyJqYRSgZa3XJ/dCSQufg5I4qy7x16i2Xi3QsG+BKryD0uLka/9Qhq1JcqTziqJQ6/j0xuKvRsl/V/p0qvSn7QZabwsjUC2CfkK6/hdqYwrsSmI3BvGWimQ6t0eNKDeo5SbUdIYfz95LXC0sjvuxvWwy8hm0mvw6Ihsj11+NvBC8n95PlSusk9+mYZhjCXbObVqEUp18JGUthEZPVEOMbNG6ZKRthzR0s8vl/Hych7n+w1AYvkzCtk7+0DTgK7Isa14/J2R+PiTXsAtPUN7MO83swzMeREnp3qjR3p5ljbAOI5PZW36fjc+nPj7iH34+LSvjAA9J/Yk8EwiGq9REIqjshri3yc6Qt5sH3OvTbeBfIl+uI+Kb6XJyu6Kz4VjImR01GuGjJMBQpkGfIs2AgUqlueY7Rk3+0Iv9D87Q61F1kTp+KZE/IPx64dmqnee61y3HFDrtfZX39z4jfeg44kOlvFtnOsHY5QYCUnjyqSS0WrtqvR3yTZmOkglQVaIHJpy1LYRDQeWYDytO0YncZajG+vN0ObD3PGlzBKIDzKiG/I9smDiEkJ38Cgtyl1ZipKMktuUx9pfE9NFn97RYDrHG1k8KoHOKZlTIWQl7gmlK8vVAOmA8pO08I1WzLgsh2KM/HofrwEuYCBbKjWEU3A37i/B43B+Xk4dBImskUwDZ2ZE6M4RfS48my+Q3HsXYypm7a9np52m9R136mSpB51QwavzcxUNtAepw0E75v9FGdC6Mi03wDeugcK4RDH9cxMTxHJX6oO+Yi6aTgfpkzAzvAcxVCk7Q8KngKtW3yXHUHpxA1Q5I1bEuqhfKcNlAXA+Uz3INCT7PXM6V162vkJX2FzDbTcAP4pDPKtLnqDXChP+1VHFnnP9BueteU83mNbYD4KxKEfY0FNKCUQ9bLYcqezmObI1z6MF19bZUtRJ0epaem1NARIwAqJ7uWfRpObUi86fJ96XtGTRFAqH1P9oqKw1+5Prkt9B5Fn/NiWHn0H6s0siH5RbnTbZeXt6Dar+LJxPnV75MDl/pvXuzD+NhQJFsn3dUwTd9gnr0HXk8rHMC8O7VF2s0ZOlwJUyxpRjxbqnM/lIHB3eWGnH+EuPRmPR0vqXFA1p4eDGSC8b65otcl2p4ZOU1uFYJTU93w/D7e9NdO7zcQRs473rPKRm+i60omkC11CEvda1N3hZ196uzf3tz83ZH4piNt3od+9rKjtc8sJYMN4E2qtlmB7lo5nVtpkofo4y/Ie+0n3CtdccXRFc9JAFTpPVmzZNV8r9e/EfRSkhL9cMq/ns+t7A2LaItJQ+MzjgwLQHai+VbdRdeBrvQD/MOrlUq8OuT0bGyi2Nzow0u/Pexh7/zTYvBHtEdAiWm0oAok1kAoYpUrpETVXSIf0fzvGOVMGX1jSNdRWS/joeHQO938Sv9+Fy6jWrLAAL7wAECf7JMHrCgAbYW/xGVNpVj+TIqp9e2ldqPC5NOrLZY3buVIjCZqS6ujZ/mi/b64p0q56+z6+0FzrAZCCyhc9y/MtA1Ii31XDqdTYALSUKCyZRaJHj5l/NrrW/GsPc3sr/KfVw0QrmkWkRbdXnNZ8jw/pbhtbKdad/k3lO+pr0Dv6hM6zRV7kBedA0P3NymNY3zUXPLTWE82uHwMKkK9Agi8sA1+xjSDnveu3MmjBeM+lpysIyQoHz12u5TYbb1mnPZmeJ5rCssbUZk07r8q4yYuuJMzGYqE7DN3Xk4lotRUX/8fcxO1do73bZGg7lhgQmq2xI04Gnef/8q6kirlJgH3WUyqLBHDG8orCHOxUthvF8vY2Xy/WdzgZ/9gY0DlcYcT+83sa3n2/j22O0TWjpvLUs0wbICJSiqnQdF6pSspm2p03px/Dv2jQYNNGrMoCrLpdIyxLjYYqzPHNZH4hIbNY8RySUveFkvImd51wfwhhgNdI0Shl1hbsmzIPEtORuRo93FMv2vsICAFCLSU+YQqQtIPD3GaFWuy/dbdV004utQo2pBqi/G9FUpSRvbVr19K104bn+sl7z1ckoVESJq5EuGR0itdfbG/p+E7xL9SlhfKkBfDMSrHfWZ8iAribxqoc0xkGE0/x3fJ7tlQTuVLaWp9bWuuhfiHQdjvD0AWFUUa79eHqOOEkAQqCv7lRHnBcbRsWgI8rDmid48QJ5uMQ4GGcqbfF5GqDyYubB6BpS0NKMjCjWG9HYVBIF6pVRGtTCOto2ALuIDG0AdDmzTIFEql46CvjvWLuMaChSFdFir4MK5W1/JK5BAJoJ1MyIwtZoFUoTOEv9W5o3vgGlAvXJwh+Y+IjS6K2HuO9rGW/cSzmjXAi2h94Uj0IsBzPKzA5q/CWoiAiTqY5ESemzySyRiOTeWNOVvAZ/Z0TIj60i5NM8yFumuse+lElQPdCXy9RDUHfsfxbMKXfA0095ApR1wIPojp+pHpA8UwAzOgtZE8W2GKoDW8fUaWFQ3ZA+njMCLTP8ipox1MDm97LvLFPRvTWJnHd0DvYj/3DC+v/MlQZGADtFJIhdBMROxNXbkRVXA/cgvQGvdfkhOiig5Y1A9MmHQqGoyDOxDaxGWHu4i+wM5lOXQyL6kMYgadVj7xD1vUcP94g+Rt931jviKOBMRM1wRJgTiT3myXkBaaQ1hzSaGeVJbITrPev+tIVRox1XVMufmD2klUnEDdX+B+I/FxDYAIG0TQOdkaC3AN+JemfWPF+rNzFqGUPHzY4K8d0Iped5ZaQvO2l0uQM6i7RsKkAiz6iir5BBN9SEM8FFa5AFOMwwCT9t7tOR2CJHRJqfDojU/eKb43jKaLQ1SuBZxnlhvFBp9UU3an/VRjTqnc0oMoNIhlYWBlUbsI7UeTNBZTyFjNN9Mgoe0Xqe9+oOQKIDiCd5YcobkrX4rEU82dmr5Hilg0pkqL0P/yPjQ1ArTPiqsqF8okcvV9mhCLkcWdMpbKdyvKyz+l73+a3ocp9YyR+C9BnDVN9ujKGdTq2pttj0Xt3lODBxCufLYyRWSVYZidb97f3UMCcdsn9TjNae9Df6M8Wr25ZiT+aWy3Dq3av+P5PZpEio/ZvpTrp3fER0UOdvaj9H2aRnr8uvqkGjnTLyjRwALEimvBlYd7cm/rUVxkt9j11IerXo9MlsKpYYZjQaWZ2SiWj12k4/v0NkdAKcWU79R0r70lXt0IQdUW+8/x2c2bbQ3BmzOkZiTN99Po9/+uFtvBKR/1+YAY0rNv7z6yV/vgHqES5GJItsFRmsAzcbeHpFjpotTlPMQQdgUsbENQTtH5Du8TfY7D1TiDwl2cm45+KjeRynIkX4/mpPP9jXD7qaJjFH8vL3ll7nblt5tCyiqWcAtbANgzW6U0bLutb1mPbWackfgukevc3vRIplGyzrPXpwjaLaRlC338CeoG8nvIQAWnIPnUasOtlS8BxEbGOpfX6qm5ZFDuVgrjOSUdDCC2l/wbyCnqCIct8kPhU0nbiiPSruE8qPFfSU57lqzxAR8bFxxoak/VjTlZ+Zkj5m1HuNoQT+fc22MPKYF6wqhCWwRYJSPtSaZaIb7XPVCC2RIS9pl5NpJdM6bow4s6Zay5qvmaLsBudjpKSR6VsE2O+qX+K/H4hePKUjyRV9Ks1LmQOzaTpxl4pYLQvma1ZKWdPsKnTqu1QqS7BvXb72FrGoXav9sd2PtSIxy4jpe/TabcvQGXHbHR41+TIGl9TDsiq6rWG5X1VmPfX5sfXrlJB6uavyW1uco0Wbq7rM5mu4XDZxp9rrV5+o87MRJWnMDb0GRQzGrEe4NtJB16s0++Z9ejmfkRlGjNwqffthkP7b5iDiJy9UNo54V6IrK5JUt7g3grfaNk1dEgBSpdKncnRl1BkGdJafJQCqRZ8LdJQGNF/D383jdOLlqHEx4DvoZFvUyrNGzr6h+Mz7X/xX6f1WA42oM2ufjV/PJ2BZ/wXFHX4XM6JnMWZt8hb6UsmMzc+322lEcywyol7hatZkrFH2Oa3Vc5cVWueCz/j6McXf6HCSszVvMNdHx6tFiB+WAi9oXjW2Sqh67APtzpQ+Vh6NXwIw9XvBlfAYp+sykpEuQ1w3sWeUgT3NxmREdY+Yp9yrpu2rkbSDZkM+rVkHvrFKK/d+6cieEB+f52JJHEuyFCOzQqN2+jFJTX/jLNmmgJCtha+BGNNG2rdNhx/lXSbsFMusXXWPhlMpnpoqSnbd7dH33LYyJub9mtXy+/aAJzLzIOX83rQw5Tztd/3u5TCpj4OnhnMyDOfPbxaBfn9Yf34GtIgqepn93T/8MG6Xy/jL//aX4zmQNvU/IhXPemALCynkoRQksE0eHkVdCfV1wJSLwaPQsnZEfdrUb3p/vKbR8+1fnMa33xzH509jvL7cxudPl3HNmmYepkz7Qj2yNt+jNvKe4iASwdaid/i8AYB5vaCO5zu5E/GZjNIsLjslcqg+S6uV30nFMqKSiBhGTRNqmhGpzIhMujvRyxGDUsSShkLNDXWwAPMh6MDkJe92Bt3PzlOiKaYiZYxRew22/k1rKL31+R58sbmmgaD4Gejb6OV8HNeI4EbdY0agovALN1SanFNP/ZfPgs7dIAxA/We/UUUXQ5XKunlEjkF/3eS+VQX8Hfd4/hB0xEjv4TjeXm7j9eWSKUSo2EfkWbTskRt5JRM9NRw5Gawx4519avfjMJ5OT+O8C0ZyQap1Ru2b6aj2pgHLuMQuTYxJVSQuCQ00mrTPOrl+k6ndBdAUfQURBzpE1XPW7crrjZpbZJgQ7Ti3cLd47iNSzzocB+7YENBZp5v1rnhV0dTMaErhQQzszFrYj8Aki7+z9taijTnOcML44mAjURcvpMNFxU0a4RlWLUk7OkRp6ky7qAqJz9DCTIBb1bqqMB+w17APgr4JWMdIqlN2DiMnEbS6J92yCMKHLraS0TG4XjrNHPRbyOXs9VpynyBMct6UcKdDq4lISo46Tcss5f7V1E31UAGclAtdWZRv5RsywtJBhUZkmnO1DuTXq+Y0EVi5zr6TnGdgY6QxHZ9LZRIh00A2mJs+fd2XjEmlD4N/0VCT/7X4MaOYxXLJl7gFGQVmq5RSsLMGeDeeTlBUkx+oXckUpdK+Nl3hb8rszNxinXpm99zH9Yznvb1ENk47TaWkqj0OeGDjRFTNX6aeI8MlDFzUgQdfD74EROyzGQ+od4zXUbgbsuXwRBBE8kRJvYzy5LPxt+qZL1lbfR+vl2umFGbNc9ZPwwkQf78Eqq0p4/G6zo/z2/11Yy/nY1v6kIznHKY7KZcbyJEGHgx5G4by034/ng778cuPx/HhaT++iejzwfULUr1keFvClN8Rlcc6V823npdtkGDNTsaw8bS4Iu096pt1Jeq2RhAsJaJjjNYHMrkcFoqqpgyoEeNXpuynDGinl0BHOSQiTAvPBM6Pu40h5mMsfDJCU/Yy0lmQIuJsV9BfZpnNZsB8H22m3pVj2TAV9Tb4l/Ii9flGaBdRZIRR8adFZ57KXtxIXtiZ+PV+yirpMy3HQtbX25lerxqW6Cexe3r/xXfcC+FlAX2+6XAyDIovPRO4L5E9iuyS4zHaHIXu1Qj0ebH9ZXfW0UIppRrZh0DQpwOsVHti0GT9CJ6s5z5ck2HLgE/VnM77/N5VotAzBVUW8g6ClsBQoZeEfk85cAjsD+n10F08E0C8tEtPWl9cs2f3qoNf5612hSEbSG+TJcI1y7O5AY6XNCOMhSlq1Av2KfAm3q7jn757G//43Tm7HvyhRPMf3YCeqxaRJvrdD6/jw2k3rtdvUcVTLq0lNP9AcYLcQ2qX16JO0VcKVwnZiZEXI+G4BJIQRBAe2TAaQlkQwEd+qJMpVsV0crnYWB6rrLYvMY6u2dvmv3og7Mz2tLanxpBme3q9hFYDKGWlIliK9hQjXMZeiv3052M0lpqKFCqvLbYlt3qP+RnTcxV1lwHOnsXaAHPI2Tq5saOXeuJb0fgez3ynR+lnimEtKA3yAMY63sfzx/v4+I0EOrSSmrfGIEFNi2J1mkg5UittRbdrT90jb0N8oBVjgG08OF+yfoV2P6edRRvqu03joHCtsc+tWDLBdkr52y0uU7euvL+whoCUwSpVMPpoY7Sfvzrg+s6LivOgUAgpurdXdflN/xad44fKI//eRVu7DUh/ZNe419wcOXn69/zltHXtALTcbrq0iTwOy5D8odz36fO40nQ01vtUxKTXcHLkzSy5/23YE/pwGrNlhNmx9f2dqrztAcWLNOYWwA9Ri4eFoKMxAaQa1Xszw+ervjq64cd3Yal25GbnhYC8XHGc17HrI6doQ17tPMm/Fr5UEbDi2TQ4q3XKhizw6IjVrK48XwonlH1EXhJnke1qXKbcldqfPVABQafe83CQz2uF9QIhqq4aRsJsGGqc9RkrBVoH7mIJ+7DcqNhNn4VpXOs/Vr7oe2J8ONNvD/2Dvrp9nrL0xo96/mM+z5q3jGy1l2pn6LzW+G014QsqOfEwa6YynFCaR+dO0dosZ8Bruu8uZ1yM8IFVdTLfpAu6bvNgG8ySf3IKpQFHw0Vy7/7u/sy1z8re6P1e0qr0T8sOe5D3es31Rbvnqqb2hCy3yu77EBFc5NWk862GlDEc7WGVNKocTjf16MbWtSVjClvILk8vr3VjFprdyqPM5Xxz0Lgqe+S5td81BOKVlOaULflEgfb4ZQ61ryuveGfqK43UZzcCa+v4wFA4vgLmnb5gTnrxVmtdNY3tQVEZNa6F37jz9H27ZZbdE+ks57Xo3fhHOikvt2w1+PmVEejSH+5/3ga0LpHfy+tl/K///lfjH/7yefy7v/1mfPNhnxE1RFiB7KombDAeutdqRE8u4zqO+8M4ZeQa0Rqy94mc1QM5I5aseQS6MqOJ+RaQX/dRm7XfZ/3G/rQbz/vdOL8iMpmpYOGhTMETUR71r46bC3xDmw3uAQRvtQGSYAnk4mS7lqbDgWz0/KtF4/ej9hQ1ZyStQs5TvTWFQKbFI1Id0aN4L3otprIdnnI2nM97WLsRrCCjGdGuhkIsBhvGIBRuogU7461aBnrbMnrEAqyaB74ELyDnyTriRCCWd63WqpmjgBe0Onv2+lO902pbZJ1HrBVRW2O7o4Vv0k9FFdo4T+/uAe6I6xX7K6RiMRsYTIrEaU6IfATK7y+/uY+/+pvr+OaX+/FXf7Mfn34c47/8iml+TDlf5U3Ud+LemB9q17qGVsi2YZhHbX4ZbnkWLrl1p+gxnfPFPjsvy7lZBkQqUVEqbUxKc5HypPan4UmMjIX8XGSFZJ2QIjTx3VvVkT6fcAYimhJ/n05H1rwpGVLLRYeKCz6ikydgeRqTOCOh7Cn6ELQaEQJkDeAMhHdBNA8yxqQVpTCPTj4fiP8YDyidyJQ8G6rLq13KSBzCQ+FIA+3yFLM/cj2m0sYOSW/ZYoeOE+wzomGH+8FahBEtzZwkft5Bn7HoF5xZtprYRQQv2lfI/ZEROqL4O+8opZBngQ9LJZT9qVCTha4DeBdlEIo+HQ6BVg3aFe6DMAHqGVJKtJcZNVZ9uV2KAJVSj16h2RantC71VSesa0R84vkVFYk1bWQH6PctsXFmhX4fdIW4UPYlzvHyjFBRDm93juV6HLvbfvxwO4xPt/14OYdjIitgpy35U7g8YL858A1FLqkxe7Czk4QinlzaRK71Hp3vuSOKAfHPdEhbL2IOUIBfAWjz9kp0dfHxxfhGpPA2zmPPk3+fzrvOIYNdjDreAJaTkUwIm2SlVMSjt/AuauuD7i87gLEbiJMAjI5ZR2lplPSoVOS1pg1DL2ugA0Fahvu9ByYdIVHBxZcddPEniEz7JJaB09HGQi2ZnK3xkwkVfPJujG8+7hOB+5un3Xg+DgQJElSM96Thk1HxwlDBT/ZkYH1kOB4i4h5/R49t6UdlJ9j+qR426y6Zhhk/MoizHLRSXQH6lgkywQvSHmiFfarIkAJHmko65fvnyoIDUZWoCVlcbZKMbKlLlKPU6Vg1mfq399BSvXhk92W2C7uIKOtrORr62+1HyA2OcqkR1g8Q0n2POysN/Hw2gBN/pAQ8Mz94a/HRrJuPeR8XNY3nSTpaAtRRB0bmWN9nujjB+Fy0RkI0V0Ybx1Cfhd6QiaIPqcfzvmkhMzPVqj1rjTAR0FCWgFzHIXQFoVEvY1QENnidp2oHTcecE/099lBOb+NnHhEXYKFPPzIm9Fd+tGo35suDUG7ol2wicv6mV7569OHP4kOW1ZFkHIfnC3CX5cyKucZ+LY6SL7Gjg0yW4usMUZpqLH6X+UDSwwu/oFHNqw1XYgRN3qoaTOzrp8/n8f2nt/GPv3kZ//CbN+Ba2HN+brDyT9qA1hWE+8OnSzJztC/hG5suLXtFaTdq9QSu+O7nxwYDa6+Nmb1UDEJRT2NHRqpSFhZFuc/JDM1SB21RXqred2FAE4Nd0LNFSOYsmp7BBSmJtaYeVcRPae1+n0qp7h6+EjC+1upP2al1dtBNKZIX9EuHFWv/Tl/qdw/Ao5df94PAK6ej2R3zM+Q1jIOLtMY+oarnlPBUJKAURaUd08OxVntVxgBBb54+7Mfzh914/rAfr2/ItEjHwwY4Xnvr+TMJbfYhl9IaqbuoWygAq5pXMrJWahsYb0OIf0kAuuvJPP4abJ0dknEZMMZAMVOdEat5LLozBWXj+ZM3nL2UK7JUrd5MAVporue+nduIR9s8a+zEE5j6x0ERl+HsG1dJ5savZgWnX58yL1bJNJWrPSrDVf5wf69Oed467fjUsZ4WUSHYbvAeP0Dr1vQcpZBop+3zGiP58aYArkVgb2JT8NbLqbT5TfNrOGF6/VXrq/GqJVUZcpOT0hjrUhv448t1/Po1aqyUgF4z/4lxfi2XohD8a0MBc5KpqKApkrNM4jlUujC1ST9a7x7nZd/02fzNh8vIrEyE6Qxxm7z726w7Lhdr/sgjpChLLomL5z2yNdIuU5GTolUxZEBLOYTUBZaFY5S6cA2cgCzS6ou5KsxTVNpXxhT0h7Vd+O7W4kuXmYw/ZQHRSRwAcEq3VAS6+kfHlViHnQlXEXXVe091321IrMaAJl6AYdN9SgIXsJeW0Hld8XjyiuIAWwRXKMtSyMXxtTVGH8Z1a8Qu80yZkSwRu6oMDOkhKgUk9ke0T4SBtTFGE/HrHFyn6r3s17dQtFsvNd3U5K/WYf7WomrUa4/nVP8uOa7PLiUbeM7M9Se9lW85XUDEWobhgrswqbn2j22MjznQoayIh47bFYFWmnnTx5Q9MrU0617xliBlc+5VRZnAPPAH/ZULujSgme7zHt8sPX3WHBebxg2HDZ3D7ALoOK1jF295GNSu/ut6ZtkAviYGv+mlPBOdPsy57y4eNqlveZ7gmAznTPSynuzG3/P11RnQEdj57aeIVIWRQQ9SIrtG78RrErHqP6YUA6bERjgxo4m3iylO9BbX9ySoml2qXlk1QsWwubvn8z6N6Kw1CYOLEivMlKyrkIePiJZ5RAMW1BmIakPfOR660E4qot8GYUrhHu/Je9/3ZuScxIvI0oU9nE8JohVet/SmBaLpeBRYyYidVXJ4USMddbmukKK3LJSIfDXrDjvan+tBQwPgLS3stpncqnaZIiEU58MKpb+o+Vxj1SUjVMtIXEY/eZ90yXbaeHji90+HrGm7vAH5muDGUK6ijop118WKaEALoTij5BnBjHWIgTJCxWKY04fT+PYvjuPDNwEeFt+5jB++fx3nl9jrA8FunXkoihmp3waokIYzfgD6EpGCQ/YkTaC0yAYIBvIWkRtIbEVRtcnxCwI39hH1/x2F207njdrEyKo4HE5ZAxz1bIrY4KxdkfLIGmGwyRMUJOIEZAfVPT3PmcYtAxAezhg/2lWhjt52Nj3HWY94RC13klZEK6IeE+oJsxV4BpQ5EPsTdwgEyUnI40xrjStdPWpmE0kfTlvLHGeknYZipPOyVQRqbTFvBSkyUkOE+TzCFh7J+dlOZ4X+4ZgkA/R+S53m70prXJ0VOgcUWOJh1e9RNauZZYPIgoz7GB/uwWi7wJJUJ66azOzr3Qj22ec7SOt6xXg5uV5LuTTAu5SOm/9jNDuiu0ph9RStzIgRn3HOQLwGRbqzX7XaE9l3hMEAjIEuEQHvF3+WEotIx138gjAJpR9X1PGa3QT+p//Pb8b/+O9/GP/xN+cUmu+ApX6VFxTnyCGQo+/9yyvZM5oYITvHu6CMi64Uweej3RHoabtUwdcS/JaRBiuBwr1bvmStK6M+PQOOIhkarXY7V8o/wIlsBOtZ2Ybsi8h11treZyNa5UTJvZjFEjIuvpkZGSq9GbuseQ6+eYhIdMo/nA8ZjSttuIHQnR5wKVU9cSXMX6rpKaGty1QeM5bEIrKlkxRxrR7rWPV9RC6D1+3G8yFqn3fj+XRIfI3jE4zp56d4X622UMcMYwEWRqxhRJgRdb6lXvH5DZkDLwGwmpFnnSEfbPS/Hh3ZixpjRvUSlTzuLZ7nTvUCSOs5Jy+ZGEWrS6rz1/MJ+o77x3gzX8kcL8x+WLpf5hVtvcC3gN8QyjrWl/L0uNC5dEMiybvfQkOdzCvVPC+XRzirplbZYnXPL5kceF/5VJpD7G8CmJbTcNoeGHtB31FAHv9frQTRkSFui09nf2XWpOeeUmYlOlCq53vosTRos5d7nrPZGA49xh/20M3lYRGXbbOU+XKi0orNe5U9gCw24TskyrRH+/n96uMeP2xTB8UNHUQCtd+9VnO+a/AyyE31Rl8dSra9gPdZIDaUCel8Vk+D3tMWeeXcypHn58b053QkRsaN7petAcx632JiHqTYdatC4T1Xxp0wmWwPHGTX1xdmDm0a2Rd5j84SxrxDhu3GE7Oe4oqMGH3u8/k6vn+5EJh3dpT92RrQKwOA4A6m2n31BOz1sBZWS5HCMDcCbUukbK5R4K2aZ/2CvbaMh3QJuHf236kgRR8F/x6zIOlJ06z62UV99oz3XDzycCkK3V6cR8bpymepPX5SaVw7SNe8F7OI8kh1zouKr39Xh6aiX2uEcXpQc7mq8XpA6Nb+eJ9guOXS+bBlOBu4y/RYD4WbUlFRDVGIDEp+2etZJk/hgzbgfxrI08QQVTt/yEOf0dIbDd0QUB2g4Hqsm9Kh9Hr84lnWPCvWa2vUgr3HbTNf6so1FqPphQamfbSIYhgkmeZbhK8ei3xygI+p/skivmsGg/7jTnUJAfBMF4z8vcyv9sD3P2mun9y3Z0SyMgaK4mqMAjbzs9QRBgMP8C3zVHSXeMsZV+qynDpOPEa2RoPOWFqYSUjVXT2gv/JNu/+ST2DPmD7aa+oCsYxTCUj/fk9EUWHRSK/zw8ZvOsdEqeVIKKJuPr9e7qisVTIFe55XK7m9JxwP9/g3P76O//SPn8f3b+NP6mpq1rK1jHi4GF1tvm+kYOuWjjs6kjsC/X4EaPcQuRbNb0mx7o283qDAA+d83aYdAj+mfryGhHT4PJpex77T/pNq1e/eqLTqe6XoZ6T6BgObfVW9nlfriN8WQu1j2yPzaPtG6GQSP1+KdHl9tIeAvC/3FLmE8pp7GTJK0WfWQBOTsaPwJs+lgFfaKwHAwsAoBPJl/LqHItSqQ5/rpeWE4FpZ2m7+y2XUxOScDuar3jY5+t4PbmB6ijli1E5MzsaO6D5GiOdt0ecZnCmZMT9v6yxU1Fv34OZpD2dNcNV158heBRGsdn3l/UWCdJYgEGK686Jr1QDqed0OUYVR+Y1yAoVh1cBWWhcffd7fqoG2VgW/NrlY78GiVmtuCSjcSmI7cbezqkveiUYLud8wD8AvWo9cCkbz9e6mvugE/iQTi+t8HsrDF73ZM4XaQT3reR4IQzlid/Rwvv+T18rUx5J9sCBpl2656FhlL0z8StmKRrfLv7UW7lBIBwcdAC75/6wN6K3rXsLwMK5RG3iPCqdAOQyM4ahDBSov+jlaNPG+G8dqm6I7+W8K30wPUbQGkZjwpCeRLxsfHtWMvsTvOPyByhkNFuMQRuQvS6keEyyxfYzm8FWl2lTtcxkqLQ8yyKhosgLQiXiIqFH1WM5y40ewCT1vfzilYIenL9bL05SbQI9E8Y3+uqBQCaFWZANBOcdPP6mQA4tJRKEYo1p5C/UmKp2FoDDVMgjMJz1OIdQVWS+DTb38UGeT85dhJYaQxjzGmzHIkPaT8YKqp9suInAdeUEEkLW07Cl9fj0DeZwZA0ETiKwKtXkWMhEFw7MU6WNv2aidub4BaC6UEHSnBk3tx3h9jXqN2/juN/dxfT2M+9nXEmuC/p+qMY0MgIulkcV9TUjtw5uuOeFjiQ7b8KV2qMTk3aOJvuWKOgZ9a+tyf8SsYp0YkUnUZUlutgjKM6B9ZmQ2GXO+TkzSqPONfrQHKiBxhvqozGjTHC+2l7UyUTKgKEGMklkQopV4NaPGOGj5O9EmlZ5MwYTzEE4k9UQ1D85tP/X+zJrrCHGod2albhPhm84R0CcXnNYEomXqod16Rkbu3VAMBVygJKzfL2WEnGw/jlmfF/SI80gvHtP5dVYmkZElFiyzsIS1q40h9ym1ZMsq4T2lm+QjI/pDJ7foVdASqSbLMectPqrEhGPKiCKK7G/Ja4sZs/8m8je42xgr6VoRlKx55tohstGWSp6OrJE+mEIHdDa0LcnZmFHDfb+94bxlbT7rnpNYhFMRY7uO76/38fdvCc6ctZu/f9H8u7tKydYhsMG740kGYNZqMnzofWoTaOoEQysyaWSAmQ49Rc3ykVVn2wpQijeC1lb0Lfur4tmXV1fiWpJP0UHiLuD8B2OAYp7H7xLsZj+esksAp+yZakukpjJNylaIPs7sBY6CURsDaDCyX/K1MDQL9djaKloqqKc3y1njmoloGT08OgtiAsozTLdCTzd+XuPj2uQ+ZESw+89nJ4hM02aEcTfGtx+OiVPxzD7QEYGOVO7DBxjQh5AntzHe3oCuLWdA6EXn19t4y4gzasd/fIvIM6NzZkgmtoiyjQyPJdLk8ToWJPY+e2XT+Fb5DFhiK93KalP2jTLp9IEydm0MIP22dFdbJDO6hHexdYaCfmM9yIewx62/+bPz+So9dcOBmygjuuSS0eT0zGnWWlNmlQn7Yf1OObWw99ldhRk4+B4yD+DIQgaPI5/HFX/mESWhCdqiu8piPO2MVBQyaAiZKaHDMh9vvL0NZLKYjBKYX/lATAxXoEnM3w0/1tOL3t3e9Lrkei+eQSS66yFo+TbGC+b29IysMR3bqC2Ov2M9oP/ByRN0Hzw/Is95BvzAsf4fCEp82Xq1I3MAelTQzVNgoVDGBC9JRx+ICWeD0Ay+I7ODhhzK1Cc8E5kger4M5OSruW8qLYCjC+cFto0coUIXN3IuZHldaoLT8gRX9kCXc2fDkVqZrloTyehKi+Ev6ZtJy8RlYZllZOTmWKU36cbL0flDyuav0oBuoUmQGoqGbK3EWjtTn+xbVu+rV9Rmyl+dHLRiCfhdBoTuT26fTXfiXgQswOb3aPFceqBkzUxG9cYsrSYXxrNQhnvs8kp5pAhGgMAi2us1z5tRlFDK2XpJI1IUG95IGM9Yk65TXcdZ/06DBs+UkOs1VUR0Hk154PVBF/ye5sSaIQuufeHqyOx0aOlIoClfjKrTouc1ynlkymDQDr9T6d+awPJoi9CqHjx/0SMP7ybb3+SAlCI0xuvbfby9RrqMeT7L2SDLpDlM0VJ5xWekd6UXFd1V0VmD09QzzH2SBjIdNbVH1ZtynnDOhEzYNpJrPafqyEivmdEpAOcA0oplu+R+16j83hvL/VBH3+qFeASQ2Hu+WLqOuihtXNGNSpGklFbdfyvrMirX0Qngz8MGognvHeLWS62aMr9KcaoSD31PX1qUx0gmdqWq0/OMSG086fRwY6lua6mi2vPl0JWt5UGzeo30WEdhSSnX64uhUM6SyQ7SoKxG3kdi4y8H23I2p+gPbwAHhnhZ8+KpJizvBfgptWFx/memW6bsfua+tXnwp3VJ6Wm+M1FOGSXlBBESuyJkYTiHYhyGhHo+256RPdl+kFKn6MFGZojJzepTWgTXuzcZh/66lMk0pHYABQznOp2Ymkuh51rmWkWal+yGdCilsqbn2VlXbTgBsAB8pBKOpYbQ1tQ3Qspsr/uUVEI+tYJjvV/zXP+WA27KqBD/IyiY7UMYy+j7POYIdDg6lZocSnWW4jSNZAQ5UqEJjhbp3GFcZCsvOrmFkYLOU0qNxR7xth11N6VfQHJbac29BtgYGc5pzHIRPEI18Yfax1kv2y362ObJFt02btwGoI3xOb2+GDrSGaYSg6Uues3KLDluadvYz8eRlh5WPdnhbNd9ncdV/3YTEmv2BP69pcfqbIvADN8knQ0CsdQG+OeXbDob+9aaPV7iwJRdLpeqjrbTl0ujoexH+ZU8eMaHiK2iO2SATvSoSLPtb53tZQNlCEt3qH0xp6Ey34r3ie8sGVXFL3fv7Ifk4WbkeM63Ky1Lcyq9Eed+UtN9P3x/3nFA3SXG3zGgfXFE/+vrpafxYR15lsOn7/0ebbRj4ScNiD9fAzrjdvfjuN2O43Y/og1QRrTAYBU9C4U8GbOAw+zCJvF+lmLANqYVTfXP+yXiEvBM9ls9jnF62o+np3jtNvaHMxF/j+N23Y/rOSJ68MKijjmrjStarC6FOiTF1jQ+uWbpActsx7TG2njS96M2Ob18WXPKuo5FccmLdQVpJErJpWcwaT6/F5Eh1qruItU4nAWNaFtRuuwBquIZIuM5oYu4LUqXyMNpNAF1PA1b1nhDqUHkGT18Y61m/68j9qq2NV/Hg6oPN+ox472unRHibswn+rpmlFt10OFtziKoYByom686eTG4ohv8Rq0bI9ACmTE1ReiOaF9BT+J5N3787j5+9XdXQu3fsvYZtAArSgwShqYrV9wbq1uNyE/gA2QkuPoWtsEPJ8yiIDCyrDSj6o+sYhG6G6ruOrykXF+cI9BLOFrUxTidgK600enQNfqxplmsjCewX2yW+QW5sc6l6nEUwZVQFXhf0vZt3Lln5egKb+7hmFEMlFcw2l2InkF7UGp7HRA106NEg/jcPpXBRPZmxge72TLtkBkrSat7LLnNv4Rc2YOzcqX1LDuX9ZePQutReRKfOLLfep6JNDTAa9rY6AyONmhtj3gfvB59bnFGdnmfFuZcnLZYLEvBaaoVE/JhM3pWJVDfyVWlFvJQjkHrutZarbime/Qz5igl+YI0l/RjdO3m1gUaI+1nkTu83nmWZYQENH1Qxek+LiEtAzaAIOl/KldGjPeBVI0IfIAZyWIrB8nSpsUN3jhraG0UfYMZDcj+2KZQeWa+lHtDupViVOeXWQHhFM9oXUSNI8uLNYjtl2GumDoPWMqsMDsy10u+4szUAGjP/bV5386M84iIJho2M5/iCiMvOxcsERH1tcaFCGk52CIidbkybTkQ8FUH2eBrMaecFxXsmHf2ME6038VS+dlXG94aavw7bBZgY0A2Z6JPgoEpyoTfYSz/4uMxawm/ed5nBPrjc3Q7CZDLMKrHODwBdwSTuY9T1kbfxw/X+3h5vY/X22283G/j5XYfP0YUM+tDoZgnj6/WP7He5LUl29u5mxLQU9irUwYy1mQM98paunfqfUqj5QcYoYqMO79iTM0r+9LauY64VS0IEefCJKK78GQs7bqzl3ifIfsJfkvHTAUV1NJsHc872146Bp1DKyCojIxykvDMBO6EItECb5O8X9wANZBJLvEhZbCaY1fRwVj7rGjg4OOsvGZdcchvSys0AMDmFxI5/tRW5zqDcLvMSeSVL0cSEs+zPEApt5OJEIGeyPj5EWaRoZ930M8tvxtBlayVZ1R4ShSg863qyE1vUTAl36GDIpeHQYMKNFG2JmCaFtg3QzTzhVaYyfuoB5ZjUToGPQv+1fJXZckFunYkDpAFHzqQMusj4ieKcMc16ebv0a1dKt84jshIhA4eGZ4hX0CffR85DwuhmzqWZ/dnckE6/Fz/+cMYz793A3prGj+tePTyBWHdwkDN1LpOw+2ocSjErI2zFNCtB2PxDZ3Zpf3DoOWZsV7KQqUMYotUJ6YvhlET/7tcAC6UinMyb3jCUV85P6qIz2pZ3PMso6Ii1AUM4srtXDxaUSW/mRnUnNG0PkmvrW3TUFNaBZnJdNAtBKMeh+9tY3Fa3wN6DaueG2NSOrkQTje3w+4xeX5tuxNASHRgnq65Jrhd97Dzredsn8GHK9e1WoT58tu9LSqZTgQCn0T626cf4al/fb2ms6XXrpmcjBJfBSy/OXLCabIHindHv83MKsk93wO0ttQ7lZHUrXxKQVW0jo6oYma+L2VAtme9EJCNDlG7SAOHrT2EhFllBxbVr8ihHDdFn/N+JAMOAZAIJG2QpSD1CM3kmbY1KKT1XiiRd1F3WMo0OHUW8Oz93AJkMaDtDnVscb/l3FKiNS3U4HpQJZwwI0dGrtHKE96TKz+9U0IpHDY+pORbjugyAtFKjWg6150xgmVe6FcRF/zRjgTNn78f6NLmPe38dP4VzfHvkccXz3303nsEtCPORtEMO5ahFkp6pDvOmI4/6/rDifL3LzeEAbDlimCj0zppdpQKRmSUOKUCRQU+01gn79RGJoAeUWNwFH6m5pkGXDyNX2qZBdqpdkEaoSnxmAroTE52UkhHcdkKB4BAeFakT/f2NyZF+5sctAeDLWWetZ1wvFgKp+GHSGGUguvyZz1vD/v2zutO2uv3xTb7tyHfip4jffUUKe77jEArCh0/0T4ogSvDCEkQTPCVMJ7zLgEEmX4kOCrDgRnGadY9CzmbP0gJRVqodIdijyoXkvFjHQxKvTFWmtE7U3+KdpsDVmZVOl4to0UGtgCtvmQ8iyElHS0rW6oQX0mpmQr9jFZce7t8u9D/SWCTg3PZ2y0+MxkWhqztV5Vd1TkjDav9Y+jU1JW0lp3ZMz+357nQnelRU/Ck5F/LerSAaqN5/oxlDdgTSw2s/V43/nFdpM9lKViWnjA7weRDZqOZjlkZH77oZuDW28YfazwTGnffw/VPrIHKvd6pLV5arvqkJufLui+rDmGydr79QkhW257nkiWcWf7CrIVJF+MY9Qvp7uRpY/tav+9RY5kObYSTh84JpSSTzgB8sGXcgHda/wNfvzcD+t3F/YJg6E9cxvV2Hr/58W18+/1pPP8lPOgomZO2ZtEIQ1XmK53azMII9QHVVgI5ualPUUlEAbl9Ar+JFK2n57HPBokhQHbj6ePz+DZabV13CQZ1vN7H8UMkesei7sc5aoI+hfctno0IZ6ELNxfilI37ZoSMEaHdEfW4VnuEAxcKDOuRA3HN0+J0rujFb+bSNRF4liJKMD5cQVe/6vzL6lRSRMYhYh+67mPdRn+upe0L6kD5eSEt59thSKOG/ZZ58UqXYxp+/lQiWKfcafhKIbWeRon9G84WRQeNmWSkLdN2GlhBomEyNeTdziEK1Vknnn1DDR2lk+HDAw+k+ATKpghOZvUyxv23wbCi4btnGbR3kKuStBYvZqw+1xq9bxOELCOQN6sn6tZButJrr1rqW3j59uMU9BfooUM1z9ep9gzjJAVkbTCNBmVhMEokRVRGbincCcqRKAWg2bwl1zTrWCzjgaFrGT55Ykz4Kh28UMmZRh1LHimC+TfvGWuRyn1mOezH7so6eK0lnRhIxQQytCvDisQGDWU9WNIsEaKJQnzPop8wngMhm/WbcvjIIFa2QpLU3ouHa19EJWUw15HneVsuCQa/6lyIdSkLITM62iGQUSjReCntrpXM9J4dDoi0H/QitqCP5rTgtrfzQp5LOnqIJrOX9FQiw3YxPVvxmyJDvCq5XcjgAiyTc0asuxVuGIXBR4I7R8EntQJGomA4elYSTmjWVU2KY6ni2LFb0PN+7M/HsTuH9bCeuK//8vQ+GNE4y2H8KKoyiSAqUzhb+zSas5+7t2pkL3M5kLp/vPa7o26ZKnwCiKIi2WibNitWRdcKzpViKL7c3DYVVbJwVc1L2Z1yyyy7MrOwIvp8xk9mixlcc9aGpqMAOkBkZ2WEg7XfZA/J67KbRRlKEVJB1o7ZdtOarum2mZATRmr2NN6lc0Zh1s4mo+OD9ygQvZ95Ufzm9yPqDXTkfdbPxr5GNsHTAb+Rtk3sDuJs4ICAmaSek8WxsRZjHK/8/DXW65rrJFCw7O8cEemMvAuAtcHI5DQhKy1QpjYEhLxvf7teYVHoKK0ojm/6FLq8tzHzxv7cgAfp96Tb+Pl3LJnewYdfbUyviMmkyCyNo+F/JViTsGhLT9vQlSVjNe8HZ585w731dNyn0In1tY0x17wNPMrjLhXxVCYdF1H0FDSiB0qHUduzoOnMAskb3bOf+C4iuWfx3k5dz7lPPYrnNqM9Nv2jtne6+k/KVYj9CnjU80pmAG0j/5nwCZ3BCtpr0gcUBGinQO4Kwfxx78oon5ab2ZdEJk9eY04uz9TJ/utkgK4f4qVH6wmlSvasOE9qAmO17xMR0OJX+vmdSNz3PP/dzWddY58rAHGH9e/G+3JIbpUX+KVWU7ET2TYwFvR8LWfttICTAd1rr/u8XW+ZERPP/qoN6J/KK3eByBe2bvITRjRNtft1fHq9jB8DlvyXp1ZSpbS5tGqaqOfSr9NRZDcy63BKG22FSkd7ZahB8bsT0qUzBeF0HB8+RuT5lhHGEMT7MFjGGE/h7XvbjbfA1rqE4N53Sxk9vE35h6Uqg5TjCnYkkK2ip1201WJKtWpO9H2vuSLTk9esGLcs63o+1ZBUcOEIUK6EhNvk7ZFXqfwZM22IAfd8pUTjX7LdgnlpGB6XFZfsGklrJeWnWd5T+7vH1tEmRXCV/p4mbtXXN/FMc3WKNi8olm6tFKYpRKPNlfxzMLQXRCxhV9m6T3Qsh0ORMRw/iYiKyDOMCbTMKhryyL2MqKwhw8+xwG8OcFiI7bnhw1Si3PYy8mRA83wQgwBnUSEBGpD6rxwacsJ4zZVUHXkPc50JHbUWvFGoqD9xfJL6GxUpISEAvAT8oOHvPU4kDSl/maalI6H53vKswYDOsxXCNdtzAUxMNF0Reqv/rs0sYITVRcsVygeu3M9UgFIanb48tb/pv+tVG+VUjy4jg2daFLqy8E6hp+Dzc2r8AqiqPRy4vmbjbL1vneH67nJWa1TtHNMcZ37tNXOkt3xv0VxZMoNjJIC4dvKUvyPHhPsoYtO6uQoA5GAImgrvyiHbujSX+Gdef0Sru5w2dVoXQ88HKHTmTNdDy5AweuP3Wn+W9YT8d59/L2pR+t2+0r7T6DLjoMRSs6GV9CYl0s/f9KB1vnrd9j/B0SKlOrp8ZP8cOpVrV0OmKn2ckcwLSx0yZX3u2CCFvHi4RUXAQ5r+8+7GK9AaCkal0sxxPDzTY/Itzizl/jPJS0a0On8x9V2thkJhRe2z2hAp7Ze0zqBFsKxU/sNQiiw8ZkPt9lfy6C7rkXEbYjbTXI3+6nz7/ohf1LylvbUzoTNFdC6lsOOPqfwkDBWvSU3gpI6MU6rZ86bl2jBqW5Zs1Xe2Ycb7aRilq8mh2WePWuY2L6moo9VJ20Br7aa2lPbdye4w5y65bT7Vko78N+3OesiMN9FpvpMsqhT1NuDzW+nHZF15PdTU38IAWcff+oHGVoOuBdBu9Rg0Hvq/YKDZ2kBWSZ9sPA0YxssYKvuIhmLhJ8gRoqwqi7A6UzW68sw/+caQzm1z4cJDBkdqc5SjWVF9nf0Z9MPUmYn2ICMXB4kNr/ToKv3DZyKA49g4Pp/mS8uBGaViVR2689A1Iq1np+xwhSZcW248P05qcdSzHRv3Q/vWc/sXWAMtUrtcruM//O9/P378/sP417/4N+Pj04eSBA0ywu/c9+NQdaCWYgy8/GQZITxTacoDHqcBWKryijW/5ecSCQ4CIlJEr2/n8XK9jqf90zjtT+P2NMb9IxPEWKxXXjvBBQ/AdN/v5/amy8gw5bWSmYzQ0K+4e5m6N0oCpJixp9DygCuFRSlkFX1DPhXTNYA7KSavISgtLSOtOu3m3Vwv1VVr7PX6bTGyaZQReBio5qk8MO0oS367N+e2YS4GTkWm0rI0gdmB4Ma+3sOYsEdSdKp2hUIbAsbSmHsAqOG2Z6JnJcWyorPal3xYMMS4l9o8xRV0Ra9tRGiyZzG8abn2FI5xDuCIgJMEUThF5diL25XN1iHQooRKEwx7M7YqAi0ub8KNxpGiRBrjT9oAodwe6P5UGq3S9kLhylsbcBkFU8GmVYuMBgyU8Ika+YzGF32Fssf0QjYFFpK3znzhxMujm4js2ofHvutRAxXvCywECPvRuxIRNGytkOidDt1BtQi4lqq1Pw1MJCfSIt10pnLt4lygN3Wn3NcKwODxnudVv+vOnzmN2cem7BBgELCG3dP2XHg6ANVW+ygDTnLFrko/WGf1cA8pK3LE6HsOfJh7QyGZBA0e6X2gUeqDGkNlHKnvO/6+G2AijWgnhEwVhWMm6W23H9H1+Rz0khV0Mo3+tC43XJIcCjuBfN2icLEDkdEResyR0ckwpFWfFld+lUaB8hLErxX9SZ6xKlumqE1jIkoPRRNk5dQeqxVMKd5ZU6ksneJxNj7L8hARKXVbvYuT3qMOUJklNLTSgYDjYOmGi0HOK+4lGowsGLHUQt1e5dNSroN3WqMFieMbVbNLA3uL7spAc0NKBoU+oUUKwzLPUgQAdtn3OfBcIuKD9oohb8A7M2MokXkhJxJJ+S3e5z7RIS25uWNv8MG612xvVSnKUtJ1Tme7QWgi6LjOKLHpIY6e3fRMB+pGuyPRj2S5spdS0SZi8Hq562P7ckdbG7aFK6MUYjOk8Lu9ds5XMwuEvAw0bwa4rZGJu/x3nMkspaBeg9LPrqmWI6a/1PMzfFFGUt1p0ec/znuthrVt8nPr34GDDXpCXJI/WJOo/6VcZfo/vgtevrhAH8SUxYE2N00AXzqfWfssPsOyg0R1pux2R32ij8sAVrBH84p1DkdR0Flk/AUOBrE+fnYmiHiGXcLhuR0RRHK9sgxuYnFUHfXPtAj1iRh3Oalsv2XrGFnYv8mv4nzvWTOete3Op5h9WibWvfi/jo66IoVOI/skvhn3eSjryXICrxlH14vjJfYJ/B1Nk0Qr7Ixgmxg0969+8Tw+PB3Gv/vvLuMvvz2N/9+vPo9f/xD4VONP3ID+r5hAeIr/7le/GefX0/j87/5q3MazMRNHAiLSphtU6s+aF1OgU4mP/7CtDpN8yghyIUYFID3nzJu8ni/jfo5IVICahUHENBAZzySgrNUOqkpFTKBhrzwEWG4RUgFmVSpw1z5rsm4MTt5u8zAWgSc4CSPqBgyFpbI6VzJ2CXI/43NUjoIqmFIabpZOPW3z40ZPH7EogGyAgr2nZMiUZaUeGxJiO0T6tTaIWVekdIRyAqxjbO+AR1wLuKrS45o5yHjXGuYKat+W+5bjQrRpjg2lnYUBXRpY5rIRiI2M6nQ65BjOmX/TKJ0JqpPG3TV3MISbUoEiYxXYb63ZpfJaBjSiDOrenS0cSiH0oiTSUgFjdUS5jLGiO9FBT6f2JMMpqhW2yinV18Q/Yh0MhVKAJmX7ykjJpA+l5uEsHo/H2TlCozzh2Lzni4C/THkpKpVCV+ShNih8LoPYUuY5OQoAWx8iG20BzpTBPp0BGdBC/TVFzIdZHzcwJY17iXQUORlapfxznu5YXuZlz/Sc3K0U2A7iZ2eGa+B8yH+v4y568NdMidRn6lkU0p2t0PwRMAWiGW1H193N3nIi6JdBLYVOvUnDgBZ9WvV78dN23une93Ea19vRSkUepmwrPI1k/cAf7ZpT/0mbkolS2hhtScCwiDxHO5owtGg8e0aADCLlwejC+QKlgZ9sWCp8t3W5BsGR3BGtFn6XtnR5mMtv0c+Dc8ZKVbItDUsLAMQn2QhwrZxTopHRmSsLfyp30fhgwCXgVRjk6u+yX9OSm+6VEYG/XbsWb2iZ4+uc+Eub69hG2RTNMoOiPsv3RaeqfQ5QSqXkom45eDTpYc/WYmlYoxVRGB308VYpF+gI94sSprhROSE9x4uDKtlosxc95f5IZ9nCQOA3XA8ST2/XQ6+/DNwEeiNAZJnJbsnbSKddKV5ie2jnW8CfJTPMFJ/+USnQLFXjg+iP325pzD3zGm0hpcPBYZlbW72ka6ygKqS4zjzPPjY5ozQAsQ2Rl4ww94vB0EKKstYojeYb5al4aQKoGeL9Yw7Rg0EiGuo97kv7q+hjBo7Sk0Z9I76c5Qitwygaj+9Cd4xOlb4oAJJE+Vxk8knWQE/ozFbJ701dc4tuyXdb+2v5Dd9gU16yioJM6Tttc9Q+W45dsTrcZUSXIb2MFKYBiBkO0MgcsmOi+ZKP3XN55YztO4nvdcVo3A/lg7gNqElp9EUPkcUbYMwB0MxWqMCzoQG9s3aXdNAEzf3i42l8eNqP//ZvPqYhHcZzGtB/gOuPEoHe/eT7AEb67sfIiQ8E5UZhBJ8IpF+kQsrDCQ9KeDBrC0sJbULHoYJgRY8GRLWkUEDKJimewnAUQ1ZtZaAJghEH4mQIFQBlRARrTw90CObzeDsjdfcagFFRF1rcJ82ivF+mh0jKy9A4RPoRa2dlxhgwRKKIuzFKJqB6wF5cGdLwru0THTwcAKxjYW3pbHjyG0rl6d2Y0m+EMq3vRF1Z3iaiPKUry7A1Y1QZAQU2JcNKymunxZR+UVFh3EiMu1Le6uAqfGGChFxIPV+Tuah2ehV0eo2RMHulvJMSQNJDG6amW2VJEj7Ga0mTUwQC+3dlbXQyJNbWNhh5uEGxdkmPqp1mb+qsPxXwsAC/qG2mzU6mOmMoc240vCu6tAgSCajMGMh1uU9I24lPXO2twmt7yDTN/G4Bx+Bb1QdwQiELVG4oW6orz97M2ZPTvBBRrkAApPwfvbgi3SjwiLlc1KyYtJ/MHRyfY2iFAHHWrjts24hafNQFkY5bN1VnZXnYe93av7AtTEGs8DpTavI+4C4Yk6rzVOvJtStP9GqkYXToa60IPB0vFYUu90m+pxrYMmrLK2CKfm9PA+eRrqU8Q1nEs8uIT43bnYI97jpRlZZXlkRlOmg5pxY0HgG3Wdf4fD3UsqUyFwCQgiUXnBIYqHpdTxFRU0ATJ2Dcxq8+HcavX3bju1co3+JHPyXDvqbLpU7pOjQSnaLS2ZZ1ykjbBno3orPxmq6ipnTiGXVRwUc0Za4/TJ+ygRxVfWUYZGcg9SZaLxVbPI7OVevlpPH6veEs0wt0xEr5zIlDEVNqcf6OZ0lWZZ0uPhsgWnAa0agsB4SXXkgud/QqjOhEts8soQ39tKt6OktMb2cmVjuUBYQ07WEZQ33TPtV6fTYinVBF66UzZTQtIsv3qE4Y4ynxwmgk78ZrFn8j5T3WKnpzZ0q2jGdGHgPRO3USGbyKTJde4wMUz7O1tfRYOVL0nVbcO7vIFXm14GyNr43YjLQnLgnxLMrpwz1POrXU2K0DvcFfppcVDCB9vZ2BLdLODO5Kzgv0gr7k7MDAMTZ4UwPgOd5Afk9nMx3oZSo1b/ay0ckRyUw15/XTnixUpVIacxjkkTD1tXQwOkHOZ/D8DznOiPbigwfDPwnEcgHLRZZD/BEmTsBKuBVd51i/BfRqB0J2YfyGQ8xAGFwWq+Utv1rwHoX8KRqfdcnUkZl+Hq3cfvHxMJ5Pu/Hp5To+v13H+SygUspbZTNtBKWk9wsk7xDRteA3rDuGvHrsV6eEreRF1mEn57PoA8UDJroz+4CTrff9bNYd3JGivsvIKoFjFeUt5zxYreNevf/aFy6d7ULT7mE+Ohr8MkZf54JC/R48/DbG6/kyXs/X8d2n8/jtj+fsTf+Huv5ZBvTPSOLk5/7rrlR9bmP88DlAgrBIsWYwCHS43cPMOj5UC1MpMiAIeYso8HHBNRVpsdif6LVgoCIhTQhOJK6BemTU7WbNO7MEkIKAg56pS+OS7yHdKb577Ci1RXCljAtEyAWPPEEyKpWCCEHcdVr4bXmwWqDKaYHRGAlSmYiYxokqOE1ALRGZFlRtPOug0vGcl2oQ8nDImC3P16N3qg4M94gx+lIwyrPsxrGnOC1eNFXCyt9dfarLhbfCavP9XDsvHO3fLiBdUXHlZz34eFRzBPLmOvzl4Chm5ULrlowJxhTGLqyxdEpobeKr2eZFRgEN1cSRw30TzIN7d5XjhxqCzo09WKet57t79GpOireiGKE0ZGpW9/7bRxpXtNiKNarcbNWGN61B6WVUqNLfQH8hdFVT55udU68zwX2gAA+YpxQ4ItIEuzP+wAaMmb4XZ1QAYIt928SmUliClhW/x1nomm54u6XE63eeJbavSMVJVKelZ7RLgha7RIV+rs5ji6g2Rh9omeieU6SnohZy7GAtSwB5ScLi3Z54vLRUjm/HNYZgp0eeBnO2FSTd6Z7FexfSWj3qwl5Qa7CJjfHbGNvSuGVSAqU0qp+S+Ik2RryNfDQPje7bad04frGmgTsxxj/9eB3/+Yf9+D4MDeNPE7/cuNoJ8nVcogIoqNvp1XuriVXkWWBiykSJqxrlhayr8DbeQ7S6makbumVA0ziW0RRGWqZCGx13yZOcbktzPtfBykD1F2cDKbMZFJUkGndlQhBIJwxClTW07sAUdynpy3piOZnaGUCimm1G3iaWb0ow7yu6L6w7fMHvPe/PFzaX95QTuIw3sVG9T+NZaxwGc6yHotBZ2bZHcCARBc5hQEcYGjxRTodsaRbym+Bj6fqo5BXOS/JF45vyi5W6bGjdyi6ajGisBpa/eXbxTjn0KhqJNYBPH5Fn1erDj94BldqLLy2rjDIzngtbwXS/2PsETTP8BqShLntA/alaSWkuS4MGHwOcFZCLAJ+ajRBlHmnpsdRqXdnjnBQbSx9v2uE/+WEZnJUJVntCI4tjS6Tt+22cIhil7pws/cqzkw64dmKF0Xw5AxC1MiNWR+nk1J8zuhTd1H5nYCPkcDp72f5MzjOhTpeia90ryqB2OgC4rToEZPuv58O4Pe2Tjs63azqYRLupjzDjSy2q2qjufYwxZsyvEBw7qybX2QILlY0DpWY6D9CtTB8o84albHXe2Op0pWVJz8Wf4rSDHuIoY4EjNbKR9shEqQzXeQx+bd0bjiG1IjRl+2dcPgfGU/BHADne7uP17TI+v13G95/PaURXNtC/xBpoXDiwl4gqqWalUm/aW4LNiP6WBFYSeI57VIRsec9PmRKHuohY7CB89DmVl5meV/d61PfQiD0izLsXIMPC4xzRDqaSZGsdoMup/g+KAGpggRb7OOtUHmrMXr/SHLgVQtHhrEi6dxfPIkJvtdSih1tfNaWgIkVF4L2OYtr7/S37RMalPnqIeJpBWPRraeRLOknPWcy+jc+iAm4gPLTvtAEoAdTp5a2gZ7FcGSJjWhPzPrviJXXQHub13V5rXr0UZVAHqnhG++nisCgzfsNBk969lDTN7LL9FKOIuCcbljPlq2p02irsPTQFNRxEiTicCjAdPvJGsKgOOq/WfNkPSPRuu2CCDU4d1BGnERjrYei8abSzLRiQmUVTaumGvc57MQKU6KRMU4zRop4QpRMyVjJrgEJDKN7yyqcSxaVuJam3UxEoeW5TpCz0Wqo38s1UoA9P9FH1s1rhRj7XXeRYyVtoWyb6MQ3GWtRtAdI8ErfafIeSzjZjVICVSiYHy5eUwRwCAejcg1xkv+EUAt9cNSxXzD3K8aj5KU1dfKUN1WY6MyBJR4lk/CIjT4YbnVN8rpxm9XUH4CuQP2mpvEtCH5tDkrkZGalPwwDji72P4/If/+678b/8p8v4x9/8WGNo7vjzjOg/9pUGhNslK6vdPWIm4HM0otVCyq6Fuh96z9etaTBHimf8OK1mZkwke+hc+veyZWRH4vSoWZmitBfRZNlUO13K0Smexj+Q0uv1+iqbuo8E22Y9dYnaBIJkrbRq+TiPRK0Nvq8oajnTrTUNa4S7jrknlFxF/U87BEQ9ohlZOSFnUfW43toS2fExXtu87D99uY0fP13H5XQb+2+O4xgDfZNzQ/WGcjZEVBWGdMgWZcHFegQSedSMh5Ith0jM6ONtPy7Bv+lDVfsolSOV+r3wP4jSrjPNM26VRpIf4gZHIgdrH1U7rfZaWg8gvXT2l7LRykjU/UN+hSGsCF+NCesWkdZ0HIT+Q7oMKZ4o5rtYEyCtKctBDrQHceNEbGSfmR7CG1EpEekY/e13405Mh9IdTBXwC8YfAlGz9bycM2uV2sEai24bObmRKZUqfo7KWgmgPX63HEc4QIXHk86yi8ooGqegAplVgWOpQUbw6ZeXkbnYA9JdGzuhZVVHjHvv9J74n9ML5kD60/OsfanZ9dTt26lQeqT5soDzoz7tfU5VNvOlq2Ivm6Ve/Rvtwlw+2edIKNyOLxrRcZ6jpPD56TC+/XhiNPqAriSBuB9938OxdntnrHZvZbEq8oySQn4m+VPL88IEeBgTeVj1gia/DHkybuPTy2V8/+lt/PaH8/jNDxGB/ilN6M/agGaaXTppbuPMlKYADakcfR6OFMiMVleKsxlKcSHlOQ4uwI1aURaDRLKPopEwKqJNBZSz4zG8rL0hUPBv4/wGgzx7KD6xT+JhQR6myq362kgXh9cd3+3jl4PqKFLySCHIevxvjtS6bvsY1ewUDijZbTTPbqmVty8RsPon1iVbejzRGAlwhVS8In29n1tRX0XBCl1DHuD54KYiUvU2bazqg5V2XQZra/vtNYN6gtQ8CWpn/UxlTsZd4PtTPbVz1WlnuH+A+G8DOoWAcdNKMeasbNcqWhfPDtC7e6Y6BU+g6yCdEb1P5b1PZ4w4UmuEUBo7qlkZTAmSE6mEe0SDrca46supGVSEb9J92yBzbyX2Jjyz3fomPa/RM7Q86Iicdxs4ZfQCoCtePfFsny8BrHcf90j5pvCGokKvdCjdSrkvtM6O7ocBFN5hOG8JjEcPbe+u0bDWPxcLRtT8GRrPmSoffCSMeK5jjh0OD6VtK8Gh/D4u2VapVEKlaffReP6CCSxlRW1+zLnRtU9G6ZUmOxunRTdWC1aPMGtq9m4bFdvwlEEABbTryMklpkyHnZU3ePTEx6CMm/p37lMrNMXLZJQuDlVNIp2e4oeVpS6rBvuYEqYaEEMuKMVSimnWVt/v43/7T78d/+P/+v347R9OJv/OL0VqdEmpKwWQhhYce63QwahWy6n1elyQ1U7Ii6jOByrY+mShLMvYKSWenyiARbu/HZF26vr56lG5Ilej4wNTka+Ip95VnR0yKdSvPoOI4WhPphC14YdqOdgR9z36IhOwEw67xVCREp+fn9+T4hjlMIhQsd1iu4Bkchb/e+Axti1thwtVu3cso87ZYvMyzqd9pmhe7/HTYHzmgqjsrlSYL7cEHDudduP1HJEfOEGzxahSheO0nsa4cOFijaOFVBqglaJtclnI45MhUHiDZaSB5/fccIrhD9N3tf6xvG+8l465y4T8nuwzOhjcQaQxwpinwRbI7bfQ9wDAJlqPtQ2E+jC83wirnuPIAYHPp49lMQSLjo1nx+cCjEtXPDdS6dOfy4lFBlVqvSLMsaHPFeaDntv6U62BvV5nSE6hhbbs7eKPFTmmHh50kXXQ6s9ElivVRQZeGM+hW6s/dDs3bFy690zWdJKwh/u6n/7vKVtG5WNggnkmgmb0ADecq0QRvAXr3o6UpMvyP5uc5JffzTiSrmSp+cpcq+dufc9v4Xr79idMF7W1WWyCLz1J/CL4dPSJ//h8HL/45gk60GGXfCPoL5xnt+u5jGStR03WrsooZFp4t0iDhtDyhtSVpplbIQ2AWJFnvofMl5EG9G9/eBu//h4/wZv+JA3oB6Hxk2SxfZeoZC4/432Ml/MYn99iMxDllTdWRi+8lfhwHkgZKoz339nHFMRK5T7rmxmZygfpwJn5mGcM/cXEF3KWEc2OQxweGXpfwyZDdDEY/REGdSB4J7MHiq7QfnEibXXsLDdBuvAE84x0qfiRMVaKICN+tQeW7qI6QKVtPart9KaLyYhbuEtObYnqwO/ToXE4ZKwTKMKWslX+a1doZBjaKucTCuyjo0klnnJv1RFY9NDj0DNTUFaalQxvtr0yl2E9wZgK7bvWtl3QlLEkMDjSp1JjJtdgRFeIaN6k3EuYjKPRICv6Ww9bhVwzpIoEW0Sia8yYriQDQ4A8N7XrAkAbvkZwDMSou6abeyPnkWpuV1RkxIgN+CvrFx3VGApJRh00Djs38fRwHeVRVVpY5cV2fCaen9FlOpCiLMPrxBLd/X4fR6bIKVJE/JDCUCgQC/IAFX3W9tq/gOgagkHgVcIp4Lu+3uZ46AZNLbCbwhtK13lhG6UCkhPVigb6LtoHK0gpBHClPDofmXQfZVlQGa9GfZax4WCBZEuFGaCZuQqlnuDIUHi0WKZzOdXzyRG2cCCPoJRnXqoaPiBAonp/49L6CWAE/eDZO5pte5RWX2BOrkQKi0G1lpnXB6X/VQq9b/DD843/fm2XpY8qqpf/5mtCoVZbozLQPAA0E1YZIBF9Ent6oL/i8ThTUWuotny5V4x2RI/pMECytZSUZbZBQi2iG4V99q6Xa8oe4JjM2BKMtRRjQPMNOM4PAZwVfIvR2LgSqfl6H59f0Yv04+nA9ehnZs5DtKJ0BZ80BCwP9ZBXdlLLJ61NPNNbwrnRilaFGhNk+xQlYmbT6nzTONrIAE+MSOqZGBnh2xdtx/tRyxkdH4L3h06R81U7K50HGbfKyIvPp4M22neGfPG68pavMjIkdaL+NcrvUhvKbD8R5UxTyuhiMzrrZeyggc0bgp+pBChrMWUAVWYXniUjKrOuBCql39m7uCPFiSwf4EVct9alqBsYAhTaPXVPcgTJVLJkrbUm4yGi3FkIgyyZAqxFejai+bik48YrAg+tLA4zxKgJ25q3tkauvc0TLEKbzk2rHy4esHUZ3xSNx3yRzRk4AmFM8zGR9hsZm29wLGTWQtKOWsj1LRXDgDpg0VIZ4KIxd/zzy1W3m1ki5jRiy0XXIaXrap4C3CytdHHyKCuhgAcpT2v0zHw1KuGwulZf6OlSpwVKumZvvnuZfWqStp+4hKY7FqQMusfodRmz+ptrF86QD8/H8fGb0/jml0/sahGteW9ozbu/jre3S4MCcpPAtwkAm8FNG6Lx7+76sNRDu1YkbBzNVlgpE3+nHMjUcvDv80JX/wIj0GAHONMoDvr0es966F98uCfIRzLMe6cXyXhK/ZjcEvn/BLRIYY1I0omFHaq5SgED7XqKvahQ/baDERwGOBRxptpmHdWufme/w+t9nE5jPH1zGvfrNVv6pCfwcIQH9tNb1Xp2vVb3qW72JUOJaRcUfOnFPx3G9RppFFn4mqnALrTKgOK84HCIv0WKuH8zYYFSeB6N8ciCF6dRnIwqNgHGUpZGEVAqUZ55/1inQgSX06IOjml0NJIlT9X8XfXkukej7WptaETw/TTP8uaKZbszYfHMyaASUqo4tBmzMiJy3QMpRU+n88JroZUmDqfwktdiaTrZTrbSg+qG9lEAu5g9wZ7PoGcotCoCkdHA76fx1578BMqIgjYicrkBf7C0zofUSVeA1BfUkn1bwQllsvuoJtjIaYwPT+FMinZcmJsMk2SGOX62cRAIl+q5maJTTJOp6wJzirhP0jq9wPgI08mNMcc/Ekm2AK/UykiOoTnHQvSatHblnMJkT0TxcDVAEFQf9txfApglGZM+xeod5ZW8SPVYON0SeBO2Kegj6FL0ZWPLEVA58nsnMEco5GUnsOa5tBDRP3MjKvLc7WfUPkIGqhyKwhyQU0UHNk0ECczFiPZVVSaI0t/VRm9V5lwRql72dYR4xqVQM99SZxc3IGKyFKM0mmfUdPU07qXxXOBuhSSjId8n/PDr9TY+JYLvsv5/gpfrag1SRKUzowXt7JNSmp99vBMNGKK3R63p4kiq51F5ishT8LCI3gnVO77/HMr283G8hEEX+cC8Ul5eoGiqtk9RQkmZcyLajPH0dGz5YNGxpHMh2sYXIrq324/j7TBOT1LkEdXKKHjwrU+XcUqE6nASI7pYLqSgA+Utxr2MppLekn/ByEzFTgp8RaRZcqIvWdgz/oy0SdWFo2bQm1dJZqJV1u5BdiwihbI8nZzxrUy/Rv5FGM3nF2Re/ObHc67vX35zyhrWU5SsxHmJnt0B4EqHtXhSOB4CyV6LDeW1iymQqosxoMSGOkPwY5WlJz96NNAye0gyuYAre0/Rq9rkKYEzY09QTgYHQGLmkE4K1ZvPgD4GozkdK/ytoeT3w3GhzTP+lnsZn5Njp3q44fvRWgqBAou007hK3TPKGHY7gGdRHsaVUf3ss/6YNKSe6XFunA834TDF27JJYmUiE6wdps3bywLbbZ1TGcWsE1/FZPvVJqJThkuANwXdPhMTQ2rV+e02Pn2+sN49dO/IaFhK8uiIUD9yPUS+ljinMSf6zuusa5nhzGOP8oriW3eUOFeZKcHoL9eknCi6oTIHLU07HAMxt3RsTa3pavDlVNHJmOkWXQ3a4UGD+qGFwfuX9PHJcfAzvyxciinjhuCMvsdyoCF1+zh+8Yun8Rd//aHeP74GVs9u7F934+X1DJ72yn1Kndjn76npTmvWMWRDtqTlkJ0QAAZ5iEAJP6d5TLOVAR28+3LP0lrx33+xBrRfsekvL5c8gN88EeEv16c9uSXgSkQp70dGFe4l4SQG58qq17wOB4CqjQYTRJ1NnMBDQrNLuYbHGJ5wIIoSNIHAzGXgKoW2DMtGhIRyjqcV7y5mMatuUFwYZStkTRuvO3baQuc6yGMVc8d9SnHSB3wtapiKKLU3O9+X4kXFGplM8KavXi+x8WLa3jqmPGmKpMr7NB9A7eV0VzE1KQ5kXlWHZn7B+uvBLdcH3r5WvxHRNaM9GZIiiKhNQvSTY1FNfBrPKKyTh1qp7hVR6eWpeap+Pv4nQVq9NMXqFQWVXc3Iq7OZSnrgH1Mad742ewHLWNY+bIwxHTTZNo1zZmQhjXgKKDghOkErlSv22U2/OixrCMj4QkRKvCeLFcO0p5uOFRr6StvFcso4flT5ZTSKRvusIHsEAIKgTihHVu9o9NY1v90j3HlERYrld2IqaNdbznS8+qydEv3Oq8hWKYv54drwScfH45kpx50lmsx4AXIHrIe2w8Sb506t97jOSVcWNdIdt2rukwS03cJUeIjn97N8SM7XhKEw1e55ufuk+fWzpbi1UU4KCkJMGg+MDQJN1fd8J9d7br/+x7oigv4fv7+M795u49/+4ji+ScwCDF9RMW+h4gpVOoWZuWSBMXxOypCyuKwmMfdARok7JRxUjEvoqYn+bKWhTmbDotAXgu1y5b73jRYvTRt6Xp4wYRbcgS6r3tLI4Op7i3VBhNAAqwwM6AFhtLlD08fQldpN55oK+toTAEpfJYqzr32xr05ow7lhWYXA4JKPmVgHxAuMSl2h00Tv5hxzRmAZxWZqU/Ge+DOcwFwXZRmlg4AGWoOB9XkqRzSdsQGs6rapeGPz2HYI6scdf+teeztGDJP/W0tr7N4Tj7hv0LV10/D07jJKpdCLF6fRCD5xEFw/vx8p7kpVTWdL3DB6ZvNeak2l8fVY7unMwes+797QGQVinui0b0Z5P3VVHXOtER2xymS0bEXVjQNjgo79zNJQLfvI6HPUj8vQT/3Y9LvSi9cFKPnSbcl6Lg/T7R/RetEVX+e4hY/R7T3hVAp91TcBtAwDOgHi6LDOMViwSbqEaN6DYY4CLgdPO0q2s0ZXfvQej5sX4PGfhd1UQQZyGNKhQN70BdGh6zzZYUd/C2nfbJN7+V6snKbq0fu3gjFwKmwJYpvbtgbSPd/ZokV7LAd77fkfyHj+6g1oAXZ998Pr+PV3x/GvfvFNRoKV1isBi5QZuZUklg4P90pvxa4BvNqARnqpG1cSb3pOGstpkEfU+zb2u9M4Hp8Cl2+cz2/jeDyNp6enrKm7nM/pdbucISyydYQiZ0QAhZLGJwiFT6m01HAUgS2DixGfjPYdI6rdkPxibJU41RIev1LIA5kvLkVRw4O7Ku6PqTsq8Gc/6APWK4F2Qli/SW8mUw0AphwGgHnkndK9FH0Qg9H0Fd1MD/UGQAG8ZojSXS5KIWklXt7BGMMhEKEFMvOzqG3L8KLhJ0CVa6TuMw3fRKQL+Idvx/aLaYZ3NPs+xvhRYpCeWkX8qge2OQqYSnrcn4DQXULA2pCRMas/NP5jdbHZwiwiF7h/gm6FoiUQ8hzCLKBR03arSLUbYTAm6Lwx4zqAwgLVVQy103x1npDK1+oFrGDRbfaLZHS96Lm8lSqTgDc6lfuMQPfQM0Mzx9kp90p5bM+nwObiV2RvRProJSOmlQoeSucT4TEXA9rTllzxe/CMMt9MzoqMTIVHNRXa2bs/OVx8701b8Ncmo0MKnrV48FSnqhlejDul3fWc1MlAzytYP+seYGettk/AeIhYaS0giAWauIIT2nwKsChzcqlwosWglLZSBO6Pa1KGVsn53q/Jybeph4hPxX4im4mBkzH2p7zfbX/I1FNU/6sy7j3z+eu7oobyf/rV2/h42o3/x/NhfPskJU4AYdvfQ0AWdIGWhzS8ebVxq7RlnNdsSxfYIAaGFJcHXSuXqO3XMkik8Mqwr7THvAnvxe+DdW6D8U1G9CIAgBNhqX6LxpbvEzUWWTp9HynxgbWSctqil4h2w2l/vl67c0TxYbnXWLphQKFJ98peCayUcMQLv0Wgl/lBU9z12xYnI3GH3Xg6Rko27DSPY8NIDq1FNcvcm9dL7tnHo+iCNdGSp+Qr15Bhh2gdcx8vkQZvgMk67zPKE3naHWBb6ey8HditBPNKXm7yPmlTCr0iz1MavwzITkcQMKEcGYo8T8EorlOXenFP1erU17H2c3aJVbZG2MCJ/xEqIXrWnkJmXG7j+bYbF+PJWR9sdJK4OQQRfZ+TRMtRRK1j/F0/bpeBvcVVNc/mWKrWYO0/2nY8aa+F/8AxoBRH7eUYKWHHEP1E2qyy2SIKf3m7jZdoTZfnKNg6auhFw/G6yjXyKZoAy9t6eymT1Fd8w3iuYJRPm3taHT74idR1MxuCtM3xJ8BplffIDQseEEkxYfzHT2bRMPvUDV4HvWqfOjvCWDcgnM0NN7Lk2oOewTUpIOR3SMX09jKeaVc4/ebe07kuR447HVRKIGdOpt+/dReSwDzyON5dPwQHSxqcBgQw22ST2e5uG7h2XQs7mr3fdNjluPmszDxRCYl1V/hDXj/bgJ73bvHqbShoP+8+P62IxOH51a8/ZdrQv/2bp0w1ynTJ8o4asZl7OBXxSqfpVOICoOFXBDIxj51mlxCAQ5mn0g4BgRTwMILSSKBRhPTuMP74IyVbnlAJlhyDrBjz1NQK9RjhecZcsq5z9XwtchV2tgxRQ+Uj8EJFk9VKRwX6FbtrJ4Ja+FQqb0TYs/ejgAAIIpb1RIzKxXOiTtvrBsvz1Wuu2lIxbTA6tsgxOqnR6HVFmPlOLwejsNWvutFS6/2qiV0UmwdKNEcKNB/SD1Amq5bdPMGS5G1QMnShtUmGqgriTuPXPMoIWqTEZAzJR1Qc2za/4Z9LUQjjsGvJ5CyRhx7prtO8SyOTt1f75pShM0Sgm0lRRfp2KQZFvzFuq290NaUMc9+nbhORT7MwPWYl+uvxICoixHkpVVKDtB1ivH2maSkAMEh0HkLO4Vmrpq3MswdayWevW8Of+mYpVZq7baEZlE3S/Zl2EmFG8RmVBRQfKLrGXr0nS0QFuLWfNMcXX2lhFuBTHdiGsd60NAtFn6vu34orKLVA6nSDqQtCjwkKij6j5/ds4Fxoms/XJ4Wa7jvxSAOu+vFyHJ8vu/GWfcyX8/YndhVmgVBgp3R2I8L1srY/s+MCbzoXxUsoJyjQpzqfxTUeooKIcrfTzfeh2mdVVooup5kN2tOnVNPptGj38HnKfrAJTmnuWIeFR1JhC8cdhqgapWgXGcZP881U9hJhUf3IFbEiEJ9XFVBuBb9OyWIZX24MSpeRganWRaH7ZPTZHBBaD0VrElFX3Q8CJI3G+jH7vfKens/DhhbhvIzvpAOCzvtI30eLJTE8TqZkda84TrlzILg702Fgn1VpWUWhzTGY7xngaEXDymjGk5T54NvakWyjYRow0K96+BM9WfQ40vrDERqR5ZQNzLTLs2X6kRe0lRFXNOUrM/OXVBsinf60G99+e0wai9r8WPPXN4vcGjU/+pAWprvQ+sNTzRD18wCRtVFA60+qbE4EvARrghancFZln/TJCbtxoxKR4jcoEUCf8HeGQIfc5Nzjfw7UIzKIaudKs+6jLBkvpG04uKDTtyEvfaec2DZ/daShKGLUuw3Iep74qS86/+kZA9PvifFss+tJH9owsrpkVI7MrruXfA3HTgSegu6iZIBYhrW3UcseP3JM7JhptF908rJnyqlv+vjGdOahiveKB9iZ3+pcUn66DVr/WiPQj+rj7+8KT9X/8u9/Nf6PvzuO//u//cX4v/zVNwWKdL1HXQUiBzGo9FIxpTQ8PVnLmC2jNOKIkiDEEK8HIz8tkcMi8qzBlKGwA/y+nZrLazw7vIQATQhiu90u4367jNvlgvoq9Te8nUvY5oajaDsjuQA/kXKH0LSeEumqAFIRCADqtkqo35ZIopCG712Vlt9Lbhboz02ccXLi/UNE1pmCVlFN1V0HCrHSOsKoOEYN9m48fSCDjKhTtCSIuoMAiMmUXjgH0tBPp0M7IcJgy7oGAZRkdJpgYQKnknittHCLJKpeVkBmdFzEB/YHil/mGqZ3LQU+DVtHnvA2QvzpyBoV+e5hUkZ6ZBnES+dz7DMBw/L0YnNzKqwayDHGfDOsQMdKRQ+DcbFZgpBZM2VUaNShCGTX43E6HKEshAKWHl7UlIqxqxej2G//N9bxyB6YQeuhqOA9LDnbr0GNqkyBOgNaiRyn6gC5+tTY5J0GsFRoYVCmEG0H981skVQocVe01EItnu6FqIFS1LkG2QKlma/MWQhLprRnVIyFTxnFEM3T0xzZKjrOSfIHKIuRshX3D694tqfBQQrhcQiE+YikCjgu09iZ0ohDaQZdK3KXezw7DAiyVGab5Bxy4AQ6Um/QUoDpRqna6Ztl2BwZobEIFO+d557h0sBE6NQF5XRYZLsMzMWQZfmE/lIkV7qvsAFktE4I9KpjFIhhUZLZ8Toj3NdVWKA1S3vAs0WLEHOTFzVY1Sp7O7LN8gElWedUAdKniKf6OrNKkmOJRrfdWgSKTmT2IMPiv3z3PP7h83F8/4bGprO5+Kd5AYSS0bDpnXVGs3YDerB+6FX7z1WxvVF9bwEXEhmoWsPQsap9D/Yc9aA4n+QBTEGO6NtYeKoUVCmBcalyekrf1+8l1TA/R6W7jXZEXAV7gSmAzyYCbYwz1Yiup05HseS2amlNQc+6VhRv58tv5yvA6MynxNSeWryqH0xLrTAPpzaermMr5VJR/QQ9Y33lE1/3PLzkU6G73O7jBY2SUwHEEWZNbpbRAEwonhkR7LhvOmKNmcZ6ZF3q7QZ06v1uPB+bP+dR5ITUlVPSBXk/rFOOe1skUCnzijR5b/LMcrHMBNyfcoURxxhLZEFAp+k4hXQmQtnMPkKK8NwSy0xQILZ6O0dE/7gbv/h4RMs3Rurekv/CAAHZR5bkPfETgMNxS5mTBvdGtsR0/GJPjrvxMWtQj+Pf/u2H1Pl+8+vzeHm5jl/902tGRfurbY0squwMdLU8ahqFrWP2JSbRKNVZbS8n52M9T2n8SVjjxh7Jej5oJSLOav3ZTo9pXDKeFSGlAZvAUIz8bl0yAr1zAAAR99mS7sLnU+Wt6baTBNg9WSNMZ60AQXRO21m8GLhavlvU32Lrs9GA1klyJcV0G991m/c2xx29xriSbs0rrvF7uZbu43RQbMlLIxIPKmiy+dbzh/14ft5nDfSHD3ASxdokj77c8uflcs10dvH9I9tOqbGNMrrkrAA2hLE51TG/W3vQl/gbnIHqutRLUlBKwqL6ifv9kSPQf4TRkXhfL2N8OgP6viIiHFVeNHRmBtLKoQBzdD+8i23QhihtJZTRUszkeRKDsR1KlONAHYzPEZwANhDBKeSOsme6piE02Ek5XAx599zjPmpIjsiKKwc+NigXjZjsh9EjZPKMPRT0T4ePQjodBcHckeYIbKpIM6MhFlmXrI1KlOCsgQGm1k4GilJklW6cYB+NBAxkckYUHshN6X3Ys64WL/HRvaLFHB9Qf7dpWN6yKW2mPKEywvW+GPWGN80a/ImBKrqQAVh681Qn557GTnPlXHItVnpfPMVpQK7KfXNLAaF1S5CZc7fR5m1EtJo9n8l4rmgj7vMgpFkbXcclaU5WSiDX18c41qVuWUjibOmC5dNpJASb3X+LL1WKnnNbK9TIFLTkJXDbCKm+MyM6lRmmQj8FrECI1n1K9WdnwzRxoF68FYfMRlgraS3CVQnvyyFoz72tFSPts0d7Oei6sSwPI1vVptZHF1blw2vim8EFVr6Vyrai5RWVkwHyOK8pJbM0vI56zPd3PldxzS94te197Ra0iDKu18nGY//u15/H//7rMX74DLCljSX5k7uU7u81z49LZvRSvGR2YHRM2e5dGpp9kGe1jJdZu39U7pXuV5HxNqjzK8k07Ft6ho9+w1Fj06g3p6Q1TaB0CNYOLyBfKSPYTqij2qJTL8tYiFH1hqHBp/Opz25llUjZFCtMpYTlUOSfef6p69S8TIeQo1EK53RqKAfCuMz6U6b2ZhJO3J7ZTRkUqL65lLkUVak2K9LLyCBkd3soKgvEp8+BKOtMBqySrSJVPa5jKMKVBTLrRhT+2INubjDJQzcO84jTaKp7dBKQVqW/L4Rzk0biqyUbMurc9CwMnmzPFp0j0mFyG7fQj8IR4RgeRZ+d0TURrY0xAjIRef748QAwt919fPwAR87HD4dMJ35lTTHWdyb4mt9qpE5jEV6Lskz6DLcessUgrL91GdHzVOrf1RtddfEO6rWMt9bkkRevusm6qJ2O3WVM2GuMszAAljFWlN3Wq0/uwkgWhkHJzqPfXSt+KhLqd13rnB86zbo8tr8nfd/l5XJNeyN7g45UILqHcYqsSvQ3B3hiBgQzC0/Avwaymkj8rX3vs1NAF0qKhys4ANT7fs1ZZDsrqZModcki5NVC0XRy7YOAm8MhSHy3P/j1VddAxxVr8sN5jNthl20XMtqiiA0PXiaqpnsUq4/ImAzkTtlJw6sgfPtAj6pFjf7PF0PcDS9Y1Kp2zZeuiEjHru2eo2UVIh5P0Xf3vh+XfaAFqwbPkWpNQUjvVD8HlyuyiNKF3RG1Qmo8X2m8bHGh+uJOlQXRHQ/h5420C/ScVhsr1a0iwmMg2w8rTxMt6nCeIvI8xvPH+3h6uo0PHxFZigMVtT7nZ/SBZiAwi32vWQQET/V+/5YmSUT7Ub9ARhfR64uYJI3Gahnt0bEekjz/2bYi5xtgbqa8iAmFcM9D6ujdjwjZyfYm5oPPZb9roqJG2krW2AeyumuUFTojQ1PEJP+MiZOBEFREZJCojPsTa6Ejk4EwvymkDznvI3NzAVxGNGMy3aylzQgJehVXenQK56DFULYQZRWSfTLQfdTuz4wMZ+LRDM1xSpnRpPReCUXr6ZHnDHEF1PvrfAHdfjypT/el5pPKUEJrghGl11klENmHWYAlti+ZRk9nV3im0xnTqK4QEIg8e/NPRI3o3AmI8Pju7jzugbK/DxqKyBxquNDWiynZRI9HtiLT4HMNmemic8IoTfIXRkEreiuTvNJRDdVbCNw1Tu5lnndtkngRzrr4RaTL6e9UGliPUgJ2YSvzyWb2C1M3C4gwnuFaJj/rylq+Xe3zZiNXilI4y6RATgbwUkPt/G+9VylARPIG7zdFyZwB09h0r3pM8xwFgUJJkHHWzkzcKc77//N//rvxP/z7T+Of3v7ARVW/pwvrCG9+glEz+gdetR3hcZ1Wystaw+ZAsknLTC8qw8xAaR4u1wHpaEzZJQOK50qGpWRYnREqrRrThIBrl4yoNPqkhArQaErHxPmJMX/4gLZO+mxGLsVSrA4yrE04OzcW3H6HHH16RrsuROqY1hogSywf+aZgnflVhpYD/aLTkzGAxC+xqFuUVoVsjahS/DwlgrbqRzHXUDQTLIw14DF+octjD3aZjpxR4JQZY9yoIabTz5B8I5gRSMpSHlIuK4PJfCgdHIh5UF97aiQ3tXs601FwCr2pOjJ0x4WyKGJ8MtxlgSfGC+Ss2pkxyS/XBRg5pMfJeJ2EWv6J2mt7Jp0HEdV/PoVBy44u5CUxzuPxME5Ecr+E3sNe0HkOrHZXwKi3BFjdMniw5h+/OY6//duPadAkOvdhjOd/tUswrvjA55fr+C//9DKu55/Pm3SWsGxdu67a4p1l7VXTCv6ExLYOmpUpsqpC6xX7FNHyTONWDPcdo757Vv/M+ZTjo8ewLxRu3Dn4RWxR6J1Is6auzHtUhoRwGhbLvvTmySlOx4xQ3vP1Lg8kusEmtoTWUxrT9LRKReYrS4RWGaw1dvv93rKpq4I+LaM02gaGoRx8NksSnoKuozMB0N5D7z0+HYlrAV07sG2yFjxKCUoPGXkuoNeodr2DLiU3TDaLF2lUKP1ohiHn0nEfY4pMjy51rBZ7dL5lRPx8zTbH8fPP6l71U7R2/z0a0D+n1vl3dQmcBEyIURsD6C1VawLmccm8NVqwh4qGSCB6beyDRdbfK4gxCdj0fkAbg1CP+zbnr2iTCCoL6gl0tZy0FNIpIOhtJifrWMv9EQV4RR0tpcdqfab0D6F+cnzv5FOUOhpEfhzj+Xlkg/WnpBrU/iTjCjAxemjTwF8yldQKKQ5bpozwvuGcUF9gfIKVbOV2tE12ZjKt1rJ4lSYNtUAeZfcblpWr9aI7bPWI9fJ2lKAfpQ83DU7szJw2XMKqb63puXt1oVXdqaIAdesaOA2F/oKMvf57jk6XAV9T9zQlm7t5WedKYEsL9qjOVGcqT+yceTEpqZMUUBS6b1Xr5p7Ydk12BLpqqjq6rprOTm2D0qd6qnKuBRCg8Acshbcn5ZFxryv31ffILL+o1GKbG5xVjYpK7lHfmqNmQvSdNfBZyd+4FvC5IpUixzkiZY/Lzym1Tq/PAGOk/fsWeAvfsH37uZ5gH+s/R/bVfLoCo7nVKgN0Ol0+TEu4Phl8Nfrk/vB6ScX+z+Vy+pjOr9587zs/694dmfN7u1zy+zg2SNHWkkHme8db1F0bwK8mNo/nvfn0MV223uSPGQWTXC1kau/LrhvqHn50edLrmZDDurc0Ca2DkL/nDAE57OhQcF5dY53rhJ1P+WrWenFozoaFfL8um/irEvadr7fCzPRvD+fZ93OscvTJ4cHJhPMhHJdxR4Cm4cbimC0HyI9FN8rDtf0TZgsrzEvnileURv5AFpbF5PWXKxHtNiLjjZmB9OY0JsK5wPlUbTszGMtAylR19SZu2lDNLPRdzPdIPMVsu7WL/rxwjLTauBilJSuXq8jUelRXy1NDWqbTog1a4kgwI8xF8XR7c4IWTU/BI7f6Zj175QuZkstx1jaU4m/OfjNsp+im7WODS7YuttJwRVALlHgmEDhahTLdXWTaXGgKQglCP7R4iNTO/D3L2vci6+u19fIWm/NnyvFVDoZ9GMlom5YOoQiQnQ7jFEb1CfXPUX63P+67ixDbx7n+WTJ3z2eqLMj5/yQHLGuhzkHPqzWBPmPKRNqS3ZmZfL6Oz2+X8RotEM9sH/jPuN5z7D7sx+/CgP5jqhGKUEZLEeQPs7AFwTkixoZPKLsSM8RA5qyU0XUOhLZTmk4gZ0sXnlon7KO2kUghASizu477/jYOgYqsqHWml+/H5RZRxYhiv8G7HIXBGXhiFC5risc4PR/SeP7wzSG96xlZydpgpJO+vAWy4W5c3ySADuNwDxTwzD3lBBrtIgGQMmKG+j0o4ZhwIpsG0zkSFZi2cggtiNkIAeeCFKdq8Yto3/24H08fd+Nv/joO3hgfjnGjMH3P4+3tPl5eY/6Ix6WgjWwAoclEKtMJHtdvv4n6in3t5w/fXdOjlb1cYwYxJQKT5FbkVCp/D7+UJk/FtgAjXY+pl1jb3WpR9elE1I6xiykdrPvXFXIke/l6c4WGAAEAAElEQVTKMaCDKmEtphF1odGfuwyyNn/o7gXXTc8s6a3Tp1hzx3FkcnHuH2qggRSN9HkoSphTRGEjEllMhqANcOB0tkaOggJQEdyKLJs2mbegQAnqTgglCqicXwKlxbp2f9RcV85zF3XIictlUcL4+yyyZWSWmbHCNJbpHc6Y7KdJAJBc/sxiCK9/1DCDwWeEluGkjMxaqid6llMRS3BnROMjawQ0Bjjv4xNq1O+5qIcA5eaY2NdcEiCL6Z2PpNaEeWSf6ngdytPtGngHSpeS8uFwwgD409rMGNnBxRrrWRFCBHba9TE7JzqiG72yhTwvVcCOU58jbpwEXio6lwtSV/eo3wt6g84CyRkZD7k21aMaVy6ZOTME6KKxbF2N8kqWIwVzEVzrt+Xw1PdxBizZPscfdNlwnHFWEXm1uKSQZYUzaZR4D2T2iAoGcE9ETx4lx5/+ZY6L3ZyoMV1x9jMLamMNmgpI5xmh7c800jY+p/pVcZpEuK3woim7+Fbd24ZL0m3FSynE5jOePq/LDUfXA53cdBZSXoiluyNYmVvK5lHHDCEO5EHtiSeSP6MnyfqJVBzZZBESj+Ct+Jtsz5fXa372wwltj3psOKOoL2+noni+Wu6hBhqvhXSBEkpZllHAnqtwT8RVAvAs++hayuRkdEl2aK9SETel2MrEar98XYTyS0U+nfLkLcERM2KbegzGiT0zcwZQNLmGmUkUGYDmQAu9JvYiMUICp2QPvaKmQVA0OFBbVkT9/eQYrL2frcTgH8rIyp+IDkdaNWt28zYfgVGTPDfHB6dIjDVpVUvBSD1qvPeVgprZIYeIMF/GP/7mPP7yl4fxr/+b5+qD/pw9bo/j9Gk3/u4fdmPHqJvbDSqT27pSp8hacT9jXN54nYQYtJkpvWx5F79j3aIWmbAVE408nDci+OfcCWj7cBWoYVtZqYcHUABVpdLH9azUCS3tXNMwZ5hwfqT3iDZEf3JOFGWTPlOnAZpd4SNQ48zvhSMj6rFFI2gAAHktkEaPsGcWTTlcOtAW538zpXm52jHMvfOzYDzuQcRmdtWus2SJfo9IM1K0o7b+w4fj+ItvnsbHyKANwLA0pLHn50AejyS9y328vgIA95T66G7sPkG1R5bGDu1Zq3MQdctSd4TFUz72BMlNnZIYBakbsiROBnOcNf2k7GbKuZFOnplf/fbz+O0Pb+Mfvvs8fv3DJXt1/6Gvf4YB/XPbAf1+riDMIOCAx38+hZJtHq4Hd/qjx6lGT2Je7r4EAv1mS9sD8/zVJ0jblTKVP+s4GD0LIZV1BkS6o2cx5nHKNkeRCkRmG55MoWjxSHtrFghTjyZP7rrJq59MxNLN0KJhHmNGvspzJgVf64e08MMhjDi26yAzi7/Tg56gYd0Pr9dU6ZMEJlAvQe99+A7jL6FMIti0B2pNxFTnPZZSBg/24wMea01FE4ombtP+43gb2MgVL/M1tsJU88EmtTdynqens2IvZWpOMyaDsl58Xm800bwiKeta9Bg7AqLshkdWv6K2w7HqyALLykj4mLBrKUxRVdrYBiVUGpxnBtCxVrJ0jsrX56qNnOrGAOal2p8bDVxFhWofVJ/NPey1rtjRpJxj7xpUS0vfOzWbB/r3g3nCNZfHve5te7R5UZOdUu6XpZTxsB64igQUK5X6MN/CMxR6nk0r84PsOzSmVq8v7r+eP8cDWMb/EI3sWuvp49siYeMSX5dyRCdXOIz+yDLv93G1kdm01NHI5iqthoIWCw114gtqMyYeb5EJZZVovyhb6tyaiuoRptkYbtpfz4fPp2j6Z224yRDJHT9WHjGyMYlfd9R17rMrOSJZV4ZmuRjaaYa19MwoLIrA1YDsbfcuKbGxVuYwK7mjH1sTzTmNee6PPlRjtc4Vfovivf2Vac/lQKjyMucRG7Qn2tGz0rFC2Sb+UhqP1qQMRdVhtyOgI/Kan/fV7nlPBCKF3ulI9FvdWvrzkyNFc1gMSGHFFPAq2+6840e0KC3TqpVqH2jbr9fx9gHGB1ozCuALxpDLXT8PuifGvGREvC85pjmizP+xVrk/A7m4+BjsGf0lp5/1dr72+p7wcMqA5jxmcuqslen8lxz2bFTdZMbBaLtgum11u9kaoJ9p/K2D7+SOAEOJ68KZ0eZUboQN2BapnrXKSeocruZvXE5vysZTyWgix0cpSWSRxs8TQMPCHsnuOkThlvqMQBPBOX3TePbvnn1ZwSRfo/7vYv8v9DAzb/GGR8fonN0ELABEnzMC/c+IHP/XRp7/ZGqgE+AnCP16G3//69fx7Tcv4//2N4fxV9/sE/E3/6dWIxkVo782DQhgELdWnSyWijj8se+F/SuqswuU6qh0ZGsCMmh89wqiPMVnwkMXdSnX8fbpCoAxplUFsnQSQhigkTrxzSm9PR9/ecvU6LfXqJke49vnw3iKtO4fzumN/nQ7j8sZoGaJVi3zhJ67NlDDO800MIYZNd00bmMNadQfLX1kFWh5+ww7Ihqar2W0NGpXwwMb3tDbOJ5e04v8dHwap+N1/PKbt/Hyeh//+F30y9tlvUQ0YI/1QbbsCdkDfKqCQellinpV1usind0RsVG3svJpGUYxYNThxj65Un9/VN5TS+yIh/rX1l4zsqlnYs3V/gyY0Q2e0DQiJqVSAy1jUiF7FuuzaOkMjyWz/wvdWX2w49mVQm3OjMPxSKT0yBgIRHhBkiPyX0ote3CjfoxpYjF+Asv1OvZgtXRqxXKKmuC0I86oSUYOPqLkTD3TaUqnrdKi5SSyfs4VgX4DI452dDnfjBQy+im7M5HdUYNsy1DnNHvM0hBGpJ09tK8utGLd0b4raTDW4Y2o24nSfRvHZwLhnY6550KiV9Sy0ku5QDDS4eRKfpHK7wWRG66hagN3N6I8l9DD+cxjWZCwM21OW/LAjqTkulB/pG+9noJvSmG325RglmHSimasAZcP7zrIXRm17VFPOmUUEHNUzBEb94gtMJ+ZKYLAR/mIXXl6uGQU0LFYZ9xf4+cQ+Xw0yhuwChZAng0h/QbuxO40zrm7cYD/POqgI+KVwYkH5ZIAWvlHbzrQbGdE7MyOYLtC/z7q1FWv3kq/zhFAaC7VV5lAt3aLNir1coL3hRJ3MeNOvCJSZtPwejS2yB42I9FIjVVatCvvVLKlwGdWDxDLtURcRH6sNWM46RoxXr2C23jW2NnHNHSGe9QhQsa8ERFbMIlRgw/cjNlCQjqv6sFbyRTadu5VGdWuvEtniGjioaKJGfEl8FjSf5Zhgf7Bphag0maRSP2MPsh9GLOjQW0rEf3Fl9CJAwYEFGQFA4CiHGcv1i05dNRbsj483k/wopSn13TEpjwU0BvPcJRVBy/KxKZEF0fpjiLnXmMbfwcMRtBi1l1rzdTSs/hz007jg0ZP4/gd9ezEJZF9G7JkFzgxkCeNA7L6E3TSkPKraK3o+FOkvvxDpB+O8en1Q+57fj4Rrr2r93pHRnEbjuXxc4tYqOQoyuzUc3jIAqPGz1HxZqXKT63FWgbWebPvzWswDyL1IH5Ghnucv9w38mmW7Ncccrw8i36jh2xoc/4oOFHp7x7VZGZCXFPZvU0805+jXFHZaO7Mlzhb6sf1gzZXyohcMngqwNcAcwAabV1k3XOdfx0xnN05Mh3YRckbsg/5SFyHqH/+i188jW8/nhKkLozoXeiWARpGZSBkRFYj3G7jJenuPm6f2bFEWXo+uWHPLY3H/y6JjCwcll9MDgyVu2g+S+CmcUtQehCG/cvrZfz46ZxR6O9+jM5HvwM5ff/KDOj77+o+9/v4/tPb+M33L+Nv/+JjpZD2+x0pLSRI93zw96SgeXSndxxGhZyo0uynWtju9yjBlMZcgE1lGwQCGLBPq55fEP1sWxTGMyK6SNdMMDKidZaCF8qcpZworUyewCqs12OYajanp9mRTsOIpOlBo4m5LftHoInon3tgT40Eq9pH2nkoArtxhF0HY4aMBeOUljEzHPmmcp5C/Pz/s/dfTbZmSZYYto+KiHtTVFX39MyAGCgaxkCDkaCRZnjhG/8JfyNe+MQXwIx8GAgCGAw4CtPTuqorOzOvCHEkbflay933d85NUZVVKWq+qpsRccQntnC5fPlqtmjmebllXs+3bCPF6+WaI/p6NWaW2RHr5qBkgKJ2uRyqG5nFG5LbRF753exfe9tXssC0IJ0Mflt8ze+g0VsEO0uneFnVlufUAinRtlC1rmW0BTa9Vcp/VoIFk5+fqOZxmkrdZ20x12+r9r+fsym/JEdTvVwoIykYtyojeZxqtqaMdRnP2f9r4k7wZ26ZHvUJy4LL1Et0Fi55nZjwlq3qZ0rF6DGt9aqvpQFcY39bovbMYHey8xt1mdvLNjO4df5uCHhtXju09S3vad9xfN6WZ7s1O89TBu8WMOhqnL7+qOzLnC3wpm27IX/Y4I+wyHkV8LWE8N/wN3+sR2ZPx/V4Xu3aybktZ81vTesgrZ4PI8EsZxNy6s/nh5x99AtNtojlyIilKUDa99907evndACMbNZVt58mXzf+xVTdnmDmRWGqsy6RgVvL1oVUnbK2ajFFHGjLcLenWzgjaY+0umrPw5z1rp8z3MlOkmtcRZ7anMuq7214w5Sbs97GUXBvGrUfpAvITGvPfF/va1+Da8TEp5W1IwkkeynYfsmxEPmjlyJhvyV3/Zmci2mlFDKgVFjjMOlLW0gDE2mCbA1VSf6eg3IxNmHbzPql1tDcqSLXpzqtwBmIDNsLgwAILkTbsCNITXsdcNml82Kp9cil0By2W3u03ZfnQe2QW91DnZ5yc8Eb0vWflO6V3rshxvN67dOdaIq2T6X+8aNTB32l3ijIS+nEhYCrYK4SIYmP4WdMApfPf3X/Xcbc+GdLZmEmphYMmHpZVOV0Nsf81kNqL3Vx2jO3JMwU+VaWT7A/PaDa9jeyjarvqyExbEexvVvpyv7kq+mJFnXq7Z3O25Tr/pbMWAx21UGn0Is3otRMhIgIOn7bDPJvknH+vTrQl+/wPIhI/q//8m/HX//15+OPX/9H448/fTUuq2P0/0W2NxggL4vdHhmzVgMaNYGcwJ5MzIU6KSwqh+gvGpFXThAXIno6+RLoH4v3zuPl8aQk53as16exvifF9OlIqqzocRwRczbGIdMc2XWjRkpK4oCG5efjWG3HuHvYRJ/lqCHNPjuI1x1ZW73ehqLHZ+g48edR0m8tFuqoiW3PmG2ObaRrUcZ/3a9P9YaovwZE4vP3h/H6AZvvbuzAqr1jKej9K9ZNjv1lXJ61eTcjWEfjXlADBFjSfhvBhYzCoTfibqtaDRo1GO+JfTMeQ/UpN1pNWUhEjWMgBAq6jPEM2K6kccCOEOlWlttMyP18kzgUtN7ZNjAV4lOoWa9M5GygRCYPWVvUQq3JUs6sljKYVpppnDETy0pnsEpzkkwul6IqHTRWJrNJmXsus5k9dYx7aa7G/fqOhg2eU2W7UWsSWXH2+Iszysmx43pW27Ft1AOhF/EqotoVxxGEkYslnUW+zP3nut0KamD1KzvTxhrzTaPJ91AOWSkQEs3Y+Iq9FBnlU9RtgXxmDb4DMUmTsR5ZbzPtkgPUWCZ8x62WkFEnWrKRfGUbOO5ZfA0UAmRYKMc0l4lYX90veiJAMT2PFkqgGTwmDc5608GO9Y794KvW2FfgpBn2E/1t9YWNfRATa9ZdsTKEM1HUnnkvOGfIu8D/xHv53FJ6HwY3477YOxnfcW2T4zuXZTuyRRvS+VSun3KngXYPyTFgY1xOUWSnNAjxQVd+csc4ps3MSXvuyyYChH/7fj2+eLyMdy9cnT8lEHfIVYxCZvd42OjK4GarhV3WWE6olVYnHBousjhiN5c3pZ0XXA3YE2IUyZ6eeQ+xxy2Xlan1fZvrwIadHWntqWoz1xy6hfGJTxz3cEqO4Zh0uF8ZrvV8uN+QNHcqZUoZX2sMy/x8cLCW1zGzdtwiAuEc9BxnMhiLGyGZ9KUXVOaSor4b29CjQnyAhwT2rom/zL7tPrcVfOV4+rpUOwh6o7OGECeymKCqnc3t/oVZpP3T8vseWd+WnQfnRQY+3WLGehc6fxTSBLIah2tKA+MB80HtmZAdR41jXFPj0OeHzQclyYSuKkdaPX+jmwVRcH2N+3DW/la2GUfUI98geO17Bfwv4HuB7uY+oERCUiTsBIw1OG5CN58HepH0Hs5MSsz7K/2K1RjPz+fxl3/+NO7vN+MXn96HXvv885dAJ6KZBWxb2CIeZxxAiqhb2pWjGXYB7BixqfdWjUtPJlAKke3HOGUeUIEuPq8drLCn3c0jWwvp7+bs+yq3SLMK9bVMeXR4cGWJncTIdYF5ASLCySypNQdjcnDb0fuz9PG3zDO6BWzPWI+dn+dqXTQfIjQcOgbBbvL+VD35h2JMyyK5K99OCzTNqQz8Xp/Lus0dJ1xSYCKBLXo9v1qPDWpGA6ow91Lg/sL8cz+SrEs2b9jvNWoXW8y1+fvtSh4axeeH+3DtdwY5jKiBs38vhm+T1cqeiGw2SnvZ2CCSkLcH74OX+f060B9+6G/x5fJ/vtUXMSZv3+/H5UTWNdbxzJGlMOuapJ3qtvP6ndJghhJO7VW8OBT9XtbDdmiBd09Axs3+vGJmlvZpNZuPjeKIUBTKw3AgrFXBmzSow5BBzTAyIqrZZPsqQe4AsQt+o1USQDgD70G7WQ+yGBJft+bnWqJHs/jDKZgmj6etao8I51MPCVtolZkPSa7oFQzqE+AzMM7lrpiYq7ehSkbnmsPl7fdMc4+a829BRPP5W5xsUfcyZ9NS+vW4Z0a6SknPoc85i1bvMUDQyrG7tOvXaFmxPh892aFHqZuf/aSsZ7czbxEExTdlBWrYFuPZLq6T8J6nm5/u0vtsypjq/WnMF5EpZ2Hajbb6ntVX3mga+bq+M1keKxhmacSKQTKzNnrGWLceWjkCHVEwt3FUQUhmjxrjjzII1/g2W3sFyYuv9QxIjpM/08fnerPOIzyZ+l/xvUV/d0XXr068MNLz5wf6Wc7Zjvle+l++5ymjP5VPd7PK153H4Suf+CrjuDidZYQzm+3G4s/FSQmnXI03j+fxd+/O0TLxO9OyP6SjZ728OJUJ9fvzxysrfMsu6et6NqbmAFH2gtWllnPq8/RMWd2wf2syZRYhTfh5rTVnVJkwwsjL4Z0eWLDs3M6LEpLSOfzJEhf1d297z0GIrk6yR6punZlOOrLRrlKEOhlc/dDULe6HIq1gzHTw2oA2ZBXb7JVMSE5DO9EJ5W3ZbjsUIiNUzDiJn3obLbP99rH18qq/neEr3YnfDeuH3Gamqxwgy3qL2i5fZmuNP9PJzeeS/tb7fb1MoqLPcxuz24dYogOWq/pllU75bsLxlI2En6fMRs8rL1d7V/46MBaPKAc8jfH6jq1Mn15OUR/d25M5GcQl2garbbK+rDxGfUF1udy1b6zXaUtee26co+KMcRa9g7Lm0bt+fek8Tzq5fal/j+zZpY7LNql11s9360a6zeKL5b24/ETPs3yG5b+8V8ucQMCx1eb1iPnXvviWYzJt+Bv3ff09r71Eu6QV02xTo2ajz7MRYrVYwoZS27zI8J7n3vG2RS/NZ5oqetpjcZ0WG/uH7XmPy9wizffLj5Q0LZRAswW/h+MHXwPtw/2gkdF7waTAbQyHtgY9JzQ2kHsSujMbhx4dYiN60T6fRGRt0WLxlHPSWHPtSJ9R54LaZdQUkTsSuPygit9ugyr+o1evoob05eUQTMCX97uok/no9f24e1iP+4dL1EFtdztG7g6niEjf7ZD124zD5TCOl2NkMvEcrKEmTy8NQbFuqgVEOHvBciehF5kAKtGoF4veinw+1j5RqaYTJM0/Z7XgvZ/G/nkzvvjsPF5eo+/1Ztyj6Gi9i4zD+6fjeHkm/DGUtNpboS921Eue1qEEom8veikrU44MO2BsiFAj04f6WNvuJhZJWK/vW5lcr4og7Uio+E1Le/7LGeXVDGsLQald6OzAFteKCLmNDu5kPL9r7EvyOlvoejJk/4mMqHZhZLUNo0cwetYdUQtSWDvDyEylo9pR6y3m4CREifJNcgREvWI8A9pcaC1H5Jts2jD2zurNvZmclMsMXXKwoGekWuCgG0isTfOgK5gS2VL2gY1nVl1VJ0uf/HUjQrReoy4tPqxMrWjj2WKaXAFWzmEMx32StXYdz34Z+xciQuIuVNeHtR/BqKix7s25mDUnV4HD2x9wClO+8DNxhY3mUUvhhOfHGEZNUa05n4NEZiVPIjuMNjDKCreFGoPBs28n5xW9wZmpq3m8dbhmn4Qs1zXJvAez4vtVZo9bjCrHip+xrMjoRD7jfPAcHelhTghesxycrztsEBd7d5lG/dnZU7JxqDYyILcc9DWjjQyMXvWDxgQi2v4//Ku/G//6ly/jsy9exvqD/NQ/ziPkRBLUVdaHRAw2cIq11iQxkT1Qn3pvneuWQEuDWv+8TL52nr0XGQJulBbtkByVgOp2vQNh6cSnvBYDNjJCyg6bJMhB7Z5dhp5MMitn7RYlO/g12J5jHNiZYHmb4Wgmb0k9SfnhZL3G0yLDGLDdQ4M2tm/h3iPO0eudrcMNF24OZjmBFOIhG6Fnwz7oErv+AdbpRhF87ur3jJKGlBFB+lDZ1gwsChXkucffzuD6uw4QBP9Ey24/7dHFA71cT2OP7GU41OXoh/xq/p57hWOvs969CFFRm00Ql1iDN9AJFch2LW2Hdvex7s4vsvo+nIWvTDZ6V4v460Ab0eLJ/mv0L1+vx+m8oQ56xkAS/RCOqT7PcWktsoQ0QEb+zTvUeR7H27f7+A5kFOCq754PhHMf53NFMCIg37KhNMbuWx0kZYsgB1mQ8YDmMaggSukBJX6aI1tOJX9Gz2fr5xYASf2/2NOxvjphaitn6LW/wbugGnGfwOvMXR/8ZgR5JKsyeLDYnmb1doDkJpQ3ZJfkhSI811nhsrOtCm1ZOOkFq079K+YAjn4Lq8/gOOvS67spvTtfvgWNKgAWt6JFGNwC7luuQcEcYe1uT2RnaswFcSDjjmQZAjXoknNEwhKoS3HdBNcAylXPkFmCTtuebnJ8CgYpgAq5aTsazvuiOoD7ZgebzT3Tgc4lCtA93UMmuZ+9WpPmPF5+qg70d/BgSNPvTyReyBhTKj+1nrETGC9WNogLq+dguOu+CgefZ0oFWt+xIo5/qhWh46iWEiAKCQQtSEEgOGmoR2Z6Rwd7swEJGSLROqcWJdmqAQGWUHW/WhuCYcxqO9jHCOFjw1e5d5MTZD3sonK1RaG7QVuwJkvL80BHrn3Ak1bjZc8PHRAUQM0gSD9E2ISzmPUvarkbqQk2XzjYEozRckFGhGu5ImJspHogRmbD3feVcM5UgtfzOBEVNQPIAiaV4aIY3B+lgCVBVT/Kmez+c4NFaq2kMJG0d81Wd98cIfS6pTTm5xJw6iBCRuA6QyH3geF81vmzIVb1Vl2p+S5rXLziVR/fHKRbe8O/5EyowX2GZGYvbB7D9n0+nmGQnu82Osogp2PfYFYBnVbLJxCQdQcbQti9NWP/az2ScMzKqkuEBuNeeAhLOWGdAUNvamUzL4H2YgtAeO16riajourfidIoCCnRL1RY12KrUdEu7zcV3GI+a+prbeXaa2Q1k15yHVNX6asPK/srv70ULI352+tr+Y10DBbPZnmVdVIf+D6v2R4prQwvXYzrafz6zfP4m797Gi/78dM7HFdof06vL5aGofJfxaDO9/SdLmPdhm6Zifq66S4P7IbzfGvtzjqNumz+RpcJ/QR2Lix72J+4rrNcTakXbbBa/y6eifujAjYlC+qm2N2OQWKyKqtF4yILHffYwC40lKUrOzt6M8D7GJXeFzfMdLOuJ257KGuwHfyqQEgfh9K7MyKsBx/zN8ue8y1mbUF+UfLkEpiecV5uXo9fj/KmTPHYRDoj3ssgivW1mZ6XAzXNc2X1+1jZqfc0OpjsJMVSEnqNEEJbAQ+vboMX7MTk/dvxhaMDhxlODdoJwXnQWoa95TZRtazUh9gvlO87Hbc0sscm9dT0OoWBA7xcH8uzFGzf9lraADds7JI9C6s811TZMGmZNJsvs6DaXE1stAnoD1Kv2ZafkQc3H4kI1Kazu71HUVHzaNla91rj5Vm6kmlNMNKe+MA9NSfVz1uoy6WMmW1W25hlBzZywGYT+r+xDxF0VIvUIsNzNlmZ5TPfXyLH+NOtJn1LfHaiYPqUzFCQzJ6vPsApIXJcJMGIiqnymd+38/yjykDzEEkQJhhRNjBZYsIRiZTYRL1gZh5SOUCQujes6urWzFbZUbCCYI/c3Aa6Lmu7ONnOrfEAS/bx/Wns7lfj7vUr1rtudqyPWiFysxrHPep8aeTH+bfbsd5uxvoOGWmsqkNkdNbo84vI7Zbs1auoNwbZGPpOm/gIEXU45ayntuMOpkbWUfP+ihNgoRwaQ234CCblaPWnHD8p1HDsqUHRA3v/chlfvnkc9/eAJm0jMvX2i6dx2GOjofZ7PV5/zP7WB/SHRq/C6G9V3joA+KxJRWSJ9TRxv+7rGUaRmJZX4NNk/+DudPlp2E4rPjBFoBztdtuuVNqp42mCsIcwt6eZo50utTBjPawg+mFQtJpM/B8BEI56Qn7xSmQLYj31taQ+eRmt5rrs+RRMgxEQ4WTE+XifniM8VxhQyKRZON1wkgoxVsI8ArThfGqeozTGmehFq6n8BoNBWRUap3M6ynXnC8i4FU/MozLquF85LFynFu9FahfXiDEmu3y50nRXI16uWncYSlheQJYYT8Hey+hTqlqt6POM7AnH/oCoZlyLPX/DEIlAybxj+EyqyW8s257OMGgOQACwQDqy/UJE+CSsAaXR1kESs4lOsxXM6lhryBj1umCTd5OXwOPeJ8ns4QquSJuQEbm1F4qP937xFTJxzbqVa2aqck7mbp5lz7rcpJUiqMwlemtmJNprpByZRAu53YupY23BI2oXjoW1sHu/WpkKpho9d/lsrp8lxJbInZnbua3dEGv0EIAEWsOBfjqPv3h/iR7Q38S5/zEexaA6WxyxmwXPLSeCoxDySCVI/VvFJcJX/adbxoWhhRds6GoqJlfELRCFmuf6LaPQ+2kJ7Yu3HVxqb5FEsAjDooaatA5Nlujqi4BKoFEC/5PqNj5L9gtkPvF+muzLlcXMpzo5QCZgSbOn82xM8yWu2zvoIXE82DC1neOsKs57Fx0DymC2k2dEEvep7tlciSKY7KUXfj1wTs3xZk0uxwz1jw46WEfg2K3W4x5JgE4gJnQIgv7pRE32LJ//EjAdraUJsm5nxrYJFTX7tysznsqbTnHKNZOoSv6AUZss8YFRHEc7OH7mPt8Ntk+uHLDUk08FGe5AoJksTOzEURuKFHnU3Ko7h1ppuI0X+3+r7l/ZWKNvAtatQEFQqkgTUt8XmsD3yI4g1j+CuCcyrBijrR+IpGJmF3oprpnIydrn185d/YW9yM9xoTmhGzrOKIV09qU/jYi64cj0lybLusGM0zrSLzFOwfQjFMvyLm1/mecjaq2Z3Y8ggvoHx3xonL2X2Y+cLZ1woGd68DO4XjttyHIY429lO0MTqmxh8oEXh3eBR/oGXWsOiEWEe6RHsEm6rG5JwfVAcBSXTDrPLhdNjoUePWBXAfo3JknsrUM5fxjH5+fTeHw8j5fn09jvUW/PMgLM8xG/46dKLQ7gn3IgUvMW94bkRW91pTHHZ7E2GUAS3fcEMr+tc8MKDYf+Mt6+PwQC4/0zarPV17wvop+KA/27Mj8Y+XArCreuWs1wyYT7xauL+xGcUEYeXzKUorHRScD6d32z1VdpER7OAdsONRttr/CTLZZATAPobMBN7bwxPZvZZcJN6bzDGaagBcRZkFNk3XdWkI5EzXEcE/XYvCFisYRkfiOt3Pr95jz18Jw22koRp5d9MJqNPdoDnU7jZX8MEjM4JGDmRosuCK/9i4w1CR4LTYm6bLLeo05StQkLm6OF18ykRYBQsbsSgjKwM0K5SL/o4pOin62hvJAVVNX6VADRkTIb9YTL2pDXtTutZBt0r9eF25v3GyQ0jsFmC6RyOIuQoaTIEiiUYjudoTIMvSb6smjaTV+zEy/ntvU5DIe2pyduybG4CQdAfI+lQB0x95KjgcBxZhZATmEOoVlGu7Kjk0clY0PGDrReEGsMgg5cMeFu0zG1srqqUVOwRA5qOIe6sKPgbNWmO1OdtT5RN6i1l5DiCSMnA3Yxd21V1uwm8qXdZQRW+ifnaucpQ9TurJ5RK+yqJl33a0f5Sl7YhMsLFcHIYl8ViqTKBfJOJBtMgsRt21JxGifuFd9EY+FdBD1ynfWe6RnI6fdu2etSoPN4OrJU6NvWVC1zC19Fk/K9H5ltmsXdxERsKdMMOMqj/qVrdJB/S0Ih02JoPhbDL/9ZzrdqSp3RuTS4ZZlX8+pLZ7Tp/7yXdKLbM/p/uSdamxgHFPNzdZ0wvEXAJLpHLamZ5dj/hRMHIj63h7K88q3yvnmFcIpFiHM9LoK0h2NH6HKutQlxUTN6tRIbOspZZtvpYT31mud0hmSYtvvEQUeyyNDqfQTR1vHMtqWmFSZ7JDA0TSf3AU6nOMeVPDEp+/Qft1uclVYLrKG+3Pe0WG5cF9bTJVMpT4oh3YEJUeDks0tVcN5SPCngEc9RNZxBdNmIpyY7x0GqaBdYgYpEjfdMoSGwsnunNd4cSq8rnw/B5Z6NZn/sZi/ccDoYbPFbgk9HEELrsFnTXnE98zzJgwUbc+39D8vGzObqI6xeWNhOurcIGAjsYRI+B4GCf0eksW6FxfE1G3UFMOIayVZXGU3PddVDt7FfPMIEYvwWR4quDBASZerggJ81z98CNMFF0MFlaROh7rpLBl9r1kqJhtN1vL7gqAKaDVRIlOm59EXr2YGFswMMXVZ4n6htp9nwUz63G+JzlV9wa1z7Q8SaBhkx4OX7UwSy3O7uNxn7P8AMNAfrs7fH8ZefvYx/+NFu/PzB/Uo5GavOMmvBgqzRJAXHuAQztup1Ba/G61Fv9BUHyb82k5EXSuFwHs/vTxF5AYYfccCndy9USC+oWUS9I1jvVuMFtHEbsFivxjYa4EkxBPHYGOe7oBWOjC4iqevNcdzdHcfz/jKenkuxekHhWUlLX5Fr1lM1A95CPRye9jwTcUsf6lLIkT0EGcZlHVlL1HaBZfr9+ycyct49jHMMCTNEmzu1kUUWPjLvcr5aDY17e0ciKCylCkxU7S/qyHRvISmxYZ1h58lKGYkteDuCZTqEPgwyaT2TllmoOsJHx9SPLPPHGqSRkYTjpf58YL7US3KoyuHg6wwRBJpA4x3Mhg1yYocA54rIt57H69aTFDB4KZJZSpRrXAZfE7iCLFvw5ErIv2UShrCrYBSVRJ0n3bHI9q4Jle6GXqtL5y22NZdGzXVrg4Qpt8wsjsqENvhYRO0VQDoroHQiWz3GOurofV09dzj52EcYiCg2VN0Nron2DaE81BPeEX3IAjmk4RoiE7MYc96fi/NFEghGVo05shSGUwrjIAfCkKxZQ5ThzXuPespgjrUk89oWo7wcPWb32jp02inLIdo1sM7bIM9OiFtV3JB7K5TNuDaf1/TcMU83P4OXZTr6LprJy5UsctmCS15SvbvUxi00ond4GdOTvGrGYMHiu0yoWtBcb72fsPYs1spxvRuHzS5+ntbwoIud/KdyVKZgNgJv0kdoj/fghE5iX1PHvJ47pK5LAna/KEcUXAE0FHWxyckVQiZRNXL23Pki5+/2PdiBWBpWt3IcrOPUHmzBgmBOhnoSx1rUEXeirmj4yn6kdlAzeCP0Qzgdykp2Z7HX/Rm1g910F3V/PDX3uy1N7n/uA2RiHLy/kMtF53GNdIx3u1Z3wu0U2YlOcEciRGqszFuP4267jozdw3Y97jfrYHtG3bTHGPo4eDpC3y0dnuqOcFlw1sWv0TcbupJZ+4I013z15Va9q6u9jZ/DsjfLiOwKGj7u+n6tUQ9xko9ajWitRi1xIK+QDa2ABnWR6lotrgWX4ufkYARKUaziMvaLC4LzGWurfE6e2/aKHEiVwWd7PesLUz5Yx2RAHvwOIb/VXqz1Fc5gRQYl7KQvzEXbuCKGjc4HGYQko/6k7btsaXq1z/WHRGrysnQQkoYU6wFZS4+JkS34iUwoxjVKJmM99o2vIIqcf/Y4XwU3Dz4P7gEOxinPw97zFbyIew6K8Vbap1OH427nucUjMoCv73aVn/vLeilNlNb6TGWM4TvIuYeOdObcJH7J65GM4yV0w7ZEfTzsa9/wYjfxO2o9G91yVEoRdQKGwNCm95qMeYjaY3Y6ScI/zXO2/PI6tI5OG1Pvez8qk08EIDuDzKPlGnKONWTMl++fx5vHw3h8hk/EWujxY3Cgv+42PxxX+u4ObNn3z8fxxbvj+MXdZlyiHYMc2SuIlgS8iIYqEEIHJ++51bsQ06/n6ROuq9sYM6TXGZfoAf3CRuOhSEAmhN5T0SuQFzmDWOjMyM4a0RN2ucr7ZbQMEHDXBwNiLPjQGv1JAZ84TpqeCtdwFfykMohAQKz9qaqCizwfqpxK/7c7d/2dUHEYw4CxcnOjJQii4vfb+1A0J/QNsqEjCRwQyiQDawoxznMZK8NmbrAJuHbY0TkKUD4PhOEUzRVU2grF/bDLdledm5QHI5heAwuD2ooyraEcvXRQeL5moKe2MBEXMlubjFobWmsjhY/WI5oziMWzZkfAsNjlbrBBake1zu563xadTCXtDLLXkb9Xq93XshNk5c183aKeMO+xBSByCei+WqbJYx5Kbencu3mQYYDmGZBREP/gQIuFlFl+Zj28vxG4CeM8DBrXB8jhjXua593CfH6oYhNd4Kj0HA3K3QyYDjnPJ1WJQMxXJzv0OsLvcToqC4FrSuX177SMWc969XyZx92PlMGdJXT2KyR2KPEImiwyHp4o7Y3Jd+41YF9z/nywZkzMz1JZ9Z6Ncu0091jt5Qg0dgNPct5OuS801YA2A/+02rLFEso1JER+Si2sRpM5OFK2aZpu1fNWLqqtfX2t5OR8GPLYDesKxNEhdR93enmzTPDnuw4nCdK3e87yyb3vMrU5BV4mq6Y9I9EpFaA0XLWyrpWxnk7VS04aB0k+49R1wVl5vhJZ07wHeJoWMH3N0ihORJsMHMhLr3/fSrX3KiFiXo9lMGHSRXqjayQ4zHCi79BWZkOIswOnvAWeG4HraRElemd20MJeazZ9iGmXoKSemW5nGr9y5PrYzm6Cs6+ZR9DizfXZ2iK5dMyZNizURMHZptB9Z2ZQAXivMyKPDIFu2WM4HEc6HObWmBF35uVoc5Fz0n9OjzHL3vxZrfpo48y2XaEheja675fm5Le1GAg8kznqKyx9KrK+vp/y3tJjLHl/zWFRgSmKpTqHi5X6Oq26/BbwaQR4vpXiIqhnDVs6OIrARUS3fRstYFla5gtPiMGFmLBzPJmrqfP8dw/udtk793DvraYC/pw6Sg5lk9dbEF628eZed/u4ZrvqNhyAq7Uza3/raTrCTMaZHMylTSknk4TvMiWDzl6f8bFaw1MtvuelicKyRc3Q7Z3UR7V0sDug4LPP++N4ejlkyzujnb6P40eVgXYk40//4vPx7u378el//vfHP3j9M8GBS5BFlK7VjnhzUmjwk2ZStiJC/SEOq3oyvho22CCSaaXHt0jnbQs3ijEd7SR1Jb/GnrKr+OwYB+AEz5fxsl2NU2Sr+T+QIOGqh/1lnI+X8XJElo1s0NsVHW/UFTOLZajRNlyOp9OBNQW9hltw8Lg9RTIDPW4l0aCgvb0CjmTKk6OZihoO7/4UZJyvXt+F0jheyIZ5ON3FLtkfKRgQP0CfTFPZI3Od0C2lzZjN4n2jRgrOTVSzxl5S2yv1giOhkgW8uA1Rg4FHkbRHdjJkSJv/eF1KipByBDdUe4kxv3AtHCOjZ+8lwX6tPKCtRMFs8NKOnSDVwxrAKZsuyhCYxEQ9FV0HwiwAhWLBy9uYq+NzwOwipe/6xYrKdbpa1sXgs+7dyfDnJDyzPrQymFNStBmJ0abMpQB+htlW9KXJbK9MecLLF860tq/mo/Zl1DBZ15mzUsZZ1l9Fj2cwvZ/GQRnazRbBJvQSN0MtM89JKAWMFrKLmN9g8iQLKh1oRlniO5FMkmmQUfNqhRXOtMfDIx9LxX0u2b971Vhe/cw2WJiZY41lugrdkEhjjPBIXyQYzTMiXlmJsK+dX1p4Po6KlzGPXu5VBpCGRRrJlAtpPPr+k5ir5ESoz+i5aIVWwQMHfjq0k1lPoCyukXv8ziJjnoq0GSQqTTFZo7N2OY96rszaoHu57101WT63FbEJF7FzT+f1+PXb3fjs6TL2IA8L0seflvOMwyUoHfL8VUdlwJZvNJ6IxTg5A9FWdp6LelZjHzKt2LaXt+R1FRUYkieEj1cpgXm6elAkS7PMqRF6kA5mrEfoRMM5JS+7WGcNvVq2yJAMmRT72/BhARRcjOp11Yz3TizUA/Ldn7ZrkxnZaUqqQ0I5hcymnXB/G9YhOqtJGVPh8pg6sRz7Jrjem4PfArU9XIRx2kmf2il/2DHrjDpsMmAvEU90NENfadyNzHLGHImtdGZ7Z4aM0ci5V91zZoNxD65ndZbYjm/OyWqC/OZ3/ZwtmGwnME7TyapivoWC0b1WMM6dT2RdxfPYaXEgRN09XDrieWnw5g7LzpKY1lu6s03jZ1yj7R8vFTgydc7uIM/7+sO7vGwaUUskUsL3iUI9fsb9oLk38rvavNkmLOexOYu9klKf+RaxsDySzMvO80IoRV1uc8KdFcYBZxnrGChNtJZ9fY9OMkw6xRpAn2GYCs8VbCB8XwmKJB69grRco1wWEH3r5pgv2ezxueD/ET2LiATTgdY8unwgOqzAztmSH4X8RkbkVYu55C9RpIqBSsq403Y9Hu5h54I/6Tz2x/PYhP3jCVfAXHXN4Zwe8LnTOOLv/ZGyUczz3hbrRB56rXAFuB97ERzqnvuAZRCEin0DZIA4CPCPAfPo0ysHnXXQb94dxudvD+Pzd4fx9ukUSMRrJfVDdqDTHmlKY/Hb7+Kw0fmrX78bb9+M8X/9Dz8d4/KJlKoUq1qkZN2CjYAMhyj7FPU6Juvx52fVT4XX4iL53K39D8OHMgRgXAp61SyDyIRJAAPuc9xzwUQGOuGQ9GyiIdaRCwXG3PNhjAc42TuSJaE2gZkUEgJElhrEFme0h1qNXUiCgmyaCdsUQAk3aYK3D7BrHp2tcRaKUFsaIucD2MOxwHchING+ANDaI3DcjkxiY+H5jg0qnaxcDE/ZeY6MT4OvxEeN6I4gAAihDDVluww7hgELU5/KeIS04GQA6ZJVy054Ch1UZECB/2UdrzPSfP4Qd9r8WgH0/NMBIpGVHJQwg/Zqm+bYXjnO3inpGqnunWQsDcq4WkAhUzEKMov7zFhdrTM6rYa28Vx1joLLds8XqIncWC3LakIWf9ePTqPMzo0PRUp7oDYfgxBnB2cyk5qOVtWr8taKmsfXQtQ7E1WIV4WQP0YZBYJgUEDhSBvG38lt4IS7jRoURCxI1CUSdsm5ZRCnGxT82Qwg9QJ3Xoyvi1VWJHSWPwkJtPJomiVnY+lJjhtRiTbKJq3L82gA0/nsqRc/gyewGerU/0Wc6HUe74bDsYDZ2wn26ZrV50COc/l5zawx7ffj+S852LyCtiu0HryIdDnDT6PKPXQ955lYhWpJ53tIie378c2nAU2ZQqMQa2M93j5txhfvCWED0V0fuZ/M4SDON30u64jlx694Akp2VBDjevSy1jl8WkErTRp5I8Xsxi8ZxPRloyShkxn2oJ+CYhHUYispy7509BwcFalnd34Z6G1cF4nR7AGp9DJo2Lt2uz1Caom2r9PddKZ16Uy0IFOu4cwgqtOCni9a5EAX2JGUjdPJB0eSU5XuX06KtxqnpvatYdIw3GFDIPscmWeVG+VpmnEcBFYRoDQhZNWkhh1hh0+U2HZ8Yy/m+YwgaZl63AMIIeXQR62r71vrz+IuicmafZOlIRnISFe9gjG26w25dV2s722yjbTWHS3VwBpWnbBX60rZhO4c4ev5dOCNqcmowGG45AtPkZeeM9P+ap+TW8fqxgesyqiXlq/NmeSqgS7UIJEYzT7u5QpN13EuSjCkPpmOeRzq5dl59hf7MxuKTEdUX8OLgj6Hw7ylE3p/tyF5KdCiWOPgGpKt1+d3WuOyR/PW8sNLPVu/9zGxWergpQNOAd8XSK5qtRWsWTjQ4USLByGeWWR0tu05NHSCQzeD9G19GQeQErsEbKwjkIV/yfvitaR1iqAN64vZ+g8ON/4xiGGS39Lbs8nCAWxgnwlh1gMbvuk4rxIQ5uEwVN02oz+LOX56Po/3T6fx7vk43r+g9e/35D1/VxnoG3L5d3CUQ4IELozqAxSRmGeswLxAUwAYLhYvuAi3Fn0I5IjKSOAZEd66x8/PpruQMUnBW31O+brDlzIB2KwwDdjD8zGcl8OrNeGoqMcGq/gGdWFR2BEtrdBKBXxdp5fTeFqfxv4JkPEo+Kzs8Fq13HCc46u8N8BTcMm7naEpDCzsD2ZytGYHLLvDh+ZRjw0sSJOdz9V6xxrUF37m5YWb87jX4wdb42Xsn9H+itkt1IaGsDBD3+Y87rerqKdChAstsYLp21SPhr4iSrYbY/fKt4uM3GUcn5kJW4nZUwnaCIrcikZlUx6GsaXwOG8ua43adiuHhVPpseIppBRiOGTINAUaxp2dJ/Tas+Mg4z5XVgiK9ax8vO7ManxlvNrhRnuLy9ipiDhYR5ugwec2W9TQo7+4Iny+d30OQZA0evsKl9U8+zmlMKZaOdWtICviKGh8ZiKRmhU1z8F5i8xC+4AJshK1EMY1txKCIzQ42FcTfcQxXlHvHt6Qm3nJ33aEE8/vVjZ4z3VHEhgRlFm0hsJboZyU8bByiqBDiAATq/X1AmWjZRPZGPaLZe2iMqQZJOiTS4ttaVBXsLYpa829PxBnFHZtyvzKutQOLwMzM8w2bITgaI7PrOA8X3am5gWJ4F9if260kbLynJwLGQDd6ak9Vs+ZpFNXnhjkoL2ZqvKEU2YCoIkspy9CZQbCgFLN+eP+MP7bf/43488/P47P3z/Pw/1TPxJO+M2VOJ0gB5Tqe6X6yqDzycv3FTM2Zgx1mrq29fSq1UMuj3QOlzrqxn1PmWjflx1sasObBm85uc5AM5jrTC9BZAjKVQuhycjL88kB1VozGirtlJb9jZrG5f238eN4cH3Hqo4sEAxp2ivhoEZvVhrP7IfOIEX1l+UNgkDavIo1SQWRj/2T7Nxi1RU7NXR4Mv8ubnlpRLsGk1ktZcPV6tLzGHwRIuPqWy7RBwqyhxMvYzrsNTvZgQDid21DZ+AjS46aRMlnNvoGz9eYxm/Awu3wIxABwiITrLXS+XLQDcURlNtmYEBk2+eXGVQySDcd4/v+kAxqgZalqDKfCcr6UgcvW9ClmaqMpc/j7O4Hru3SoryHRGuVDzABGVdLJ79KInBMpbltvHH0EGbMk9incRMCf03Xye9bzKO08I4ZZ0C2d9v1eP2wHTvYnHdIPBGH7WeFFbi7YzLqsnePCp5RQD1eql2LjrnQd2Zmb05jytY4TT070VTimlG5o+fKzqPRMyYKCzliHga91vuO0wxmsoHucq0LOMQIOj3C2byM8dHhPO7jfudBOwnhuge79dNhHPbH8fx8yJrnstEsDy8ZaKAtNcPxuR5bIHR1PYYR8EB3ge0mAhlRgqrATPAk3VgjMOfwz3Ll+1TVv5kD/T3dsRfFCzKxEMhWkHrDsAkezYmWYV4wZYpXbjRhFy2BJbT9vZjMqbehskHWbg1y6FNTiIlhzsa9PcvLehxBKobIDhzQCyDdaBZ+GSs4u4jEIJt8PkcGGnDulwtqn/GaOs7m9VmvwIULgA2h3+Ec7JAhHmN3h9pAjwegJIK763kN3WQw4HLN+hcK1z09wfCBMPcmHuWAEu/zGC/veR82zlEKHXeHSYLBApgKomdirV+hZczmMu6253G/G+PytBrHA8YI21+crRkKH2O9HWN3r3Pi78MYx5diXI7nzyh2YyZsc5IRs/RSXGNix9dtrKzMrBL0m5Vl2/0ZtYssffQxmi1RCRyi1dU+LYUq/xfXzPuxA17ZOiulrG2SgErkhNh24l5U24u5CicTbTbQcF7A4yQOSYdD0Gxlw+d0kz+ltdOfecHeaMU/Rc5v7N0c22nP2BgqwzzJKbLliawTGdl4tpgqIRkMG/YYWykSOrcKBxpLC452lWgQSYK6fpK5zWIttmzLrNezSyMYcq0Jys+cZ1b8OzsEMfbra+Wfq0GYUzuU03v6fgRmWhDDbfgET831mUu0MmfeF9mz3kt0Kb/6nE2MpD2cop3R1vLtw/fUllUmhtseTxaSukTCjNtW8m9eda7I8/UjqeBa+P4clmktYBElOiDZuVzG0+E4/pc//Wz861+9jLdpTX7gkT74pOl65c/iJPiBHyGfvt577o5xkpGZyMafcduqdu6p5tGrXB5FEGhlGYUdu+t7SaPepcy+71wjFcRZZqLDgY8Alm/J/Y8bAmaScuXkUMaTcyFkioNh4UgVFujKodRz2fBlBqjem3+m5pqu3x2NdXPMovPlmdk2G7THbMMDPSu7JaDP00RQ/mjv5jstMIZOf3HfjS8kyE0j83yNLukz1FVHBFXlcEYgMrJeapWjh+fuXey1VioUiDyhi0hnQQ+e96R5UXnZ1JpNyKV8qS2RpfPf5eXkQOvLtJVoHvp56PyUjE7iNl/f9lZmnq97T3coq9tYZZCplTr1TGfq7qtgzeK8XV+3n31r5fru+rKd95r/obLhzsba5u43d1lco//0or6qebbM7Pa6zpN7QOzxkBeGNvdr5fPbgoTtC8g2MrfRORbQ7U38hDMdayn4irBOI+IQKMcTbOSjOAWaE+zkSNd17EiLz58nssO0SWX7l0XY/hsoGv5VXTvKPvUY23aUv1/nalwf2JdBpNbqx/qQs60cYNlsjwsUaxCHiXfFB+x1oGPRugr/Xl6O4Uj7nj1fsVYWbPCb5jddIeyWTq7XTwYh1gmzD5kVLf2UxV6sQj4PM+gOZn2fKva3ykB/vcr93R0Ys+fTGO+OY4BsF/3//E4I7KiNtWdFBRjOTGSD3ZIAE8AFstlgKArK3Ql7WAfdzK8ujbqBYKli/LHr76YiU0EEw/jlZ8/ICgfcmY63I014BjxMCGJpIflIcUSysjt0EVAAZR8hT+E4BwOx4aqX8RD1YOvx8nyMzO/pAEiUstpZP6T6UDfsmAxyszzCuXdWrqJ4HLOyersQxb1haF7dXcbdPeqqQEAWTxJ1iNG38YhaCypgQ7ehRFFZHEJDJGm7V8jaCyoWNcWsGYl+orhmsHn2LF57BGWCCYZmBpJwzgwXVjAmFIvrkdtAj8vYImiB4IDDxZn1arXldnwTcsU1YkMkcjFNK5pN2YRcZpTH80HJOiq3dS9qkWbZOUq3H1DlcJ3V4xIwIBSu2xAIRsVrBygg8BJehtYVRFPKucORG8HYPM6LdRnZPraQokFT/Tc9XviNIRQbQApwOMOKgSYtJ+saU6Mw2n6S0WR4PLt0Qh7U/TIDzK7RYUY3i8lK2Z+kPjJkW4zY8SxSpkm+1rS54e+CnJ0ETeqBgitBlsZDh4KWQ+b+lkFw6PJtyZ74fGsImY5GO3esIZR6ZIcBOxkmSSsDKJl/0xbUmGaJi86gObw2s/QcSvPbcCVKpj+/Mz89RNGM+VjbfF3hnSlrWCLJG83Mu8q8K3BVzM3l1LDhQuRAxw6ZvMt6PJ5X490Ze+wqwvEbHz8053kOMJdRZFbXPL7itrnXq2SGOkjvLWStfWyuy9YuanFCQ33ZaEFtczqaYWmPea846OvnmhwjQ4XbOQzLTdk8r+AIYxlKqdfI8Hoea5GQBiqmQ4Wbj4M/DSHdyOlMYrsQWRWQ6oGkOXDpcza51FATlj/mXCDTcksdKqiRgYTFnPqscLZDj+ge3Pe66pv5WfZhnl+zEU3H1U4yM82RDVdPb8K3eS3/nbsdOtv8C+qTnLeaGU2PmzOGBel0Rj9Fmga2o6MYFC+HzE7OrfVd12rolJZhjfadB3RTURlTW3PzNcuO8vS6t3eSYaZzziPZpf3sV/c3r9Mp3rAkE0s74xycOl4jQEIRYj/riKVj801Elu81xUZ5iN/0FHmeyf9p4+ilzGRCfQfPgDUbwZgbF9oqw4xMM35H6cFHr7bR8ebugQ71PWqeMTZAsOlB1sjKPrFG+HQ8MpATpZYiuMslRnuYvyPjq5V6xSHkNdV6lltOyJjMfaSYPN4Mk2bDMsUuFmJdiii48zaEVaL1iGdmVxKge1ogU8i7aEEFjqEzmKv5D2VvHMfVeAIk+v2evsGBKFnPaZ/3pR3wVceUkY8XZpuT9c6Sme77HiUideIiQ2OZZfIr/ADU64+KRGwZWXk+Xca742V8sr0MkHEzSsvazph8MfDG4snVBJg0W9kw83SIRXl3dx8/Tyc4cDRYubi9klUr6TqA0LQ2jYUxneq/1FfQIVXdW2w0ZZPtAcF5Rjba8Wy0ssIiAvQWTrSfh8pfGVqI1GxCXrU7F9RL49bupLzVZBLOB27/zvVL+Ht/HJfLZpxVu0zhTYM91W+DpqcBJOcADnREeyOCdxnrLccADmll6UsQREOf1Xnc3a/Hxx+B1RPtMWggH87b2BxrEHlHOhDZeBI/AK6LyGBswu0mYL13ryh9GcFeR614KPA9a1IngdYa2Ob6EZmSFT/7YWqObZzIaWcjIvvWdd6t6MaDviJhUloTizoRD6eVbQkea1M5GDISAOvnPZAqKmvIIv7DDtqxstUuLNslKCsZtT1ggpe0h9AF2VZkAva8XrRqUfAo7lUtPP0s4awL4k7HU20GYgzU3qg7ulboGq0u4Ej6VDAwt2SIp5QTzdFALj+w3XSZVPN+2cB51h5q4djo4x4MnKtxih6pDKLgbMj+0tlk3sURXjYYm53nrvbjuRLa7giFgJRBQd8CLR4bKSFnfIDWIDzuMk55KTuuzdq45fUmkMGIAWZZEPDi82yunaJWbtmzxUZdVK20gmJRE97QNJnNmrUS2fdtTLb3ppqwWYuWP2a50Z0UP6bDFPU64xKSmb3kNXdShj3SpJyDNuY90F0JPeTHzoyACSUvl7G77ORAr8dbW9g/AMX8uziWEHv2Q+2onHbcsE6864kMqRfLwLpt5Ccnie8j3y+HktwVrkkuaHcH9FzdnonBjMK6CgTMHr2N1WkZT23RnIVsrXoEr922jDQzhNT1ooDMLGfARZH1gsPSHGE7Z25txPHvumFBNZ7OuVvdkFzH17NEPiDQHUiwGt0eeFhOozO+dqDDYA0IJu8Hdc5KdPN5bNSq/CoDYtnOxjBtkoQZTp7MvmdBt1uQ1bdEIs05gLkM8FgHI7LRdabXTUGjb7GIVwDQhHS3mPW93kwqRweapWJWaBiv5yiF8lzSWcORe0GDG0DDFuyjnWnnvjkGbapLdl/d3lVs66vEU6GFiKpyH+Ro2+hgaFKfLNBKvtgCYj4v09tv3BIhXydHcUdRi9v+noID+bPX5nOfMzGwuIDm5NU9uFFQwjbG3d16fPRa0O17Eo/C/gxEZNieQjXC2X6/Ca4UkGfhTtbHdQRO1q20zizqlgGuOMyyqUUwxqaKRdMyuJ1JK//pzwnlYPI8ts8VhLshCfFfNxtxD03AoH2NXlbjZ+EelWwTOgLP8gwH+t0+uuuckK1Gm9DFnC1L3XDc5HTREYmpBVtgl7GULV6ntgurSWYGLfQg7sDR/cAfjQN9PUxfE374To9l+HA1PvviZfzpX74b/9Ef342Pfw7P0dAQ1Nm2T5vsY4psawIj89yzgwWfZfS3RUb1k+uBRups93Y+2hI22TcaroEMOizgw4sbl7e2a872RB9oLRZF5v3cjmrFc8GxthPi+tl4j+qOJElyiJTRBczxfNmOXZBm0zCN1gtmFJ6t0qs5wH0xQ1kGMmuVRLqlWie3BLMApFBbj93dbuzut2OLdl265+MR8BJIo6MEkpADIqI6RUPeYj9Db0YGPLiJQHpAqIrGN/wewrxYV8vAgB8J97RRzXPjIcrh6/DLMoLmeU0HJMYMwkltdrI1UcsETOur+uORCMyCxVEMTGVKnVSsVp6MDUjJS3tvx2Zsd9twvPGPrU2U2VVWm85uOX1WejGf0YfTEX6z9cKYanDs3HqFx+B9hSk2GTGTudx5oyIqbmXUSUa8zsXCHUJeHNyGdioLgfquHLPFGqVdrZZhDmRYkSG4pq1iA9AQSFdyzGvfDpUQAfasm1PYM0U+p9dPPId+CybhZHctRWuYXznMBdO2gRDMlwoWUZGU0OG43pbDvQp4gt4vxuzrjm609eelfKxuBc76cs0WJtBMpHMJzYfvNz/SUnuM/Bva11pVCV2jpVHR+WxzVRk8ykB7/kDDrMfLZjueN0S/3MyQ/sSOCT7ZkAtdveb6q5emDEq+6F+X7fkyo3ZNWNaXbzeCzGFhuVnmoQNzC3xou8Nc59bxXTYtnPqoQ1Y2J0SnHEmfLbNGqWf5njNE3s+2HzJwmm0S6ej6M0vnyME273ePH7OlLYDT4hpEpM2OhD/QIaJG8fQ5mmJ1JXkXxqz6zLZWXUZ7BGlRg5T6YkEuBASb2KhNkGVywYU/lplbw5NThU3tlDyOlCc7ed0Bvw9jXrod10ZyQcg8ytcFkdtiG7v2usVKpsNjmCmJdD4UKG59gJcBI4q8uZQB54iWPy6byUVorpB20UXQYLqGfmbrIpPQGQ3WHNfSvX3/VKChE6z1i+T9101Oqe20Ez4gGr1vbg186VRverU6c+mg7ruGqNlInRm+OaZROox7EglYtrOEfQuiO/Qo363Hq4dN/IwsJxzoBzrWQD8yo6vxuV+Pw+YyPv5oO7ZbEGYx4H5Yq3uEAzGG9DewR+gXOH6GL3rPyjE0hwCDadV1gOvL6M1qZ8WOG/JZuq2nA89xd8/2qLa//VnIMzj/Jht+OUgnu1WW66fb3MwI6JKbiXZbzCUJfJevX+jXRK/teWfZxor2vE3P+P5Ziler3jwzkcwCelYDCpj8F+9expePh+j9vI/2VeN7P350GeimvsZf/+1jGJafbn8+/v1fwBvkYGMSo6egyU7EHFe1FJURApMvjjnzUnBLFuw3A3HiuylpROhgN6o5we7tTPdZn9QOfAEGHY4yGp5H0pUb4oR+z2pFFItqpnKuIxSXnIxw3mwghXs4E3Fpk9/dX8Jx3d3vxvmMDJ/qOrHZvElEmiARnQIVi5qbi4Kl0oAcz+12qxZJpLxHjTrhThzP7XYTTvvdw/24f7Ubm9UJnICMRMLxO8F5xj8xfAf9v9qRRPuuANbG6/e7bcp4KFHQ8iPSjXmPaCCcJcybFFs41677jqCGqPLFgrmEV/cRcCscK1avlzPmiYtLw2B4n9MVDeIlR82KQctvigLHD4RDRazig6db1N7rSxF8OXI+7+/uxmEcQrgYFkTjlApLgO40ziyAYQyFIbNRO67ss1uBmh7MoUAm9McEeQgeMDvVTUaOc7pxYtulkdcXs51P/BrMYIEMARrE3lHMo1Ef/idDwUzYvgwdaJFw4FPOoLjVmRUOlISw6sxEeR5qnaSdo/YNNgRvOZTxP5WIxP5T8CHCWI3UiutADnZEVek0xBhGxFpuiGWOCNTcMxuGWa3Pr/D5pLhptH1Nr8Svg0Q12daDFqzhRyCnMa00R3/K6Mm6/1B2o9l9BflO2Ww5VJ9Nw8A/s5ZVfWmjlqpkvT/LceduOGzuxtMWznT3Dn/ah8mZlrBn1/l50XvUexY4Aq5LqucbXQOyo0FOsOTIAoGTRpyIKrmNZ0gz93bjSvAZWz1l7PukwJfcTTRCOdgO8kTdXQQOb8+6141XFPcPUTnLWsRc5wnhLke4stXl0OR42IHuY8RBTsc5CLxkjM9uVlEyVThTe0U6E4FG85d239wPmFeNhIPIuhr5Ga55Fw5003v+B/0O8s/zZQDQ5PMwE972qjyeyICJGMl12D6CRCxLMJyl17mQwQb5qWpSMbbhHLyUvQVLBxQpnNdckKkv8RPnSNLsGw5qOjnLLLtQagxyzin9anPUAjbdoXVHlu602kEJ23CWf0unvkchgMLzH9SVHKer9bu4R9+T0QBdhNoemYAPuTmrJC3fvtooDvy0QEl/t6E2/HHLmGVPYuu0bMKqNdsDQGUzjUB5KAEcpWh2WFHfDKbth/vt+OSjO0KDN6yHfvWKRFWAc4c9qusjOx1O52mMuxd0vyEhyvMzZdh6iRhoWf54dqr6PJLET+zfsYevhk5kXEd1hMAHsLbVgsoObxCJe+zwOyDpn2wiSHAfDmZOfOiw/ctp7F+wP07jGGha1SerFVyHCnRiu3Ya1kl7/0y3XH3Tl3M8bB8IQekjglwYY8twTSAzzYWew5coV1h+yzFl4hEfOV5O41dfPo0vHo/j3ct5PB++//rn39qBnl3O3++BayMagcF9fPkkMjxRY6nsntm17eDAvKfR1WoRW/3yHMVzv1AxKfcwqjS49Xy8kjubVZdlYqrFkoxqw2wNA12Ff4BaZxNT8JwbwK+x2FGzAOcmFblWa+6Bpo4nKUc+PmaX7aTxe8i6ulYCn3qJWuLzGI+ukRCUokWteVrhVtrhnpkU6hAG6hsc7ASAlvjetXUCOu+ouVpHRY9swZW3m1DWFxCKqXdkOFVXZeSIQGtiPHbw1t102XM1GS0zhWQaemHQMwhR/5vh14nsbOdjBrea3nNOPGruQe2EeSNoy7BiCRMKTM+onMKMLPJ1ZqTdykTTIWh2CE8ogID76/nwGcVW0A6Znr3SPH2piADCL3A9N0dz0dOTa7A9t9y9E+DiNT0EeMfkn6c6nZpI4Tj0NxkVOd8JE1/NNc75ryZBUWfVBTnSbmdXd8z+0OVzZ+TS+1YxZs7b3BrE884MtIIAk1/gfemgSCk1nos90m1l8LudTK0qPIq/SlmqxkrO6K/q3h1EEctIl0V9JjncxQBcLs58fJUOIkmPn6ui71ON5kL6e5do9JM13F+ZPq15TimsQFSeKPdFHV0elnwpRyk/07LeNootZDEdL8fz+Oe/ej/++s1pPMJo+i3qm3tg94d6pCPV/pXc6VGN+jEZ0M3BMzGlj0SQXD1+zQuJYRpsO+tZJW+CvqPViTYvZ3Lkb5BENn/0ejPopW6Em+3W62dePU19xJcchPeJyi5IckYJhexf6vuKuj3LUz5rlLHEWKl7x4LAbZ6iGlTbLimjXBuN/szbTdgZhmUGfPdyCUhrb19l2WaIvGu040puhRU10X0P1qB4/1PG+/cPtEZLYcEPZhbYDlKbvsw8yy7x16PMqM0RbKVA7RndooBI2C3xpflBk/wtAzfS7AvIsdErhtw6+Ox7qOYFsg/UVSQcSJUOxSWLrJg6zRWAPfCTBG2UF93EXBrVGchZDG8Ehb1vXdplZzbux0Fwj7G6WrTnKH1U450oIeszrcHFdtSYMeByMyLR73VZStCQXs33urF8Gjlmg2/jFzuFUYLXWNThWCfUWW3Y7h9WY6eSRjja90BhrlfjTsRJ+wMd19d7nPoc3+n2YNebqY0qbyLZYjug9lXUa5s9vm3AKaiQyZfFDsrFQP0Nxx8BgIcH7HXUeCPDvkvYM9YaM86r8cknu4CpY1xgE3pHObgQBMD789ga4iGhmIihJmPSYZ4C7F3uj0RVhA0jp9YI4OXnuR5qZd3WM9MgxIHzvnk6jTfvj+Px+Tie90pefc/Hjy4D3Y9ffvE8fvXl8/gv//HPSRiUVPDrgEBzkaoutyjt4rsBp24hmI2KF0FAZDfGmYvI4tmhSTgh78FnWIEZWAaCVx6dnPM4nkmXkfUO4Tnj28iiuq9xbapomH6/CpY0ZE0bYLaM+a500wnzHQFifdD3kFVUdB81xdu7cb/bjLs7bDwQBaA2Fr3UzhG9MoEGhbadPrYcIVi8hK0XMDN7q2AMj2ibsuDRqB0wbckJRFE36Oe43mQVL1tXIQN4HrvdduxebcZ4PI3HxwPnR0xXURvXxhwtvqIGLkjWEIZkdiBNaQk4Ug60rdisSEbCGRNnN+4dBbVhv6kcKISqZlStc/A8yjv3rCKdShhOmvO8L7nerudOH6GcaQYgqtY+xhwGzQXXsoyWkaTvRi3xCez0wrPjk4LhoM7nDkznICID4iBpoEspwgGNUztjo8VPchpCrsowrgg975kjjAghXwFBVwAa9MSc/4CHx3M5/Z32Jet71UucvTVN0sIxduoQzmDW0ul74EVDWULso2BJhdLgHJKMqNrEgGQsZkfsm6WyDEOuoE2gQQQ1i2zGAv9Ho6mCHnbYfLC0QvVxIY+8r/gtG5MdXMJxZTa8nz12dLaO8DJ2KkzPKS8013o7Z2alvu5YPkMENoAQiegWWcSVaWZ2rNAR/Tu+Hq+NTK9qwi6qC/UHLa0yWLK4yYUxaSSLLb/Kyficld1M5zmNT51MQT9kJaCE/+t/9lm0r/ryPckkf8pHsjJ/Cx9/abjHa4L24nDpEWXHwnft457Od1nTXCb1O9mIRdwVxD2WS/ya6wOXzk/KezsCdq4W910N11TxJOIayxI9UchzG4Qu+7IzSNFlRohihzaL7Ba96Z3N1MaNNlh+RtUJB38H2nihZvpOdIfmhygRWQZ7yphFVk+G8ereXTFoWO73dJ6JgmQywaPla8R9quaZwX1msTpiY7V0eKRigihsquNtiQU2lY+H9jMFSiUIgCqK4YBIlW/XM0VhmZjFAyLra0e5W3Og9ViInacC9T25Trs578wI1hoyYZzRK6yFLjmaLOKL4FhkMKuZPMdEyC9Ct9nGKwgsc9HVTjDb/OQ8L3aLzdUK0nsPcW9EsEOJhviEEI/clxW4zL0mflv5h1eO+dLRrVJaRzhn+ex68bIm5qNQJv0J2/3cIh/1w2tgMlCkvRo9wYMIbBMOcHbskCwKuLYDISCb3a7GRx+D5Zn3ClvnowdAvFfjo49os799txqHGMfDuHs5jV+BZyc4g26HhrMjS5MxKerkK8CGJ6fA8hxCY0iXB+O0bIMah0W0YZB095OfbSJQ9mq3HvcP2/HJp/fxXGi/dThcxt99eRjrzXn88Z+8iiw69vILGLVfjrE2Hu6RPAOZ6GU8P53GvQq4SUEjB7o9c9pCFs6e1B6jutgX0Nt4roYO+zplk85z8GC4vl0JkdZRAz2pf/3lfvzd28P44t1hPO1/y/7Py9u6/IE50J0o53QGCRWdMdZKlQHn2iobW6mw5Xz0ms0pCtKESbwWrHmr5mQ0CFbXMHV2CchSXo5r5T1EfU1h5VZTXwdsrEsQIVwOC8t4usSCJCciUoKxgyghei7L2UP9BxgK8U8QaAgS/L3Z7AX3Rtsr1k1nqtOB3ckyWgpEOpgxpkl8oFtUbzc+c9VPOcqF+uUgPsS9Cvpe1P6CbllR2iEVHsuZ+54xoDBT5L1B5idYoEPi2Q+5ZdiTpbuOCqho/nNcCvqL5+dY4LMiqeuFGmqjZLr+aT22SGv8FGyOGYhWO+M1pP7T9OeBr2BvXK9hBmrkcJqhXFZE1UHPS6kfYbCG4+h2B729Vjnyt9bC8jzWDvkpZeW5HpTlFhmNd6Hbc6W1l3vJ9GV97ZkpOpcFn1tGqBEi+XoaRzaWbMQ76KZR9IemiHGNmR/Qc9SDKLlfpKCSWyAzYcpat3HhMgWkuznQzmLEuue8G1G5moIvWj8mbPKazJHjXXedtqxdvTqcJpzmsxuo00i0r1xneDxqU4FEBkpufljPUwY3g21eci2DMt3GjDShHOt9odPDjrXy+fvD+Lv3R0HnfsKHEBgwLrsamT8y7+XM/nSDqb3QgznQGUnusiR5cT/vpaxoQZQkcerz2RiX69vlqHVIrVzM60ydZOX1nq02UzQdyulO+dn0trPVKZLseCXBlzNfWl6ziSA9VLKXYyPZJ5SZY+JZ5tKeZULGNFvDgaLQ92cyD0ccVTWMcAw8P4pD1n5Qy6oe/Mucg+2dDCzmUyTpkOVZzmNChd3CSnbBkt0/18j8nCVOutMhnXWVDevnk0RdQKgnhzfXVRGDWUanM91a69lJ972z9/S8frnm1Gax749m52VssFl+dHLlNLU5TmKqtlotG+0Yu4NFfN7w/AaN9lczCOK7ka0bgYn4jrsiLBwiD5GDI22P9rFMOysHo41NL3PM+VqqirYTvsLHSlSAbKa7nSDad0gCraNsD/+ciXZHgQp+sHQAdnQQiQHKDUcSdq9qbO/uvIeQ3HE9cUfd6SbjpEKPxvOIlyQHRt1O5KwvOQ1zbrzHJ11ZAbrkbMk+7k4EIPO8iczzLlpyKTAQhMjnGJMDHNBAaFQQDnBv2HDR0kstZV2rzHLDigqYVNIgQNvOZReVwXJRlwINhc7H+3VS0I60gyzF2VDIFy+Wko+3/As40ejFTpTNsu3o93V8Zw70LSP8d37ECK7H4bQZj8fN2K1OY7tCbyVFIltxv1DFam/VHLSmlD44IVaEWI1qVcx+ZYhU23iuNh1eF2bLdXshR/4iQ666X7yzCabl1Vjt4OzSiY3XAb/Choj6Xu4Ikvb0e7PTTEc5mpGjzgOMg5sx7qO3NNpabcd6sxmvX+8iEsU6rd149QpRqPN4s4OmBUM5GAqdfaaWiVppOWJX42KFLiKICMhuSHKAuo4YNrCKC6aCnnv7Peqc4ShQHj09IRvEaBwif4jcUijQjY07FdN0tN1S2iPucHKgW0uQ+N2OppVRWzqqh0Mm5e5+Swj0iwhL+gJrvUlxfxaiUavVjA7WO5ElcLPZxf2jHQL+GeodwycLLAzOaAfjOjwKjqixC4ABJB3qtsnmzJKCBAKJuAU9nh3Bq1q4JFJSTOBwAozY662y83EfCXlv09oyOY7uliO7EFwf3PSt1iUlrPaJURfYToAdBZursAJSIGzHZsu6NmAn6rKydNL6EHBJGQjx7JfITHg/Bks73k9iNjvtQqk0B9oBDCBAGHdgcIh8Bm196GBPWM5rvtMS7pHxdo9oyQQDYNi+5xK8B2wD42sJwRCEGWK71wn8PqPXUkmK8gSHQgQTyyD02khD0k8gI6HKRw2tb/D3yAbp0n5+9V9dGvP9d8Lql7XX15rCDkMamx2e4TVhW11Rcbaims+Ucnc6vTkvag/GI24u43A5jT//u6fxZ58dAjHxPWiw39uBJ4sMTLSyWfRqbtv7m0LQuy+96vwYkqtRntP0K4zBrzpz1fpW/08b3e7rynZH7drpKGhfLeaw1kzT721tQQ/vgmsk8GiTB0G4a9Xw20FmNYzbU1VGE9nIrH30ZTpsvDm+dpTtnB0PJ+71yAZzpxpK7GcLYzXkQo2/1Qkual4KbM/9vrp3PO0ZsN1u+TNa+Aj2nXWancBMAc2Ei3dHSuzrYQI57bTY2pj/5xe13cs2ViAb+0D8ZAHlnrq1+7Oyn6b1N3l00vc+v/W1nZGeHNEDuUzJYRM7G7oc4a/BLE50VNgmwbpd6yvaSgLj13xeyjDbBQV+Dm2vgE8QKk0BdDszANIJ7dZ0cpEfzhn34IgJHo8KAve1z6CM+D30Im0mvbcsuWhboMuI/tTp8CUcouYpm2nYdPRwK/jR7zHCCQs5vTzwGUOyoz5/sxofv96GA4wa57vdZjw9n4JUCrX4cK58s7j7IxAe59V4PqHvxmZ89HozXt+vxx/9DAS22cckPr8/jvH2yVwxmHesWc5FLkOjbWznJ3Wq0XK0vSErduA0tgE2x0SIC5XcCARLm4DIsreWTn4P2C2UXz487MYvfv4q1uL2Tns5Prsen36CTDpsCLZmZWcZBB2QaR+RKAtUCojVAOVeKcGTsRetcQXCHLDKZFJmoil4z2Fb1gp2QDMkGNAYeD74AIZOSq4hX5Xwfz+5ZXTARMyZXwfW49MB8uw89odzzPUkA77t0eIiv3cH+uvu+yac43dmnFzG++fD+PUXT+PT15fxs1d2IlqobCHlq+5rcV89ciZB4RoaGACRQUzvoxznktoWyopKNmHSAi0ZlaFAr8iiWfII68BCFFR4aXw4A+WakAZVjawzmPoiq4wMs6LO4RgjwsZ/AlaL0gP1EGPcP8Dpg8Ne14nfE5rVcSaVBiOTNutI3PsxIlE29D0NGp3jkRE/1zIBfuL+nJFVTcsLBoOy2tOal2LqyrhFyXq2j8LBr7lBexnl3SAhIVuvV7Hz4yggo/gMxsykOFYebrHEDLAy1AuzLvtBNsemX7M+yZpfRrmXVkM3zGCsVp9iDw1bPdCASRSvfvZ6sTrtvEcVg2j7oqLwVixLCFaXS4QVl6FQu8MnrzoxnyfOr+CULdG8TptTa+0MnsjJcyu4uMvM/vJuUqEndG7O7BcKoY/LLD9c1mCCPz9zd1Rt/XtNqsFdrtnc9xOyoJV/2IHVGLkOum5lRrxkJlf3w6xEQe25VXvmy3NT5+l1Sc4a8TZ7gGWKxy++14axUpVTVrDXtNUJmsOb/ovaE9kxmihnmiztL+XDWlEXMoDvEJorNoyxWW1pQLhF1/jtju9IH/9OD9f9xv6/euBaO191TF+74XCbE4M1lLVHazHOJwqb7ExI/bQo2veoCnSuWnhszdN7rNZNtOv0vdsKXFtmh/ZCO8n8a+qJHoCyA01ywgrQdEfM9+KsS7eLLM4dKEg+EaNVsiZxMf4N9u5nmu4JjsH2Ms47tsd0SYxZpJlpp5wrcswatnxOj0EHv8mBmLLP2uXuB11IojonySrhlJh7pfkUqkZLpFI+I/90+6VaM70euQV7fSdGvTWOELc88nNGcER/JCFcCzby2Yxc88+5LWPOW3Dc8JW8B93RBKxRYKhg+W1NtsldJLlrDU5EjLb9am78j3Zvt18qn5d8Pxprj3Mvo+B8t79Ta3/gnr/FkY92Jb9LAXhfJBqj1+uL/I+ZV/YPBjlY6NcDHWYnlHoS4Lg/jxNKB00wrAAGbQYvcmY1gdhQF9Wlmm1/ay95/XdkSitxux44yQbZiRF4iwBBjYGD4u4aYpkdyFFl3wPGrs/FGKCLRGTaWVB4twMT9yZg3rhGtvWET4Cx2zogM3cRynXVbtn+T+doio8n1dAl7Z+0WWw4L2a4ZGnZBCl9hGrJuvNI3FkOGUpeCMIPMcL/vo8fLYSbB0fxr/727fgf/9Vl/ON/9PH49B99PDaby9giZxR9ZptTHNE/C8RoLOPwCFmO8T9NFLKoEeG77COjg5pqCiwpucuC/TcNekPMBJtq5COsWYXxxu2GqFKug4CfbMYahf6oT75fReYpooVIRq5J0kRZLWWLjRY1FtWiBeQBgKR88jEo+QHP5qI8nbCZNmO92Y7LejPOykqezi/jfD6Mh1er8Uer3Xh+GWS4VBZ8/3wZh/fngAlPeBVslIjMosaWyv5wohPzHN9fReY5o3KCmkH9Pb2sxuPzKjKix+NxXF7W43JQu621WInj3GDjIyv3+YIm9009tfZeGb0SBNaK3nDSIJhDthbEZiJydvDBzjmc5+OFteoXYPoUIeOmPcV3HrZ32bsY3znt92MF4hYMhergAiIZjuE5osRn9SGncsSMs2VOKN14FNaFgj28H7YnGOyI9Ork8PAZOCGxciO4s46MMpMDBaHDvxDEsFIXxHn4R+TADF8LwyGgDZWZjdZhcf9Yi/ivsrnOGsuQwu1ijcdcnRjpdGka6nXjiY5ggEfkl1l41MrH5aQgEt4T/AWCZ6fqcvAC/dQZbXXdtfs6xqXlzMb+iKCF5i2y0HQiel9hfPESRHQa6mQJseDnvuN8iitb4Xzu6VLcRgQHKgEIisj0dNFVdUV2upmJ7salSMjiWhYkCIYcFKTbsM4/0tnVQzd60JpZfumIVIl7yibCOWmIRKtp9KbvNYbNgTnp+dk31s97nWmmoV5Ze+583Y+M3HjyWOMNFtac6DJCqxN092Z0CbFt60bhKCiCH1IY/bjNLbDahOwDm8B2cz/Gdh8khuefsNNcBw1HZF4g2o3K6Rmw7orcPsOH/67MlIy5WANLl9gyR0ElO1xRJyz90pZblCOIJb+UX7XfMkEoeB6+sgygAZMyHmToTvQKZ+1kP/x5O9PmYTQgppMEeV/TEc+W6ql/7LhH4NVZnbbe3R3idGYmOvoLe4/0MgX9N2psHQJvdcrhWAiqereFHieaK8ZZjvQJSK9oa88AetWL8jxk4mZv2Q6nz1riQFmZjZfoIvKDXMZeAfHqEsDnv1PLMCA+evBYya94Xvdr9jSHE5Xs5sz0Go4bf6cMqYVlh6Q70FsFRQ9dJ0r2EzGwFtHTnAqP51MiwNk3t8xKEI54B2mZZbF3rrkg54xOINpVuHc/fw8mTnuj/d7eJ3pxNVbqPY09HGMd/CMl1ImSoGOYdf0tIJDZ4wQQoESrBXMX279QJVwyPdDRPlVreel0WocsSAfrW/O1bBaVUypmeO23uztmYQG/xlp9BTj3w2W8QXsj9DkWwZiZ8E/IWr49jztnamGP7tDOisHU4PN9OUWw6en5Mh6fzkGwFW3ScpN+6I7rIJkX5UTMceOk7NMcqNJGYvjqNaDYDSaXipD/QfYYz/rxx7vxyce7aM213jEZFi1hN6vIqpOodIwtyiPPzDa/vLwKNu6nd4fYnzgHnHAHjE2Z05MrLvfCmAN9EQjBtLUrgJeJk4tsRgUtKomVTy8938pzFoeDEbG32TYlzgvZxcElFwK5DGDvfU3HkG9zXH4ADvT3a0Bcxrvnw/jVF8/jH/29hzDseFMVmU0tlG+V1ul1W/NodsKectryXK0uMpT8ldC4PSopPNMklMMdvZmBoiaj8gqZYBB1IKvbIpw0nGlYlJDNMDqjVyAy2W6DXAmQ6LiOPBjWm/q8qnEdaG21GheQEYi0a8kmfL3QJIwlODg0FTqu1gVdmVJRx2ZAD8kTYGblSPR5CMgUCMju5JAmZGMO0X79RuKcdQgrI2Yl2cqd7DmsKTBK53A6ZzGYuu50jqD3M1VEbo5ua6xaRLbi7aWIKw08i6VFiDvXx60x8brzfOYzp3N13fM88wgd3ShqcZvf0+SmR9HOMz0n22/EnyJ/88j1uMyyrrcr6GXUksNbRsmyPUbeYS6bNkdaaw7MZATe76lm3WNt4//ayJhf6AGK/hqE/7USqWeZV3bdRymweqKb0qWW4HySHmn2UNyAX9ag9cxtjbmVbM/+f1U2Yq54vr7Vq1t2tuQq7O8Byhm48agLlb14Zn+GyJfz+PWbw/jszYHtOsZvd9wa9h/k4b0F2eoOFS1wNyEkFofHfBqrJnv4oVqbRh4kwVGKkibpFn3JDV11TWmy0i8nssFiqMbLQ+4iw3I+SDAnb5+pwKxT7mvb6zbPs8S5zjIlHZLUKdcj5+AO7Y6vMP6abojPXBGFzvqu1l05wSQMBQ8JHAxCQg09tWOIICbrejk2c+ZdWSA/V0J/ClHQbyAzz3Kye2ZoGqccoEZEmgPeuit47rJGeUajpN3R1N+UxO22V9SQzmPT53l59HU6ObJ58qqfvvri9VOnE+hSL8WjC43V7zu5K8pZ4Vqo7hI9O+1sf13SK6H4J2Z0Zd+bX/EIfRAWxxzc1JpajH2X6x6D5ffz94RfXUsc21+RTW6ZWK+N7HCiAJynhllqlzTwSScCUASJo35W8gbkq4fLeNmfx/PLaTw/o/0Ty5O8WCbncWHP+maX8bubjqI+h+dg5pk/g8TVhHQOdOgsLslEcAwZZMCvM3in70aLMwWP4NoGoeGGJRsRUEBSIpKHjQtEMrQ/WwRkUPrRW9E12zFNg8W7qxsBlQkN18qopsW3kNWpD7T33QHmcDyN58NJnAS/rbb+bo8feQaaE/pnv34cf/P54/hHf+9ufLT9WRhF4FStjIuzIEXtjwWG3w9HUFdKkYSQw2JjL1wcyAojG00GZtUhhzMlYGYjGigYV689bMIreQh8bocyuWiOe/X1haG9JdkWMpkmEYvHyX7Di40szMd6ux2b3XY8vH4dka0zWDmjjhWxSggKRHPguB7G+XJkT2f0UXzYRl1JjMcTbgJLA5lq1PEeUpGWgrmMzc79pVH/RmedzpEivJG5tRJDtJ6Rv/3Tebw8A6rNmmE49z0GDSZBNLTf3q/G6093UdP1+d+9RHYQ0EtrkhJogvy6VjiO3pLoHLVAqCE5jdM4QsgMRJ7Fni0FxGxvES+55pg9fcfYa9520ZoJzIjoVb0dz88v44Q6NiAFkOWaHORlNYeEfrb2oWOODDazGxqFZHI1/A3jZTKYwgkaVj6dW0WiJvbxejODsp0LO9sF7apAkb/He+WjsP+34PC2I1xnJjZO+rOtxviMscdrTMEckE2FYIxei6j75WIJYvNuRNkG0l5yjV7tLdXuhEEokjQbXVMLhSWayDBDMtauYh7kmMXFXdWkOZQCEE+u+slXOGZ2eGusp+tHv27GbRFRDsUWrbdkdFYfjulcRLmIFCjPTa6DhJyqB3fOR88C+zvEUebr8ZpohrMWH5naWG+MhhE6Wf05UUM2BwTqpx2lvoYo9/o93DAYnTlR+QGfqRwotpebAwe+aL7SxswZatdxO7gYRpXICLer0/j88TD+m3/xZvzlF4fx7qnar/0onODf4nAvUCp96D7qmA65HY3MS7tAMtFonKupvHmEseYWQIb1Nmju0ilG9gF1bYFUSmNLv9vrya8Q2eDXgBgKk3NxY3PMrL0hwk2s6B2QTUF6JQJIfaRdSgaha0mrLCUDBcHsTzZrG8AuJ3FFCLbfDqzJyOwsHJF2svgXOh8yZ6MuHU2nxffq0ZN3xPXXkF7I5se9oP74DoHqS9QN4nLIrEGmHFFneF6PY2Sjx9gg2O5Mu5nHm8MZYtVyJPYtLQoEw7GODkATZa1yOcjd2C7YrBzjFsyMbG/FEPi0zWl0rah/LjkdXJbl8hyvXyAucMvoEgFdYXRAOpm6NtFFfJE8CZUpdFKmO/jT0RyB/rZry09psxW/BF5x7oC2JRMllvWQu+y3rvsFQst8GYH2qz64czfgGqelgxKJmcXeTYJWwzTChrh2FC1mmczQ/etkAYnuZXYeW7VY4nN1vdQCGYv96lsxUhBJoHAeBdkOYjzU+GMuN+tx2J+CQwA10Fi7gDPD0ZzPWtfG+L57hE1CZxPO9K+/OI33T6fxy18/jjdgeH46hDwgm7pq+G+QTAZvQziti6DbjcMOfdgym9V4eMU67HvVTK/AxA9Ss7C5gMizo8wxfPXRdnz6yd3YbjfB2o9WVh8/bLhOwRp+WY1XQFMcL+P5QGJly8T719siy6VGVFpA3C+yw1/2x/H+6Tj2h7mlY8iN9KVuBFJvHFmbrRIX1mkvgjrdIZcXH7fo7i/rdTjOv3r7ND5/dwhkK9nSx4/bgf7QOrkmMvj9mCQQJqxfmNu8UEBWNNUQThvFNv4r+yzHzP9VHe8Uj2yb3gnp+FyvRbr52HYAWojTARlDvoRJXB/d25ebqeoyDcetyHcX+jQMWOPcnYKKHmGzCBJt/FRGibpzou8GPels1Pu54SwCOheEY9JWrD+SJ9N6K2ITJSRMQx1COgsaPIaEcwIqRPg5CBD4OdRZG7KZs2HDqO3opQM2vRnZ4jIMqk/zYlPqvEmkpJejRkNat4aJrj8NP/Xv1QUcZJ3qSz2TrSYrn6EZHVdbZ7IWarxyHaZZIZK88eH2FPV71evOC1pjJUed/Yjr/vpNZeApvipikBSKihZ3w1TznaaVa/4M4UxClCLFajbrdZarscSmE4dWUCkDurlVTmaMv9dir+1t+jYFu9aD57UHzsyefkum82s2EmsP5obXvNeo1x73Sct5XDBoL9bH9Hz53zZbfb2l7DE7a18USxle/+2tzPIaC4edj9yz1bXqDfPtSAjWYtdpuy06Xa7PT3/mxcA7y1fna21rjIA5X8YvvzyMX705hO74zY7fl3b77g5vpysZcLV6ZwlSa6rW2PTsNyyaPGtfVkJa9Qxbvya3RkMvLdPJ7dzeD90hmH62xbN8wp74SnneHNOege3r8WqULAOaM5frovUfL7F6PdbdKbOc7v/m8a/7sHHcn9nzS5OFJUWAbEIORlbNbNZygqArTmcGYLPzhW0jyfM5IDeripTvJo67eq6+StoDLubL57saGA9XrBnbT10Ntj14YzOajA1HlFZ5fBfj9qFTGD4+6fUbR5ohMxG2FpiYmhc8Lvm9rnqXNkx7nfPjLhoKvKZi7euq434Wd6MF0iVX3z9EKjUZ3hM/C/uhJ+LN85GPjB8Tw/tC7lxtg2YTT+Pf5LaIsuKrCspFcZ2I3mibMfNsp9bnCNtzg5LBy9hvzmNzUADuQt4eEJHhH1o+HQ5KOLn2N+2AekA/i5+v1kDpuAmZ5SRDy1S7pZazwuZUYHlTQdZhB0erKtV9R+Bd75X9L3vdxGxBUkyocwTufb9AHnVCuZQFJCk+oI48kKFzAujGTE0raJLB5nJyADRLvRbBdW1w103njLXBjkDS+TweAUN/OUWANe5t/Bgd6Hkv/qCOqBNcrcf+tBnv99ho57HeHscGygF1gqKWx+eOql00lDTynivUsaJfqep7IvND1Yj+u872hHuC2lbUREftpTeGicvceopM0WDNTcWi6C4OsO3Gpoqfrf/s6cB6qMtmbE4qmMoMmSnAwZQNJj0yn6KuOTJ4u2NEsLa7u7FZb4PtGuc8Hg+s747+sugV+T42yXb1CjnYyMRGlNRJKUSxtutxeFmP/TM2FyNIwfh8aqyk2zE+/QV/R50E6i42D6dwnqN24YLaJ9Zhv75DPz5Gh8NvjzYbrDldRVRUNTgYu90Yrx7W4+efIpuOWo7z2G0u4+U1yCDQ6xhzjXsSG286UIywR89iL4wocU8vSXUiqID02GhsAZPCegiSE5x7w16aaKwJ9kLUw8e8HRkU2O0im81ei6vxsN6GgMNjRzJRDpzrp0hWQ7bMmG+sLYTsJexWvZ456urV5zHWlTLV0Qe5AcP1ywl9diNydzfWm924YEDVlzIi2IJB2ZO1UVvdxaUEohaPtaZoHopxwHPjhSCHi/XBjDReQ9az4HqC+il0jLvEdxKZcV6NFzmsGzHUBdM8ngeZkNAozG7EsohsoVjJnSVVmoIM7IQj7Tbb2BHIfBBGSMZ5dPOOLJog0xBzbLFylHI8xnoxqUsokct57NaICiMjxYjsAQiVkAG4PQ2e4GOnC/sjM7YlBEQKpJYdyWAd0Q6M9h5Ve4t/NozL6Gk+s/ojCrEiUrpztuqorATXZ0GffE4SH5b5jUxs7OEte4V3Ay5+VRAjZIuDga6Du4WmaMquCEU4BhcpGJc1obSkoxvIKlxuh1lHMcc2wsoOqfExaZPNvzNYx89ntumI+3Zv91V2BMBSjgzdej2e9sfxT/7safzN2+N4Iv32T/7oAYRp306eym9yuARq+TLXZjnLnD2gLaJm8/apFlhVZ4WFsjFMsztHLZBMZtfGIN0yaVcOsAmdgnUXWcIaAxrdZaTihcBvQQ7oXpi5V3YyxGTBhWPviIX6EjoGMno1IDHSeMUKxTlaYDZYWUIX8z5OR3CvtH7Jas3neIKNt7m+kLDt3Xoz7tbr8Wq3GvuX83gTJEnn6A+N/fX8fFSrnUvUUcLmwP5BmyCOHfljvN8hzwP6qv0Y5HsoMSuxeDPIkNBW6D0ZvyzdKaixv+NruavCFKlJR2XOPLsu3YeYbfLzO3OSmHW8EX/iPwzul4eXwXKxbodNIHbnW8vWc2Onpy9ldIUIedXWkHve29mm/ml2osdMC8WJlTOygokYGmG7uNVQH6Bo1mLOk+bD9ZhUIAFkc14FDdrYVe9wP9H1wewkU1Ns44ZMMRMg/hph2Lb9rETnM6ZtnGNQcGPoN6zLXbBJq/fzHugx6P5LZJ99z6hnf0AGWpwDuI9XgD5vVuOLL/djgzZWR/LRnI7sn/zXv3wcT8/H8e7NSzhqyMAC8WeU4PLRDZ+200eHUUX5zjRnlx/q2+gHLWce/8CJErwo2G/KNAe2D3ZCkHwR7PH61S6Yxz/+aBfZ58jGy5k+rreSeaxrfkYnmdiTRMw+vj+Np8dDMuC/Bi/SznoWyDZ2AHj/7jAeH4/j5fk4Xl6ObIMVJXa359zrduReE/GrnpP95e0nVKut3sGE/g47zET/bgT7lHXviwtBjV9+9jw+fzyOt0/o/9xq039MDvRV5OwHeCCb8PRyGXd3l/FqVxHm7MfWCDfiSIbmG4LiG9kUFVHJXm2uFepwTLP9rhcScjGQVQNDgrI5K9Rj3E0xpZVthVR1hP1fZr4Xao6GqLrh5qMLrpdU9nOvNmd+01CR8ZHXboZIReTGgtzKJEZ6JjEvwjHHJkefvqiBRjYabOIQyOj3TS8ilJFHpDIHZSxNkeXMes0R1ZyXPtn+tSvxzcIIjRobspWHsa/gCE32W4rekLhS1LzHZRZLzKsV2p0MiKn211bURALRrtEym54v1s0zazzFDSeq7cXA5UO4jIDKp0LKizV8I6OfQcW8p5x8RrpNs6l90bPwfbXWvHr0pumqvQHHOaPDlQ1NNEZm1K+q8WolJMSvRUY1tjFLMngQcnBuIednWk7dAmz1PX0Op/GrNZxrcGFHdqOt3mPmweu63iiImecn5eCN6c7qq/xARbCv5vvGSW4ti5JVt4+c18W5K7rfBjQegFJ2Gu+bZ+3n8k6MwpLxbn8Z76GMpzn65sfyG0tWgB9ifrrt+Po72coXn8zlWrLk69ThVa1yX3P684Pn6BtwerE0SuqdaT+0LFcTI/UYbq3S72XWf5RHczihHL9bNytMxeJhajz9l1EnC/3Sxa0cOrPmIzCce9aoNKHgggjvStgV5N3Z0tQ5kQVcj9NWQf1w/gnPDA4UOWL49PFIwtPzlhkh+ySeu+z9rOtal3fZfGOY2gB6f8yGVWU6jUZS8K1n5FO61X73M/Zr9GCcz+e3I6wWPzW+KQdXV+gVBwAtV2+RffVf5vXWPuc2Vks+njQBO6rINlRaKTlsfcnaeejOc88QW/d2pE9fj0Yd+cRLmXC54o/4gOM8L+WFvHe9MnWHi/MIk9f8TvutrYduCjSUVC+LTP3dWN9zD7jlFxxoBE2jKw1LGpCBRrLsEFEGlkzuo/6Z2We8fw7i3p6BdYebGmMzZNtucta1GXzFe9DkU6AxBWcme7/7sRe6jSRadKBt96LsK+DXGTTmmY3ui3gEyjWi5RqJ9uBIRwlo9E7mPGwPsJqRpGA7PDjPKOkAJD6g8Gp916vQGltOM7YXunl1nX0On6vB1q8EaTerbigXylfO79MercpYmx7BxR+O//wtHOirzfhDOjgDn709jH/xV4/jH/7RZvyHr7aig3eNKHtT8l9biNoo3qzLKIn/8qaNqAoyKSKEkBWdLaToqNL5tSDCoox15vpVq7m0TInF6b0YXbpYsBpm17ZI0UYrKHz+zD5r6CsX7LLrcTmexgn9ZBvp1grvgdE6iAZ23PwRAUS4aktG4fNx4H/IqoayBrv0EdEofPYuPGkoX989xjB6NyNwcSCj93mP86A25hgeZbDuIosXTMKrqMNCdhpRP0SvwTwdWSL9g6B4+ASN7se4f6X6aqzQ1WZ89DHqXdBWaz2OB9VCYPBRGxRRSj4vUAc4rzPSjlMwmiiqwtjZkXJV9lA9c8+sf0UmFl8mQGA1NkAxxLyzt/bdAwXa4xtuajdtxDMEy3ZDwFXEgYI2XkcWnH1bJsWg2UoDhRnoWr98YivQaqHG6GWYQzoDFgWjH1eKJTJ2RcDB0zrD6eALl+YBmT23ZGtMy3E7CmTYG8y6v5gXO54m6MIJuZMQ1eczcoGv0eBbdfT4JGpxISQ3UTuv51ZNYOQXQhnNZpiVlN0qlwpERlbstpHxiT7RImYJSBzOR80YFVGX1Tjgs80wDELcqEczHKka0lJ0qE1KJtKbgnGU38aEMkjxHrLo2v9h0joz0hz22HtpGOm9GCu3ulgYFUfM19yTmpwONT/xuqHhDv9applRtimoJKpJeenafb3a+R7EuB1ZtGyFVY4LIs79s31ddji29wb3bJGfeAxoIFHWegzsuLDmvl73EdC11Wa8rB7G81iPw2oTXAjXjdh+ukez7ySHBPxg3708GMAtYktptA+etVzFkksJgUyEwje8RxmZ/JLWTbR0lLPYTA/LFmcuFn5OBZqspzsmsw0KWdv550Ty15xy02LbYN25/ZI+77pxH4FgiawtM9GQk1u5uEadBKN/MPaSVRtOLZE1vMYhar1hpLF6luicRhZmL8Q2hXoeS7NL9zH78/BqF2Q87DOv7NIZrMNk/kbHDxjr29VunMDua7SCFkAY5yE/Occv0OPB66BB6/F+jV0/XPvMErQqRM4QievlM5pWTnTNWQ9CFITdgRXaccUG3/33sCXUtzk+l+VbvCZ75voLWm9A1cU+cUDDSEN9tnFtBOqqsQN7vebSW+grByLCzohaWmX0U9+Wcz2VEizLzeoGrvdw+jYqoYvsMGHOoXvsuC1IIdlS7cY1bs2t9K4WdP7IlqzBTwL9yZrpWPuN0E3aRPYy9C3vKZBLgf5jZpI6tORQdDlJB7rayslMUDtY6kigBT0TQJ7un5ldBuM2HOin58N4eT6NPbLP+1M40ebxifmGEeBuL33/5b7TcpQPYJlC6UQnmuinMV7fb5ltvSMcO2q9m3xkK7oxXoNt/G41Pnq1i3+77TZQm1GTjc/FRmEa6QwE7Wk1Hp9Qxnoeb97tx/PTIeqHX46ApxN59/yktm5pz3FM8dk9Ms8Nuu41nXoi7L2E3FWgfGWZzSCFM+fBrK82W97vzglSbleAyGsPpjQ4jzs3Hbq0oP75y8fjeHxB8GMmKvy+j9+4D/St/TXX4d02S76t6335ht/HBAB+8eu3+/HJR3fxaBamtAklYRYR6OWZyyBtkcWlxGq1dYR6V6TMLJvW1762+0JfJuUwL6ImNuvlq1vV/eG6IcDhJNXiTUerMy37DrXJ8ZPRbDoN5/OazdfV2sptKkgipb7Fdpby/tlnMu4gYCOGQTuMVqsEbYNwQSiI8DdFlFE5ZD2ZCSkAn1LbMBrYrLcGJD6cRT1nKiE9toOAnmsa2I5myhiUNdWNpC7/GVxxQMMK2g3g6UATjtLXVp2MxtSHDM5mvlop9vB1D8ul822wTK2zvglSadjZtLHX6q3rs+rPuhinPoxdUxuCzuFefK6Z43btKWA9vk0yOisy3assWym6yhDWEPiJ+zELX8DdK5Tdyyl8jtwL3fDI7MLMiU390HKJql+LO1PggHPbnicdS8OqO9CknFtvZho2HhMb0jQy5gz5DOWeRl3GrQfUcsJR+YzQJ2lHLVJHrvtrJOCZZdHV72159iMzwd5D03JUFmhRLzc70X3ZWU75nr9CU3brunuFy/XcMldQ4O+BUgInYtu331Yn/aiPHNKGjZjFsDhc+pr5unPN81v7zeu7ZY0+cFwFEtvvHTVRp5hnz0HGzFJr0XUtc2VLNLnfs9vT+/2F7n+3rGJhIXTNXsvsMfGtpq6vu8p938R+3bmCCAtCLq9yOldtH/Uacr8eUErIGLQILPbxMMHlgET3DQTDA97KoGxcXhvFmT72TW+kcF19TeNa8rCPRX50ppPJ55z85CkD3fR0fNHFzB+2RGsN2WkjsV3IT/2cCPT6DbV9ks6e7L5wJqr0NJ+xUH62MIQ4WtSH96PbDrXGZ0zk9ISTg74AKX7IWtaHswdxu5athOUd3tqrkzrIUzdZnldtPdGtA2U+sga3zsTsdP+7BUGaXLA+8Sc7+3vXl5NNqEmi/Cj9xvILOpus+3Xm1oGlZkqlnVZrcZKb7R7d3i7XRsNNmEg3+lgL3tzHLMdc/5iBZttB135HQB3XE4t4BOCQSQ5yNCTVkFW+RBAAGfUgQguCRCXUYm+LYEx7B0sWmWgn3Cg7rjtYpK3aZObgptLzNX2eNd+Nx+ZKDmgkb9g4kwkSRM9EDfykWLiXttW3+d53b7DwjP/6V2/Hr9+/H//3yx+N/9N/+A/iNYL0qAiQPQEr9ayAZO6CDRqvgBUrIE2ok9QdOxKl2tL4j+sIopcyUnqbsUYGk6mwgGCj/jgEV2SCiuUZ/Y9xcCPJYpEjHnyfGXGbaICSediDCCdzC1KEu/O4/whw58vY3m1DWY4VgghQdntpufvYNJv1KSL6T2AuPF3G8yNYDfFBeKjb8f7ty3h8exovL4fx/PSibJ2KK1UjbMX29Lbdp5Rs1D6vwU4tCBPYOffMhJ0OcNLRW24/zvtj1Bqj3QZqww6RFtuO7XEXz4Q68wjEhxN9HpvdYWyCelHZfO3lU9QhY1AZ5RzrQwiWrRjCH1DXtVqNlxOiWQVz4aZHbawg/HDYg5md0p5jxevc3R9j7u8+Yu+97U5VtupdHPXcQbrG8BnOiI2F9QZjI0tp1g562K0x9zjr80N46fuoe2WijcER1x8bIYF6GM6vGDs1IMhlnAeI4hiJjazrkcRxm81dZuTj+hJugaSIc4mt28aRohXxXBjTILHYjBNggaqBNtznggfDPaO+GC/I6rAxgLUZ89Z6vZbpKTMUa0ussAzugJV3E3WtuDUEYAifJp0qfVbWS0fmRr2niQy5qOaQUecwApUxBq9BlMafxJBqRyFjROdANCBqvFU9ozM7uBFcBa+TmJ4/oze4epfib2e0TNwTzr6cwuhH3vtPqy4eiox/8p7BP2DLLZTvFmuU0d6e3fA50iFXIMtZcyMIfDDLrJp09e6+OBoWwqvYxLFHJRjTWJ6gunoR8+QgDvcB1oKyxUYBpWNc9ee9hjtjIW6i6QeMPs/daBOzgKGmKlFh4E1oEj0xa+EpNj57tx//73/7dvz554dx3O8HKuiLg/sP7+iGIB0q70Pu1yBtCYjv7YPq0eiGuQ+4jyBvYhUw5crifWZzXL9cbPvLC5XOVguqQFbJx1PRrOvu0vfTx+M1vCdoptecRyASTuY46OOTzgYRWdAV7IXLPRg9k2UHJMGl+6G2IJANUwJKiqGbtyd5ZhkU59Gu1pbyGg0uimaMI1Md9YbptFTXAAZKNS5BRgTODmTTgqd7rGEwQw8KC/yyh11COAzsko/vyHxsx90OdDoa0i9lAM9Q+LgF6QDQfVCnuOyFthYtrWILjgxlW0MRbBc9Ru9LXc6V14drz7WOEkJbgZdABwZCqpVIxTko35PpPXun1R6xzUqGctTZUp6FPRjvGyFFnWj9aRb25Zp394sEgHnt9GYMC4fCMYPutNk5ny8wB5Yssyfn9nqHyX776kBXiuPuoPaMvPkzACrTPnEnEbcSC+mN5IvSiImksCUgmytq053BVKP1crxILhV9itUPGySzJAojWZizu3gfTWVgI9yJyZw2+4hOMOjw8vzI7HM40k0M2LatxXKjbMNZ15AFyJjXWGVwa70a9zvKi+0dfYHuVIZTr9+PIHSBzQmmbdhZ0uro6X487qONFRCQtMM35ESRA/30fI6+z5/96mk8Px/Gu3f7sd8fybwvGR3XUitb1znz9Z5kKC9tWb6Q5Yz6z9rBcPcIb2gY80fwjBwLBxdDjqjzwUpcBehS0LrnxgFJcUDppjinbjQ5+XE40FcDiePrbI+bO/V35USP6Af9dDyPt9gxlzmiRyXV6itvcIbXzwpDWvklrCxDU9dPkbVOhp4JCpOthzLibAelRWEWY1S30HDICQllPDGMRtcJb/F7QSgyIieBQAULAQ/DljUSiDYDhr1/uYz1iQzVcKYRxQIxWCxw1yMFMZacVfn8p+Ncj2aCKRKtWEDAOJcDA2KzZN82hkq+uZRNZrMD9p3V2dxYiya62rq6oaqlCgcoiOMg0ODQi4BFSouQXTpbbHvhiDUVu4c/WklpjDG2gMsHBFktmbq14Aw9nqI40DWZGQGtm/c181oy6Fg3ReebwqZqW/O5p8ydTJCGdWPdlcZGzpt/74HqXvpsh9rrXW3Dp1EO5zQcx7lnMp9fzpuzjrX5VPsk8ip+KLNK/ZkcuYxrLS0PKfhU3hkOLtxLlGs0SKnZQQlLKiXc4cKVES5CeDi3MlVlFtmoqSyRM6+5q32++GyO6JRFovEsA95n8hKalFczZASz6q1V8omzJn0hTTu9QjoK1/WK0333VIZIFOd6zhvHXMim0g6HRmq0l8c8Ml4j83eWhqEz17mLEitZMjX2tchYPDfJBBukgOfxV58/j199eQwDbHxQE3x77fSbfOf7PLrs6ZovRVUiAXDMRvVNU+CGc1wIq9ua1r/PkrHO11+lfFrwDOgn9/qVYqg/tNCrRna+JlErtwr1F4Zuhv38lrO/bQ1e0ey1sWn1vM1/v5JzSaRm88COp7NtETx0ELiFIPOhqqbSj9XRZ/5JwiPZKtLTe7SnOq/GfQQGmH5goJDPF6zHCFio1+40vTOcpD1OlQL4w/0rHD06/JQhc+a5/yvAVhnmfdp7xmtpKyi3we9Z4d2SUSlaGoqroSky25ZlWcyi2pmgGfQVxnEvoemXtBycKHQawsjIxy7Rl0CdJtwtM0vWLqSUYN7+kh2sREA0nZY/l8GLpaPVNlefKpczcoxgXxRa72q7tgRJlfp0W74SNoYFx73LmXabLdhsAXmOkjCWdPmhTq1GGEFCE6VexSMW62u2WerZCFcW1Hla3wwCMPkgtJ1JQFs2Nktl1KGELWxJqBf1zWAQ3wu+zLqCCu6J1BAM4pF9BhnY8zH+hg1vYmSCL9n72gzd0IOTSZXI2IVd0bZJIchG/j0FuNvc+fn6yrMsszOc9tvk9vBZjZCx7PuhHT/6PtA8NE2xKMjU/P68G7v1ZdyhNzGYitEPeYrqycAOynYrNfzeWIJl8NoRnXZ6TOp5qtk7HA7BJL3auN/0TH4QmepwBs0yK8iZGp2zNpUZnElh93Uc/e9Ib3//sBkf/wwZ583YPdyxRhq95C5jPD6+xOeDlCQu9hx/o1YC+/fx/TGax79/y/qPlQqsjqgBQcgYdV5r1FtjWYM9t1hNo3czTnZe9lw2wyR73TriFPAQ+3GCyCD7iw/HJtLmO+2P4/n9MXrO7j/aRZ0O4Smr8bJfhQDZH1F3zAw/M34UzEdk7WIowbq+SYd3e4cxGWO9JxM2JBIDG5W1gzODcdptSaBweLHBQ40bzIVgE1zfh+P8+B59Ai/BWHg6iK2xQbhY88Ks/VQfKscwUULBjIpe2UylRIgi4DoQdgwpxJqKKLzY4L0OmpJHNsS9/KjkWr1O3BfLGZIBGezHwSALhx2GE2vbI9vIamCtbyhYIAHSTa8ghOr8sK+8QMnEyRD1dqc14/pqJyilfSOrLMg05gPP7cxKZMvXqBhcRz06xmAbjNocGyVgU1FHVn4ylpLPNR3vDo+yQLcMMM4/svfBAC0nUhYNMyQV2IiEl/IOUQIR/9SHVEzpzurHvUQvUEGkxA7OETc8VRlZIFSyxMH7P29a5QvF2Op9lb2nF+Hx7C8qjWbma1wnSEmy8WqcPfe21xXvr2SrTpoIHDKb93Z4qq8jE0pag+5FzYBUOR12/o2qqPpqZRIjaukq83IkzE2wPMqQKaZuZqUQAD2N9y/78f/9t4/j1+/P4xGOgO3nP7CDDP8cyO6nZpZCR8652ON9xNi7ftIf6McyhRYiYU0EzsJx8PqLYDJ0QOgZBz9mY9112Y6iRaDWlHKWnx8IZaQTmWGCun5kvILpv3S6v2OjzrV+cxa0gjoZzBIhWECdZQBT96muPNs+FXw4DGqhQXDeMOaDpEGs3I73pY9S5EQh/0RimUHU/CF0WGRueCPY91GFDfnse9LP2JHqaPD+eYwnZ4QaJJ0BC39HbM/ylsCAnDI9ILL8PYxgg5JaALDzF4zWg95OuyfIddc4v3Vlw4pWUFQM3tSXPWDhThKcbNZ2t8Bxg6AG5UsLrWWQBTLTrYW0MJMxWp9E5t7BgnhekYgtY8E2g5aiJ8lQ06+vAGsGAh1BVqeCau/YtlPsIRF4qVOMBjgzzXlNIzPlaHo/EbnlMy4CEuXNzntMIj9sqCPmi2uiv4/sPc5N0d6c9DRo0iUnWizOwYBz2Cp29j2uKbvobD0+HYNBG4zdD6/RBWYzHl5xDwWYRmMTGdtH9Dw+j5cDaqHZZaaIc7/6MALBLNPowoL5fx09qBe0aBWpy44Ylq0ZwMpOJ67x3Y+np+N4+fR+7NHHfX8Opxg6cfsWnSWwHsUJI/0JeQN2/TdvnuOzYcsHNFs8BpFxpt3QbSKvmWWgdCq38gJdCNfVoooiul4IdZYBM3XHwaiQ3OwqpqrkDFEiAKA9Ho7jV2+fx9++2UdSFEzrP0RV/c0d6Jt3X9HEBZr/+ju3wtbf9DLT+8v4UEkQO3mYpGewSm4v417O6nWE3LU9czQ0K42SeaTuq4Judkb4exi1EkTM3Fxu1nVVhtSyX5EZRTEJT12MwiLq4+tHywCQftwBVryhwxECnhtxT5YtOtThUxMWCecECzWY917OQR6Af0HOGe2llDkP58/UKNwMpChqRrUkTbgSDcIXEXJ8BwIBRpGcjaot6ZF9Q0+jOGOcow/dahzPunJsOLKEWgnS8BAZSJuf+Ocws2tRNsoaY1G4zU9crpQja6UBUea9whm3YAkXKA1/OIWriOwBhh+CqLfvUSsz5jC1Ntq8hdHjpeU1aaiyPMyq9xERloiUwvC5tZ4S3dAjdFRSzl6bUMWClMI7zIbpPgAJ4tq0s+hMiUzJRY0M3ydKwfX/3g9uRxDwaUXqJ/iZDHC2R/Ke4zijlUMoiIE59xjH2WqMOnBjEQ0vj6DCvGEg+rEza9WqrG1wNSWdDrY8dRqHrZ9n1l95PrjeaRtcS0XntG1MkszD66FMNidHi8VgxjhX5sEsvy3rn49fARNA8dPozUhCrqK6StvD01qzoqXVX7aTP5/ImFaPKcVu4kbLLd5rBZX6zHUZm87ODbUxqxVHUrzGWsZi0jlkI/312+P47Ok8ji4B+CFq5d/h0bPCHRRznXmJV/Xf0vP+cLN3P/CtWqfT9dNY6593eq10cu9X6u9Mez7PV3s+MSFNvpeMoOw1F07em7N64u0IBFAaBDfGr/0r3dyRHPWveA1spFbwYLZGHADgvWR2Dagw6HOTh7mIdbq15kw3J7rmSn9rD4dYDliszym5VjcZZwd8P4gRnaX2HLjzhqc26iOq3pUhPe7zyJ5lsNjjVjWlyzrQ7pcZFO31NEmtFDD9bx6UrdVlgecyBN1mQaGUagraORTo7NPvTKIDdHNxnQIC6fQ2mHi7zXRuGz9N3kdznisL2Naux66J+CwB0ve7aO/Bgfw51Z96vVaAwszrxVhfO3lpvy/DVJN9bNTX8jviswnLQ2NMkko76/W8ZZO7xdMcTOtPQTI+vhAO2vMp1t56y37I22i/WnIEpQuRsT1W3+OwQ5woS70/P3G7vQxmBHQbcPEtnOjVuL9jMi1ZYDTmQTDX2kmW/cBzGk5NTlokZ4DwPI/d3XZs75lZfn45ynFmWUa061V/7Jj/FYh6AUc/jsOe7ajsqJsYMjLPEaBrM7bI7oYut1+ydKK/4lhJnhBxW5PUn5nQ8ZrbHM+OBFLd85eP+/EWmXTc820F9b0fP6EMtLbYZTU+e3MY/+u//WL8w59txz/+h3d8WRjsdS5o1jShppAEXxQzdlhYh8doJetwLeQouvA+4A9k+W44TBzqiWvoNjNktkJX5QgI6myIjWHmqVR65/VmDoRDh6z1Gr2HN5F13x/3EQl7/QqRZcCy4eDZSKcijkj7Bky4Y7y8Q83lZRyez+O0v0SkMmDQ2FytkTqj5ew1HL9bJXmxWxWIgCuuFkIIz4K6SbR7ooCqYYp4U8E0JSDRg/f1qy17tT6KtETwmucn1OOhboX3hx6ZvI2s/Ix7CQgP/ox6sdU4IhuwGmN/GuPpmXVelJHM8gbkHZHR7RgPrzcBY0MkEad/emb12cthHfWkqMHGTGHcop2xemtfYvCqjiTWEJ53vY6MePTQRvZPiijYbR0hbuPIKCpdtJ3WzhaBEYybyN2clTFiAmPrbDYPqcDIbtNiQM/heNVGr0gpklQlMs8y+gJe5YIW7wWyqIeyC3/ZVWz0Sqv2rIhK8v5Qk9oUfWUbeTNRRte+SwB8tTcLZnNkpx18Sugea81wC1HX1pxqs26H4SkWfPYWLvOgIz5Zp661bSbX4hZtBjAut5GRWHsx7lcWAO9LGbSonSbEwoEW137BMgUCIBJvUqQk2cO82RpSgUEQ6hn6NRP4dMMys2VjQWbYjBn2dRYKwZ9N0ZVMhJkx9hgkMDX6fIuEsGX/aNNKMYNNeFnf7rqoSWoX1HqS5rpxJ5uWgSgT+Bm1YIOasqUbPyrTWG3G8/puPEEOgLcixFM3a//dceugY2WHZn49e3W316bvOrOieS7G3JlFNR3HxSJwrXD5SOVEOPDkmmJnonsdcuiu5nin8e2/xTvgG8eqnqDGeigEXVgOJPJNSRA7MD1LjlcjqCp95yxtobdcRuTaP8o96B4cEb5sDjiAYB4Lz0WMlzL0CW284eDgIBlocXCwiweRAGDZJhEp5frx5TRlyXP+hRCDA4DfSaLZGI/74NpOkXAySqzLKHwkmKBvWOPhi3cHbtH0Koxvrzn1GfZp3B+EWWY5+m39Gj1QwQ2r7LIblo561lKLQBRZxmCGDgcatoUr2XnOvTp/eHHY5LsqZejehR9i4kRsTx3jT+4L2KDhLEn3kp+GMPvose2mCm2/tKWcazc1260seHCHTHdXSIdFCVEeXYXYGWsoFD+uv49kAGp8Y40DZgyG6BchRM+LayYyj8+03XF/h02+F0lWQ4fGXkFv6P0Y76B/n9bj/fuD2O1l50gOAYGJ/QoiMcCZibK5fIPMs5JXQILu6DR/9Goz7neb8clH4Mcp2fkSqK/LWAXzN/d0OKW6lAn5wo7THrOtfcDtfvkSmWTYwAhqYSyA3otEWBDuEh2JsQRxGEnR0E0HqFvD0m1bNnJhy41WIngVj0ofexkeKRLTtfaZWbiDhLy5Q738g4TEFZzCa+6wwT7Q1dYLCIZffn4YXzweww4HG/cPUVN/8xro37epcUPGtD9vHDXJgHH88u+ex+vtPcrTHRrJCKyhU4YQhgGfwKiWdUoYdruGrHRHlHmOHpauCOIM4cY14LTXfeaCzfiMixCaBFl80tnbyO6gHvUcqj9axKB3cjit4XgS6nw4cnNZ6UXLJmRjEOE64B8gvCQtCictHGg/B42MiI65pc2q6gztkXEzVJ0Kd07jd7QSb1lIbmIbvVQIEAhB1w8Ay57XBXQF9R/Pj8xyB/yjQdKyltT6RsMYncNWMNxY54y/A1IWiIPKUvDbgmZBEEECoG0VrvlC5YRxDPIJYggTbpPh5aYs4tQaLz6vKM/jMTlmUzAtw/sclWz7GW8RaktYlHoapfUpB1VQpto3upYyKY6m56hruLLvqBxqfBgQJwGus66L69xtHBxYkYOWtc21T7xsK8DZ+wi39gfNsMmVngZY7be8x3TovcK0gztcTVlvBCE4/ibhcm+EmoclitSGaNk4C1dPxpZr5lsDjilzYtPPRj4NIs8526vFOjX1jLx5r2nsw6oNEprF0Q+PrSCRXn8tT1BrsNUjW2G25cHMcHNxpzcV1Mg5aSX17SWulLSbC7VQ1qDGUe3qylnu+ZvaDLlKW5ba5+gZtl5P7/vq9+dzEAnEQNrhsh17BBubM9il6h/60UVYoqCmv/17ramba6c5X9ax2dqqZWPrhDSGZxNNrLoy9vu69rnZe4Jzq4aAXYzeOKpXbIpBsd8vJGR7Rr2P4KnJgRqUeemk2CgkMqmhU/K558xWOhahcyq4jCqyRMg4I9ZkdqGAFIhVWceETkrZ3ewRtfux3kVgLkg0EQzBPZ9AqFb35/GMrJX+OarlwLMJwJbeWl2713sLFdZbH+WYX59mnkq+4zaE+VqXva6FzSKeGoMMvMpB8Zx4Tns1iwMS7u1b7XjoSCdUXeiquC8/txE8dXt9kwjmv0i4VP4mf+E8L0Zi0TIQrzEg2rP8ev9Gl5duOeRZF3ulqd7ptdJzrb5++qj20AJT3u+XzjPtrIcHONAsnYOzBAh1EOm2BVCZSTvfKsfbwsE6j3Psm/pO32NArgUkPXoeM0t7v5Pm1r7cgyQxstFOFF1nnvtuyJKDlnlGQOpuuxqv7jfhSL96RYIvHEFydgRrNuuNEVgOhCfmRhPmbDBtynKgXQ6yfmFdSxD4RcszIPNElAknOpz4DSHpgK/HPmYrTjOVu/Synq+SBR6zWXnmcp3XT9P//edoiC/OWZ0gbdCp8073gVxmxT3mscNYvH85jyeQpwkx8JPMQC/H+nd9fLWxw7v55eeP47/7/53G5fSz8V/8718rSmMiq5kddBkhjVotU+unwIDhzEXpyY/Fgqy2HIsQIKbo1+Yov5qLhu2FRWiGTyqYmARlCsczKGp4bPkUznZjcQGifVlvxuaZlEfH80EZ0e3YbS7jk9eHEExv3gEGC9jxTk6unAxE/MTEGRsp+3baARO8x2x92nBR42gzeGnZNGckNkVYRjZ0ka0v+BcFbjOoE+5GqPYzovhHsiSG0lODe9Z0eDeXx8Zec2IKxj+1zHp+XI0T6qdf2mwos28ldBJD9+OzSNPOawo/Z5SPzAITe2LKRD1TmuiooUbGec1eyLh+g2A7ku0+iHZaWZhTRoeXgqFNEXFvZE70pXpd1Tz29RuIMwyJsfEwfyMz0lp7kelUoCCyKQn5RXzf2LIiqou1GNlrQ/07/Fn3E8h0Z3Rd76pCqciudq+sslS2Ll1LbDFvRtqozGdESPQTXKecz/OcPcusL09rByqYzeP5imG6O+UIp6LmiFlszMUl+kTn7SZzsWo42/6ZnNjmlKeSb0Zf7L0IXEHLoNLb9LacF8iuMCAE1WKN/OxEcz+mZ5AQs3g630IaUmWAW5W5vUjertt29ejAdEgRKxsGVIKvO2sDlRBcORsliwgZq/vOz9hwSthoN/x6/YaCOa6jap4f5NWv37yM//7P34x/89k+DK9+/39IR3dQ+jxlLW4zhhvqXs5Xc0baOe0c+bXYeUn60vaDylvY83y+qZwJB4OawZalEIIVQqW4/S7rXS9k1DezdgveXTkD2jtL5y5YbNPgrJquRPbEGAhNZpmaQVGRYOp87JcsKKaEtHzWK/nr8S1kNiMJ6JLh7HfsX8GoKRcvSQYaCBbIAhZAq9iqO7CtJEOZX5R6xd+ud5WOC8ZitMI5MHN12DfEk/q64wuhE1ENhWw00E2QizEh4oBQVg1zc8hIoGq8zUugZ2fLXNaLo0Yy5VYugtnYTuuvDWC2LXSs1PKLDQ1KNmpal7XHc4BZARB1UWDSgb19yb4tZ06lKJ2EHOsqOl4kyoB3Gwmbhh92HXggpxQkir1oQjbZp/2QhUOkkhMRtaBnmZnr6naW3898/dbqlqc9n7S93CHqXm8LIRK6E9lRBx4iSbFbj91uPV59hK4vl3G3XUeCJFAQ0YqJOtk157Cp8Jnd/Tp4fx5eoQsK5wc9zAcQiSLX6va80YC2B7OMSKz9uAacdkKaseZvj9UUwgFUW/xD+PfRR9vxs093gfr8+ad3CacWCGushYIE/8kZuTwgF58PJOETOgMZY5KEVV1yoGq2Ctopk1w+AJB1aSUGdxHKE8MniJpn/YwyTK43mUWFSPnQo/anblzJlM09IHJZyMMhZCIDAeEjWGd77HTLCdZMGDv4X8jhsz+ilBFBic34+au78V/+x78Yf/PmZbx5+mI8BqLW83z56UG4FzGM7/X48v1+PL7fj3/0J/dJKsHI66LH282jpdG689KVM9+gM2BLwV/twkRWgU26gnG5lhhwahMnZWhWznOLhKdB4FoXRthWqAuG3xwO9ClqeKkox3i4O0WtxLtoz7Eexz2g3empR60xyKMMLxv9p+7bEV07IB4H15nVUMwKKEydhGooittqE0k+NEOJMjMLyDUc2hfCagDFYe2l68Js4IBkqpuElfXPMUOUcc9M+7H3viP+JLNj0QZKLIf8umtilEkEe3hYMCD0ar2BIxJIEjJcDuMPGAp0YMCgRNogn2ZmDO3aTUKhZ+ni2qoRJoypjKNJz8nwyshis3AJW+tzdV371YMYNR2KhJq9MWu7NcZ2oKM9GyHe6aRnymP5nFk4xLGTdRPrIvisVIuVUHVlVlAP2bZmwEG7A7ZaMJe3HqWua8rnsiHr8bWBCdi86oQjkxrt7ohXtMKIWn5l6WOP2TprBD+aAZlTNY/9HqZJTwe6SHmonOSM27lVxNsOcXdYag0sHIVmtPUNYdlU97lwncz6m2V5cyba66NZ6c3paTKzpxKmfd5e9doQYsAIgnpfa7hv85tOtLOLt6LgI7oy/LM/fzv++i3hgrnev8NjqdR/iFntRIjwLzoAClaxFZ5ILB3Uad9h8KfWbO/e2mvVvf3zX9NfGRO6ujHJ/wm82utYeQLsVweDGEAqmG7ySnyFJeJl1P2D/Dc5/fzEUt76HC59oa6sLEsY45IRBYV2IL2uuqz9Z2fD1WzwKyCI80ZXyrQ9qgVQlAUd2UKOMNYPGza2Ywy5RNQBP9luUfo4YFsseUHwumydhn4JR1FjYrh8M/DjvrO9Ir8eTn7rC+t5YIC3tRvrN5zz2XZSV5lLaL6OXAsOqDWm8OKMMLxa8NU8fQURbR/AYYIj4xKjZArutdu5TBrKokOpjbBQmRs5lgoub5nFaW26eeEYZxC7vdjX8zL4eGsp5BqbLadrb3mZml7MzeQ/W1dkjXk9E9tJMWsfZFt36/h3d08SS7Se3G/OY7cH6o98GTFG/p7aNt7fwXFej9evVuNuh1pfZiYPRySHbmTSNZaUPZdxcqlfEnaBtdoO9NfpAtk+sHuQAZcj/ephMz79dDs+er0bP//5HfmXgHIM44NzfIfWqZC1WwdYmBiyrRIdb+I5ys7m/bvjDRvJpe2MBA1rJKdpilwMnPAWhGCAqs27CGxvPqHEZpe/HU4fc6ycT9oWqx78IzKEdr24iMr7zs/6q5VQVroSbclCiIHPaYyP7rfjP/kTJAPX43+4exNEakEC/FXr8ns4fiI10POBOsX9WI/9eT2e9+dxt0MPOJndgOcm06B78FZWitk3R1iosGOCI3OlNkwKA3ohzbAs9XFOYctIkDM6/B6zdWCsc6aI2RYrZLs7s1lGeNiJGUBF0vZRp4vNuQ1Fetiv0M55rNa7iGRHO6o9sqjHrIegllNbL0GRi5HThkFlhW0OIjfWqeY7Y6nvz4otMpgQJkk4UlI34SqZmeXYwGF+elS9R2SeRVoU2skczB7ome3QtbXscUv4dtwTILF+3EWrT0PgMKaAbq+Ohi2zHszPfUB2P+YWDnM5b3cgeNjAOcfnz2Mb/YMvY49oYAxvCy37tpOsiTfjwAIYO6eq0XA0VUuGf8Ey7lyrz2Q4cXdS7eiKbTcEp8LWGfEWqVvmcqYbnOr2AlKO/tjKHvAz83qnAb0R070Y2qfwN8ll2IOR2WwHKki8F/SN7HmtoI6DBtFvVdnRUByy0uDwYv8EtMms9a5vk5y1kLapY7imx8sZ5GozJ5i9lVI486qzMixTgQCXfiBz4gwWz+xsOIhMLmNj8rLqg1cDLcUVCI+UD1IoDjBE1kOGpvom8lM2CA2Lav04r47ZC2CAhDLOhuBMFGLXuQXzdG2yxJdTbXoH9lOvIBv3e83zhwJdljW5phPyV9Fut5y6lcX2z4KmK+AUNVnsW/54WI9/+dkYnz/iXN1Y/MM60gj7isfPOW89ex2M6oG72RDDOl9Y7J6PBo1M5GojPEqnVpnLasnH63SYsI0vExSpPWysDwQ6Y861A2/Ncouf5y1OBTA94NQcazsI7lPda3gNkXTQrncp8D30rGcao4sWVKGSBXMHtDThl4IKu/IrdllAtlVaFIMo+e4gW+M4cPDJDljtId6Rm9gE473tGZSFXY5scyP5Em3iG8xUnKPZzz2dZ9xXlsjNQS2PSfJ4GCHk8hZdKwMoPfjSrpEs3cr4x5wYUZjBMxEraXrJBF4ObteavC/eIxBk7Cms8ikxkdf4VRA2H1wT6Kxb1MBnjT4Plg5mBKbIRPu9RKulVWTpIuN/a3/mumvoDNUK98KYKUM8fX8OYjhgYEvF4zt/bz7J8tQOsrlvM4MOytxH9xLVj+O1O9YPc/ousdZjDpHx367G3QolfGaFH+Nxf4rPrO92ekiwPK/HL362Hj/79DLeP+4Cuvz26TTevj8GagOZTDvPRczrzHNloK+Jwj50VIjEK7WPCbLRr1+zV0kkgGDHPtMxRtFQsF8Ldo73kCF+fDyEA19lkD2UQ10faA50zTko871Zjcv2HMziIbm8F1VSaJs5rtdr2XtgcIG47T/TPGpPbd4A+8NJxOoxXdkC1WoSajWcXSUie5Ar10rIjer1DVQCIPCxl5GEgg19Oo8XoQPMv/RDyj5/awd6aZstmQrrc11E54e/3fFbjBOAtZexDQf65Qjo8HncrbCcAIMhFIZQ7V4PZyhzmAwyFPHZuVlBbszMGtsgsNZkq4V42Quu40Nc/5MkY6XkAtKdbQe0STPq78WJzBhb+kQUDeQf4dxvxzE2KdllN6glhnGPqBSiW8eD2g5J2JsFaMyOB8dAL7dsNEG49VwUvOUETD+1UQLtagWemS1vfGb10i1GFgStocCgqL53DDqoZgjGuBxAXtZVThpWZa8ATbP6trGiWEHerxUH75kEX2SrJns24Pq0U9RW43SgSpYTuQ6SrTHudptgXtxgfIM4CcylhM/QuBH0uxlUvmc7TBE8EbS+Z+2KkbCzXytLYy0e73t8e+ywstkhaG2ppNNWhG5z1JpQyRSEDqRUNKg8JH25nGUb5yTnc2sTmzNJDCUDOeBJ2QYJBguzvRUWoFGEf9F72oz1DkYZLhVr6bhYy9VOhGtxDnRVUrwGweM3KxS1tmgspdmLMxxoGxzNYNT34UCTsdooACuU2aB09ieCBm0G7dT2ANslyNEc3W0ZFe0fG8c53nkUSsZjyPcREHJ/sXy3LdTqCtDbW5GgR/Nkr2hRZpDOVt4Hfybapt2b1+O0DlsKJciIxJFgPokGEpKDYAXOFyJjFJ9fj6fTavzZF5fxfj++s+OHpca/2WHjpcvp6f1eF9rmrgKp8alEgeShfd1PmHZWcwQ9X1OQpQWSokd669Xr8wACOwduuT+ihEPOEV7YLiySpkVTDvl55kPBmQlNwV/sFLsUyVBUZ92LWNPnbrK9tRPMwHLjCvH9+56cxUZA0Flml2yVnbC6ykRHYFeSJvrdquYygm9wqvvYt72OG7NlEkF/EY1aR6/XJ5X0wJpCmctlXCK97lZNRgRUEiLKXMoUavPhPasMbDfs8/cqeUmV1e0Ks5G3FmDOqFKuaL0u5Cs+6ODE0kbxGFucBAomS2YmTsXUdYliWijQqI01cuwW14JQHIa2ZnChOdGk6jEb/IelTHVU8LVJjDjFgNo8ZBTFajxlfKUdySmwOPp6SV3TY+gKbpmhPAIPjBcTNUU27IByY1yVwWXTSJREiWBW30ewHgeIs/AcL0c40GO8OqJdK9ca5PrHr0BEthrvX2/G0/N2rD/fB9EUPgy0oVtwZXZcAZTSt/MgdfnWX6/HX+Id64DD93AvUq8VUKHOqArlEeVg6yABg9MM4jGQpqE2uq5V3YJwsC66rovsO5j/thjQrdGazqTT/tyj/WpDry6DnHzOua1ayjsjj9oTOrvc9TmTgYuzXvgfr+9Y20AORuBJ+9LB9MaB4JKrgPaDRGzbOsas4ECfYsyS/OwHln3+TjPQtxbW93ewd+gX717GP/03X46///Pd+M/+0YNayNDcrVgS6x9dd5PKMf4kjQmfDsqEG19gz3RKllAbZ226EUk/uuHHVQ9rJauv6Ts2ydu5JLziI9BhEV6Cc6N6T7BCblbj6ekytocxNqc1GaxVS0yafGeYGy28CrHT9com9YKxtkx76FzX8eppq3a5IChRb65sPmW3hJEcUBtTpaBsREHwMcsP1mtCaeUwaWwqWaUx7VlwKQo6LHItmhQp4hKGgyOzBeMAmxbnhuaX0xYnF1bNme9gP01nFX2pAZmBs4aIPV4TLCcY3g0wtPFHg4d1YeXMZD15jvXMUs1+0F5MNAe9Vst0awvQQQrV7QVqwTX5hheIjOu4IqujD2Ybaoxjbkz0lk4tQh6FmaRiim6fMd+nqNGr9icOAkVUEp9y3Z7C+oHqgH4JZ5NcqqjtI2kLxz0yTDLa2ReSdxSEGQHxVmDHWRxELU20bOc/zs5sGoMEdmZnWDecVLLrKtskeGvMqSHn0iiECPLLB6cbHMiJtmSFD3CwzBkflg44y+01qrkPg4J9zCmPCr2SN22BYfKguLYMvKuCrlk6k8GzyTi1uvKa5Er294SUsCWp7yzsqpR1bhOTAyuSufZV8i7kGCKCv1040/W0sZaiU4JWamSYKygBQyMykYZ7x7oj2PJw2Yzj6W48n49iDZ+j/H+QhyCl6aTIeMYYYu/2g/K1lnWXDcuj8xaUZ1NSK15uTk8LYbYMic7Vl1Wz3shuD2fOEkmP5M+TwiKDbX2Nfsg+ib0ZXA7ddPR7hQEzcR1fL48unMrmONuhTqmZzp4DSL7flsXWOJP4iP/Kvq/2cCG1BK0JM9gcB6731V5NsSvkVT6nSKdYAqb7SXk0d2jYgnAJgfrI7kuXirotyDkjPVZBmWAYzjpynguOkueyisfmefYYUSu1LFMvh7OcNvN4Q91YbjtT7rXgnsZqzJj9waclWm5F3V1MGCHEuy0RgpZT6RDnx4VpFcHU/WYzNmjBszmHPnsJSH/VLfv5LatYU1s3ElBiTJg2m+vJOUbW9JofiddIDji7bcKQvun6YQ64Vjee4+E6f9W4T6jB7B/dAhM5FgqiKD4MTY0xB/IKthmIW+/vL2P1sOVcwCYJMi3aJcHu7iC9yyhanS4cK0Km2W/51cN6fPR6EzBw2JmvEO+4W43H/Tmy0PgeHOmYry5Tzi0D7fK8RRCiH1NwRSiE3R0ypWLf3qzGJx9vxz/8+6/Gpx/vxscPOwaWUdMNh/aMVqe8j9jX0QmEqJlgjWmOaaHnmizpa0091gFjD2SEEChY1Sy3YMedSAT5+W5Nf2OazznMMfczy8Zsa8brxA5wP/f65uhxcZmU2T6S3QjzKoQ9qXkNvgGRE+MzTy/H8W9/9Th+9WafPbp/iJr7O3Ggv0o5Xb4HZ5tie4wv3r6M//nfvBn/6b//0fjH/8HH7Bd3OiQEKBaTJbMylpvguKMDSUG+ITkXPxxZRsPa8nrdg3YEZorau5a4ZXHsOBtmlILJDk43OmeHPSBjB2dtkIEmndVxDyY+Gt67cKBR/wsnj1nouE6WERjPbOszb5+CW7BV9p1THU/rrWkXhGRTrudQdCnsV0bh+hhNkU8ZxvAzgt4+nHs4o3SkI8p8ZlZa0YcZ2eDAQRJB8UDbKDsUU5RW2StfPqJaR9agowezoT2EIonMBXDidCrkCMOIIzNIRP6CVyzqZ5X1RPYgmEC6k0bBGWMa1xTzatsL2dpENWrp6yoLb8uoBFvP6jTYo54bF0HJO7OxbWLTGILRwSZLhHaLnboltwNJwYem6s52VbVWGek8B2wvdkYytBZjfQZa4tcyfkK5GLyElnAX1GXSSfeacy9DQ+Li+pFmYc1PGP8KURBupLomXC8COapfRysWMUHqjsowdS0c1vH5zNq8bK2FQYRRWzC14j0jURuXo/a7nHU40A62BRTdUDsFuyJ2A/hV3KvaU8S1uG8whlDS2cop/5vuQmWV7bsIVs4pbqGVrC+UMSkFxig3rWBn/7xDFAeueF9rPzbVpTcNSjgnEQMMYZoxu+RZOUqUc0EWs4NLhL1k0FmKiAw+xIQDltpqC7m/T3L+S75Qtm7G8bIb78fdeD69hFNleP7vWv/8UI+sfZzUleaoZSPrvQZHnpfclW43pJYfmg3C5TknMjj9Z8rUdhL22N88TxDzNAClM9jdEA3d2Awxh4UavEP3UVosSrXg7DUEUNqSiZxxfKpuzvBX1wWn3OnBhK6/JQNuFM7EpQ7onKHAbh83O0152gjQyvVdtXZXQUZIuQEuDhyuV/Z8bdRqDsg8HNh5SRS4WkWLpnA8sSejvIblSRFQN1IKwYawJxoxU/CwtIy9LhinXSyC7rza2imm9ubMer/6QZPYTWOqAKvXHsWv6+KLBJFzx2cU8IkZ4nS8+83RG4W8BnlVPp/g4t2oS94aSLrLGHfIpGEeo2b6HKVclRTpcHbC8N0CsfYZveHI3gnGGnZoQwJZJtqJQv7D5OgtUiX7pwa8IPRlk3SnKLqLKDCSrRYXTjShuYuUpGwViGCsQ5bEo30l0JCn6PpyvmxIvKUyPNgIyd2T4Di13hQXSELqQcwa/1aZ6YUD7Z5JgIQjNfbu+Twe3h0Jm44gEOeq8zZM5SQt4bM80tmzLYPLbVB7DQI012WP8ekn2/Hv/YNX42G3iZpd2LPjTm1OYR8iwQIkCNonYhwCJTPGUWgSmkdzkqfLXBt8WC6Yb1zfyAiP2fHI62HcuP/YEiu/3qJpiQTymw4+ifAwEACL8gp3+F0ivvIsl1mf5HNMH2utThes6iRLYzCkltZlPL4cx5/+6nF88f44Xg6Ewf8QPejfyoH+JobItzVWvhvjhmL13ctx/Pmv9+Pnn9xH7RujHOgpi4wXxZFr9wLgYSEVjnJlSsGwGw6oPN7IcNwwDuLjzo6EYKEiLOfR7SoM2ykBGocJL9popMDFqwH3ZQQ4iU6MyQt+fERqJGbPhHi7PiJrgjqwyDayIXhybgwRM9Ne3pQ3fGbwyqgntKZZPS2wYIHlftupLBE1awoWijl42eDwO+Ktc8CIno0vKXp5GCavKgepQUEn1eN56oEMQ0wYDs5WHm4PktDvep4cQzEzZ7871/Ua4tayulR8VspyYp0RvSWFfJ+NaMTDm4o526vo+ROurvXXFAXr+encxRo1qVxmjav5B2ulyzGzCYn1Fz3StQYLhqm9pUyOeQLW6jHte8ffQkuLkdzGIaDvYJZVfqkHoKTg7YhHX0XcgiK8Xj9HZIsx5qgVCsZew+3ktGutGIZkJdGdARtbsa4iK+B6+OV6spHSnMzGnp6kRklik3hy7mfMk9ncE7qu+Y76bgWizBquQBFlVhGe9VUTAToPbtuJ1KEyuJx1vLVHWq1TTwteyblmHNspsCMRYRQjdyL42Bieck3retKYlpN5z76uBpWt/6rndL8NzlfhhLxGMMa/+uJp/JO/eDP+t1+zAfx6wdnwnRyzyPtBHzRcZi6IbgszWOGKo2b5e9wTYl1y8PwNBiTPNPsft5W9gnlp9GeUsCCAiehy32CXLoigk3wSOl3ge2s/TpdaZMh9s7lkndm7jOBSOQBeGgHXyzjD6GtImRjf0F2ugzax1qIco61/D0aSUy3e73DMDIjFW5DB58h2hTOoe0QWPTLZQLcoW0hnQo7NaqU+tOX8ByLK5Jr4sd2wbCaYp5k84F48jfXmTBgqAllUJjkvLp2CIQ/nPM4tLpJLMDFDT+KcQHzJUNd8ouY3nF9AgBXc5nw6OKKgr2RlILlEbInMXF9GJ8n3LKNzyY2DgbbFlNlnaK4QC5V5bJla23UxviRpul6zgiOLPZ2BkCK09PowZDsmKmS8Ariq+XXG0+y3XTbH8/Wmx60lU8autF+cxffiluq5cSjZkHYT5ygSI2K+F93MxE3Q97Gh9Q4M2VlleRpbpT4/geSWdnQ4pa6DtrWe2VOdW4l4P6qTXgixAumAAAeh/EKxAVUFqPgOZGOrCJZHi1Zl9nleItZ8rdxjC9/MbPHuNgLSsnDg4chHFnwb/z5+vY2s8MPdZrx+hXa5bKmDgr/Lq1OQo4FUbB29mcEwPcbLwybG5f7hGNc87hl8iXrobMPWhJEDR4EaIVIows1IIERyrAU71O5qCnK2uW0mSO6naXHlOPRWazqT52JC81yS0d0ysH2DdqupFbzXXSevPtZ2oEEWhj7dia68jPHl43G8eQaMW4HJ8cM7fpIkYt6Wb54O4+3Tefy9XzyEQgFRVBj0yRrIqDM+fRLlg5MlCZwEgVLQs9OApSKU2G0G5i0inGnCXdPqhdUj5/mZMk7teIe5Qokrx93XJhjUtX8rZGKQpAGl/QmZxR03lOpz3S0zm99I+RnSnfeQ0VJFu67GdYYT8aCyQiaXB8QcBKgUvPrSma3ZgjKcnST9UdZvow65LCKWEGZrH/akruq7iGDZmEuH1LBOt0zSnV/VP3HjJrFa1kBD+TETxvJQkItd23o9iwIH+uAMcgRHOgEThZpHEhT9jHx7TCpDeUvDxRw3IimvDT6PAjJh9DJ7Gr0pxYbY60a0SvTcG6K9BKsGBpBQ2V18ktlwEqZ5ftN5DkeMzbjTtnUbpAg2BaQgMptYQ9FbOwwXKn62UYFyVt2yWjNBO0RGA2Me2RM76DbuEPhilhgQRxgYazjQYKmN/uqrcYzltRpr1As1HIcoReSsF+LETjAT9mxJ1muvIyB1pmS4Pf8FdzN6jlDvFl5a8ARQsbDnOsdfhFf6UO0D9mzn/Tf+gzzJXEscd2Pn/esCkXmDtUdct5n7P/3n2vN2tiU6KAGy7rrVzE/eT88iWaYpsi7jG89VWaZ6zmARDXFn67IHsThfkYgwNFst6Iwp/IvPHsd/9U/+drwDuQoMGGWevqsw7Y/psJEj8EzKnbk3sx2bK7cyD7dkwklSDn0D02auo/6Kz+k/sUSTaXnWQ3bcM2sO2SBrsTJ+VRp15bi3UZkCrkkS6vtwn+QRbVTs9AFWCucIzunrHYPMZuUHosb3b/htZl9uBgycKS3nhU4VmwdO+95yNjLDwYIyzpCvdi7gWGL5ny4DkhzOJbmXmPKK8dJYGCqLtlUVMKfcW8mgZcJBwYHNaey2p/EMjwBOkN7zvt6CDVyZ7ReU8gDK7Hrf7KksvQyS01YLjcwnCSN5H4Fk1tjlk7cJZHtIwqZzTBzYb5kuW+3dwE8/QDXv/kQ6AClbe4BRewetvpSU6E4JdeYYLyLEAolV9K4NNForwQuiO11G8jHGp0EifR/m5CsRz7VN6H2/9nUQyPd0c70v3lk63kZZEYrvue+Z5+LsqDtLP3x6MXikMGaH83g8gjT3NPYBvR7Bwu36V86zO38UZVDillT6hP0AGouXMQa6QjHOsIosNlo7be42Y3u8jLt7tHFBvTGfK9pkNcj2MvO8JOGGhRKkZgpwwEm+uwMaj/f6+tV2/OLn9+PTT+7G64f1eH0PZ/pOKMT1uNtcxnZzGi93p0AhbKLU7zR2B2Tlt2O7O41Xz7EJotY76sEDhTn3IZju8QxoOricmM0PrgRkniOxpz29gDlbNrt1bwxlm8d02FswwfNZgIbyZXI9tgV0lhxeyjYHtRPFqLOA6wbyM8j6IgNNJ/pusxl3KnOL817G+PX743j3fBovCgyMH7sD/XWP8EMzS7g2zgEB+Lt3h/HJw3r8/GFmsHCGKiO8YXyV8deVMM9ZhDfUmRJK/TV/269pNfaaqqn2ohkMFEStN04u3ooS54aZnpbfOR3LKHXbJ2bJrCps+MhYrW8vRy9t4IC+5L52JJgS0plVCjkZwq6PNUx88S9bfPgZJUhd6xLQc2UXw8D3tRlPqGyCan09ngXpqzG2QebPM4Pn6VY2P0dANaVWJNHnm1m1mC+FREvpKMgSXnhlEjMCDBNHAxeZ6FTorGNTeKREZq+V8/jnArGjU2sigwKnVj8u1m4PNvtWao4TdKCRcm++lH6Kxa+XglwuaBhDRiXQcPMYBxRO8GOPIY7ekxkTdwzHuhbcymUNYcSAYdO1z5XZzV6ybf24owFBHaZJFbGPIuLZGsts85prwrennZPrGNkRr+GEtGuDM/BTjpu/G99vhEF+PVAsWqM5z42lPudP8+6ZdXanheRqAst8mgg/pp27uI88gz/ea77zhF1ydcOtiG9yE/KB8z7KEekaopVvaC5dE5XnXmTQp8/bkJ1en8fczhVFSOeu4BigLv3dcRUkYp0R9zs9fph6/epAduyf/vJ5/N3jcfynf3Q/fv6wyfYt1imW9yZ1Cdim6wbT6JfT18beaBu+V+vLM2Im19R5V5NeUEWfzwE0BL5RR2nHNfqghjNY937MngK6ovoKW9slJ0YjPSQXR+JHE64JNljWS+qJQvf5vuVgZ3P64gzxea8fMAtwMnBLJ6lQMCxTkbGbZ/YlTRpZJSdzyZjJSos0M25b5zKUmdPWHK/WYWO6Z9dyyysPyLMEHgKTgYA7cW1Yf8RejGwdX1uSFCGDFIGB+BD7H5uHwoGzGH9Z7gguhnOU920ZPHfqSr2iwGOqcNle8b3i2UzR5TXpYGD2D085q3kxF0WWu7hmt+yiuI9mk3lO/fy59vv+yTmQLsvhl7SWfdWJ81LmV0XbtE7a9OV1ix69HtyZ1etjIf8nHaf76hC4fthGFJzccxABEa9PE+QGOoHZ/ChTih5ttSbnkzJ7jOA2GKxxjvfvok/U+OjVdtzfb8bz4cygDdqepLZrehmBnEh+zSV9/VLucLucezjNyGYHQz2You82AaP+5ONd1D2jjVVwmyDgFRE07Q/sDTjOmzFe3W3HDgmK8zayzHCCMYwPd6hfvownyLQ1Splk+2K/BoqlyDWj3Cp6tIu1CUgIlbYFYaDY8T84qyl85OsoOuN9kfuj2UGJymioWOrcJQkoD2aiGdQKHa+SyWBiN0HcSjB4EBZmDTRanDEAWuKT+NOAlttA+YHq2e81A92hSr+bg4bp+/1h/MWvn8affLobv3h4UEsB5SwxWTCU3ffSqTlJQrd3ms7alHcB90v45fOoDsltAUCM5bvqP9NRTq+o/Z2OdRPudt5sKLhuF0qHHZfGOTJ6jDCn8hUWxzCopfC9xfyYNSOCI3XoMxZ6GiT4DRmz8m4TymwGbeyGjg50U6aIZEc9tKLeqOd+Ue0J+gXGKQrCFfcY2rVlvXTfZjiPMWiEEQrCK1LdRawzLjVv0f4G0Xs50DbQknU5WcphbNFjW58lFBC9zZ6YJvwSQY8zakiuR+kpnpmwcdSa8Ykq32k3Ne40FK2c1lTKVOpJTIVc3BwxiGe+37JUoQwSPUCywFPTBclWI7wie7meRFDay0ps2StQYro+ufU4VPsUdulejUPUkWusw9DmAt2hxk5ZXhhT23CeuY6p0Gi0mMQsl1Ukv2tc43kiVanAkZxnsqCqdYmyxIEV7I7zwhAVAWsoqECdhDGoGnKNRWQfwpjnM4lnrQXiPBMJdG0IhBaAEbs6DVmZbppot4BAHW/urWb01xroMD9D8Zp8ssWYe3wmgbk0uKSdHd8Ls0sMyvgb3PvNiW4M6zUdlo1qPaVd2d+zf8x1Fzu1HBlZyT3zaKPZBI9JCG+5FWUBMlxURwhkwPNxNT7fg/0Un595Jf7QjufjZfy//re349V2Pf4f/5dfjD96jbZz9b4h2hjY6NmKMo8wPNkVYb8YOtfRU3ohC5S1QDR8FUQkE0AnnlweJetyrQpGzn6q5uJYjdWdA1XUZ4FyFTs97mcHxgLIZMk9O5vryBa7/24Fo7yGUu5vVuP+fhs64/m5ukX4CJkQ+9WBIOwPZBk7ueD8XN5n1ntBIpSoDwW51bmBmdU58+a9wsyq5bWRILPD4AvG9dS3PiC/AZmsTxky7KBv3THbDbJ9DuZe8G9cCzWKkGpyaMjY7dagytiFg63naHoKUFP7t5Cbd2bAmtx31pVGvedqHbrI2TGPiWW0nd5Ai0XN62rsmmyl01AQ+igvWwTe3ALNlLChu5onERBZOP5aYwGN15rMJHA2uq6yA2+DuHzYPZ7GVtrnAZdsNWw7nXZlgdmRxfPKb7lUTGZdBQ8X5X/Bau1hbtB1wsjbMq3Y0BVKI+qsc4HdbpHY46YRRNdYpR0c/S9dG00n9hRARTiYdEy7X77kR4jWT9hfYNdGoOSzy3j6cj0Of3wZH30yxrvH43j/hPaZpfPYbrUI814Ej07irsXRdUkiqc5kvn71iveIcrBXrzfhPP/RL+7G3//F3fjkox2dv806yhSyGCMC/OuxG+fx6SvM6WY83A2SYR3PsQc+eiQS7/HtYZzW63GKP8/R3ilkjmSPA3vRsxqB4CBy0RoTMRr2V+rtKXTdBrLbS7lJ6vmn9/2zm0eJNOpBlFW+n1Bu1zsrGQZYNhm2q50Znt/t/vAe7Gy3gPOODU6F4B1otfw/GQd6uQqvAlJfb6hc15P+dseHromrPD4ex7/5y7fj8PIw/pM/uRs7Q3SSObk+60xZwRlaZjMjjbPj2yULIzznm8/W4RJ9HWZNsb20Nj6pCFIQ616USfXq9yI7B461UfU3Z7xgmPpO7hBHw+t+y7AQ/f/VNBeEiu2ldJ72M6OhUt7l2zW6eglV97QLmLeNZX2AuoqCIy2EW+tGm7wiprOCbo+amdqpji/np9UFBUqhhToEN09l1wIEcQ0xk3rO0tEFYdIK9WVoybSI5KUhU71S4/weq55laKlPK6W+oJhRNzGQWYlr3cS7ygYuj+wDaYfPhgCR9zKKopFIQuet0MmkWXVlCe5X0Oaca8WlB7NBY87GykK1NanIRcS2UkMLEpkcBo1ghhdqDqOVaxmkV1C+qf6w7XkEE2S9FQy5D7md+VnK9/F2qMhkNyFnDLdPdINJPFj/zPrg6g6ZtdytfnH2OnpbuSbQSkjk3s8esynjas11SMkUKGwHZUPJFWcDa9OVHMh9PslDsbBP56468IRQ5vNpTvTskyHUsWNikn3an8e7p9N484QygcskNb9rHdOqJK8+vfzk932Y1bdzIVk2TOL0lqEp2ds/VmiqcvJKBitz4kyjg00fQE5UHbPg2Vfv99dmy04hPgW6yjis8gLXFpqDRJnl1It5qulnerDtuoaCRv01zhF8C4tP5TjwO3abKDmb2aBgUTi63S7IGJVsDt93a/9SfpXqEB1o7MJNAYQMwOVcVcsnl3AknNkZ6LAf1DpOwfrU59DNksEMijbHP8suuNY8xoaY429k4aJ2eVthRq+mZUCuSrMKFZVBy67TlQELHg/rhOwTTfc1NFFmzWcoa/4ZXgDlNpiTzRUSfXaVybTsTHmmTBkcbpJplkwt3ht3gvR66f1zyy6Je1fwo5cgWbexrrpqnwnptw1xta3ymVKeXgnzBgFO9EGzA1sN9NceLStve88ICG9LrjGSaIatojcKBdOlQ41NsE0Lvo3v7MC4vVmFczyRYyU5l2rRHWjw2hcxWUdyGpKfetBrQidEf2I40w/323G3hTO8GQ8PmyAUMxlwVP2p9MVlkdRzJiSFI7kaD6iVXgMSfhz7g0q23DLN6L80FnzfvLNITqzWzLZrj0a718VwzX/ynD1QUrKhX8NEx3Uar9fUcC1w51fXEsy5zvQ8rHVmi6+pP3i8l81rWfvsRM56FeRhn797GZ+/Rdvd8YM/vtcM9O8u88zD0/zZ5y/jv/nvfzn+8//kk/Ff/mcfj+1G2a/ITi17XCqDkayQqBGS6vPK1kKLxRZkImz+Hs/UizisDDKLy9em2twGQ6I+ZX9bssw2hul0aCV2IxPoOk48B3FugFfFObOpp5l9eRrUn+QJm+FERs3qH+whsfDOe2jKIblvCz3V/tudcZ7TMN9yHsXeHb3eMK6bsdmwmyfqdCmMIhY9DieSLmTdkzd6UUJfS8o02mhYlxNPZyOa3otIBZ+ORGaTQ25JAmKS6K3tc4rdKVoThEOI2DwyOj0SyNYoiFwSQgzOa0Tf1nG+8wbZ4pkMzhnGyNYYSgO4nB1owRHdiiK+4z4zfazlyPIz5kMuZu+lwZcZej85lnBrCmsfDPMQ0dWAtbGWm+2lmL12XflaxuXaDOcwpN2+LLM3fB4EbsnenCo3gih9zwTLJ0gAxSgOkhy2eeJaJ5Oq6pyS1ZX9J8kyzAevin0uZj+vXbxy9XIwaXhFWW2Z9eulU66vdXFGCFTli7N4A2MddXRQiJ4r3g1JNajglUtlNt219NpXWRMJKJTl6JT98D5TuyoHeYDukBXd6yq9BuyMMAC31F5zCzfX309dJe3l+JptTfZaau4tGud8323IVAPlbPKCud/ZwIDQLoNQ2nM45edPx/HP/+Z5/MUX+6gTNZHfvzt4sMaU65Z1nR/SxS344gDGIkNUTpV4B1Ke6TOae2Z/Cd/tjfl8uNQkvq6t5hVo9n+jMHLGLe69TyCPcb1AAYFRWkzNel4GQkv+ZGAqVHaVzxQnhj9dd+oa1B0ysUHcxVrO6hHRv9Ec3fzX7l97CfB6OpdytfUBZ0lJGgb5VIRgFkFx7/qUEnp1Hy3iZ74SG9CGLUcGEN+NYLBtGHI5xOdMVBbIH8oZwzHjdWVmieZTT+Y1Caj24oNwI4cXOAwi0SLKYS2+i7KDsr9zszuoo8V1IIi4hW4GXgIZxPrt1N/hQLM1IvhM2IKxnMkMroxrByAcfjjQUWPLTiOHA89l4i8HBMxRgZ7FbHlYbd3A8eIbCvK0DKe0ftIO5Oge8Dpq6QNNBbguKT9ifNCiqQcYInDSO7k0Z7f7UxFXWDDRc63XuGe/Xa8njRVslkCkmQdoPkWdK1ENcsz1DPEa9kvwSjIAvo5Fsx7ngGbbppGc6HBeTdDx5TROa5Bx0Tk7rC7j4eWYxGG1Uzg/eB60tgJ5V7dl8d7r10TROXHz+MQ2UF37OyCHfx+93kbm+dX9dtzvNuPjj3bjZz/bhf1Bu5xkYHwIlTW6/WrwM5DdHgz4P/vZejygpPQNyLFQA/wyVusTzwU7FI44TlUCI5NM+ANz8PJCCcOgW/kHKVYmyS2EXg9gOJmxnv+GbAOXj3W8OZBcq87kTU3OSnwG3TawbIhOANt1QLaRpYejTMi+7By0fFuvA/EX06d9/KsvTuOf/pu346/fHFi73ggvf9QO9M2H+B6f7NtcGnv16XgZzwfAKDYkyOgGcAtBMptaEFFGX82GLUWS9mLVM8kdvXFvdsYbvKhls7syryh7OaHd4ZxNF3/JNyMXZAqjWTEoW21D27s+/25SPA0UjU8KtNqSVOZdjNYYZO/XG2LW0XK2OdK5xNaYraCSoKLy3hMBjY3qqW3DBya+pVlMMLLModi5maLBHvvcvM0oUm2SZjYz3nQSPA46UydpCIIjQm5YY9fmwU6Gzh/3YnhXCwRxLr1W5WTLEc312yVlPovXzuxsVGhxHsbKdPYpLso4fCENnRZ8mjIjnu8giGImt99BGjITM6otWrFUS3kWM6M7hdJaKANe8+gAiAz27HyQ1lEuonrJkNDuA7bfUfPtTZXjI2OcfWDlFHs42zrtg+ssjJ8xHd3uXE9IFv9r/13OSZND5clX7950rnM9NrbZFgi7dcwz2aLMbRAS1nUrY9mHu4+E1lF3hJKx3f3iLZTSe3btp42SprDdbs21VxeQRx7Hv/lsP3719nijNvubHz9kxf3bHEtDqsOrU1y1tZOyfRlfmpZDX02lJ/oa9S4KMsDFPdlw79OV11wsrlJ7Pe3Wrm+UhiG90/c724A7VLS70a9C0E7vxa3B6F4BPQJCRWVtmr3QOgAtShtqgKcghDN/fVQV7U7OjNA5Jt3q5Ff9nD2bbjnge6NzNO25PlMd8SH1wRIY9SZ2iduSCC7sCoXQUp7JwY5EgMtwSo8SCs3PHaKHkRyoiipMY74svKhlVnJtnl4HTWaN5xpNBjoW46CF1m2A0l8MElpWL9coL1m9r33WrmnLMpzHW5yqOX7UcYvzyskzo3eR/imzqxZ0ZU/yKtSSTdYK+l932Bz3nuTRdb3r697a8yTRXaEj56ef12azUNp+nkfI8ny7md9x+RVRFizdw/YApBn3ELSnSij4ZCyTQG0to3IAZXLYxaYdXAruGe9yLAVoe4sK7092UIwXmUFVckIBW5vWZZdrraQcqhO61IjligiYEwKOhAOCi6yFxnMXSuSGEFkEM8tWn2fKjnMhGyeUl8fO+l2trGoV1TlL59Zcrbxv2nWnz/l6zlI7qRPBBCak6AuULQaUB3g63j4jGPW7T7L+tsdPlIW7jhDUItd6u1+PN4/Ycuvx0d1eislswnTgUMvqvZBwM2eJsOFiA58IQ4iinTJyfcWacuY+gkgqdAWlQ4+wBSQRzNOK7MZrboOkqDgzU6jNYj/GMgobgxdDQe3KfN2Q32BOTkJbOiPchcxwRgQ3yDjOk7PjlhY9M937P+YHIVzS+NAGtFJIY4VKIM5p+HQ8N4gY0H/7EkqVmQQRPyj6hggmBs09elGCGw6qakIcPV/S6dc6YL/ivGUVJyFCTIMkQxu5cEj4rfcCnU3FgkiiwbX4O6P+cqIzwheOME7BtXU5rckoCLbUfRmbdNQsLKV8xcwMQaOWh1SY6TKq3jyj2teCBq+gfohZoFngpRHNQZsMYTyn4XgcJCumzdgCgq4S9GyZEJlOG2CGvStzejgyM40ehq2d286BCCMKLIgVgbXjbCEeba6YA2eZERgsTdihTMRF2Ydt9CxFproMujAOrAygBLvZpd6TMQaqO2MSVZ2cjaF3u40MuFTa2X1GSSzXggIy4qMWMfqLArGC9aCn4QIfG2yeqL3G+FIquUep908RsOrulXXYbBlRR5aErcEKWsn1yt/ijlQ/buif0Q4x9zLmer1gOc/lFDmw59spo1DrUOe37HE225nEauWm9XbSGsFzxIsIumCM1dJM0gzPEXsBWbFAQfDaIYsDagqG4OP488+ex//zn70ZL2hl8sPWv9/LARmKbFgcUdfrIG8Fz5Ywb+4hZHcrJUDxLnk0eRWEaOZn9FrFQ1Rn2+aGNc91vXTwLY7bdrVf3sFH/N6cnZ58+nZe2ZXJkaHby+/FnoHOg+GsQKWfMTJaeD3WG2wAla5o3xXSokolICuxVgFVxBuog/QRBECNTVxRV95fNLSGrDQ7sox1y8eWRY0ODGke6x4EC40e6GK6j9raputMmoi2QllCk7WnI7Kqq6hB5/514DSRPtlT2S28mH1Cb/Y7oWcOMMBaYAb1+IGMupzCyQEcFky81vfMlztUym81toTs5XzrnyHBJL0rVFW0lQo7TjWtXj9NV3dP0LYJ69Q7orAcTCc++NxcbOyosWzv5tIp3lsQK2GMFFSKMVIUxYEKxwiw3qo1GNdStzE3DlDrIVj/G0TpcT1kPoPXw50lVnM5h4Pczrb2sp645zB/C18R14iWonTQba+UL6f14RZkbY8WmPL6fyHXUWd8T6fKa+HpWSRZMVAkl7VNgjF7hfpi6Bvx57h/N3ozf/ywGfsDeQrwlS1IwTZoO2WEp4ITp0uwdwMObk6QmDPs89MYL/sxNs9jfHQ/WMMbSAaySEcSuvEoZAcDdSlxED85AQLJuhq73W7c4XyAhe/JgQAbHOdnOzzImmkJNQGoNdDmK/a2k1L9K05+taCbT+We0rZXo3Qs0H+tl7vspehIk4EYI1lXV057EYZJNxspmTKMgY34l8GOOvfj4Tz+9a+fg317j3a2v2sHevXbRc+3v/WFbrz1VbVmlaV1XOYrTvwtjq87T7QZOJ7Hr9++RFH/q5974txX2XVGvY6ropWVpaSY9FKdlPQislw2hbNlc8893zkXYjdHHYmsLHGdtxksETXSdyYfSvUcGUWrMbdBXzfH+iDDXrsz6voOn9N3uxzqbsDUU1kEN3Hf61saucbMSKzXfOF2L/MVu2Hfa2Bc69VNtxbecAagZS4qozz/nK5nCKB+uq6sZxSc/a1xb9G/VB6z8k0DNMesP2KaR82otBNd2TjqsRs7Pp+zW5GNzqQGPM+RsywILZdvM2RlaGc0vEI5GXn1tcuxakoznfflHqgTGQpWBeE1KIbY9XVYY1lz1aZtHhuf74PiotZ51Z5VZL6fJIyw2uLJTD1nEfyNQgG412XInB7NyKBYOaLTPfU94Lmf9ne7VqJGKmPuZ6j/LYY3z1LGks9Xl+2ZimaATnDq67XY791XSMW+6HGekffFNDV7t4JUUxwEs7Ed+/MmjHRyx3wH+iXvrcu3b/qlH94RZC5o4ecAUzBNE1pNXpA5QFKG0qI/6E2Zk/+ZHPBFpUnpoBvDZJVX8if/U3rvSifoyEx3vyGvzToHp/LDVtIkNY208L2dBe+UwxZ7S8zgU7ucnoESQsI9g/NerOs9HvXAzd7obZV8vnnAcm/nmFcNasgcf0W1pyMDEBXYmE6pzCIcCrefyoy7DGzX496agzgnDOnIaklvuimH7hOlU5CB22D1bmVjt9pq9rUxTXs5DVlj3oIY/oTbQtWa7rdb6VvCsYvEztD0NtR5D87weT4MDvONcy/5HmRJtvnxzyzREVLARGXxu/5NZuC10F6MRq2dcFiy9tSw5MqQeuxKN1yLO9uihRQTUtH2RXzJNtLqK+/NGUk6Wg7OjXB6kR1+/QpkUw5uMfB8RPcOOfm+oWCfPqqNm/dgkPr1QFzV4/bJz2r6ZNDn5JUdw+dxgA0ONuukPV+A0nN9bx1uTlF2jTrxeU1ISji2x4HkhSY4xH5BcsCOJ+e9dJ3XQbdHJjHa1kahVpf/XRhBkyFgxMvMVJ/rSn90E3rV1nKtwYXdmVOXacmJedviD3XrYFbfi2X895GAXuqRb5P1/slnoPvxxbuX8d/+i1+O/90f34+/98kvIhrFWltkYDnhx4iu1SAaOoJoKf5ATgQROHSHPYM5IAZ/7gtgx9OR5nDS1aMUZwWTXggO1ZaUxFHznWmXMLqM/seVfeZBZmx+f8kknayMU4Zg/llgNj4nDE5WIPc6ZbEBRnRJG99RbElYR4kwlnx29pYsI6zuyY/LDci2RXiuw/6Ewqix3W3iZkiYUMRNy57OuaHDcCmH2/Xjzta3Sckxw1iuMmtVNVo37ORylqY+vEYSiJSJBWJir3bfbgoiRpM5AshcI+oGhRCKMWDijI6WA8Fxzdou5SHRv5zs8b1RaUFjsu7Vz7oQAnzJ0eqC9FJw0bLx84HcBeMYmQtludkPtXpbhnIJo5uR7GDIlCXGvK0UOHpOR8YLayNWUynbXI9EQsRdoSYqmF67AqERF8kDtD2INVKKyAfGJtZG1DMhCzI7vrFu1eIt2ocYUqQ1vaQDioxTsBBj/3HsYo5jHYkMra1prpMWPGvXZosu1HydxgWR1eir5HAu4aCTn6/n5xrhc1pWdZLCvi5dG1ilJVLcYvvFHMI4gTGC3uWEhRYRij+/yC1PMiN7ujN0vYB43W7TNznPYfxA/vF5sF/iZ32igi5kb0uDPFqfxJAtXCSNweGyG/vxejxdDuNwWbsb/QfM5j/MA6Px6m4zPnrYBkN+OEiSUajJjx1qZ8dtHh1NshitSI0M0XaBJKFZjLc7WmiFGL3SnbfuR9b92hyjo5H9lF2v6s81MsHZebbzwj+J0uwB1+sBSkijfg/nhhjOgW7iWPqRCEMtb+hGuW7r1dgfTuOIPS6eAHYWyJvk7upQaoyzMi1V70e7ABnrybJoe20OcOQQh3GfiCihqPC8kJs4AshlmgK07WpORugX2Ri4f2B+2LYJeosZTF8PBi4QHhnzS3IynJeLBlmqrKtWJjpkiDLsp6iJ5h5F79yo1VT9dDGyfGA99eeO/tuqf1UW4CJyJa+tYEuGrbEB0q3Ij9IuaOOHc0XNM2S+YWDxgfJg7LBzHfLZNxkoENJOdhQQR92ZcUtDM7fH9URChjpr3PqLYNtA5BEG77Xs4NI8JKXLKhuJn8jEvlKvcryJJFIwOsvRDEddJVm4fqIUFgGaCqJJj1rfO6Ch7kh5T/NGzHuEpI/MLTqsRCYebNer8fNPtuPhfj3+3h9tw+HHGIDW59d/exhPz+fx/uXIjKTkEDLzAB8iw36HbL7GCHWzWGd4z/p6d0dm/WgDZfScan4DeamFwqBQPQLI7vBsGC/UOBut8ry/jL97fxkfY43f7ajCY1watF1H1LEnYg/nugR5mG1m1ASjXdZxD6I6tu0DKpKIARLOBoFeG0vP3RSor6XckIZcZ+SzqTXrEGOUuqH1qctIM+DEzLqzyXne5ZIYdU3A0amzLTgTkjgpDHBKwYbAWqStznew1lFGjgz025dT8CXQffqe9Pa17/8dONC/w2dZxm2+q8x0PwBL+uzNy3h9L4iZd76zoRGIquxtQnWWkb1UUIsoSy7AblTLO/Mb+qW7llrveY6FjZIZ2ukii/G5zkL1DZbWfEbL/JN2fwnnMldsPLdzZM1tUzo3esFamE0zqofq11iOm1uGdTigP9sNc6ME+vNe/+xZ+Lm+KR/sZqTJz9kzzPOITyJBkfkpOalPpX6Wc1V3JcWbkez5qz1pPMES+2DmeRv82u8u4bXTu4vRWtbf5QKvOlMzQvddmsauo45eW+0eqkZ1sVozw1TjZvbHgla3RoV2oHugYTpd7+nqv2utsQyD5/TKreC592CfhYIpnm4wVrtmOgIEXqHdA/XPtmDy5QWoJPdbzvkCFjU5E21oUoF9QE62wfUeX/aqXpz1erW00ob+um3JGdWylHGaiUV0et5zziaqfjlvfQ5mpMyJ+bcMa4JSjvub5+P41eMlaqi+UwLP70mH/64OwyWDBV7wzgjWaFF7jVtNBKTYMuyGzFzY8pNWmF9rAa2EwnZdUt9YitOl3FnW13tDd5TI8jOFfpvPWc+R0qHWeXOueJnKTNHg9bY123Ahc5YSuNsSHt+e0bVc8r1QFPfvG3HUUCrTuwtZ0/ZqZYp7kJVZMaOpUt67DVYSe/H3yTG4IUfqliR1HfiCg5MEEMr2mREezq+DEIKwmyyx5xE61Drtpe78tjWUqPu+iCYjy3SVs23Xa5w/mIRqw+5rtOorN4iYuD1SrfoEHR3USgm4tgqau6yhn1fSfF4HTeUnJ+SexHJi0u615gt7rNu1vZ7Y9tPVMLRyCK+tiaOs1cJ2XexzMmgjB3K3CufZ/5CJhiN52l7ib4zH86mX/YkjJZIXdPyjnbQSE3DGSIi22OwiJI3e0kmMp97ezvRHoFlrXJ+FUw6HHc4vYN6bw2VskCWFM3wUOmNDbgdbY1Wv7o4tJTOiVDLmhi3dTrv1eFG/5I6s8l6/Rl/eXpb83rW+9n5fZlYzOdFspuVs+z7SL75aC6v8r8vw+lqf5X0TSPkHP4nAzpun03gPsrje//kHfvxBZaDfPh7HP/3Tt+P55TL2/8V6vN4iRriXsGcnQcYDDel2Nq1qjdmjFX0nET3ZpdBM8dvqN8mAy51LO0+1sFpi6DBMiK+XpZkya3FVz2ILH0GDBO1wnaRrY71w1Va4ZQWrCkP55Pjc8XiMaGtEvMFUud4GczJ6U0bPOdcyIFvldhlqYVtQIMOeWLRhPclsnRywVAaKytqgUdg9lB6iUMi0a8x85dll1SEtB8hHGGLODGqzslb1HHW7ARUKFmeOGTKns0Ev9ta4KxM9QTAiM0hiMxxg2g4DM3ofQwkwghbQUWVkPVuZgU0iDo7VccXsRDn2IoVJZUY0AbOlbGvESK/Hz72BeYFTq7O5UlR6DVfE/wlvw3usG3fH6eqzq5p+SUFkTe1Ac9xUm+45z8+58kr3HzXrxxj33a6y32mEJ6kLIpJa48g8X85ju9qqxgqZTiI1IvOsf6E0nR1LMHvtEcrnglcTIBK5AO1r1f0Xw0GyqEbFrfplYw3uL6fxVExynKfQutSuUJxg4Od7uH8vTlsVVZGIPUYymnmecp2AkRJtXdDGws9lSLj3f9bwl2N527bjG/602+7EPtPiiPlqEH1mFXjNyEZEXoIKolY1s/qxPwXbCGWHO1SGDs/AOstbh90CoktAOTqXyShLIUMPXBOYl8jEBXRfEiTHWlpdE/3f/dmX47/6n74YXzwTJdHH6rs8Vt9TAPg7OTLjyHq+3ncUNaKW627HgyP4BFrdbh0NweQM9eL9DivutY0Ospqt+ENHlcuAvEujqi0ZXBTdiRJRVpeFwmzkzalLom/v5vLwGNDBI69A8j2A1R2ZpwOQJMhMc21utsg+WZ1dMWq0GtJy0hHQDwZuw3evUEOGt0hWdPIpZDunHqmKxooRG9nj0L87Qk4DJaW2gpb5ETgJ1BkylWqlI9LE4+E49s6KR1a2anQ5bzWmTdHUGAcTsertw55Q7+JstqznvVzG++ORDsWZ9Z+2wpGF7C3NylSvCbVfHpfEHLkDQM/2B1sw+9AmcV47d+hwnRHPG0td7Y5i6SWarxwi61OpAup2c9YIopyLSfOe5KlyZmJdxbgoK9ycZ3scbgu15HbJvzWc0B/iYo1nuoc+iVpTMp0Hjw2yvoEysc7RTDh2oclMm1Fz28B/0wy4hpY1yiSGivd6AMN8GHKabc4GbPtuPX7x0Xa8eliPP/mj7bi/X4+ffXrHGvoc13VkoA+/uozL+9N4gl3aSPOeXiDrj9FqCs42MvYvezrV/gekA51joh7evwXnhtAf6Pm+Z+2z21l5LA4gCzyuxvv1MZxo6LbjeTU+PYzxM+zbPRzo9bh/WI/XH2/G3WqMj+Tkk4mdNds49/MLM9jBLH06k3l6txp/9Mlu7O/HuBzOsV/2R9i/vH4SnTUhZZsh1mo3YRsiJ5MStjWM1AlCtor+0MlfZjfmiRZlAAnZ2huuPrsoUFTrj1w3KZWkR2LOIA8AObCdDv0u1OavvngZ//OfvRn/9tfP6goxvv1RkbDf/rj8Dh3o1W9hPHx3Nc/f/sAkPu0v4+nlFD9f3aFov6JyEznXh2bDUTl/p/VX5NvzYg+FYmd4ivH0dGzVkhielW9a4XqTWFn5eku4rs5T8Oz2XwiwhEVwGzpCVIX+vG6HcKcSr7RTHXkfjZDFdSW+56mcs9c7GnZcz+h6n25QTxm7Ni0OB5hYJJxd1x33YFfL4mZkz/OdXscHVlQTOB5q6+cObZlh3y1T3p3anmFQtJ3BhirircjjvM7mk7f1Z8NBz+And8au1gVr9+p7y9VYRA92wjILv7i0na55QvyczibObIzTLsp75T3lNLiGSvPok3ocfG8doTDdy3Qnc0jBiJKrzzhboNeCbM1OvmVbm9yEyd+UsX2ft33r8U7Yeq1tP9c81/r+UotkRnlpaFf2ye8m03DvqdqiwJVlWH1ouecv3RX1eNOxqWGcRnaRHev7hMuyv99XIX9OnPGZ6mgfazKHe48D+PhyGr98sx8vCwKr31Tn/EBd4N/6sNMQ+33Rlua6gq8tivyz65v6sfymkQlL0MF0nqX+ulowtQcdgPPqqAzKNZmNNaD3mtXRXOV59Ri3n6WVZVQ2SYGjRj7ovf1NVo4D7+k0La7/IbE/37MLb72vZ7RUjr3tAde5W5dHneciy9lL3LvcakEPO+1zaYanrdkLXVknA6+7/VRQ3bXiiXRQVJGGt7Kp2ucJvS5xNw3WLOKbbmoZ2ulrTSZPY9uZyb0g9NPQ7TyT14XO0zOR4Sw2Qskp4OMsfHJiNLtFN5SXbjde66PGwvrEva6NKnFWM9Fg6snLseK+cslVosnaz64mHHy1fcqpuLDHb+s+0uHF3VbKbLb+YBkPmbHRUxn/ol5bNQ9AxOA9/OvZ2b4X4ZyGc7uhAxwOs/4lH4ECTSYKnWJOUZbEYE7fL/G29njUYR9X42V/Cof97uU0HvYY5NMYG4SqLmN7z1LCY8D9XctOSHhnUncruIj7RgYe4wmY+Xrs9gryzEuxiUjfn9ZGerDzmrgWqUazzJul0J6yAPOt+Q64B1rZSdfWq9lWz9/bJz2uxW3U3tWfL4fT+PzdIcjDfiPn+Xs6/qAy0I6cvD9exj/75eP4+8934//w9x/Gwxb06S9qk6NPMnUlOKxrj9lyAdEYsBsXK267QmRL0OP3PM6rPRcOSDJUi4h7QBQm6ylVJ5vXTAVcJ2bN5jnqRSBw6mnQWxD12GTMrPt2LVNR/IP1Dz/3h6OiwHUOClrS6mcufL2JiBvrJ09TjfD0vIo+2WFkjaPuVxF01qa6LrZDc+fzhEA8aiOvtpOTwUx8+2oE1EVAprqrMBCQNQ9qb3xvG7WawbUerN58PXoYt3ry7XarWrT5nlxbOpMmWbEo4hqZEeYpOJ+sFTYEa3q++iPqPnvd8nqRfWPNN4gyKKAjwqcBcFTPTNdRo95anSHjjKdG9tvrLKKfwabZHA89X/SnNGLAdbft3kxucmPyr18SRwACGo6G9wPKIpuvxt7guMbzbdlPNWwrfbEnFLw/uoANg0p1R8F0HdwCWism/tgIraH63UAlqLUW5i96kqJeUco2WOgjU7NsoqJniH1OLlgjCxKSKVbjcqBdp6ysTT5csVJG9qoFdWK/OEsca6OxwC6cY6+tbueZVXW5v/qa1mRNR8wz6v6CrK2qhzO4ke6tCWPKMO1BHF6v6psoG5TJUH3tNQS1DDZfs2qjBXvrRp3Y+wMlgvlHu5KxGu+PrX3ZvztuHmb1/9AYYXwhEyIDuPTudEyNGG5kqSLb0cMkafAyE5OO21XW9doZpqhQSzy3khH6BmswGLNvhLUii46sx+aiHvIkH7IFS8q5cuzy2VwL2SCLNIJVagJSrU1I/LEDgz72xJFClf2NKwteDuzi/CAigkwO+VedjWtIF8Hl1oPaZTGW2ehXjGczKsPOWjh7IDbxGfABsenGOhiruH+S76VyS0cvZL/0STgkJ8jOYvv1PdtdpNQSRWWUBKgbggx1Ogv0hiPYfmhOTXTU4PxGdj2J56oMiOzVtZ66LvNr4Hfg+q1OIiF7wMXRekR32eT11YMPhj/Ho6gdF3kkWqcjep3jfJxJ0owkuAfHTpJeyo7JyeTn9l232pnHOjs6sSEZm+li2SKLLJ0Rgne7TaxBE3St4Hzu1lErHIzcD6uoi8Y+xHpCzT7mNcZ5kYgxZ0g60Z3vw1D11Wp8dL8OKDL2W/Ts3hPuTKBkOb21NktvRJ/x3Xps7jfBkr3Z2cHnAqgkhHuPz0406pqh17FfQewVTrSy+V6z/rcH27Wzri3JUugS7QKVZTAjvRrPzyfV74/xjPrc/V3U6G63p7G924+PPtqOXzzdj9cPm3H89C71poNtWONm76dulk+Bdfqwjef/9BeXcfewjgz0ATBmIBpSv+tcyiB7lrrIrYRXW98L/wScTyldYq+Q/dvlJ5FoaplmxzuuZFPbc2uvM9vEzkS7kwlsmUiVKwqmI2rQbcFf0LrqMP7VLx/HmyfWuf9WTvS1KvjxO9Bfl6X+plmC3wQqN+faSIDx63f7iHad/+TVlSPAxbdInfW+u8L8kC241YfZxFQTSZ6neYu5KmYPcoou9rZYLePrS1R1YGUZCQOu4N582CIVHEnkVqUve7bZtym246ZM+2jeWphzrVZ7fbGJS9lV5D2jqWlUKUc1XVeGu+YkR7KGaPGLNq169faQQbY96lni+VI54LWRC2pYRl7VObuHrR84ne0aoGkgWvAwX6iId3+oVlPeSZoUOFgWe3ZHf3ksXw6B2RRH98J6rbbJf75KIHks4xla3/TljZjtno5kY1q00Wk2zOwJLOOmTJ/FwC2eO2WCx6l+yyxK1hCWAegeq1PtfCtuX0qryMIuZbQMvtxyHtup/sezt5jvG/Pl22zL8aa0y+DVYo5qDotEqW+PaS04u+3xydf7COfp6hlbOUK+t3yOtl/mz/gMeUu3v5dpc3+u5B6OF8D2LmDvpAH3ndY/f+C43gq1nn4sx/QMN2/8aoV/5dFRHrfWwfVFv/7ILHOK/tKLJru6dVrfS9b9K1BNg5FncnC2CeHpJhdab7qmyUUJ6V3yKMz2Rr3U21w1u0Eb/GYW/dZ+zmdsJFsp+3QnCx1S49k1SAX45ie2fNKIt+xc2h69HvL24Jf0lvzz+RiscN39bBaFalDwgjL9MtDNC4cqOBaKrAUMetG77m99w8a5nlcLxpJhqYb9Xa3DyzfcJbQJegsfw80ri9gZ28v2qfXuOZ7supbB7us09dhi71lWOvOMwCZarx2jzzAcKLZ/srPXxy+qfJqicMbZ4++M9m6zGvdwhOHwR5AKwWruDWflZxVXJWhdD9nhTufTXAOtRK2Ps/kIot1cEKAJit1qml3XnBngFrDo0OilV8GAihJC4QAiC30eezjQQLA+nyLwvT2yxdurBwZ7Xz0wgOOTmpAxAncTAoyBuEi4iUwMWWj4JEYsTEi1D2mcxZru6MpSy83WmbLTzZjuMnBCQRaMsMpQygZYNeRimjL97754ZmGb84x73R/O493LORi4XYb5mxwTuvT3cPyBZaA5MW/evoz/z//0N+M/+Huvxv/x338Y9/eufybzXRyu8zXkAlnlSEwRsx8FPYgTGdLUnVPExlfnoLgPqKOdAtEWrhXiihq/rBVmpizuwgzD8QuXIPrHxqciWhwx4aRcYhaNaxQ1p/jq/uSMJ7LDEGgl8HD/ptQH4/Iavd/MNKzdHYzhJlmTUEMdVFxPa9OtLVhWU32Wo89r1AjRAY8sUWe5nowBAX4buZL3c+8FiYhpZA2iLvkyjmvV1KqoLd6OLJVZkrlZmXET+7QdxmQiXVgs3Z6S46gn43edYW4MshFF3JwJIQosAPo9E6EQ0bjGEOksej3baVzOrMdZb7gGmUloMHZlK6OvYxubBCu4dlXvMcsiGFf09QPTZFRBmzxcz88aqTiX6tCRPcV5wTwdUdIQ5GSCjK9FtsJ9S/GcnYePymC3w0rlevU9UhmybQ5q62LezOCqEcZ8RU20mL9zDlzHKBb7HDsNEM+pvuky2vAp3DuopHh/6hWufs4nVPgiWs8N3QisBNrGeZFqATF8XJp7vhzwqqVkVpxzjtfxeRpKFW5lT2P1HuXIhQwggkHOuAJnHAWK5TKo5nUaGa+sfVfmPebX64uGFFtqE4kQo2ZW+Gb3dtKlWE6RoVLPbmUMcbVgsRVLLwaCHQTEizDBv0gMRLaHOavsPuqu+/dYRk2uerZyfSoL7hw8CjVr5ce+guxhr+8x/qe/fBz/4189j//1V8+/F+f5p3IQmij44uQkFnkejsi4qn6Z/idglSVvcAT7rPRlynFn69JgHGMLoxp1pi1Tx2sw8IzzoSY0X9d/qQNbALttCRrPl+gPPh/80AlyK/VheuWqJbZbPht2/mmeD2bjKMNDTqkzxWljhvx2atkD0et40QYm5Kyzy0Kg3IMZ2nwezXKkoV+vRXYb15Izme0mkWW/eurlOMhpcAAvHBM6OiFPG2IAn0EG936N+mx3ElEMXoIH41Hthuz58mrG7mDcc48Pfx/SDUzYl3EGS/cZTMCL7gUdZSSwkm0MXCRqe4U6KDQYx3kbA1NOyJ26QPSs+VUeo5MkLdjRus0SmXSt65pO98kQ87UYiaPzBO6xyVrn+bHug/0a0OGogQYDsRBZfQG2u0h7Y1HOxnZDJgsTJBmtw7RPYn6PY2zv1+PVa/F1BKEuMqnYx0S4kSyLE0gEQV2ns+f4BDjHJ6+24363GfcBvYY+5WfeiecFGW5k56d4is5jmLfv9/mFa+kOddroB4ws9vEyvnx/Hi/P57HfQ1YhW84MJZCKcErDpgnZROeZUG0iH6J7RrBy07YNVu1SqhkzSafL9+e6cyEMHNE5gThsjPHmzX48vxzH3d0mfAdktlH//vrVlvck48U2SaxDIRp2UfwM9nDZz0BhZNMoONDbcX93GXs0n26SKEvqe6/5aYXMKLRCWDQEQXekvYAYJeHzugQgA0ltX/hfIiSlyU1cFzq8QogmSQsbWPvVvBsIFrirDhAQyOp/+Xgcnz8xSPE77/38/TnQ88RdU2X8OI5g4/7yZby+Wwf7m5un+2kSotMifPRj+krqZ5yjOKZfSTg0YJ36aWAk9YHPj01n5g2dr527lLAskrzBUq50CLWwA/ri7zsiM5NmlG/sfJ02pqR0RN5kRHcl0s/ah2AZHbTzzEcqBT6doZ3YNRJ5vox4twh506ppYvnUk96TUxPPp5jmEpoSvzSWwHSGlgbIoqarPUrSepngqneYcpiuR8RqIdUaiBuviF06aS1KmI6o16S9Sz96s86y12bbrb6fioxaQBrSVlFTAZKl5KT8Un36f6a5MqS6rUGvw7bu/DMi0s44u/ZZUGH2oMWa61WKrt2pNinpmNlAd7/OXnflyHcy01rxW3EKmh/3X7Vb+Zw9sJI1+8s66sXnvFT6s08rriwS/uVShdJ2NY89KOJZ71mJtnUUoUjDK7XlzMJdW63/tTj0VqnZFuZaJOsys1JdNevWrxAC8/Xy882xSiO7jZyXeVvubfx0f5fL+PzxOP70s5dg3+53f/14swz6TvTWLeH4Izgc2Mp/y/fa39Ytps/IPdk/1xyF+me5OmcEvmrUl9f26u/Gn38WnHMhMfr21XtXucPMdqVUnZzc5R2FkY4g3yTPek90B8+bkdrrA5vR3uXl3I953pv+XGbK2v4sMPK1Ls4gQz6Bz9seTFl512H7X0eFRQlQu0pmH6crO4O6cP4WwXA7qb4/s0RHosL+N5SHU5aLFeDxCP22FAiT/VOlI64Bzrrpdt4J1NJk8BIa1kcu90ybj4ndXLKfJQYzq/li6CsQ7XKv1j5pzhDO45kn0PvucOFggvVd5+YxuV6UOjigicCzHByXBSLTGvOuJBLpQn0/89pYCRIMDiHWLRMCjj21WbPUMYIRuSYt2VtmVxl4t+uCLYCSBjwTiMDw2uHA0gVnj3PfuZ441ar+q/fcR7r/nbZVP3I+6/5qsp0sqeDgWa3GsmVmZPRX4+mZiZCnJ5ZnetXQ7mfLWgTsYpy0/nOGfW9qrZl16wsbItFYQtVc7flphd0+qiSkI1hrqZXT3Ov26wLT+6u6T9sDZbO198UCT9K5uTUWAjdgNkdwA4Gkm6WC3+L4TTLPv022+g8sA80Dixo9x97vz+MvP3uJDfrvfbIZdxtVGyaMZha4kflEc7qoRyiny73fsm40HM9aSOw3LLPdTm7T1lmfKBZAfkyss1h4Yr+OqNrBLQDQsdmTb8HC3F80Qld0OBhrm3PgbEOEdLNnJ7MMF1JjT8el9byNbBxqSSOSXJgfG9IpeMI5Yi2THvkbHvPFmU1llp4BhtarWDufhosFgsYtem0j6jjYi1K9ve20GppORXZmZkzzhcO1wqyZMmO4shWNjCb60q7RamEXMKan/TGCM1GT2eqRo0IafaJRM6fcs2uw3TvbgmgTqIMxNlMkHGNJGWY2ZUMZI3qcn3JvZtWvpXSmAYdIv+L2OU5xQLjHGiJyIMX/GVljKlbqKjKA+3ksOGN9R205Vp9Y4m02WulFywj254xnQKoTghT9P6OWWz0lNEtWIpGLFBP68XiI7ANquZKjYHUdLsg+omqX4j3ih8s+nEIrW6GdkQGLYBfq2pgpc70uo9ytnZXmwPORdZ3NYOoKDfMdmYGUCS2ii9+BFtCetT4PeGPCyRBRJ80tkC2RZdEsGmlORnPdb/ZOZ+SM+wbnIZrC+7b/jPtWf/JTzm9jt3emMfZi83pD5omUsMujdm4fkZlxMdQKe0J9UvuHYj94oWONzGUkRGmQtGB9Po/P3u/Hv/zseTwefmRe7PdxAC53PIfREnIG+uV8u0a6+xzpVLUkb/OVspa1O012nCIb6f1xo38xb8uNZOtY6o1whiSPu8+TTlMGlhuYusn9CgaVQwajzVmSeC/bD1FDBJpKdXqhV0QRe5Lu2WXMWWRQEig2aJ1b4vWUGWutq5ylwk+gPCIj18mknOVXf2IMUTg8bXCCYbmlRZ3NL9lXBn3yKegUyOgdL6vxbn9kJwCNXTgtYX5AZ0GPLbmATQJJgyp+4N4b+eLScQ5HNoZHmXyRml62XBfBUAybRGvF41QOt7oCRE/fc2R63ZsaJehYF7h/XTYO1kQzcx/IAa+HtM+kV33fWGPoiRRrVkEGlzDpsPPrGtWoP9Y11DxDzsZyjdNkAsLi5cROAR8KYuX61X/U1KHO34io4jWJZDu83g7heCpJlPehMsZ3T3RYiBJcsV4a7Ng78rPAljFDfw9++zmTGyX4S7h2eZ+cV/crTodSdjNsoj3U/ctlfP4FMrlM7dzfx5ljLz7j3lS7zIA7gwxnMGqrn3jMhcyGMwLxUOgu02jjbXMkAxoLh8mUQCnrkuiLfZ3RaAPjgmx2cPvAHgrlDAg8ejsjm38ejw/bcdq73QmDCq8fFLi4U3cKnFNBmli3chqfHk/j/XuyfXfCtB656WvC875M6E3rqSWh8PYOaNOGLBDJ/CQ33Ps5enR3VJiuZefXjPYrBW4cqGLXmHpPrd2jkwbGgaJLXXvAWfJyGL9+8zzePh1+e9j1b/L1VAq/2Tm+uQN9+fprf9XxXWWpf5Pz9KiLjyA7OF0COvDqbj3+wcfbzEA6JJSJq7aYHfnie2WAJqx3qgNrzNr42w6ljOerYJgM8YryqNZIbbF4W3aIqOBTLqYCrXsKJ9dOlFroED7mCKwNDsOstNUmSummNpsuZsaaHngrqZ7ugS/O7yQxytU03o4M2lFcKqOc2UalfxXwyBo1wXcXR9RgKbro27Yx2LPHfqKsy8qhpgdGJsnN2BzPAXmzXHM9byhcEXtZ+dkcSShMM3MI+W33s8gflHG1gF5m4FRwXb9jS3iKuNvBqSesRI4Z2qUIG3TTgYf8aDJ8QnBWN8EkfcvoqqPG2oc28kIQqwyiTZGdL7d9C0IV91aUtXBdc+i/5nqyFMwtWs8uTC0rkmMjMrtm1NhAnuqE45e5P7mNl7yLtifzPlLZFTwq6udbTXXPijkElYiAGLsKdEwP1pzn2qrzPeZP7RdD0/s4Zm1ZtsGb5yTmxYbqDSe5O9DJM+AaKgeqMjrdgnjTOWpurxAskmuscTuPp8N5fAHykfE9HFdiaylnapx+KEfsZ/VCvXV3DoxxmK9RCLkuU/DMDl8eWoT+TqJP+h5aHMuXZ9hhBRpzzWSat4JAQvFOgrOp68y+uJ65yJN6VwZfr+Cw1iHe57VXfd/LWS6H3s9seWgStS4z+Ci97WF9J+atD+tiz01/NtXFhEBWRl/ZT3b84VBtgnGNZRO+T68F/GbiyptzdSMw0msmU+WHvVCKNHVY6GmRQErnGxpOVBNldhJpSk93OdNlkgfFdcdgxu5yyUgm+lwMRCP43E/g9coCqPm56eCX3pjAiR/IBva5D3LWq6x9RxLVAGf4p7Uc6su+Q22n+zQRW/Yftj3G16NkQFkdO4sBtxXZWzjfGiPD1G+NA79vVCD3VF8b+D0JJJVpDcf7COg2IdnPz7BPV/E3nDOQdrmGOfiGtFF6tj6RCy4j8mt9o9yw0zNT38a+7IVCJ6QjjoRQts/kGGKsT8i0B9kb7uEY94ngA9XzKrLzd2iVK3ZullJigZfMMGEhnhfkawgaLAfZkHLPnXVuJrp7i6mpj3h3orvRVmvIpTmew4Rk9/pnrUEHbwpdMXIN2mmeuvm0c0VQtgUWeasM0jy+HBu8/sd1/EFmoL3uHp+O45/8s78d/+Dnd+Pf+/gfjodP7oqKWQY9YUYVwUZtK6JPZH62UJRRqZXaYaajkW7YGM0egcjX9ZrEnsHO/zUHdnVSBoDpqVK+UnCnMfbPhONG5miDSB9qTlEHqSi9C3m6E+uNtjQBnLFEtjDqSjgoW2UqIRUnpck0fUZ3Iw+oGjK/zedgJoHZWT1vZNphzJjxEp9DX1zmf5En9nfj1iYCtxa0ULAB54to9FKpKIvtGozY2BMe3M/FuuN5OKx8ugu5Gk+HMZ7Ry/GI2uctEykaItoEiOyDmRo3dqAxcOHc00gIClI9X7sPKUEbC/4A3lVltzLkGDOwHXIso2dfRJ8h0Fi/GBloMbLnWpbKc0anlDmrckyeaDc2gi9u2+L+3hK0EeFXdiXEraKzyBTEkLrtjFhOzqgdBNuqoNsRAQ8SgGKkjfMpSBTMosHKrOx+GC+MkJtNHOFNGsboE7yqdZaF72UgxRO5r7TqsPxcrq3N6G2rNwwmYDwz6szD6GAYFzA26L6o+0KUPrKqVSvBSmtdLyBd+E6VILm/aqzPNCjdp5l9j1ldXi6lo2cZYdd69L7LVZ3n6VKp7Yl402kkGdnOaHTDN7+urEQz3pCZ875iLZ4yxTH2XKnkJ8Azgi9bQa0wTAi9Rg/6uE6uV8ks9wLWwaj2Zfz543n8zfvz+OXjElr6/R7pcI4f5sHWVQqW3loSfa5bBlDTnl9h1nHOnk2ncolF9rWpchT2ei8nMXWAAnbtFMpsQJ7P5++kUA5yxf1N5EflpJnUqecTbXQDseR7UBwq9PR9dKIgciOciFCFbjdICCIOGMseo5CRyjb5jmnoq7VNBrB5DxwL/l4uuvvr1uDeaQyA4GCHBcXBFo6tY5Fx3w5YdktC0NMwB+x8HE7jBBkrZ8fOMzJHqCs+RbAZtdL8l/DjRS1V1aozoxmOqQMbVq+66ahVdckL/o/6yPNl7AIRRf2V9dVx37aImhMYJE6rccF35NRCdgF5xruSbaSp6ONbd3x9WDd7mtzLNjg3gB7TaZIbJtadWMZt/2hsMmnRAiLN9Jr4ah28NT9AYbI6BN4dQKh3OpdL1AQ3u8fs7G+fjtFz/OFuPV7dbYIIC62DPBZ2cNhGiWvX/YOjq0rLbBJ9McbT/jT2RzbBuj+yDzYcY2RjXULV92kFsLjfsEeexzrGc3x5GNvtcTw+n8OBf7jbxv47oM8zdIs7aiS7s7qF6IyJFvO8iHGfiTJzpPQ9VnrNAaNC90lGiFcnOq3ABtmqHzKp6eP6QCsi+w07BzXSgUzVidHner26q7rn7Xo8xO8VUHt6OkUf6sfHw3h8PI6Xl3OcC+s65UZXbhJ2XpPK4eizDe2XD1qakzq6lYPqhJvtzBRfwcnurPtbzizb9quSCX5J3A5eo3553bsO8Znw78uX4/irL/aRyPxej8vv2IH+KmHzfR49LnZ9d4so7SS2KHz/4m/fj8PhGEQAqdXkFIeiCZ6hqvXsdEMpEJoT26T94i5aJiYj0j2zmvnW+l5bmYrriUGbhEr1Xt0HjVhGv3zdqVI6vrscw2Zve9F7B6YlpeidHCXdYEZ1+5PW1rx2npdzclmOTQitqkW2waO+VQun389dkrGQAB3WMgc08jUFKjqNFH9QgduhccSyG3x+fjhzgYYMQ1EZbTg8Rs+GM2WCETJFhisRsOSm0DsDeetmlnbWZd6HZTRJpKleJ55TEVDXKztKWIuNZ3W5gqjoFoZFX1k1Zln73AzDPi02sB31BikE70ljarZttSpxCxdDhZeSJqPcyljTQS7Dt8cy5nozklDlvU+1Pg6fUvtUJL2MIkPeAqo/jYKMyzTU5RjI+AwDM07SVpzrt/1nwDwBxSzmUby0NPIKXcL/pKG0FPaxrSu7lL3eu941xHp6kL6Hclk0zVljl05VWxnZwzwNw0vLavP+UeLgmfCQW5Y5OGPDaLrGzWxOvYbV9OXLefzV+/N4u7dcvvxeUFA81+2j30G5Tz+sowdla8rL2HV9fhlSM6qhvtxqX/Pcs17syI0UsR3eP6EyOMEkrh91YQAA/JJJREFUlKzvmChpyTCc99bRU75uBpSasdlv0IKqyZgkyRqLrBwCu2iD2DMw+lTE7oIcrTZrIVdmp9XO5FXmUc/VP8v7mlm4rauckbUz0dv++XvOHjY/fb5eTV8crDFlVq2g9M05g2Pm4IbkXOmkCha4p7Avkui7NvQm9IrOX4koUKpZZTs41nB8Aubdoc7zAnBrKcgZ9JYOpI5aOvF6zV5rMj75YPSC78PD1AMalTmuf7YP/JlwNPWdSDA2QJwh7WU7tP23EFkO2i5tsuXhYHhAaqfXC77vJ8C+AMtx6LTLNkqg0PosHFc5z0yUdDO2dADveL5nLBHUKKOcb3fgjCF4DCc62q0l6sNaXRJE6yGqkaIOG0RjAxmIQPIhaIJyuPWnm9CPQXIYZV+XOZAwscK3f9pYzHJzfbDqoqPSZuRdSol2vpg32bu2BTaROBOqUdDwcOxjMYEQdp6s82kzXvYstXw4AZrOsr2uc+GDIOAAkjSQneFfEGkll01HwvqnkhF+gkW6P+2isZAvknllG0t2InDSa3M+oLe6WZBO+Gr2U/wbZVTvctOzz5SDCBIBPfbm+RQ/f4zHTyoD/W0MFnwWQZ43+zHuny/j8+fLeP1yGR+jF50JoVpxPHoh00DsLXrKQLg0IzkUhHZzvq+F2p1Ov+celPEzzosIHtN1YfgGM7HuukcyW3Sq13UFS6EiYZHFNXtufnbeYHweGL2oSbQRYceXi51Zi3pm/cJ7SOIn7pAzlPANkoP6GrLZImvrifCE+VaAgc4T/gpKaSnwuWfjDFO91kqeN1/L0bSE+0SBcWV747ytHY6hdUsoFys4nTIDAuAUQiEybRAeupeIyKHlweYS/RKjL/iBEVTUc8VZY9EJdn9rva4if12O9k1DsuO4lqZ8043TNXAfqNG351VCrwhb5nGY5TXhaEQmAQbYLglEoLKfEVEXwzYDD1jjClw0iBi3B61C1h37zj2ecvgFbSJDtJxeOeNe6T5nMMmekYl3BsOBJMD2ZmOJUeXGECwDP4hVOmmGzDy3+DLUPGraAdlSOwYHaZbMkl3lhEIOdvC2F1rtUrBSL1rN0RZRhkAZMkLb57kvI9Lzdnt9deeiiEyakSgGdiM3ZnfV0eWCcKXRCRQE1lEj83GdqclripiJv/DaQuNgvgNZoHsPYUT5+M//5mn813/6NH755ni1N//d8VVH1bWFztK+WJ/WYwXiCB3Bmiq2czsHgQcyn8c3ONhvHUboXKPR4ZR5SK4bOhkv6T71pencRINwbSeDrBnfI0vcnPPGH5G3YV2CDJNKntYtMJ0fUfYIHBJh0KucgrWh65Dh2b0j6qZVHqLtg+9E7SMyVYJLd/3YW3HF51UDnA6puyWkAc3vkrySmR68wDpzZQnV23ehCTX7xeHi+EXcopAdOG8QYS3mkoErbcEZOU/ZuXAoR0MO9OmzUw42XtebxrMaMqyzIM/OGtsKunBptEDpwhYJmU+h39JzXOMMxnSpRTljG8IyLR0z6YZojSc918ezSNfoaOGSgV1Ta6IFs0MGiG13JHrDvxfddQaB8nuaY9aaLifGMlM90WO/0Q7sewXH4zOD2s97ZDtP1GWSA8/6/h3sk9hDdOQCVdXKL2q+mY2FA4g1bnvOWz2ef6qzbW0hDeXG9+BEA5J1uoyn03HszXUATqLImuKedb2p44PtD5c90g6ECDNBWfIuNK4BJxrYb7qCWVzf1ZYuXoYDruuRJb/si5hjJHyiHpky7uV8KA6C82V88fl+PIAB/Q7yZT3eg7cDXCsKvr19ewwCMvwDGzV6QKO3NRjHzQEw70E7pDURDIws1kTbj7bZknpJJaSsya6AYI/XmKslWbc9Z5kboK0J3oYO/YbvQzeH+y5I04JxfA7cvn88jjdPh/HXn72MP/tsP754bIv/R3T84Bzorxu+r3OQZ9fgq88CU+HpOMb742W821/G+/0lmLkp8Msx7c6pvTALw6VRUM71jZrJyZCt19OwNZRHkpSx3Kwqna3rZmT72jkGcqLD4FdkKUir0DLiq0alkZ91Rz0cvdY+x6Ri8TFBYPs99B6+afo2o8UuR7QH6vczRc9a/lrBCdbkNrrKce1El4rTXPU5yKhqQxTYQou3F85pTluzEhbOZz2DHCGPhdjQUzBvLgEBQq+/CwiqAAGOtk1WlO6b1p+sZRHC4CRUO5fSB48+BmUkTe9mAMLXMCN1RSYItdF7Fty2jmRdxPqIRyVs2toljIqAr/N7ND6cZej1fyafIpyvsppKrbRkMUsK6iEcEGDWQsrSyl3KlBkfropo5+QJ1nh2UiN/3zXrtqTK2dCeagPUvx9KNfCPq3G4HEOBJ5GXbvqWScVxphNNI0FzH89djP1JxqLv1icNsbuikF+KqGn9psLMKS/ZVmUm/k7bR1NUef49A1SGj4IYjR3o6oknps9MSy+eQXOjjKRh4T34+Ddf7Mc/+6snkr61x/06HfG7Pb7LPPfv6JAMdIa0gm96W0FeQ0WjIqCN65TN83HThpuZlzsNha/r21nW7E33upjXbjxewZN9rn69JvxgbBaIkt8nqaHLLBJ4Oj2Jg29AENUalExSvSgyoCa/Y3Co+ut2xz4ydI1crIXKJsI1z0VmvXsQLbI7IuzxiSLwzxuj6rEO5DUm86GPc5A4ypEOxIhlwTyjFvsOpKaIEIdFSSZezeNoBz+fR88cMWPr3pgDZ6u77uanTVo1SVPpS/+kJNQbjkZmwLYsnzyH5E6hXlx31dZGlkuVPWSRyqG2daZMZ5QzKdHyIVmkVm5+jmKIbs6zbillYW3ba2SiApcRTCHPZzo6XWaGY3lmeyhkPo0O8/IJxmjU6rZ5N/N0DwD3ghr8HplorEeVJBElYIeqjad1R4tYB2ILP5FlxjoEFBzldyCIE7uh4fRc03XCCtI2Uq3sHz2jBWgfSDa43Vra+XW/tIFmG8nXqFKw9TTGRhwE+V20ECXxJa71+P44LqcNSW3XY7yE7cxgC+7nGY7z8ykQsGgthsB7wMEzaDH7F/Nu1Nwu+GNynto6nrPEZsbmv+UZrcO9fvueNaeQQ07rzmUi53kqKYigDMfL+w7/Xvan8eW7w/j8/XF89u4U/Z9/jMcPzoH+Pg5E4v7Hf/3Z+OVn9+P/9p/90fjjT+/G2BDSHY5BKEYIKPYvvESfymrRZBZEq0E6T649xGba0DiOq5WELiO1MtiMCDH1ZoE9abpYiRQJ4bqFIBYroOoP8Ap19GWsHD4LRV8OdzdYdGZ+bNEHMARsY6wMI8BO+3Igw7jw77y3BJaCxTAYfssRZX1JO4sVHh5fiRBS+zeUn5RuGv2JGRax1FpIASveBChrHJtWi9tAfVfWkjZnv8HiiMxpwkZMrCGQ0WfR/ZVjQWjeOHBh2m92q7G7A6x+PR4eNuPwchnvn0wO0ZXh1YCmYUuFW84LYcL+lqFBjsSKObZB43MtxRDPgjiDDv6eNGpCxC1Ak/xsDorEo4YxZ/Ih7hGPQ5xHRVsOGGSQRNZCcmu0WzP5hCOnVoRF3FIiOevCCuzP+hwsp26hZCu5BnGHUgsIp7LMDOvqvJx7m0ni/6i15MxFKnNXlisYoec8R2ESs+CuzReK7YqepYjtzIQ9r4ooj2rOsvVnh6ymQWBFP6U3yphJU8hryQZnPmcZMTEnGiMGwAT1BTzfrPLKNIc8arVz+I/pG9yWiHK14iW51tQHmlmcIvRzAOTzl/N4dxjj7cFsE9+30/wjPMRNMc1NQ0z1w2J56TOHKlKv1F6ru4zXGEnQ56g7QhnQzGDO4vpex7fmOTJZqqV37bNf9/myD7t2VSYmC6puoiDKbDuH5ax6Gd6jbc9qHXWL1SsbTjEujow49VDI6+wVL54FMe4CPtvRQpRtDvaZhbvGANwH3emPOly0+1mrx3sbGAeofM8JCJJjQPlV2Ul2EKkBg1MVom/LvczSoyZXGmlWn4wA6DQ4T8Dfp1KjZdYa7Y/YYoSMxk3fhtxAZlIOe3ZL6BcsJmNef3ZYjVRjsh+8LUK9+JyaVsCZCYuvucAYub1SOs9tbZs9m7fRSqd0bQRIbKt0p8F8HtkJpTnF/sOcOAWPrfe438pJyYxzINzkQCu7iMwgjj2cZeliOpfcyJhn932OsQ3nm3brcd9sRMPk9fSxbrUYq7+2nM6FI9d8Z/1dbeO6EwzH/uVyyucByzUgzf15aP+IVCH5BMqxN2+Ombs7r4lJzVAD3GvQTxmcKr/ea9QldjYbsxzJHD2ZDWedfvLFiMeBQwln+DReVpfx7i3YxtEDmeOAAAbW19u3e9ajPyH7bLj6zAORe2eBHG1x7Vrzba3Wd4Wa03wZ5r90qr3GvP643oSmdMC7kYWt3ZYKe1myl/NVP1GjH23O7Kzr3uAwf/n+NN4+nsbjyznq85Pn56fqQH/ISFkagN8mBr/87qwJrh2867uYP6+TfqPDXwED3L/8izfj8ze78X/+j382/qjXf9igENPwBRs9HBYY5+7DV6Ried5YnCqwV3sscDTn82hx4kjImheuRtBEHflMqYEETwv4iJS1NBWIw+KcUohmGFV3pBxxt1HyubMbrhN/bXMtI/a9bZLFZ0AuK+Qvg6MUU77cI2pyDnrmKWIHDV7mYiXX56QzZ4h0ymI50LoPOxSsG6N0pxOxWF8xbM6x13uMLvLv/BaEyf+/vT9rtjRLsgShfaZr5uYe4TFHRWZHdnZl9lDVA4Mg8AIUiMAf4A/wy3jggRdEkJZGkIZmKhAEuqSayqIrs7Kyc4iIjAifzd3M7rU7nRFR1bVU197fuTa4m7mbuZ8dYX7vPecb9qizLm0oqSD5vlF3G9lXRLn06w3gJMptGDDG6mzRVqtlWCMPAdvfKzC1RrJJct6hi+XsxVwGlWeIFuPdSumqPOiSTUehiOFXpJ6sCw3upetNQVlQTdOimR6nAhtzISgRgFg6LDddKnPOpERYEKdKKsYUfAPRnGPwb+KeDC/makKpdxeQmgpiRTOfDv3w55k1JN0ptVf9nWSaNbWSH09GG6HOFfmAcHGIyEZDHIgkFX3NJQyVWZHhCbSlwdluXe9Os1iMaaXvckBLEoh5hLGFeywbNQv1AsZ9qrzQkMYDHKSOmBFVAxUTkAI6wejQvR7BVoRgKiuVToK9gIea4vzwprWrncxT+2bblI+N7Zvu4bQxUqnONcvrTa8t+j987jS+BMqJ8ixelKyPPrJsGNbSKDpMVfIZ8uGhL3y+9YE7Iumq5N0nja3I3qyIwX1a+1E7UZ5lU/oszNlkBuYZUzFx0EYAOVIIZsiwnUDTV+yeQG8uoZQ6cChmAGscxl5enqKfRw0dIn+EgaTyadWIodFvGL5f4MofwCcpchj95TN0PhipwEUlvlKtAY2e8SBVFp1kOM2QiB58Z+WhTBEKYFHQg67kpmrk8XvweCndhbkkZipLewaN7xV5d1jMpuHF5k309DTNTx88z11/ci/EL7AtyX2WHlSRUv36qsMdezy/5MGoPcOazomMDO8z0ZO9bJDvw52XKfNoIO4v24NWRouWAcNpMZAsX+hQ4lI0zI5y8/DgVNpErDgMswhp1vno9yg93IzgKg8zebb938HhUE+vUu7kepbQUt5rJweycIopMg5FuA45BMYyMXQFiWHlFokKAN9NoEOArBEXKeVXyDxhhDGD1M7PkoGFWZj70kK5LSd9vXM50MDD7Pe1gYcZ+Nrh2P6Sc5PpUZ2kmJE0PUkQPixKLxXf2oGQuYiSnVFl04iH/Bwe/zmeG8CeLM9ZP71CDYDuSC+sj2bYMWA7U55vNlOl/21pb40HWgW4V92MkDwyj+B83x5e7tu7D/btvXthVUnQBwJbOYodSj2w4i4VbVrtqKwCdlsZYo4nvULi3UkOeUc4A0Nj4fVxpgrTV3gVyyRlNR39N7c+4nAzJFc8vyMT1lahywOjzgOGA+H54ZGTFbQujAuIdsvrXelxK56GITPvrVzNgW6O2sRGWGHJBW/BomEuUniKhN3Ix+Y8RBh8CPvwbAszjDXrvboMKaNi143bOQ7fFSjQUbM4ECMdvMXqVnfCjOXoztq9lWGnGphH1B4d8CYGpaX6l5R83AoSlUBjTHmgj4u7Wp+P3KX0pMoH9ihktzkIwBP+DlTPuJ8M1CK3rG61XUaLv4Vh+QeGjkohEVvUGVPqdOUZRieFcCt9h6DjEgoZIDdYaN9k3KFgJpJAbuFDckqCxIWBKiLPsKe95AlLOSJvV3Lfsg/CwESuzPA19zeEBhF+VFwUdbvDU+X7HJEFfE7UUqUAGpEo9FiI7STC/yXeP/O21MDSAZDUeY/IF0o5jKQpgJZggBCNWEdVS1sQXChTTiRdxa3x8ESfGXux+4GtkB63MhLmXkZ+Yjy+z0u0kMggpeFV+NcfXbY///i2/e6Lm8m5OLXnNxd4jF4gyqJvlfNGQZ92PIZG8hkNa+OgTYmuqk+S6AghYZ3JhsIxzr/LzNJPYookKSi7W5fjZ+c2eSOjSHxzRgSZdqCwkqamfqIWB0IDPHzst5+LOonJ75EfGaBMcahNgbFfqUyFwB/GtRDcmXcc57FoyJH6lnqmxdBoy+dhuKCZnfAt+eRFo6Z8xGhLKpOiI0UN4EgBY9h2DhpztwBAYKwjFAzN/UVpo2c5luityvnk3nJ+xgSiEMhJs8tQW9PD/pOdmOLsd1MpR0HgJSp9GBgy93B64PG7Gzu8qsbOI6MKH7gM59Ahx8F0c1TPhoEE/LMDFiebxKGj7ZbhxQSZvEsCpqIYxhxTVhA2jeYRT4u5o0XTMGFjc4VVlEM3NtBzPlglY3rCAJGAkPjsqAI3hkEPBobOkpVGHYCnwjgcudGovqElN0WGcXRsM0pxryOcmfna7DeHoueMRib7JVOM8C/FCpkD3iSBNumZ7i4Dy/d8eEzmph3axVNDGZ+3B++G8nlzHQq0Vc1xvJQeMbTyklM2FbKQ8imNlKOBqzoT8lw5UJgGIXp1HiCVuSod65h3us7cnHIB6GQaJCct7rpZW7j2tj2+3LZH5n22sQvY8NvW3hoF+nU2E/ofXbt/uH1+uWvff2/f7huYwgrKLzcsKHIoEImFHA+RHKeAsgcTyLTQfoMcU1ypFE/C6JIIM0yXByzMQBXKXXQ2cjHtIAPTnrteuFkK1QyLnViaKn+q+zwPFHO8ymNZxC1N5XlXWLLhre9ELfGGI1/JLiYx9FQYlhcRwUW5U4I55RD0YII5kSkNTJO/jbl94xpwvflUEqKw/i5cee7nCeFUtpeWBojCkKoavROkTgsb332HYo3vOkGiy5OLcWtebHnkwwTvRgt5liu/JftEKSdahsVTTIRT24MWjuwKqJRgMgXQcUiYgw99Lc+A5ruqAk0CDSJceAL2OwLtcBgjZLg4XSBic34QZmX/0/VMqScUaAu3tj1qQElejzrR3xluTGCSkg5LEc2XlaWX3uacK3pvS1HhHFGmj/xxrfVKzAHmqEZZLj3COIGTPZqiggq7eU7xLThkPw4ufBlgWOaG4fOeWyd7kAp0CBQlEFGQWs4NRdVKtVkuuHneZY9SxK5BxHdWV5MMPI0moaR5cS6vvXlof/nxZfunf/0UZeaOcutTe0aj1+CooMOQWSyQ5uLWDhahH0Ynhrp2odl3qG713vK+OogXDCcsq8dwVSrU+VTsOVJboz1+IuD99VDLsOwkwxjk4JIE87M+OoalqgiOl9e5MFo8JHMsAdppeZtmZHN0XnPrgRYYwKGDLWotaCqHPJcp1QrP53mVzgYNmbmSGLQ5EPqVvnIwhQshY+gYab2ylOgASwtgteYlolxQzlNJg1dsFobI+nwN4QVuKDgGciRhomqn9yij3Avx/uQFDMvXGRnDnOHA4H7kdJjyGPQJCrSlHGHzpe+B/OsgiNLuNZZ1kXcRBHHS0rAoy8EQ4yM1093LjzWyNITYz7H2TAeaVMDplFuAxrkTo7/O6zrTsAXAKRuXp551If7xDCrQEOe6JoGZFQUikQyxfqQXwpuwyKWcD/s0UcWx/ravbdLtJauiSZ0JAb8wtzkNE4nYXv3iLxFCXPSMRy5FkJHQ6HSrDSDPb+gECc4VHfJ5cj0gAxv27enTbYTZLyPP/PrGPNL7tr4NRTorZyR9Ui6PetFqPaTinEazscci56tBBuc30yFKS06anzKYTLRufUbAzhJkjB7nCVmdNFOgL642Xrbq0TXQt1Veecvam6tAD5ad587tK5h8s8z96sPzdnNz0773D7/XHqzs9KrCGS8qa5goAwwctRyqxb5DhKT/KpB8kbch4SGkWHBW1SZ2ho1wWFxHIhThrDwO6J9/hhlLhVPCa4RwZY2/9FwJg07iM7DePHSq/FYtXPW0uYLZ1V2koiFGiewMEBdztiMQTC1crVMqkD+qfbUwbIw9FWSvf01BETm4iSAriiVyzi33yi3rjnhd41bvHecUL8UzEMKNPHf2wgTM5cx6MA/GtW1tvTGvAeaH9fTgnah3CTgT6h6nZz25CGd22PjKYXxjQqHzFANyHexLeMvF7Bh7jlZwoHDmnpL9mnRX3heqYqFxxpzFjHiem2z63BFcA0MujTi8WAsfqif6IU3BGH4oxO5FRWhh7YhwPUc6ASyuCB8t8C3mWqoqAO+Jr1K42Ox5lI06O0saFOIA+iW4MHT5RF3zpy18zexMMArFBOjCR+A+MlEOaYAdxQvhuVbYDDAsMZRrnMpxGY+49wmGRsOcjCivYw46DQYlcOCUwDOYmDzw7vnaeUUC2X8QqsuSrTmKxHwooLo+Z7ukHQokmftunoNZa0+3i3a5be3qsGzbZngUrwd45KukJL01TdbG/0zPdIQfcw91vEEUiTISDcqAPJP3hsKlNfnkGkZVETIT2AAMCxy9jb05iu+sfP+xFzQ492MfU07qrrQZo1U4bilsjirrnr2ZI2pr7p7ZUDfm7ZsbEFBEUeU5ZG7lqNgzLNXfXUovDaEJZAXaTyXVKwbsUF1AA0oA4aCsIo4WcCmOKBg1D/HBClEBnidqb8dhTAG5mGMp4yyTo9qzl3GUCBoNre0exNrS5eWj51nYXadFcT4jUqgWzHjlch+0NvJe5S2u4ET4L0tnaUScK8+uZO5dHvS/9QEpMxR/tugLfzbjrjHftB13C3208Vk4ILIW1Ks4gzwv9PYnn3XQrJDFItpq77KF5ZZuJTdYkbUy31pT47pp7nkG5SuP0NKhcA+NOLdpN5kCc3W6eWco72cmotwQoSLx8G6MSCTzaemmzE1nhRvjVXRsCS+LvoLOAWVb+xiGqWnTc1PSrcpSuuSBpWThDOZ5Nnlms96htnUvIWf/6ZEfX4iLJ9E+k8AVMULlLiTdIDBneY098k/mTk12yfdB+xRUrKU8J4DATL9KTCbs30Nr59fb9tmTdfv0fN0+O9+0yxtG6rW3sr25CvTQZl/Ds80i9G/+/vP28cNF+/d/vmw/+z5KC8nGCFpqB5NgVwjZds+puWlCuDdLozG3BHdqVt/OIT/aYYbsxzwBorB6iDiVmQhATmyOtO4UCAgJUxzWWZtZ7Kxzln6M6tWOr3HITbgWgqrX89okDIIwHv2HwEsBXZTnJP5AaI5HQN0ZzotZ7C2k0CbEGFeGnOM7vjIstVSgmVXKCShvswp3YHGpbIS3u6xe+Z15+ZDk0ntxa4OoN5MWvFCE2CNasyEQzuZtNTcImJnvrc3Wcl9YAzHuN0AaY/gb+/BAxEI8WxgLFawhy7BAMUSoyEWIWHgAsgAkJ8N+TMCDD8eRLThPtE4EirZ7lnNgVFjjBcEwEQaVgh56mB5nAm+EeZfAWqVAo8wXcp3c22qKuyhZTuhRV5rvsfSKVSr8wSzDC2SgbqZc1Z6vHLfSMAvbgGc3EM5ZhTSiJYA6CeYTXvhYp8xh5GxwXuHGT7CtvB9eb8yl7xu7zo0opaTmGnq/MsNZ6EiUmpGTWbtBAkaiDmZEdngZKC8tUCxRveTF+CvP3AxSaXNgMMnM5pwZ9dxMBXKmOXlKJ2ie1ty4Xu+Grx2RLHMzOjHvm++fzdrj7ao9vp23y/2qbeEusDSKU3u5FvuqF8iCvmLfCgq07rFUMKUkzDHvh1BO8DsNqZ7yvThPPHNlyHNP9BHGvzsiaAY9FjRxASocW6f7iWGJ5yDGGX1j7EfWMceVpjzbONYWxMIxAEDKPt8s9m233Ec0TgIixrOd1fXuySyfl8K8vc+jPsL4thsF2gSjCjTukCxEuBYlNGhCcQ/3iA/VHpIv5DvCALwzPAxa4z1/Uixb1uh5Eg1A6QmNaioks15ujK8NShHztkMB4Lhyx2aIA/LhxQMW/Ymyec4KAAQ26KQ+zsiNhuIlypspzzavBrw18UDLBnKD+R6eeXpPxcHh4+uMNxMfcrcfVdHkX1zDPhot5sa9xSrn5cIZAnwozFFaKSLLGLbtBuB9n56VtaQ7pReEN4UvfgflSw1noveboloG6uIRikFAnl6bpeY/fkoaF4aIopHxXOQ/+xqqYYXz3hk5ADAIz7Z6oGVLIP2unGPJy4Z14rogI7Aix6RePekPxE0EpgVNvbraxkgcU1RzzfuSVcqtY1gTIIKi4BzmsMHcOSOWiZIlaqdlxBnxARgBouNWeTQN4Zw4wRXSe5AjrfNs8tXjy0374Ivb9uEX6/bx482dJbi+Uwr0V7HQP//e2demWPsG38za6ra1292sbQ8R5sMwjFBiQzlKQbW7H4oi8CfNpxo4zAgJlRxbhj05caSVbCSW+vRnDVTuCTCrysP2spbi3arcBipEofCXuqzPPfKqO3Y7PX0ZEsr3HQkNn4Soo+brJAxFTXsMWRk8BNoiBAhigyvCIVxQQeqG1LkeIHzBwEEPeawecn6794gn3YQbVzaC4bt3gkYKwIdGKFZ4HpxIU0hg3k4mzYvhIq2jWMcMDe560uVJh7GBYcSoU6r1rjXvmIjKyaIQOk+lJKMqKNTG+zhdRJ4nGAXTC/wMMOwZjJMMigozLZY2L3HCjkgoGYVRVnfq8aWsIwcb7wu1O+ov5lM6z+vxQ8S84whFr5A6e35UyhyUjZi9WJd9IEEznEqFVI4z9xfqg3OdC9Sk0GrpgeJZzSgQQaFNo4oowf4mr2dOhkk0bU1ZiGiLqaFsur60b48AOR5Inxbq2fQ6DXPvlBJKMcxzFtp/6AUmtXBz5mx+//qjy/arR/v28Pym4tfekPbWeKkh6PmZga3VEJ2beKDZeJZy/0h5QvKM3MGyf+JmoryXsF0GlVJkpFupnWeO8hHhOujK4ejc02hT6YRlhIvxUWEgYA4FefAe0psUojv5U2hSeH0ttHnRlfgpUEhTVtYWnhhSddzraSL9dfWjUKXZ/87LVzCfeQ+9UETu7qaeShjGZiHkYq9IA8joIeJssUKAVzDwih/QdovdZDUFKuwU+hUZ3+7O8GRqWXipR7WIN77qKveNBnUfB8s25Xf4r4Y9AYPB9zZQhGnoYSi6GiM6hXXIUUYsU8pq3BMZVST82qPdRH008K4yAMTTYi4qfLrMGly7NDvnAMtWMXqJUcJI5Td43i21ykHdCHgK40QiPItH0fdybJaYxn2/JzQAxWeD4LbHsw46z7Uq0fptPpPnLh9UMgf3mQNTplGl9xyPMngbn433ecQacrhHGYs1iwttv2TklEEGepQAspR3s9/gk0xv5MxhneKcBi88HBnDnRyNh0xaAs1x3o49RML3OVaeac9bRqddxh1S4XJ8CH93uQjI/ObwmvtnESEYe79oQNaDxiceAeGGqUO7tfQIMfJ9lfZNc923xgP9dTRb0CfXwYyuNvN2u1+0+0A23LeNIxqGFQZhMsyJRo2P8GAZwQ4/aQgZhF2o08X6s4TJ779WxXm0Wg7CvF8uqKlQ2GZiTTMFmgzI/hm4iVvJoMRRfcmuwANLheioYnuMao5NFTWcynpef1OAqkw/x2xBIezze0mYJ12AshUeTeMOVkIMyhWYdceGoFzbmlqOSlkiSzBygCyhngRYYja05Zn7lQZ6sTfv6KELPY88V8tZszBu5KSn4KEAEswnj5zq9GqmNZqIzjpYzoN57VhT2RgrvOpCVA+GbMEwcwechqp/WAYBheRq+zwE5wirLyoLcrioUB4qaVGnsfYLTUaUfBA8GEHedAanMEMhhXvN9iA88VQ4U3lmnrXl9x/cg+85hxQmcDCDAR5TzqcGHI8WabsU3BnlYH+N4aI5nTBWzEyBTpRT+yKSC6oUTYWKlqckjCaxzyon3VE98xxgDfOtBeyVYleiqgLczoXGKKfD+QrGjrPuTG/u1/NfhbhSmEBeYzLckp7C1ALMBWrBcpbUI897Q/CokHqnlV6rVCN7gkIyL7cLEbP1MFCj3aH9l3/7uP1/fnPVbi1y4g1Snt+m5vvbwo8BcBlpgXuPnHDhCHTW67oiJzkMTP1BYA68n22UK1RFIIVQnHoT6kkjuRe4p3Qln+V5vnNAXT436qeKAS1/d2Uhol2yrjOFdelIXKsIthxTpTpYSUKbu7WFCHsEjFRr8Gi2Q7vZ77z6wtIQqzxggqGdsCDIOzUMlelJlrvKrBYaLdUrRoHdQa7kPNh62etCWCcada9gs7oHjXKMaGPqCr2uFvZq9xudhSswngFh2+6zs6mKTU8Vgma4hx3o5IxiMO9u6h/p7a/WGV3wW6SSMOjfjAxRztNDdMUmsbKUMCudCW+l01oBpKNdI+dS+Gwo0jWK6G+tDxVAGi08tWZ2aGeod0vnvqfA4zE8Lm648ncRQFbH2BubuW95TjPkViYkQDsThtzTw+ynnW9LGZxJZISRTY/ipkIJdORQLKOUZMmo/VooXQ/eZnNe4xpbf3T4YP7V84z+D6balRWLeyuiybTCgxgO+Jv2R/aD/fOokXRG9LTKJRaXBSUyJXFYCqshzSMw+IQ3vd7ldeb9cThXXF68jk6ZkX1NjUZHPujob9W95sfpYJc59XWFyJnzA/6eNZuNXtrn4Mt1s6YMxne+r+ZWVWaRoLQ0vNaa8zoaKE32tbJpUe/5RnCA3nYu/sIK9OEbsgLcpbu9zvdZaMinj27b+/eX7Q9+uGzfu8+4ITkpUKDjrx63P5Q1fCdMMovoqPUX3rMUnDtGQKtQECvfcp1GBKWqk2XF40id2j1pFMoVaAviPQhIIUPztKK/6UkCMjaZ64QIhOJCIshrw4vLLkrepjApKlg+IhJB1qiUck9uSU9BX+qGUSATMIRQBqHmAlQqoPbDC5cRABkaxZw/zgvJ87zCWjHSsIKDiaML7ou00OLlvK2sGpKvQ/Sb4UYKEoehhcVS95BTvQH8y4FRBAaSgqNSTGUKGRuUO6lKgnWHKDYLlXO/jN6FLhgrkcMyCoD9jzUOI0QIS8LY5T2dgI1BjMJz7LEaTwGRjKJUKYcBJFLh1jLseAceF6Bpcn833bX2HbNHfWqi89IYVqFX4rVIA01f/5P9oCAWnUF+Md7HCK3aFEUH6IfllmBpnGE2ROkU8YVKrRqv8E8ZXinKNbf0tKgym+si9KH2U4lL/tMMGSn0EZxE8xp5vnSvl4DK59zuZ+16Z/mmrZlTL8ugdW/79vCg190I/uIeThj7CNzkSLUA0GJ4J3ldOCnKJaUeQxpKtKlxRiN54EuKMy37EJ0b+irPw89ykpdxKv4zhOvmVbqveA89U1WGTq+f3JtBGjEfVmc3BMW9A9uFAlpEgd7ZyOsN1P2ZZcpAcKUn3a+jl1Dyu7XP4TXVHg1Uk95R9G/0lFGxJ1uh8M/vx7nScHWdjPAWI7cU1szCZxkeAvRfCkIZHioKYkdSRBNIvjJcm2k5QpslnEUWrwc/5T6ueaXBbthfnVIF5QK0PerdTvSY2vsA6Ao+mNsk5UC9rzzP9QwFPev3XilyqcRp6C+5c3qP4wvPD3ajMI2XRx6urdJZk2lVpFrhyCiFD2V0ANEa2yAHhG5Za9j1haINAb8w1iyRx/x0AKbVupFHTmUEnvl8DeVRifDLCEwBqrX/VN1xfqoh+hrhxciS2AgebQEayhfnaI95m4/MEf+NtKl600ejePclIqTOizxX59kNn2Eo1aijXoEOYzqVZBq5Y72RTqbRHFpWjXQIDq2nV5bvvHXwsPPrXbv1Umlvd/i2tZMHemgmMG62rf3Vby/a4yc37X/0j95r3/vZ2dTDh01K0KKGkN0Q5iMmLlMFkPNkHrP0PLsnIMKiIiuigMGsUdj0wyfIvqloCiNhzCmt7a5IrJGfiMutdI4z0NneFaRFhqer5BqesS6kiPlyEHyNmO13EIh4fmEK2x9shPanga9VuLUJ0pHrGWEfXmaI5X38H4wOGFugO4eX3xRmnxLkuVouj3XZLGDBpDA3jsx18FIBdtLNYBBKDavt4tmGDmxeOEQMuMe5y6orZuVgLV4jMdbd5pBefns5c0zsENlHSxdA9+2ds3m7d89KVhloWNQH3ViunJdailxvf5aEvhlwmUoOGbrLTWTm4Yx6MKA65pRSO+QYIUQNSgj3ge+n1ahQgjXAAmsI2pH3SgIXPhFH1PY6yaV0+rMBhOVem+Xcc5i3doj6k5WrUGej1LBw0ASOQAgEtp77QGCnd9xfrcpzCJ0b85g7wyAQXW884D7crA0R+tBWK4YflSJg92FaMmTc14WCBErUMPrE8oujdi68T9YHTIYfR+xNy92NM1DgMiGHhrHF96j9DpyeEE7ReZjDqbSbx8beyX4WP4THzRVWKdKDklvMO/fcVq+VWYpG5phnKCu894yy4HQ7LaLCZIa4WN/I9e7F+/iH80alhXKuewCRm48ySqj4w0runUXfnnK+XbTz9axd760cC5FpX28bBZrxu7dXiUbu6TLOnJ2vrZ0F95zAI400CffW2bVuBIw9swXgIhUeB6t6jhBEQWroxmSScz/f8Tx+Tu85b3JFzZWHEi714TyPY95lGHNopCWPLZqoBiamLsTzrCxhRAit1+G9N85H5bS0KnhoN8EzVuBtrA/sXl4MyvnQIE9SybO+R0jkM3YdaXv2N6IGtvzKDSNVSimpMxSu8PrDIJsAbnJ28Y4wEgJty3iyPkaMnVQ4Q6GPEFzPTSbQpPQ3FadU8jEXUM7tbxrxk05ltAuid7hgqvOAp9lHVt7JP05Pe4RT39W86gA9oWk3j7896kDmnUNf2xlqh3Zm/IUhvDDA+hyBTjMvnl10hOVphG7sASnryHnmnBwkYigNuKDtjCBgicZh60/3jv+UPGX0ie9W0LTZEeNBd8Y75V4NE2V8c9khfSDM06895GQGHl2jTXSCWFrErclUMM6VoaWGwHxk7mm+k3GDkRaGc+cvg+zjXqrnEB+/vDhAGnPBv7mJ2b+5RSWkQeeOR/Px6VQbFOic+eMJlHkuQMu8BBiiSjjKXH/OGc6iGxBQ6qAzNNSDq9qKeZ7hOCJS/GI4dubl90gmjwANrB2jj58+ummfPL5tv3t42z5+smlPb8Qt/p1QoI+dvIllpP9AQzWe9d2b1uxwPbJkf0N+XR/aejeX8MdpeAvDcGhZH/C7BBiklOP4paxkU4lCmApCZOMggOEzLDLBnfBInhDi/hPEaBIWVH1Lryh72Y0vzcbpvZqsHPMnhiImIcSL5wHIwNP5C8E+lazMJ5FdU3qTUJgQCjruqyGglPu0LqGoclMCjz7XombIS1n7QnFWocKJiITEENqfUP9BzNTiBuUmqf9AuNjX0ArBPEKydSKKlIFINxbwrWHjcO9YCy9EqCiOKqqRBFRWpBRVlYHhU2lalPRT5A6r9TfKS9V88/d+3WqvqjeeamuYW3pLbHwLpoWIhmIuunZl2EnQOt7tHvLDdO9j/dx4QCGB0QJQgkMkRWk1nMcAAeut4WSAE/NwvpSep/LO+JmCoUQNWqlHD+dSvU3c7/Vd/7p+T40W3951QDrGD3VeaNhLYLM8Y8MYx7kYhHDObSkp9jfDZepZ3DOGIvt3D2/ax0937cm1VdR8cfX5VfEc35UVDvCtaL1wpsqiCG9FZsUTJvsMNO7Od6SXByVPMqmhU2/zZPNIHGuTfd1JeaXI1Ke1t7sIC1zb/ez2fn8sMqcZL6ACRx5jIdr7w7wdrBSNV8UrvmIKCEtspWItaQ5hOmZ0mA5WfkjIMMhv9Aq0gx4wEw+CLwUqtCtebu9FuHPSdsVEEFpIxRTPYvqZr/Fc6W6PMWEAmHkilSbUVOZMGliiR8PBUKsh2/Y5M1YiMKckpk4npuPABf8q+Vfv7pc295qAwxV/6Kc9Unc0OSw603kS3aCOyCd0jnnIWXJrWMqi4xURR8MpeWQoO7V33F6L0l0jnVberTwil7SLwqjf3HmB8P5Kh8NzOppcileFKzIKkIPuHy+2E+zLnnfn/NVWKd6VC01LSp0X5vhzz9YxYvrJkcOMl43ry8fH+yXHmnOKjk08vkflfcpH2Cvg6SOHOYZpU+uXAivkVJGTOF8ZwSCVDHQO+ezc0GVY0HnvFmdsNJBwr8ml9jNyniWNICM0Z2LgmaYZVBi81ZU/tKvbfbte7z2M26IIvkp7U7THkwd6aM4U9of2q89v2gfn8/bf+tMftJ/9eOVh3Pedkezazj2wRSg8n9D+RmiiIysj3Jg5irU36Tl0FuvvjPBd5lsW4+ApsFIM9s/rYs4TbxO7VK7Xz/k0Y+4E6EDJKSeFHoJG4h3lgTSMejIp9inQZmhZzt5SubMid0IUgu9CGXHLmOXW2jikrA6s/gE+xXfBSi15OemZR4yIhpyGQhHSRXqPPRQ41qYEOAo2hP+icipEblDw3XuxCHZqpT24fuHVi+tWLiiFt8ZLcycUcYzFPbKOmlDK8ny2BOBbrxCEcmEgI9GP3X4HozKRjGMcVsPYnmu50pZz7zMGBPPgQWHe5fp6brt5h1GuDSsT6wQiaGW8nGkxMt4RWE25s3dErWTrht+9L4t3lJmYhQCJGpwqPNv/zOno50WhmJPBVP6zeUZsFObNLwWtoE4jzDH6advRPCWWYshtqkAjngMmZ8rzyn3tpC5zenxNkA3L/arN2xLirXuH7Xc3nkVuo3twtoifAIAcGUXWs/ZzFh66MHaIIE0rhDLKLsc5+hw1YxWkaDiWPF9Z11dFzV5NybOGz8bzE3nUlMpYB5fGhfIAwenu1mi17itwWAkC4aEuzAAmUAIUDQTUPAz+KFitqXDbdtts9+3/8K8+a//1hzftKmCKj43slbdnveNNYd5ftpEe+1lF7GicsjiLPvdazgoz4V4demwziipLpD9zTRjWx3SHI/JuXjeGZx4TGo/t66xBC8mvQMNEq6JXBtggrBnf0fz8WcZw94oaHUOOuHu0563dv2f5gLM2s/I0+13bumcZpauAMWLeGA+ltqp8IZF2csLe6SzHXqBCVBgAGxDeRNFAArEaS6E50pbbilB8yze0l++6EPFp2LXnvCsQEA1nLnPELKSXM+8FmCPPLGO/WY4zDQaoR8zEnbmloyAPsgvXjeeHEB7gnMm7ZY1DVomeWjRC4M4MpcwG4w+/Mg+Zj6Zju2EUJx5AX6vZxlWT5WvgZyDqcKfn3RTTLuy3+kIgKQs/dt5BMC940t3DznB+93oXynYPFCUe4XQ2R99GHuF9kU4EWBgQ0QcKFqXDxlQKrjPT8Cqcl1EI3XRPwuHh3GEZSS33ZHM9uv9BQBDsB74UsvgONCf2eryEObd+pKO+YxfV0NGJ4+Js55XVb3KfU0cW5ZdpKzGumNP4EgMc0uQiPQPRewkcXHJpyMK9B937kKWgjE4YTSkQvtrXnEvyV0QnwFDUD7SXaUM8VFA2nBIxjLjiDPq5Qr78cuDPS6ttjUieoItaFSHWydbsen1ojy737cnVrj253A5VAN7e9uIK9OHlv3rdQs6Xbc/zTITidXCryaPLTfv0yW1bzc/aOytMV7cfC5mzC2FSxt9ZtCtOg8yoNxCRklQv6ze1qtfhPga+5d8LFYkc6spzdYUFNSnDuiWD7x4kuQydZbkuzJJDFOhp06Mczw7h5BPciAQ6GAUpAivKFcEWI13J+IkU2U0elDrUtRMiE++BOiWOXx0uQSGyu5nPgT6mp7i3ehLQpGbGRQa4arl+mIyujJGE9sr4/bJEaRTlTPTJUMYYngzFORUqtVqSUGpcEPqLv3OfcJ4SdZJW++pAOk2Fe6qF/tiZpzeeN/Qyce3REAx6MIp8Ly+Q9Im8e7AIs3XvUZQgtSJnD5hvoJsVXhtnnKghDs//qI14HhGQjXUeiLtTAj4s3zI21Xt5htQzX1503XX8XSzY2H1pEWf/yFlzbDIJqu3KQqgBxM03Rxh3eg9yEXpKGo+os+KnInPJe0GnF8eiz5vDot3sZ+1qc2iXG0t70DX7ampsn48/PqvOuegKx5W3t7yRRhMczmhd0m0IknlWlA7jgqIPd+ezZVRUPobXk1H20u4oiNd9cn8+u/+u+nkXsjufG+8NwLGqF59hjOQz/WPrJ/5DECaCk9lZN3Om6pkMmYwskOBvOt5j9gS+vHASyI+mmkHwhD63276xtYxw98gdZekdrwOL+U/ZAZ0gMrsK1h3d6OZFvNm6R+j9njMnuAZgxjga1s1Q23sFYSCnhzs9Y/VS3Q/E2ohqFyKrWPNnqwQlu4d8lojL6enj/8pLzViojsXoeiAFxUsXEhSz40GcqeIB/D14CwwCjk1jXvjgL6ioCfkwULszqkJ5H55OQKljrYybdZ+mOaUDIW+ocSpV7uaSirHyL+lf0AlEH+o2ynkrpTqjm+Q/bpBnikjkOmCvqSKItaJc0MnZfY8nUWLCa0pu7ceoCjllMp6uQdRI0aH2hvJPzqfI9F3o+UgD65m5RgN/9b1JA5cYrwnSl/u8CzNEVRnQOQ+1xv2U8RKrRIyP43Vp5G59lA+NPbkVD829ze593pgxbw+j2ZurG75sO3mgh6aExby+f/Xb8/b4/Kb9j//DH7YfvvceS+vmBgkL0NKh7vbbDZQLBHNjY89XQBBE4hFzqWmFopculZzcgBLEbFa4DjZSNqowGT7PrVLwMhhzONsvY0wI9TWLc4Rfxd9xUCx/NTymRRyLW4Q3G2WXIugqFbhQxEQ0CCsE+o48JU9E8reBKVkixi6s0+a9ztq8JFNWH5oEPfJEHVHQ88ZJGMAaYSXf7bfuzV4ul+FlZ70+Wd1AgoZHdRdhuJ6HBGfi3PKr3duw87Cz5RLWxmEOCX60ny88bzhQnw09ddH2h2Xkie62LhCEaIVMT8sd22aB2+gZ0dI5RQ6yYJ9HTrALtipcLkPktVzcraPDV14919EGFPsT5l6WS/PSS6hcLUJZWjLTa2xe8lAek9EKo3Iiuog81zmiBUJZLHNzWiszDFDrcAKUAl59u2SVOZWxA1xIQpotQTI4LsuldeeAhwNZv7A5uPezjATTHSrNorTckkbS8IPVity0feSwb8sDXcqfeU+Qk39mczVLa7nRjli/GN96Z5EryKNOi2/UjY89jMkr3d1BYByjG+Z6om27IikMLPAZ7PowpGS5GDzKoztQD5tW5koJEaR8FxriENiecS/4ZuPX3WuGuhnrWHnNOMMSmmsLRUUs9GebhCgGxprXSwqoDFun1I6/5wc7w7P2aPdu+/y2tev9snI2v+bWiTXfFq6fjWsf58s8hKbVOFgiDTADVCqVDf899w2jAu6eIHpvSiA/foeG+xOIpz+mBWg0NjXoUMhjSKF/7DQEgjtDaRPpPjpJBZQKCcOr2Wd6XqgoGamx7yzv1d/n4YmouOD8PTzP29mhbSwSyEi3GOBIo7I8lyhoTFXJeR/GXKUa0ScIurm2LjMsUmg1nh/RXuXBNH7qa42URFO4/YxbiS7IHHbJUumjKDyR0hJ/MY/eI38YiUXAQAnvjji1kFFs7FZz2bywRuaMnru3fDcoKOyvrIb9fWP1jdu8PVhVeTJrc4sKME+vsWAbm/NgQ+fG+iICL/L+yzPo+f6MMmD5a5agRJ36KAUYmBNGmT0CgcYLCmU6RzBCBbBXeZyJ0+Io4e6VtnmI8Rn988icfWDPnBm2ixpm6QzAfDgeS84VvfQho7ikJrbSoMuVY+60O6uG1H4jYrnYzysEORXYvg43gTTJ+0tmjbO1YrRB1lkX9ZFRcP793EWj29uofHNMgeY8GE9JgFXdMxRD5W+Xz4RG6NlOjIOM/EJEBJwxjKCxyDeTP9PA45Fx0cYKAl0knoSgSwxchqPHvhRzDffMYDiy62xtLJrCFWhDF6esHyQ8ol9S/qn7/F7QiXtni8ASYi33wUJsZ+RsGXvLz42kc/CBM9BKpxtwNvk6Itrikyfrdn69bR9frNvnN/t29S1B335pBXrKrqrlZDzTRK+a4ZR13uVReNYTX3ezHl7c7NrqYtMu18YAp2iGQU9YlTbVqrR6RRQLhNVnjCYEXVr/SwCOv+u+AJ2qsFO1Ut21LUNR4R+pdouiMvRlWMfSz7XkDcnREdjTyfvLlEdvmtgc7343rVnq9URIeHnnYC+U+zQ8FXeUtVN0p7QaUqXKfKf4VlE6My+LgoCYICPyufJmTeEzZFZGCFBJjHJHZXpkyFoxRsm1Tk6sc1jWQ+6xiWBV9o7OS6x7KNazjDMu2CYzKabcryGYLn6JEKMQmHKOj6yp2IR0ScoqrG4i7SZQtVVoOJY/n/cEnG3VUu7lmJobChLKjDHpE1TURNEtwxS/F3GlPPVu8glmShNQv4p9qy2kOAVdplnNqgykz7XqvWY0vOlkqqV4fFZ+r3Mkc5XKzl1Ky5Gf6biixzK9FVx8nCMSlmGP2F/mdPjwyaZ9cnlo10Z4vwQn+LJeap3bryvP+utssUYEDJP4GPXaasTBEd6iZCWdyM+UigQpqntO3TiKD5WXd8dG43O73yCw4lf1ohXtFA8x9t8I0CXOS+Ff4O8Iv2VEEoVvU7jMgBZZHfSMFa0zJcmVI6mhSxpVwxzKFOpQ8zz1c9StWXeUIwQzwrMp7MYFVK6GyZTnltc+5640o8JTEINKMgnMU4T20zEQodpJ1zplsPgxjcVuZx4rACBCSTcLeYKDUjGVSvZICP2Yx9JLOnqm8iv3SLIk/kcqp5D38h5xsMtajTIIjTKCGyAKVf6Ts8YQ6Ch7Gp9rbXDlEfzHc1zpDHGlrjD3UMcH1H2bu0cZkMhjumuGlzMiMk3V3CsDjylEBDF8ifIdrwwDV4Qjl8yaNNbXF+WnRL6+kxShG5TSM3f+yMVJ+8Qwwii6lBPFs18ypNaXr9emQYUbCNhA0zNWYKKj0swlovGu7mW0Jvaja87opyxgghJKyHWiZese7miKYvqIrDHi/TTdFDDi7Fu7Wu/axfWuXSH3OStQPpNX3N3eNO568kA/o9lCf/ho3R6eb9s/frJvv7hetHcNZRmSqu2B3c68JYAeyjiakNKj9qB5sAJn2/Nes2SVEmFYm7ZbZwQLq7FG1yta1G6zDbjLUIq4P1zifmXmTJWA4AZ25NUkHUoOIgTnsHMLa4fM7V9WqR3eZ6FqBBuxNkKHJRNIhaUIZXwTnm8P8fJxmQWWOReaB8qx4+Qb0iE8fM4gUjiv+smBCsx+VK/cUwILtf1q3gGbS7Vixjgslzjm2GpJOiHcEWHZg9+cQMXaG5q3oW3POw/Zfrtru7V5wQ9tdc/q8Cxb2yzbdr9rt5tNePKxT+zJgeZcwoh1PzwJgHH1r9FX8wyY5R7mbM8xFTAuWkPD6yu55jKrEUFQYoABttsvC8/Zs/vo0YQVk54UAKH5Ei3CYxUojD3jYnjkeJZ8doEX4LVTezXUTVDMu9n7nBOpfIqOmbndvh+XgajuXt/w9AT6Nb2qcW/UeTTvv+WVS+6718wEAnmsYID7eN3u2OfcKxynXck5zlI/9p3mhAPkLvL6LMYzhMpub+KHebo3hoBt9chnC+/5mZkorCqAWO00rJ5I2bXGCK3LXEIy1NgHNobt1mhReKLt88zh6k5czK3dHuV6ShBjuRSet7A8a1AqzQ/HW+bo14DEqhKhe7v5qp3f7tv/9s8+an/92W17fGte8FfXnuUp/S409yg4QmwAN93ibFMmdO8G8hQtqsRryBLWV5SBEvhFZD2y9HEuQmgVkGtR0lmfVd9Rgl0qA70Mnq3qRpRAa/8ibkNy9PxLKHdGUW1c+0i/OLMJSSNWOxLeyvvQf49EifBd65eVLjQnYUSt7Dqh3J5oc7hfx7t2VgEDSLVR0x6hlzo2Qd5WgZbj3csERgQX6vpmbumsLYw/IKfY+ZjNAbycjm7c6ytT44njRvCMow8WoeBx4FHHPqJNUuVLRcLp8CZokDtP7d0rGtdijn189uci+GHkFNvY4h0mV1kdaveuLmjQDG+jIlabzGThobZnncd7tFtMllXlsIgrjwIDn61AH+TjA5clSlzaeA3tPys11zqCDfGbNEqoV47rJ55denKXSJ2yQClD7I5KJPE0R0sfQlvTuIJohogyIK4HjGDDWeB3vl6HEVlfrxXE7d6G3dHnFP/EUM+/PWIA+19fHnu6lFB+4TITn4nP++SkXin1Z4FhMr9+NFb43jE5crdva9uPCE2mZ59SgJ5p9s3oX85HR3tC0bU4xK7SCarsBH5Q9EviCnFOYx+Zd3jYPv5r7CujA9Erj9YonRryD7Be0mCvRpgw1AX/F2XX/mdVShAJ6bnjHlGRRd/SS0ykbMcDqKId3fhJ422OnHY6mjjEeqNdy4hQsfOVLNzHwehakzX27ZPH6/bBo3X7+It1++Ji40r0t4n9vloF+vAqb359toaX8RJE+NO+nV9t2+cX67Z459Ae3FPbMAv89p5Pbn1a5XqLZlnC4hqSc2XYY6Xcqb34mLV6VDTCIthdgYOQtqsMp+nv0bBMoWj5hPJgjsKLXqOEl89L+6R4pHVk9dRhzGopK1lIWnlSuxGliQ+MoLMO0zNesryjkIrAlu9JKYYGlFD6YmrKSmzhZx4JJnO8cIJOLsa5CwJfxt/6VBljIJljfLLc9HBPWxlmemVlWMfkmAqaEr0YbP/jkyV1ccwIlznjSwTorttGHAfAfCbHEhcXGykWHsugkQfor3gzukcRvVUXWsTHihiBcJYRArPjeVf1Qff+cRBZA11eTYCumoouS77OR9a11lXsrcrqwZMZP/J7HQAyYiovMtmTiIZC1Ty+pwbem71PHAN9h9AZ6l2TWvKH1m5383a13bcvjOZerb9y2arXwa/fahmAwmvW+IwwRdaxTU9clrG5a7RcX4hNEPye5Z1Pz2UqAfL9MVrW5ZxOFRWlJ3lWVNgnzZe7mPOcChHtc8Jbxv7zPbFvi28wIolldxgeuQWNoRLkhgBoyabUejezQoYMgsIw+s4a3RlNogan0mzEC6TeIEYsUbHFejNn1g0LUo1hQjt6r17PK0OwjgGMKOP9mkRoNAL1hLElKc7IOowdD6DiTwT0bnVSAYsWIdF9FI+18JLVZplLAmZWQpg8msaWwjAZZagEe8uqKP3e0YdSGckpkgoddH6EHNYTluL/08/07zHflh2tfFbxUMr33TP6Ve6yxvX8dM9QrIzh0f3Jp1QDuRKKf/dtLgvHwnnW/tKrrStfUXn0DCuv1c6l7DIYiaYDU3GvOF1yUJ6rvJVe2DJ2VV6yDpQ8NmbYryew25FIrNoffYReKc/aR2LXQHjNSI6SV9yQ2HmguTemQkN52FNo7t6fOLmzYa7RjJdYaoZFj13d7toa+c9Rqq90nBdtL37l19tOHujnNBL3f/2bR+2zR0/bP/n33m8/+6P3HG1zB2+donwWoBSY5XzeVsuz+B6eTMuLZNiRWRfnh8hnncPbaNYps/B4HoF4BiIfEhuYCTqJVui+zMzpirzJqNdmCrKhOQfAlsQyO2cBrmG4efNA0GIZAjQl3fjHmrfu9XM+g1BbHEoa31gfllZM5v1EGLObstyEmTV5YWllq5ygsMzFRIQLbL6FpQvXOrHwd0U+Nglf+lqBdOolR/YLRt2jhA68EGeR22RpnzHnkfPNCNLl2SrW2tbxcGi3XlfTUKDnniOyWe/a1nLh28Jre88OizbfLdtsvW8r83pavvVhHh6AWXhPI9KAaitQm33vAJsdnGbpZn9TquyltY6pXirHGYh3LLeW40BOOhi2WSnjIgG5wD7lvkPx8FCOLPfLPJD42C62dfNyT6x/CRRRgwewJ5hRIfP8hHia59WZBPa54Qk4AjA8LQ6ewnIW7s1YtNVy1Zb7bVvu1ygjBYME3KlRU7OIPr3z3EvL2aLNFovwrANEyHPwbKSOAQBQl0Ng37I34XGGIGZn1utlz9veoxqISo29A2/4Cn3beChllYAZWzC4ykG3sbOGayitJaGGN4gRB1I/FnNFS3j/dDvdNhZ4WpJpyor7WY+8d37sVnjvHOqpQ3B1yzSk305wc2Hd1jSkVtvF7qGem5cnrgPGX27AAjKdt81+1n530donT2ftcsu4i1N7tU2EIvNcLgPwycB69tvI06XQb+tLzxUpFY2GKpB6XWRDfUbVgMkbSWuowGKfjxhix9KHGN+QNF3CU52mU+iGNw+Z/p3wmwowPFPm7eQznOZvw4hwJhJRpcpUdKnTJPvSPDICrhPYIYd272ARJMaHN80CJ5i3SxuEeYXNAxn5iYdjAL6RyzuzvoQ3yjxHfnJTcAUQi8xLKhXdUYzZ9igdB9WiinpoZ3iE42XIfHPtA8WZ+SuzdrDxyntcvBAo5Rh/7RclK+apdrwVr9TR2uwsLAOVVobwa/aBHlPrI1DeN2Lw0G1MA7w7OmYWtYNKGKBbK3iiU6FGsW7vUxGiKqs1pCx4pMI0ACr3oefEEuoF3sTVAFjn0QYlIkbov1gFra92j8lGG8gpEAHSA3jGCgWyTjwf2roICho6EDEYWC+W735HKlQtWRqnUhkUbdoRsBPlu5Y68rjrb0aO1e0lZ0TYdSmVYWBA7WA1UFBxhtvY69LLoElPHCla1HJ6Tx3RnFUeYHA32bqe0Ie3q1MiFWMkKHsf4OVWNGrOUUS61O8xFuzbpDchAzEiZulRjrDVoJqBrkXOE+bE99Kq5sl+Ro1zoXWIWoBInVFpDLe2M+F0i7WaB/BXUZu7qBT3fsMT7Ua4g5VEUwMGZLr9oZ3fbNvlzbZ9frltD6+27anV7wbqfs38s9Na34b2ShTo2TMszs+/68236VvPzq82foIub99rO4biJGEIRSupjm4+BExa23cX6BEuSZn/Y8s7MpSmz0OIA9OpSp1NsV5QfyTJSItxWcZErgUckUo3+pjerFd/Vi1FvTEeqWZpynB1+EZPuI4oah9Lf1MXGyY9ewFhoVMK+8524hWUIzNAUEliNz0UBk818dIUe82PDYaN50ChcEbi+R4IPYdUyfkplVm92h3ur1hbdUxHljSXRHNNmTAn3x1bxxRsC2WknsMLSiGnEwFa3Z0e36MtL8qFzD+T0Xh4fG7ATqEP5lz7G6KPbHswj1rVHLvmL1Pw0k6rgO0/RQpkrXUOW0UyfsXa5aV8cr7FskwaIczZRbS0Psu55P7QYyy56qHvlhIdcgnnZeqXTi/TEA0T81FXcl7Ci5y2lnzpSJumK19nMWmJ7qKB7MM5grMaXrqHl7v22dOth+S9mtaHjb8apj0Iqm+RIEDlMpXirEE+CEOgGUToTlCiQcqLXD4GNZEwj2tHTyiEXj2P4mWWI5LvSH5XT+LJlDOep/XIzozPOloilCTup5ex+7RjL6lMZ2emwDoB5NUr33y+NRPow+AdRgul0TnktG0QBG2UCnQ2jtAwmRMFfCvejvWEDb17kirg6nlU6WLgH+SNmYk00NWirRFpFKlkEnUkE1X0AqGsJugjF1rXLz3/iAjSylnVz95L6OsDrzIBl6ZzKLtGeOextA8qepHaHj2M9J1jqzOuAz2DZUjwPTmbgm9meTIxjN/1/JQyBo8h7/KShBIrnh5NWeS8ujvnQvfVwyo8vT/1IvHZf0SmcoO4f604Nv2ZTT4sH+KWDmi23ia573Je09PP8Q9gaZGTXu/UPXE8ug8yfef97Y1YPL86X6QZAdheiNW6riPh6z5m5/zMFj3srhE6acYnN3QoDRD07fJA187OZ4mHeRh4eZwls3M2RnVaSoV5ntc7/3m7rRJuxww3b3M7eaDRjobBZDu0R1fbdn47ax9ezNon12ft+2eH9v2V1So0L0nVe6b3xxmEeeGMWZnFzz2vAXIUvkVPMHKFYbeJOsiRjxAwzAfPti/uQ4KW3tqh73qQrblHWhhAfIkV9zq2W2ciy1XkYnWCNYNIJbRXn53vxHmxWq1xSuEBxB3lCSixPmvf4RmJQs5QJuaT4u+xXGAOBMJYlOdq7YDChyS8y8xNQZ6Ze7Mtj6hyR72WreWdgkFHvW6rl2w5tc3zqtwb6d9HOR0jOA4aRkRwT0UOb6F5YI3yWKj2fm293HleMSfRrOhby+VKz3nUHq7FKYHEIxtEgtkbmrf1FbOau5R6suTLUNgioHfsgUC45MoQ3C72FcpgIV/X6iWn4ArLvPVzvds64re9kLWu/R0qDOeJQW9y60XNEsuzZznssIrXfrWLLffZQc3cuompY25hTIR7ykxkOqNRwxE7DfGTQDLMs2aJENYTxZjcUGERHvs4swa4AU+HG7qjaCpmeQfDDhFYk6MFGjy4CVNEF1D6HIvaozIUtt+OfNRFTqUeeV6ejzw7JqApECEEtn0gk9r19o4AJ7LxBRK4z44KEWlVL8A6nlEKMJ6n58It3Ei+zvb/yIfPOuxqfCJ3FgGLwCIeyuof1W6X9Ey3YC9gUjTEb0+rn7X2aL1t//lffN7+/vGmfX65bq+yPUvw/K40ZwGGruoo67EylqtquXnm6dx7lEAAHnpkBfbccgmlw8LwbH8tIBAZWconl/I3stER4deUIqLc+u6F94qJS/4clAcaFTZ6xl0os/7jXjY/L4ZzAc+neaZYN9b3P6LHUpmxuvOkQ2O5MlUo8x+wDawk1cyeHdEoka6BM2R8QB4TeceBM+EVHix/dFCK+WwaydPLR9wB0Te1OT+yShuGS0F+IXPrz0bJKA/gSuDL6fPIcpi6Ed7TXpqmMTsV1Qh2w4vjHX4dHly5t0F8DB/E/7KcaATSxbcpJXivDNnccstnm307rAPZ/NYrMFA5CmO39xQboC91ByWiW9B44Yoym8lmEo1gdNzOgiNlo5AIAgOPqNCYS+xbo+3WOdZ3jhrVcU1EE8GI4oBqRg8DRd33hjNoM87XRmP9Xe/+6O59TjNkcPcWwgATRmAYp/EMRjNmsFI6gWgYmj43Ix3YFwbDifLNr8oYIAsCfuZ9AqEIfiR7hjWuRYlmV2K9zHtqPFMiRHqzV6d0R2Bar3Sq8lfGZRlWPgSgf6BR3TxoSaf0QqvXWMwuiIo4Yy4xGhHi0/gkz/cIEaF3Pg9QfNlRu8ZL1CE0mzTOY8ksQiSdI2I0hQKdY1EZH0j8jv/DvAPrH8LcLIoskfZnkCuNrhGF3aJ7Nvv2wcOb9un5un1qKNxX27Y+kvv8NhmdvzEF+rjdrlrlWj57Mmdf4Z1fdZkY4mVhQhe3+/boZt/u2SY8Qyg231PStROsDI4are04KTxopoDn/SQqInT3YxlGM3BAbuq01MmM9MZuKna8gYxmeKnUou1MdV2uVf+zaI9wA3ia0sstc0YFZ7QqTkaboaxBFPLQS+i8yPJVanSyAYh2LbZ9BUJA6HaFbsXEuZ3AlcC+FjHzt6DG4DuE1hOKhOVKpCyLEn4yuG5dxcRIoj7gldQ4nlUPHG/iSqbXNEPAj9/H38qYgtBmhITVXpAnDMMInlzvcOGCaf+M5NCVIUWmoCoMMpg1lHDWJ/MzJDSEiy45+rpYNPqEci9AYgZqRoadHLR6kEiufAfXUgF0iJCfM1JGkXgc62L2i8j3JcKsjNlRknV5uGaQUMZ683pv/w7u+Y4C9POfk0PVqkc31cuOrFwX0pZRJd7XAN/TfMoQYLRkXYRhWs7UR+c37aPzTVey5mXaC8qYr6zdoW/d+ck33RJoBwaRreQQRsUAhFhKDnRiGmZUVQEy9ejwTC84tnKFXcB+RFm7UqIlhEOE76nRmFEXGe2Tb5D+wJDkmBYZ5VHX6j1qhJYH1DMzoqKnx+RRrG3cAZZ1QGv1uwvMEOp1npJ34WilnExeIeRMaT2pZYoMCXal81URBcPwJp67ukXyOmsJewNJGlq5WRA/dGzs+IXrxaisWuPeA+3zbUBFBiQ2j8iv3rOqypmsSzc2QUQma7CGetPHqIve38/h9PvksMrzxmnXHGq5kIYKIF44T0vliwqZevfuarpncJYIUlelOHqZTRW/o89JXtePnb+nnIkRl6j5nKosKqCxI3lrPq3bO12ThRHfRDeAXgTpx6wd4bbt+1to6+M7U/YcxzAOT67VYaahWmRAykP5HiECvWM69kXuh/Fc6YtUdGQuvPStd8JJNILQQTcKqpyeGAVqhJgNCPwwhO4Pnvd8cbVrN+u95z8zM/NlleaX5/7fIgX6zRMd7m7PDy0IYvTnv33cPjq/av/k3/1++9Gffj+tlO5zSs+SEXrn2piFZZ//BS/VfoYqzAgB5nFwT7Wf4h5FOX4Pj1YoIUUsLPQ49zIVzSOhRBzmmdV/MwRDy2e2vA6z6iHvyOtFIn/R+8n6yHhY5DEIoUoLH6CD8H3kBMWR8xRas9b7+LaOdD2brdzDFcjaqL3n6L9FBKjUJoPkuw150X41mFj7xIsQm9k3cjhNyfIcc1PSvO9zzzMywgBA76iB6Z5Lms9iHq1er+efI7mJjIR/B/ErwrMzpGbUCXbvqVvhD83StD3fHf9zpc8e5SHdFVEQc0whMoSERGYVwuQeWlhHGIDoVlzntjaPUb+a4diFto1LkO9mBgLvfxQBzWdZTefYYigjgnz6KOMUeb9Ww9dzuEQicuaP5LkYk3laKHGjOvF+E5569/KXJzfyrw9t6eiVVnsbXs70fpeHhXOxbXtY5lfob5gpDH2b1vxeoMY8mGHEf6PYb3t1Hh4T5mNORGzUNLb9RqHE5z3eYbnuuMpvNWMYmYy9Lc4SDWJmbDMUdgtLXLTFweqg0hseXooIOYtnhxedoX1E0yZzBso3BFwa64iAXnIPDCvEK3Dkz0CaTRNDGhLwDh9NVGu1nH63ZgORnqUwYr0CW4Alaqg88dzakeT1KAkbQkRkridan52Rp+tD+1cfbtsH59t2viUI0ytgoBTOX1Po2Owt5IOBHD/PPWFrW3pt7AXz6g5mnvyvfW6Ix+ahNpiAVOjsHBtytxujBsNP1yraKWlpktQAGeIBWADFub87uE+FdouRV3uMzgbyP5R1CP7pgYGiwv3tiNEpWBdmAfmYR2tJCKfRAXIsAk+6Zw9C6hjFZQ04kk7X3HNEvopOOx6E5W6icgRYXM69e94dZffQAZcFn507DdXILb+d+cnoTNAMSUGhgYGCsqR5HF0/o4dZR5kDDyOK8S6jwxYBoOHMnAdmZuw9ogv51KY80tuaCkTcaWvzzllr8y3jWQQbQSw4WraRToTOGMH8ceCrkFCTDlaszNERowwXjMi2tq6gVq3uyLWVvYhKCBXeSllNc2Ir53tlNBWG2rCzGk8mHbzjMKmWYw2gUY6e7vWBK2XA9/1i3s6wuD6aVOJEi3LcnDoj3HesVcyAA+KfcE+Fd7gM27MhIoRyFGVJnwsZFs8Lw9v5bhVkbT4oO4wGGp0ipS+9LEClksro9H7ra/yNuee7hxS7/saYZzvTdv4z+kBECXsOZTr23c5ygDeifyzdhsoWarzkmlDPoMyYqPJHDC1BX4ZIl8GQYN7jxDqhko+zvZRIGI9KQc62R0+0mtOdRWt6jexDu93s2xdIw3p6E0o0ynt/69orVaAnDKz/8siHRx/yxkkfeYjbrH3xdN2ebtbtP/6D+21rAogTqCL83YGEN6yz1pKD+1mpJ/O0U9kKQgIkCbFC5YNAjUuXEXPVMU9kokIj39cYl4XRWbixHGC3IHl5KdQuPmJN03kJhUwGAY6s1qwcPg5mlNYqcDSOK4EjNIeH7+r2j9gX3dtRc5ze5I54xs0sN0Dcrug7lVB4JI3RgBGk8OQKfs35OAlkINkPuD2ilJJ4OjFm8gPOUQqOJOBQlNVyXkNPM2W3Dh3x7Ki2rD9/0bkRbTbKimWUWz5KPRsemiwCgs+KCJHsRZbWwnWRN46wT6CMc6wO7pH5flMGFQYb7hHsR1N8JRYrpp15Nkdoz+F4Rqzv8rB8yFzWQAi+xnIduV27HEcVNPrwrQg2DyC/XGf/JqGRoAJUjXdT2Hmmdbt3eZAEXekWtz/63f6Bwa0EmDrbKWxmwlS9ySLrQygsTF6ufwkySBtgyCmE8TBepamns4Tbb4muO7P0gNY+uNi3Dy+sHEkJbV+pDYLCV37eMx4/sre7aOY33pT2pEALz7MpYgSbwbUkIaMAxrgBdWTQI0hB+64Z6O4h7RIlOpG8oehCPH3GKva5rsdECDeIUoAV185Y45RnnJ5yxYIob6ZMYk1rKZ5D+SmOrRP8O5NE9ZO/FE4GjQoS6QThOctZgXi4wZpI3zxxwmuPLQI4X3m1hk2d9AV0dprzSQ90agDp3e1k5mHcQfelFjBKI1b36j2ukLQA37QUmVSMhNCPpROTppEcCR/kc+tJfdqLj22ikZHMwnia3s/a6exD8NkKQ5bKmh1vItcIukkMDcgMJRxhkWTPqhwiIqHs1IyEYNk4yonOdTyCDPOF+PQuhfHYHhAD0URPy/z2AGaLPaOhFYVUnnRHeUjOTewvVeZ7Et7nAOfLx6UavlY61DmkZL5IjATLenJPX1d51N5Bu+4w+qacK8pz7LlpveecJwkL5/mqfPVCq88zOsqB8u6xzn3/fR99wzMdhu+KsMktKfWnZxg40+W2Vk5se3Cl+dq8z14q8I5ogme0V82rX1c75UC/VDu0zdoQHFv79Mm+/d3DQ/vBO639+AE3M/MkzX3XyioFgdBOQiku9gXYHDYlFQVXKBjeKAeGHlo2ZQaetwoiFOGaUbs3qXkKBSDUTqyqtqAJToHSuPf6bYE8CCRoCeOtl0sHYE61541hpRoma7nEUZ8QFYShuLpyZR5peMBytkEsgxlKmLszsULbplDh47J8Vsw955XvYRjrkl7SxTwsgJ7XB0HFdSmgVkpfKBuQWcSAkI/ssd67jBxgXuzc8rX2A4EC8rkbKWL0FcYPzx7nzUPWKHkknioYnROl8LzuPO8mvEqOjIh30ptoc+jEjXlfWJzcM4x/QC1k/zvrKNvnkexN0FXWCifxZCNIBMP905PkyLThHV+oYJXzWWkMrDdqIwshkZJZzI8bQdzDUtzKPPu02AciLvd+zNV8hnxPWGxTjfOoBZSXMe+1eaiFUUSOceSraU3tmFMMHSjeeiQ0XY3fOjI4D6GthxtpMCai1qWACrTQ+aIHQFNBHGfC53gSwh+jJK3g3kAsQCCG0wNJi/8YzodxLi1SRRSC0uaZmqAGP/YhEDp9DiOLOqzavh9rvyyXyxQULzbb9s9/f9E+uti0qw39+kW7vlJ7Q3XZb7pRDjXKG7VJSUvDuLOBMNTIwzzPrgTFaKUA+bk0+uu1vOMiCot+zZGw5LGVsTGuDMNbnNeqNxw/AVVQ4yEwDg4g93PG4ZBsY88mFgf+B5ZXgrUYg73SxJGxmIdmlRFkzSNjFrNDu3c2a+9s5p77VyjA0Ql/vz3P0LjtXDBxOQXo8tTxxNFbbc3rJYvyVoraoS05dxiH/fPasg4ohKgeR45WfIpeOQuBmQZ0hvrje+Rlyg0i8UdfLIeYdZRzjd1jDrqMFQzB2vLjgnbfN0yWxdxrywYuC2iQ8WqGjLZ5COXu0ipVh4aXqAbRHCeD+c+qwHotXL/BR5l9OWLGwDoHWnGgcQM8FFFBzvahOFjz/Fbx4qexF+vP/GNfE+MByY9ifO4BV52sM+DIBhEyjG2ZSs+95cLP6Ops4XO4NWR9x+KZ0sFgkT1gwbEkurKP9A/wcp0wWvsepLLuOfvgKyHugD8HinTwIPBmeWT5liqxM8cGAzYVOlmgDlyTPJh0h/w4ntGf4aoHPoxbPQbyue8FjSjRW2TreDSZR1egaoe8m84W2780ANVeYTWZkLiJJI9hBs8WmZfo4LymjOLo+ZB2wsYwch2XVu0wGsa9HOcu3uUGVp2zGR0lMTBLc/31Z9ft0eW2fXq5bedQoDXF5rU3ORtvrQJ91PqeLsRiSi/6tPrvi/kToC4Nn0z79aI+Cb0qSku19vR63x4+tVDSRfvJuxUSk8fR/0ZgJf+DOWDOS4aMiiLcmxbl9Ix9yo9w4FK6IKej0qjPxu/0bqfwTOdToTd4hFN63Wa9sKyWabGlpzVseF/ltki4Kz+B4cEV5BlKggmIWChy5Q0msFZ4jVPiAPGO66g0cqJ6tSL+MeyM+XpO1LhMSYB6gtub0KWylwsjEBhtjkCxHTANc6wKGJWeIPJ9GE4X+tRZODXvGIo3GFcAj2A9O+N071khg8s9Q+WLkQaQHv0n5jZeHX5U93DUlCtrwfYu5lIyVhmACDoLFbHbO6HYc11N4ae6l4uc+8UrqHC+fTEhiKjxJX8BvYEOHgb2mkdKefErgDIkPNND4gC20nHp4VhqDn8dTfUi0TNRURksiTO1GisyfQ+0p3Mby94z+a4/asl3gTiU6FKWSyNRD0Q53cST1r1F6Wj/u/aGxg7SkKAzWH0q5DMD12vtertvH5zfto8vtmE40q1/pL0Q5T4iML7wvV8l2uoFrv+mm/aGQhbzhE3JsLJFYQysMFTWD+7KFA3nIOhzXEeBeKIDpKB8fNaoPMQfktvrzymlnCG3+RRKdUfOZu7LzDntd6tKJ52HGh3ieZHsklS6zUBUumTQjADimbVtYC5288DxueGOtvaMJlGBHnxCwI6SntDQpjgRadzthX71QPm6gGd1hEQUiSB1Rad8rimkd+vY7+rAhED6EdcmeX+Eq3qf8T4HeZPFjVSCAFirHlWfuC+dPnhce1WN4JaJ0ppMHZq1M24U9FfnsFvkLv1eN3dNk/Na3X/EBRny2OM5JW2m+OfyGGcZSrWEzOub83m64eQFWhhC32th2wYA5QYIC7f1Uo3k4T3zyHcdwU/Rla3+DevNMOL0qlK+paEEUQYi1qpxLN7db6B4RKUT6PuznvedjU6nXgjpNY+SzeKo9A/k6481nk/9pJ82rm842TJqTWVhlXdo/Rt4XYoaHZGmsjxW4ZkitHcAiUeUaKUH8fexSgKC7ZBo4ZCdh241dNQMhY+ebtrDp5t2ud454F+W2HzB9pW45DfAYl9cgR6I7Wtrr+T5r6OT/TP/9uOn7cn1pv33/uT99vMf/qitZot2Zh6j/a7ttlsckFDs6PUNj5p5o3ZOHCznZUarKaxycUAMopNhk/S+QpVQaite4aDZdnA9kzJCU9MdJsTcahhTyRQv7daOHYCZVgfzfMVJ9BxeeIHdG2iecsJsgiFaXjE+8G4StZKCMjVNWimzNAcoxXKxckOEeyJJ+MTY4Ii9Axy3O0a8T2GkyCnJl8OLmmHuQX23Fm4fgM/u2dg68iUI/h457Ptt9svvh2eZRHdmkQMI2fZXugcUobqeAxNKV5R/qbPDNXBE6eS6IIbIIaX5lN6K3TZqTnt+M6mqK8NUekW48x/Ctkm8YFxgHFcYK+w+Zt7HHJrXIOYB6MhQmFGqGREWENky/A5CjJJWN0bIJ/7aRXiwkHtHq6QJRPbwqFAcudBOlObLcBDbnpZ8TNsG5rDxMHyCeTnKfSAIByZBYvnGuYO113IzKdUHIi1qUDuXMJwCm+uQeDP/zE2uve3d9wC8EKrkezkVcBnzxMXAA++6Qh5nvbdfn83lTftFbxBxOUit2pjrsC1BMLN96PuVa4X4EV/zoAu+fOY+yPqbEHpAa2xfL6KAN3K2Qt134Rbom5QK+YZYP3i+gLI9d5pCgV/KcGCfWmTDJ0+37Z/++rp98GTTLm42XYTNt6W9WaqzNaiPQyQoQ6mjpmp4ouPsBV66C8sWnWTeRNw39UhHcwEN2hqjUkqOLuWBzekfr+tJWPaT70g+Kt4/FWZHhV0VGQdZIj2GwmnctwDrBsUBz3PwNKNTLCsEPIIw9pUQ6xU4wBPNi7OdH9otxksuPioRRsvVPkclIKI3aLzrB6Rqf4bWZipIVI7InNX5zOt0e8406jVX3AzmFH/42MAbSW8OR9K1QlbpaZBHc9lP5CjbT/uf8RVVKKl0BUZJaf83m50r1fb5YjtPFG7ZJYG/YHNrueGHQ1tnZYkYkwF8OzV3GtzaerYLzAfP3Yx+eWoVjZswjhoGjH+G8SK92cdj1TNK+ywDjBtA5ACRcpG185+CjJYxpgwwpJEU18rYI9fiF2dhR4xCxJmwGsdzQy4HfLN5zxllQicEh5IKJKIbAsRPla5e+ao0CvQe6U1xriByUU48cg71s97HXN+xqkooXuVqUUW058VlDvEoDElPqiKslWLA9DiOw37dduMSownk9mNtQr84JtkPITuCdqESDxdb0wvyfilbFngCuIaGaJ0LXRehZ6n06njo7c/ShTDPUSHOklYwVJkBhjKGpNn4OUoFvk9XNcyMm92+fXK+aZ88WbeLa+Y+v26F8ZttL6FAH7NSvXibfcnvD2+g0GIH4bNzg2m/aX/443ttczDfjik4q1B69wYUJJSKYFyJZBzEiGWWjEB7CB2YHi2MpTYUu+tCnHNyMnM6wDHMmuu1JYo4x/UhSIfQkMW0gvi7AhheRhcBwERdSSQhOczbYV4Mix2AmpWKelxLgUbQTyO2JxmzW+4dxCBg8V0gIgKzWAnr2nqHCwtO+yW/hqHvMvd8Rnk2zfKtFuWY5+Dx9hPKBwwQnqsJBTuhp4jYzGlwxS1KlDkAxZBPh1noVqq8OOKNo5cZjMT7yFJLrriUCZYMoovVE0Rornco+shFTuaP0CEqoJiD8GbXwJbMnROGk8jyfEeXW829kiMUoSO8qV1evZjf/dkmvINpOhP0KOMy05I5uLJGyS0mIvOJUkgV6SNKWVkoG40T9IIQXMzOLupYcfxQBMl8YqmKi3XeoLyC5xaXck9BgE4rcDLZul69XpRrdN69SylMlQDCm8oXVR5r5rUqFY09xJBrIiFXjUYKkfreGCtOSq5zmQ1C8Cvald5KxlWMHr0c576d327bn/3+qn36dOsCdP/mboj93D2jjXffdcuXjUi662n6rmko5JvYEGmU+608zVmKDGBzy7bwFBDPz8fZi+PR54+y0dDmArFEoYRCLdflXMGAnKkAKumDbuI+T4cQEJ18dI5qHGX/ewiFCGe23GFHJGfCip4Xya3Gf0ywDAVaDZA1Et5ufNQUvYWnSQXP85Nn/U5FQKs5lHEpFRTy1lygOIyZr0w0BUG/Zzh3nOMSnFegGQblGF5NkE9MapdWo6GgFPSrUtSEPkS3QjnN8k/ihd4g/Wouxu8Ezcz/zDwE1OQLn+d9GCuWlltWmyrKBFmZStuXmXBbCg1LSjHk3NIQbL6JPBxRRl2YWUxvbNSc/0gTQhqMkyV+w0lg34uoBdcr04ai1wyicykwnXHW9qLylJ7mcz2780Z6Sy+hGXa8nBa+Ri1gdqiMZimUpRW1DDiic+pa51Bl5ZmyJ+7ijvZJGoLc0n1Xe2iqdFN5oyylc6U/O5rCfS/vy6sHxVcNO0mLmBY44bOjEn+Es2Avp/ILQY9RJimzTPqseca4n2lieRYJsCZzwv6An0MiHJcIdJ0GiVKgCQLI8xElqop+5/14JNM3BpNDc0PT/tDOb3bt8bXx8grf/ja3Uw70l2pFAT5/umt/+eFV+9n3Fu2Pf8TphIXVzWiFhJgxpLBKbVwgLdAP8Rf1b+tATurAHO0ZFTEJndJA2EBiLttehpa6IOyiU9Qk1BOtXNQUb5pnoRyjJkeOPcM+ME8UAliTl0aAQNy2WrpEFAbxEK8CZXXvEwbE6yiQ+LPApJerMAAYmIHdMzMobJh2vf6nGwpysqAzYQYSITFIjTkjXWAxiGn/yViwPmZrPg/Udat/F4BshlUdFv+wglbpAoJGqCFE546AboF0XeHfybrIyZw4m8BB7lgepJiPQuJ2IcCtEOZXcv+I30KvC5XxzJ8f9ljUNGZFbUGM1F9s73g+caGbdiNjPWlH4WaoU7Gg8EbEnnIBy86MAdyltVY9WPgOAneIbtyrll8cglJcH+FUEcRRnoRUiLFvLKfe0bYdkrJPE9hnHpuGu1Nl7gfqOXEqbgnDYVh1/BBjCPefPCq6KtyTzFKuoZGlMqi5rSkBTZU43wZuqEDvzeLt29nyvyUFQkrM+D3wPIdhiY8WaPT0XIA5w2vtBjmid1PoP+za9jBvl4ez9vntoX1ysWtfXO0Snfd1ttepyL4tsgJJOz2npCAppHJJUVvU6ZWbXOtzcwzaGfaoFceLCMNwYXCEAh6AeDTghdeYOlOvKIQgtxMJ1/embGNV6OKCqRAKffuoMM7PydbIS8jKiIRPxHj7sMIhFSG6jygpgTaUCTfyWS601+KNHF46Kz3fnMfaterB+yyAfvyM/DTHyBzo9MyDJgPM1PrMAJ1Ajs7pkl+KmuZ6gK0ZvTPZJFJYkLYTwSSx3o6cX5Ey9g1Rt42Omx2MudBuyOt4DMUICad2mWjfdq4UW/ULww+Jhdxt5x4Kb3nR/gysneWd2we3OW0wQAjJZE6xz4lsONJsTutUOau1cIXC2GXgVnrkEb1qpbDgiSD8Vdqwf8dEcRojsyUc37eGRQMyFxX4ObY/Xa6w0kDF+pNfecTIdu+eaPVQ9umB/Zmos9Pvxbwah4kRabzAkZjNcOJRT/357JRx+ayLPhTZNC8FcyWQZq2uhGZrG9IjTBE0D2p0u3iTR7LRcK4pztpXOIqCPkjqn8ic3XPHeURkhk5bROKVFcJ/E4NFGTTqvzS2TTzujLoE0Lkbx5Mu9CXxdAVppHIxFryY12X0jJ4FIuuLzEmbTKSkFFL6AQt8fzlru7NF+9n3Vh4RaFU1DKthDdyAr6Ud3mAF+i6F7VjTzRd/P+O5x07EM//mfce/1YDKY/16VY1qxJPrffv7h7cuWP5bP1x4eRqP+wTARCgKNCuKAu1lXvaSoF/5vd34QNH8h5TG6Poi1IDWaXoZebDZjAhS31UPdnpbEcyZecQq7YBJZ1JLAglVTGmMh+AI5TVkD9WS5kpeJovQagplU8NsGPLbCUv0WgIYCWqxAWOZsL+10FkLNzShwgjjXHKT0yMo+1rC4tLTSwcl4qbc8wx7QTEIlDhytDBAkfmLAADFdyXSJxQXke46Y4fkMVMwi/HmyMU7zxmVsJo0wJjwZ4xt13ZWisi8IXNT7LkqRZzpCdF9FcyMi07sbezhRFYWDQvSizIt3Xjs6XYfIc0lesb+Ys1tqsN00XPtsz6m7iOGplcGuf/ce1g+d06AqHB9FV218pHKUzozacn2ihhJuI4e3op9ynxtxQeg4Sz72CnECJ8UrUEFlSllAnOSB7ohhZK/hKc5mr6sZYaScl3yzAT4mi+ZvDToDjzXYZVKd5MFsvg5Y5mqVCQo4GvYH89kPCM8QYy0YZxo+KU2+3m72K3a+XrbHl2bJ/o5odsqRXT0/3WqxF+lPY+vfXMtT0pJrPk3QWFKCYaXtsxOBYJka2uGLFIUiRoq5NgConLaJ+GzXZ9oHE4o5DIqx9+FYs8WO0z/jv+mQA3mJ87bDhCL2jbtaDTycYwUmu2nl7cSZZnzRYFT5zTeb4pX5KK68Cm53LkTqLQOnrgYQ6+o6wU8v0kHqeMA2Rr4benpprc9DLK9QlfKs6Dxm0IM8AIzthVbsPxmjMHCrGOCoKAwNSm8Ua5Q40YCD22ELpISqCLjRlQvFxnRMx4ObFK4AWJ5dFcpvivff6IKo+IJ9zSjyhjpRQ4RxsIj0mPS1dornH+W9alInNo/6p3LvYTgP8Kc9UHo5LuQkkXpz31HBdVKWy3DK+j539x/ewtVr1zyel44BLx84BDmf5TDCK/2SjKwyB41WB2GaDcg5PsaxYaI8WeKjrxHFbROlunpt55kRrb061O8p9aoB8RijXvelPoAox5EeYbklD2IIyfnju/opg4rd8TozSfqLcmTB9oRdJAys8aakmzFvpN4z+y34+ctIk2BHeBR7LR+qeKhRp2aG5V5e7wczkHQ4RqPGWhijpliGn0/M6C91az94J1Fu90s2ztPNu16vvcynzqG764HejT9PuvSI3+/LvGh36y62QbI+VfcSIS/OL9u//o3h7bcv9v+0c9+4DX2zpAxSJJR1t0wm4bSZxszahYbPnJa7l3ZG09mHRJr9OTGh3Fq9ODFRf0kJVFkKSkCX9Ul9RNKJrGpS6lHiK6lCKuOBGrd5bUkYyADRoH2IZc5w4s9dgkrmIy8+hf51yXYBXBpuFLsqsU+jBZOYDBgq3lo9aGpmDoapffX5tA8bkAi3u89XMvyOyIEn7UTEbqt0cj5szz0oRxR0UA5ETJCjD0INxQVxXBBHjlB06oIUnGx4hmmgIdPxNPkzSpN4wPm18uSbSv/2rLobM4jRDtQm+0zWuz5aAqL1tLT5Ln6NmeWv0xE9vi56Fw+8TPH7Ao2lbzwuHg9ZPJrt6DW2XABx0PVPVO6vOAI0Y+Q/1g4F7AAoB31Ue0ZC19zR2d1o4Ep0KkWdFJmhDZDqIGSbPU8fV7UFJtnKtb5WM4WmZSoqOXdIvvO1IBDryjQAy9AYyW4lIGiAwfxmswR5hfDKsqnXhWuC+veZn5yDi0MK14Du4sSKfdD1Hktc0vI0yH2xrCx5qhbHflfGAmEKzPYsPOhnDAY5NA+e3rb/ou/u2wfnm/aredUvP1M9s1Rke9udsY+enzTfv1g1n707r327r2ohsBIf9+vIAAk1XY+dn7Y5h5VFdgRPF3EOkDuv+cGVxSLKqT+PFQMsHDwCLfV8jhQSDKIpUCs1GPN1BsSFAqpmTGAfqehB+dX9MC4jnmjQ3QHlTvv8xAyGe8PwxC9qdEXxXYI5P7lMgCdzhwBH17QvYUV93udAUIl9xO4T4R4aaGksoZvb1sy5cr7gwUlZWA9ds6LKjTJanMK+9KQ/DpVDs6XprfoeDIKAX/jKq5j0mZewILUMv+OeO2e9nnbmCEciM7G91LRN7wRV+phgAU97WQT/QkvJA2y7tMFP2a0GOW2yk3G6MJuHDnY5m2DoaAUTK2pLZPGUPpBseTvqvikUT/TYgLpOhhuKNL3TaYxheXMeNyh3VqeKctv0pWAfHS/koYY88wuF5XORDhoNTBJyatsgAHBCoqCyb2EPH2vTcz1RcLPEUNZCarTZ+lLWSqMD1Avcyl9HLPcOQm8qne4G2De2r15RYh2fUzDWH/mCxm9vzbqeZcBOfp5BDld508YfRqyxTDtBjc3uqF8lRnH1YFl4zDZb9hMwJDt9x6bgAGXAVznrMK3WXUnHVRicFNfiWr8B4zN6NqnF5v20ZNbBxGzvzUl8NvYlt8GYaGI+9fTauyH9ujitn1xcdN+8s683d7+pM2Xh3ZvQeYBu30ekvhvlCdqCQy1nxkLkFGIZYmKEb8kA4+wrRKbE6IAYVCT/kofxvkqi1yd0vBKQpJJWkcFOog4wQ7CE61eVd6UlCeYUpYRkNrI2kuY73saAHAjWEnD8FCF35krbvnj9ggHCSGAEnNMYXAIDxsstSSMEoXKMCl6SwLAi6HO8MZpPh9Rq3dzhF5HCQnmxjGfZiSqfIeHBadrHUYVUaJoHFHxTwW0CMcPQ0CF7gfTJRP267yMU5SxCkHFyoix/jXC37G+GfrnQqJ58NUSE57N9Cgi05Ur7s8hcJCod6H4q58YCh0B54xJbMGMUuBGiSoAc9mJMWE2wvCjA4YQHGO2iIND2xy2HgKKyPsQhkzo8SiEUPzCI7APj4bnWRMsrE9D4Kbw3MicX/X8c0ZKSGXoU4mVAdyiuFgxcnIinEQ9JuwBmGKd/UPbbs2e6/hqsa/YZzDY3C0Q2JiJ7mvWvS+MRuGRLuYZUSfwMqTVDyJl2tHMCMO88QqxLQCoWEPbc1aGi3PG7Yxd2h4+vW3/17963C5u9+2WB+xIq15/+XbXMzRd5qsaW/vUm1fR69fT7Ih9cn7d/v5s386W8/aOK9BUZKWclQirdj53vtes6gSwKiBw0y9GI4qj/8p+7+ygABEMIJ9QQkLPA4PB97zGbyWwZOkjHbqzPj5DNGl4olKCihLaSGsdayk9m+UVYhglQ8vTVgge7OVskGriQrZE8ThvRu1iV6AXkc4TyVOGIN0rvQo65cozpyvfKZQU6Uz07oJSxm8AdwsSXEpwCr8iPJN1G23ts3BrnuUVXWNUXC8JlRGCwIqMlqsIJ4a16sOYR0BaXjzAwcT2Vls25s0VC59v0mLwY6JjD4pGet51bNDe3XYu+8zTi4YxLkT0if0dZ8QUaFvDLVOFSKw1NFgiulLxzHWY7sUSDwpLwr9D1Js1B/dbWaWSQO+zfXbetm5gsJB7LYEVhi5Z9/ncMU0i/Bw4OG64KfQMzYNnyHd1SyJNMJAouQRg0Nw4lgsrWCojGaRRIfdlzQa3lS+Rr/m08aSWnNDT2lEGrf0etMneS+BDW/FQgusW9RRrDWRWCSE4HxnuGDdFx0+hXIMv5DARYZhyZP9OQ1H3/SVpBR1vSfwFOuVEoZ2UJMAcpXFySEORezXPXJzkZdST2ecyzuQv+9tyoB9ebton5+t2td67Av0y+vObpFO+VgX6axmoWDie+fJvWE5hdz672LR//qsn7Q9+sGz/8S/uOcGCU5VmRdQu5KEmYFWAUAWTATowiS0UxhTaUxNW5UR7Es8sk9TdoWHjnZ0yO8p/kjOmgyaRHZcgvOOG2FuyeIybljcVCIR505IqzCe8BxQTCvjICI39bsjKoWQVJ7LvY65BCFmDj4k6yNUzKzdLszjTAYf3PF2sizXmcI1KsFKHHswhFM0CACtgJ6+FSbHTlbsyjHBdg2gTRV3yeTQ/Ob3aujBkfrR1hMJpegyjB8jFOV7uu9pBBbLFmZcFr9dQEKb9cTDAhIRChb8ItjNWYbCF8E1hSFIQkKDjPUD6QrwrandHyFn0j8ytzgvfW32K3Mao0+oKNJBKLZdaK0pk6SY/w2Ouel8P2UPfNOd8TLAUS/k0vq2U4wrVlPPAdAOcByL/EjUz7VPYCFHCJQw5kftYgHG8gcAo8SyMjyGcAH2qjVS5WCn4scumRHlfKk2jC/UezNw2w/PDrl1tWvtiPWufXM0cMTfKDKvqeZw+Sa9euo1hvn3MwKvjZsfDEd+sZvv09+cbj/RYrZbtdrtvP3iwau/es/QONFlLax6K7NgF8zZ3oKcEpw+0Zhd47UrWPiVtYv4r857DmzKm4xSD0T/rAxPUwxhWSjWNnB2bEs+O/ox79IxJaTaJ8FCQHgIV8l2sHRw201LgQmGuUlZ8cRi/Ds6nDE16Yzm+7nIfE9yCDofhkoUvVdGFJ0rQqyM9IgeWT3NaTEHa6v8uDp4rHNUhYh2WroDO234Z4Zg3zqPMGMdoK0HIdhTriPjxPGTyyd2heArOpylRPgX2PkMfd4RsolrDdIB8+FB4+z3AUPk0IIBmhUHcjIf7ttzP2gqI5U6/Doe2wpBRrlzmAjQTII4m3DuNYuCeR0GVwYUlqlI2E+GJJmKXBxBRZAfgbBVpWta34uGdPQif0/AfZ0UNGrn5RMEPmYXGE3iVzdi0aO0e6jtbx22N7p3ZWszafr1zpbOL6+b6ACwv/llOqjgpiC8zrIXez7xzX2PeB35LIFLds13pCGmQFEIJHeVLGvNp4IAXetJSyatzm38jzVHNFryAdJ9RJLEr8V1Cn3M/i+SjCj7OtD4rDXOkmaAvmraYJ16mJcqYxVuotLJvTk8oqqXsjD07s1S8Lp6ss8bxum79O0mu3scrulQvoZnj+PvPIZMj4uDp7aZdJHgYUdSfzwffRqX5SynQb26u2TEPwNf97tY+fnzb/p9//aj9J//Wg/aPfrHyHB1nMvCAGWFg8XQm/FPRjFgkbrfa9GTEptAFSBauGSx3eSxAKO3hWudt9Jp1CurgWTum5FajoiVMXnNTUymKcVrIUBxoCj7T5+t3GQIEJh6HNKhbEJx4j1kQjaHb31aWyjoQJTNE+aEFlUSKHmkIe6HcxnRHSSSzjKPcUUiDGVsYAFqFAZczkWb6mlvWex7HF+HVey9xRkmDYXrdtiV+mxNJuEgynLzqHIZgURbtWl+WZQoFx3438IjYI8bwy9rsyrzsi0RppAc6Ot7t8/JuUoitZ1SuS4zPwxtpScY6WeiwIuD0QhTG7DmJLMXE8Ct6lZi+QAt6zJXPR6ZLSDxHctEIjwoU7yhp4omNkFQoQFdfjoP2MbqAFCeHAnCksMoXY8tQKPd7U5mXMauCKhoq55drGwpNeJIzDYICNWu3xw4OpkvPhT/OXF4FfhYgR0Aeh5HBSn359Ap4Ua5JhyhfRgz3tDEElmGRMFj1lmsP/m2Lw027Wi/ar56ctQ8uZ83Snin4ntrX00yw+c3j23Z+s2n3l/O2Xm/b/KfvtndWEcoduBdQJFHiJypE2H4EAKSHpQb99Lq8xtu4/wmYRfwI0j4o1J6j2ZWf6lvlCBYOgivybjSrc5Eeze7m48qzNzmW+dXIIyGxRoqQfqe0thRrfpfGQwWPQh6qARrdu2duuRZ5q8NuT9rBql9ycEgTPIzcEKVdy6vkMB0cuZDnH++iNKb9/Y6BSYnxwQQ+jzpZmle8td3GCliGS9bmwGqyl4Einm0cy/tgHrw9FGh7lxsig4c58oulbVjf5uF9CrklBmLK88zSRrgAUgeXcoRW56BOE0MO5c+QxC0ly9+DKByDxbQLY38Wb9qSZnJdnb5ViGrIZcWHdCapyNDXkBl1MOZ62THzjp9B3oIskZU1YNwk/yQCcyjRULR6FcibK7YelSFpMZBZLCTbxnj//tKNMr7WezMM7NtiO/O9Yedz3OzkJsZPwytNTz1waDKce+oR5pMq9QaGDvGO5hnv7uK3eVXudePTrhymHMVxygtHZw5+qoc0FWYaQ7x0KJHW61H6i5Z/JHgWP0jHUmdY07NIw07s/QB5K17tzwe4oo6XTxg91ZSvMiqEyrhknPGslI0ieKth/NRUlUBKR81I+5iopellnIc0JI40U+hlzYE+s2SZw27fLq437cnVtl2vD+12a2d/WtpwbG+2RvmGoXDLMRq+0ZMjP494So/e3j0pyUX382j+4tH7X6ypos57LIzm6fWmnV/v2qPbhTOuBxkNSatpCBZaX1EpQ1qHUidjICwJXligOlMWrkpcrxTeC7GEB8taev503Gr+Kv7WHzYcXg/ng7eB5Uzo9FYBJQ5bhAzTW5YKo7w/S4EM5U1YXiQVEAt3d+XQwm+tLrQgYmO+UqiHVyDnRnxc7KYZNeaGXwZFnH2aXO3zUHWTfZroQumMD6HNOZOkAgcE7SSIRLKkUp7MIsrFWDPQlmD0lSuboCtUpF0ggVkBiUssZcJcN88d5kZyocvyf4K5EAm76iH2c8Cw3tqIqKktSKq5LTNTVoK29UhDyXNGTcVOFOcyDNV+Z4hShpnn2cA5SI7VM5zwcKmVFwo4Ywg4Rq2LmFZ+pgn0cVHuE0o3uXIg2SMOJIfyUOijI5S6IBdiTSn1PQigPd88fO7Lz3wqGAqgDNNgFYI0mKTQDka6RHB9hSAwsoK1MQNjv+aMNCVWsYR17mk9Fdwj3DMetuf/KtIjr086UmXKDrNl287ebQ9vNu1f/j5ynz008yW15xcx5H4Zhbyn6bMXfu7sLTM423w/XcfafPx005bzQ/vJ+/fbT5zekhYUjQ7BKyI2dumhgVA2L8CplQOK2d8RWuogyszfc6UjvNGsOtEDIE0FuAg7LWOvp91YtIOj84dHOmgg6IrYMifh2lCiLMSZhoEMy4SRGnbKVII8HJxnZlC0zWObXmESZpu7sFPBwIRxmbd+uWirNmv3oWRS+blN42I8y87D3BQlRO9YdIDVkb63NBAteMZxqE1RJeWMlBUFSArasW6tXc73DkB1T2q9RpfD6JH55N16c5V74x49o17HwYxk4+ai4JAI0pWP62xI0qNodAhyG8wkDLjgd+wDZCgK7AFBWYbezPEmtguWKqFWaLhBegkj2lhua7Rpcky5Lm4MDCNSn9Nbe8KwVnxfm4KamC8I08WkUlGMR6KsVqbdlBLEH2qIIdHWqDOu08om2nNi+2DmjNgSvp7KM/8GDo7SYM1dz9QGDe0VIxWEnFL+eI4tSgXBfseaRs5peqJuJIbMV5LiIFtoPxQAS+mIeEGpLIYxjGmB9e4Qf0uJVhmmk5XxRSjR5ahKxb4fRg6N+6BSoWpuqRjTYDk+ogwGME7Tyw56xrlU2V62jYosQPeXs63y/6hE69zr1Ah92Fse/vbQPvhi3R5ebDx02wMynqmnfXva61Wg9US/oPqsn931yGc97+tu3Ky3m11bn9+0zy/ut4+frtoP7rf24IGhH5cxIBCwS2Eo7xZKSyFE05GjWaqC6AAgvF7/0C2VzDQSgcQZa4jJe0sqhdeK78rc46R9atYD+AuVlLirxkgQCj8cUMD4JDhs3TIJIAQMDBbdUN6mhgzxCosWnl7Eg+T+eJ1tC1faBeNYWH7yrM0sd5aqi+f/VkJLAmfls+gNjM6aNbuU+hgRmXx1lJmkVC7gd0xQOBPo7B07uLLnyMWDAOZzhlJSCIeMmrmxjoYyao9dLlf+tCXKhWiMTTC/KC9mQpZ7gtyDSOu8CUkxTx7i45Q4PAcJnjY/uCDlJUp25q/nNIW3JQHfYNRwoQHCIPsSgmoJfaFeQogTRpJzB+Rp6+N2zW2MfuOy2EOonpmLE6ijEfJm84mdoXW+U3GmQBjX8lTYN17H2rc3vK2GNWAhWMaABDSDNUt9F6h1XYOfOGi4valws+NmiPHPdnHu6Jk5HCzzHL5nMQqS2cW6mRfPhOpd9Be5Wu6tz1zNWNtAs6bxKMg3AeztrxCImXLQOs97hInGewNDAYp+aN/wzsvypVZSGzHKXFm5uIWvEc0nufb0bqCqAGWs/fys7ebvtN9dPG7/p3/ziSsH3zTt/i42m/NHt4f2dNPae4/X7XK9ab/80bvtlz8MVNceMRj03M6LRXlIcnOE7AKlO8vlNUflNppjYXyhpAGtG0qEe9e63sj7hmiXpLdeCiU0Y1YxYBhq2DJx5t2TK3VvB2Wkwp/tvNsGRfCX/xo3WESEGUCp0K3cg1vN2EuWcYFByZ7oKSVJL+UG45sejRZpR0a/Lffcap6vr5N5+bmKspZxbnauQxuvA16E8w2gDOP57kHGK0n34BDNdKH1YeuRBmdnbhZNmmD9MC8t0bNpE9ZqB76+QDWmsdH2iHuA2a9xHakQmLd0ZcpzazvT5Bn11LR/PS/h7TSaegkt32aVCG/r4/sP0Ue8ZznraX/sndJIiQAf4hg8sbibVJ57f0TNzpQEqTsuU+QltkIZjegqdWqjgEeQz4gBBsBiharTwJx83/sX4+a8kw1xrRhJ8M5i7p75c5l+fwejScR4q2fBeTOiADSaIjpdqRidkso+d2td//J7xYQcBPaIbgjQN9/LXDEy1Oxk0AwaBmhQh6gqhoVeeVUllj4h3zNCW+wMhyGh8pC7Fe+q1IxpIvW75eM7Tcv0Mt5X/DClUd+OrIBBqaKMU86jebBTso897HLkAvvGHD4sqwZjPK7CmpZc5LKFGhowJtKYiKap/T843RHdVgeiMxDgPbt9c6X5rz64bp+er92BmOBh3wEG/1IK9F3K7zPb8zTeYxr0S1gp7rh9eOX48PFUv+DL7nw+ja+Hdn65bv/N7x61X7y/aj/95YN25palQDO2fEFayfVMF3DGEfN5iOceAFoq6DiGOrD5qGGI6iEiQe97rwypF3H4eaIrdiY+VShTb0orlRi38l28ZjKPZUIfh5YWxwg9RbmL0ToooXWhY4iqTgVPef0Q/kwrps12hvRlj6lkwhCisG9OhMJwUbPZexcY+hSMvEK5tDQZ6VX1id57Mf8dORsahtMxSsl3ZYheKDeFeD55lkqe3VqXIELir0psm4yZZZuY8xj593YG9NQyZ4iMTBkhvUTuuQIIT1Y7c6G+6mZOhXFci0nRPNtkMrLu9B/rXglrtVjph9xMvrWeKwIbkL6jlBOeiQgOF9dp2KGAIwei/u69P3k+nxOd4/PGvuZeG9ZIFV7khic4Cq5LgUTXhS/KWpCIfBAPQBpdYMixOfj06br97eNN+5uH1+6R6s7t67JJF7Hs5ue73ljH9osbQ/CdtT//9KZd7mbt5+8u248fLNp791ftvftRIYLkxwR+8yjeW4USG3ASEarnCowZgVzwN3NR1XHV86zhziXIt944nFuy3xO9f033JLzaAObJR1bwg76mnjbhj/ymFJUmYcyMzNDnZUnCtOiRh6swL0jievpwmMZQ9AzXtTkx7WshJRy1DwgR9z7uTaGsCBgTtMPOV0paCvKgaTtVYPXUTxlCThBTmVgnVxVoopGP6Ms5D0k/WXAjIgIoK6QfLUkoeDC0oC46zRWwwl7w/YPvnDMnqBgjnNh/z+KPKhwyRHu0h6SjwzVkeFdVsEgsm2K4KXOpNHqUpOmHsuFU8encwXGB7o31dueG4hmApsKIa+Bi83aPnnVTTqFwRXrAAApInjfm1tdSy/kYziHnRM8U97LUeO/GmdMiJQ9TltEDWmcjQ9y7c15nwMfAPcXoiKFvaWtXxY+/UzDQtSX3KoFe1mOkR/UfxdmBSNxFg9RDsZ7d+Mg/szw06mCXdzp+qDGjXw8q+nkN+k/jy4TWoaOqOCuui66M4kooTeO+uVpv29PbXTu/2XkpSuftKhS9hC73NravLYT7RdvbPtkff3HZ/m//4rL9B3/4/faPf/bvtPm9WTs72yRKrW2sLaz00aLmrIbORKtTHwzLvIL4RhSpsqQdB1SZ/A2C0X0rHFzDfvgO9LJt3CMGVCoeIyG+qQAzd5gAUKKQFHWayrP0rLObfhWhWullQ161eecClIR8plBX6cF2q66UBNEXRh5oWIUtJN1D7ZB3zBJHLPXgogLygv2rcFm0zS48I+7Fm1mWZyk+pOAuTiKU2zJU6TEgwTODgDfzUkNhdeEM87AytGNhyBFOVhbP/OnKYvSXlngn0gQhwzP9c3yWoGqguJF3HVKQK47DYaRHshSl8XsRjlHiIf6VNbdXOQ1RekCGhTBFZY1M3kPbfa4R4QCuY0tkYDX+zNDXInTbQydjnnbmBmE5rE4goZAfzDfq1SpQm+USBhJ7bAnNBaZgKkxWYtNZFgXdggfcmGfUqE6jieSukYlx7dmvCGkvS/ExI1sntMJzUTlfz1ZRPYfRwhAZ7Cj1YvnuxFKDyyLC41kjNbzj3U7wHHjbu7Zbd+1vPr1q/+t/ed7Ob3epwJ3aN9Msz9W8BL+9OLTZ01n73dMn7d3VRfsf/OJ++2//9F77t3/6bvve/fdyz5gH1TzNvkcindTBYhj9Ymf2bGn4CrY1tp5/a4FW/jdCVBg0wdxaoiGzGe01xOpUTKlYCiJwNvzJMFgPFae3Ry+9a9MnvSnDo15utwemgimxkTITtKSUVyrPFEQ1p5t0zNF+oQKZIsfSU50xyiKFhuOw3tn8oSa9e/AzSrwzpgH/r5QWUcitVVkaMTZbFBPCx0mjxjDebkKSKMcfkYNZ1Ro4Yzlngq/ijwBomvcXfWUYu+GX9HWS1fNGI0WFfFPR8DBu8AJ6KP13lAukgcB+rrdVl9znbnloe+NzyJlly0obmvMsCl7yBI+mQkqX5MDGvAOvxSI1JiWcin5nibA04MN7SGwAjtXcJqJsGd28utm6x9tKBEbAW0QOvnN/0ZZns3ZjIbQ7S3GLtfJyj5SDYiAha9IL7jH2lJfopJjKjzkCpEBwrjKHGQqVRbsxp/rIA0oZzNxc3DtsP0bRjQq3bJVUjjGs7jqbRhpZiHGTBizKwHKzyt8ZbcC1OGJwy77CUx/8E/JwQ5k/PYw6OLyJNaszIkEc8BMcERknqQplXfYtS+7JhMgOrfvJ20lLUmUu5Vte1ivaNf3NeMijy3V7+HTTPn66aw8vbe89O3z7jW+zN1yBPnYwu89fyeTLhuh8LvmBXvYlnn73jXZurCyLWWU+PL9pP3ywaH+4igPiKMGuiFXWUaE9ivXnyFSoEDF6rPw5qgQnIwqinFcduQ/O4976BiIzjrJuVbMrT/DgDubXwSFwaMtryWvT+34HveGLyXTYv2CsCOXLsSuzI8GAZRL3ib7odoCcHtHr2GUaGmgIQABthPz2iwMFnWGp+lC5rIoYdVZDH/t+RB2XNcvryxrYP1d3/AhTo10RK6hcVMptjl7mnXVhB+TM7pYaNY0XpTTDCwphr+xC3BO1UZg/SGKdL4FhgMAqFMT0+74si1irMTkE1+DbCG6TYxZLNMHaVAhyUY95ZkTjVAFS9k79AkE3LRE0nNUC6loWcEkJqzWM2OtkfLrO47LkLgDyEYUxvTKjFhg5gnPIp6r1urqInC9+lh78cSzk0rN2vTm0y82+fXG9axe3u3bzhoZuvzYv+BvcfHscWrsxxObDvj253rXPrzbtp4boK3snvSDcN26gCWMflSGiGFvLqAT3NMI4p1ERqguLpyTu7cOIE+kVZXMIauY50OlcjPif3jSXb+jkQaWtvHe69r1i5eHGBPoizECW6wMi/fAET2+Agsj5Cc8oU7N6JP3RPlBk+NiI4HnynzB2JfI35gzGrTB+DG6oLHM1mjMlZ5ZsmRUEMIHKw0iXA5iyynhRFPBx70uZ5XyT30T+aAyU9XCDh0AJS9pdXa/pKpyRWuOIVqoByH1DZBppXxemLNeWImZKIepSm8Ec8MLFM1kqc7pKGrnEOY+IvdgvDFHuX15rT4N1UmakcFl+nxsh5dwYWJ3dt3N7PMKKGXrO8nAA/OOsu4Jt5lu4cgtRW0W3Hpk8o0PyvNZ59n7CsOAlwETm4pzyvKexXmQzXafkO2K00pnqj0YZJDr9b/S0+z2MjiEythrA6z4tM9Wvqh7auqBSJFUO0ivkjjSCITR79MoPBnAZZtAQAWHVuee58+fRQCAGmK7HQm9TDh2b5Nt3845zdLvdt0+ebLwCkf0+5tS/tRz1LmvJ2+CBftubMdxdm7fPrnftn/32i/ZHP7zXfvn+D9u9+bytoXh5+KYgn3g5HrEklReY9Z5Lx46SFMgJS48kT5WL2Z2ZaLczD5oQCUE6jmtqtzM7jGjZDoAFSkDlJ4ho2GtTAI84XKdQQV5EEcHfzqw8/DqQPJPZwuMWVsvyCaj+5NZEKFwxTGPKKImy48GVegJCpMIKX+FtEdZFj3NQVQN/8VfBk0mruefCOfOJfluelX1wvdtE6QfkkHhWM6zfzA8vYRPqDOSBM0tgsSsMkZ1AHfaL5dABgIwgYta2h4BNYUDwpA0CWBD+PuxrZCy06OdqwTNtFgUNk+rDl2lBL4Ezc+pFQHMB0fLeLLfbraJRZ9Y8OO6Rx94J8GsXsUoYAlJ0bS4ODFEIXJcUTmjggECQuUXhKbMp82dn3UeUk6O4O7OamhYKXlNIAU73fCgEMJ6AUxmDYr+LjwlIF+YjQf+ydFiFFWruVJ15L7TVgfewVu7ezLsxmcn4dPnJ3CNPvHo1my/BjNUqDcA59D7C74xxWx62edwM9qg39tlzvXyc56/BC81ceFYXIEorvFQPr1v7m0f79qsnu/bkZiPetreWvX7r2vUmlOgPL9btnbZtP33vXtuv9xEdorCySdPCQ2R8y773kFoefGiF7llBmG6UGURVADnathU0xzaf77+U8m2ox4UXf3CMAFfYkWu3MAwRRC91obkwECCDpfegpHEMETpdLVhc47VNg455HJLluyI02vUUQ8ZOT24vVt+3nGURxDLXGHgR5NblUcrXJ1+N3G++nee1N1iJfhYKGYiWjdmU57PFPHKw1Z21p2IL0K1jRxHkg2vGmWKoqY6LnmdalfnrDnPjJbxglHSAT4zU+mUtwj5rDkgjmfMtLCkHHBUmem3JfrVSVx6V1EdZRwq1d8HK6c3Cw2/raGWhZEDzicId8oUprMbTEgDNjd51kxpJ+FZH5kbdYVc/Ednl8hI94PQCa2+h9Pr8G7Acke3t38YieOZtfWbAfYFGbnNjQHNnvit3bWkyEbkD5QKPoJg72K155c1Dbbn4G1O64TWOPVKpXQk8C85Co4adv06pEkXO65/DeERPLoHkwuOK80OPrcx7YCaER4fRYx3Ia2dkqlhtGvnT5iIKKVNP7JpIHQr4bd8TBPEbYLt9fCpYYH8WinUZwgM7lvJQeJ77FAZNDhMUdo8QmLcFnGscX/xeOc/xuaZ6tbbdErq1ZoNznWcBETCMDov56pJn5G6argZlGXK6lcNjDe2Qoc2Q09rjq237l7+5dA/0pUWWTRx03/72Ugr0lxJ5XtF8Hr7EFceqJX+Vd77w0zxXZd8+P79t7y7n7XxtoTSmgDH8UfKAUEuz3lBvoUJGm294Pkto97ON94WCVhD2Ce6k3ZLwMXJfiM/HZzgPA5OY+nlIC2H3SW96cyVRRwYBK/7XA3xxzmkBTGUGyn2UXopHB9FPFYFaSyoiLFU0AyxnKu3sKer8Ro6qmA07xR9MDKAahgKbXxxk7GrVnlgo6ZEVkBCMl5bd3nqiszzWV55uNBL0/lPy4crjpkd9Sib7+1QZFBWs1l69tilMwKKLcfaWUUkKUnWvsyyDHZg8kfYfXiBMIfcP55WAMJzSPkohajT36xEKAFBTEbZde0wF67Kca26wGiL02eMaMbSN+5EZRxNGhUOpoXB3UhoJydK88wIqIXI7ysVI6FkYxequFNSHurRpIBFPeQjnCN/zuubV9wQ+lMgCN3LA02Ah279+tG6fXW6jNuQr5q/HBAJZhDvumf4Wd313lXpbl5tdaxeb5rlsT262Hhb6vbMSEUxIZcgtdQ6GmEZ1+/B6GnPzcE4Ks7k3Y194qKEr2FJpocvzpzJdSpzv+DxH0bxknFcp6L0eqo5wo2fExbDESbvknnhXf2GQeEMXDyUwSFiPzkwaBJnbAbQodKdSaSHAVF4HpeDYmhCUiiBYafzGmKm4+/whzJs0lR5oelnDe4V6wKTbPYmN90ofgvR1XLabY+UZDM/PMH35u+xm8MoPLK8QkUsIL9OFKu1lYOl++r0VHeORXDC266BSCZBoIhq3+aAyEIdNqOYM88ZcX+4WKGIJTEY8E1agYLgta2yjPyZOOGaAlpbq1CI1+JR3P6qMhGGKNaq5z0xZNIUpAOKo6AGbwAHzKmTYo0fMwLLYt715o92of4QGypz5O8Eb9IhUJGVFQnCRgx/0Ndi5JCyikkb9weuZlTKg5PV7E7WipcILaY0r4cRA0XuOa+PRD66/hOc7b+7yf2XMXcpgyY06b7WS8myRmTXekLRPvx96P328HsSxUUYdnjflmVMwoRivUEUR6ywKwiJsL262HlV2uaZD71uiPL+EkPJ6PdBf83xOCP831vbt6dW6/dVv1+3p1aH9e7+ctx8/mLdf3r9uq7lZc5bhRyNh2AYwC8sBkaIfLP/SEUJM4LAcMwvdqRH6eJlzEBWjUGYiEBodHdTqdUpObWnREraantPwPlFY9rd4LiOZHmpQDmHGafg6ROHrYM6WO1YetGDsyDM1pce9FjYeQxo1T+CyFDJ2zT0AyGPx51vh5xj7dkOCayO1W4k2HpZNK3VljMYOu1uOzULJDkfRyjZfLp1DHubbhAh1NFQgmJMhOMKq9dc4HsOBs5YjFUkAYsGCmOE8zoCtBuPOLY5L88Ij569NlPkyOnCp0sAA8C2NTqDeHYJT76FO8C73wFaOlX+nkiT2AQVH1t10byQNMhjTCF6VAgTKa4XnGcIB4EdZMsLrgGIvKMBXAJzZ/yOvfmH4uAgRCCNKr1SGRTcCNvcWyuYlVgO4iAA2NtfMH6fXuYT4sH57SoXXIa50B6JxcwV8TO5hj5y5NJgwnJ8RGRBQUqgS1xCjM2iR9+mkgk/h084VweRqcvMXRqEYyJLOPkFLrVSWtbPFyveVI9Gbxd+9YPb3rm13W/+Oln/vh0VhqNCTwg+iRJqVjIu/l4tV0AWHUw/vEPeuetJ9/fy+8O7/3ee37T/9i0duUKTx69TezHa+ae2Dm9Z+/WTTfvzpZfujHz9oP/7+O2WUNTpqZ872Hb1inloQ3MhO8H2rOhBSVuReUnFEFIiV3bHUGaeoMBwF8FV4bLt8O4J5uZEMtICRV3a+PUeU1SBKscufPLNCQjQ098CSfqSBocmlIUhuCoXF8BRgTF046jZojgAPEx3EIi2M74QXOAy/nnvuqLUxN1SiK9B7MIAaWzKsjU1EehhQlBso7LtdeNQCYTj+dajFXoM6QN9KCTu09XrnPDW8wgUINrZSKMGQBY2XWBMZ3QQnQACTWQ53zV6GrMtzmQZC3ubow9C2qYyQDnsfcZ/RbA+ISMvroG6KshC1hg9tZuskAnEaHDBpHpp/MN5MECrtW3ieXYawOUPEAz2Xth8OGeU3KDQZWwVP5/C5scmQSfA+ykqpQNXec3kHk0L4Uq9z7Z/FWBfLudPzdy3Sqx28Hq/110A7/Zz6ntt6FF3MY3igzbto+8SU55t1KLJeXlD2IhX3DdcOiPPEx6gNI0o/rTowCtS64ewfZD3sLCA03p+BMfs6smwTJjdYGyJcfNtY9Mk0ZzgMBe2FGpXlFA+db9b3B+5PzgUi0piz7h5Zx1k50lQ3hTyQ6VH8uAvf7g19zOnnA0LujN9TZR0wDJKXQ9ZIAyXKhjDmrzcUlZEj7kFqiO8nyoQxBkPd/vXDy/bJ+aZ9fL5pF7ffgtxntpccw5dSoI/BIzyvvTKFNrnB2Kfp38U3j1huXluD8G0EZ9va1e22ffzouu23i/aLs2BqSvhTsBfDBw+FUjFaKKmw+L2d1X0aVkNLegjLEeZ2Vw76s1uf5MMcUbVpdXZpqYNcIWq01EPYiWLFOgv9oAZDEBUpK4sSSkU5NXPeUP5Lu0JLbXkp8Z9cgPDMpeKKPDu1p6VXsssXFcvkEULIaZnsy8HKPE5zKrNCNNPfqIS08woU8WWIjb4388xh6ef+GvcCvcD5DEhiWhamH1O/J2gwqDrm/bjcU6TuDsmL1Fd0RgRZe5XngrFL7h0MA4oaznDrrhv9bhMllmq0cqLaSKPtu1Ii9OniVuFaD3Os7x5nUQO/QnbqDoDMEftU/yZteEkJNtrHPvd0pCJ9MkC9aBIsceQ9j6937Xxj6NtbVxhiLWavgNc8v901v3d/8bx39gLWy3vE345mitXV9tDO17v2xdWm/fj7u164w3V1hijE0pRWEQ2ex+yhthV7EcYW5sxCMEtwv6mHJ4XJFBfj7XoqJ7RzqC6g5499GM8ljbZxxmgkLd6s/E4VwwpHHlvV6w0BGMqlG4zDKFdpNP1YdX45xPQcZ7RPftUNn/9lmLWCCpGmJ/p2d6ynnk9ViPRnP0r+VzBMxivSA98/f3LGGIUjkUAcJHX3qGCgfLmqVujaKE0MY79Foo3yRK2hGjw7vsnrNF1nvEBzv4d1SeVmmJOUlsboMgoUnLROoOs7Ra+4hyNDmSUQld3m+HMSZs794LcjzNrKV5phawnFykskeTlF5fN97zkHGUiX3R+kGhFoNaokc4tlDfU1BZCHEHcq05KnTSND7kA946mITtfxWOvZsxhhUoON/+R+UroxzAz3Zz8weTSfK/6ruFTBbvUd0xPOPke3Ym9TziHN6iqnyP1KX302GbFy7C12QVfFJPacGd6u17v26GqXJavCCNVJL9+ZdsqBfo3NvGWPz2/b/+Nf/Kr94Y/utX/4P/zDdnZmXqIQjqMcgnnjlm1hFfEshEYq0LP8jHmhPbdCBWo0enYjoTeaWxHdJm65FAsnnI7ALPk7HgJtnq/nKNRxfVFz97Z5GGeP8Iw4MwgMoUXN56tATPbcofA2ew3j1bKtzPubLzFrnngLiMbNWoYQxqwf5uF0Acw9nKgP2UWNx982fuvrjdXCdK9Y1F+m0BelMAJrNQhSWKI9180iBIBWGmHJGghfRD5KRLBGr9SmEqU7couqFje/81yfNGywNvWREEMRKGa0BHoOXoies2blZiQsivPvFliUnPGQ3kB1dQFTQtVH/mHPjpmD6uqXmgeEedkWnhnSiOfwONQshDKzXG+HMCCE+MIl4PXJfRwZVom5YTx+GisQUkHm7DXOI2R7Yz3EvnQgOfYWc+BzynrXlreI3HuzrPo/WxMyhU44Hw+XJ3wh7E7KUZm3GR4oovMSxbtAbHAWeVYo3Kb4iPkY2SQEA2WwycTN02FzJmjFMYZ4gnuqGWmSe8EQGWx/ssJzr0T73kTEiEafpCJk/XePV3geUXm6PDa+piIAAJH0n/3dVfu//M1V+/gq1jsUrdqjp/bmtafr1q42h/br5bot9rv27oOz9t8ZBCIKXSvWiYeX2WoY5zUA0XIheIs8WFdkoq7yclGIvUTTiJDSCocsZbDKQm2pZKEPneLNsym2XgqMXjShi6rqUXetUQh1upQhocCksP8JxMaBtWTZzWcI6+YhNlpxu921m8028oIdtE0ALMnCqTcRVwBEwD2C5lE2A6TnRnY6X76UZIa5zxkSH8QiUJxdiS8djX0Q8aFbayKIcC7ZP06s5+/CE+deUnkWFaykeRIGGrxRBk/FQK0f4tVlNHZ6pCEnbHahVNFJ6PONMlf293Jl/HXuucORwxsPJ7BZRkAxSs54maxgeovFAJ/9lFS0I7OXcQVTwxPvjYA6p8+qzHFTRwfKmMG8b5NvPAJv7+fJaOtqaRVK+NZZu9/2XrP7dht5+ocuDz6U55VFRhi+gOVS24PPIjx3Zyghvl+eoXmqkeLINWkHcL5fHudj0ibUbP+vY2yYcn9mHvXyzjOyIpbo7k5pYCVL7R0HBVeTSzRHLn9hB9NzeNhwtqPaiMmWqOfOcpwuXxI35Nh4CjQ12HZVvCByOr3DSdNYsQYGGWIncG49VN9tL3PIQWXoUK998e14twGFff7ktn16sWl/+cG1g07e2D4cjFPfpfa1KdDj/H5ZK4UeHrW6fqn8taFTL7oHjl1319uNYZ5frdu792bt0VWUIHj/XQvFwrNEOc0nIVex9/+INW9A+OuMouItDW8qrhMFK75mqHjlmOiDUsa+izjyIulen0sdlK+schpywk/o41LOwcfR88l+x6cEVcmHJEcW8A15D0tdibiRCn+AOSEDTnO8O82FeaVaC1iZh9rdkNOeOVJHQnPE/p6j5gNH5Xky8+UpqPrCIgimtRD9lnkwxXNcTl6RgByYl1GpzqkWYptCEPPcOmC4EGrYCy4j390HENVLVLjouYl2orhzeMxNGTZhHqMZogCm5xIPkDJduc3kFbL6/X2TdtdntcaVNeEiK4+4nIC+b3Gdvg8BjUfLh8m6cu4h5VG4DnmMICLTnodgpt6++qfCs9438ThgR1iIqoWqPrrZtY+ebtvFBmXAvizBPyLo9N/2s6c/J23yhXKQl+NdI12+q3cvzlW++RYhxQcHFLtY79vleufgMGcAHAqBCnTctxPC/FwYiwgT0uxMITTBHdhipDO5vaUMU+/16Tfc6CXK09UR4opjoReaR4ieZz6LnhplVWyFkh8/U0nGTyoGFMqDj4qXTb2KQiMp0KcX+TD1DKXC3423KlC48giwzaxqIP3iMxzYUvLKExkbaT0dDn6Rwxxc0uF8LiMIuluOtpyvZx1GPlyi6fLd/k5EMCS2iCI995Ro5CkqgfgVaSicyhhUzjoRggR7LKM1DoEb6I7JoJyle1clvX5L115TPhnPKRpOMEw+P2Sr6oDKBiPtISBb/j2vM8tyZ0R+JqgVS7VNFNZhvKQBYyuZc/AID3y2m1N6Z4cyY7xDPc98iNgYumeNEQfPayNHi1f11TiOXHD0WSOfpWLPZ/KzXpoa3p9lqpRo6fclN+k75Sh3RhnmiQfwMHl70ayUT0m7xfDvwL17Sw3Yewj305v4Sbnvu9perwL9dskPr7x5roor0a19drlr/6+/ftR+/v5Z+yf/wQ/aDx4s276tRPCNepq+n82DNsONXraATMWsjQvkZiJ7atbnfVJRM5xehn7lOjA3WcLB6XVyL+8hbaHRe1CmwFm1Wwyay1yBcaDznZVNEZZ0ZIJtLWnGER/NS1pCjfcL9RkDMVmQkDsPRPwLS5tWaoxcy5kU7AwP+6wdVvasCqGjVY3E3Dzg7m1DXpeHu7k0Yvd5AcScY5rWrOaitd1hC4GIQgYZH2zWM0MuXrTdYdO2261bdR2t1i2PnvjnHg1/hiHYwjFLgYdcnIiywR0iu85y4O055vlxxmdW9bTqh4R6yJxATjRD/+O5W/P+Yq3p+/X5ZylqmJzdGu3MC24WFSpE4rGQT6/HjbAvBk9opIRHVJjFG7mF+R3COKOmaFjAAwQv+usBBhR+MQTzcjmiJN1BXo571u57bdDKvWMpq7OMkLD1pq/ZvNbmbWWyPcaO7zzKATVb4zQAdAUWrxT2l8zpRj42jCb0+iSMF46fed3MM+NCiZ0bW087J3fSR4saicPgnhJHFLV7KixyFoAA5RX2fW37Ff1yIwG8w6iZG8jyQI8XYXXuz0b+kxtnzHNtZxceKFi1OfdGE3z/pnC9djj7T66W7fPbRfvNxaF9fGPAYdiPqdG8REvJ4M1iJIc7fj8ifr1lTDDEqKtda59vWvv7J5v2rz44bz9/76z9yY/e8X02P1u4IGV1oD3QyKI5UEbHjxuQij2cNKiJ06S5I8ca3kV8Ol8Vqn15iEBjEjVfjZY1jx0UA2kEtdjUQnCv0STWraUsOFHE6lO+l1XRaShYOEeVZwguIpUvN556P6osU/ac9NFwFyrIrNslQduA34F71NO03uzdC2/GDEc6hmspU5MXFhFjPUUuNiJ8ItoqFC6jk56f3S975NQanQYvyFx0M4B0EScE96yxdxY3CV8n0ncfqh4WAvcma5qNGNrNe27vC2Rvm68q20QLA+kSJzDxFcRww3HE5CA6LllaqUs2dlbVoILDUloMt+czTW5wVJk0FrP6QCZu5zgD16Kf5zstmNjXgdNSeCVOZX0/xZx5CqBUq0jl32QgRn8Zr9wePIXQ8vAPVhHDKiiId9FziGOTtJX9cMNneKbfQc3pa3iiWae6SdWVUbnNCA3u247kTQfdRV9k1ELxWLZCvuZU9XP6LC95oJcfrTF2JJpzqgiTR24Z7Theb32xw2ZzNLi5eS5SCb+j8a4Isddxkp48W0ElBomX58LT/Ij4mgR2SyCZVxlOP8tZQabokvNyAPFCFO74l3mgP7rYuAf688ttu95ESsobzd1elv2O1ohvRoGmsF2f9DkFr67NvsI9R+yK4wUv/Y6pXybest4d2mcXaz/UtvEeOLhFCQbJiLp7j1iykvjXxbPO4ln2xxzGkJzUrcszRpLabnq+6r9HDctprOqJZPAmhcHH6IaH9JbOIVdIhKzscyqcJVXRohcfYbbo0ac1XtY+w0pFAKihqldU3hmaYD0H11YSSln0J/MrjF6fzVfLI2r/QalxYwb+EbldGelkH3FP6HWS/5f7Kc9mEMPyOI64l1PEdApIezAZerpDoaeRZGpdrVWuf1mpOEmFeEPknd3xhGXVQ7O5V/JVfFCcJILhjbZafNtFQpSXvJMOa4EoLKKf3Sw9i8ZRo+6uf3Ydxm620n1XCKc5Q9I1pQ6jh6uzhqdC3XePcSG0UleI4bB3RPi3m8/Xh/bRxa49ud219VCe5mXalDK/BBW+69IXpOdlDuRt1RulgGMfaUCZvvNLxUd9M83CYg+tXW8NjXvXHl5u2oPlAuVaENIntdbpWSZSPWuUh4eD9aK15i0UFe6lpJfYx6KIHnG6TA6Fynj19GGRhQ91wUX9UzpKqbyH3sZj6BWqPGeutDgmuwoFpE98mxDmnA4FGEqE4bjGFTnmv2onHAyw0pPKW1y9TUWrH+ZkLGO0FL336cXvdAnJDZZ/7FuiS2OEad8A+9SYqDxXpOdA0T7MGWGkC0tFt1+/XLlk4UIF0Xey6m4baL5vGl+meerZRUklSB4ENPhub46YKMOISYv9myGyjfuG6okDT9o8+DmsWHjKWmG8rrWwyEeCn0WJ0CO0SWcPnXGDKso80QgWxmGsUBqs5H5cx/l0Z8lLkv0xUq+elj2cYrYcU4xzPMr7+6eVHFPy37GZuVvvxR4k7crrKk3hyxD8bk5JCwbvd7eb8LKke8M7Q/wdxofFVnkg115piNAhBwbc7t1o+tSikgyI0PbW7g1H/JiS9VfeTjnQX1Ozzfe3n1y1zy837d/5B99vv3h/1v74+7P2YGmezzDfGZqwg3zsrKYaPcWkrpbPan+iiqKclhTAce9ME6r8AqAhS1iRWXCTiDiBDM8BPdKVJ8v8lSKgRKjM8CgePCZQmHfZTWeov0ePH8yJhljIcN94z/FcbDrr6FP30cOEPDNvueddhVc48mXsfZGfan1xwd4T64AgzVwfaW6NWyyipihYkOUA2UtW7sm2+ruYO4TEW91R+4Vz6uAbjtBqIS1bzxddOGJm5ZSk0QAzSVRxKjGWHR4egEXPHFAv3HIB3UppKO6epxzeUlde3cOwd2d1oDwa+nQJBwSQC2T02hQVAhZmXM99BrKu01SpVe5dsTFlFEN4Wfdeg5VhQBCcbXpWsSeYA5xeIIDA1f6CKmJuGZs/Rwa1nPjYl+yu3e4+UpcOYq9ajroL9Zb7tW/t3j48LIYUrOW7WGLBLbTUAoS5xLqZZGJm18gpsygKr2NLYxAS9miEcS+2rQHD3bi2Wc1Dz0aMxTwpOW73bsSqlztLAI7S+BH7M7obfjGPtgCSuap05qGOKtK+O3KPp5IrOaUdK87SYWLcEmEkvA48L/BAu+dx7++yZy5X77XZ4l77Fx990v7zv37kCvRXy3XuSxN9KYnktbU3Wmz4yu3p7b7dWuRQu2mH7a5t/mDf/qOfvgvPU2xX82ZFYQCje+GxsmaeUT8pruSFF9GOkKFvG9GzM0tF0JaU0Q3uHWW0FL0/UBbdY+teHiD6iwf3eJOizqxfy70kxkH+XT8jEqMU+vrehEXb53beHX0br2BINM+Ye3GElwVq8x4Izp2Tsm8ptAZCcnhqow9EL2AdYculdsUG5PDB2aI9ONOqDjoVQAlmOi29UHfOHY2CqGaxCARl5mwG3a/ZN+/tGhgtnmvrvAzXYb3uWivbT25cqeXIz12gB1AFsSs0JDjqCsd+69apprMDmIzShZXTGXmg1bOss0wlFPvUxCjzyrK5GOAl2Mpj55U8BCDKZIkmEQVZwgl4AWMaIv9iuHi+i9Ieyp+5Ycn4rdXkPQu+apFdq8O87dfNazr7Whz2nnphHsPA1Dm0s6VFZMG7iOfbufV180iBei9LXS2XEQV1fbsNpH1FtffKDFW32I1mNg+IFPC1y8k9EgY+7gU81zFFgBHkz8Rt6p091rh+brSTaLHcCY6LI32QEm4TxbWjE7pSvAbgiZ5WES8um9Lxcab955mTENVZXF6Dh9wMSFE6EnKsvMawFDyNBvTnLtpCrB7WF0t5gCU6fZMiKoEo4YJj8PR60377+ZV7nv/m05t2cbPzCIf962KD40S97HuOWkOe85zxntlrUKAPL/H5xGoyXHTMLiRX39m+ii3/+etAjfLVCWvsrxFGI2rGkD5/umlni0X7gweL9o4DO9GKybkSSMujJvVplzvrZdaxlFAfJdquBFT4N1/ZPTDvefZuVstWMrjQcEUpoOMu3ISRNwHFPF9RQERBkEKNoyU2rH2C3C3PYKgd9Sv2vSznuhIyW4NhoEZIj7W4GIbNM93TMdeuMIrnt9ZHmLnOXHrExxYvjzkoAsxVrfyUUoR9zIlGMXj/JJ9luq7VB2UEYWWvXaXjjNy/mvR8pP6jMNSNj6MX6w7yFrkkXOJUoPgsBaHJ0ObYF5zrEgyP7d1+xNHNEsoU9Xqa+ysKLvcbOqzzpjmUGm5dqLLIk5fw1Dyn2LO1buITVxCVcpnI9dOxasjqyMDTc+0/NMSj9u5kOTVyIXNfY67Wu3nb7hft4dW+/e583b3pVbQEOnmR59VWjT/1PHazeryHX0YueF0RVt9EY53ip+t9e3S18ZqfobA4ZGHW+XYF2AFwkAvNPEvSXpb7I0qwg/4VjkXubSg+nREVRC+NSXXA8LP7Ia1fa36kJ4TU7k4AzbtYbR704pn5NnGXFw8r+2OAGU2RnEd08Zgr8i0ATeKSwJtAio+X1UL1xb0BO5byVSSowIWUrhbnGIad85EDwVkfvIKdHlIgQjRW0lCgStld86yh+Xdf1yMIuyFdFOphYVMJ5kcpPyhNREScX8Oa2qII0fssIsIwR4zM8eKfMU9AAnWeJ7gXVKKz/NdkgACTHHiJ8uWYa8MTiHJqXX0wpk5ZyuB+H2XKtnv/x2+Wdk5Rx53PZPpEAKpNZcRQ/JGO4dppr1UWMF/x9NzPanSQQR8RpZJH+nxJul3xf0V16dcivfF3yFChiAL/Q/dtvXrahJQf4ard+Tm+ntrHZ3myj11P5bWADpmnXOcllOKRrk34WBKbGlDKkhmNId5oRn5glH6OsJcurrft/DrqPl9tzIHx7eB1b7wH+kX2zjM387esXd3u2j/7q8/aD987a+/e+0X7gx/M24+Wm3YP5T7s7JyZzXm+aBt4ooNQ9Cjb/rmQrQA7nLU9wm+U1x+3/vUAHu7bkvpxFOjNtVdKRtwQ4ZqgHiLcuvLojCQyQK0Goyt3UHbd6gvU8bCoZQedhdhzrX6svfMAzzJUz2CYVgtzFx4CLS3hT1mUt9LuyVrUYIpVh1plMAsP21vqZijjyGeld5wm64OfEkMkjjXwmoXmX3FrYQwjrO4I5kWOUKqOMs9EE3chU/c8rrGwK/5pXoDF4gzW7lBmIy1+32bLpb8/Y6gPhqiIOpX7TYbkVPi9r1yMmvWgAw6+zXzOjVEyhDvuWGS9azBirFmfbcOZjNrA96BRZXEaAgUhB9ly9NQQ4BZjG5tZnlHvcuv5ksWqfBm8L+FB38/mLrRs5/ZOEyoimoJCxNK9X4e2y5Jd0c+oi2weAvOO7tvZchUeM7PgK1ukNMg6DlmXC0YJnBeeiRCyYt/skKvGiIg4QxLnhTrlmWoREzzU/lLQHIb9iaiNRykap43HanpyDPTYjzUnU9iHj8m9JPlNeNnsb6sX6nnXCTDT1TZxD4N7QJrtz1n7p3/3pP3Fpw/bX3z2tL2q9qr5wbNNKi/TXkDof8ubo9jv9+3KQrk3+/b5etveWy3aj5fL2FOryIW2ygpeicD2A/eG0/r4w86XZz+7981CHeYOKsZyTmNT4TR2XH+N09pDX3vZ77NtTVo4UZZKaOQzUokm6BhQ9Sf9occW30UVhF6YTyFXrhc9Owk/EXMFKD+VZuMX95ZG782zF+f2zGqp22OMb5on0OYM0S5pgPPoNqvzvm/v7Jf+npXd70j94Vk0ck8PdM4jAM2IpRJRVMd2QqxIAEVaxMmgRPZ2NyhmUPAF7jtDqBG6bU8gcvbGIorUnbUIBOGic/GfFw1ooYe65Jug5WkM8P0ayoJHBdlcIAKLPJuKT1HH6awwT9vlHPlmxL4KOlrocGFwEDVZ/CXdOFR5xn8dEodGCwvTvtm12eLgKM/WKSsxdGsRDzhfDOq+tTzy3cyj6swTvdk1v87rWyPCzqtizWdebzzHOGvt3tmyRDUxLvi0JsDF3V7mUIy5h4a5wZqwmkWOnQBy42Sm0l5ODiuNl0q8GEhCxizTkdGdlO34HgRrFrK7rgXk2mFcfWBe5BPbq+x8MDqj+nbXucL4Ub/6xdG/MT4zSEZQpteE1x5SGfZICIsatBASkzeMxu0ObeV7hSCssTdpuNN+WATD09tte3i5bR9fbNvDp1sHQnbv8+vMfT68ovtnL/HM8Z7Da1Wgjy/2yOxGJtNf2//k73fuIzLn9upaqThjv59335dvJlh8+uS23Vitzette+/Bqn1/tm/3TAFEoaUQagOsAlBhXcgVlVvNEaWRiiipLr/csQlceBeGlSwfHluOsZRofXMpNX2H+GsI4fEefgd1SUPvSBjVjAcFvoQicW3ie/N4uAKtLw1TGl5FxQbhfrTKa74oyxwAOKXYDPpJ9Bbta6DJUBtEKFe8PD4iaFeFxfT1kGN+c99Lzi66H/3NdSnpL4YUk8fxuK6k4eHMp0fda7+FOTQufKTNdDBDSiKMeCK5r0LBjcvC6Mk56hFQ+Q1LT3BdCVzBCAQtRxERFwCDI+CXhzqi1mMMquiIh11FPlza1rNPgbjOFZlPPCBlbiKInnvI0mg00ALuy24RyTlHQiU5VXl7oRskMrmYTHJMLlyQYzPnsc89rww0OVed8UVejkRyHrvyHpXK4AYL7IUcOT1+BBVDmFpGu8szsg8mn+xNCJ23D5+s27+xFJWbKmg0ew20+dn3YBqecY0KRndzp/7jY17vF3Cuvd0NqM+G3XG93bcn650bU6wF6GRcRPtSfBR8qkKaq040BbSgWwj/E4uGztfAgaYX5LnH+dJO81J4xuqYysv0RCOKpVN4BwVZ7+kA8QZhpRR1Rl1prmX1O85n97KknX7uDAwMgJGmsO7cwAfjFgx1uv2Y57pcHNp2GbTPQCrduyjl7pRMsG+h0EQaEm3GOuLI38bvGW/dL0ueu+SBVS4z9oguchkY/GeWHFKlJjyyoXxwz0nUzrGF0d8T8ZyRERKlMxhXguLF+3yOnexLtjuZs1AX9juML9OtWvuhdnL3TinpV/3nbh6GJAEYwUcrAsHnzXJRmZplBoHd3v8FaBydDKF4uzJlHNeBsQ5+tj1X2j3VVCzDGE3eS+NK7lss7J1BmkfpYoZhjZ9CxlCU9GMP7Ck1IwoZ6VLh3cN5dI8/eJxiGfSlv3OPHOu+Ri9RzrPfkdBVohNkzHx3ouDX73fMTHrxS845MgXDH36HyXXIfT82r56GwP2DtXMRD6kTLpvhTKvnnz/N/mV4TVcby3sO1G0HMgRg6lvTXmNnTznQ38BaGr2yZPx//tcP26++t2r/s3//B+0P3z/z/AezOUdujRGVVVvNF4GayfwwhF0rcyAZUuUzrL90ogGFD3UP/YAgH7MIB8Ol+ezKaZ54npMWDgc3DyAsfwxf8rzeWZvtQnF35csmgUQloH+R70b7Oms3W65za0v3LpiHEuN3Ag/mrNQpKVpQjszL1jJUmItUotPogNxs5ruyBiifj0Qb96Ei1y+87lTaIQxoqJZEx1pu0obKm+XUhfYUK5ih6AUZq+zX+sTQbZvfqIVdZVE0H92f4VuCXk6Gl4P4Ij+c60oEadYKp9IVuXeRU+0RCsaYzQNuc5WMHXsD3nikcENpFwTTrKuKpTGPVJbMqvzshT3AOGIkVkboGHMYfW3KA0X3Nq2+1GstFzgQXKtvwaNsfqPuN20FvWA1SLuTk8tniREgAWUQ6eD7LcBf4vVhBDOjb5zLHSz4NlGh7VboeNVgznOX562iTmjVVuBAbJl+rm1NfK8ANZZHo83bWTJ27D/0em41wzmR/s92eyAoe8kwosr71B/aX35x2z59emj/+tFt++3Vul2R7kxEnzevven9+6bb5ebQPjQB9OObttk/bP/4pw/a/+If/9gVPOzcCO/MyJ5DWyONxJB9bf9HfqWgdFvsCHgAzUS5+9OwGb8v27ztrHzKfOfeI8+3hHdRW5xty0sN4V+Nq8kPsyxid2f3HIFK6jyVGUIprw3argalor8W5m5mJJb4Yz4tX9mJn45lEPTJ+c5s3u61uefd3vcavzOPriIGhyErWwjlOhGXmcY0c0+0yQlWG/j+dg5UbuCQbKNO83aLdUG+MpUJj/qZHdpqFRFCjPraMowT9L0UkZp8o212nXk9TXHzPHfLrzX0Z6yj0zgW2QZfWm93dT3LMppH2r2nlt87z5JK/Tphj4gRxZWaDEe2yAhEU2WlhRifmSTcwHCQkGf3gIc3lvzIDBgWhSOqa7fWMxpoUQbKlX4qM7g09g72owfzlTG5Gw8eTwONGvmCZleqGgdv3kHOgQeireP7G89H91oj8p6DRybuzPPcDu16FudyjXrAdBiEkRzeWsuBXpX/XbucMhXP7HGTV7dgzFHmdcx7DwyEZ1Hhu7/T6BAez6IlIb86jsus1iONA5LaB/FzOtDh/Wm4wHVpPMp+RA530ELIvgzWZP75MJzk98ZPzYuNcPUyWmkfot+Zdk7nDUvRDjHqfMbWaC7TGVHb3t51top88WMlyKydX2/arz67bJ+cb9rvH60dG4Nn+1urOB9ekwI9tfMet9I+v1+jteTZzxjz115G5JnaSb45cUk9Krb/LAziwy+u2uXNsl388fcc+dRDLoE+yZBjC681xpqIkDqEjplpHYEiyD2vKwE9lGgNe47vsxwECNMYvtKFeOdnJb2nctHlT8WJN+HbCURIFZl/kam0Xjoiwryt7ekBi0jyLk8pI2IlPlWttvVgmRYYHbrPqPjS2j7mDiv2KkzB9LKS2TAfOHcqfhfDcpbDcKZr+YQMo5YakD5mKi/8QZTFTlmCRxmhYPkdKCuHrspzv4Yl8DFk3ZlsuQ3KW4BSKOHdRjih1G9lKDr7i+5FHwdpQfNEI7c6/ul+CiYz9/fktXmb5LxjpKPAnHuOEpX+jTDkLHmTUQvC/J9BQGs/D+PxeSrvsa835sY9Kc4UGe1QVnyOnTYfbmQ9T6X5ThXmmpXa82l2qYUYBqDmNhgW5MhkoCcOpYH1pQDqCK0RGWL3G6349GrXfnO+bZ9eb9uTjYGi1TheRftKmBcvGPN5eNkvjghBz7v1bVTULczTBKZPnm7bsl2191HCaoWkXAqvVDjCgBTnLlChD20LhGIKjnkdPCDUhRnkMw1vppEUZ29ySMu7laGd6qEVehF1qsULKU8h2SU1JiUNz1hf33m6Lers66kjhevRnEfUoqKZpKehvCF9wr6L/Ky23Aa9m29Bb9I7DGVwZ/MX4H2puBoQFJG7EdbMUPLsEb5Pw3L2L0CkPBzUFERG+6jMgBrg1lx5xXsIiJW8y3liGdUPzLVHWLqClkbQD6IWhjOsHn1XBKQaRaVfYUxJ1yLvnkUNyXFo4KUHP5WjFB+mJrbgAcUr+DfJ9EhyeLeHRw9bBqJC3asRc+MGFfRzAmjGudu7cckM88YHCUQbczWuMcbvckgYKjhg309EzHfFOtIAWMFE8yE6ziKiUcld/TxELu1UZsznPpc4ivQ/XH6Xd5cpdBpkR+6aFScom5L5HxEARll3BICrsYhcnTJLn1+c9KGTuUVmUgyfY8yHfFh5uziEFD+FtIRn2BoL1Hqqgu13j90uOpI0EM+42e7bo8tNe3y1bec3gcI9Bmd+19tLKNCvrk3J0uu5501utqfPr836uW1/9el1u9zt27/7k3fajx8s3XvXlbezUg5yr3mNNFfB9ruH7DgTRVmapfkATE/dZOhGEmovik5voxx+eMr0ELsNNglMeFspyPDQLlBgMLzLALkwvr9y/3HbGeiA546FRkxALavNy1rOlsdRjNPegf6nAAI1iZY8CBX0mjNkqepByED8QaE2BDFRy14pmJ5SYs5P96KSu4VQ4gKafW5zTXCXFKxyZXJt2W9HkrX8VLduG2JmEO255S0hR5VrGGsLxUqlMOa8IS85Slqg9jOEosOgZLqQBA6fHuX5Ah72tGWGkncwd0Z5tyMjmLWn527sMYU2+G1EBEQpcDPsiHUT5azS8uoKN1iBex0OXf3ryN23fHjbAjFCRxN3YxIsusgRasx5hNU62YRHZ2DuMq0eArd5TdRivjM0UdY9jrqI7r121O3yXtS5CoMO0V5jTSG8gdHAly9WXKj2KeDEGSgBPLy66W7zuaOXt5M6JPKjgGhiF/f2Ie8z4I4DsJ81vitPLA0mCNO2bC1XTjwaAaKF7y0weXjSS/qIzW/1oa1vl/v77Wo7a3/20UX7/31y3T69fDWh2197E6POC98iQvz0y9fENL+BRiHMPJe3u4NHTX12uW7vni3au/eiLnIYwwKp2OMUZnv3dsVeMS8ia67HefDa4qh3W/u3k8+PzBtL+MX+thxhV9DG3FM//2EYpjKkgnzUOH2xsUcaSTz3BWYpm/NVo2eixJBHxdOin6TrRt/OzFM8n3tu6nJuNZ5Rw1ZTQxD1s7Pzuti7l9uigTrF3Ptt+a2HdljvPGqLBkf3PjtSNgCAhpa6j+J/gF64wZ+G3/mirSZqReuUUZNBFJzUQoo7gR8GZsNECbkFVBNzwpJpNsDgJ6WZMTomyCeUA2xE8j17pnlYI3WAETZVcpCKW6Sy7cIo/JKHlcYjGo2MY85dplLtiEp1GakjNa/kWe+Xn4VAL8/oqgTgU+WxFDDzHtuaemTaLLBDbBT+0+4F+U4MGOR8U17R+ta5/h4kQKOXI0NGTvSyDK3WVqZYI8LMWuSbs4LLaDBizrcqdWWJiBrF0/m1M648jpcwvajm5Pj6mFy0m+9zT1Je8GdmzsawoHnz8CwaZGxf+xmIM9y9WgzTqggz3QXiatfvMrwybUo80p1BparjjN2DWBtnik4ZnGFD6XaZkaCE3PuWJocg0c3i0O6dzSPvHXXlr3eGfbFrn11t2ydPd+3zq52Dh73xZau+gfbVQrhnL+8tUIYwWmtff/vmRTydo9tNlMP5+GLtZX/+8Aer9iPzvtEDyf+a8pWabKCZRqmpAhSxxr9dQbEaA14GaoMyNeX9Kk9uMKRE/cw+RqscGgr/zB2VEB4FWIH/yVFWXYkKKrPdeoEkqYUDr7KBGsSNlQwFBd2h/IUxZ34rwT0MACt4bCobpVSlrbGbeRJx9pNAZvQOxhSLKpO5bFEcgxFdNFSWb1284LS6syum+JPBeFh0AFllaQvOdTKKjjzSVh51MHNN6gVpddczJBb4CBEE40E/K49Pw/0PbWHAZKz5SyXKALsOQTxZCiyEIIojCMWGEh0hUpX/PZt42qlEVpixy0pQnGM88BSj3zDmZtmWCMFmLhJCilD2JrZT7AG1/HofAHU6c8s6BRfMEQ8Qd0uG+Zfw7maFcoxjyadgcBGRwP1qBgeuIsdeh0dDq5I9qtCfCnOVIAmjse4z5rDVc4JvR/+d4efTMs7Cw9mpIMc5HN6dOVy6+bf+42Y3b0838/bb8237my9u8PS3SnXu25GQ+PTO3HXD87jWC1zypjenlyh1Y2Gj5zcRO3xvZWBixDHAWYIgSIHQaUrrEaQjR7qMQKNHiWxO5QQV8z2smp5muU9paZzVOM+ltqae1Z3Bu3Zs8b2XsImA5np5w0HWUdEj6DBMmDASLjGuAPRB6O/gzvSyYABWinB1KCp5/jFeglS5oTPWxkPh6SE+GsmiI6+TTN7vdnnJpz62uVPR0Prvbkzo6SOlCS/ZqZ5w3OA8MPNUqzoH11ABQenl9mEj4oeh3LHUEvkjob4cge8RSY978QZlMeWZioDg99WveE+YEVDejcog55jlEbGO7F+3x0Xx8tKgHhKOcPIElwWGCMqYMiXP9gu9+enJ7lZSy1uF99+N2paOYRYd2TNUxpn2R8OHykGRMicKnb5Y5f8Odbv6wzMw0XOBpfC8aKPwemM+B7ms6+cd98Nml/3PPY3ouQQRHftWSDu5aMe85EQwV5mbuKN8WBgQUmpIg00HBngUMwV7gUB6ub1jjUzWCsEnnCJmrFgYOAUsFmsYSy/W+3Z+e2iX64PrKi8a0fVdat9YDvRbLGq90maKya8/umoPn6zbD++/0zZt3n7yzqG9dyYWvTYk/bgFLTyBDqrlQnVIHeHLam2/CaXVUIGtcetHLU3JDR7aWMogylQAykzDv4UBM2f4rjYN+gZRMQ8hFT0oQWbacwZolmH2x6lHcGfWED1swyqqAAxKzFNZz3FgfDA4+B0o5pe5ztnPeE7mkafngP5GEGQWnZS58t9RU88lh50DqkOJQm67500VQ4I+lMqQEvzwJgoiKVE4fToQyu1eZREaU3ig0hXvRgnmXOdaa6Bz4z4zvlj/Pd8ZNZIz/4p2FJZQAZf3chcGfCMnWw0hHpUAJZfLGVU/IjIhkaQ9zB+CotcUZa44168U6ahfjtQ6IpwzFN3njC5pCVWb7vhp2N2wvx24B+8qNPy+1mwKS3xI1oeOd/jq+F62fQscgm7fBGtUq/TYHwpYntoAOqDW+KiXKtdyD2Vpsz6cLfc012RmuZdEoGV4G6Mtwjy9X7zbbraH9n/+2/P2t5b3/DiU57e9nYSDu9vtvrVHt4f2N4/WXuP73/7B/fY//9OV5+hqMQVrhvJLBSboRPAtpyDidb6rhRBaQmDtVUatFFgPw8VTQNdnOIyCaOL6vfycnjc8m2V8jqiK417pDKEgjsRAmKZAUX8XNGjhqdYizacUBaKNJ7VOAM5QDb2MVfIElMtyghg5rm58XMRzwxs8VUJiri3HOib5zHPWARaZndZ4U1ETIKxfWwqH5T4bdgV4Vyq8Mnd7s8EhTzkC5pgrDCMMlGdGJijw5PMaI7KyX0BXDzpo+1W86zERjmKtM+x0UfiNRz2JB5CKDNMGLISadD7WjzuBnnKmn+UOqbmgUgTt2EOmKa+I8YE5w0zT4utYq8TmnKHdPm9u50oLV1suKwpAZSGfGTg0ZDlR3MNSzaKqinui3fAcHmeWMJRh48wOxi+G1MsauXyEZ9WHnOM6l8WH6oytIJsUUF0pmN1RUwtWmWUGB0Xf3MNM+YZKLvYUa3hHhZX+Nbmmkjbg7xy05jQWuuyL8TnifuVI53WUq5yeAgSNtInnzzsZo3OPu1cXifrQbigD4Yjc/vJyswxa2MTD6OKGF8Pl2bX26Py2/ebxdfvw0bo9vtx65aBKO/sG2+yOzw9vkQLdiYuHlx/4aN1/3iNG0jlFnOutLzwo/Yu5zflpzyyfm4d95J2vqhnR++jRbXt4vml/8ot9e+fBvD1Y7dq7Z+oBIhqw9AGgHGH0pBCMkGtnTqGAOisTAZzCOsGQNB9TCVIHq49c6QA76ZWLeO6LJEb0ipW9JAhUWDsjpC9i1xzQo3smkVJjXP4MhC4tFuE1VYthWf904xXNCUWIgkwOor+U3ID95fjz+whrnswF5w5G2/TI8sus7cf3l9U1phqlt6jMehi1KND0gOayVWkurceZD+XkQhCYCoJpk81wv/li6Uxqa4iLBvbGCkb0QtCD4J4NneISQNgykgAf0TtdCnT8JwU/WF3JiCq4rrdId+PQcaUn0YxJkcOlVtijSfCswylnRXPr/agl0EpspAndys4hx45RGbRaD4I4Lflh2e73engOpq3LaUthw8I/I7zahR165jKloTAGVHmmcYVdN8XbS19hj9dUEZ0bKzy/125ba//fjz5uf/bhUy+P83V6nl+GFt/53Qt4H16kFTbCC7yjvb3NvM8Xm9Y+vNi0f77bOhrr/+SPf9juAwcvzqk124sw8iGqxVpEO0wCHI42Ksr0JPLTrD0tvMlK+43zTF2vzvvxyacCUBJCL813IY/HT+P41uQvNPQG3Rn5du1KMwBU6GY91T1nWY9V6j/jnYmCzkwQ+1AArOK1cb2HOMMi4SHCUARCOe775vdBY7OQ/E7HlgodVKg5N95HILY7PcsKhpESAvNsPsoE9cw9zr5Uio6PMVGx0c9nxN6XwkyeKPIeQrmtpGHkQg+aokezVS5+lmKT/eAfZUkivRf1kQdDSyqMnnOP/d+lFBQvYdnLHHfms1ap56TpwleiXxH27aG4nsc9gjyFshe4FcybFwXXow97XAB/E773Kkh2z3af5dWyJB1kC10VGglynKPyTH6aodvTw5ugffiAxiWeEVO8qUBXTj8MAR77rx1SvlvukU5j0NrfOnd0bHADhGA3gRryn7hIIwHvKktVTij5Pcdc/0LexhyUiF77QKuqLCKq0iVjxTvABgp5N/aCA5WlgYoe6TiLPB8X15v28aPb9vnFtl3e7NraZMBvWnlmm8hvh++AB1po1qt/9MgEnv+y19idL91sA//1B4/a5+fXbf6n77Xlz+61750d2oMVj2TaxovY8TAT3FKIdTJzeAj8uHmdaMuDLY8rPXYO+pIhTggLJzNBKHYyZijrzhqHEBWnq61DxJJkNykRAVARhntHzk68eWbAGPkQ3huaQGSU8mcJDuHhLc003iH2QQFJMFRp/9x1w1lbWB1ht/TDBk7jHnOh4yHtYBa+RLOWEkgQKDwM2cOeDP2RChlC7bIclEwUNWmG1PsQF5iuoHwhh+6FsbC+c0x01mS0EjEA5fFcZb80TCgMZ47piWd4/picBIaw28+tRf1byN/Wagl6gUNfNxOO7d+WQBRSv1CBusLyTsUZfWItRoZmAUHccrpjm1r/o1yLhX1bjp+hoDKyiEN2ZFjOFQSKCOeHuQigZ/EuOWBAg49nyZliPUQw2TIp9LmuMU54dfLTmteMbkdYXQpM8C7YeCKHs+o/81/mOkuHp0B2TLUQRbhz55X3gifAAGY8MiCFMKxx3l8JqPHcOqshsES+qn18Zgivu137f//mUfvg6a59crUN78kbwldP7fU1CqmbfWuX21l7dLtvv3503X70YNn+4P17UXeYBiMHvDRBNzbZ1un8vK1AP7aWDmLo2kYPjiXjSiOwmLY0AMnvVLhHfdUF7gSGHMY05F7zeTVmeM0tWbD7/kifNSXKMQ/u1NuPjiP76rnQs5HlwbtYAJOVagC0ZET4mCFOQ6LTAy4pPQlS5bnpkQoltsJs/hzLYXclPQADzWhttTFSnuA8oo6ze38RIh4eTdSiFk/0ZB3ca1qpJPYfZNocRSwm/2BJNd1C+mzSLU+7YWqb8+e+srPzTfvM85drPUNhvqsK9LSF/BARUwynNi9wjFuj22rc/jOj/KbPqv1caTYWhq1GGCJ/KwCaPskNE4Yv45FEg1FAQNioZB8bGM//emtGLFOmIw2NHngq7f0eqPVInsXw7yOeWfK2+qwUSdcRrUZ6RgEQZ8Wi5FjDWqITj6xPP/t0GMQnXi9ZHAQ5QZkup/K3GAJFlBvfRQ/zseiJPkkCn+F83gVI3oedy0W67sQvQP1n5kTzXWkMYDQdqinY33aGreaz/fvoydprPj+52rVbc6IosvB3qc3e5DJWxzjMczr8PKb0Ou58/S36Zof/1x+dt999etF++YNl+8n37rWz+aG9g2LppeaI+GAChknHGY5hHkpYqjvLX02sCS8RVneH9yU0bShX9DyX6FB5VxDK3Qs8JYi8gcBebonN0kVRf84ZTb6DdweAlSmvyTx4r7CjBbLrmC9bc0J2FRSxMyaEPQ+lfYbvnBAJnrOEh/PDveVyA1jKmil8pZhWWHPkBdcXFAicEUAoitIDGh2AGc9SYSH47dYB2pRh3DTFEiDESzNVaaMEPoPXp8zyfJWLnLmf0r/rod4oC7U1QdfGK/HSDnwWHiZjlGa1jO6o15ZCJLUz5EmZRxlhfW4gSO8CZBUAe/n+RK6Rze0qM4oOdQ2MCsnSHFCPPg56e2HBHfbkwksyuamjFMZBlO1lKPVLsXAPTUxxlYN3+MuoUI/Acpw+pAyosUHeeLeD5TAR6Cig60vItKPGcwluNtsZok0jDu6IEmFBPLK0mZ+fKPni+ZkIh13NDl4+57/6/ZP211+s28Mrs3j30T9vSntZat+lX2iYwzNY0gu/401mPS/RovSRAcy09vh213775Lqt92ftH3zvzDEFLHLB2tYNiKVAW4qR8TYH4Qt3o59+ph7d1VQx5hTqVCYXdDyQOCPBOeoKetzSoDVUJKCCMlUg4Rkl3xGGRk6o/VDFfekE6Hjo9/FxlhHTy4MJryWIGMNyi66QfggIqEcEjaMQRcYUHET2+HrCi+ieZvIOaZG1Fbm0TCPrQK44PhozoeFralB4swPBu4vCyg4iBSfDcFk3vP51czV4I/0RqnhSYWN5JPAe5tRzPihquGE0Pf3zUMaEHx5VWJ7RYn4iXzyAHeMlltYQ48L+7DyzkRNN5Y3kh57l6ilqrBNLZYgqjJSBAbxL5jsA57DXZCGSX8tcjPMeMs/MwURpTM1JRPku59v2z6MLBkMWz7MB5LGeo3zpMmSKSwOPxM+l0JgwDNSejXHfUSN8QjcYfg/pxx0jLDnZDXoUBiCr1N7sS7rJW4jTI+M6PEN57r+/Y7cBfK8bFKlRGsVoJWNqi+zlHHMfGYksRt/7T6437dOLdfvsYtMeXe7bxc3+u5v7PHuxy76kAi2WNHnfNNz6GU84Etr0CsbzjJuO50N9mTaGjH/1RqUn8rb+7tOnbb3btv/kj95rq5+90wwgz/5FPlIxWBcaXGHeO/qpfzZX0K8gWn5pemMJkgWFA+deLZgEHAqUyuCaCWyG0xehPgAowfp5+OeM3JdWVeRvOMEL4YqASBqqTEKuigXDff1VPOnYaQxfdg82rGlB5CQo2r2fkRuUy4Q4I/fYk2k7o0VdxcwLpYJtSgdmBBZ1NRjo+iO6dxLS3a10rh+e7SHOYGIS/sRZKeTFALGiuJQ5hRAOCR7HPRClmmScyDnPtXahhjnj9rmUQBDwCReCaUxIZDA830OawhjBqSX6J0efzGoo40AGGX0zoLJt5FxhVr2kW4ftYl4QGCMkUiJj18nWcp0HQaELw65wyIoW09isftVyf8qaU3DFFvdQRRqYuCuopHPMvDuYP3ZfN7fVX7dcY96oFDMPq9A6df+FkUH7F/eF1T4Q33n6xSMAJup5+QiL9Z9QoO33221rf/Fk1j67mrXfXR7a57f7tn7Di0Eeo8rPov7H+M/sVb3jVbCIN6AZfbS98Oh61/7SKkes9+0//Pl77b5c40ZFL18V4ZSO1o+qEkaj3IRlxjGjMcu5I0Z77ejhXTzzBFyM98fs0tvEs5DhmcXOykhEMK4713cUWXlnPMzxFeT8dojCoobondrsekcpFglddTM3uoLGZroHQoNZLSEVMhmTj528HWfaQmxNfvD5gZuM/JXeZwJiRyqtRRgZyKVr0imTB0o28BbMWAry6PTOcy3Nj4u5h6Buf1skgi27hXKzX7FgQd961QHG7ownrjlOA+CAuVJzrrT2jpbMMOQG9oVKcheKzaBqlBCdRDVCKQ5Vt2iuykwH5bFg5LEG2KuUd0SByWhJbNyq53t8PFSsCaDp/fbn10+mS5Dvdnn8Pse9ddfI+MZTw4ikHXQ/HSfwDHC+3aCzNXmzjAwZPdflaAgPNC8/DDFM4Y69Jp50TMWii84S3B26RcBfqTTHsZqq/f35nBqbD91ZFuFrnHORHcO4MdARKqN3FVMe+pTRm2kAyFnqrnRZlMIF6Y/y+5TntSoJzjZkYWLlKJ6DtYh0mceauPwWXuaLm1375GLTPr/aOuq2lbFi9OQb0Q75n+GzV9xS0Ju9wR7oV9SenQN91z2vr33ZfGmIze75+28+umi/eXjevvfuqv38x99r35+19sDzHAjuEGMAzBZyfCxOp95K/cEEllkyDoS0WdgN7ovQkAq9qpyTyHd2QBjkRXVMR9CgPfXE87ng/QV1cvBqvzVytNVizmkKohKUzMPRUAKF37rQH9ypoxJb1MRk7t0M4bm0sVNVSFRKUXCNa7CEVAnO4Rmxv1cIc99tA3GWgVz0GPOeANdSxg/lW6zD2eOsYcqhlcSQrEa2SuamZ2h9oLMzR8lkElEbsRY9migFTBoKIAV56Y4Iv8J14LgeDkYPO5ThyKGK8HDz3BaCOZg9POx+j7w3CC8NNbE3aJmN+2u+rH8bAMuE1zRCtwO2Km4wb6f9cxGGOVAHiwgggkugdo82M51vloTw1IcyynaXk7F3wpmWocEeoKeIiOZRWiw89xGur6B7EMhrVaBE44S6Ymvzp2BnnHMXF0rqgkAS+co62IotC5RevinyykKxiQNZCKDxv5hneJx9rSyEPvpsf5vS9M8+nbXfXrT264t9e3wdyPKn9t1qRkuvt4f28GrX/uuPL13AMgWYjUqPl30DIrztPRd2cTZ9T+9n7WwJ6oD8Td5vjTIx6RfPQWIvQHCmAIrqgoIQLfYzso4RyIjv02MpP2mESvmcz5Vw6MmzjrB6V1p1jgSLIJ9J4znmgzSICjDHy6vtbAafKbbowrLlqB7mHvIdc0rvZCnQViva74MReGteRSMWHpY7c7rLiYkAFS/QFJEAFjLrCjTm2Y366DOAx4xWWaQCx+5rSCbpxv0pRs1oeAjlHIY/yb3u57X/+3lSFj34Njdeqq/LtS1jqhl7ojgBeTh5WSRpu6ECK558F2H3Eb7vYYDBT7FfPeYqsUsK60M0quKnHMwxPcFTIvA6zC2NK+Q7NRpk+2na7qic4++97QGE4rsMZmH78yjdyDnw731erBTa3d7emI7CLMhSlATLIljYkEtse8bLY64q1DvmJOQp56eYBOY/0+tdO+C4Ei3D7T7rFejpXelguuMhuvef5wDkoykvJO9O61zdT+eFHxtzhjzj2XF7mXV8fs3LbwKi5S4L+CKbheAbGFugb1vZO5O/9h6y/dH5tn1+uW1PbgwQ8OXLu7329lW784qVvxdWoI8Hd/RXvNDYUkAceNfIyJ7Zj+d/pu967nXPaQWX8eo307Ejb0zO2qdP1u3Xn1y1P/rBWXv3/VVXu68Ie7SqJ0zvLIQNUXhYQiSuj5ElqEZIIMnhCTwUVsVCrU6mYWc0AUlC6F4srCZw87rPbplOScFyaAuwTAs6RM4zmM+gEJBw5oBBVKNcDxUzjJseMWPSAByL/B4qirSwa0mMyi2yZoqb/cFcaJr2UigDmkPmlKQCXIaMzP/CenaKWBJKhCBJNECZReOFYcCQZ2U/e6U8laoUfHpdnCVYo4yUIkdHzlwof3Fz+MLRFc+npZcnEFndamrCFEsoVVUr5DaVglnxVZyJqPmdZUcIegdBO0rPhGJZ6xcCV5WMUNELHnyxlFeA4vRsEUSFYUv0MOV+xp5M0JrB+DHqqhXRgTkiHoAmfqW6zH3G/YD9z7PK3ko5sOC2CuBVgnqeewVKyv0YuX7sm/1meeZcy/yXwgzpbxYH92bgMhbd8WS3aA83h/a7x5ft9+fbdmPo/t8gT30RGq4i0Hj3c254wedOnzjlDbOXfv6b3iK9LnKhrQb45+aJ/vhp+/l7Z+1PfvZuoHLDeJkKtIfwCp+JJ+UzWWNdPSpZ2leMgBm5JMeL9FfDivM7/wW7BfgaWY76BXYFz9exfE3viaD/TtHDK/94fJ84kqdKNAYeAGJ1xkc0b0aDaacM1sMVT1NULKwdvJr8RENcfR2hDLnRcT9LRTq8oBEZ5V5xYHCEEXzv+cymhHrZLUvDsrrPyIG962SyHxEtFspelJwqnIi7VkONkNbCSx8zT/FC76CMw8/o8SR5o3fP7ZXCNLmffKvAiE8ZK+eeSiueQ6OMjYte38R2qmIpvLqTJSY7FuW0wiA97JscIDgVANf895H2jKlLck4Cm6T3mtO2QT4S+zDkBit95vsa3odK7Ou71WHg4BeWujIlzeVD1HXOyCcCZAFckHu//NZ9UyNSikkjj/YIOxq7KyqlTPklz0VEWqXxTdaEfSEI6bFl40eHOwwTY7i2ODPEPy8PBhiuRBDEZkY6nuyt4NlSQlOM+vGMQ1suTZ6KKFRiB3g4vOWT23rgcDxd79vTm52n5lyud16ukABt36o2489Xp0V/ZQ80F69rLyi3vGJjwNfeXk349nTizBtn5SR+99lNmx3O273Z99ofvH8muR6lRJNgWi5TECIiUsd1a4QdnXn+J0Vz5kIiHDhLAtB0X6oao2NDQAhGQcASKlJWJtABppYWDNTa+haMF/V2g3RbogyYZgpLBWQS4WgMxy2BJAk7wS4WC1yyheIWudAG4e/jWEauV5Y3GEJdXRkUD7GGjZmXzu4yoBvrS0YwJdWFyZIek7kVbbKk4MiNztCsTMxS2yZCzIVJlL5s6MZRisCkC+/LIsZVHt8yUZE9+E9wtByjKLX0+lMZjQW28S8yKqEUbcnvA9MPUKoDEFnp8qn8cmrCjD7o4Hb62iXJuKx0iQOhZM4Xw4gDFo5rBzg2gMVVqKIr1Acr24JceYsYWAT42AZla9LAMwgH5W1FmRsKDCISJDtTKUFKmNAbEd+XOMFUiTAJFW9k6DTFnEQFTwGtOGOGZoKDesg5IwHSWBP7K0rVEACIgCUUFitCJMqkxCg53zQgSTp9luny7szD82wn7OHurH14s21/9el5+/0Tw99+e9oLsqGv+I7nSBnfIiEkzu+h3bZDO1/P2kcXm/Zf/vpR++X799ovf3SvvXt2ltee2RmdHdp6HiHCnh96ZDJMwb7nmSWhjNEgpQaiFNCH2yMcvMoGHVWe+buUE6LwPBmc/ww6R9Vq3DMVtZOfwEhWir7mo44jJs13bxuVK4bneqoUSiORGidA0tiRoU+ISjHDhT04glHMaBkgkKyRHH2IuW5SU3u3gfIOQDiLEDDXFd/tsT9zeLdBN4xfWp/XpkSrMD+Ol7MJJda8464QVVzPZF/kwPBQApxmDWusgYOuyZTwFlNqXQRBaopPA1K/Yg2Kf1GRS2QQ8f4neJuEmifAKpQzd/QF0+6676G0REIewr37SWIueO0F2V5TnmQe526OD3dPXUZlqUmqxqX2bh4j93LjPc6vTMBL2QPI31AenL+5x7o6Sh6zXM3bakVwUu1bAWwFojYi2GoVRcmMZkaabsRjdB8rfiCCLucERiCd0wz/fkYaEmUG0pHMJ76DpAewLEpcMZzdIj1xnukF1rSEaWyFOGcSm4dyPh06ha/D/e77F9E+c9bxNprq62a6Qci8Flng5chWlLfjHeZtNlr+8HLbzm/27XoD+eJVatCzb5AvvkZF8yU80NOe3DUHXbjjnc9LcX142uyNna8XUZi/lFItRij1459fb9pHj67bh+/faz/9/qY9OGvteyWjpMW04Jgq/IPhLpkRjANL4T9zqTUsmRbH7E48yPKDjTKESkOAqspZpidybifU2qJsy6PFlSUr6FE4JuZWyN10LlUx5oB155RVGE7roSyCMrLans/ayeV9ZF1HEuyEL6PSijAkmC9SsdH5rzU6dGHgFBLCkflye0gVI1faOgmUXnsYNbgu9K6IkOpzqcYGDxNkrnMf9RACDUsw1RwXWeY6w7OaIcWsa43VBTK1o/cK4BVDuLP+4SxKm5kQxBqVzgRdRlHwt0GgYk6hgG/RE109HcCFJlLvkcSM3H59iBXzF/nwBJTLcj8wzLCHUKjL4IEbmf/s+6Knp5EoQTFDSq+oEUVoNg0eGQqHd2gtz1AAgvHag27nq/b45tD+5QdP2wcXG7dMv0ntS6XKzF6UDJehSp99l/D0DfPwr7152PXBAMUO7ZOrXbt3ZqVOoq7vqNCsjIYsTZmJ/bNh6T8VeEG4TchktDPz98YJpxCqR8V/CJ3ldfzF6QnwCgLQ8fBSayTsuT5LBb03RtUkjXPW71gPIR40C62TnVIRwmF170UqF/LJcXHiiaTCyRKGx0p9leLKklP0nLoiDKHfjZSJlRAGZDM6WqlojyyYR9mkzW6HcFpZD/4kABpKSVlTDzQmEzQq+suceRoAKd1wjJRjyNeC50k0GSLUXJlQwwjrLku5xFxFfyf4VmKDkL/3O6AzgOpSExtm3EvMncUNekXuCtoYcE2qk+C7Y6NxXF595CKJPks5oDjeXcYOVEhN3svSZnxHlbEMkDbGJbtSBkM/85U9yoq8STz8kRNt6XKQE1DSLCpraKcqEk0lwonRQDwhUX88rh9TjXQfyTTJLwKoR/mWCdp4QPVB+1qghbUeJRuk3KjReXxKPl52Bg3bZQdIno+3dYjdOUOIGLB5X8Bw4DnPQPlnmmRURAhl23KfPztftyfXu3YD1O3eM/+K2qxk9ruY6WsJGecGzL9f3TteeQ70dxKx7TW1Tx7ftIePb9rZatnactX++EfL9t5PV30IMlC1Lbo4wlyQT4yAmwxTTgV6AJqgAi0gD2lxM2ZlHgRnzGF3tGdGiLMdRsvfBLG1Q3q2jJtvNwnYVCE1zGUrhc77jLrOPZmw1lsHqVS7wumKcYSndJYyWBtdqYIkwlzTFHg8J20HxXoMzNWXhQdQZRzmmrjFNdGgzRNf3ztoDiNvMrwZnngozo64Da8A3zdbRj1rlPR98bMkhCgVLgof/Mxrax/afh1zGmqogFFR4+KewudmUHemYJ4IE269zzS390AuIdgANCgNGFAO7RF4tiFrR15jGGAcHM7KpLhXYt9Wh/KkBKBVWYBt3+2wz9Mi7CGlIeiFS0cEeOZRiwJNYK0AQtNJVGzWvmkYX58HD4MKw8RYko1MLsu9FWIn65uWAN5bmqOuaHTJohDgd5E9SKwBidDgWCmgpNu91oXCB5EC4vPoc6JtWxTJwgTdRXs6f6/9/va2/e/+/IP20cW63b7ZmGGF5/B1tK+iSX8LWtT8be3J+tD+5vGmbWfz9vR2196/v2jzVfAEtndWUfYozLwB1OgeEtCqvdehhXyD0I0MfdYCC9IYKcTwTKIs0/uj96igWai0X82gQe8Zn28thVnsjeBXvfm4KKeQnMHJEIpdfUZjJfPFW5Y4ikG7YQAAUO75RtiwRwVBAVPsDW5dCuelTMbnBujmyhGQ1M0AYmTVlAj3Ytk7jXZ4zvS8rfc7L2+3y1JGHJhVXgj+bEYTvsMaTSg0HGd0E7x2AaoWeBf0dlb4AM46jCjGC4waWqgwR+clF5EyZsFk5EXce7EWzD2uvReKewFvRhXLUoBi4grcLZV87jl3NhxRASYGDHEdpP7c14qmc5RrF+XJSrkj2NbzGiDTwgPqy4JIt1GnoPKijnkCXeWc9c1S2sKRSVRspcExT14iivXOIR+Ykc1ycD36xPP2qwaxGeYYbViRiuKUmxgn+kmgfMnRexW6rtYZgHePyFYdTsswt0e9/BOrGeW7UmiJQRQpEZAd9J0JQKafVnoCw/kjek4kFqS++BkAaG/OjwthMI4dLJokDBbuobY5X8Y67CxU+7Bvn13ctr/99Lqd3+7axTqiKV8Zf5u9wHejsfEVvbp/6Oth2K9GgR7NwXf8+VLPyok/DB9/TULS19SeNRrPVWqtPbpct7//7LK9s3yn/YP3l+3eorV3UA7ADoBOGVFJI/xVcjcJMkGiJOWuMpfWvXlyeBL4mhIO8z2pPEAYN0JleVQsWzFYoamolmMOYXL03iFMOr1no/dZLINUCCw8kE+LsFgBYPEctVC0Iy85rP3JBPXfsBBOvMXqx18q95pzqf+ootT1RexArOnhJTqqIGj3d6cZHXNXVk/h4QPIdPUkySjzpxEVz+jzdqzWYNbt5HqRiQgCZf9n9oNFwzyXWcLMvexUVruQPQWU+Awd9nDk2rvOZPksxJJnThPCxEPOqv2DdKrOUxjKvGZUldW9QvplE2Aeuy3B8mAQxjQVoHYfzgkNDzpDWcqr9nm3r4b31VlNEbcbT8yrhN1RQWAIt8rlfLbUoiwZnzW8aVRg3dRAkb1at/aXn1603z5Ze36UhVxWT97cdniGnitH6pW+aBqEd0dnvkWNp8bO4Y0p0rf79jcPr9r1Ztv+5KfvutJMjwujbWjEZEoDkadDkcY5Se9VHD7uOsj9ma/LPFcKwdy7FkqreBLl/QEaN8Kk8xw/Q07sVhXHsRNJFJtgUJ71smMPVuNZzid5RGJikCE9ex1YfzopWdJw5DIzp5rGuwxx7h8ensJSLBhOb/83ZG/3Ws0MXT3CuO25htVCULFdltuqOsAE8Mxw9iE8OfOFEZ2TZ5QRbVFLCylEyo+JeXF8zepzWDczILg3JvLinD9lBeqJzL/pUYV6NCBa8+bkLBKGy3+9msSxhKzmyt0YdpEh55C1kjcPiiNkpGOKIQ3AiUPDqem7XbIh6Vpf0W8y1pIJaj8Ppp96L/YqDU8OYIW8XXvt2XLuDglTuN0IBK82kcUJ8B12ElEksdenDaMATkoG38ErrZgApFU8m/3cINUhDxbA9Y7gi90xTd1z84X69R1YZcdSDR9fbdtHj9ZIoQBaPs7c1g5kOjQMYT8642H0Uq7OjGL29xpggx+dr9vVeheGLjFSfZk2G8evaI7HlNiRDrW3q71yD/SrFrGO6DjfvnbHriEp/c1nl+23n1+2zfZH7Sffv9d+/M68vfe9hXvsrKSAhhWbpSksoiBMeFaEyBZl33vO8N69XO7NdcKwD0uyH9gAjnIdRvrHEFxHhKYFzJ/V2s1t+Bn9GTIuvmO72YS1jMQ+w3iZdwYGBcLt6J31Ym8h+BgF2+XZVOvtbD+P2qOuNEb+nb8HQBah18BtXlqg5BdByvB3QRAkAIaZM8XrjZTbLKUQ1t5COXavL3PDvC9QoF0YpAc97LqeF4xw3WRHUIKpFHGqODfRzci6JbhKlEdgWKF5nlvbbthPPLlDwKycbvd4ulAba7SPOgpA6TZk7Mg/Ng8IDTRWj5viiSM4079AhHLQ0GSELtRVTpCVa3PGOo89soKAbIBuoSwjq3g2b8v5WXifCeOiCjTnJx075pWgvzVGSqRpjUaIbwC61YX3B8NxYA5qC1IygqFxexHOM3PLlyL6WFEgFB6KKZJ3lCIs9cnhzQhGmSuVoYnxlBi5M8QQixM5u4TJmOvwAEQQa1Qfk3xwe4ZPnEGv3mufPb5p/5v/6vft08tte3zL4i1vejvex7eh529jc2/RvrUnm0PbPV23//1fftZ++f5Z+1/+98/aO6v7hVKPiKE0kJkiBi2OQH6Bqt/azjxaB/NyhpcoU0uh8G59Yx/afEd1KCClzyRlIWy4oNdMeWAeo0ewBI/RsOC7WigIMH5R2E6lqC+NpXLi0WdldAgxDeo7ImVLvE19d9cDYVzvvNracXj9jGbb3zvLSXcvMuiLePcjCpf0KH5utkblTfC2029eq3k7W8za2j20yLG2SITt3sP3TXm2ACeW0HKwOfBKonYrCFQRvgjX1nSqqMEd8oVHby3m8DAfG+x0zfp5D2RsViaI+rgZZFaObaYoyQR3qTliLAu5jPkvguilfXADQiiCDMtWr7H+ND7tmBOuCDFfXbzRkrNPFnJYpkoXkgpqODu/TCWq+kSva+lwrLMcYwmAz378vT95qvx7mpXtMSmVqC3yjGnNquky38+91TwUaN+e83a2XITMtg4ZdOu4MjX+iH4LwB2pInp0zfv1D++rj88tbPu2UyBMj/SC51nPZdoZcL+OyfdRzZMM+Mh5xc4RoLXuTsiOdESwhWwV82qefkZv/Oqz6/af/dlnUwyHO/TTbo6OTJTL74geeRXK6+HYJ2+bVvxNKdBfxjt8pwX/O9qOjd8tunvzRG9cmd7+4F774YMHHQH168q4mL90Rq/Oc1JW+IxBIkElg6EFP9GJys4YxJq2W4aSxG/8vHJ++5wKMlB6sNNupQlgA8JwgDTILHUGYOTikMkghI1CVCpZQA0nCIP36Uj530qnUZ+mKiXKzFA7UrUhmWNalhn3xdCz9BaIp6Tmh6Oql47EUYlv5tYM3x3Gf1GHolYGUkQiNAOsKqYn1Ka0xt+xN9OrO+kcfpXcKRWS+MwxnFK9ATlHnbUbOZDYpBRAjsxOXqNW9/L09ObS9FzpfuS8wyuQ4WEjI4Q82iu3OgeJ8pY5aOxf5vON/efkpChTm6C6wM53cXedsNNFMFCIlzWjF9Cue7o+tA/O1+1Xjzbt0c2+Pd2U5f9NaaOIUgYPCdHlZzlLah3rBeFnPftYex6H+84o7BLdY2VQvrjZtXfOdl4/9GqzbfeXyw7BOtJLYLShsTRB9nj+whJVoaJTFHpNUdFGukCi2SkKQx8STGvAz9DfSHvzfvxH82PH9yutygMmxJFn8MhU9jRQvDKHyR4v8pXlCamI8d7Maabnn4o7DAd4PsPk0xOcRr2gOG6qBO0wBWY7s7U2hTSMcItdeJ1DAC/U6li2oXZYkio5ZRwQ+yDrRHrrCrWUvxoVOnadgFheKEP4R8THVdQRw2UHPQnRYcJvEzle9pfeA3rTea3xOz3uLFdFpzJ1SVcAxeLCHUf+Qa7Ab2Ocg3Cn+dajQimey26fgU/00gzf3NPObuB8n3YhwVn5ex+iEdF1vI9551V1guyNij+H515V5h5nfWvwoQTRlXEfVVpbu7zdtYdP15iDuN8iJ8zDfcswZfTEEcKpaA/4CtlPmaMeWG6c49oLfh/Kw62sQgEjcmRqTXcPw+Iccna0iLrAOyV646Mn60DJfpOY8ne4vfV1oL/tTUEDfvXR0/b7h5ftv/sPf9R+8P577d3lob2/AnjAcDLpATNPZxOE0B3COiyPzHJMrfafe0mXcz/slmfqwk0qoYHYR+9p5aeYhZWgYsHKrRRGeR3MEwYkabMeRpHhyfjo4WPIzlgiJBR1q0VbJjK7xZCXjUDtVEO06xcanjVrq5nl2izafrtzrzuFKIbxhKk+K4n6z/gTXmqfTIgqRFMGIWfBer5eGZd/7+FnZvnfB+I1rOkMu/H+dsrvWDqAdTAj1NnnJJUqyXHufLDI9DWBx0NyIhcmaoDuEMoTptYI2SXQWnOwnwjBt/v27ik6ZlVO5ukcLpRyfmZeTJ8lAMFErpmGEItEZUKY7TtDMt31NU/tnwvXzFX3+MsQ3KjOBiDXvC1XKzBqoE8jr973Rub7Rv6zWq9DoIq1ZvhoTHbsVc+jRzyZZ+SZN8PXj6XOIqzfvQ1mnPHtVOB63UoKiMtx9M9ixhVCD9GGQHMpyMWKM3AzePlgJc88awhj5n1CTqOvyt5wAAKhM/q6bL99smn/q7940h5ebdsHNwb45MmP7U1tnUlNDs6okJzaq2+UH6M2dGu/uWjt6rBrf//oxvnKH/7gQXtnVajEDL10IClEBPlzSNYB/LNxrIMpwJELm2kMmgqu9myPomDerNNfUbBAGU0w3dHbJxhb+j7ShQx7FCXFSxZ15amEjsOLmTmx7PhYn35UjIfvSFIHVsBhZn5z8PD+bvvevMcdtgjpLEsWOgELIXyzBa+iUzqVvjhFzuP9lrlXOXDv4M7C5Q9tv4iawGsrW5lxQRWFw39jSw7AaCxH+srkn/jO6Wpo1gZatkGZxDSe4k2M6gk5oIwIjIILcQdyBcpzhQcenm7xRLscBF7oUzQoO2rJ8RDZIbfWUJl8HvBs22POJQoOJkPo+zQqKoQYjxh5Ou88Iy3SKP3sGsGvulFfzNQfR9FGmSuxHIeHFl5nrvckbyzGcYZwKXp1z7azrABhc2kyi+21VLxZrZRKNvcqv4fR6+8/v2n/xV98gdxx6f9ExlID15eZy+MG3Xp0WUnuMvwdawzJH59q5+2kPL+FCvTLrNmxa48xkONX0wTIv746gZjaqEYb3Fd93t1Pe5XkzQ7Pdr9vj56u2wefX7UfPZi3+99fRhkponUOwJujF4YF7kfUUlwEpkToA+X0au3E75krwfwd3CDCvAJUjaQmlMOy7LG34bWkelAojiSW6hWL68iAleNR8OETqkxQ2XcZzgbwD1hoM3R8iMtLBa0TbsqinZ8BiZnqS13Vda9TulWJrvlCbFnOQ31nSm5gRPTamj+ThVErDTfRqLUTmRvbAWopJxoXrf6g0MnL0jpPwZRj7hg8B0almrWnYTRJIK14A7ce1wwG506QoRW6W5/8ulOx8tUaHeF7wdeLy125wzHdpYiGsFbRD37ZnYSxD9nKveBh9jKPCnB3hzd//L4+16GJtwn7JJQA2QMijGnA2NX20J5sNu3Dy0377HLTHt8auu5ddE7H1LcXp4rPby8qaOj3X6dc8Tz+9V1R4MOBGOG7Vv7kk4t1u7+YtR8+uFf1ndWTg9I1pogy/1ll66Qr8fRuJql40CM0otPzjsiZHiSHJGsSEsOHTkeVO4rKdJ276S47QuH68RxRcsZQUbJJ5jseq0ChL0tedvTZCpxZOd95JcJmTZl24C+AF4biW6klPb9BmK9Vo3RAScuHDs9zP27yPfAE5n8m2rC8oxf1cmr5TEoH/k64mK1WdZ52yCKJcyIlCSfnUwhE8ME7QmskaqljNYL43YX1TB8fhuNuHqUn+s5BxKI8EIo+gFYhB5QYJnKYEvTshMoJdYr4F/fM7e7g5zUug8dcNLNRLvD3u4UEAICmPGxgYFqYc6DCwnVvMg3KAay83OnMw7cv1oHYfy+xfABOeBuRjIanYFEPN24MKk5kaVlh2BqM1LK29u8zqxxxG6mFL95eBwc5abvf5vaNe6CP0JO3pilhev3vKqXo1x9dtMdPrtqf/uJ77X/6H/28vXdv0X7yjhEWo8BbZ1CBQh3eyQRMca9wkGMrQeF/uyvA8qnDQ7tqq3avrdq2meVvG564dEIx1GURuU3wCkcZoUM7eEFEE3LCLt7blEWpSoTC+Lcz77WXQQihyvQ/89LZNRto+kvLkTkc2u1245/v4BvdHbaw7EYG7sTjZ97fg+VLOxJEqWME17LQHsuJ8ZBC1Owz77ZPeggDK6BEGkGPuYOAk1yNixQKnNc0trzU5PGRyOpjR2mQ+RLCpzOlUqLMy+me2F2EGe2RY+yzcUBukIXNMe95sXSvdipsVkcac+epPfBY7ExoNVM+vKY2wlV6H+E7gMWf7iEPPS72Hp4UCZNjCJZ7iqGARn505SIuF+Ed3u9sL5VhpHJwC03VwqsyyHgQDGP5Qkxxb68L4sj83dseMBCNreRyS4ic2ALSCAON2cL57TkHww4AyrganWzFzWt1z2p++/TFHrfPYj1Fgsq6qnF3nIUI3eIcaT+8rwjzovfdc5+Y+wW0+KWtsSPtI/fbPRwBruOCKlFjE1Mg/pls4gqHecUZLpY1uwP3wMb390/X7f/4u4v24cWu/f5i09aWs/gWmLmHHZLGj6+Tj7zN/OtVNObCWm3oR7e79n//9Xn7B+8u27v3F+2P3r/X3gHabsP+W6F8TWB0mEKE2qXc/7NDO5sbGvTUQGn73QNCFgzZZS5uPN891+JRlmqwz231Onio0msc9CBPtXqfFUnfI1+qzrAK9GPOZr4wcp4Cg8OxQ6yig1UqeJ7boDczjM1oxtnZom224TFmNYCgqZjLJeUByzl1qorazGGBN0raG6qju5s0REY4rBqJVVWkd9E99uRfACZjUAuV//B8190WJWd50xa6bXyL2fBeJTONAlhzo9eOwD5/MUPbcy6gIus/BWRRR8cXechtMK/khzGeiKKA2b6Msdib8X3keYfDo2p0+6MNC2TBOQ8UDRPC2CdbR5aMyjFTHNHIeTGc1vhD+fz0fNv+/OMbLQD5Uroe36ke1ruu6f8GzxoiO9LYIAabWo/e4Nw974528tSe2pulQD9rt77CjfoiXo03oY2+rdkr6vizWCfV0c123y6u9u3qduueoix50CkMzBnqzZxqKSVBG8OGyRJTfxp6WD/laYNRX686OoqB504s6Rqm1HGBXiiiR7F/qHom1do9myxaV7uSl+QL+ji6sgTXRUfSYHBnMU712vfQHONNsC7L9+M+UyWUxoh8Nte3QNNH7iljLwN2L6uKhV/u0Zwh/rcbxzCkkjHvGKvmfsM4NGGNg4yYYxofJflR4/smnp7JI6Zq2Hglx5oKmjwzr+7muf+9QMvuvKTqb+vaMAxSvcfDcRv3ktaijHcX8nh1ovaZ/bXeH9r5ZteebgKVk2Fvk6k7Mpdfd3s2fTz+7V33TMd3xyZ+wfZ1K+9vSiMtsn1j9cKfrixXNgC7TBD26CjJ3y1yCGGa9W/R6IUbGx2H6VlNLAehfXz+wOteflA9SNixNmH5Q/4tLyqKqddO+ebL7Z9nXJnG2KLvxP2Ir5l3XnOdcyudUU6rXCGNkBLFNMxEH7oKr3PHVuTKYRq6d3I+E8m74xtyLWh/zuEYaSC86LnlIbn2AyzL5K1CkJO1gkk/6w3PfruCe1XEhKZupfI6YW6ldA6PnPTewqKv6IH+Su1NldBP7dRef5sdToWbT+3UTu3UTu3UTu3UTu3UTu3UTu3UnttG+NpTO7VTO7VTO7VTO7VTO7VTO7VTO7VTO9JOCvSpndqpndqpndqpndqpndqpndqpndoLtJMCfWqndmqndmqndmqndmqndmqndmqn9gLtpECf2qmd2qmd2qmd2qmd2qmd2qmd2qm9QDsp0Kd2aqd2aqd2aqd2aqd2aqd2aqd2ai/QTgr0qZ3aqZ3aqZ3aqZ3aqZ3aqZ3aqZ3aC7STAn1qp3Zqp3Zqp3Zqp3Zqp3Zqp3Zqp/YC7aRAn9qpndqpndqpndqpndqpndqpndqpvUA7KdCndmqndmqndmqndmqndmqndmqndmrt+e3/D8fDSmlrGueKAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from torchvision.transforms.functional import to_pil_image\n",
"# Plot sample image that goes through the train transform\n",
"def plot_before_after(tensor_img, transform_pipeline):\n",
" if not isinstance(tensor_img, torch.Tensor):\n",
" raise TypeError(\"Input image should be a torch.Tensor\")\n",
"\n",
" unnormalize = v2.Normalize(mean=[-1, -1, -1], std=[2, 2, 2])\n",
" img_pil = to_pil_image(unnormalize(tensor_img))\n",
"\n",
" transformed_img = transform_pipeline(img_pil)\n",
"\n",
" if isinstance(transformed_img, torch.Tensor):\n",
" transformed_img = to_pil_image(unnormalize(transformed_img))\n",
"\n",
" # Plot both images\n",
" fig, axes = plt.subplots(1, 2, figsize=(10, 5))\n",
" axes[0].imshow(img_pil)\n",
" axes[0].set_title('Before Transformation')\n",
" axes[0].axis('off')\n",
"\n",
" axes[1].imshow(transformed_img)\n",
" axes[1].set_title('After Transformation')\n",
" axes[1].axis('off')\n",
"\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
"plot_before_after(img_tensor, train_transform)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3K17P_0LiTQ5",
"outputId": "0bc52ccc-51f1-4ed0-a5d1-21c70fdc826c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training dataset: 2929\n",
"Testing dataset: 733\n"
]
}
],
"source": [
"# See how many images we are dealing with\n",
"print(f'Training dataset: {len(train_dataset)}')\n",
"print(f'Testing dataset: {len(test_dataset)}')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CXYYqlLmiTQ5"
},
"source": [
"> Before creating a `dataset` object, make sure you have the structure for your dataset:\n",
"\n",
"```\n",
"├── train\n",
"│ ├── class1\n",
"| ├── 1.jpg\n",
"│ ├── 2.jpg\n",
"│ ├── class2\n",
"| ├── 1.jpg\n",
"│ ├── 2.jpg\n",
"├── valid\n",
"│ ├── class1\n",
"| ├── 1.jpg\n",
"│ ├── 2.jpg\n",
"│ ├── class2\n",
"| ├── 1.jpg\n",
"│ ├── 2.jpg\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 675
},
"id": "4zfC8XOCiTQ6",
"outputId": "7d56f82d-b00f-4c61-8181-a3019bd6533f"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAn4AAAKSCAYAAABMVtaZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/QnUZflZFoq/ezrnfFNN3dXz3Ol05gRI/iEQMgphFmUwgIoKyLoOKIJ3CQ4IshwWLhXlOqCiLicUvQsUB5RBvXplUIYLCgGSMCbpJD1VfdM5Zw//9QzvPuerru6u7lQnVd3nF4qu+oZz9tn7N7zv8z7P8xbDMAyxGZuxGZuxGZuxGZuxGc/7UX6sL2AzNmMzNmMzNmMzNmMzPjpjE/htxmZsxmZsxmZsxma8QMYm8NuMzdiMzdiMzdiMzXiBjE3gtxmbsRmbsRmbsRmb8QIZm8BvMzZjMzZjMzZjMzbjBTI2gd9mbMZmbMZmbMZmbMYLZGwCv83YjM3YjM3YjM3YjBfI2AR+m7EZm7EZm7EZm7EZL5CxCfw2YzM2YzM2YzM2YzNeIGMT+H0MRlEU8af/9J/+WF/GZmzGC3Zcugb//t//+/zaL//yLz/t795zzz3xu37X73qOr3AzNmMzNuO5GS/owC83e/z5r//1vz7h++hmd+edd/L7n/3Znx3Ph/G+972PB95P/dRPfawvZTM24yMeL8Q1vBmbcbXXz2w2i9/4jd94wvff8pa3xCte8Yrn7H3zD97/tttui3e84x3xV//qX42LFy8+4Xdwbq3/TtM0TMK++qu/Oh577LGrfo3P51F/rC/gWhiYdP/kn/yTeOMb33ji6//5P//n+PVf//WYTqfxfBkI/L7pm76JC+Y1r3nNx/pyNmMzPiZr+OjoKOp6s/1txmZgzOfz+PN//s/HX/trf+2j+r7f/M3fHPfee28sl8v4wAc+EP/pP/2n+MN/+A/HX/pLfyn+1b/6V/GqV73qCb/zN/7G34jd3d04ODiIH/zBH+Q1/8RP/MRlE7/NuPx4QSN+OT7zMz8zvvu7vzvatj3xdRwkn/AJnxC33HJLXKvj+Pg4+r7/WF/GZmzGdbWGEShuAr/N2AwNgAB/+2//bQIDH83xGZ/xGfHbf/tvj9/9u393fP3Xf318//d/f/zAD/xAfPCDH4zP/dzPZYJ26fiCL/gC/s5XfdVXxT//5/88fttv+23x3/7bf4sf+7Ef+6he+/U8NoFfRHzxF39xPPzww/Ef/+N/HL+2WCziX/yLfxFf8iVf8oSfR6bxtV/7tSwhAUl48MEH4y/+xb/IstKlWdTXfM3XxPnz52Nvb48TGejD5QZg9t/ze35P3HzzzXzNl7/85fGd3/mdJ34G2RAg7u/6ru+KP/En/kTcfvvtsb29HRcuXIhHHnkkvu7rvi5e+cpXMhs6deoUF9VP//RPn/j9173udfw7FlpC5oDdc/zoj/5ofPqnf3qcPn2ar/3mN7+Zi2ozNuP5tIavhGeL9fwt3/Itcccdd3AtvPWtb43/9b/+13Ny/ZuxGR/L8Q3f8A3RdR1Rv6caSKz+zJ/5M3H//ffznELlCL+Ls+5qjbe97W3xJ//kn4xf+ZVfiX/0j/7R0/78p3zKp/C/7373u6/aNTzfxybwM1n7DW94Q/zTf/pPx6/9u3/37+Lxxx+Pd77znU84DBDA/eW//JcZIAGSRuD3R//oH40/8kf+yImf/Yqv+Ir4K3/lr8SnfdqncUGBk/BZn/VZT3j/hx56KD7xEz+Rmc4f+AN/IL7t274tXvSiF8WXf/mX8/cvHVh4/+bf/BsGen/2z/7ZmEwm8Z73vCe+53u+hzwmXBOu52d+5mcYuGUW99KXvpTQOsbv/b2/N/7hP/yH/POmN72JX/uhH/oh/h2B5Dd+4zfytcGdwELcZFOb8XxZw1c6/tSf+lM8gF796lfHt37rt8Z9993HtYzEbzM24/k0UG79nb/zdz4t6oczDevi4z/+43kG4nz5c3/uzz3rNfZk43f8jt/B//6H//AfnvZnU5B19uzZq3oNz+sxvIDH3/t7fw8Q3fDjP/7jw7d/+7cPe3t7w+HhIb/3hV/4hcNb3/pW/v3uu+8ePuuzPot//57v+R7+zrd8y7eceK0v+IIvGIqiGH7pl36J//6pn/op/tzv+32/78TPfcmXfAm//o3f+I3j1778y798uPXWW4cPf/jDJ372ne9853D69Onxmn74h3+Yv3vfffeNX8txfHw8dF134mvvfe97h+l0OnzzN3/z+DV8VrwGPvv66Pt+eOCBB4Z3vOMd/HsOvM+99947fOqnfuozuLObsRnX7hrGuHQN5utgzWB88IMfHCaTCX9nfT18wzd8A3/uy77syz6Kn3IzNuO5Xz/vfve7h7quh6/+6q8ev//mN795ePnLX37iTPuKr/iKE6/xdV/3dfz6D/3QDz2r932ygbPv4z7u48Z/Y73id971rncNH/rQh4Zf/uVfHr7zO79z2NraGs6fPz8cHBw8w0//wh0bxM/ji77oi8gn+L7v+z4qivDfy5WI/u2//bdRVRWVROsDpV+cJ0AZ8ucwLv05EFfXB37nX/7Lfxmf8zmfw79/+MMfHv9A4QTEAsTV9fFlX/ZlsbW1deJrgN3LUo8TkD3KXij5Ao289PcvN6Dy/cVf/EV+ZvxuXgPQjbe//e3xX/7Lf9lwCTfjebGGr2QAfUep+A/+wT/IsvCTrd/N2IznywCiDaTtO77jO+L973//E76fZ9qllS2cfRioQl3NgfPrcupenGmgTwHlBz0K1TGcu6BjbMaVjQ272QMT6Tf9pt9EMvjh4SGDJ5BILx3gHUB2Ds7e+kAZNb+f/0UgBi7EpZN2fXzoQx9iORWLDX8uN0B0vRSWv3QgKEOJ+K//9b8e733ve3n9OW644Yan/fwI+jKofLKBIHQDp2/G9b6Gr2TkOn7ggQee8B6bNbAZz9cB7jjoP6Am4TxZH3mmIdBaHxBOnTlzZlwzV2vs7+/HTTfd9ISvAygBhx1nJ6xfcN5dCoRsxlOPTeC3NoAOfOVXfiVl5RBGYDI/1yNRNKiUnizoulTSfrlJDj4e+EjIgMABPHfuHBcpEIorQeryZ8BlejKbF2Rgm7EZ1/L4WKzhzdiM5xPqh7MIIMQf+2N/7LI/s46AP1cDIkgADZcGmRjgod944438OyplEDR+6Zd+afzP//k/x6rXZjz12AR+a+O3/JbfQon4j/zIj8Q/+2f/7LI/c/fdd7MMBAh6HfX7+Z//+fH7+V8EU1AaraN873rXu068Xip+gU4ArXi2A+pFqA7/7t/9uye+DjQxF8lTLdpEJpFJfSTXsRmbca2v4SsZuY6BhOMwzAGU4dFHH70q17oZm3Gton5Q0/6Fv/AXTnw9zzSsiaxwpTgR50yumasxgDpigO70VANgBISIcKmAtcvVFpk8X8cmPL5kEsEcEjYPyCSezC8MQdq3f/u3n/g6FE4IqoAyYOR/AUWvj0tVuuALfv7nfz7h65/92Z99wvvhoLmSgde51E4GvmaXurHv7Ozwv5c6ncPrDMEfbGkAsT/b69iMzbjW1/CVDCQ/UOHDHHZ9XV1OZb8Zm/F8GjgHgPr9rb/1t4icr599l1sDcJHAuJxjxbMZcJdA1QqUJiB5TzfwM7BcujRQ3YwnHxvE75LxVBw3DBwmQNb++B//45SRw+oBkvPv/d7vZVk1kTOUS+EtBs4dIOtP+qRPosv4L/3SLz3hNcGn+OEf/uF4/etfzzLVy172MvryQZQBdBF/f7oBGxdYtSDzwXvByuUf/+N/fAKtwMD1ofz1N//m3yTSiEAQ74tF9nf+zt9hwAoPQbwOfAIROOLagAT+63/9r5/x/dyMzbjW1vCVDCDxsEuCVQXWFg69n/zJnySJfB1B34zNeD4OnG9A3VChwnmAgbMOawtlYAAHsHKBzdc/+Af/ID7v8z6P5+IzHVhPqJbBHxDIIYI+eHECPUTnDhitP91AgvaH/tAfooXZv//3/542a5vxNGN4AY8rkZRfzgri4sWLw9d8zdcMt91229A0DW1QvvVbv/WE7QPG0dERpfE33HDDsLOzM3zO53zO8Gu/9mtPsJLAeOihh4bf//t//3DnnXfyNW+55Zbh7W9/+/Ad3/Ed48+knct3f/d3P+EaYefytV/7tbSFgbz9kz/5k4f//t//O+X4+LM+vvd7v3d42cteRun+pdYuP/mTPzn81t/6W3nNsILBZ/+iL/qi4Qd/8AefwZ3djM24ttfw09m5YMAe6Zu+6ZvGNfWWt7xl+Nmf/Vm+1sbOZTOe7+sHcxzfSzsXjOVyyTUBiy+cUzivvv7rv57nz7N53/wD6yScebAN+7Zv+7bhwoULT/idtHOBlcul4/HHH6f9y6Vn3WZcfhT4f08XHG7GZmzGZmzGZmzGZmzG9T82HL/N2IzN2IzN2IzN2IwXyNhw/DZjMzZjMzZjMzbjIx4QBl5OHHgpfxZixM342I1N4LcZm7EZm7EZm7EZH/GAK8Q3fdM3PeXPwHAZXTc242M3Nhy/zdiMzdiMzdiMzfiIx3ve8x7+earxxje+8YrUupvx3I1N4LcZm7EZm7EZm7EZm/ECGRtxx2ZsxmZsxmZsxmZsxgtkbAK/zdiMzdiMzdiMzdiMF8i4YnFHhebH10JRuOD/xdmdJn7322+PN96zFe0jdcSsj2Z7iL6LWHY9itgB4RAcwYe6iOiKKPohyhqm1X3EUERVRJRFgXp3FKWi4CXeoi8ihp4ftyzxcwP+EsvjKrp2iGraRlGWMZS9Xq/vo++r6Hl/ihjwvyGi7/ooihK/GkUxRN/DfrKIshyibnBPq+g7XHMV3bLgz+D92iNcUxvVzhAlfn5Qj11U5dFqtx30c30/RNfxm9FUEWVdRfRFzBe4Hhby9bUS/8YXSl5XET3vIf5bVXXgwtXDd4gB79P2gZuDr+Da60Y/vbUT0fVdLJZFdIsylssh2q4L/GRd6T7pdcoohgK3MGpe0xADPiMeSx9sefcf33sY3/XjvxGPHrR8rE/FOMjP/lyMDhd5jQ3MyRzD5XosX3ov/L28R8Ul3+IzL57kV/0eT/r9td+/7Nv6BYbw/PTXL/358X2wlPJ5ei2Pn9t/OFOrIvpWr4d1OvgFiqKKnSbipr0qTs2K2Gn6OD3r4+x2FbfuVXF62seprSHqqo9q6KPo+6gKrKEiOqzDfuBe1nKxat0XXRkD1kCtDbHscGF9LPF+y4h508RxWcSi72MZdTz0SMQHH2/jQ/tdHPaTOB7q+NDFZTz0eB9ddNw7sCZ63wAuRX9GbC34kFiO2i9OPEJ+zvx6Nfjflzx2bsX4Hm+hn/0lm/P6/c+/X8kKekIvbz7TfI8nvs8zGdciq2jSTP1wxpXG/3Hv9z5elJ7bawuF/z9vlaayJ36+kvbFkjPa67LQXN5p6viaV5yNP/iKWTSnyxjO1BG7dcSkimJWxVCUcTTv49HHunj48T4uXuzi4GiIx4/aODiOmLcR807z82g5xBJnSBTR8swZomu7WC5xNuFQ4wfw+sMZtuT8qptac9GfFaMf+jiedzw/hqHk2dXUEc2k5DnHn/U94HoMnJFF1PzcA89NrM88S3nm9EMs8WfexYADYCiiacqo6pJn84LLZeBZwZOzxDrE65TR+zzBmYT/8t24f5R5yvLsxXuWBa650HrmJeJcHXTm4Jwu8Ts6S3s+Iy0ufoyui0Xbx3TWRFXpfuC9x3M3hqjLgvsWQommLqLBNwfMnyomTcQWzrkYolt2/DyPzIf4/l86jPd84ILmPScSXml1v/FZLl0SWl+5W+bAv3V+jyswN1Of5N4MxldZLBZXJ/DLtxgv5ZLDJq7we082rvx3ipg0Zbz1JTvxujum0S/6WHZo29IxCOq7Es8xygrBxsADhNeOT9pjHWgx4334gPMwGroY8EP4HoMkTCQdQFrAWMr6mnZATLqOQVsM5RiElYg2GVDmhq1FgUmJr2HRYFIy2MJPtFyXEXXPhTEMVbSLLqa7CNI6/g5ekovIEwVB3xggeKPBp+n7Nni6derbW9QIfhltcsdBUIy/KhDFPtPwdfhpuYDyCWuSI0jjIsQ9ZCSrz4Fgadmufo6vi9fE4iqKaJe6Tga2S3xfB7hO8S4mzRBvf8l2XDg6E9/zkw/HwcIL/Bo8GD5mY+1Q4X/W7s2JdSiirn5m/bDPX8/fX/8dTclxeDqf+Pf6748bzeUuwEEht6b118A88/d1iK5/JCUweSRyD+UGqwCyHJCoDNGVFZZF7EUXt20Vcf/tRZzdGuLUVhE37iL5G2LaDFEhoSva6LtFNHwjBF2Y00O0A1eZzmsceEhIkDhxcnu/7LuoMH+HUkFpGTqQhpKbejUsYgsHdl1E3bRxy61DdOd1OOH39/siHt0f4gOPdLG/jPiNx4p4z/siHhkiDrFvIPnD/4aW951LGetj7X5yL/LezQNhDCBWe/wYZ594VmvzIp//E2O38ftPmAyXfCmD9/V5cLlgbxX+fCSh4DUwLo3g/KkV/PkYXouadXR75uY64oHu4MrJ+aqYpp9T2BExLav4yhfvxf/x0lk0p+oYdiNiVkfRaN5hzh3Ni3j0YIgPP9rGxYM+Luz3cTDv42ARcdQNDPwWHRIRBFUFk5gBgY6DGsx7bte4Km7bfZRF5TMKx5XWBJ+01wWSlMOjNpZzBF+Y51VMJmVUVRkDgqr184YHFu5JqaQKiUynYJBnGxPqIdq2j+UC6zIImDTTkgFnXQ0MgCfTJibtEEsEqi3O64jjlnkT1yfXA+5d4/MbZy7OJZx1Q8f1qghUZ6Pmv54ffhd/g21M7z0A15oARziAxb3hWsN9WxocyYAK557va+f35u+1ffTYMPK+M/gF8FIyW8P/TjVDvOm+3Tge+njfB/Y1fTxfCIqMybHO3fV9+7LnIG+9Am1NWV2jd/4nrPmnG1cc+D3D172y13yaw/5ywSC+9qJzTXzea2+M7WkRw2NNtI0mH3+26EPxDKO5KMsq2mUXBSYbHspCGzwDL2RyRc/ABrOr61qn5Il2FQwe8TqYlFwgQLGqVRqvxyz0LSdVPpiqRhakLAfXwfesSk7EaLvASwNxK+oyhmUbPX6kRcZAGILvj0eLDKfD5iLIkN/H1+uqibZCOIrJW0YsFdFVk45ZEAJHHE74TDUmKGJUzmcHjtikKh12ywweMBE5f3HfIsoJAmp8vYvlvIgFMstWmyI/v09VBtKDAu9lV/BQK5Z99OWEe2DHrEsobFG0caoq43NecTp+6QNH8WO/cjgeH9g48N5V1cW8WztirlZguHagrgc/19LIo2cdKXiyIO5SrkbuayfDrCv/rE8W3514/Ut/x4nUiZ9bC1byOyvsQwPzsPPhhMMVGyi33rqMs3UfL7q5ipff3MRdp/rYnXZxCqh+gQ0fCVIn1D0wXxQ4YuJ2QPgwf5mUKHFZv6aKBxLWzmr/jwbJDPYDwgNEvJlbAR3Ek8Cad2C9AMyCjRN7Sw9Up48zcRznTpVx3+mIxTDEcTvExQfquDgU8WuPzOInPrCIX/nQMg6LmtfQDMAFTwbyrZNFJqfr+T0RjrVnkfPXB8cIBxZPfD5PQGnzcLz0ea49p/WrSnxhHfEb97cnxv/PDEm8RgaQYKA7J+etD1hOYOx1eXNHbMw3Usgwgno8T/6OoDCHjY5LmOgANarjnfftxlc9uB1bp+sY9oootquICapHjBzieB7x+H4XjzzexoWDPg6OIg6P+9hfDET3jhHwIaAaCgZLSwMMOKd4rPQIZhTQVAwwBA8DSSOChivDYYn5y6vUn6Ojeczn+j6QrynQR+zVfR8t7gGTKKP1vHEICnWG4L1wlnGpIUjqBiKOy+OWv4cJXE7LqBD4sXBYxLIYYhZC/xB04kgmYth0MV/qjmNP4WsdA73Ez+LaFSTVUercYxADwGHQGmbg60fD+4/zUuefgB6hfjhPFSDiXhQMcJdtHzXOqQYVKz1m3LO6rPjaDKhxJiPY9r0oADYN2icazoQiKnzeaojz0yHecOdu/MBxF489dshAeYX/69pPbJSKX71G/azW8D6lD9gnV0j/yRjJr38F5+SV+/hdCkk+xYs/U6Qvg4an+UH+5/ZTTfyZL31JTIqWKN3hvIt6Gw8+T8xW2bU3fjysjMwR6OFPt0QwpfAbB8EA9ApBYV86AncpFbOZ+78CS5Z9GYzpoQElq2oEWChp1mO2oQxQn63D6sHhhIC0LqLt2iiQHfUFIfQh2uh7lIMV8BE185bL0pdgQkLVKPEO+F1MTm7qQCoQVeG9sBAAdQKlRFypz4CFl9nmULSYljpg+BmGmETNRdADYi/rWLQt34tH02SIDgus7XQfgfahaq7qrEvcogHgo3dLfw/3sSuiZ6mhi7JW0IdJ23WC3buiYOD+VZ98Pj706K/Hey8A+izi1KSMr33LvbFVlvHNP/BLRFCu9rg2j6CnHquS68kA+ESheq2k+0SM/uS4JF54kjdde6mnQpCeYiRSoNLKyTfEholp1WDO13WcLZdx95mIN778dNx3+jh2qqMYyoXoBkg4XNLCNF9dorZHbMzYvBEEYv2ChsBcyzBk6YOqxoaKA81JHIJEoTRFtMzuVdbBh2z7PhZEvfVh2/kQzcQlO54XCDT1byLyRRmTahLTehnnTnXc5x84ux9vvQdB4E78r/dF/LdfuBjvXxRxsW+iXy5HtLW65N4wKczndLky7Zi9+PtrP3Bp8Jf/TaTxSZ/zZZ513uPL4XpCbp+EI3AdBH0Yie6cRKMTW82jV8828qtlpYTex7OCCBfx1hDERHRVMSribbdtx//x4HacP11F7JRR7DYR20j8sXkqqXjscIhHLyzjwoU2Lh4NLPEeZMC3HOIIJV4GYXpv/B7RKAZJmJeatzizKnIKdOkIcBEwMhDiPqwzDQHr4eEijo9anmXTWRX1TJUboGoMSBmwKLRl2ROgApKkHolbEROUd4cu+iXmWEugBQggqmXlFD+rrKYE6IHrqXDlVcyHnsEiA1FSLYooW5SBca7p+kHbOj7uo3X5uZz0vK84P1SJwOfFdVZck/jsTAKRvBHZ7LgvsKrn1KbTgx9pTz1L1F7jHWhYig8UKKuahxdnVRD30TQMIqllyc960PcxRYI4Me2KAWLEHdtVvPb23fh/j7s4mi90L8dgbTVX8LM5A3PWrH+FMQFLAUKWxzrfWI7BH3wyJcBXzc6luoIXe05HUcaZ3Tq+9Xe8Mm7e2uekKBcRj38wYusc+DtLRcYJ93IDL6P1rsioHAETAieuZRw2mERA5cCrWMYSJVs/zPCEmJDjp6WLbD6QFW3xu5xsPZ7YgMBHKXjW6AV5Y7Y1UaP+hCARASgQg65iZgOEoW+1QLissPiPuuiOqtg+i0MGgSZQwDK6to/FkYLUyS4ePo7Aiu9D5BKhGrhK+A5el6QJXPUwPjsuOrGPdHjVnkh4/76PrjUMEsiw6qiKOhZYVLgwHy6iP2Jh6LoYdBLtxAlaRjsHgtiKF9LoOoAqItXj3cF9CJQd8JpAVLv4jUeK+Gs/9Kvx4cMhvuwN5+PTX7TD0P3//ulH4u//xCNxCJ7mczStrkWO3+UOylVic/JwfkIJ97Jn8KWckdXvPtWRfLkz/VLu2BNiBn/vZGlXf0/UrAcqzbJXxLlTVZzfruLBc218wt2TuGUy51wsJtrGiOYxSEReTx6GOEG+AGzKZnE4iDQi77Ekr1UHI/k5LIGZJwSkeyk6xarEqpIbk8UWSU/P9dnysMKaMWXDnwklLJafXC4jWs5A0a8HBAZJYbeMBtytZRHvO2ziv/zvRfzGsokPXFjGRRxsfkVSUcbAXM/NZI3xCea/x9JR4giX4WE+03G5OXHpS15uzlzJ216LVI7pZGp8TrxM8r5UH10jsep7q3ujvewE+sqvr342EXsEAPjpu3ab+DOvPRPvuK2KyblpxFmUeZsoZjjQq5gftfHIcRGP7w/x8IVFXNwfYv+oj6N2iIO5UGQEfofkrSHR0bMmr8/nHdYVjqP5otNamBRRonrErRnc7y6KDlWYUpSkYYjlYoiLh3MieFs705hNtXiwb4sWLiSRHHmWdQWeqPytgKnse6KRsWiZ2LOqNKnJ48O1luCI4/dRdSM/XeesqmS6fqwThZVlLMCzwHtVSoCW4OCBIwjkrhFVCa+RwEie1/gKS6+u8/K1/XS1J4hz2SFINnEZn4P7DD90MGjFGuf5hUqgn2RR9DxfFX8pycQ3kEgKqtF7TCYVz3twALF3tV0Rx8sufuw3juOnf+WxWLQIlVdUs3HaeIETUXS8sray10gVCmKB4Cpw1b6ET7/6mavI8Xuy8Wz4fM/09fHaCNB+66vPxm31fgwoNQ4IhDDDEGUTuxWXjMhSsarfD34wmFj4kyUS/BwzfgR9CI6EhLXkQpARQIK4VrT4fJgHLE3htrGCCiGECKXIUPSeeQ14eJrsyCAGQAetD6qpJrxKAdqtic7h38dlTACJI0CicAOT1JA2+ApYLOBBcGF05jAg+yKB0YRVBF+X1HVIlF0JBzCReV8riC5ACEbmonIX7jnKHSAgUtgCNLEbYtEDMbTYRKexgjdMvqUhdSzuGa5NC9uVD5HEuXGUseCupSwPN/iec2V89Vtujl/98FF8/O0VD+8i2njLA3vxEw8dxY/+2r65lZfnPuj1r2wuXasH0NOOvOSnvPTkyV1SuhLcu+KDnPyVJwkWn/prDOye+FL67yVxJn4WpRCsEWTRe3UZr7h1GvfdUMYDN3dx6ylw7zA/FkL0HIszpxpRb8F8edBS8JGqEx6uw/g1aJMyTcU6wHrEIVIt14JjZsugYyDQ014AJJ7IQ4omUNodgpk8/419P6sCRLl76KaIFGpfKWJC2ogOPyjFuA90S74vkCFwbm/f6eOLX1/FUVvGuz9QxXv2I37mfUP88mPaU4RN4PC+fFlViIduU27g4zq73AO5zGPfjBzrGdVqrZzk/q14qmOauLa/rkQfOnty7mifLGJW1fGVD56Kt946YdIe22UMMyT/OrZBPbgwj3jssWVcOBzi4DDi8cM+jpfBwO8YST+4fUAXMa1cAuXsYBCja0b8AzSQ2kVWZFBZUTWIq5/nSAY0CHL6ODpeMgmaoLw7rYCH6PdJvciPiQ+TRA1VojSdOlZ5juYtgQn8HDl8E6GYKJ2SIw/6BNZE1zHoTA4iziIidA76MHTSqVTMOwl+bFVGPYloFxBPCBnkYvcDy9BIBXqt6zxPSc/i+xiscD11OIFiI2guiZaySgcqCHiFpHDldEBFTfsE3pMBLRFG3Bq9Nj5HicAarwi9KaoM0Oz0Ea+8ZRIPHe/Fr73vMZW/iSxrRvFaPJ8UUK9fnZIRIdPlZc8D3jNvxjkLr8mWbc/0AMYDeNNLz8ZbX3GOcDRVS4sh2qMgn68ncQ+chFU2TnSKZV6pshij+N7h35q8yc2D8g9HU08EDxNNQhGUhVaZHn4CsDT4FCl4gAqItX5yF1ZlpR64OykgXfRzxeMsDQPFw4L3YdJDxYssoyj5eYB0THeUmbTLNrpjLEArqll2AkIn/p/aHQKhVOZHGJ/EdS2WFpRFLmBNzFQo4QCmAorPQgEhvsdDMIUvXRcDEFF+fqiPWwWeREjMDQFaiMSih0IMSGgXZWMExtyPPJvJfUGwh/IvrojiFnEKEUzfdcMk7rqhUaDp67rtdBNf8poz8cuPHccHLjx3qN/1PNZjrCddT1cUFD9RJbqO+F0KQjofOvH7+bP57/UCGpDzSV3E6+4o4zW3VXHvuUVsM0FAJq/SlNYiAjghCYyhUk0JegDWFNeg5hPRsZHQrf+yrMO55bVo8QiTPEOOEkJpznMv0mZBNB36qPxsOMwwXcHjoTEAucPgEGJtgj+L6bxCFIlEOBAVkcL3QgDGSHxHMIo97FQV8erbu3h5RLzh1iH+vw+X8aPvHeJXL/QMOJs1BaCP+VWA4oN5/VmYzrV6nk//2J96TlxS4r2Ssu71NpJLtbrTI7N2dYSy4oOPrXMjuXKrn/bvj6Ipcf94ZpQRv/vlp+Pz753GFvh8W4AZg0Efvgmaz1FbxP5RGxcudHFxWcSFQ/HcjoAWtQWFRsdwQyAy5sCMFSJTb6jd4+nFfVeoG3hoCi5YB+J+LM46+HK4XCiHERA1s4ZCC1WdsDfnWaHP4vjEaKjQ7a6FEKTjegFCjzOv2a6jrkWzIlhIWpSTHyJxuXat9uW5rPsn/YzxKtCxALSgKlcpAGzwumUQGYWwkGcfQMsxGMvKAIp5OgNHJSaAC34YoGVr6zLL5Q70+U5QGyOQ7XBOZuleyD/Y9OTHWzms52DMjXtkT4SP/HYIxEglU5VsG3vfbbN49MJO7F/YX3EQczmN+6WQ25OZ3DpNZlgT1/hzPKG2Es994Pekh81VyDa5MUfEXed34jNeey52t5DRqPSIR4YJMNmWEionD60OsNP2qrcw4yc0jseqTAMPFAoeCC6UqZcxbxFMtVwUUEtBdEGlaz+MXD5kUyxdAvIlCplBnqTk4vKVsVws42jRxt6Z3eiX8ygW4P/h4OmjqCEiAXNOD44TChnRMa65iJ09TBrwmjAJMceaWBzW0XaLmMzw+oruhbiorNuBLM6gEKIILDuJVIRcVMyqkK+gxMp70GYQJmsVTl1wJPCZqaoyzwVZTaVDEgfcfLkEmTEGcDkOTFKvqihnCMBRnsPG0saAdEe0FR6S3Fix6eC+gwToGY8Nqqoa3gOU3VESZsZDlFfq6I+/YxbvfN2N8X/98EMkNJOovCZdXOfmPOu5eh2OZ/JJnvLeDM8AUMyfScXc2u8k+tdGHVNEUBT0NCRVn627+KQXT+OTbx9ib3sRTdWOv8tYzhQNzmk6CTkwo9rdwQfWIktLJdIQbu6YIjzISJsRBEYLF/NcMbB+udRMfyH/diTEK/uvjvT+tHUCTRZzFWsEFQALOejSgmpWN8RsWypgvD+iygblXgaXQOOVGBE5cD5fkUNURE+HAHGIkbCSW4skso+47VTETbt9vOGOMt6/X8f3/fQy3nVQxOFyiIblqEl0BY6ejoEsP1vew3wGFqHkM5Gy0z/7DMrAl2EU+LmfRJKfD6tJWDH2Yx3gCJ4yXBkPVAYIEhAwPLCaW4f9ymKD85MvqvMAyfYrzk3jc28teXZVkIaD3zBBmaqm4vxgUcTjh1LwXrjYxX5XxOEiYh/CjWFQ0LccYgE2OIUEem/GTpzHujbRIhSAYM5m8k8XBtiKYZ4kx7OLmM+XLB1XdR2TaU3QACiWThZCDaNLA4NGI04I1ObzLrr5kmuKvMCtJurplHx11mqAfFmsRQEXkHEmaagC4VBDuZXkRP48mK46IzzHzAdkwoT1zzhANmizrTqOjtpYtENMqkrAn5NDPAo5kaEK5vPVSV8KL1lWLvzs18QWRPFdusYZ2uEzIrGj+EQoHrcYJ6OaO6hgKNrUf0XAavJ9wPdDlYsJYhG3zsr4lLt24gd/sYvFYr4Cioo1MYvFQiv+3sq5IyGoLOeKWsZXWEvX/TvXIuJ35QfwEJO6iTfe38TLbsTkRjkXGYlKmSCf4oaC74fsBmVbzEZidxY1kAfBjET3KvkAEGNwImBR0LNIHkSYOHygXiUIwOoJH6UUfvTP82QggVScBSITRP6QrURsNUXMaiy6WSy7BZWK+l2VWDNOx7bTHwc9ArdPidiKQQ4cOITDMqpJy8CIGUZVRQ2eEfh04OXxx6soy55lVpVrgY7Io4/lqOQ0OXDi98ra5HQFd1AkDeAfmLTKZY5Fi5IC5fgRZVsRaVXVrSFharIlOB/lLSqd8MkqVLlWz5gKs2R90VPNKjAchBB/gLeBPwho6evUjl5vOGC/4N6z8aM/81j8yAexWF6YY3gaHuCTrakrCuRWmMWJrePJSr2X2sGsX880YFmirPe2aRevvX2It790J86UR9E2KPU4asy9K9FB8lHt32cVIuaRkDRk+65fEb325geKhTNlBn/YC7K+Q2pEwbWymIuyITFHERX4SPjja8CBiU0emDK2ECrpp+AIO2DKXCUPj2PN4wYHuQ9V7R9C3VP9h9ciaNAAMZeXJtWd/lxESlAeA6+qa2N7Use0HeJ0vYz73hTxa8c3xvf9jw/Fuw9n8Tg8PECGxyFvZH89+Lq0vM7bk3HLJUjsmjvJU86Jp/qp58861PPLz6PUeJVOilQvFhXnz+iJZ8/KtfWzjrsAVLtlZ0rrlgfONLGzA7TPiF+Nc2aIw2URjx108eijbTx+sYvH50NcnPcM+o7hGQlnBSQbDtpQjsTOjO1XOYtcGRTJIN03Am4bLp41LCMKrSQPtu3imF5/cL/A2SbrLziZJA2IgQf984BICj3EaTlvlxRZ4ALoawc/PpSsUQmCC0UBgALnKURRlJCMhWGifbi7dH4w+ug7NxrfOGGSNx8oG0NsgWduwSXoXriuyayKJdBKlIMJ0ugVMiDGuzqmHEWcCsSFTLa0H0sSLu6p1mmG/NUEfoc9bWgGkIJ5FwUxSqUsNJNVLZ63CjqRPtRpI8VqW8ngD8kvrgN72I07Zbzm7u34ife29MClPsAMUwE6TioUGbgikfPLs47XLX7/OOHGdO3KMrznLvC7CjsDDpC3v/rG+OJPPscJpY0TwZ6UtnjgUBjxkZnomCILTfOEocX3y8MJliOAZZOgIURLBsz589rMFWDytfz6KgFBpi4/I0xOHj5GyIBGTqsmCsABx+A1RNRTcRnkCYiZ6TICXmPRRXcIwUYdxUSZhYb8CKEYAtpGEmvRR2NfJbzenFw5HJYVUQkpl4BA8u45S1P2Be6Bgl4EWQSjyVsUmm2/J/CViF6KR0HLDHwOcCoXsJwB2gnXyj4mDUq/RQxA+sh5cAZVtlIX298JixjBJ8t4zBglOgHxF5sApjezO3CwHLBz+mTpCs9w0sZXfcot8Z7/+L546MLihLL1eQTiPaNxtdHLK3VjW0eOcqvJA4OBelHGneem8crzbbzy9iLuhkipPIpF2UVNQYUTqvFz6Pf52O33KPK0NjFkwMrClW8woXNyJVPWTKTWrnHNU5CJD7VV9i6bw4ZFwRzXOT7PVH6fU89B7C/ELnCdSBxJ/h3IJUaQCLRbhxccOIqAY9For4ADwOWkBuvDZWdy/JiMCimlyxJKdfggRNzB9UI1o4y2xr7Wx4PTh+PON1bxi+/r4icfaeLHHqrjkcOF19Ilz+Qyz8oU2icM3b8X6MK5ZIyHaYa6OIi552fou0J3kOSv2H6re2sgeQwQMV12mjI+/77d+KTbJrG1XURslRFTOR2gcgTu3sVD2bY8tt8H9BX78yEOFwPL/HPYYiHog50KzoHRn87G/UbIYN6cPoNZtsaMorUJFKhUhwsMQHABkQg+X9OA04fEW2VQCZtW4AUCEgrfOJdl7Ax/WYAF9VYtTrtFJjg4AETA3jyTCq1B7NPtiJCmb6BMmLOQ7rIwzZu1XiSwQvVI653OFYnW+7yFNRn8//C8pkbxedYlt88EYe5NwlDG2KDkfgCLt/yMGXRaXkL+POgcKovzemwVw6qAq1X4OlFNijjkPQi9I1Y59i8GwagOAljB3CmLmNYRd59u4v03bMevP7Sfpi5r5VyHeOOeZtuAEQFM2dcaIriGB67Py+uG47fOIcHHQJL02z/xBmbD8luVLx8CFgUTWmis1dNnx5y0E0GBeQnUPyi7y2gdk5iBCaYshRQqc6pmJIsYXgmRNVmQCGo3GZx2EXiPLBBgMQLZW1JMgs4DVOxK+82yFMo+UBKCRdsdllzg9SyimXUqT5lYK629+IdCWVAKVRkb2Yc8po3dj4G+jaRzG0MZjNmGFr5QAhU1iJgCWcP/THztlrZuoXwFqqyWquPuSBtJDS+maqH7ycUmDgmCZQZs9h7kJmVTSiJ9hh60dyngo3IOmxjsWmwNAFNMlIoh4W/qmoeTUNGI+25p4re97Gz8zR95iBnwCTL286yM+0x9LT+izz7ewPH/PfFbo3G4zVX5TR8Wth6BJcupuou3PFjHq26NuOssyjxLly8wm1AOgc2DUDdWWZKH6zJvJioIEOlZyc1SEUyXZRieN/bZy04hnvBM/PNcNvqW4imcgOAMYU3ie81MYhOVpC0AcceB0T0/y9BQ9KJCBaP4acRyG95i+uBM2lHKAc3BfFkmiSj/kCyubjdYdRB+EPdg8ihBi1AK2zPJaCMmRD3AEUJVsItX3F7E/bdGvOx0Ef/jQ7P4sfcdsgSIwQr2moJR3RhWzy3/eylf87JnwzOcS89k7l2zli6j2k9nyQqO9hi7Izhad3E1QQA/OFfk9BfM0Ref2op33DqJU9OIequKAchaA/+6gty9i8s+Hj4YiPhdOOzjIpS7NjDG1Jq3Unqj3IugQvxCIUOiFenUMQAlb1hPAlrPWgBEnwYGcUahsL4mdUy2Gp0pMmzQ2VlC4Gj0jGCATJgX4LNSnVtF09RRwedOJko8O1CCRoJGQMbWaRJsqPxDuoWdLkYLYtJ6cv5YJIg1w0ciFA3Z3nzZU53MgTMMoAEEiPDudbMAVJdqeOb6+yJ1qTSfCJnQen+u0KNUkKxNLbnveZgy8ENlCtsQHSlwH6mqTD8NJQP+FQaYLlVzH2OiCTFKy+cBGhYqXdj49qo+XnHzLB69uIj9o/mozk3Pxyy36JLXXdmza4c3mbGdkWbDKhC4iqXej2pnBfPu/s/PuT1ugJecmKKM0kGqlj8zSiYqZdK8UmoJk08V5Ajl4w87aNRN5MHj31m1PxKpPAO+RJ+EZkmoQT4fAniyxA0MwyIGB4OhaB4ciyKWXRXlLrKgOYPEyXEV7VFH/kZfTIimNbBx2qtjgAI2/YS8CDXVMPGEIk6ma6UwZoDIvhIWAyytgLVHeYDIqCYTyLb8ERJika3g8AMq14oDws9WkqjbIvCzuRnLtbDQOMChV8ZkAh7e3OgMlMCYxIL3ZZVoWTlUj2utEugv6IUFRAMqYiCFzMyYsQKu76Ipa8r2EQOSn4gMihkggkAE+2288b5T8aO/AZXvhas30a7D8UzX4hUFjJf4BI7ntJq+6Ecknuc6kR0BOltU0cQyXnW+ic96zSRu2p3HrGlZqqKaEIg11q2TcCJdRiNs7yXkza2xcIgg4AMHjmuZ0SHoGiu0bGz5ZlNZePxhTc/noHCICI5qAHhMDAat+J+AKA5BCUpctlsSooDOP0D8ReTDS2OFs6TmW4RAMeYVA8cJRUwRy/2IBof1sZCDZht8JpukJ3rBKoL9A3kwKfIqLZSqiToIyeB+7UCC/HsgGn4IKCG96lwfLzrTxetvq+Nf/nwXv76P/UVrGIcKkBGUxXKsx/LjTE9v08sIOMaWfx+B+v1668AjK54MDFTizOM/ifSWdJhW5QPeVlmrkoP2NHzpVF3GH37lbty5V8YUnnhTRPBFdHXNYB7I3qPoznERaF9Hvz4EfUdtxMGiizmNyS0eMK2BSRPEDvaa1H/dBSIRZCTgtvTCamGQxURc1B/8QTIya8D/c0WrKaJAa0TQecDNI5IHazC1fVvSyBL+fiXNlkXJsJMtXwPBo6hRMkdbS7rW2s9IT4LvZ/UHQsqVqCbpRUrU5P6gdooqC/vo1roCWo+SL6nkfbRzATr1ROezKm86zzOQzGeX+0aRPlFOljI/TBN13DecnbgHSMRII6Evr7wRgUiCT8zAkUed21e5TVznCgdLz9gjQFtjHVkJ9M27Tbz4ntPx0+/6kPa8sSOHAB1+xUksxRxes+vGLif5Nuv+fk8/rrxl21VczE/KR1rbeD7742+PV95+RpOVogq0VLNalKIpkUbnQNVqKeZy4WUWIQRNqtgxlncdiFmIbVjI8zOhVDVLvL4I6Kn8odKX7yFFLwIeTOwa3Du2l2E6xYOBnSfqIepFG/PDIZZHoKNDrDGNeq+OZdXFrEb2hEtAv0IoaNVTcOgnKnG5ty42cwaTOASqIpaA2zkptXDZnm402VRwSgNaU5UFPBd8fRhQclEhOwMHxLwGmHnSwKapeSAhk6s4W+to0atxq6WSWNOlZxYoZZtNmd2bFA8GEn6WD0hEBxmezBN1R8Fl4nmay4H53Mwmcl3vYB2jn5FFzUAz6QZmqdwgmjhzqozzZ3di+NXH1+bMlc+769rO5TIH87MNZy/b93fc/J5YNl0XE4iloCwTSt37dvr4pAcn8fo7l7FXKfDoFxETJkXq0wlRAwIkna3aKJkvuw0hN3cb57Ik4zOYSkBs8sMQU+7yQ3ToQ03FHTb6CZMYzCluzCjVZuslRJr4Q2Q/YgbvzVpoDLzE8MaY4lgH6kIjle6YdNPkPaLD/PchjFIXUfhORrLTM1X0R0NUh6jNAcmPmOwU0cwoPyHvWPfbghErcRk0k0CU6lAHXg6M2SbLn2m0QWLj4CYmk2W8bLeIB26exo/8ahvf/wtdvP9QP4ODHwcsnAKkNM7n7Ud9lbl5l1tHT7e3X3NjJOpncJA2xdkKKjt5OFGgQlbK1fRtFdVBgQ7WxBc/eCZedEqCjgmUvNtVLOuKlYoLbR8fvtjFwxeH2D/o4/AoaFJ/tEBZVz14sZWzQYy55xTECdWwYEdGwhCHJOotMQMEiatuGTpHNJcgNkSc0AAscdlTAKY577D1ws9BtAHRHrwA4TGLxG6r4tmQSBz5gBZN0abJPeKzeKvkx7w6Ch1gfwtlvIRX2BdYjnbSJbWwmxYQ1NCkxUkExFOdORyRGWVV/jTEtKpiUauLiQJRM/Is7uKzcacr/pv/rxIAQvqTRCxj67QMm7VoxQfEa+NYNlNdljdS3zI1o8chzjzTOMw5TnQTQExmc3wGrKgN8bK9Kn793On44IcfG/cG3Fd1jVlVcWGOTSnp2NzX1a6cnzx6jfjheZ+09b+6pd7n6hDF695yehZvuGcS0+mgzZbqP9aIpJjDtuoAI28GDRkJqWJyelO12pf0TaJbq50Pr0P0gHYo3pTRtcIZH7lnzNDx/CtG+nyrroimh7dXjZ4bXByY4FXZWGyhiR4HQxwB7q4bupfjQGDw4zI1EDUEOyDGDvYQlFGyuYiaoSPigcml9ju866MXE6YiFxhUjhalkFQOgQcyOSMqrBwDseBrKRAVd8FzibY4QgaxQ6EIjEapVdPK59DtsZRdqjRVlrUWGA9YWWHgv+hOUtYK2BT2yeIF1yoS/Ko3LwmqjCP0rJihAo3FfUIJrbDyuKjjR977aPzg/37oWc+tJ87Va/Qwegaf48nW3zrR/NKfuWx/7fW/r8eFK1s9cWZUzIqzk4jXnC/js17dxN72MZVscOEbN0anr+xwgQMoRR3M9kEWN/LlTTwvSVxW82mYBeiNcfjhJUFPtZwilvMlg0Jutpj3WD5sycjoToKuhgJKod6wZRFBeFQB8phYs3oi4Kjdm6UxfBC0rOI2Polo5mgO1EcHHh4+7wznbRHDscrJ7QExDXlZIjnFHPZhla3BsMyBsKRdOg+H7CzQQhvpPc+bPw9TLzD0OwVaUcY83nRPxP1nm/i+/93Gzz9axGOoJoxSXgWua4/u8mKdJ2F3XrOB2tUel/AjT+Im8iyVh1ouDCUu2Ykmff8IPBRDvOb8Trzj1jpOzcqY7tREmDuIOeoq9vuIw0VNj76L+23sL4u4uIg4WCJBhpgDZUshWuTo0Qt1JcZhD2vzXPF9zED1j3e7Qkws8xWSK9cNbSwWSqAmtapmEifo7BSfUZw1nF1QswKJxrkE4QY8ZQe2GbUPHhYIUCxlMA5o0pdWqmh+ldxD/Ssr4pz/5IEj8MoPtkoEVaVTqRSJEtuJ8r0QmNq5wwkqqRS0Q4MYo2CyuVhGTCkY9DpTQc50CFfT8I1elm0UQWZh2NUlnLHUy9hiCiIzGDDPangTArTwvuTqhDqhCJGkqpplbiCmRk/NyCIaC34k953VHvhJd0ziB4+34+LFg9H0PpPgnIeprEb5XCifNiwy5N0HWjZVdg24gnPtY8Lxe7JBA8gy4g337cTL7wTadzxuQlQvmQDNIGZMgtyCieRKK4TG6D2FHcmlSbqZAo7UE41mrtmSjcpTlWYQ3OkQqihw4ISruzjmKSN+G6ByTFQEiEDMKLpo+qjh1wSY367i3CMq2jhJ8YRyKo2QBHMAKST3D69p4jmVr+AJEjHBaYGSTiNgkrUvqY+YYbidHEqjMnXB4RNBsK5qZHyNoAyB38KTy+1y6g6bAhaQFYMTHGoiGCd0ryxGqlwJXwSJw9sQE539DM1nyMREZbmV8yk5h/Y05NrHg8y6BjhYGQiY65Vt4o7aZXzXTz1GM9Or2fv5+ThUYXE5nTv0ld2HS2/LSB9dE3RA5Hb/2SredlfEg7f0cW77SLwatDy0fUIKilb0U1MgXAaldyPLNjpQRlsYvwlBiPFabUuCb7VrvWvlxspgS1ybgr2huQ0jOwfiziwd5rHaoEXqNv6ffab5xicFIZxHLqVl60Y2o4f9EYJG8FKPh+hgxI6DBy2eoB4+DvJhA8Ehftft3UYak27N6B+YpR3dB/G1ksOTJWiuaNvMkCPsSCW7l9yxs4h3vryIX7i4Hd/3c/P4lQPdpBMef+Lh+96PH3m8wcULYE086fADGtcEUbUVQsDkGGeFy5ZZGGfg5Aeb+OANs0n8lnu24vxWGbMtiH5I0oyuVEuvQ1i3gNe338eFAxkyH7bqziHat0qo4vQ5RrKBsBA+t4jDnojt0uVKzVWjvsZ7lCigg0NP+xVYttCmxH2IuQZxbkHo0y4VHJL+hLVTRzlVVSlFzaQHgDNuGIq0CCJTQub4vzSONmI2GuPQz3UllyEFzuVziVBECeLWThf2fDju7MF70keTFT3w3rPkjh8DRoF+21CyuMuYDVgYbIEmNAI+EF0USLoUlBJa0dEz8skVVBlYAdeva+ntVxQo0YlzL5Gi3gMVNF227gHWM89CIIG+Eu6RaGmKewc6iltH7k7rePDWnfjJ43m0zDSdbIw8vZX8YxR5rKmKVNDXTZBAB/99DhG/52qjuGmvji/+uNMxHY7YLkyCAdxIwLm4+eC9ictGVemY8VhBSv+iFdxKcjX8itIywjshypVDCb7giuVCgMAlGdkyoM8s4LMiugMEeHAQLwPVWC6vvmVG1CNLQozaIngrYmerjB5Z0NSwtoNOvQt4PQqw+sOSkxXWKnToGrJBvFS6zQQ2LSCJt2wfVcDGpkaG496g/NNFBSgCDxzKQ8idsHDh2rdsWdbiAQbDUCIYgvTVgQNBJLyiUI6TLL7Zg5EtDnJxCNjEHC3g6EUkbp+SSgV/LUQvoe4f4I8oKQFCp8nJsnQF70IdSEQOySOsKHLBZCXnD4uVXjqsBfB3WUKm12IR3/UjH4yfe+hwPJw/UvL4tco1v1oD931nZycuXrj4hO+NCrVVlfFkjuhAyFUYBSfY7KqIN969HW+7r43zE8G7OLBgayL1nBu54zWQRGRrNRvZus4pRM0K+ioVpiNJ3kGcLR2snRJ6zzaBEHAJeeBaoTjIB18F6oCsgUYxypjYrexNyDEa1gI+8psk1uK1yYDPTefTIiMrCirBYf2WKENjL7BVDBrRN6AtHDnQxTohJcPtqFjSXr32qg+vIUdfI4+TlXuN1fpCN1RqXAWRsAY5c6qITzx1HPff0MQ//8khfuKhIeZQbg4SCKRZ+xjMnJwMJ9UehgbXpsbzeowsszUC/UlFb3aCWhloZ+vAsRyHc6Ms4hNvmsbLT1WxB4uTSRX9pIy2KWKOVn3tEI8fIejr4vC4jQtHPfP9o05tBVHSxDNf9jDeB8KFhENBP84+8eLSniyR4zTzzTNQiw+/g5/B9UGNiyuGKIOz0HQxeLK2C3iupnky1lFNLitsRkSdUlOEZRouQxRl26LxswNpxCtT5eo5TJsllLR0zrh9Aa8DKBkdI6BWpj2R1j0D1fSzc6CE3xci6T3B5u0CcfDzarpA8AFBENBynk8I63IedzRVFhtWliol1M62bVO7xuQjrjzyJPJUlxOcwzinG5xPdQa1Cq5UUc9gWHVuBd5Yr3IBoE6MnxFF+pWJtqpgEXft1fHBc1vxqx+8sFLip8ZjjfvHV05V3NoMXQlAMtG7iuKOj8aoYhK/8xNvidNbUNQkql6piwR7BOqDw/UeHL9qZl4flT6GZ7Frg6TK+rvyHzZ5d6sYBlLk9ohAmwIOZSIo6YqzBrPjgeaNZcRhHcO8iGK7i6FRV01mE5iYmLJzOIpHzE6pBN20VVQInsBva/qY1g1hY/YFXWIx4VrFEeyrnu173PU5ChvHojjaAcEAzM2zDbO9iRpZBD7iUkIXEH6nWwgQca1CJ7hg0N2DtbGeMA0PE0xaWgABWYUlC5DTbuRC4TYgkEU3DpB6l0RxlIGQ2Io4nKRZCDG04Ggial4k0FqdG8JwlIFqAYtM7z6/FYAacf3IEzESw76QJubymfAkxkRv49/8wuOjSfblRv7OU6F+1yOq8Yy73OTP90PsX9x/0p852ZMhv772D8cDmJboMbu9HfFFL57Fx981xPawiGWh1nsMmtBWgH04E11acw7OXSzjC59PQtNscWI1bRLn6Zpvwrr50BJuMCAsY0CyRIVsGV2JbjjO+EmgEUKTZtAUf1k4Ih7WKJqTGngtyBoF/ezLaw6UW8HRuxyE86GPJQ4XcP9c5kNAjDlM7iDeH2ceOu6gsxBEIYBJGdAa7cZ7sj/2CgpkDEefT6kp0UUH99fuZzTbRdWA/U9hkVFhz6t4SGffz5uaNn7n67fjJe+r4t/+zFF8cImCgDrjsMf2WDryI05F6JOsqWRGXTpTng1yfq2qeokGjV59K374WGPXF/13dcGQK2mCBUKDX3R2Kz77/t24cSdok9JsV9FTxRtxFPDni3h8v4vHL/axP+/icNnGsp+wOgRRG7iw8upzH14kyFSgC4kT/1+cMpVC5V07olMQFyFYtGUWbMLYDg2dJGbgkyN4WfJ8AkUC/6UBM0CVEhSISp5+OCuX7rpkWgLmH1xJgHpSxATxXVnL7cLoKK6XxsnuytRaAStKrx0c7FuZiSfbH47Ci+Tn6frlrat1zPMYr226Fc7mzo4Bia4hgFzATsWenSy98sxSSziqat1ytWA51rlmlqiNSgK9hIE8BJywbaPgEvSTGkbaPYEiKIj12RT9ZqKL5hISlKQgFVW3nk4eRNZdGmZ/5VqfB2ceaKB3n9+JD11cxCF8fbitpIKXL+7gPG3G11qhjtZCmaxcWe/5ayfwK8p44PbteMOD02hd65HZsSYcETp+FQ9N2cOkUU9MqlsBXdPzS9EHlVB4mBAyoO8u+905+8dkdGagl1TPWqmodC0wSmZgApQPJ8SpMtpi4QxE5s/49vK4jfagjGYLXD7Jl+axjGqBjgBl9IdVLIY26lkZ29PtWBTHmpjbMIjFDIDVQyeDZiziBRCNMuq6i0miY5hMLUw3l+qJCHYA2PKGFTocLNWSGwIWPw5IEp6MZpBnRyhBWSqdxNFn0eVdBqC0jpHylmRaEnNXvkj4vsobGU4rECQ8UkDMopNFvc21yHn7lng0HfsVZ7/Yrq1igf6lWNyMU3W44hmk+7z4Htpz0Yr5hp0mPoTmlVdpXE8xIBHvbHHxDMZTHcyrTWXtC+kI4U0Rmz2m9MvP1/G5L96KO25Gz+Qh5j04OupdjU21XQhlg4iD2azd8pWQCVGgHQTmhZv8ooyU/FJZIhmVoyG7r4d7uDJc+qiilGMOM+7HbLsg0gJVvRC1tGNZU+g5WcgAUibq2jhHdG8FNlr1arQwe366HRv5s1jiUBxjC8CpvnRCRU9Bt6Pa1oY+HEe0EH9Ayd7I10u2Tuh4gKQpX3tFLte+Yusl9wjlHs8gu6dwBYgJ1w1aF2Hp48B3S7q99jDeduc0bp7W8W/e1cYvPKwS8pqIUUpjHxwG9i9nZPKk/L/n1eCDzOlv7jH2d/NThMAasRrbX2ri0g4McX0Z8XHnpnHXrIitrTJKWAVN4cdYxHFfxkFf0rJlH505jlHaLfgHiNeCAYOUtwgArXcauW7EFw1GoKQofYNdasczDcOBIFE/lHjBUS3Jf9uiybK5cqgqod8tDkHw3OqSzQb4dwsdyZ2Dj2DRMdFgYGaYHuudZdGs6hCBMlMuUXHPX5y9KlvqDtO83YUqVpRZRrXlEShKCOiSSzi06rBFPMAFZiIeprHQLSLPcp0hCF6RCPULJGYVzz3uQebDgxaGALFjTCa6CRlbLqVncsKOWMwAETk4PmhKCl/UB1xII9coW8SJ70caBheaVMlqXGBuPh+Rkr0K6KnsCMx9jLh52sdtp7fi3TjjiHSucWOcLcsyRp7F2olyfTKcHWOf6yLwS4QGccPv+pTbqDxV3Z02iKPKhgRUpq3YAHXZWIBAr6CEQTuvdkCpRcbONEbFhLGTd4sOEd7YFcyojdmJza6WO7q8/ehkp2wHYDx4PPQmgkoHmQAsFKpoL2LxKOjjNQPeZSeLIoZlwT69NVwbmyG6ai4DahwCbKYNmwZH6I5pSDrFXzr0C9S/0Zx61JqRVHTMrKMEamj1MtEEXBPVWToYsIgxUcl8StEJJkiH7MjN3mkBoAnPLh3+eSqQWpQspFLGr1Lv65ZBLAUWNdtIyZhXXIlc6GwQ3pfxa7/8SNxx2544i2avtrTlQbsdWPLoObEsZoNMZWC6FrbbK6r40tfdFN/4/b/+pKXe6xXRe7pBH7wx6Fszz3ua37ncuBQNXUd+RtqIffqwOvaaId50exlvv3eI02cuRjt3b2rulhkcKbindYuRO6IhTjAyoEmiM/k8iQOuC0dMUuYf8omSydALDJejkvr3zgYIXEmn0Po0Qknub/alXn1mrtrRbmhVKuVZlt6Ea32shTwkymOxiK8xkfHsMNIviyjmET07fVichM+8Zc7xwRDdxS4WKIeD72tOMvg8K4qhCNkrLrKSPXLUTTKX0MWk8LT4YNCXth3O9bEXdMt4xfkhbtiexL9/dxX//VcW4h3nXpcohw8k8LWeCR73bNbZtbw2TcHn/+cdNhRKXlZmEWMHDGN97r2M+XfH3izecdckdidFTBoEfRX70C7KIo76iP3jLi5ebOPgWAbNh+3AgG/OShaCH/HNON891+BfhyClTaM9V0+o3nSCrTlgU2SvJYoizKHGmE3dks1WW9hzAWogWkXyQeyyTHGk8GWWfCDME2jnSqYCX7Upky8u8D2e1d7/2Z/eZ5TmsxBKXb7dKdIE2bZG8P9MnArXwcTfpshyMQG9Swpa3A+xeBO5939HU4vkLGptjwyGrADk3wcHThlTGWHLfUl+GkriiPa5nM7AEj63HWzJ0FSB2eDYRUUewjmTZGrNAJNTCPGCqGDZb1kUF1nuwBbrgVum8cGDrbh44UBl7fV9jFU04+9rMn1RVI0E5jy9guhvjUb90R8j/F9EfO5rb44HbtAGSN888oLU7JqlG6JIymwLbLalShwdSp59R/6fFpDwKET+tERJTyRnbIgz8CLgq0lCXox1fEDdgHjrZhKTqo6mh24PaBwayZsHYMInUZhDLMo6pruA0ulVQpNHlHhxOJYTBGVdlLM+qikm0VJt1cjkRVlYEnsGQPAWw3pk2cjKKSi9Fq2CN2Qh5HeoF2KLoNLm00JGlYFgYmIRk1yavU6pRtZdQIBIK4y64WflUZvKNEPKWHEwrYSZM44Vtr4yyZbtoljXAiKqrhsyylXrN9remNHBDimwtsFm4lMuN7f1oAPPW76EFuvAoDONRF1yePltO/FJ955OKeaznmdX4G15TYwnlsbA2TsVk2Z7FaU9U5TP3+N/L40fnQERhSrquGFriHe+vI5PfaCPvVNLcYeomFemTC4fe3naJBzJBtYnzykpxtk6KY2Zba5KhCoNT9kxR51pZAcEVS7sj6AuhHoWNjAluXQMKsGtng0xmcGEVhsjE6j8IA42cR1I0oTAKRBskF03Bb3IsLzQGbGAt6V/FZ+B6KFLnAYmpe63qo6CMEx9+wQioaOQBKj28UAkhfObnQdC39tBIooym0vn4Og25v7ZXWCkS43PSeub9kYgOpj6msmRVMlex7gOIOUofftFWvKgI27ensc7X9LHb37FDn8mWWrg5G4XRbz+ju24eVsJmToXPHfWL9fuQKk3uzg5wM4A3zywdfsMORKs1ieS3s+7dyfOTSMmEzzbIvoJu6XHYQ+j5oiHL7Rx8RCKXrRpA6e6jGOAFSyJKuxvkVyTq6av0x3M5xMDLXCduX+qQsO1xHmWFJcYe89jDnK7Jx+cLLoxkKH9/xRcdf2O1rv3RnUFUMXLfMHlUgbNeEGcgVAO6+cwxE1kSdmZGc9UlyczSKGbRR4Ao8sE1qF6XtMzL8/iUv1tydtLRZLXYnZaSzcAoHAqt7uqgEoWAAuqltMhQCJErBOsavXRLkX98Hom4p4WKr5IfT+FHImo6bxazhV5C8CXUIbVDwfhmjX4eYW9agoHtE+lcpWCU0yz6n95uiniJbdtR1FC+jGyQNb2hYxBvF+Ojhh6z1U/n6vJ8UsZ81XM3vg6BVolVfGyc5PYBhl2CS2q7rD4FytPO0muESy5CSY96ZJtoZJHqWZ5epgIDrHNiUA0EqVFLIdknczr1a4LzB55xbKMYl5Ee7yMYWsZA3hEpQIYZhxsGF9Fd1TH1l4ZDdR9yMaJtCWL3VmA1cXsK8gJKJsTXGNFHoP9UDhpdQyJW6AsfOgRYOnzdCylKV0g1M0SqXyaNGtxfRLE4H2IIKw9QGaoyPKQ4XUoG6tPI6cSyRgkH/L72ESWCOqOF9FuDVRCcQonMgcDTfKpxANJHyJ+ci4sEXtvuvk0uYjIjNn5ipsS8kpZ2vDHEQxwVbsVUfoP2jYGH+LULOIzXnwufvyXL8Qi58ezmHNakNc2AvFk1jOHhwcnFIfPdlyObpUcZayVB8/28TmvqOKe00ClxC+ChQm8+VgmdfCWpVCUOisoE7Eh1i7PeF2t2BQOOu1RlpYteNTgH4FTCk5rv0QAZgYBIzQp7tKSBdN0JLfLS1XVFQRfKMHms01fMJeD2DkJr4PrpJgoOcMUxo+IocopKr/KfgJzEmsikxahkDxg2VJRX5+CmgO0cauIGnwqRrXg0/a0uannRXTgH0F8IqBgbJ2GNQykksEiDiqRhlxxGNjFAfsKDjWVnlzu4WHYipJinhZRipwiQFTqZXzqPUPUbRHf/+6ID88ncd/WMj79gSY+7rZ5PBx1/OUfaOODMBe4FAUe/319mTI/k6EeDCuNC9tU2sZr9MflD2RKIEEa99KiilfcNIuXnCljuyljNq2iQN+/SRHzEu3Rqrh41MaFA5R4y3h83rNPLvrYIveHZRatZu3XSOTMz159OVIvbB/btL0ahYxYJzjnbCeCsuwy4qBbcJ/Ymkx13pRlzI/mBBLK2YS+e9nVRnNQrRSJrOGcAhBSNzz3IIyksb7PWZ5dXpsKGIuTiaQ7d+D8gMGxPCvTR9dCDbd7o4La5WzO2dGYeIXC6f6jyiRonntCWquxFJ/0CPHsqmzjgzNxopIEu2ywpanQtZJ7mH+X8xoCyTWBxFhi9+bF7iQCo+AnCi/dBYRltLHRtQGF13pE9VJG7jKpH9Z4zyuO+hz+o2z9pWCUFj1tHzdPqzh7ficeeeix1CWPLQX5Xggmx5aXycHN4Tjpapd68xKu5sClf9qrb4hPfMmufOycdVKNCvYbswL17ZuYq8abSthg9ZHT30tQN9rLoLwJry8QoSUV56QBzJ1oEqBvZAjYoOnL5YwYWdliEdWuMhOIFTAJoYSaTJHGt9FfFIew2poowMIbuNUcO4eUUkYpM3M3Cmwb7pXIw4sLXUEa+SPI5KczqoQ52ZPkyVZsMIadsB8iW+QwaDSEbBsALNoMeKnq8oTX15LzJLKrAutseA/oA8EpDmEtcJa3oeg6rHlo4lClUANIYPrwkgQrfzJyP1hrE/1ZrfUiZkA7kL1CDMLXBnfDJGkiOTJ35qZl0xt5Vwn1w+PiWh+KeOktEW978en4D+/SorjS8Xw5tNgy6FkO8XHWOnLwi6t5CdR5UpTx0pvL+JJXlHHj7lwkZMY+mmtCvdZyJScAJKRPegbv4CphwwcVgcC9g0A2AqTaz8Rr+9S1BRCQngIpWArhl4iqTdEeDSiIDjzQ+7DGR4sYwn2iiDBxQWCY36ccVz6fSB6GNSEGxCBY7xJRCAmQ+akSGyIU4Am5QTqDXN8uohMFuvK4L7aDqwq9uNmcvojiCAdlGwNadVHRXka/o648fadSkdpNYY9CWRZrW1BGEt+5sbN8pX7a7M6AtT0RZ5LEcQfpQsbNh8WxM6I3+oO1Vg1tfNqDQACr+KXfWMY7PqGJmuW8iFv7iP/zbU38458o46cea6PFPQ0Eq+uT5Omtktbn2fW13swd53WrfaUoNSf1HYpM5CCZ0OrOpI533DGLG2dFbM/QelMdOkA7gqzqwqJld46DI5R32zhEOzYiaEZUEbwBiaXwIfmlmK9DDEegA/QM0iRwRICv0iGPGgZ9FkBlD0Wo6lElWgoZwt5MESOCzQVUtApQcV6NdAH4pbqPOuc/uObg1DLBkmckAAqAEYlS074LXG/jDQhf4QqBs5degm7+y77WTuKBWHLNZbBJrghuK0QXNil30pZRhtA5tSjlz8AujUESSLJYGxA1wnvWIfLYiw1rsI8phYOVO3xoD0q+b0ARTF6TuonQf88BFkEWBFg0JNUaA1/QVoI8rxagvQzg1KsCgr1MxysqbQ7IcH5xj5DwrR3nlc5YzAPGOhZ9gZc4Hbp46ekyfvTRJpaLhUrvY7K/Ame03tPR1EG5fQdP9G18kvGM6mZXv0pWxNntaXzCbdsx4YTRJpdu+0DL4PaNgA8THpOgsXQQGyICLxwG+Bq7aYxMUlEfyYeB8SLaijFaFMTLPxWCPtRV9YcB2aKI4hAZQR/1NmTnWcIUWjedAlJAQNlHf1TGbBdBoNvFpSeguRecaFTxILrxAuZTV0CUPlDiMQ0s7WDTXcznboeTrXgSqdNrkUhOb5o1RWAq0izlF7xt6NpCieJEqU/IJvMJt9bCIoWYJLNftW4beGgiQJM1B35Wdho42Fm2IqcRyI4ox/g+yO/8GtVQOEyBVkAa30eJHYVlKzVeJS5ouwIMqauEJKE8hz803Y2IU9uTeN0d23F2pmt/hlNNwwfrtT6utgoyxQLrH11dDrXWIOh57d1NfMHLuzi/u3QrK9EtVH5PuHylwMOgUs9ek/hDtSDmC0q1sFHAH2TiVIebg4tfxOGHCjJUwYdQ6cPXsosCfau3Cyp1hdjbiDU7IyWH1FkvRB94fzgajQeRbVlE77BFZIfyqdvBp4VFzvNx3bJJm0ns+QxWpO+ctw0M14HuL9VRo6p6dgapcdKgReIiYop9BJ0PaEJexGRbtI96EfyD+8ByD/tc5zVobkqYIi9E+YNmVSf5UuMskaLemX82CMi1nwpqEuq7Ml5+Ux9f8LoiZtVy3Btga7FTtPGZDxbxwJ72ifX0YnVN1/6aeTZjNGnJgBkocPqljQesS3f8QZUFsce+5vws7tqtY2tSkyqEZw/6+byAmfAQFw97Bn0H8yGOFkhw2lj0PdXaKPnh+bMlJ9XbOq9Ig1lr2Sbj4ewYIg66eKuK/Alc2O4EyN3REtQgJDdV9EjSuz4WoP8AWca+SdGB21AnEW58zgrTgFgzWDHFCj6V7HBFqw2UwJWM5ZRAlyZ5yK3oC6SNuMicPFsqoNmRxwEZegOTzKe1hXuKYBVniniKWKcI7hQsEmCAQwSpVulsjmRHtAjQL3DvZkD6XP5l6dflbNEAIYJJFS9uhwzXSU1KmgU7e0mcwU8BKpb9fYmKY3+pQTNDdynTJPyUkGhlMRa/T99Ec+8QvJIGxXVvEQ/QRBtyay8tY2dWxc1ntx3Rr5mpEslcKc5XDe/GCrMFP8NVRPye5rWencQ/4u6zdbzhgS0ZCxONcrnCqByDPzwoc8xoGGkukpoqZxClaUZLF5d6hSspOMLCHEs5VAK6BQ0e5nwIiG2xqS+LJZVQ1UTZOcQSOKFIxiS3qY84kBS+3Mobg0UDTySLL3hRyE70cwyugLyNJ6Y3U840+NmZDooJT56i0LRVEIcF3I7oHhVIbE8lvpJUtEmmd2DsUqi4feIhjD9HtZRaTZM0zEPUXVD4kaTYJYIKpO84W0hpM5DCTeaihLDxKzTPxYSvZbbtFjZQWtPwGVzDbPPGMoFLrja5FE/DPlCEywGfK4tJaw0EyK+9czfuO/t4PHx0EM/X8VxYX6xzt068OpS7VRlvv2cnPuO+wzi17RaHOCiwzyAh8i4h3szoWzvuCQwQZV6lIAyBX6uEJRUZWrvElke1Nq+DsVIRsY1GMUIiSPBIoHz8AGvK2zxw8FeiEINNytMcWdwdtllTJ0X371wFjrmXygjd+wh7WbtB/JqrgCjHJqqjfRwpHSAO2irKylAmaFNUDKScHOZD9BMIuAoq7xt8r0VnG5hMj7KU8TNlGd10J/lm4s5B0d8FuwegJVf+TtrU5B5Hq0wGvia5ExjR4UCVNrqMdPAjo1nBGCTPl0XcerqNz3pVE+3PDvHuR9yC8pKBJPqk2OiJCN/1FiDyOY4cYAXRLqyJS+agS0GNEaEi4sbtKQO/M5MiZuByA1JG/+aijDm4fcdDXDzo4uC4i6OlRB3zFr3J1YYsbVfS6Jx3jZxZCwNrleyFDK3QKFFpVskI9v+0f8Fh0xrtY3DkAAE8cfx9gjJ0BhJMiNSmUPw1V39oqu8Uw7eFc4jKcfBYMXcspeVcEAImPCaFKOKgZWnYdLqRi8gSaCLXQCbNVdTGsOqMQvEDzp0JzmrTdAx6qBGQ+I8s5I0iEVnIkFZuagb5+bk3MHAr2DRhWCunY79D0KgEwC4AdtUYLaBwM/wPxBPz446o7IRdwYxgZpg+Glu7NWpSk1gGdkxil24qxY344xtbdRE379Xx0GNVLFD9W3kVrAV8CnhFLctxIgz86Ik7nlHQh3p5U8VXf8b9UaJdjFuwIJogyoDMEz1h2atTpV+Wcdm5SBsuPigyfogkZEugYyJtEUAeJcCEsuuarFqon5tZzyO2YgtNEmVx0FSUuAOtQ9uaflhQQIK6PsuV5DIF+QPkPWDiAs0DsoiglVxET0K2acH1yB6AqIttVhi8EcZH9oAfknoJv0drmQ6myEApcAOQoUvwgc8JAAxkWHneAoEDsiYSOTIGopuWTK4/EqvBdZhTPKJvotTMHsTuryszTQeYVl7Bgwi+fxOU8vC6OFCXQHZAxMdzQkeDPmZsXg3VU/7pYzKreSAimGZZAG/KrFFdWERYlzAAJQUEwjQE7aBoVkSbGdnWJOKzX3NrbBF9dQeEZxAoPdOf/1iMq4GwXO4zulggxZwJzNMCqt1JfOaDx7G7AyGT2jphc+LRDyDDlwL3EjNolOCgZERE3Sp8Giwjq8cfJzsI8sFPYqsn0RlYgmS/T9Bqy5hBsEE7HxPN/TNYS9ij6SjhYAh7QeNzB8CE9gHxm3C99DlLlA/vAcTYByTAd6js2QEEc8vGzfLydCSpCrLWgQ9keHeRHgFfvmOVkVBjppk6bFkYnmGdYr1DzCWTdXy+8jDtKJNSgvMRNk8dz0keiD4YsA4RBKdicd7JookIOw4u2HCgNO97RSTWYi2qefmQQYvBHuDXRWWEXEh9OAgHlnwuDg7wWuAbV328+MwivuLjqrh/q3O/75W/HQYCvkQn1+fq9TxoEeKAXuIOZzLJbUy8b1Sj69937lRxz07EdlPEhPs//BxL8qL3uzIuHA2xDxXvcRtHyz4OlyjRynlCHNlEejTHWpROUc7PTi02rteycUckHvT2eXV/dAR8UpJ772b/WSCBEith3WEPVds1HSDJX2Xc5XWbaPrYQjGpAkT4lLhj/8a5CbSagAT6wkPoRFEUSqMOljk3ffhk8EjahUuV9t6jcQ4WZnbk4JkprttonI6zMfUiFoawc0kKuaRqcdcTAUQI8ho8C9zzpbqD4NoyCKsIqLjy4G5f7PLITcIJIa/aps4EWoTGksFvTz3aOgFBdGxWw9uQiZb9CxnUCbAiHYb32D3BTS0Yc2jbXxE6KYq4abuMc+xj7zm5FtMJnwToY7Bt3cj5CsdVC/ye6QaAD/Tis03cv+s2JYaw87UUIRu14kIx/wsmlGy7hANJ2YLKGYlWOcBaaV9GThFfA/A46vtdHdVxHU03icXxPModNOIEv8jQMCry6rGiB2RlbHvcBbxQyi1leZOJCL9wDWpQ1jRkrthTajtusjDIxMbOQwpfz1svRS9tXPDwYco8t10MMncoxQhhiwRfjlkIPcCFWLJHsJS9zNyYndmzzycjF7QnJX4W369qlWVZUiOEtyLvZ3bG3236aLoiJjxUJDoZ1W4uV7OFnm3hedD2IBgvooP1jZXOhQ+Y/ORSR0uMQmB16GK5dIs383PxWI+OW6q2pQAe4vV3TOOuU8/Qieh5IlPM53klgd7Jr538PvisuxHxaXcV8ZtfvIi96ZxZPZItKuZcGsFd5p12FRRrh/Y9fs0BiQkQ62XEcl9+jE0TMduNmO0UMdup2E1juo0/ZdRbKHtGTHZKmoWneCdbJbGChRI/1kTaw9jKgYiEOw/wx1diTOX6FJtnC7JkcdSrQ81rjuc6Oo7gs1gNy+DPSl/GAhCLLPSnRcCHnwdnalpFPcUxZwsUdiIBxy/V0lLuUTe2JYQE7d0m4CnhvSb2HGtrIumoKMDoF0mVrKxwGPrQNcWBB4XXR5raKgIWmgqeJL6o7ija/yQ6EV+JKCzOUhjQpsjFpvA4nyf2TsSBePv2UfyhNzXx4J54kRJDrZcDnweLaG1IXGcUzZ1mRkSbx3sKE1br7vS0jtfeugXBNqsZNFlGl4wBgo6Ii0c90b4jcPsWZcxhn4X2adx3cbaBQ2Z6i6z5WNbMpgUMgrIDh9FBPAL83dVWoWQuI6pnfR0LnB1AdJsippAYF0UcH6MxHM4YOE/Usk8hIq4gLHtXaU1BnW8DFruny49vZdUlQgQoOy4ppmk+yCJMhCRIUv962b7Q1sWCCopI2G1KXDgEcfS3zGeAajTLsy4WuMjOLiKFO27w/dg7iiXjtNXBLwEQAVeZpe8BnUtw7mTPQvP3Bof0XCc2V3crvBUv37ZldP9QpypU8GS5BNQWaxH+nED4u+gWNqbOEIzWOPLxkyWQgnYidAZcQGkW+iuKEwSnvPeIFyLi7LmZ6Gi5ya3nJBjmv+R5LCsin8vXjp3LyQvCAfJHP+9+ehmhuMNNLYMGG2V616fnnLIQ2Z+MfekQ8DBA0mYv/AwlVhlusr+mJDVRN1rALXh8R+jGgcAuYlm1MdmTdxECOPBw+n7JCSF3c6NwbDODfnvw7RM/QVA3eAdskMZJALNMHGjiKsAipuSBQfsWBkF47uAn4jODQt0SOcOEIBHbZF6kNJiw5CNlyWYAV4OYhorYVHohq8lmpnYlN3QsmF1bl9RHymBkQOk9hrUwtK/Lcnryn7RI2TLPJWB2FIDSll4zuD8dTWTR4o2FdWQ4eDmgo0TtxHrFQleHOyBJkr43sKDAdkGSvBBWbH7ZUg9ehIuui9ZSTmSQ4nVBBd7GV77xdnpQKSO78sPoej+8LkVcLjfGDHHslWuO35qNzqwu4y33RHz2q2Bl1JKQPsCjilNJ5ZOJjU9Z1YRtCHk+KCfJnZ/9rKERmLvd4VYwgAHaxeonoEXyOmVtAtI6OKqyD8Em6o00L9reaJymRApXLTUYfCZ9wcBB1l/U5U+8n2z/luj2EoGpd8fkOfKlwLVaWKGpNFpfd4BL4VEmTDNwCIGaSOEI+yjybB0kAKFgX1N9RY4YFCyhZIdWUqi32ToC+eVWqfLbwRDFfh9Tt3CjS5LaCwiNoO2U1j6+PKHdlNetgwTpQhQUc/+wXyb3O/OZU6wgZCcdf3UQSmClQ720iGZnsojPf3UZN7LP+PN8kEqS5tvJ6XTAO/oLjLIO3ue7T8/igb0qdmdVzHCfa3WNmfd9XDzu4vH9PvYPh9hf9nHUD1Ty0sGLHrA9EWNSXHC/2VmCWYkBDwU13OfpZau5wb+lzUkGhF44GbShjAxvVaDw4LZhAcADFrYw4rwqgGMwYzSzRJUHJWefB0TOaBO24rhm6TXXaHr+gYognqzMmuETmKXRTA1VwkyfTLy2wJHct9V1xP53Pp84EoW0+EZlUP1ufm78KPvaS2HiM8+UsFqgDNYmQANSkhzV9wyy7ZVp6gqen4BzKa2z3Wvy6BUUig5G0RjhR7mINJMylm0fi7m7hNjOjGVcUqJWn2n12awsJpUEFj6yaRPvV/Pgzt06dre218A+E5397JLW5YmsoPMEPHg1DZxX7/OsB4KQ1917Ks5Wc25saTmIwF/cPGXNVIaSa6Ibij668D9i+deoBCF4TzT9rtqqDJzcFjswK8CfMoolWs0UUTTw1jPybC8yLnDYyZAugYjem6eNIqFWBFEWyRTSYb4fVxSCGSxmpP32K2PS4FI1hBl+wKk8TNdvljztQo73IhkU0DWQF1wRLCK4Abu5vM2O2cc2cTe+kJEy/oyNqYmMGgHFJLQJLhYpf5KRHtRW4krgvwjo0FS8BseEgg0piydNLdsYoJpcvOjc4Htmjgg5S3xu7rWIllHs5ICMGOUCmUHT5dzPEdlSBe6SrVtQaqQfnBemOEXuUGChC67nJTcW8fLzk/jZD6Ih0mZczv5lfYzy/wLk/ireev8sPu3+fYqn6EafpR9nw5xXLJ+4vECqhcnPSIQWnr8pNKPPn4QMmU7mJdH03NeB9m9EHCyXVbareYfXWfHrMvDKA2Dl14dpmuUpOr8wPkx1pkUYWHfOkLnpJ6fUTe3FhXMXgn4IcPOzCwK7TVEg4rIbd/512oS4sti7uOSBzq31L0WihwMeF1ltFdEfRrRzJGnywyxmfUA2Ozwe0R+5HDF1UMtSme6a/aVd8TCiAHWk3HPHzR7fW9LgV8+CvYyRtBq6YmnP8+GEKbGRHPAPEXRa2sVXrQvsvWJAfeRtbq4MhfiYDHq1JYE023di5GfWmZIt71CleMNtU5o1oyf7ZLuIclJHC67kAG5fHxce7+Lxg5Zt2o57tNsDEcAHugn9uOEovyLRAM5LGyRsma162CJgwTlFw9+RYKZr0zrVc+eV0lVBCRntjbCH4uhAFybyS6HOzR70J/m1stYStM51b44fUcyRw5l9u3VGwcCY5yPBKM07Vd5kNp6kVTmvSIjZGYBQgCm/QbwGEEyhYhZwZEMDy0HIB6ellM8DJ3YM+BzAME7IQGhtqqIMDSNt9CtGtQqleFKtBv2OQBJzl+33h9fEx3efEnkocs8QIswrs/VO5lDYJ6AGh8UL2j1CnUul9Mi5d4C2FrTKv1MBfPbjpQcqQCzz8rFX3Hl+FhcvHBE0Ig9y7GW0qpCsLHVSht5/7BG/FadqVWvDR33HS2F6CehZm3ONnrNFzdKDFIT6YFmqVY8+P2QgQ82q9s12Yt7VsQFPgZp5F2b/D5CSyUsbop0vucnWM/Dm0B67jaJrxWMC4kFVIvzEsCI7KnxR5ikOh1g+vKCwAxNcE7ilbxBLNBCCuFVLDRNo/kHJCOUUN9gGVE2itgMzBJYwPKaNjQIalmraBeFuLIQJDZjBe8Dvqr1PmndmsEet0MilUJlMLdTS2FMzlJwAfB78ZtvE4mIZy8dLHj48gOZVDMfTGA6baPfr6C7W0e1XUSyGqDtsIgp0yedDRwVmTLIYAJeLf8bN04cIgl+fmuQn4noPh1gcoAyGzBRkKASVNdFY9Q22x58XDsn19ERyj1P6kw3xGS+7wY7tz+5Quda5fs92XPaY5kLqYzIM8YZ7mnj7vYvYrkFosLBoLO+73E+vKQUvnGOJiAG5Wjgwo08dSXAKHMztVsaqUAwohJL4LJEIXeZjRoCUxGfOTSMSqv4bBVsp1zILJzpl00gSuE01YF/hbB3lfVHWQO5KY/VkVk6Y0JnagJ8D+I0/JKyPsZF6Y5dr9INEjRN8xfTE56DVGBA6SNEZDGP+D1HtIqKNKNG+DQEfbCB2IgaogBF09o34UUQfFLDxM5kARs4RAm1WFTNA1yHC68JnYytH2+VYoX/T2XMSrtmAdzVBjKCS64vSoK2hvNc+vtyO7/+5Nh5Bb/GrgI67H0tcm8M84XEPEco8oj0M2VxujIh7zm7HrVtFbNHrTqX7HqKOKgJ+/mjFdtgNcYz/Lro4OAJNBX3aXapl8CcrMFaMWAZt6XWK2hcRHwZwSgASER85hoSohU3h/FCbUl8dBFnppIBpgY5Pbk5ggMrUb61JnkJOlJDE616oHzRL/zY2HxW7puPJcmuViOW9SwDA6YLNqNsVWmZuItW5a8ml0MT8+jqAgSC2touFAKMEBZMbLlcnIHpuJGrPW9wHcIDREQNkDwZrUNC2ENkMcTTvYk7DdcUMKbwUf9a5jkUqnAlOglKEk64agjvsX1oU7LiSHEWJJh1EU7iqhJd7jnnDORfw+uyi1SsRJ5pYFnHrVhnNLhS+LuPadzDJiOkCoFuWMVb50W/Z9nTqXnz/njN13HFWkvEaXjzIqYqWD5kcBmxiKPESNlZ2Db7JApMIh0Ml12wK+cjhwc1yMOaaBsorHUgH5BC0McHjX9REJcoaKqc+lseozQ8UbkCJN1/MR/dtbv588O6X2+LvNXsUdhcgYphHuQeZHAIgoXw0eUZbl2VHPg07ECyqOD5cRN/0EVsQi+hgRGnINsWaYPZwQm2ITaJNxla3GFyDfZPA1WDp2IieSaJAHOXYjl67EIcktC0kr+gXUXQT2tAIUod1RhnV1kC1F1FGrj83KoWcvYW4AqreZSxgNDnHbUC/4uDv0fnJSBC7CRidoRmvCtYOSrGZlbE4xrW07FwwPQXkAtxIOeMOyyqG1j1KWQ8Xykkja9oW4F8S6Shjq+Pu89O4daeJ911sr2juvdDGiF0475rWdbz29iY+88VtbE0Wo8moUDZtikS/T4gF5E+H2d8eq9SOMnELv68S4ir1eeZW5L9joIMBSy+cxkbMgJLBZmLNgoQdb5RzCf1Xt8DRmwyeZMxw7TyxVqUU78mqXC37tGExUmHbhFEAstYNIA8cHqj+naaEkh/GrEnqTyWhqSb2F0X1GLzcE+3vcEi7vFzA88zkRcVlaNNYxdKCDvRyZd/SU1UMH+pj+cg8hrMRwyxNpE06R2N6vJk7jyChXQw20ubzygIklNlsxqr3YweeIvYvXiQCIVsr8BKzF7nnhQP1NJHDfVgMdXz3/3MY//OokWBlLHKeHM9khTl0iWtyrPmh6Z942CslZVVIyUxktariDbc0sVOXDPowd+nphjJvUbG0ixIvLD7AviGq10HgsdQdILysycRuGG5zxkYCQjBkekK+t/0c3aSAqFoJKxg7PjgYmRbwdi3iCPQa92tmQGpvuJb8TaBHEB6IC672apoMpJGmTQl39I5mxeCjs4soaAfuW81fsfKWSQcSqVHJarNiInFWqJpqlep+UIKowrUfppI6R3EOuNNXUbmbGifo9eQsQSqHu2RkEIoLQ6k2FcpsmUpbFl074B2CIeyuBdGkVvfxsTiX+KxKTB1TuD9ymmSrhWzCSOmtJA4hqVi8XgSb8uuEeJJMEPeOlOenNiK1l0Qc0LPagv1kKG03h70FiRhoIljOAFfKIR68eRL/34F9WO1UknvXiruy3qrtuSj1PsMz9cQh7Cz7N73sTNx/fouwNqY0XP9nlawKcNDDU0wlQjig29jYKiJMNt4scBdmQAw6NZNmZw1MpjwUAHdLZs7JB1i5LaLeWkZ/3MbisIjjx7uIZS7GmryydEGXoaJ64OGAw3uhBdtkqBkA9R+KqGDGipZH4DT5vRb7bSwPgByW0ZIYWsRyUUdxEbnjkm1mUBoY0PsXvwdSd2NFFIM0Av/mN8F4Wh1M2NYGB5JhlRHRXGlaVje57+m8TuUUkREc2hOWUNmyCqUd/BcKzmEp9TLeA4uHSJsWz1Atqcjt+4afB31JBwTPQDjnAxcOJ7Fb28BgE/wHclisBsM9FaKDSKKNyS4IvFL7Et0dGmdxC0iGWZIGqoiuIi284EpxzVimxgZFRAOZcht331DF2x68If7x//jgs2onfz0GiFdikDsesWOJSEqxl58r4nNfUsTuFPPNQYrLHWntYeBAA0EK1oQRPJZB6ohuCt6n5is2UfWKtkBiRNpW9AlzwIWGcU64ZMI9X3+nSwkOGZdXcW1T9Im2jUQaiCQHNI9r8pSAJrtnMDZ4+eCVscRaWuvAwM3cAgjyidfcLfiy7JBhriz/7d+hdZIPABkPrMo+PFizv4LfB4g4thRyj3XvyHXcq7g3wOS5xr7R9DHfEloYF2wyPUPCuioRse84aB7sYAK3/7XaiZEKICWglWCvoEn2ABPhIfq0BPFzIbk9EQwT3imAccmPsUhdxi+Cq9QursQH9grH2NPnGhzJe1WlYv3w5CHrGw0k6Y5Tkzg/rWJWF4H26wz2UYGoqjhaRhwe9XGE8m7bx/EwxMKeathz5wtUm2DCjFLgStWanDooZWUHKz4mkHiW/jCHmYe7qoVgjjQkBDUNUUSyahZLzklSj6KKZbvkvGNbM7bws3ULzhPaco1hDKk09DxPCzF3l5JVmG1eMt4BOlXAsktcOYzs2aucysk7OeI6/3CO5x6iRguifCyZoMAVQGg83pdt4difWnsduMU8TeiJx84Ntk1zBYg8VweG5JLLxBrrETYrGIvFXIEZIBEe7j2/vjVDGT7iaK49TBUGUZ0MvzvIRIwAqoZEllQIs3Wd1ibpGewqomC/W/TkypLb7JIuXs+wBRPBBFhw9tLPkdMM9CfMj0af14nn2aaOrZ3tONo/GOenGlW4Wpisv2fQj/SqIX5XhLYMEbedncYrbtlmpsMshrUTu9ezf403SsPMNW0ltK22mPzZsSNrPuOma/4CnwxQQExuwKvi2QHRw0NfXlxGfxElK2QeYFqj4Xv2q0S2Zb4ONlAoEJESceFBUdsyIEXps70Y0e0X0e63UUxck6cjuWSN/TZIn1iUvUxqETQtt8HmZdmWZrKPL6OGwz/klVNt8pgQcjdXWYmTOPsfUhUr1slYuUnpvQ+LsRm1W9v1R25tR8I9SsDuOWqEkYo/B8cyvNSz4GI3X4DroEZGWUS5jawSRtq4hlr9fH0NouJhQ1ALIKgooYBkIMBG4O4kgoulz5vVXi7HZWZL+BqHHFBItDZa9MzWxj6ZRqq2JmiZ1MT57TI+eJicpuf3uNLPOJb+vXHdudfFb35pEWeA9LGUKmQ7jWHlD+kOLDSVdcnV64pdI6YO1Mz5Q1CRZsF5XWtV/jESSt8+DJZo0GeXk0JzGX+dTHzQIdikhYPQOinXdX3jvhADlahZuk0PWB5edPG3f+QaL8eWWSc8/KT8hR2DetsyGERnA6MtowlysnQGcAFRgtO1y3NewRPxadvBZOmYAamAa/UtRs9vJHr7ZZRToZizPaBF4PrJ9JoJDpwCcNBgzaFXsQB43jftDys+ogIUPWy2tctuI6wIKmDk+rI9k6oKuibxxwRzsJcpPVKHeOuLmvhX/xuIsLodrNPecvYp/r7+Efax9feKSHcJJzHPoipedsM0Tk+r2AaqBjsvBHBlSfHG4SJi/7iPgwV1g1T3omLFANxWPkzsUZZHOXAUXflx4GzC+uN8kowbQR0CQtIhbLSvCqQ44ZjpeFlw+WBdgteYoDcvjPcX6KteyPaKaiN10SDixu4SVonr09mixJQP3w56ttqwWteK/Ru2ZVob7NvuPtJpLcK750WjcCd97EThSmwV84przsINqlcR+DAeQgBoCopRw7FfrtsVsjDH9qM6M4kEstQNJ1lQSsylpG8sUFv7+9lHsKMvLUrBUhWzRGuen2xdZEeFikbrtDN7jZNJSRNoB11pseN2dDirFqBH4flN2ZxUdxmVO+xL2cuevMcVXw+fYQyu2VcYQeUQ02aI205P4j0HR+N9kVegP5CtYMzyvaJ+9FdN3KGN0tLu8RBY2xi8lu46O4lX3L5nhSsCMwVk6GdJJS0fbrp7Iy7D95O6jWgYhcw2OjiQmlOHz89SL1RMLDlC4FHH8qiNxT6CLrjqS126vNBQUTXdrWOyB9QNiwAKW8DhMA2DpB1GsjVNNBH3cVFywwVKIFRxOhUidfB4Ex36ZG5HDBP06RRZGyVhoSlF1NhkcWjChDlVTcgWDqtYIrt+BOlJH812G7PdipNWgg+chPLnA+OcgkMfKsyE7DeWZNrGEAY+J5VLRxKooLE93NfVNDqDLCiVhVW4eY9RG7eqGjcYuZRl2Zk9MxAcFghgZXBN0UfZR+0AGB6HdH3n5lKyhEilJLo4IJvFogPCm+ptzw2eQbxGHMbLqMrkZsrTsKzhMwdDbyVk7XIZr7plKx68eTsefu/+6rXW59xl5urzdeTHTa8pmRAMcbrp4nNeFHHbHja37Pag0gbnvKURoLUiSSmtaOUzQSKEgMOckzobH7mrAH8MiHEH1H3V6ooJhYM2zidTD1jtMqLHd2bvNvtnyehKpfzRjkltGsFTy3yPvXyNVmWAmfy0SYUDE3PWZshOhTCP8b654ZEbiKWKIAtlF2Tx2WqJh4V+jlPbN9a9efT15DchQUMo2qoyoRIXVIVal0hWeS7gcMRnnsLeJaI97mPYFj+y3rKaEtWHBVA6K6GB6KBVF94bXDJcZ3qaKaIXt9Etx/W5dO3wN6WfLtYJD9BV9E20oEfAgjaKSQ1KVeAQ73gA+/Ek/u27Wtib6v6KgjmupZFcfr0Pi3BWPHScIy71+QzD87/11DRu3qnlU8ouRBALILiC32IZh+jOcRwsuc7B6QNgkffOoj88M/lf6p6DEgQlJwI9MlscYmnrwnvAusylQswl0I3cxkXBmcqZ9KozpYFlXuz/oBu4Awf3AvfGZRgy8t+F2rF0zOydMhbaNSU/nGXavB44K1DMIIsT2nQxSfJruYcukUxrvFgiJkKHdWy8mSLGvB59bsdoWqe0LFsJuzQvs9+u4ouJzf21x+TfBR7RISIPOgS/TeUWpu5IEjrbGGgzgBxiG9U01WG9N4L+VQSK9LinTL4oMs3PZKBIVtxpgqjrRYwwQVu3PmIu6xvxGRVnqEWmEFXG5Lw2rU+WnS1A4/6H0m8ZcXq7jmbWxOIIbdyykuIkbhSgrpmRP5eI3zPhVOHSplURr7h5S8RnsqH1PfLXUHO3JxFdqVH1oJO/jJ4XrLtPqI6bzSoGYniIMrgkgMoNGAaruIFH+0fRHzWxbOsoT4nTBn7f9JapOGZArYz0LXsEJwrouNCtCmSEb1I6y8iGLljWxeKvAVz1sUDQs1W7b6InDrUh6m6MDIvCLWSI9urBQqondUzAnVsUsXh0HsOjPX2HJqcR2tp3zMEY/QAtEBE/SZl4PgPyJZBhYFEtqlgcCs2rd3UQ4DAs0PzOrWqoyiLkrawuXwsmrWz27r8nhEPJ/6Th4YTnhQObtwO2BF4AOuAY2SnD5Msf+dpk9EvTf3CJ7P6PMnENApMXMTibAEOVNeJ7WMkI3rHo6gCjhbYgCEqXyzg1LeKlZ4v40V+FJUxmsFdnzl5PIz/3eH4RAetjq4j4olfuxsfdfCT0xjJdOu3jb7ASAuSE4AEbIThhbMVXRAGbHpZmsg81OK5YKykkSJXEGtE4eW62R5PvpFE78KEoxFqrQtOg2Ly77LVrJIGq3zUFfAZgXE72nyBtZ4AaUrsZuT72HGP7KVJIpTQHV5QiiLxs0uJkpEbrDP8SlYIu+yUQxAqAL5zIYAa3OOCzIw2vTp8VIhFkKAi+YE4NPz/26sDPw70a/4b1UVMwYcJ97xdVzC/0FM+ADzU/WMrHkz6fA9Ec+GEyjwIyBCoKqxraX4j0pcVLWcTObDeOjvcZcMA2RCpQqekr2k4M3pNsz2P/z6ZcxpvvKmJ/v4n/51eHOFor0yYt4HmTTCHB5vwwWGFy61jyJ8pVxfntOm7cQmAltJk8PZQrhzIO256GzYeLnuIOUAwg6EBiy+dNPpiS4rQwYXBAPpiMnRXQaR9l8JPdQjKxYQAqublEDhYBZcCDoMFed6DaoH3btG7Ev10zaea+TPUtQAFTESgSly8gaFZ8XZe+MZh6eMEBEUZHpSV6OsOuzI0OszsOEDoMAZxuyenEhw0JjI6ntZR7kSjI4TkhehOTHJacrS5mgJSVKPEtW5N8uVc50VS3Dok5sCzg61dNwLeHrctS7hSlmhZAREMQY2ijgQ9ikUIe2eLg3kGMCVU24jFwm/sK8YKEPrhOBMk40VFWJiXFDgnUGTQF96USASAN7UWHoi6ASLyelZTP9v5TzO17iT1cscLZyRBnt5r4wBEs4JyVZnCtFe9g3CWGj6a449LD9NJ/n9mq4kvfcD7aDiKKShl8JWNeLKZjCC3QEslN1qeGbckzwCKCyqxrY34EPl7E8REmItztJyxLAAbFzy86oEKTaMsmqhvLmOwto7gg2WEzW2jDBFRP7zipbBFkyUYGmbIkxDIvxf6tBQbYl4cQORrY2RvxeODtl3JqopDKZjBBST53lC/+FLh0ivb1+SOqnZ4Ci6NH+ljsT6JbdDE5B3RAWSVLSUQkLcAwIZcmnMzuRAYFP2BxUR1DZjv4/FZtEjUD+jB3kGdkw2R6WWpgIcsLjddXIVh0OzdbrZRVG13XcAF2Y1YoNTIXm1smsBRlD0IEC9mXmNcIONOZIW5JGlkr01PpFwE8+IjkNAJ9rQvyZcBF6eYy3uVB3EzgjRtvfunN8b2/+N546OJKabaahPGCG5gXiKVmVR9vuauO15w/jKWIXCQPC7FTn1mUkrCZYbOazUqXPFTCnLrsSFQdqdVSh4UBa7sHAHUCrUAIL5eOs253UhSZ3C2YgJhnRsvgESVG0D6yVZrJfOvl4zRqRkIijpHWJxNmoJNA+hqX0dTniiVTWZSsTFWZ9Y+Gp9okaZuENUurobWb6NpXBpsMLu2PyQDQtDUgbvTywvvTEkYtoHggMV5GKUl2KSjBYc3XM1UhhsMiEJn3gLCxD8wWMUOQdiiEfKtsYgESUg3zZwRnOJhWpWoqEnFoOEiVtag7qKD8eHAgCwj3MhWSJL9OBrgpmHEOLtcErcG92RBvflEb7z+K+LmHgZgoGR+LoJf0fX56Luo1Ku4Yu9Dgb+bd2cSF0rQi4tSkiHvOQtRRxRYUrzg1G5kw40y/yC4dfRxCLdpGHHVSemLvV79Z3TmiUGmnQv0IyoJlLFEXbpuYTsU3ZxcPBhH6ndrPDXsuCrcKmISHs/sHAhjMACZKfXRzcKjRzUIPNvmg+HcG/ApC3TEqW2NkZysnMmPpl5YtqdVV6TnLvzhPeD6ucSPF6c4Ab9UFR04T6meLmQxAhJ67FnIRACJPQ50+1LPXVCADMmnpguAaZyz3GIgmYI4Nfnh6/trhAlQtlovRYQp8ZbTXC1VClCSpCwaAkRSiZPUSL9ZM5D14dLwQ+IO1CM4k14q7EMk8UIOBqsUuLE0VpCplpw05HvTcEyY09VYQQKEkz0KVnslvZKSoe4+2mmf3tuLhC8fURoxYKA9S8R6l/M7vPYeB3zNCTYoyPuVFpwIWeH0PRMtcPhNEcQMbK2Rr7/S0/iCZQEKBEkTMR8tojyA8ANlT/SMx8ZlZUJjBcD7KrUnMTpfssNEtICmvxLeBpcoSZNaEk0F8h7hBCFpjjztBqUA9rO5DhO4movLvK+OYJM5OvmbsUqvfaSG98kRmxpHdNQALA6nqO5akaIhLYpNg8OYsysYymV48DhSxIxeo2oHq1uUyp/ZYcCjZMUuDQAI9Go8VXKKMjSAXgJ5IxContBncMphST2S7nY1dMZCRVGhnxW9pCqv0JmUgywp0KTe5Fl1L7IO0hH2AidAJmevzmifIyY0FB/Kx1F/ZZkibkFAH0TilsMT74x4zbgYqVcIQFZXxyirNPs5P6njRuWl8cF/9klcT9IkI3/MN6bt0aEkNMSvreM0tdbztni5mUyv5YO1g+xPuXAg+oM6eFuSuoWQP5wdwUOWflIg3Gsr00cCSAuiUzwn5n/mwpOpewYRKWTxpdCjhtdlTV4IC2asIQaOfow+H0acPiJSDkkQl9DtQxypwIUUR75eBFZDK9Izw3MPrQnFJ8Qmm8XJVZsKg2xIQT9ZFV9xEkeD92WyZkeijGey8NbyN9s3L0nKWqPCeDBBQQrdJMvd1XlrB+9495qD4lI8iopDgBiNwK6N/XCR1WEuJxL66TFVupQ5mRYJBdtpf+YNgAwBqkujVWhloiYgVghEbJqol1arsjj3rlp0uPvfFdbz/pyMePkzVz5Wtn+tmna3RkDKyHf1RjVqdmk7izu0ypqWQHQQwqMpjTz/siji0NciyK2iBBM+5DNpUBnXPZwcE7qbpHrvynJWowSbEVm4yAaezgZJmBA5sTUi1qgIE9XHXvcaZgr2Uaws82mzt5eCKvbKB9LmrBj4vmp0K1U+UM6lEquTQBsklU4H4dlWwkbNY7XoPLm+gcS6H6sczQLQgyh1HkkPOBDCFUzifgEaSaiExxGh+DOAn7c5McMV5lJ18MH9L2xOld0y2dcWN5Vk7uhgMppnolyUQM92CzwSqW1PX6LlYxGxaE+Vk9yk2O5CwEVWzFEbJNTcRzCy/A5nPTnVyqyDCa+4klMDpwUe0cgExD7QGLpH7nMU9u3mviN+YTsnp1L678i5NAZtv1sde1YtBtGjo44tfe1aonTcusrmofBOisA3DRT94kI3xZkfLZUzQWgbO2I9XcXSxZKmv2ati2hTMwNA/FuILLEwcDICTaZdStGOnC/APpPy1izkcvYEtFRUja0xcRu6o7ZP7tGp1JuWCCKSwU5FZpE2Qya5Vhk4TWDtvY1OAfQY4Oor29SC56Fxqw9JEBwtcI4yhcScmZytmZf1hE8uLRRRQASJQ20P5AAyrImZQLsoXhqW69hCHeyUT2NzboSK05x7VgeblUdln0r7KqVDtijjr6jkPOvKCoN51NkMSPIjzUA8itVxCuOHna6jap5FbL67Qt9w4EKjK69B9WdfmE9rHcdNzn66yxzMXR5GLkPA4ogF7JKXZBj2r+vjCV90UP/Jrv0rLlzFjewEObqJ9GXt7fXzuS/bi1N5Fqe/ok4LSLvhyNiCeDuxKkVllojTpX6c2S+ahJMpkMYVoEBpEBFFGxXymb4u+TgK1216xgwt7+RoFZIC3ElFkCRGIINWIVhmP1lUkTnsup8GzBRt4MRyG6PuZZS+qYQm3j7ooxVyXIHlMWmwiS7TM6IOXlzhO5mrxcMFcZ3nOOdgl957zmtxltzF0JXzk1o4dAYoYZj6U5kUU22uvQ1rIEMNuEfPHtFcMUALD+8/OFxJ1WUnoll98bm67KERQZu0ppEmayuj/7DhWlI00nNU14tnjGTxwQxfvfO2p+L/+ywWjIc+c2lcApyLEdQ2O7GbiAzs5z/lvVBdgpwEkdsYuTGmijVZ5ZaDydrQY4mDZE/1TAr3egUEBXnrfpYGz4ky9E541KiFcb3JJN+0FKwesvOSVygdQlAqUQS0YcS11NGe2HRPPVatyGajBeDkTE+IH4J+nbbf/f7Zp43Wrs44euPhxRPi5JtwKcFSJdwQvVHIW4ikPTVeLLETAPsM2vuTPZvVHvWzHPWf0D7QYyWuIdGB3BqHRP6kaqTr2tfDeIdDTZyfHFXsOYjzwcGkUX4zejbiqBRTP5lHieuioiJiApVfNA1GtBGKkyEwsqJW/ngysLVhxtXDESbmnKlAEmslzkmU/gE7eZ2EyAvsqJH8WzfFec46WBMZOnZnGxaMDu9+M2K2RZKO4V2CZ+VFy1awCtn1ocYNG7+rRp69nT0mKJ6BKwgGCydIh+IAqSm7mi/0+FhfhAF7E7s2T2DtXxO4uRBplTE6XcepcHXunpzHdiZhswVhZExmLB7wEiCFYLomO3Cc8VDRVluoH14LNHI9caBh8sdiMOvsBGuUTGCkWIrtRFHq9CTZwNp/HQ0N2KAhcQhFBuZOuillZxVbVqJDAzUEBGkQLNMtlX8UyJqeGaG5qopg0cfRwG4uHFBA2tYI3biJHfXQXUfJEICxSbC6UrEUhK0KpFBk+3g+IKk0t6RUkaxZA6vg5+S7BhkYlBDQUR5CHdl5z8Fa4cUEpKBSRf8+WBWsBnSa/UAq1zIIHExAlLywgoRDR0Auu0+s56OD1kyDVSTmXJxR/DzetVjsq3GxkW0XLcvi9tzSxhYj2edai7dmMYjrEF9y7FecQ9LXilHLrRmDVRjTHUNFC2CQzbKAO4umsgnV4xcFmCQr2vH/sg0svu5X6PtFvNY0H5xX2FlrjSN6ytzARafDakGhVKJdo01X3mLWLt1F7BjcsO5l7mwEcy5Q+m2n6imuCGjeTffMC5ecFRERmqWsgBAcTOQnMec20BEPARnWVgsD5HObIthlLC5e0e8J12AMQQ/u5W7P5YE3xiStHq1IfDmQo+lHhOBaHkebR4IaRW1lEOYXHm6xnSlB7kLBlVYM9jbNlFn7XBy14VHidNLYGx8uG1PITU5CH/RGHI8Q9tLHwMpYxrkyriYhOtuMNpw/jN71oJ5DnjeH+muL56VKslaTmGhzZyUWn6yjuIXqDvbKexP27FZN6UH1YjgMaA056H3GwGOJ4oXbVNGhmEpI9eVNYsQr+6FlK9a7EfyrBypYMYg8mac4OWA3COzFXUXBEL25XywBmGEoUQEGECrxotAyVmzjnJhXymP+Vgx7THHyGMVBlRJhMeaGP+n117LYls4PImuVO0nrG+yi+vE5YU0ksCMtkRIpZACdAtFGp0tnPNYfmCkio2lVWxiA3DeUtMAFwxPlqTnLOa+5H9v1lP2KcQw6MRykLupu4FV6HChyVwvYuZSVPlTEE9qJmiGevtSGkEEv6CD69tA9c0Rmo3fEEYj/itWQvKVGkZfGBaP9LQEgUK6nEJ7DfoROJW1ri3CPaKTueO0/VUbP/paLnbL6qPd5EyCs478rnrlPH2tdiiG/4rQ/qBqI9l2VNjOq5Qbn3IDc1lVLxebiYenD5hjh+rEFdKnZuQgP4JZU2NFEF8RllWJwq5dLK01oIGqFq7IITcoAYYPgmqzwpMQQDOWRDJL4CKQAPT9eNQAk4uwwsxd8RuVYbBdA3UDPQ3QP2COgcAMI5XWBQGsAiLPvYnjYMJmV4nAeIDrN517LDAQ9ewnEImiAF76K5oYjm9HYcQzX2UB/DYzBURtBXRHfURLlTRezY749wn8ja8MFDSQIBHaFtZEAn7ByIm4zBsJAXcC+gHsYJLVIpJfHOxPTcQJZ1sAlFNsnRyf6QvB7PBmbcDdVvKTnEhgR1sbI/lhAyq6U8E0RnZWVo68ZNBd/zc0arHfxhI3ATeaGmzgx4Ukd84evvWN3XF2DAh3s4K8v4tLum8bJ7EUmsVNys4PUNg/cBViLgT9LpAQGb2i+J6ynRhloHCnHDsY0mE/im9A8qwSAHYVmHzedt++Gel6BMUDnOEmQqCXEN2REnW8BZAWikieIS8EFscC5/P6Hu5POlcWomtg4cwaNJRI+lGPN3kfRhwlNd6/L0aC9BE1okaKlkds9bosjy+OJb+HyF8ldkcpVkUzVMa0223c7WCOZB4n1lLcZ9msiD0Xai2pDrTYX2DEerjiSc3eDr9hGzU+oQgYP08EjBKpND8iHR7F4CF8UQEtJk+Se9InAtiwU6seDy0InHXCZcoZF33guU+LA/Ouill+LigLZNn3rXQdx31i3nLhPwPXUAeDRWSK61we4qq3+Id81gQcntHTdMCEZg764r87PgQjGgS8cQxxANQASwKNitA4Mo1BpjkDxrBODuUCO+tyxFMFenmAfgvfnAFyoHMRyqNBIP8GuJ6rJrh9S+KPei9Cd/SRgCywcVoIaCHSDUeN+W5WIAIOpr6wCBELLWoqy1shkBSrF6Ziy02ONM/D5I//EdtVorci+mlRJABn1W9dEVispzwCGKkMhsveHe83n2g8dIgWdW3pUEsbMVFdigMaGknb6BSXEQfxgKXSrYvS9gH8BaIQWF5zvODHHstA/gGmGBY2GF44IUebBigWsDSEUKh8CpxUIdqSQuVcCulnb+fGZJyonDPYotdlHsszKyFiqL64f/rqyCaOWGpBv8Z/yuHlrslhHbe9u6f67UjG72RjFPln2f48DvcgFfDtz4vYlUOgywtEPbmkFQLw6aJVqm2QwSiiHesHkXFx9ZxhwP8txAzh75N7wRVtBl4MEbiLmEXi3yoOLG3MIQUbu9Ah89IFXldS0MNu35x2ZsXctJiAyBjdlxuDl7QqYAdR1LtThswaNBKzY0Xvd1cKKaq0izR4o6bFljMiwmEj8xrU+UnYnfmV57MPaMaE4NsXVzE/VuHcf7TRy9r6OPYLPdx1QiafsKOQF0m7O2hRhjwSyACALbq2GCL6Ns0IFjaR82WeogSFVzd31OLmzv1/RLwr9ZvkN/XRzeQlPkBL/KNNRhJwMvLdhc52T1kXdV0WQ6ESFNoux9LD8mXZsySQR7MEJlL0Q8d5cWqQI3vP7a2yfXbGOoj8ZAEH73XhOffFsX0/ZAFC/wSRB8wGB2H20KsXnJwR9jVMrajwv7M019aT3hcvrIa12JktJIOW1ziPZh/doYmmCFf1fqQ5eo7BmYIqIsLY7WDQYAGT8B7V+6NOa9hUmGSfO8ZqBXNqhGEETDdohIzGMZy57mFCZ6kOVjHlbZ7cOBXLZcEgJmxDKb0a/5AAohWCXYfB1cGwI5mu/q0ALipvuRCEqKs9SmSUhNxGQGJHsl3ADKBLsp+HyClM51teaqnNdAtxD7fzFRo1+cgkX+fCfDXJTgcNPSs5P3kz6hek15OQq5zbMEdlrtsIibJ2V86gPTODdxj9Kr0cL3Whhj31rbpDiClTlwES8/VTHYpUsXslbQkcATR7eMOdAfKHnFncO9ZI9mK2mFLOl5ENjw3m/sbOxKJX6/kmGor8Wrk9ABAQ4OHv7d/m/iu6rkqPPUfnvS8bHjBq5HAirt7epjL34Zu0vwPXQLUiGfYAcRUCpjxaEm8pjFFFszZbI/ihkEg/vzqTJEQZFN2iXcSHDCe4FfL4vNmTyiAqHGoso+dGTLu5aAStrZkDalABGBnF2qGMjxOu03CpGiVK9W3g4CKEYT+wzAnChRZUsLOSuEyZFc+QfSXg2gCNpXuhUOP1uyXOxugPgB+xLPKwJZAlBi7C++Vi7Oz8FcFvuAnrn2JwBkqy5Id92ofcSp9NjNyrv1FVm6XPVz8lKkBZfwxvtujvO7CJHEH6O1CWcbbhw6dQhZI5TNeoadvBF0PQLj40lMTjcx29HUJ0blnnxS4mbDd9hVIKASikVfr24S06FR2ee4iyV69fJAwAaIPoAN++ri77z5DFLURo08nbEfruvyrkuRMoW3RTcQqxGxYMAXQLNmoJWUpiMDSuVwEmrZXxAT0p3emcOhHCo4lzm4XchlxtVG3fQxvbGM6U0R5S7EHGplxg3F4ocKzd+Th1PI/JWsegghkFEwo1KGz0CWG4AITIp7F0ZJ9SnpCq5moDbRtPkk3OTRFQDonVESBPVqfC1bDlxT8jFScTjyORm4ySRTIhihFSy1tSpJc9Ps9BoqkyUkr0CP5qHjYYxnVcWZZoh7zu1aYPLkicj1Mq7o+n1I4c/pWcSn3FvE+RlKGgiaSpkCQ3mKuTqTHcE8fdnMdzsRuGRfXiJ5opkDAWL7ImTVeNZ9UhgUnZGDmt5UQM4YdGAKo6yiQAJBKK6Bom6guM7C+WzZjmUl8OAK82GUyBNQCybtGVzh4MqNPtv8OWBUFm6DZTYFFl+Qs80BZpY8JeTQ65FCsWYJpIDUwYA3Zgaj5inq5zU/eRZYCEW9FpFK7WPEOhgIJtKvZJdCJnjIb6f3DVSeQsX52S26KNDKrVZZGGpgHWY64Em/sMJfwVjyfyEyUwJIA3tbthAZrcSF5rxJAvzIFXLZ388BdlWANPHfF5+ex6vOD+ypTiGb79P1HP9JEIS/uYvFqF0u4+zuNLYaVXBo0WHGFoIMqN/h3Xe8pCd/LFOoZgWqvOTWVEsjupM6EiM23sNog4VTqxO9qe3yNeQ/KfUorlNBVUJiSFKI/hkBx5wguEExHtDrFRyLYIZ95kdOoK6ZgZrbgal9qH0M14IzvivnkM9EzLecAEkTYPVHnx/nGZFTv4aqRU7eTO4eO034OjAhWSLHnpE/7t62+CUG0+zkkV+Hl2wamrt0LTnMeA7yfd2ZRqih+cUWVMjYPNW97pety9PvWEmsVjzCKxFUg1pCexpWrpQJcR2m2bX5nGnelgys5L5rn7JNFW8gAtu0dTFQ4jaLqF5qn9FzPYVAfjpd8VLTrH5U+T4Hgd+lB+q6afPlSmuYIK++bStuQjaL4AMqlxLCB6lSlN0rckdWOnEki+Di+OE+2qOtaGaz2Dklnz2WXouGdXg2o7brNyY84PdUo1Il3NaMm5rTRTRbgpGrxRBVh1Yw6lWEwiZk8uK/FzFFlM7ZiU0VgYd6F+Lm0nqCUZMOIdTXuWhJnkLbnC4Wae44yDsrzVGROSxbFFIhjuj0hz5/QuOqKbh4Ey4Y9AzNaaLuGjrxwCecbPexfWPDjhjtAWSZ+Lo2CIoxUBaCDxjUiv3qYALfKjsMtEt0DkEfXjVQZTbSSWByvIBpqE5QcaRks0LbGaK3Ir3iv80WuHp1FIcuUdlHTMGaeJGZdQlBEekXHlNYsLhfo5mwy+hcuOkHl1A74PVZQ+4l7gNJzsiyEe8KBuF93GnKeOOLzsbzZVyZP6Y2KoiUHtxDWzYRuNG+TK3CgiXdaia6gpPflYLVLyIPLaFirsC4ROtjkPY5IpSjpKKf6Vk6wjwDsoiyL9aORFIWF6SHHz2pcBjZO8+oO19nKZ/M3GPNvhg9NcfrsWEYg78RgVi9B5emERRyiAt0MpAxB7kw2YvOOQfPw+yN6/uYmbjKYtkTw29F/s+KQku2jq1uEjVbfy5MbX3NWX7mYW66Bd+nAc/SQatbGcgPVGUnBiIWuaAMuATn0NfFfWptPzZ4yEFElxZIK9FGlnN50GPdIFkDNQXlRpjUEgG06bzfI61fMD+2mohPf9l23DSz9cv6XL2eA8CRouDkwnP+RWcmsTUpY9aA4yfqTF8B8YOjQ8TRcRdz7PnznqR8oKyJ7hJRoyYQwIRpNqmatX8dER2cAUDhyC0Xv2EATWlMZNJxQQmxDIytEMW50tqv1c9LHr7uROVAIJWzou2oUpKCEVqZMPFhLwlbaqUJsn43gyD6ERIwEVSWSH7at6Tlzxj0cK77cyM551QSoAFKFat7RpnxM0hinP+vQjiUwAvQoVBS15lJ/qrrdXxfm8OyJ7HvAUCV9P9k4I4KkcujhVu+MSH0PgN/UnLxRqdy25FZGEMHDQrM7AQCKpaV1dkz10ZOqzJ1upY4/lcVT+qstFBKsY/Ob1Oy2N1KzwjxDp4JqppIOBEXYR6ePwM+jDko6/2m/fenG89ZZSwDwrNlxG0lmpbLQmWCzhs2Xt1qGip0c2cCvwCQBAKmg+N5HF9AP782Zufl96eVUEmGnU3Q2S9RHj5dUVOeXi/rmB3Nomhn0c4QwO2zR+B0b8KDar6/4MmADRjlqaPlIuY9yqLe1LkIZBUjxRAsFtRcXtJrbdLyFIOqaxF9g2bcRtHIsesUGHYdS5r4bAukcthgIfYAgXQClS5q+uhXC16dgzDUt6y6ZRslEnLXiOXoYIFAtlX5hhYXNmZGhlfvlVFNs3zs+2QuHMq/KPXV4IfCCob8SGWaLNmOB4eCXl4DT1KjN20XkKbQYwnERrQAaxr6UNHKhuVlH9oINqGCtpAHwRq4EQz4SJyq1b4NVghLvB9JXPTIwuFGE0xzBpWlenMZfbFWyQaFQZMqbt9B+X140sDp+YAEnhg8BJq4fTbEp94xxA7WWjHE9hTJBFToQn3mx2itBxTd6FOiYjjUWyQLaqUHknW+MFEhI3EIErDx6nGZtE6lIPgyQruBm5MeARQiSdUO5LhkUa6nmADWDeqFrZJyUETi3uoy9DZXiiUTMDcmCjoR3CwSxfTGLzHRCsHKMiQ3VPv9QXTFoDTFI2v3b1TieVvB/GUG7WAuXw/zF3OHHRnW+2SzzO1D3UFoRoz6nv6edI4szSaHCHsFQD4Ib7JHaWQQ664bBbqnqLFQwLxSTeAdwxNl7C8zv9eCvgRX/B0GHFZP0yaKwq+CfqoslztIJJcTeG4H8+uI89Vh/LZXbSkpfFpu3/U2VjYuVd3EHlS8EL6BHweajoUYQMzRpg3zEwbOQPvgRgEBHAQaakCjThAy2Lb/qzvDjOpeZmFydVj5qSqYQCcr9mf3pAQ3k50uGBQgs9MZpGBH3HIFDbYXMq+W6LM/HRFcnHnm1ctizEJB8rmBXrLv5thxA32yJHzJBAc/R8kjz1x+TveMBj2LFSBXcYQa4xpkmyJ0E+e0Ju2StmE+uxEsg9QKWygmQLpqVNBYEncglpQGVYVWDg64D7nuEsEXp1IoaCasOD+KMved9AhWu7v0s2WnIBpI22Qaa0V+NBJUOPgrkjOJ85AiFAEbCvpSwJrCOmXbMGTGHkniFD+XLW28H+C9GNxnMuezjYEr7xM8iqu4AfshK2z2jhrfSYHiVQ/8LteO7amQiU984Hx8yktukDS6W0S5bIkMsDxSLOEfOWYqQMP4oNHr8HFEJJOY3oBOG2huDb88oBcwBNbEELHUhFYSorsoj/soDofYoZjjmMjiFOpVt4wqt0DSLOP4Qh/zfbRVQXlWmRPJmMjObAXBQ5CIYs2ABpMEwQkDFDucE7lDiZeQhBrDr7hNNtakKgdmuDVLb0TfAZuztRMC3YXtJhBoLVk2FY9AfQuBkCkX9fYEzsk2zZZoAgslYJq3IluAqTXUk9ozRLgSwV+YPCY8RRQl7ova2ejt5ESECY6FoU4mRh/xdljc6NkKlAKu47CSWaI10DI6BIHObDU3LBpBhlLVKkcAHcpgEFxJfN+qUiJKRIPVc3UCexe2D2pZW6M/FfkO2gCT08nlQjUmiNJV3Hx6GnfesDM+g+dVkOeR/LgsHU2GNt58/yzuODtEy35mjlTM26EAAL8oFkVMayhrZXaKDZtrw10EkidKs9UEydLtP1uV8YBZKVZ10CiRormoWz2Jo6RrFvBtFZ6RLJTLUsWH7Dm5KrRzofLX3D8ob91FhugvqFbp6YLPRvWwEH2hcCuFLq7HIZEOCPNpUAbjaxi1kwJWnxdmzLxdicCthJajVx5KPOLAJnLi+2ZD8gzueH3Qpa354tBMgM9Q66HZEtLTL3QA0M8rq3lyfBHqTsv4kn6KrCjwjSSQQwKofFil3hUHUYec3h5Iv14XwQITuuRrWoEscrhZaDgMsU8URZzeOxXT6YQ//LKzR/Gy23aNcq4FgNfteksLlQwwhrj5VBmntyDcq0kFAjeBbQ2BTKFDx3FPft+8xbmEdeN74clHjpi51uq5aktkB1VcnvZnQ+AjVwQHGmzTtjpfiVDReNmefvZZ5NobhtiqyphRgAG7GdFtwohb8rSFvrl1WjpCEgVmB18hVdwrZNbNrjfobsGAaN04RGVI5T5GDlOda5QQiR8DTqB9RDSTQ+JuJO5RS5YTwUO0YBWtSDa8uQ/gPjCkE78VuAl7xAPMkY8vEU25rXFNpscdtzQ6huRazUkq/h+qbxmYUiOQ1459bNnaLsf3Lnv4mhKQPAyKD2XPob7GqIqZLw+1tJ63nis5oCYTZ2cUlaxNTRll8qvqqTqIOIB0kCp+J6hfRUy2oV0wL2ckaTrifprxnOnsU5Gz0x3HdEB/OdyQhqgBI+RAuRMXIKIPoGtKtYHezVHixYkG9AoSaKAYE3n7AYUjwV9cHMDPQDyQhjco6y6gvuqiJxkaXS2gwtKDVdivDhhLaPGXUCdCcLLkhISvn0pQIoISmDaUzYWGcqt75EKIAlVeemdxESCxOY6Y7qxk7Nkvld0tGPyQ9kpxA3iAat0iFIKLi6acCptok+HATSoeHVDsi1pUUe3W0T42pwoSXT7IYyI5GK8hwyYppiBW0Wuo6UEjKBz33KgwS6ZWXGX3DahysSDZ5srMVyJAXliyvkCQ2LLc3h6jh11EOdOBkwT6VHDrOWeJ0QdflnSzRGEuDRV25JchsAOKNNJYxwGlmPgN2kDBrbz7TBP33ziL9z5yeNnaU2r4rs8DKi4xo9bhce9uxGtvWyICdNnePlJ4Ppj7suDyL0uEkc89eXSjN5XJ19gf8bsoqdaN26R5E8r2TzSBHS/KqjaffeTceMNFUKLyxRhfEMUlCoBrrdRUnQcZS5rqPCDKh65R8ZTRXQhQ8vMhs+dCysBr5U1Hw+9U1HqOSTWrmyfUSrwnAcpWu9JPbcU/Ss9LZOsMlLxrZiBLKuzop7fG+UuxnT8Hgk2KkrCP+Pr5iWrq6KmSzsAgOU5Z9sbXFiRJu70dHjczSBkKY/7j4wA9osvBCSGM6BLD3M8ay9SQLS0qbDSr/Qaenz58wE+kwH4ZB0ePCozH/tl38YX3z+NXHirikcXKq0y8rbjOxjpyKS0nEogzTR274Mhx7hqYMP/5oG3jEFUKzKtRXLgq5SZtBRNe/FRVpYTkpN9aqszNUfbiIJUMyPKICFuYgTnRIVGQDRnaADL3oUgO56lcMaTOT7qRuImm8hpVFKwupryRcuM/aYdCvnl2XvEcT8sQ2aNYwMH5C/NpBHooT1twh0AVrQjNI6F4E4Ini8lGMYUrN9qL1LkC7533MTkVmQBRVsjIx3+n96iQ/Cw3M5gkQJD9egQKqOSsxG2xxP4ic2bMde40VHfrGWZyqnjV9BheiwLADM7kfiBnCgW0DuyMvoKzP64MMi903zKJG5knCZ5xS7QDwok+xNp0c1/BZ5kWfZxpyviAz+XxXLtCcUf93HGPhjg9LePjb91RexbCsytzm2IMSoBGgSekFkcoA80P8LSmsXO+iAXQpAH8LhlGSv20pLs9MljCpnga8yGmbRUdRBAwRq1aZgVtiWbLUMhpk0O4iCAFpdIWvLx5H9WB4VQ0NiV6AQlgow2TSIJMaCVWAORvlAoCCU5NZ0VIuw5X1hb8OT8ITVD8rjIqchShjoC1BQOyjNSlmhoaTWoGoT6sqCFxuQ4+eHW9jONpGUsYOG+hbIwSajqKZ/udFairTAQLtiNKssxWNQgoEdDmhAbiyMtWP1+8FoJlmjgD1QH3EQ7wiDRhro2IFwIQuMUv6rGFT6oxKXc3o5VYXTVxNppE5FRKKTsm0uCMkXwmBsyC3wWOyweJi86Go4lw4DnfuoOSlUjXzydLl3WUPdf29hDxmS8ZYhttbTx3MOuAxoKYjvME+DQCq2at+wNijLFc5+dOJ3zXPfHsmlom2vS7k1R7VCrSBNjBEV0WcpsFDyoVazT2TmtYJ6WZ/Ltnb5Zm9blWSauSBUnEV2rgtZ/JQM7oJ60xuCnqdIEAhR0MsmXVmtmzDFTFLWWVxDeF09jpD5AdKZh1muQ8ZXI19hFWH+7R9Nm+gPlsqLjFOnBpGMkL90EnQuj0oD3GHT9opIam7orvEMA7L1bbqbqgryDpyXpJdTGxn1pybA2uiOzvg4mfi/wp+HR2pmPYsgmdJpSPjyR7Ion2WpSAamU+jOs9v9fGp75oGv/3zx2TW533+Hob48Eeqw8AWsGpnVo+rnR8kFuautNA0AHaTkt7HCg1U2GeJVwI+ki9cdTPIAv+jO6/rk4ettbKEqVZWmy1BpQMC9boHUWE2ANh9VEXsYX92S0U+7qKeqLuHUR2K4gJNVdJw9CHNAhgagODswxGZLukYEUou2uUowMGKkMKAH2vgKxhztJ5DJ/WgTODUv1LyV52bJKfJqtoKGVSJCyfOgAgBETI/xXCjABWKKI/B62Q4O0L54yct0YaDeIlao0gmEeMe9uxw5Qt1BBj4EF1QNaZ0Zib5/uZ+mL1Gc99x3ADelgTuRdCuEL7JQjhnujAC0+SZeaRzCHnjiztjubpjGC1KaqTh7jaSLRY4eP1y6pHgKgCSlTcpgWs4lD9xM8jwkqF8Woef9QQv5PtsYo4tzuLt73sRmyjDP50MyCocAQPsYM5aHBQBWdseXERi4uwLpnGZBc9fevoUIph7zvciEVMpxXLumzpAmTgoIvhEAKPMnZ28ZoLeirxUWCSIduAWo6lIO2IVCCSHydPu/lhF8VcpsIM/thU0yIFBmCavMhutBmKK0CEza7ebOtmArhaD+iegC/Hh4Y/XctSJ8nVCNVo/GxolyigCDZpPVHTWMiZhQ9rBsycJUNMzsxi+dBRLB5ZRH0G1weRCK5ZHUMQ7GKhQzCCoIq+UOChkDyuoBgHG9SYaHkCmxoIYVjaW8iCBxYvCjrB54I4JTlKIpDT2gaeiFUX5ayK7tjeRZbPczGMpkt2N2KrKQSNVmfDT5D+YQpxGWQjgGEmiTLubOVHZwISAkMEoOjHyPII7IKGPj7u7tPxA+/ej/c/fvykc/V6DQiVGTZRD0Cpy3jdPdO49/wylrALMveOvnhEf/Gj4FiqWw4FTEa2GpPjRK7OeyHkiFxKCw8gEgKzgdwUJx+sziZ66rITW34tccC5V7Azb5Y86Z9pFe1atwv1mhY31W+/yrbhPWaRxboxs84C7RkMZ9Clh+jgEHM0jmfKbxNltED171Cs4VKoTNNX5DRWf4wtMBsn59ABqRFAe+2645BEThOjMnmiEmWjgliJLGe6FcBI1DKoTQSJ+5I7gkDNWy76aI/RUcWCnPHQlDcXkyIgATi4sCZhJOxAHM92BqN272/yMNN+wT3G9kgwgp1Mgx6FYFFkZwVuwQw63Q6LnDJVMXgGsacy3l+fd1YN8frb+vjpD+3Fzz18YD+2DKifOK5VhJ2VFXelwMABfGpSxS1bmMNlzNyOssM5QEEC2rMF7cXm+G2X5dOWhUpVSzjlsYtOU/KihDIdYkKam3seYei8dqUF+zQmKlp3wazeFljToorJpI5TTRV75Jt3ceGwimYqYcfxMMQhW1qqBZw4de6BzVJy+udZSOcg1bU3lf4Z6KgfNuhMCCaxspZSeknBT2WwrL0YxFbgmaeqVo0KcK4IDdfCoq8hMxFzU8kPHOiLOUcfW7o04HPAT08IPFpE4vUG7ClWwDdTXD+ACLyPElJUvtjH10EprHa2G5yjwjS5Z8k9m8+APoE7NRssALJFJQyVIqHnmttN06gDVAa67ilMTmM2ZmOJ3D6GWBfweMQ9ALprUIsUGXs60riaPyd0Mv32kg+oqmDS3lAtU2u9pDKl6CuDdsQHe6ebmF4s4/hwJfLjHL6Cs+05tFQf4nTVxakZOGxDLMpW5UWx0eUzxJoQMttssdTFYp/uwFHsHXMzm0Yd89E4DBs7VlSrAwDlyK6L5QVZm/TbrdrF0DvEdgoImGA7MgGC148TnLwebGxuZo1ADATzOEYGIjsURP7oPIGJnRxB3VmjeOptJC4fs0Lz1gB5WzDRwLA6G8cj6EWgRbsZBHIK4JBZsn8tkdDlCW87TMxSCgw/9OxJmiWgeTRnqmgflY0GFNOaJCLUkg+iixaHD18HooBdH8ver62jXm3tAA9N0BWA1yiIg/wWlHx5qKt0jEwXtGIs2K5fEg3E5x1Qh4BYgKQMBOzy0mBJ2xY0VC3x83ZcNMlhQB9nIp4uqZHdiLY2VESmSW9LI/B8zDpNa5fImrjrXBm700ubxI/T8rof2Kox/87t1vHqW9EpBvYtLp0YBeN8w4+xTK85kH51fK7mHK3fIyQo62XJDnxctEDMAMWcP5g5u+2kvm5Pr2yzxnnixEqirZUKYHwdAm4ysM1DVz9nMZJFDjigGMqtCRTAvR3LreQWGtVn5i+jdbI6WNI0kuAAk0o5zJsUX6wpYVkywmGHhI37zFqZLFugYdPF76A/OJrA4/DzvOTvgW7CjRzBAlBToz9pc5lICe4j0Pql1mQ1Uwme+1teY+Xe2BSV6BrBV0qzXfkWwlYnn4VbN6UKm3253XHFak3wjJGGJypIRFSaulUS4JJYjuQaMfl12RiJ/Lm9IV51wzze80gfh6gyMPi7voZaiWkkNWVSN+TMoYbCMh62edtTHXfq9Y5qAsVqqCoRBZIIIZ8zmd72R5JNis6hthUA0AIN6xUA4cEgGKR5Nrn6auOFwKTeqmO7KmM7irhxexJnZhXblM6PVG06hWCoLuMC6E9NFXPONQVLOOuw18qI2e4HbvqM8wqlyEXfRoME3GcXA/j0tFQzXXFFEWAZRKDZMBYXQTMni7SdSXsUJWJE9NZsnHA2Yz0SeGFZ2369sCaDLc7BPEqKuCRorPBZIELMTjUI2myoNsDZg11HXCmjIEMBIPl/3hvo14dnSNoDvaOCrbkxl6dq94o9Uh2OVCpvu6Wu1aX2TAb5erbSwTURz4cXp0VmREdZwpb3IKEnHsMIODMhUvVQZV/3OB5BlNyfJfrRnin+KBPWsbEei9xxpsb+U8cRs1Tvl7zvz1Gp90oGkLLPe/XtjOhB/Gf26EiX0DJjJhmgIqaCYfKw6GN/v4jJqTK2dzH7VGpM0n8q6aSWEizdHvZEswYYRCPTwIQY1OGQ6jxsf/gFRNt8EFB9ylgRi4IZMjZHzIkpJmEb3bKMYgp7liWzLpLZfdupLk1iNngxdvJWMAnFMZAPcaTom2eumuD/gUpeloktKefL8dTEx9UBoaBSDxLXCCIgN22gjD3EMYaQWW7ro5jJ16s4bqOYmlNoCz7x6PKU0wJq2YS6Z/DEiWg1MMsMtnJRc2z5SAyEMnG9UpoRUCAnAheOsi+96aXWxGYJ51k87zkWuLzjIPIAv1G2CeLtsS2beVZogI0yrdT0Wc/zwsPrAklKpZM6GSkY4EGZf9TGbVZ0cct2Gb8gb5l4Pg3cA/Rs7IsmXnpmiLv3QEReL4P6kKcSbdXTlmVdoqze9NKbcl36n62FMBxsMEh0+TI7bJiKpgMknedt40J03N5hidRlS7fk96URamawnOJj9wm3eKLVi+ZaQoLJY8a6JrCXnCEeRtktZ6XUTT8/lnnMM8z+vgqObNqeBs7Jzec16L8sea5yPQ4AMtlXlF5cjiKp2C3BV+zG14fNR7ZDyzKwbGtWhMNsx9VDO2Eek7yW0R7RJUJ/9q1tUEzAR0bwqxI0tw+Dbavyuspc7EOPRAq8JzxT7H1AAbMVns9NcQKz1/Aaa8jJWtpC4WBnqYtIxyJee76In/z1IX5xP3eD6w1hz8jeNIAq4qZTjay/bFouNa7sTI6XsOkSXQeABUpwRFyp4vQ8HT0yVQJW/mOXBfOweYZx49fQ2hGfj40BgLwu+5gMQ+w1VZwuiji/VcUO2m3aq3KnHOJGoH99H7NJFe1WFQdDHQdtHw8fLUnJQfDPs8H7aD5HqrotDELwIlTJZWfbpuE584yiaMEUk7Q6wTwhhy3vnbs8ueNPol2dTd95MvD895lijqCoBWWU8Kpkb2t10JAINnvA6/pZJqbDg5KtfPNsjKCybdJPnHAiIE8xjCt3PR+SwysKYgoUu5g84nkS8uC00LUnb3Es0ZqfKJ6iXiu5f7gMWjxBX+BALbXi2R4PnYEwAVQJSysRX5851hnr8D2S+oJknKVnbfZI2iazSaClD/if6d7xnKh6r3QAGfqMV5+h0bJMmUtBxibxc9EwOsXGrIj86PEhumoSs9NVzEAox0epq9iu65hiUdgQlRRQPMADIHQoiwBpEhxOA0tix+aocCL00S6gHFIGUoG0DPSPRrRYANr9iNwhCx8WsZgj6GzkV0d1nN5z3Lhd0kCGzokNxKWV7QseHoJAdiqB5sveQISL5YyrQNPGs4tFGYs5UCz4ogFjQ/YHyF1Z+tFySUST/QeBpkiONZaMiB7s1FEcoWGJ/Cu4filEcQ9DL0TYpnASI6OFQheEc4KQFa8FZtrsdUhSMUQgWGQT9Sgp1bMxG79Dpq8N3cRfdiBRY2v8IS8M5G8qPSFoSdGMuIoir+aGh8AYm5jNpcmDcbaMO4ISAOF2bACV2tlgUTMIFA9Sm7UsDj71xedpGfR8GkkCZqY/KePV57uY1a0CKHpwuPTIzihK66SeTwqGgyJvktl7F4Pzhchg9qt0oMO+2mqnh72F38cv5AaaAaG7caisoRdNbz4mVrnTWCLLS3G5Nc2VyY+iMk/8O/BA2VrJaHGifmwrnUbJLrFZeK7D1wWCkYLDzwFERGIikPJxICEBS8L56OvFNb7WwQGHHqgQtouxY4LFV0ldWJm9UqzljyqXfrWSyu4kGcApOMj7rAoARDhUItMexyVAXoNbVvFaVmpKai/dU5TLnqidO37YeDtvEH3gbVRLBbCTLOa1Pth5X1NklmpmWu4osSVHygpTv3XcdibiE++dOYG7/hZc7mfZ9xWH9u077nZh3zXyLXFm9VDydnHcIugznSVtpWzhgq/R2WcUKIhDSc7zuOeByoK5rb6xyfTHHp/qccDVs6aOLSI7RZwui0B3zuxOA3AB/bS3ADxExE1bTdyx3cR9e03ce2rCIJF7scugOq/smQcT7+VSr4Xzq6lJHWCP+glayMkmhF6B5unp2mVgzE9BT6OVyCwTQCYW7iFsUH/VLYdcE5x9Sng0jUwXQU/5rUbG/ARt3MFkXE3qZLUSfigLJYUK9jIs/1hFnH0SbZUyhl+s+8LJQ+nJ6BfKZLgkV5JiGDwbmlXbwiwtw2heqc9J6pl7dmMoebL/LGP+tJ8R6y+vGdUQJcGmlKTw0SIWySD0G6rorTJO0VxUufCOHmdP+357w3J8+9EN/NatXWb9MmYDGtugJ6UOfXgjpWWD1GiCMxECYjIujyoaE0921BUdZUh3HBLBlpF1GVPsbOCtREXD5JjB4kHdABiUwLIAQRdsIFzGxY81Vc0/tDxA9MwnB4Jk8l8ijjB5p3UUiyrKY22ILMl6Exd6kXYTzgiJFIjPUM3EuRhgtApeh5upY1HRvw9cBvcJyW2ymYK0q6AHhxGNKhcqAU3rJqackCJwZjWf3TMQYJFjV0a5jQq4SKrTCT6TSkzaTBSYLeA3SM4jfpfOufxZBAZVX0WJMkSbqKo8CBPhZCNxe33QMBTPNGePESVyrYxUcBI2EUvAE/CdwEJC3G/BRzYox2Am584DkM6zSMFG2dMoyyktZ3BIYj0vF0AH1akDUCLtXVxuQNAtrm0R/787TkeNHoyj7cn1dyhdbhAFLot4YK+Nl9yC8ousUZAJo+SDCCt7IGfwQioDAyltUODB4RmNWTGfS6p2FTCkWwvL8BMnaGjRR26oPPiyNChephENBwTcI/FMGKQp0iF/ibAYEhxzXKwO5+vikdqyQCWvLD+aq2eitxToJ8Vr63tdop/ZCzMbsOcPZnUPnmu2wLJiTuh4Go+rbG4lnw8xceZWymDsGXTvJ0fOOklv/qRa4CugsrhEzCrFyBqxsth7HPc6k99Ng7Wzfwa+SvbY6AT7jjuypGAmg0skdZMJ1qjK1gy6/bsSp/gXDOqjCwF1Wr4vFL/lZ2a52y1SYOkEtHWtjSPsYV5/S8Qpfri4DkeGutrf0ZZNPm10y2LHEgTYeLTg9qEywQoVBW5um0ZxjNbX6I9Jjzt1vFFQUDNple+d9tQxmSHS7mfJS0LiH3Fqq4ndIWIXZx4Cdjxvd81R5bCPSVHEDO4ZTRnnprO4ebuJ23fquHO3iTMTACaycuL5NV+SzoS9ne4Yk4rP3j0/tXeTX+2AyRvIKgBThwihZ9qv2V6Vyl4HteBqey/BOUf0i8mjulUlAJFtS3meGF0H1Yn3B9dA7oLDm6QJ2dVcFCHtO+hryzVhMq3aveXeAFDG52Vygkc/204+oUk5MpI2wblm3r0qJTb35OvaZN7iHYYESUOzkIc1FD9YWqExSHTlAfsfqnem2JggomDWoIYCTl07EdrkSJm7xwqibw0CxLM1rN9k65LaiisZz1mp9yWwdyffTYf4EiXKjHDdpUMLQ6ZXi31kMk2Uu6PrFoOlBVWlKrSCH6BNvYty0cbxQRfNKUC16hyAVm3JuevnldqZgXdWwstPZa0j8Gig/gGaQHGAHidBa3MCuhm8fBYxW0xIhOZCwUZrQ2NJtm1dAd4B7iKIuzw01GwZ7bKWDDq1SGdFzeCpq+qomNKr9Q3fH6ocInjYHPR5kzdEE10mSAosUY4Gsphu68AiKohQ0FR+u4p+v436bBXVrGH7Myq/iNODW6eJyIbUQxvDEgt2Ph76cKefA2FZ6tTvmpbIJXwCu7lWILEJN6+HnJ2TFovQ5TYE1EWrMjyBfRDsuZDKKBplKytLF016BcW1nhf4I9MJA9H5fEG/JW6IaAKOawMfirZaq+yYKkmqvUUU5sZU93F+FvHr+wDun6wAdX2NXNI7dcTbXrIVVRxFC0sbCDt87pJIbZXuqv+t1dqOjnSQazBAs3UB1ehZ/R3RJaFJEEoMC5RE/AwJtdoDDwcfYa9WfoE8AJBcSeyEYL0CLw/rNE2FUyHiciNSQiFkEnFli7FEKUGGHzmKRklki2DEwCI9zju8Xi0jaXqL4bUtZFBp5hI/UqICuu6MIEXM1z2kn6fnLdWTa1aJRNkyl3WJb5yXsvQc3fwxZ6mit50KS3b4Lwl9CiIJRyJxFcPEwblQIu6dsLiKOhYLdXfIZ6QDz3sSuzgo6KQbJhFUMyFcoqZ9jmXVqQId1eIuS2Jg7WYtmK4KUPEjYKaRtYzuz5XH8fmv2o3v+CmUX9K48Vot7T5xpF0PgpjzZxpSVhgsDdnIs4wFBQdAbAbukTJBFv9q9Ed1iAHeJdtvJRKNChNoFka4WMLH35n8ZLcHJ8O9nAn2mknctltFcYBr0WsiaweogLUClIilaIgFhyImONNMy5g1ZSy7aVw4HuID/RD7y1am0ECyWEZ1V6b0muV+IP8h44Ij11OCE7wf7oRbiUVB1FMCFlTG1NNXlDR8DgTF5sF7jZHehbncoo2p7WC4aagTTYrKKOPszXNMzgY/l/mGOF8SbrbnJ0Elm5irs5oSWLaUxDDnBKV60SdKVZYQjhvyQ9kaZx33PwBOvNcSq2RGVMKrFjQrno8iToNXT1lLUiSIQronsG3JBF4BqFKljTbA6VXIc1PgBQEUMktx5nkvJICDj2CBTlrBEEtRhlnNoNaCkFEbDpHVpxlXLUdbR1bw5ys+48FYtjUJrckbQqlVHnm+9AKR94Kwc38k76ytXR1MdAgflsx84BsF533tU0X0UDwdVTHdggpIpVt1sEGQVPJnqdoFf7OuYgu9JSsZFat5tgwm0QaGSIIza6l+ZSC8tYO/o8OHsv+lsz4ogPg7RkcmUcYWgiZu7AikEJxBco3SEl4TCKNgdwatHVTHsAUQAd77rK1RVMaBWAKvn+lj1ZVRHfQxRbSPjBsHaLMi3CuK6mJo2tjfb6M7RGo6Z4kHn1su60Y0UvVjpACTBJsS+HtduxzbRsEwOwnxRIpaN5jPzgLuoUi/P2aB9uRDax3cX/AmSFpWiQp2BvR5gkp7JI4nzE1JcRQlkgOU5xG06+TrcU956rRsYo/WdgVl7EK1cBjJDsPkWPq8YYOI+LxXnTeC9NQm49fPUL756rNN3HFqweBWh4J72bpUL4TKJH33hGT/UFuWcG5ZoMA5kGhRlmmNQgmCU1CmYK2TrU/y9NIDktkq0BEEhkqSoAJuTlhDaKK3qepfQ5jkHqLwnMgAgsQuVbkqnfEPOUFCClUdcznJXS6ESgK9FqyGvUAHtw5O8uV97WkdxaqDfbhQPUhTVXyfbgv0uBPCAYscdhggcmpL23xfl7oblJNxCLiMjfs2R0eEHt0etHfwbFkrvdNjs+tjAv4x9ksoqRdrJtBATxqJn2wpQOI7+vbSNiM5xhnI8nWzGCROF7l6/MxVlENFz0B2AXEpa0QN+bBEe5EBvYJFzAsiJVB7IugwQQt9lrs64tU3zeMmMpmvxyFeHdbI/adRaVj5zWGvpsnvUFI1TjGH6QXoQtGjQpJWLgQa0oNNQ3u7+wBnsmBif/IQuDfbuJkJWwSt0E5Pmzi91ShQAD8T5V08R87zIWZIgoFS1WVMm5Iir2lUsV1WcevuNO4/Ow109jpdROzWJdExUns4H8QnSFSpH1qCEHzmrGSlZ11mj8lZNCKfbc+8l2B+0AGCQWJ2tRFaJQALrwnhpD1tWd1RJVAer6Jw0VIKgTccPLy403Qdexes1lRCdm/anIdG9pH8q9+vgIK0NcIcx56Ec6rmfNbr4uzjnob3df9gVNiyTi301pzbFlxXPAq0efWzZrxD2EM2YzZ0GXl7Hlh3jH0IdqQHgMrQADzoNUgRjM3AR89bJR7qTKJg0rGwfaT7OHc664dpLn0lM/4Kx5WWy0hMLYY43xzT8BIRcDaBVtHUeQV5Ym30yy6WB0V0iyq2T9exy5ItWqDI202bI1A7cw/wAseAN0sHVuaokNqmcqDUgOB6YZEgO0XQuVRA6UBFyhoQLkEIlTqPYgy2kytiezaJ6XZNLgWydEbdLncikKv9O2hxhOvFZ2qpQBDqBVuE4djBkaidOvJwC0HIRcmImR+yMx16XHBUE66aRQPy5iugJ+5Sdi3ksnGig3+TfRhF1q+3JjF/FK3VVNLTghBiRqSMvYjBl3R/ZFoSANZ2HRCHE2oaFLzMaFiaSTz9wpxxSHkFtBPv4fY2zgazj6N6m6IRvZRx2CSROQLOSGdylf6VIZFIjIAPVh5DG2U9xGQKOB8KXnj/mSvJDUh8SW4ErmGqxKCyJ0y/X3nnnn3/rnz+XqtD+0hJXs+b76+jKYESK4NFiVdIuMvwbp/EIC/Vpl4nKvcJGaAfOriemBdYS1C/2yhZxGcjXxAr2WQ8S7sU+aSIJEssNrOFJVHaqDCRYsl2/BQjEsDvu00ZBUbJNSRilUKeVJmunmGWfzF0Dfo7D4bRENwO+U5e+Hl6cGBPbnpsdWbusKlWY6IgXpIOEZVu1kvQ66pXDVV3NY8RVI28Pv/JQG+Vg6yat2eeB1uLFNm7q6HaWvJgVUs9erwx6FNzQh4i2eXKHRQSvUPwTeTDhyhKXHyG7GyUbCKfI6OJ+qpUdqIvu6p9zIyxx5FGOsPcKeN0sYxPurch6nR9rbLRqoEls2ad87nWYg33HYgf1LyY34lGW35m8197znEf8mx2GZdlTiNpaeAsIUOKBW07QkpSEWcnZezUZexMa7oiLKKM5VycM6J64MThRDmWkwUCAwSAiFmQVGzHEDfVZdyM1nNNRWUwzjUl+zZbNheOgoJEKF2eFgBn6g7xhxW/bhRSkdNnPmm2IzSYQCDDiBx/1+3h1E7N6BzdItQFSgp6BYl4F9i5ZPlUGg4bMHsO2qVWLhT4GwEAnQ+Mae3huhKf+CkTCOgsvpIdi9wg7JFHv2Bx0QkSMfYCv1Pt1JJ3l555+FntT7ZFyt70Y0A4SjuIZrIvt31qdV+NHlv5rVN8pTbilbpNHQJNVP9G621/uBvY9jalJ1dW7r1qiN+4WaIUhcg6s0cEb4iOOx9KLOuZU4TG1m0ZiyNISiexszfE7iximwrTLJeoNKssvIq6bVh/J5euBiyuMi6CM3Dj2G2A0aECPwxE0bREJBevopoV8RVEDOJ9q+yCRY8AE38mCGZAejXkz0mCw26CbETlY5SryZdCMREoHbgxdHsvaZvAChGJ9Hr8dIFv5F2X9XwKXsxF4mPH/Tiea+IB7ubJXES1V0Q7dY9dlwTk6acBnh98m5pdKF0nsXi4owcS+UgUllQygcR9wSECAQnRRWTpFmjAPgrZDAiok4L8FqB3hPHBKXQAr8MUzxSTcSnfJzbPlpKJLbTAR+HJA3QHJQYpd9lsnEaJ6gHJ9rydmenwkGLw7hbcNN9E9AIPMRI2tTEhYYANTHY2oOll4t/gMqJ5esT2RBYDJw6v6zT4S6T2pTdE3H5aG5c44EC40douy+cDUW4+m3HHU7ZI41+vK3mzrThJaULLZuwMolQCdKytLDM9ywgCqI0SyibyhExneWyc1dicnlkxIzKjS/Z0TGsUetjRbmHVY5PzCQkN1ncaPmdCa+QSSAxsGlKRS6VckvVpv2EV8ZoNTIpBEq1kQs2TSpvr2KOWyESqCZVc7m7vxO5sFlP4AfproychkE4mK75/WN8uPyfZOsszRIuAGuAP1bxCM3V7tE/i5+AslSpP3FusRVwgjZ/RpYbG3D7k2FZN7RLBqyKJfMAfPVcklrx/LL1Daan2UrRLQp/vnGDmQ2GtEnk1Ii/nUMeO+MzwwwC6PHF7O1/rK8+1cRboE2+JlUXX+BjtHIsydncgIksW9arXNKo9qMCzVMp5reNZFfLkBtgEmR54sp4iQsZAyq+V5bux20IGDPZ4RFeUGGKnKGIXrfmg4m6KOLs74X0+hs8jAn5YOc0anj/tXH57k+hJX+JZBh7fxUXUB8u4fdrEme0mtuqKXEDMcXKxs6sU5q1N37UMqjGZI7eRywMBo9u1EeVWoAcQgbEWKE1cvyojKY7T/pOJ6EitILIqhH1MXIn4K/BJkEhCkBSRCSUT6GDAxoFiSjfUbUft3iQhcGCWDzqtD+hoUcgrFiX7FBCiXEzVv14X6Cg9aNd6e/MujSJwJXjZUSgRc37H9KM0B9e7WR3utnkSy7gaYVGeziYjshkIs5ScNAFUHR180odRgSI8CcvpdDWbr2bLtqerlGWGDVLrF73p3rj9xq0o5woiilpqV4yKHlJuUwP/nOMulotJbO3h4oGUDTGhdxV4em2gIQEmGdVSbR/N7iTKLXDh0MYNIhJFwAuQ/zlRVf6aTmaxIPxXkow8rVYZA2TuRBDLXp4+/BkcKH1MwLyzkzf9tRpt5CgDlflgWnwOwNr4PnyxtCQQpKp8ifJOz5LvcNBGtTfVZss+ugXb7HCiWs3HCQHOXY8AVr535BjwniHzQImtiK5pSCqucE/sZyIiKVYOUFAFg83pMhaPNjH/UBf1qSHKbXkWNmj0fowWPyuOIrkF7EEp5nndNOTw4J+Ticj24E7qQG7V+slWBfB9qycNO6lo96xiuQBXQhsF+vgyE8PcwWfB7yBrJddPJTm0j2M/UHDBAGW7JysPQdr+qM8hEgYgH9nsHGO5XEhkw8WJBad+ziwlF300xTJefKaKdz3WXvelXmwSW0Ufr71zGqe2J3HxEKTL0fZuFNpgc4TPGO8dp6O70WgpjEIMv6gyaq6BlV+e+CrqfSwTWJVFyFWyY3327xSqJlR+Ag/HHn6dicRpU+ecSV9BXuyKD83fh/Ey+ebZxszdQ7BetnSdwGLYzzPXoc2Yk+rA7jrpUu25LbJ+WrEgUfThZi4ggrX12CQPCZReE0UkJwe0kPmhxE1JN3HCqAB25a0p4aDQT/Lg6G0J30uxp6jQdQk1DyiRzVdiDpaBXfdmQM3gz96feJwsv5fcHxVlmYvHxFEnE7jBKkuvVJPcb0aF5qqvL3mCONxtmUQzdgaPa5zHdGDA72Pq0VZDPVOzInDPDXV8wj2T+Pe/dMQ6+dpMu2aHVJPavu7dq210XXGfpgsYrW9ACxLlAHtUKuu5JrKUyfspISH55k6GxfFSJUnLREbXmnetOi/YngMDz2kbgAMnHcqzOKcgAGzi4OKCvo64oN1pE8flEZG3nUkds6qJGoHfMfh8Sl5ObU1ojN8dVzGdLmJeRByQgiMsKb3jmOhj/rFyQD4Aed1s5wdLNZQaWVWS5y3K3qy6sMsSypuJ9gGkSfESrGSw8cgPD8NpH2pj5taqMQD9a9lBRNw6KfRld4JbCKcGJPfsjpGen7azoO0TgBbz99hykNQjgCry8aQPoVvvYT0v2RKPLyx+XfKtrPwFx5JKbgTFuH9E+NQCVfzM9OJzSMfWfODoqkuPqDR2ogCdxvsrvVMRrJPWon2AAlF/n1Q1qnbhPai/43qAfop6Lb4heZTk/3kXLos4d6aKD70/nRiuYuB3JUObRhkvuiHi9KSmozTAHBUr1bqLTvF2/i5gDnuMH2ii2dbBtDjqY7IoYjjqozhWX9o5XgR8vm0ETWpvjPIi+9WWZRyDcIuFKvZ1TIoJA6T8gKjjs1EzTZvVjYLZQaeAh55MfQXQkTw6ZkVlEQcD+HjiY7DZOawaabNit+0u4nDeqiVW8t140ojsiSAUyN/icBFbu+C3iYtDck6bXoAuxdrfjhkHOVKGWiDXRx9cSP/Lhq+J64VLP3kWCIrJPVqy5Kf9o4vmhiLmR3W0By35Q9U26njq5MAdzd5T7MwIFAGkIsx/ZJR1Q34UewRX6IyBQxdImpWKJa5H7z0/VgcTBWPuLcgDDQcehCHK2kiSxwIHMRYO6kBesQC5aG3ESZpEmjfbK4lJWhJptWCxWPsFyuL2s7ELPcsV2Zi7beNUPYu3vOSWeNeP/PqYmFyvA9Ph/huaePBcF0cH+7b5sMAla5lWxKYHHRADIEHIEhlUuZSQ5cW0OskyI/2xkFGCH4dH3bofNu0RbQHENn9AXG3LgmTMQYQkt9lhI9V6DtxA1rVFi5Sueq5ptqxHs+KeZokJh4hSRqFMqgIkvQEGuxByuJTKwEWfI5GEFdfKZaqkKqxZUWQZdh0dHCsO/L6V/NljlD5iCoj1Hka9GIHZXLkuzeNdcW4YaI3m1Eo4cT/IZ+a9yzaWCrJ5gNvcHP9WGVzmr3zJFJ2svS67hHALWuv3a1EJAjyI4bEnprec5gDKyFMa17JjQKKU7nhCfUeW2nE4YT9Bf3C2oUukAsl1F/ftLGO3ruPikkzOuNaHcBd54tC2i0GIoF+4PsgKVB2CGPxhbzH6jXXF585AcGXBkQgiEx4CAgoe9H4WVLhXueBzcQgFPFWxO61id28aEwYLkPJETLB+0Kp0vmBrUASmkE8W27PYPbMTp89vEVzheQDqEBVOZew2VczQIevDF+KRto1Hhz6OhyU/UyK9BiCZdENEQCNm7scuM+JcNhqHZ69+3e75S0qO0LsS4kR+SvUEYfVm7T5L9a75gvtR07gv+4PjvJToEeekvGVXPp60bU6VlHxUfA7jPE77IXcTIe8WJxvEJC2bNOBZpnBt8GcHIDTAYxhnvqsJ5Dxa5IbzlMvSFDFyMxkf0ueDIhYmWUSF8XMSWlIAwgbhCvaITmYXK/fpxrWxL7E9fsXPtf+m90EyZqnktWgU8Aa3GC1OzTMFtueaMj6cirIrQNqfQeD31Is4N1YoPesO8DOyGURXII3adNHRLIKZYmhjvr+MxfEk6lPTKJpFdBQmFCw34sDaQr/caRMDJNDojzRBIHlsmXg1wuq0iXMrNUTiQIhwHLHDAwmRisKB9PGBmA/IAEHPiTDqzBuobCewAJbRYSKhrgSvuAaiA7C0lwo8tqXyWtBaRXw/fFZkOiXQMFzPrCSqCZSOqlW4pKd9iYMk3Dr2OCQ6pknH7pAi+fG9QWWYt8fRL1uSwMnvoUhlYL9h9ivEayIwxIHRBMu+dTuLxQXc1y6GaUS1rd7AlsOKVH8s1TD7IEP9iED5eMHDOg/RLIkx6xpb0thug/6E4kkA/lf2hkB8IBdoGMU6g0rXOWc4QVXq5saAz2OFKZ3d7XUm8r5c59NMlc+1A5cNT841N6LCaGkF9EkckztP1cwW2efX6+GEovMaH3mFKAHddwbtmmx1ZEELP4kRfiXB7hHpNkNZBknuFvfPNRpIHlbZjk28sxVHjqR+1yqzmCorCVsx+LVS2GNqlJCwLIeSCL32cw6W0p+PaIL5bwxumCTo2ihcYVP21miaY32IE3DgpBWMAyNm3iM6tSqbyBB29WEzB0iP7+TJ0uTZUJXQT5Wpab5unhsz/iw/M4hd/U6Z/UaRpafjv+11ZPTrHqPkg4mYTvQoEVK83RTmyEL8sqScFjC8p26lR1oJ7gFl/7LdUAtSIY5E9jzHkYhSzQj03Ei/+IhaD+1yLpscOgpYSWwSPZXMnocsKyN4tGG0tJ7KNrC/PXhrE7f/Whs//3AyRa/t4E/Fgz4mTaM+r+nTRs84eLqCg40OakJv+QzNBc1FND5XM7RWXmuCEtl+01QDrisHAwqs9YyyhAr7le1aQajWL9AreavObtiN+QcPI/bnpDnsTSaxrGuuke3taWxtYdMXMAFKDXvVwwcQLejObMcHDhcxhYcdgBUuAyf/bhigK3awYSRaLZydWFgAk44NVI7LSkCelDMHv1aW0qB65Gis1gx556zAJfKc/Fi9P3+P99otWY120bi9BkVJ5w3vrQNSkcjFJfSdZyyAc5A8PlMs2IO7dG/dsmdLVCLhfC8rhhGrkH+YVjvmYBqlpDJfPVP13Eh36KPjWZTehcnFy2roSN1XsMaECs917Z6R2uTrT1cBb6hZKbGXs+Ioi2Tw4hCPYDNAsn4lo/7Ie/Ke/NqZeiAvoWMms+rNC2RNZTpZluAjzC9WUWzVMdtaRD0XcgX2dTnFbrbkomDrFFpDwC6ljwUCKiBbrfoQsiwD2T2UQFbt4mcQYOWBxU0WX2NSpUUJa5PkGYh/J8hb5HClzURJ0Fx6AYsTuYajufNysSAiiZ62c7wueFazhsFSOrXz5qJkjABlVsfxESYyuEPZvNtk8REpBXKmgJPk6+ztSV6S+G4VA0xbMiywpIU6wmhZtufiUS6O07YCUMsimrMIPiOG/TLaRRfDjlDTopiovRyzGmU6LK/XKLHVynSYuDjwM8eBZaUsbbGMpY2CpQ22+3KIYD5gWkMQ1QR6iboWfF4Ioa/J+7PvKKeBjKyBNPLQG1GTlT9Sa9sZtaNCE+8qWjSxx/NedOztuFXAqDTZKdf2IXTpGGnjJVR+Rdy9u5SnpJV546excpobliMmUroaWXlQyIEuNZgrDrQoxnA/XFFpslenji4hUXpmjNWxyVJl21F5Wq8Hd2uogeaBOSnS7aiHNWGSFc+ar4/XZKlJ5tDsnb2OHINKAVSwhOn4ioaG5ILzKm0LzIsjwuKSdhKlkQhQKUuvr6D6cewilG3UMiYcA4H0dVMgCeQardWwjyAZWllPmD9qeXMi0yz10mDch5LvD1F8Q4zk8JnOgPmLFl7wME2TWaqp0ZMXVjg2m6YdVCKPRj3gOwZkUYbSq8+RyBM5eeDj4YGlv2EeStLbOYgxyVH2+LyuMsu4WK64RgS0GZi7LzKTPPgf4PAfIs5Wi7i16eNdIzPw2h4pIjq7XZG/CQCBOBOoKgh82p6qbFTVUTbMgzZJ/jrQkVhKbKVSrpwIhERZLZprwSbpScNS8K3e0YQMYMaPcrN7M6spZhETcOqAbp+eRvvoQdTNLM7dvBeLozbqZRc7e7uxdeNMQQdssJZVVMs2lqYE3bgzidtPTeMDF+bxMDlzEvmM3SWo1k9UTDX9rFClSpdnEEv8hoSTv95LdCR6jl4rW4aK325aQw3UigXMMclML8BU+tIajMGQ9hEGSOML6GezH7YC7Gx+7TUIgIHT2kkp7cgkXkRMwgCvRPCogItVKJmbsqpBFwoAR9mVx3OEzxYJd3YT4m3C4gBty63x2Ivcoh1/PgpKE8dzJxc9XCXKYM7zTDNFBXS19HVM3qi2xCyXW+iSlQPOP9nYVBP0YgXx7CqWei8X7D1xDPG6l94YL7nnjBSmNYItZU6xZgDMGnyrcuHWTkezZGxezW4Z7R4g7J5CDgRYXV/LhBmRdgXOIB4KZoM4A11Zs9yLpvVQ7IH/vwCPYT6nnxGCL3DqOrS/kTWwoHaUUuBeTgWozLAIf9ODQq1l4PGDRdjV4kAg+APXLLYn0S3REqeMYdpFswXl1RDdwigigjjfr0KEwOgmRicLBG+Y0NheE2mAbw8CLXCq3B2eyAwC2F4ZBXiK9PuROxezIBwsNe70PPoeFjBYNOI5cJLS402HWD0Zoj27jP5CLXsYtPhhEIdej9i4LHlHuYD9KZfs58syh+81XlONqN1jl+sNWBQidvAzuCJtbeCuAuxhXNMsV1DHMkpujip1MFMm0ocAUBvdDAEzy1/iH6mkWccSZQUsIwT85JyV0QHtZLP6IuIQvkxqD0gawbyPWdXH3XtD/MoF9W9cn8vXxxACd+NuGffeKDR5OSxdFReqimRBxp8rRRjLpCjVClAVsgbPoTWfCcz90eHeJWBywxAokA+jACsDOvb/lGklf4deYH4tngPsS2uu0BrpmmXiWBeSrLJgboScx1JM2IkqjaqY9KUh69hWFdfp1hwquZgcjf7Q2DQJtSd66ATKfXSTIzoGujimR0PilVGyuOC6F+j6g7mOfTXtUdgT3IKV0VMMe9h0EovjheeY7ilMyRHpkXbiSgxN5Ssj3GBh8DYrAGDwaH8+WMjAB7GeWYiGEmQNj017h3JtriGm2VqLHKCVv6EOEXGyQH6CMAMHK+gWRABtN4IAjqYTSHipoNcBQyYIlP5bowUZy/w4pMhao0iliH7exZvuK+PHHxniotgj1/SgBAHCjiZiAjQJPFW2RHT3BQJaQmuTpSYBzsqHjV9jwm5PSPMT1LvXJbmEzL0fO5ywGFP+iKxdIJi2PJSomassMFveQmS6O4uDg+PY3pnErXedi8MP7sfiwjKarZ0obzpNxKc5PI7m8CjmsHZbYv8AXaeOc9vT2IGlC7hn3AyNJFU4eyx7T4/MkdypwFUeuVbf0i7NIAVfphWijfWHeUXLHwtYzEHPDk+6Gb5ryTF2GYBVnLXSAJwGAPBgL9cegDNLfoWrcrmAJHkNeg3gUt3BS6LNAiCnRJ+gYZUQHuEsAfdBKCbEmvwfGhdYPAFauji8SIASefBax6ynPx84lUpxVHlMkVdyfzPRVO9hMiZNYcECBSBFpwu3sYWIMakorKSxeqn9VHx8/YHdGvdcXoxK1buzIh4/XDVGuOqI35MGf0UZZ7YmsTcB5CiiPg5tZOjyQBaqhA0FNxju8iSA4uA6NcRkC8jWXL1A0b0Cqw9+dctllE1Da0NmWOCP0GSxdbeILqbIzFV75E2HJB5eYBX697Kc2KglmY1Hm1kdXVEzqoe5NJ4iyyp9QZ7esOziqF3GEophQv8kOkRXd1GgfAuhBUoEKEXTLsbqPHBpzBUg8dmTHcEVYjo0tx5LoeQo0VwlBpSVl/Ar9B5BQ2IgFghmtMjwmKleB0rWooxtTh8zLJSJpEKu6pYCjswY8BnVVquMaq+M5SF4IlOibeas8sBEdotNoazbKLeAtFWxbJc6jFxaBecSC7BGGT7Va1iQNMhVyxzxtuStQXXYMFfJ2H4WIr9LHMIA12VvGmsjaMgsbC1OabtjiQ18MMMBnTYX3Bzd8ogblngW5GTWZdxyejtedPvZeM/Fh9d6pVwfA5xVoK5YI7dPitibANmTqElKOOvCEPziF7zBkPOH873DmlALMHBCuSn5ntLDzQgaf9U9k1XacR9dI1tEpsmHEYEba4s9YJNERqpCWjeo9JlkdjUYcGmDJdAsoYrTmu+dAQsDsuSUGa3ilpvkeAJVWj8pakj1K4zTkawlSkWUkiiOAhn08mawx13XYrQU9brkOnY/wuEBGxuXrpGAYA9LDiEFTrxn6rvJygKQIQR9RtBMu6QlFNWGjFVt2k4ajJ6v7JBWYgseXnURLZI6vA0+CxD7WbaEkoAASS6oJYivkPQmT5HPDCVEHAgOzoADaL2DK4xJ4edPvpP5yFSVIthE9O7uPuiSQ9NuBa7svcpnJMNpENp5JoIbTKS3jDtvquOW6TIOWqEoIvdfq+ifGFewP1KFEUmjUCn6HYDZAx6491E+O8w3Uwq4bxJVM3+MSlPB3enBOEq6GShoPqubkg5v+LLyeMe5VUZsTcqYzaqY9ENsVVBJg77S8UyFSBHij+2dWeyeOxWT4z4O23nUW1sRZ89H2R4oQ4mBwsehXxCNQsy4M/FZQ6N7+elxx7TTOBFwn4Hqpa6khsAeUHlzc2EbIwsXI54Gdnh4sUMP5n23hl6tbFXS+477kCk+rrEJ3czSgQ3aW6oxepZs1U5NjgPc91nJgKNB9q4XPIHy6dgXUT45tqfGfcf5i59W+1H2CSZv37xh7qsKgEtwSchztsUR50tmWDZUzuoAENNB/ZtH9a9tnNzdPjqe4/YhtL8jokU2eTAyjL2gH1sBqiKme7fip0Aoyja3RgPxe03Rs6Xf44nGXj1V7xWUybA59AuWozj9tbcRVhUPQsRwqv7Shh8CgK06qukxDXz54Cl8KKSohakw0TD1mEQ6j3ZhtDaApx2CBXTmyMVFjzpGMuZYwNMOvW4RrMBfq4vJBKiJoG5Ardh0oViCEoi+f8xwwJeYrvr+YhOG6/iyj5YOz3VMEfTRdVE9F5Gt0RvJhzIudwFndXAUCY+lmbXNKeHNhGDPfYAxFekDRSWrSsIDlU5GW5gegsOn45ncQComhfZRZg9zVtjhOCvBliXOQp4IQEzdLggLZ9ZEBYuZ/TlPLk5UQtE4IJOQZQ4ENit8VuQ5VgCKQ2RzT5d81YXEhzd8p5zl0a4l4WkzxlUGhl0MrHkkVrD0ZwxqGVj3MuCWUlMZeFE0FPvgYKWRLMzAaR8jixEkGXvbZdy6q16rY5/H62W4U8ruZIhPuLeMocGcXZWsswMKpkMKKVLBqk1N2S/mg19uDKTFK1Opjv9m5qvgDao2HECaM37dtDFwaVKbXfKDtCvi4IcPHX/Gvn8YLNdTSY45ZL5fnoVW35LXSXTPfDl7DrKTjv2zEqhlNu+SdKK3sq8R4s/SspXhoAbTzLmUyo9+kxZncdoSkXQgjeTFBuA0lPWtruB5R/6bHbSQZBnAIWpGuyR/jnw6/kv6iY2RNpwLeLrIRB42HeSUJb/QXESWjhAMUp0LNFNrk/vIWjEHhyGDPs+BFfddyAXKlOTm+meTHzlx6yv8PMrYtF3D/ZpuxYB1ZJIj1lf2F5Z4TBZRZHOkh6p5lnRlwuF7NI9PuHkrfvU9C5Uar+mBBBE+oWucayOa2MoR2LIvL5+jAn1ya+3HtyIvaBIR5fNaHJ8RS+cZ+Co5c9F8FQS53AohHYAHIrZGndFRCabCKJMWQJ+Bhk1xPpU8C4EyF/j3xMRuvDSaIixb8u0bVAkQVNUVff5UVrQXuMIN/nu0dEloPrvG2qZI9KQVr0NdrzLF8fy0+EOm4iv0mZQq94xPp8c227DZ/oVABTmWTgR5S5GoiGbAMjD3/m4s2bKHvdfeOGdT3c9uRcr+6Bvofr8dKlawK8NZYuJsApKMJ9CpBfoAnoXjo9VzzY4kjhJ5X/LdUfLH/sKAW2caUbw1niS9eh0IK0nI7DvZoflqUhKP+7h5ArSisYn1GIzadQHJiy64++j5+GEgzzhFxZkeIEnW/Ewta+4ycJbyB3Jx9tpt4Mm3kJkjbiR3fFkY6AorlfswRSGosHmqCK/IVpaxi8bkbkStHrA+DQ3OY2FDEIGgLpEFIIRTLChvkiwXsz8s5Gp1zIshjtEfFwGGFY3sGoHrmg/RHsE42G2WcGjCQqPtGJSlR5n0EOijB9duFg2sXiXjd43Qae8y9w7khAF/DXYnKAEg4ARaQhJ25z66BuqzzZVIGCpH2zaNPmrpsea+v1QeTxUIIRgelsfRHh2rJRDllyjPt9ro3N5N2ReWSSeDS2ZJOgS4hfm6pSrNyWwjUP9bJpn2EKRnEjocIPvSawGhwO8DyeAG5w1AwQrmRRmLTm3nlktYxQgxRekf3NDlsaB3mEXjEaIYCkQR2VH6uV1vQ8+0YOu5u3aXLMOhtDuKVNYEEipJ5X0WSoSy4mi+bRf7FE8o+872iGmebX86oxPs45lKVvBigBpyedorKxEqo1TEEyyqSEROm6RFOvavU3Cz8ttKM+gs/6ZZa6K7GGopl3fGZrm5D5OUrSBk9PiDAKoBWh/RIrFjRw0hYUh3QcSGV6Bl/0QRuJ7AfT8c2KIQ9A4eTIkm2LwZ90WJjeY9gkld1WozFo1Z14X9i0EsEjLMcRDOsc1YkT4ePLa+yVZqLBMTWTTqcoxuJubT2lSYSLe3lFzCMlHXocT1a28ziQp0z8AxpDOIkXI+L6B/2F/G1nfmqC30rNGuL8UqGeCqVA/rC/OlGeOW8fG3VzFhmWplxn2tDhge7GLfyK4HLm+z9E1DchmTZ9JKkNfdTBL1Gbu4ch7bX5J0nZUxsZaiC3luVM3jw6i5EB8SasberjqXZFRcTWryKmE5g6ip2F8S7W/2tiJO7WhNNbOInZ2IbRjiTqJC33nHagiagPyDrUHHBCfXmreJgqfozpxsrv+V/5L2UquY06A5TfKNaqMaBS45ufFuLCAurK29/Do6O3Dupy9p8u4S2ZeKXPcULgMyL9eRJwHVEobk7j6jjiv6nWwPoNc3d5fJIugRSiTZxcZtQ7M1Ys5uqnvdVpQDHNv0HsW//boUgXj/Zf9gm3Kzo5QpK+lRynN0/IC6Tob4WX1xi0UE6eIHyxQpDb+ZqHnOjPXcNFtH4DdBp7Q15dpVC/wyucl/XtIN4Ybdabzq9rOy6ejlb4dwgeaX6PdKgjlKMVVMajjmNVHu4BBfqp/ksosWPm/m3hRowIysBio3KoMLydrRmxRk2v8/d//2K8uaZfdhM/K+1r6cS1V1NynSlC1ZlgzBgCT73TD87xrwswU/GAJsywYEUbIulJqUms2u7qquc9t7XTIzIjKN3xhjRuYpkt1Fq6q4ytmoPufsvS6ZEV9835xjjgtjx3CIaNKBoEVapbzk4uufvqSb61SbzNiJaiMWDRUuHkkHumYWjsaULjKOFBaMKoMY8wsmDpKNC7ThaA9CxBCMaLWY8uDrUG0j1tNY44ksVYoeF45tPtl6J994/txjam/acXXnISVpAbRySxFrM2kOG3kTyQTZnAsnC7Kw4eY5p1S/LwpcCzRAETYSP4wnUL4pwpJJLvzDjr/3z/Ep0jfdhZTSQATxe5zaysW2sOH9SfXbc6eMTyhU20vJE/m10ZBWYvHZOTzy1PuBBaW51CtFdfIKp9HjJPfR4Tnw+TfXOnxA+W0V3tgeglvSLtwo/KG9PCq81r//9bYOFBzLuMEvJ0r0mDVjBfnl3QQFToIJutu+dCm4pEzThU0AeKdi1LVO4qMubBOtIa4943h8pSS4EXdP8LbfV6wk1KDEkV4xiUF41U0r1QLT6Vaq+b2a72ee4pJCkYgo81lv9ioaw1gurPesmCOKGbupLBGM2lP0/PBMUzSDwKdA6bWo+Bpsl6513V1rOFTtHm+KYbjBNHrwYm8TnkZc8c1Mpm6KO6GHKG7V7V/FqxSlqNOUJDaPYGbnQ0xxhvmMMoIOdsjkQpeHZBU2Kg6wyePAgS5b+2ok2T1NDe9HE4Nw+/iZcgTlHqcgESG8hS1B+SlGztPZxXH4Zrqo3KvtrYCUeCvJBpsVc4okLCyg1rW+XL/Un3xcjHje7ItLd9iUuMDiYumDOGHKNCCoQQExmpPWB34rDhqZEYXHD2Oj4yq29ZucOLRwK6QmjQhOm/4t7lQFi96cUT4fD2tPRPTv1zq/jPXL//FX9d13TzWzJ4P6bXZOzGD/hbfNWHPJ5TXfXQEFfR6wBlT1NyrXRa+fYfOpQ5dSprwtWZr35jqpFb+ZqIgWsRaHlMbLe3lYES1+0vrq2iGCLPHWYhitYtjX13SScG5DNWm7FlGcEEtybnP+ZorWCuWlQ9bniyagm6LJ6KSY3z2KVmHq69Def67tI1hrhDeNmvLEuwlSUec9bQkpsgYxNBwrhiVk1BEX8jU86nvUUULOXj83fnYPX3rc3PRqmViH0rXfUx/9WpH2N6z739rrq3cUfj+zyuWE3/naOZVE3Yhn6nePjcv330x1fYA5AaQKIXuo625dV8Yq3KjdRnlDKPpcyPBuL9rMD0L6DAls1oRYcaAkDxc7FwKXKQS1EZuITq4hIyzNzbe7emV2f51rP1zlO/URGbx+n3N01+tLeDM2b+YMuZ6OiZmZ64Kp3efZLumyYcBjBzsTFzTOD1zXAVRL0LsD668QYEPMl/N5eIEUelqYCXSGX0CBtt5xgFhpywpYlHS6cy4e9WDzgNENCQHxxuwCjN9vAlJ7FGm8c5rE+xB3AmNbAqiFiNqIco5Zc8up5gmUTjO0xPNEebWQnu2HRRHmB8KfvzlR8u2jTJBqwBtfj9sowsXuv2DS2ePK5Dn6C25Yu0bKfq86WOFHrDDLvtQKbiku+6ClSg5ho5rqH3z9UD97JwboH8RrEVKtqh6vQ/1H/4AiZWtFnewVuQZiMyYA3WugXeZVWzNGZBOUn95NBdzdb8ebdXJGO+93aLzUv+33h7CBe0ism+gE5ijpvWaDUqMhsjrq0+bKeJxjh4H0qTGM9SjLtgztQC9dozbCW1xaFyptt+JGovmATZZJXFzQGJ6tCcSueW9RWPaXO4fWzYhaGsWexOMPNI3ijGILDvLBfmzYNoEyj68lNFDcN563s0PX+XePdU3yV0KRDrm7BA81hlYq65WCUPuHbnjQkDbFXtz8QQgvNVNEThn7hgfYBXG/NJmID6gaHupa5SzffApbJCPUQ/vJrbBuxPG8GPtiuI6gxOiP16BH1eL7n52558Ly5se431zqf/f3SI69xcK9xVdWnVOcdDj3QZ6GR6goUxymNRh7W5yoV9DShfcVX7vOjtWyb1/AHu+FKrHktGsBGqV3EkZGiexkl1FWYZHFiUt4ej2KZgNs90rfvj7U+flc4199o9Fu7TZ1hcsX6yvvFRE2XOY6nsfkx7uRoXn2YNnWYM7bYA/g88YKBdg8I1k1hgCOsfEx7cI+hyqGlRDUY9ikZejr2jporQaSlC0jXp4Otl0M368ghiX+Dq/dhiWha0XwMPsdWOluvz0XQPjcxtrtDqHsM3mGG792Z2nUz9F3pgUaNNLZxJ/n4RXFoZOPVEhTZSDENGou7v3CWUw6lvbQVv07UcUIYlD3xom1ALwfaW8L9C8WZfoKFxAtsrv59Hk/Q4ip9lu+joz1f5PXv5K4o9/Hv+y1HuY67E81H+yZt542NQ6jN3/ZKJiIzogXmEJbPspMbFvgamGRHEh0TJEnNGt2hNJwYWSMobGNl0G45PgP50Y5gF4UqHEwv1SWrYQDHqlQUMaG0nP/1aV2WDwUglDL8O2jzili1S7FKl3f5UxMm8OYgcrFAWBT/OwxMciS3Np5SGLELBGDTB2jamKBv0IeDvolkjuJFKAWdjO31tcmyhCp9T2MnBNA3ZmlttsID0RvF3QTvX987XjPUuD6ATNx2SgdtFstSi1Ie/8Q5cSBuF+TxIHZ607JG2x2Vub6IZRx9nqj8Tn/DUKrw7rzUuEJgbwSs5a4Lqcm+HOpaJOkDASTrnSo9bt9Xc6HmsZjzfPRCKDELSaig+yaH9bpMCG9Jo0Ei43zqerMgRg7ARWrNdX6uqn/xR+/r6/eb+uvngHR376R8zLevFb90btt/exwLrlC3gkyXEDN8W1rQYarn6aieDwZFDrxgequ78UHOWzk2N+bVPOLgtZ5T7yI6yZP8aBuonFoBzGHx9YIeW/dlTcvOWR4Gisp6dvSoCtHQYj+fY1kJzA0YpCgWUEErKgL1+8K5XZjPq2IfhlV6hkLfy5TVfEIs8maNH3jfrbXVnyoRboWArJP/mg3MTpDWw1i5KDj2xghs6Ecx6n2PRq0h8ft3gVthX9IQ8yWYQqgEU4VVtn1rVi04rgeoIBclWaET6y80dv9pTfmuLLw3yOFJ8UIa6J5UPmM/KeSBvxrl+ssQ+ZU/PrMcKlB0YMQSsAly4uofWNDsSAShjdkSPzvfDnXYah6vQWAvLlXU0266G6RVNNwVPhkH++X9sHYkngknHGcrq+jLw0/Ga1rg22nkPkcNJ0iY3Y1vikAdC1polxY2IrsWvPWZ8vr66Sx7+MXj/XFz76uxy+/qM/ffFOf/+wv6+NPP9T64e/43vGbxavAhN/UodOECTUpJDQOFl7AS7MLQ1v8wHUnqmAO/ccZ9ZZCxGdPohbvsUKcxE9NsRerIGevB1Gc00TQZCxDXX/etpPR1ZJvIedFjJL1vNjFoWkMOHTwAwGTlCSUjHDTG3IbhUx7ciB/wfDk0ATIrHnrkAXeI4pcLJ5keJ4MS4kuMwL2FmSrFtHXNLnzqJ5gCN9mCumIQrKmfA9dcHcecD6RAw1SOC+GWqHUCDgK9csXP9SBrBWdfaEkdN69rmN+PG4hv4lpxb9S4ZeSJptEeF39cXQgUMgpFdexLyft4oa01d3HFwru2n5Vx/NU8z4xZxRPiBwAfjIu8qGEosemxxx0EFT7gmsDqlEqQ8atjKA47DYqXLgA6VK5kXkPHotBhMxCY2O6XOolhw7IBn84SolsBNCJBZm7x+NotxOrUAWhjJe1qG2oqgdJqiOEDTaEphCa1amTWOHcTRFDtxsJWDRKRjiyutT+gGIWxWs2CfG3QDd9SMvxv7kNgdhtjG0lqMdFIedmVLYUPFmwkMSl9t24aJZSCOWxvKPcQU0vCYiH27Mear/de2Q3ECW0d5yR4BzI4enr2+sqxGWuA6IZDkr7KoY1Ib6XVcS7x3WtH/Y1j+uaPtPNHf0Q9SGpB5j/BzrcqJ/vrdIflLyCwONaDw/mcl15mPd4C1zrq13ZCuEPBvPzi4353/4jF0ozxAmlpnjdb+9HAdoHkgCRTVNGwvp6H8wyyM4DLzSPAij88kYC8XrTaFWZkj2gGhRnGDtTrZe1SHRp5ted05n/pfjU9y3JHbcUDyGMi+Fyj4izXBZT2YxMlVGb0ei9t14KvkVxKxTCFaHQN75eDsNG9fJB7lSItz/TUxJle6z/FnNiXceOKNQBGLWzxBC2jfFYypWWHi/Gn2vU8LY7kg9hq4dzvsuDrNHGoLNqDqMC9KFp5WjXjDgcSCj3EVPhobY2IzXlI8pao+XxHIslzSID4f5KgA/VpQtbuw1cJiINUyc0F0qCPDiz7jLAy10A+Tq3AKLjE+W5mbSQDKrrw3yqL7dVL+eO1nuDLzjPu4ADyRzm5cvrda8CIetbt7qjxxZIpgtnihRKpqhA8/cd6SdtXjiwUnIqA3dxg9a6sdG985l75MveP05rFV8ArAci3TDXf9zW9qfvaj2/1vOnz/Xh6bnq+cl5GdB4QAATr0gh8Xwa63W61lGJVbfnvqUFLnpnW4WENmRmfpq8vFXHt9kfVKVcvJr45FabenNwMWWRErQpnTcpePh0QujjOMEF07OijNuspTY8DkLG9ylPWxy6GLvLT3KRdvj6xgjaz3ziKhfj+I5dpMBNNm+6n8WkPA4Grcz1uvA0y+Ll5gO6gWtPRz3PIJaZrolepAlAGujeBKMOl4fpfRZwRhpNnVAjEhcAp3r5fdwKPmOzS5Go/SpeVr9VO5e/AfLjtrCxjONWb3a6nLFsE7ol3s36rBsHv2e7R6Uz1fWExcqoC8JGvd/AxzK5WNU8BYY6dSbjRtbaVFh8tutZHQuoIcXcUQrabT3IA8iCCjy0QNUwVMVeZY+ho1Stk8ccl6rXGUNV5wyymk88YHj/SCGIr5wFBxQx59VVnRM/k5zey+Vs5U7gejYDNuM55mDK+BNfgQeKbOB1bUb75qGYE+SdqDVxCC5k5RocJ9IGtMtJIk0wD39OwhNdUZtNY78S3miTiPmMcDqULJCkEy0akIADPooQhni/tmhRLiA4GYUUfkKrfdV2dKcamxAduKB0ZxIGrrVlE7qu6zxy1Si4fRoKtZAaywcgSmWhcYLpsaPgA3v8O35/ruvj2V2Z4qXk+L1kDtLhaowUyxCPf21pIbNNHrL9ptasJRBPuJlqt1Y1H8faPyj1sf5QXv2IseH+ux/nQie/I4c441OhP+2kIu89ukRzXSiQeFqcvuGtwXY3C6jhpknmqPHpy5/LN9GUH6PFcIdobCZQnjjzhZrCTZJY4/498zvxzNRGlciwX/tQMtNWnqWVaMsHSYEiEUE6eSMid0rDnhxpZJMRak4G3rtGmuIKuXK8c5vRq1Gq+yKEsZN4j7JTSUGUAqpHeEaQkzwg3uAtwF3FZIuykhAg5JwiWp+NZ8Q+i6Jy8V5PoOhdjDafMFY3uVba/ntErCbVeb4qOB6MRhw05ejrABIZA+4YLDvCCjRxEH1FZbzQn46eQiBiMRovF6pWQM5Hezm2fYx4ghi788QuPmW3+9KWFzrIVTxf6t3Dqv7Xf3dXf/lnTjN/iy8cIT4+JLFjEYg6FIBbPVNRO0bBhPwWVYme4z1MDYfVMEuiha+1G/dWAdvMOYKQUDQ00UmEl0aHupw5aFNoM3nanLFtOWv69Pi4qePpVL/8i1/U83HUuffF11/W6t1jXfCm/fyp6tOTHhKBAOGtwW99PvPzYoMk5CkC2DygTl7Su1lKC711PSRGlhRJeLcHuZBpB85WobqbEiLKDx4udQT48O7tTGRVPPFI1Dnf7aWRUqN2LQ3K2tb1vnH3LGC+1oaxXVBMbMcQoqko6xg0zm6mV5pMXLy/hG4FGqmpLg12XxvAnIYieU5J7YK+5sTRpVOlIFOEHSPmIHsu3Hh+nTbSm6/WQdDBFk5zneS/S0xdPjtUr/YSXBqSJHy4x7whkVIw53TTz1Gj9jvw8fsXpXW4Al3Xzzar+v5X5Miuan6c6orXHsoebnak22ycl92hNg+XGl+mGo+b2n0BufZa7xjvgdzlA4EgssDgo7EhbblR+LetJ6V0HFb8mTcd0jog4fIgY/zIRmeTVewpLjVGaciSZqxM13yZRhkYY+AM7wF/W/6eBSLHb/kHcUudR4ufn5AMumQ9ADZY3tY+BExX+u7SnecpE0ahVXBuVvIAPB5P8Q66iIioPNuhzRzTQcFTxMIECxTEHRJt2I6FVAu4eyLJim/B+2DROs1Dhy9FwIY+3QUBBZK4RwrfhL+0rtPrqVa7q2LpvL6sUNJn1Cg8VjQ6Qc2dbCXW6XKs8cWf67KO5xeusprL8cBLV1z7hxSqyueNKS5jKKB/RumfL/X6uWr95Q913e1qvWXkvVNChMK5e9wnz0M2n+SaqpD2gV8Z/5snGb0AJt5nF/pDm3Vm237rLx0K12t9HKr+5Ccfart5FvrMolNxH982JQCQVEMRBF+Gqg3lqFzvwwMNZ0/j2bxA1eVnqRDwbKw5awAJQLIoHlfk8DIKUjHhjh5FKoWZ0AseE5o7We54L5jC3+tjXs8sJPlkuypJRKgf3Bne+ywPKpaOQDs9rzRO4d3RSCnyyiMf0PLOkMW2Z7O91OP7oY5P11rLCD5FVaL+Fhs1oQ031CZUqkWZyYXloNfvlCgmhXMKQCMXNlI3t9g8JyVW5Jfg+2e6rTt8+XEJAeTrXVjoWdCh4ucpIR2JczK6zXMtD2CUpqF4rHVdNjUSh0kI84O8eeugJglRVgtEwiVir+O6y0khRfVuUycmMhk5cm/mTo1gvJcpwpbCcB+eWlAb3EKiJVI2uv3U6AmCwmxsNE0TuKYwPU61XW/r765PeR9v88Xa4tyxg1VQTZkpO2f2pOlTaCpYkV3uzZVtGybeeJSiS2Z4K971AnxoRnacJoKYe+R3WxesJ6n3cYgY1narWF91Znz+5llN7f58re3LKL7nqb6t6+FQP5OyF3dt7K1ONRArepxqPE8+G6/XernM9Tp7OgL4wT6xIFrZC5ZgxvvEjlAvZJ6ciZmmCfLf9ORI8Y6yY7KXq1FnZ2hIqYxVDWtI81dP93R2cWbJkow/JunKa65V9Eu8Yo+dTYSzb570TvELHtmDbHemc6Ow/wJVszWa7kLHja49inXNZBCB547ClP9kqriM2rqUV1FqKlEYfc7UFh9wkg5AUxXRAwyUOATFE8GF06mG4ebB6rxuO1L4t6Vw7P+K52fvX7qiEgzFVUNNat/EVT3s7zLS/6Z1/9t6gOgG//f/23+jLsNLffdXm3r4N3a12g/KqK3TuaZXWls2QbdVcBZAlq4X7E4udTkPCo9W5l1sWRSRxCbJhVP3e5ESd50HlgdvxwEGAVQ31ApQ/g5V4sO0sYJQ5HfDsx7zrmoTh1jeHhsrN3urAmptFTIjT8yWY48wktTRiyGp7hxEOyLoNP/3YjEixiZgz8Hr1RugFiEPPwcI3UOkhx37ZG5gyzKp74zwSWHL/IoOKdmrip9jsRN/xnteVLTp1MQyNw9JSADoAxEAqtN8PXU4AV1nDKWOK3mI9oBp2n1GhctYWadzyLrms4CKUhGc2IyUz6tQRI+l1w6zd9C51WkydJUn01AXlMTagPANfHV49mYQYkIRouImxHuFZyeR4J6mZ2sZDqgkgihsPUR1uCDDuvYr2bEu5Pm3/HIHXvUnXw61mj7VeSQ2zH+m4i4dsjkksRCNdK45QYt3H42TKZOO+urfoZlN52f753gzd2cqZMcwoPl4SjF00c3y6hGF9mSp4X0f1E335t3ZvHfWPyo0FR6B0h20Mvf2viDXPmbjVN/3bIVBDyQgSebwfK56+WRK9QnUHl+8KMmbEyqF3mIfE4uFFH/+uozNw7NZ/MrukFNeIOdqQiKMkfgkCGT/vMUvUoC3k2fuX46Vc/OkgzKUBXvjRdjBaEpEchJvqOqsiITD2AreTvjQ1gBPmijGvH9Zj/gdu5gLSgtnl6/Z7VZKtdHnZV1lr9BBniQQvOOyUJJw0iO3jCWhpgjIQf2N8M3Z5EXoPQ0iwoPjun42jfXFZqhvGxp+Yy8KFPHX1Ni4iLE7QpsMIxYz8qTDNuimbJWi8KRQN+/4Rt73I2oeqAY5+n5fPZ6PNh23IIuCInL7FI/sl2c4yvyUcarnb1/r8jrX435Tz8RqXof644/v6uPf/aIePn6sx5+8r+F6qvr0WtfX15rnc42nc71+OtbxMtbrZa6n7yMMyX0UNSCu5dp3I6qzMXALTW6CDyZu/kAeBetxEI8vvLqISES/0aIyUKFiRgVzqEryq2SydBM8SX2ewAP73enuBLQIV1IHVe/h+AHnuYaHn4i7/vnKyo4v7F7JRldRGvT3BQjSxXxb6vTY2FGuoiFpzzLnjhdjVJ2puu3ejERfy/gegCSMk15c1hiE5+xCzs98sxw7jzd04hvnNv/0JMXpMkosiYWXE2fupgP6wrneqakcfneF36/HXkEI/ff+l1/X+vXbqm8udfphru1PvRjgBG0nRghVhy/htKHqQbHqXYavGXGNF/fEBpnim2nH4mZ46K6RB7YsSx4pnQSk1Y4XxM0evzcndIjAivRdXkwZUyjnlEV2rfMwyLblcb2uR32oVR35O8i0kzA2cRN4QM+zTZ/FDei4HRE/WFwcct7ZEDQwPlqQAkBgpV1crWrmgJUyc6UuXXYJm3g3OebAXYTCu9l0V4px4fDsORDjU9GE2h6AAyZowuLlFfm7CjZl5FpsoRHF3KO+PHQJmTevxIIL5NgDpPY5IwsKAFABFjhPGaN9weMEt250kFjXSVXAz6Dr84NjVC5kcJBMRsCqbv336lguSH48erIxaBPuwzdL0omyY+0yvZjRqghQt+pkDwm5dXgy+nW+6r/1Rx/rP/3zk3igwxsv/tSZ1qr+/ldVH0lrADHQg+QiWPw+xRU6TUGmy1GmGnG+jTS15NqAN9YjvOw9FbJ2iMN35vDe/BI3xS2m0qEZ6dQCRYplJCr1YCx4Wp/rxqyRDP3EmzdWO9rn/an46vQONm0Q7kQI6pPafF/PAJ+Z5SRxeHh+2iYwGibWjK4917Hd+H2v20roxhXs6+Ciz7+HZ0NRdneWCkKaZTLun0fRF39Y/33adScLNFJ4+5waIfPeG/NpRDKIUCZ+VgXHkobvf34+R9DuKQDbTV+3FrpI5ISzAM9qR20t9oDZJ++8vlzMOtszIMGCiErCNVpwwj2WAW7QQX1r0MR+ljObUrEYFxNTLE5DreEHj3P93Z9u6iefq354o5UfkV8OVzIp3kWbG+CxudpQddSTZ120aCeHvnl8feCHzxfOH9MaIblMUCL46CQavUSB2ei8MncOC7CpzhgUg7xPl3p5IdWp6ovDVucZcZtQdXAsoGjdH+YaSOz4BBx7Yp5b03GqEyrecayX13M9X651fJl8NimFJabKWgAxQ9co1/+t9dE2KmHYyvJHIQ1ModqaJo1j6CEtjvFAwECLcT/WlatgnZ/3Fi+aUIQvmuSQ1hFw/V2W+jqn5/U+1DWSMsp9rkmFq2q6bWmcxAVnHt4/DehK42wLLNqqSvVCJoRWXSvMcRHBOaEqI+jsWfYz/DUqSRpxNwX959lrm9mSa9L0EQE/S70QymcXfaFZdXHXe1k/5CoLepKgrdZnx++s8Pv1g5NRwbvVuer9unbnS51e17W9rGu3n2o+b2UJQEbr/AQ9bW0uAYf0ZleXB6BOuAdUv+SLDhpt8O/Ki5Tnm42LG6FQfI7LKs3HOQQEQ4sAeq2PGn1490W8QUd1mhyBoy5ts61T7E/2KOyiDmJ3dT7npfagByqWKEaMMCBU0PgM5fCFBeXDkEKSfzJq0mJLcUE/qVEpKmUWJ8rkzV5dIqrivqFOO3CRM0VBx3uSnYKekmwYEUxQzOjeS/V0qRmkc2tRiIwuV6saT6NUQnTk6106WSEx9mNaloeg5LnGyZA2n02yfJ1cIZxzcAEaCnzMhsEBCV9T0XKjD0X4i/Id9Kki1d9CxDekTgGsc6PvF2pRgb32OvR7jFAgxAY1AbEocNyRfT2smHPcnA+x2BhAGdzh4+e54H/4b/+s/k//8BsVfm/9pWJrVfWTRxdB3BPX2i64mqTcPmxuJk2cln0LzYH4dsm0ZTNLRQZo1HYe63iRScCkW73SKFZ7/+WW3avnxSQVFyeGh41sre6KOoomcdVieRHzbBokDoouaMip5XtaeKL31HNEyPZwXjM6k8pUlZE3diF4oGM0cKBXD97UVcBp0/bIWKLbOAfdcrOjmwx3LhTSu8bBz4WVlh6p9CGuwz3rNfB4PDjzOTVGuo3f+WwSXVFA6PZw8OS6CR691kjTx3OYj25z9xQVRHYrqSM8TdUncJc3NV8Q+rh4dAxe+MW7gEbh5pkFccfry3uUOjGG3uYY+ph21F/GkSsfhi3WEq+J6xaivJpJ1gXXWuj6Ssj0/Hq1ZRV2Mu+n+urjvn72i7n+8Xe/mc3E7/tF42qT7gjk2KPlfWokyTxNq3ZbqLE02F3F35msuVnpwqQb/eQmZxrRxeWCXqXAEnWAW8/5M811fJ3qlQZ8rvrqA4xORYnUsFtLHHm+jvXyzSdZfOxej3omlNfE+TvNskFZP+xkSzQ+n+qVfl48Qk9I3JCEbxhpOOtIiDG+u3KgdlINVCh/xBaQxVXC+JkbI10nhwP4c5lTJzAEfrsub9T73Z4tPoANUpgapaIsvFkvOD95Pm9dhKr5bZPxTqxJ0hbvXdSy4CUaIcehfuAMWyaA+d0Re4rWFSVIs0BaKWzKi/cn9iwApt6EWUFMF/1nURmLBpCl0bZTUTKbjuGlw17fueGeczTocVc0aozsnyWFb9ab70ib2VtrvsKM9/c16vWsf9Smun6cqr5/qfHbD7V5JHNSeU4ST2xfpxpe1rVFfPF+V5faiw/IyNJI4AVHEs3s15t3NdWrikSFzrCTd5QUfkk8BIIwCKFeiyuERQLeeQ8DGYWr+oyLOJyczYNu6itEzkR59iLlADzKMMPK2uEIUXxTKwyLRZw3R8oO6qHiEkQt3JwYAOfkwqVAbt4dgj2P4PJQgPnQYuPW4SOH/BQ4QixY8NiNGE2QnIWx6IBSKgCcCUgAAQAASURBVPm4Il9zULYMnqIv/Rh/CUop6xbG6DYilaEnxqznqbYcPjJnjjo7sktG7kofEJE2HdEBbuVQq50FNPJKGhcDd50C8EdQgPk0ad8rij4TfS+IAmL0LNNMNhT4S6j8QOcoSPcchAr6vKm48EjLISUERSgMFgPJ/k0snjtFfieVAzSCvZNNOKwmPvNcWznXr+of/Oy9uRvAw2/8xeH9uBvqy0f74vVDr/4zLiJt5uwRiMesWBwprTlxY/aJyjhWann/fNMXbvw/FYSS+d2sYBihcrmUEKGl4o1QvNdGF3PAqRvOz+GbiSGTfUP+Hi4alAJGzuLQnIKqdSxfCqRuJU8n0yIabZS4QMVEKDkakfng5ICkOGUdQIyLXZffX8Zsjcw5iSLXOM+znPzh97EvRMHfsKXGQE3ED1Gd2ky2TtmVl068b16U6G23xOvd7l09Pz87DSTjao3CVERFXd/PlYDdqIBzv/WeT1b1Xp8Fa4jLxX75yBgL5IDqUuNXf68STK5V+72tlnSI989TvNQt2EkTAEazKu6cLOJM8AgDQujXIapC1M+XeUpWL56fLsWkEQX4zCb8gWaCtXKuB5Hwf6uWsb+1l3hnKqJJb8E2xbnOQp7bOLcLtVjX9OjRcvAc/D9S/LaHnJ9dj/FiO6KYSgSGFjJIjS8bgnBD50u9nMhYPtfq5Vy77ba+/rCv7eO6Ts+z3Sg2TLmMNu0R4v38U737+rF2j+yxfkh4nFGW88wdp6pvnsf69vUsEERm5v1cADawXwdls/cs3rVRzdKQ6ygZLYaUc4DBFnGt7SPlgiwNvptQmnhzCVv80xxaj3yhBGkkFVGIbWHkB9iiqphKN3qm/Uwqe98TCmWGgW1ArVNRnPMY6QRBZe2rBlA9Zzuis+fMyz7ZKuwWXbRISfVwEjwAWMz75KwKvzNRi+I4A1gx5ob3K3GZOY92KzWH3nY+jmOTF3F7GyxTE+oQ1xyeiPVI2NdNHF7xCxOZ2QikqAZRBTNJ/L0Vftq83M3ISmU31frzXPUI7HCuh8Oq3q3X9bAda32c6mF9qOGwqWG3UwX/fBnq9TrXy7jTQoUOPJ/ILvSMgwcHc8I9yrJWMyaNAvc9OH27jdV07yjWhm09ka6hh1vR49rNNMZQsgAXaqr3oIXwwIi44mdOq3qHv5ZgCEbVjCZXtaeD2MD/44bOeiCPcOeETLjr8fnHONifSYolDCMXxMHw/BbBA3F18lWzUbJsaHjfkdg5kzPQD4tXSmOTVRm5QgwX0nXlgTQZWZYW6eQv5yncOy92GUKG62C5/KWGA/fMpyOGt/z+Ucid1BHelqZtzRsnKgik57BSvih/jV0KI2qyPRkfXZUt6nG00VHD+jfndJtZbuwDhR8iPoMoBiUTS9dHN0ZhyK4VNMEFnjffzrDs4tholHlhbE48nOvDIGGJxtCXoR5Wr7f8shQkb3Xcy/36cFiLq81G2AigC+hb1FNbFkidKY6WvrujH7XO9dfNSRNidst05eWz3kW7rCS0Jt3Zci07jkkFZDczbRPTSrUev1DU0VgoqDwGpmcO08Xdx//vFGWvOL9WCzbcp/H9MoS2LyB/JzQjpPLq0WQUwBpNiWTt9+IYNxd+8q1MYRqnpnZKcLGo/cqfaVH0+hwWv1hsDsWRxUBd3niJeOr7dWcO3WMeodUxr/7hmbmnIQkZ6Tqx0TxmOQ/4v5trKQK6kJibkhl0TQpkrgX3ehpqN5PBYKNd9fikDTFJiChF1+dsYZptXoyK8nnaaFsK5aOtJXRWIg7ifkmcxujPIy6QxeA6ywic93Q8XWsmSo6CGEPqd1YSk5nM5nOc5vo7B6YqbxPx+7g3B1yoLY096BSTGFAjZcErUCqjvxR9sRwxwu6fY8A63O8gMrIZkp9qmgSKLqGIibxsexGJLxhJgprO9TxdldTz4d2hvvqwrYfDRiIaGnQWJ8/Hyyt86qrHBxDga12eX2p72ZvnLITNSmPOjKfTuX75w4uKvxuNJhxGuWQkU1aqZSZOiPts9TNv4cbZuJr1J1/ANEgUP4hGbOeVWLbwh5cEYq0TCi9PnHQGaN1bQSyUO8RGUaLybPPhQOyctdG50oax47Ko920UzLw++4ojmBJrUvdJII9AhKCH4i9ezbOUFZL3B1HB2palKSKxP+I+QqsyrcP8y54uSTsgbn+g8Pgzmvfr6+nn2GbajeYtMYY3v5qb+LKbYaNciwBHvyNiPDdk7fJxAwH45373+0T8LiR1sNFJblcPX6xr+P5c4/Gh9j/d17vDtX622dTj/qqMwfk01OFhrtN4qt17YtO29bxdSyGK+enr8VrTy1nxbixAxrFsjoxQZynT0lXIz8eLeYP6TMjHWMfztY545ykYLqxJkTaTjYcaV4We7UG4EIxVVg8r2cEchFAwQjL0gC6U8a84fnzxXUg3iwYlMtmzHeWj6LRpVISZyJl0lEK8KP7opHiQJ3fqjKv4w7ixigcHeyN+XirSpERyR8eDDi9E60bqQA4PNnYQn+SRTnAdyKqFnG9elruoztTNgQJhlaJVm5ULsFaZiSQLn5DRssarFHlTXbjHqH3bi1m2Kn6gYtSeV4qJPiQ1NsuSa+KRDmw2lbCOeVCkENtInXyZkNFP6qCE2KXjY3QGytrh3ra7SSYqBSh2Ops7eJ7Zb/yoesT3ll9f7KveU8RSzKaI0ciU4mqxUojxao9IW4QQWx+l4fTIJIYaPebltunre5ROkRI7it01BUTbCoBEhMAtDlz7vYHmxeSZgk/cPyW/3HGAZTVyUw53gwgyxNrhMLNxadsk3OLF9Fk6yQKaR1Tzsg3Sz/W91XkoIZRRPKmO+V64vwvnroMy7+xcUnNqPHQvGMpno0CSWS/NRviOvFHUyPalNaon4JzCTLxZF5Q0i1KuO77BI3q82wzWxQIkat74/bmxuUUddpGqsbKY97exFMv5NI21xRWhD1kaKPaPxdz1tk74c96P/8iHG4Wtsr0lIQ4CGC+1lYo+F4Ggt9hjCD2J48L5WDVobmjO6QU7jQcoNOZPg1p0cf7H7ze1b7XRG3t9UFj7zffH696xnRJZ9ERyseqIuCOHtdeBtbkeQfLVgatD3A+J0IhN1qApgt6PDHqx3pwdvcafb0N04EaTHApPCqzjea53eyP7ABPH57E+Pm7Ej8dzFUEOjYVDEEC+VjWu5vrl00v91adTfT4xVXNn07w5Ga8rAsznlMR/FDQx97aWEW4832M0S9SeWJ6IgpQkFzcEFnA0guffkXQYrUk/RxTQRriSJhW+3A3ls1dgC/lk8yUay43LrgI8xuqdTY11kaUPFKtro5R5pNreaOanCCBxW2vxoLUF2gGle+v33Ojfzcxen0kIr8EX96Z+o6mDfd/XTKeCBua500i29zZNUfxLbhy+biCNWt5U18uVuyuob5M2/bz8jIeH3yrit3zkf+Hf7lWB4/VwrsP+UJfraw1fX2p1vNTPdh/rZ++neocSldyhvQs7vHcoxHZ4cOHhB2GVwo9NY9rUanOqmXGlvOLgyJi8o8D3HAgrMmbJY8UIGL89DJlHvPZyE4UK6Jgz1NyWK6ABx6EOcAGFVFW9sKCZmCrB4lqPPDjM7WNQ6jGjFyjQsT2YTDj3lWFjT+cTsqZMczFw7gBqQQgebWlzzCgLgFc3mrFn4loUfSYOH6bMMbTNA9exU63QNdH+WtOR3EbAOBd8ionbbN0xoWqS9QAb/rkwMHf4eOd9xs195BoApDsMHLGGDjklrKxrbCEJnEAVal4bsqeQgbSX6MKPiheY9od5rhm1c8ZnXvhGTYWutmhgbcSVwplOfMP1SZdsWg1oZKs7vcn4az2ea+GBUJpaKYtZis5+uv4FAqW38uI+Pq4xKzeHansnvOjIJF4t8W/gr/FMZUy271WQn3v/Oo2Oc1/cjNrzyhQzRjBd2MVsNk1D+73xVxR8Uk8vIlyjwhwc/XslaKIobHuTVmfLBtDZva0mnpNuo1sU6zQ3QSn+FtK81xQHYf/uRsX6WnhM2WlRzWdzUdYHmZsnZ+3Kf1CJIusaj04cAmklOUejIPjJMbLmc55fTWTX0JUi0JXfTRwTg1vtMbFZUTPWOcmaBICCeGSvA7VVyMl3NQLbhW9yjHMTqQ9ItFS2NtSZjIr2idPjfU0yc4dSknFV58cK1Y0NBLYgrJttC23cKKmvzf5F0dEjL+WsIj54QkRg9EWhE48lIRj3RAIxIcsUjr7mP/sSvjI5d2/vhXLzQtByGlCLwuoOubrxynu0puMkjYR9+WJfcvMiX8R6mk7FLkdrhDWvuuOWg6EfATQMlx3+GIwUmqq1bXC4VyMqbG7840b3n7fw6fVSP7xM9eH9ti7HsUYSoWLNJaeH4VqfT1P95Q/H+sXLWC9MiRLTxrniPdgmwSqO8nxJALhEZ/rh8qSbqZcBgEYwxacTfciTHaZOMcyIDY5txFqZD5rY8XTyYE0R04i4il8BZzmLoo6G3y9uYNA2gSuZNMvBoZt/xY0iQPHnlzp3UWhT8nnMzC1XNrwEWS6rrDMJKqhnMiECmQQ4aaj9MlkhBjwcr2devZpR/5VRyVSuXhv2ELxvCmwnePPANObpht5si7bFWWRBTTGOx2KEpLqunnoc8Lj7W17/P7Vh9/59/XqMLcCWxXp+lT0J1fhXj0N9nC/1Ed+uNZsqvnFVWyrhaV27x13t3s01vU61mx/rJ+8owM41ztsaHsYaXu25o3y8cazT66zii7utjX1vo2Z+F9FuyoSl8LC+280WDw4ZrvMkwisF1/pofgdjTBYCJs3nLDzMpeG8ocRicTKSFYFZXSsoGDymXZ0uUx1ZvJgyuokIH9AbtKLcYoHRxQY3j3EvzznjKwiw4uxqp9FW5IWSeCgeHgoqGUiLlArKZvh7SRqS6tYPJ6MCzFPXB1BRNgmKPh8k2hTGSdeGcXGrjpNtUwMJKXQ9Ur7aeues+KaM95JKstsfhH7aVS5GoyHmChEF2Yjqyl2bFd2w8ofrNia+bGlbI4CS4dtOQQ9ZOEEaGQ6jkCuuvZ1k/JCcGWud4h+opsknlMcsPTb2GIekEn4NaLHDsKc3XfjR8X/8ONR2xwbWljYZRco6KMBQNliSB+jHQU3tn+0NV4isuDYRAUgj5HUpO51l/OkiXKgzLxG6u0DuDFKnYWiDg3yuzdtZtUpAirrXCuGgJ3Y0sgAgYp6bN14wyC5mE2PVxrBt16Jx0mTuIoXZGYNaWZ1YwKHr1X58OWhlAN66oHTBS7oIzwzXQmhWTNG7sATdZlmyf6CSJaUkIhFZHynTOg03h8WJ3F5bqcBr9B7f18ijz6vsauDIErt4UxHzAYSYMD4PQtuIkoqCmGvLYqWVt4mYklqf9JaD/fNUrGxXtYV/yVVdr+rIfhdCO9+jaXuujYYLARfVfOPBB5IbFAsHmbDYlnvGuiMWcYIxcS559fGZQZSmTi8AmYpCvI2r8VP9+ottPYqM9fZets1qBaiFR84IzwEbX0rzsjIalcVQcliz7pbrtRzxaRruComOBlQDq5DXIO2kssBjV9b4XMfjtZ4e9vUOOhC7LLzlaVZGPVMpGVNpv7zUp5exHt5txFnbvGJWn0mJPCav9cun1/rLH071fLZ9igqXRJc2ctn5wJ3fuzhrCKm3N93C7c6EgLNBQgwaeQSREWUpeZEmBVGiQBY/ww0yyPszHqByMEtRaEEUU7fQIeKHJ9PsWLxpvarg7OjVWC8l89bpIo5yXZ7+1FltN0Ok4pb3numGYiU9X1Zhq6QpKfBNa9AZ1qBIqEqqR5bcIT/QauzECZZM6kdjZRXZmnR4zzUge2eXo5GtM4cDGEqv0E2B3kU4f+wJcv2QV+TN8c8jYBexgHC/xcLvX/7D+OV/8mFdz68vyuulw95u9/Xui319/eWmvmCMd9zW9iEurVzSaV2rx/e1+cm+hsextvuxps/Pdfi0rp+sdvW5pnrhgh0pAquO2hHnOnDIwX0i+YPcwWeHK0P4Pg02/T2exjpfN3ow2Gm3+21N07m25M+CGM6XOpAgckDUAXcQgvWqoIQxGgbVOoVTg62MDtu28EtU08tp1MaqQ7jVSL2YYlRsq4ocLCqmzIm4Mj4WFyuHUjiSzb1pKxi4GqCZuMcLapZS04e0Cph0IaaJJE3ksNKBdVkhnLETOZuXeCDx/NogpHiIYSujDQpLKXtvnm4SoUglGQVYuFIKyTseZTHDeE0Pcw5lcZ/Ok4xnIQUzWpJxrcbe4XjISoZiz6Rm++GGmxVys36XNlxbLHhcnAKU8S5I43lQugBc0hWIjJz3/YB40wJFXrv4HhhVD7WVgtJzyl+PHHxLr9001B9vMPwmWSWcNxVFHh8qPqv95zKKoKkReqdZgsUvibVc0hXW+GrGBgA+J/cqgQNLJmyjFLYKyKHGfVWXbT6tTMvZ0NjEBZaEI9djdH6fivW1R6Rs6h0F3GS4ZPJaFOu1zwtk+0YH43dAewgJ4DIvlAM1VKxraYu8UQsFDyK28JBSKLWfHuettGbhB9uDy/5bsszj2f3g0Q4HkfJwrVUKUYIGyE2WBSp23Uc1SxFsmyKroS+IHNaoNJcfsNjJdAydx/G3wo5nb7em2IXKYM8vjW6j/tVUOjYhqDVJqtkgzIDbxMRD18PUD6kt4f/RDcAjCzGcZ32dGz1ub9Y/5l/53sM5a+I7Vk3XZ0b8OYwfrrX5aD6Vmq2M1blOUmMmYYdqlrW6Or/W144YeHMv0yKSN0uTnahQi6hCodEkhFGjDXsttoullAy8e7qQfGrFsUUlLPqLhQd8j2LCZIZsLi3Gz6QdSXQHjeAy1Encoqk+jlX7zVaCx0dQ5cjvNW5n71yvZMh80jQD+xxMunkOJu2X353G+tO/fKl/+mmqpzO2Zl7r7ecQAbe5a/qXGDELmTLaphCECScKF0k9IeBsVeO4wUS9ZB/joIWNPG3xn+V5MjfWRfWS0KHf6ng3Aw3d8LhQ6qJGpZ2Dg4weLwy5oMkZfwKidGylePSy/HIjxqu5jJoizPZtFC2rTQ27eIvRtidTVuuoIQvaqK/M2FnPiMYRKQrzyxjD6zy2CVeQT1+tJZe305d4Q9jFZerRI+wWpniiwmc0UqsScA0/3ue5f0fGxRlH62ff5Ur/VhG/f87KpVb1H/2vfiqvD0W3wCGQo/6uvv7ioR6nc83fnOsyvK/1wSgNm/7246ZWDz4khu2+Nu/2dX0d693LtT7UWC/nTZ1Xx9qMqhvr8HFf6H/3e+7J2qRkipTVRkgHZH8OBtJCZBhJTNvRiwsz1NWEBQvw+Urv73S81vlwVcfLDv9hu6p3xLYojoridevINvF3bLJFtBuLYVQcmat0rqJQsmycGgOBjOnpcj6veSPc58CyS7Xu+DrEIiKq58GyqjVGz6utPgOjVinAhsl8CRbyeVAEHo8EJtOgGRRbJqSb90BsnXyMGAHL4HFr0jGLh4vCpiZy7FAz7vtCUDMqknJaJgE6kWW627Fg2TS0x/PQU3SCoWPBIfVZRrJLAZmMRW2C9kbrxFYXDgmp37JxeZOB60hhiqu7hDQ1FqwmBC3rB9u8tBLVfD/Gd0YdNyiiwyukiP9IesRLbx5v97W5TvXlI2pk0wm82VL4N+fFLvkLVyTxYTHDDwJ7583X5suyVQm3bMRYPP5jrSLtYixjKPHqKBJjsKytkaYB8riWQ/h3GfsqyimjZjUaoM+y1rqh9opvjDiEz4PwaiZ6JGPlJk1QqGmfCK+o0XQbs7opq3vOYvwZ9edJRLAlRJCLWJBIDZ2ojPa+apMAFYscnDzSDRosFi1538tpeYtH03U7MHGIWjF8WTV+qo1u1IIeH1kbE0RVI+MosHUf2s4hhw1bj547WX6Kn8XewkTngbAGuuJz1f4LK+0fKND4HPCIYxDY6wBajX7z1m4LHqEn77OVz+6XVUhcR1st6fHnkMcyZmdHAh9WrSr0qFwfjz0oKA5nJjSaB3Ukb+9Fgyj/V2V9W7HtkWzQJs9AF/84ndcgRvp8HTHmv893LglvHsGlaFGCUPJ3+T6JBImaJJ8+vIog7tCNKBx/OIM4z7WPUpX7RaINS3x92NV1fdTzNJ4RtZmOo6zq1VCfx1P90+9f6589n+oUf01blERd3PKC7C1tnSLbExU3Ps+c3GL6UitMjY4FfEiBcjjwHF+SQdzihDs7HM7m5o+Hq4etl0afLTLL/mHU0GvKhfidoCpnkgpFcRNtph0DFRfY8ODn/p2hpbSXp9KPVkLve68DMAExzbRZP1djWxV/3mQ8HEo6Syu88/C3f+XCPUzRL/VziNVG9ZvvF1bewlX32ej7EUpLq3UjrGu+pb8tSGL7Hdpkc1EOg37+ba/fCuOWQ/zf/5+9tzeOOs61lCVfPT6KaLhibHs81/l1U2tyU+k4d5ta7fZVh8SVNCP9/bt6fDzXV+u5vhumGh8eantCZHGup+lc77dDbWRgzyNE3AvjVBCulVAduXejQp3XdYUzOMy13Q31SKEwDoobAgZjY+eBOR3XksqT+gGh+WFFGkgiGC9znU/cQC9wR40lGJm3m4JvxSKLW7kzcTNO4+HubibxLfe2D+YmUbTaCcnZiaiAKVZ7rMCInIUxCkHBU4kRND9XKJj4f/bCm8ehVvuVurDz80looRbZepalBqO6+TTLI5FPcX4dRciWUWusYTgB1XFNY11A/eRRlq5QWYZGIcxnxC/PkTXibSmX14qqYTWZS3W+M+ENgV1KqOQoCpVJHJSmv6SpYH+jjdLWFurI6XbDj6ltUCBQjjselNTAKVTUWJDQsr7J3H/yYVvz98clLeWtIn50g+/feZOUE/y94jSm1TeC7x3M39ys9u2LiMAfs4sck9cZe7NBKBcyXxeP0oVw7G8x2i30K+iuxyY3xDSlxJLUIQWfGgz/DFmXOGTPhw+PRlASEPguhOTpKL/K641bKJjLggg9PwJ1O+csP19PZJ63oKBKx5A3nteQhUzh1LGOVLxGDJGGSyNnHfq+fo3EtWGrhGQRLCT6diFiK9pQBu83Irk+d4Qr+ix39jlat3Jaino5wg0nadh4Vvm84TgyVt+FUrNfgQYTWVl1eIf1R1W9gIJMNfbJuYUqMNR191ifnp+N1q2HelVy0FAnRm3yvvS42zQA3ychpiemLfDKLkKRLgcOWCOXQyYWXK9Rp7QdERTPqQY4DQdNBgTVDebDb/NZM83h5tMmTlhbsbSnjr/Q67wTW/SHLfUID5D9uxsKZVZ7LS4+gVnDsjpipCixWp7ZRgzbyBeu+qXq03mur6AchUMG0mtUaVbzTarIGeqCrJfmWk2Dotl+/ulYf/b9sZ5PZMimAIu9kNMr+lemuQCNXMQrvf7y9XcpJRbIteKgCa15XnguZItkEUsXiVKVp/HQKFamoStRK7xWmjPXnLb+Wu8dIFjyuMteIdQ7Y2f9/YJ4hX+oQtwwYKt+24eUn3VJEyV6lsSS/JWRWj//nnJ1XaLirL0cO2c34lLzCtt31KioOXm5Vr1Mcqm8F96EodwEFey9ltoEu4WObcnck4IAJLKw6b0d6ldi9Wy2/jvi+P36g8MbAi3bJSVDY7btpj4+bFRx0/INX+BOzsiBhbKvFege/Ly9HVd1iYRYEUW2q8d363o4UkQwk98JCZwum7oA/wUmF2ctWaxwf/Z7sVTk1M2NFBdQpwq7Z8LDY/zKQTEeqqYXb2Q8UM9JxLiSN5mO4pVxGNAVHfI8aaHAY8FuxQhfCiONYLmhk8agMpXW1zCeA6G7uenjAbhbw29zN6XCVfmnjEJ9QtEFmhNkLgUQrwohnW9eiLJRucBH9FPs6CAWMT6Jm0WujhiDTUZeRox2MzJuNrzIxnB8HshAdmF5fjU6ZENNFhawtBzDHCoeX8LzuK018ugeVSXWRx3PfBenpu4qkng2KQ5JvBIl1ff4XwgSKmlMr+FUwfXTDMkdKIxcC1mwwOFGczA5OoDxG4bNsjVRHrPXgnffUe/r7/z0Yw1/wVys3vSLa4t9ULd5jaqkdlteXZTIliRIllD+SNV6ZNojj0bHWg0s1CIbaKvRTNqOXUf86Py1sTmIiq25gQs/Loei+T++z4t1g5qE3sraiiYHDNGKD7saz+dbsZdxo8ZLFJhB2zR6jvO9Ead4YMYour0Nb585sVRBYzKVCfpxi2Jz3ncyR6WgDVrTxW+QPa6nf6y5Sxp9dUEN7YEmsAuEJnT32DyT3k5nUHEhQqIRyQ6+b4EIvNTO/ISf98V+qC+3Q+0Rnu3Ejl2CxTTiw/tyrtofhhpfyC691nbPmPmo986eRfN3xkJp5dxv8TRj8TPcjZHPz5dak8RDMszjIM7pGcSOcXaEPlyrPVDeOBplDQlfnor8B6PLqMlp6P7uT+pNviRwiE9lGFuLStINrDsi38+gNUu01o3L1xnnnYOsMaTizLIetO6uHptfZ1tuwDFd6jFb6mh+Eb4s/L7n07UeH7ZCx2iYzwwQBQHbKoji8LJbS2AI1/zbp7G+OZ3rr17O9Tx2Lm+QyG6wWtSlsb8blCUq7C5TloJGVk8rgzOLmlnJHHaRWNCpCH/MMklBp0bfV1UoXLMfG6WKqIxNq2kOi8dgqiUXjBGO8WwG7fPzHuETSmM9W6w5q4xlWyMDeCxSkqe9jIcvrgU0iUgcaZ7T9vRbCr80qo5Z9M0SFtrm5jJ9jrn0orhNoRbkc9Hi9kTL2+RNmKd9xO9LXMjZxaimcz+6HkZze983Zcm84oVAkkb494L48dHeYxR6OVsRhT/X9qHePaDMDTOZWBr4EE+ESz/U+mcfqj5uqjB7FqfBBaBsR9abOjxs6qcPu6rzuk7DVO8fDkaWrkgzXpIzy4WgCFjrJiIEgA/3eaRA4E6cLRdH4gaiJ4jbXLRhv6kryRYs6lfyGAcp5VDhkdPLSObE79oxFo1ylZGvluZGNghwM1z5+yqAlrnUM71Uxd5Mh3YbL9oCAqGCVpPsOjRqkaAhEW/JhHRUlMnoQu/oFvX7OAomEbrFT1qb20Ryx3SyTQz8H3FUZNsAkRw1kh+W3daCk1HIUFRXA/E/VtByH7ePBxvbZpfTiEIzACO8V6UHUKw5fr2TArB/cTbqOghJ/N9it8K7h1+mRBF4gCNobuw6NBq6qGiFa8k91tWkk4aAns3R48OrMkdPz1aTw3w57Hd1fE2RirpMD8GmVhd+H7YSX9R2/r6m4a1Gxvu1X1d9zbNzvUtoiH+dioIkT/SrR7Tiyo1s5lVbvL/g5khl2caqnbLQ6LQ3I5IWxEuTn11QgLu9g7EJaLGRoQgMgjKaQH0bTzSSoANU1IQglOEOtnJO4w3oB3DgzsRUpNik+O9nip+bCD6bIbeI6IY2ygolSS6NtJlIHZ6tRuUWaTRI4RGUv1bjSNkSWSIIZWQZgYXLYzPmW+HdYhGji7drI85fPm9fbx1oIOWx3XfjcxtpdzEOhaMNommEDkRYalQ11MPmWo/ba707WEgTaEhCMMUYPq5qeOF/RkgB2SgMcTqAh3S4VL0MVZ+xVB2qjvil54MoujFNqcbSr5caXunVr7V9x0iRKTK+OOYjanRFAXi61uvlXGPEPdeHFrL4cDweffDyvHL//s7Xh3qTL1DnICotEIIvzfFsBN32ux2DqGUSi6o2Hxba3FnQQnqdbqvwIlFuTdPQOlqva0fk2hZ/0WlRdQurCpIk4BUhwnhRdNvzitH+tbbiF7L/hY+9Gup1HBXHxre8jKf6/mWsb1Dwyqg5sXMpSM1Rc2FEVq5EA4lgdI/DPhN0KwUw6y/5bbbzyr4gI5POsWaSpJzMduC/PWf2j01TIMuVbooy4lXqhgtAsxDSubraEoCj1KaepSeFQ1xAvfdBaSTuOd2xSnqRxnNNzcDPUFni4m/kz+ODLnEcRTZ0IvkCepMEULLwxb9To1/9O0BR+OZNsG/uZLj3mJvz3p0W0gbN5l/LhL0LtzuElRfiGv1+a+9aBeLC3T42aWBdcItPqlFxw6UZ9f4GmsX/yYVf52Fy4A87f/DN5lAfPmwkxADts9v7pa6bsYbjqq4PDzV8+VD1sTDwU0yA4N4jP1DGMLXdvas/+eJaf/n0VDNGwetLPaBQPX+Sq/gGXhuu/crehfTNMt7IyuUVTiHVPkgZXCEKo+YwMOHfbuq780mb3na3rtPLXNdxpULifGUhzUr/eGV0gZIGt+5xVreFUtZ+PTwsxLPdjInZqoPeWspNcUMah9R0fRr4mnEor7g+dzdJ3BGQKpSL8AsDA0vwIagvMnmNTz2SgkRLhBO6//n5KusJBq/rrT3u1AtQpOK/J28lXNlB/jxCbo4eV+Z8YjNgW4ETR0G9taqQLOFwEDSa01jNHeBmS5GcD0FYvCwdHEyzoZIOTHm5qwgo+Mg25mAVsplDkXHudtXq4YxhooMS4C01FsimR+3nEdfpdU1nj9friR45KrFYFegKDLb3Oeydf9z34K2+hEBhpA1Pq6N6WjCkKMMWp4QDcieY0Bi2hjpFuKGRjZItPMJyNFCMjeVRF/uJWCSodgEhcryEUbiM8VkLGH3zRf3c29T4llShRBb2AgvgTWiPgnjhHWYD60gxfcoYNLu+s5BoYYWJg2tVcat8rTrOWaDGDEWmv7wLKP7FataIhRCBxJOmxR++bPYtpH3wpu/rivntgYZKnQYf+6Za7vvAn51lMRX+H2pWzXZ9GoGyiUrRBa/G2y4wNcql0NPhYD7qMkYcSCBa1derS73n5x3W8ku3mZ5cpJ1LykWErvHe+dow+KX0zYGGoOmARoj4wvZ93FQdkxRA80hSkXjmr9cidXPaV82MiWngcz/X27WvO9d8utZ+ozCRGh8sGmAfNlfO64y4SXu++VJ89e5vN5X91/Fqnqe81IKIsQD4TNrT1xRnHhnG0SYJMEGuM+K8N/4VNWe61Em2ORYCITTbhs8nLzmeGzUM7QSBlUt+v6gQva9eJd5gfKsJy2lSU0DxQXFHE/bL53Ndt+t6nqqeJ/b3QUvhBJLWHqDtqRohYcwQdK9GZX6bKkGh2xJ7PaMqmvxeO9ZNzZJ4uB5DWuVK8kkU5ndxdYpRFbANSHEbeer0SPPZVBChcYA/Msc2t9LRnD3CDUKWDAzAA+yUjET772x32ZZodofoLHKPjf1DrIGLD7DONgMr0ghk9KrtRL1f7jzTpyiqXe/Jijton8dm/NOjfRurewrCZ0rzGsX/LeMX5L1H2FYALwkwPF86nK1CdrF3SwvR20vTe6OM3McI/RYKv7+JE9WVPfw6DVE329ptUVRS9MV7YThXXY4OlPz4WNePjzV8xalzkgiDizqgstixCU11XW9UONwcxfnSVe0Pmxqf59pv1vLg2wU10IYmjjgefBBg1yKLYqngWNtB47Pdal0vSu7gIAigfBjU6U6ndY0oYjnIZMxs9A8xCJ0XU0XxI+RL5m5a0u3MsVRsZGFT6Mn4Fa4Hh3hfR1mvuBC1cspognzV8mSs9vTr/rsNiq9Feu8RqkxwOWjkv4XUn6u/1aiTCLX5ZZai0LmlQb60cVAgb5ZxEg/vFqmGpZjK9eLPZXItHt5Y64EUEvupGeZnlU8L+VaCjWSQilMRj41OgdCily1Oc0fSLa8dFI9NCwbdfI7LmVOC0bohorX4krfxmb3p3E3TlUvdGBRR5F8VLit1uZ2E3t0Sz8Mf/9F7i1m6UH2jL1I59WCKgxarEh3aKaA6GSN8tu4OtQxbENCjXomAvC7VRESsoA0op5kVcYu+rfZBzoyAGA7SIyz/OJ6LcOmWMXSLHhw5pAzPhdfmDWvZjTL/bDNmXr2hdayf80P95R17JqRROdgLNWYZf+vvF9++HGp3fEOpiv1DfnSdb+O7fA5x/OBE+XrLoYHGJyNfNmHWuj5N8owVZdYwyGLTEJ5eOJjtyexrwiHqsPi22Mk5aG9CCkyMhWuoj3Wph3erGtgPoiC2iqKhR8G3LoI/rOr6xGkPDywgDb+UMTCooThgdkdgu32KeS12JlsaNuyZeN+PQSXiaSfiPOtwGsXj4+iT52JQfo/0+tbGaib7Ey99HhDIw9s0cO6dwPFqN86fIgaZOMSbjj0+yeoRXGU8GEFfK+DFNQPh05lmsQQNPvdcSH04B/DpNN6TohZAQQqsJX+beyVwYO3UDqJG8ZN9qUmUKr6QIpui/Px01gSLn3u6UMg507afqcUDM9nVPnOSqStwoEUGLmDZZVSUBo1SrFuLBiJeRBXOGNjPYoqP7PuiP0FXUsazK9uOXRN2GFHFdGfaKR5giuDuYzuvl2u0PLp5tvrnaa9XwdS83Ga6efzZj6bBeKv/V3mOdF5znZZqFCQ1SFzvL3L0MLh0E136JiJisil1ez5S80QcGrcAfdZMOnBCoG+mMPdnjR9im6aGB+oJc1Ce7MwLj1rNdQiTmRkvMYy9nn+bhd/f9vCwCJOB7Eiw+ZCA2+xkcBuI9lkd6srY9mFX149ckZk2Reoxme+u1/YTmkf71aDjvVQ9zVUHUgzIpmUMsp5qz+iDXvnVRYBz8uIrFjNgOn4qcDoaxhaiqsykeTRE7BHG5r07gHl0dwfkzj7KgmO8i3pX4ylyKYe5JoqZHFgSIEw2gBQyl1gXxQCpyPRjITg4cKzjfngA+dkefbX6DzXx5TgrGs2dA8jmRiMtFK7qrPuAl8XHptbnS02MORnP7ENO1dfG1YjNSL+Da2DmNWMiWUbKvmBhRwkVUfSWDilvZCb13ryfFkqYYG5Mtvk9VnTLTkAzEz7fdskXhDkpRKNTNSReyNyy1XS1qfMpvAhGydoJUfZO6oqlHp2OQl4F4WvRc19sBgrXpd3yvTnMtjhZX+pr4pnUrb5tcccD14oipyH/KC/dF8jYbxEIcBGVz9udYPggqYHq3MbVHRIPV4U86ruxK79HKECPsbQRB32KsECbtjZA/34Lx1r12GA2h6ZjCakQfBCEt5bPdhNMhLMjaoE3DvM3b1FozU3U76GzD2WiD2g1DneFp7OiY+acf0qokG4bdE7q346P0xvKZhvE07oRHyIqdEAC2WzTTDAWg4IhVCC1mK7v3ZhZqHcKSftD3wpZXhTH+tU56Nr0uYuOD/uqn66vRa20ete+NLoiDl1eeEncIzZVcq8J5h1qdYKvYgqMjjTAD3ECAQXNG+O3P/Mcc0CdL3UiQxg0FaSPrF7GjHAnlRAV+xFdEBfC2hNzAC755rqPznFulwv7OjLu4jnG9fntvRa5XQQ1eqnpQRRndHY+Nd/4jreZl4ruKH95XjhbfD9RQJMc0WbFnbGdjNUUDzT1omiYNB2EKygTfEuKOXigXPOVbZteleccJB7Kzhg/U8Wt+exS+orEQxbsiUc3k8DCLm0Vt9D5Li20BYf+E2RYY+hO1NE5mM+fLmb53ubDURzi9clZJIcNF2ACKZakEL93jdjVzN286NpbsNUQrQj2hM1vAtEmqCBntQzRcy1aZCNKiR6XoK9R/spkW0AL53hzK/3eBLyExuRJhhRuqr51VuRZZb/h2mq/lWjS3oCePCQytc/HwMc+i9qixqUQ4hx71q6SoR3leHe0LVDJe+u10zKiHtu3eMaNfv6219Bvq/D75yxc7saWCi9ms69tbXcbiSwed4wqKY4kM5ND6DBtE+iIPwty6X3V41zX+VjXZ94237PVSFjqIEYGNcqDSBdtt671dg/+VlskACzeZEtOL4gcEJBcFbm22lEocdM9hlF422SInfi399uVxlYmd3YUkrui8zzImPkkcq8vKPFtFBB62CjHRBrCvsA7N79bqrBkA8rvDihZoac+KXWgxmuI5xHUEQ4FdjRCY7Tx2ycNYjWFE99KEUX3Z2EMn3cW8gL3ql5WRQyt7Bs41PF5e5fEBT2xseGQL99kdO461EixHNWr7mMIsbpWmdAGsK95QoVtDoV5Lxm7Cu0gPshebZwWWxSAIAgIQfjMo4UX+jnx65PoQ2psrpkLPG2GvMeTRxpcI3fHTdC/maiyma0aAud9i0bA+1oLzVgJKYObNdeOz7ja1AjvUaRkK6ybD/YWX/tHowQaAaTAE92TzcvnuhWTQevYrHmJbtN5qokzU7EW+5RFqaoNOZb3iue64/8lS5a/l/8bhXJylJ2X2XLAqFSXqLO2MgCxvRVW6qDDkbtZ0DSn5baviNsra4ZGwUPclkArdkA5Dvqk0OZ1Hw+nsemN84jaXUrI0K8b8Uy/vgg8rhqhev17dJyznEc3dg1Cv2L5wrpaIuBoLpOrpE23eZP9bik4Y8bMa5vDpukIPqTxRTQSgWL3y23V43sKMZTCzlLWqSMCogvXzpgbSEI6D4p+ZPe57kY1jHCIL6Q9rLrBg/u3rsfVpU6raz2crnU9DXUC1RKV2mpcbWsp+jSiSyHLc63+CQQ0SDFFooQCJP2MTnsQX5Q9EJPnvdWmKpgdAPzmXs7cddFnvZt5xewlAxShrBVQHOVmqwBj78r+mPUsfpkWCmcU+6VsIdKI+T6oKEjur6LOzAFaUEN35V6veOeRVsTXYcQM/UOARBoZrivrjIx6rLRk3J7ntH8UzysN/GG1d+JT1KpC58XtSDODOlvJO6FZ0PgrXckIu4rbGAfzkuhQzhhQkyIAVAKGORL6RLF4UvymGNvwx9Pjx19WUwVBO16fGskGgGiNmiZgIYtqQqai1H/Lvtd5yLIiUymb90P9wNkaepDGstoPLUzxHhVk2hmTHgFjtN52PqELOXbRwJb9esMzR5xIl6QGO9ZhIKECZFr8QuqYPQzdEPp+t+evb1gXhzQBca4IUmtEMVZP9+1zJzsK2BlqZGKaxsWT198R4rdEhehjmMfHzeVtEDC9UnqtLEp94ZCVHyEMg7Vdqr59qusv9trcTGO+1nU/13Aaszr2utlfPW7qh+uqHle7ek/MGIc9xrDxlmIsy9LxfOdSe9TFV6iw/H4OxbM6fc0vJndQ25XzKfdQYkR0dzc0XUkGuNYnxdAgTnDqwRm/PsXEySK/xuOlLg/UsCw4zzn4fq/ZqJjiv3XRqUpH7i5LB7AI375/Ut1amrgYC+vPYwyNYg5V1U48LYyWeRAhBueLznz0bV3eX2p+t6oNgdrkJktZGYsJNmlxnLgeeX+MgpU6YLNjzAEo0GQSPLIJbGxxo8Jr1uEjFmUQIopOMbrEMTzbggaRzUCkG4jVqq5bP8i8by3UwDBOUlzVRsUhIeNezBrVZ6zAn7MTsSmYMG2FmdXPHpWJSyYOWVDnNuSN/HK73+lhGjVqH+oB3mNv+G+z5tNLtgoU8MznWAPY9WTMKCq0COgeX8SJxIagGt25SHQ37mKvFWYmmdu2QzFHEVKA9KguaT9T/aD22MIuAkGO12+P7CWUCvRhQ2MjHdx/c+zse6nfkeZINWWbBXcWbRBymXjfjUx7RrPYPEQBn7d2U+l2HFkQitSqi5gCZEBTUvdpi+iiEUd8BL2OWmncnB9vzprAtVGzRsF6B4svoCdDKSCD1twQjCWKPWisG0NZ3SjT17U3yAhxk4fVpb7YX+sjRd+Hzr/mOSSEOLs1YwxtAhmXH48a79b3uAlsS5uaECUKQAOEA9xpCHnzpfbDUPvpWh9ejWY9J0t5RwGYmtzjdBel7DMkw4gv3D6fMeQWMshnAwWUDZ1907Zb3BrcfL9MZxXvw8yg8u29PJ31nbddB+po6yJpA6AJMSARYj4zX4oXo+yC2IOyavQ8ETu68ecXAtrKdee6StTX/o8BBzgvEUebRhNag4yw17Xeb1SoWFSSE01TIK9DTp4RIdw0FcsAzp1EgMlgH6ezGnvRjpaEHr8vAVJMui4XjUt5lCVGEAK51nqUR23eF5MlJVKJXmO0vYsPzgjtzRltXkCPCQdo+og4KCqfzYmT/csg27QznFgoQjHS7n1ZdI9M5GR9c2dS7IjCWp5R+OqOPjOwIiVx086vjnLtEaibsKuugd3O8r6FoNqKZnkGuE9KSko0qKB0rxqZSQA56EKGthKFvKMgbfNieo5H+baYStGbYr9VxAuyGHTWFlp21NBXLcWgpy7W/CEgQUfAe/K43dnPiwP+72bUuxjI1lzry1YjRNzr59eV95+j5rM1jMeqb041TO/tCSXm7EsN3z5UfclOTUVStTrDT6Fypejig6xrv9/W/DTXeZrrYbWv1eU16ikvHsz0hi3dEYe9qs+6nk6xQ6HLNUoGLxPuw5YRsgz4pjrwgFKwnKxUfb2u6oRPEsUTm/Jm665s5cg0KVwZhWBUzDKRf447N4Em8aCjmGuvOC3FNqnMQaFNREbTJF/0WM0IjDvD3MaYkl0mxt0cvj7h6apJryACD+RnfLjUWenvLJRRVjH8XpVXfL6MsNyJ3U5fxqIUAVrwIASIJDbmf4AYATKKUA8p/gzB24pDk3v4bxuXNnoGCjeh0Gw+hxbqbIicFJQlg9QwvnkU9iPkXvnvW+xBh+mNgPejbknu9Z7LdRe2IE0yKeUBochOrqNG3UlbqUs9g4wuXfrbfT3qVoIY53Bwe6lRAu9cAvh4ULW5c1tqNYdInbf8Gk1waRTAG3z8yFheES4ImNHaujMpJdsyRtxsNi7s4FD2Bp28yWw4Lqp8PzMMuXF2QknpDTnTURW4GgmnSb2j7S0jDX00VPwSafVhbbq3KBMZQzMKE4enrSfSQbto+9EURb/TaPuqjrFEWixXBKa1ZYs5lSJdhGDYKSfrewHinaefRnggjqI43EZhi8q481GJERFH00jFu3XJp3Qlrgq/YF8DIq/dusYdaN5KYgwaMh0Cp6F2T4eqH86l+d8jjc3BSNP7S8nozyqPuu6Q9l5q+1z1/uj3yTZIsfOSGE0Z1CcSkBu05IUuyQq++Fo/Unu3MjzUQ7JiF77mXNPZ60fBB2bVv7mXY7Pib0mhzWG+RCImkYEEJbFjbJqrTNTO3I1Fi6YnIH2Z0EBLcRHBeNXRn706bOiMObbBAu15QRwX5XAa2vQrChAATN1etjEIt2huhZWLvBMpFkIXSvQh7giaRmn/hA4VU3MKtTyM5ox57xafuh8OoWJttRUrlNjMcOZAudI+kOcCQ2SELHwafh85w4o/y9jVPraJchTynpCBjHAl4gt3hX1N/G29Jw+AG0Fv65v2ImzjZguXjPCxT3IGL6PRfJU1PG1I7XOO89BFZ7sCNH/QHZw/4c2DtqNU2fMo1tp9SkdTXOZNcfB+J4dbXXcDY51ApSNZ/MXmR6Zhk4q8Z20ppHMNXPJ7ZO2Bg4tV50XnO/TPxCD9Lgq/H+X1ikplM2U6EuxX6nqqer4iLaISrPr+vEikazhUfWQMPNXwiZZ6W6t1LB0YXVDlbvmAhp9ZvxDO6TBH4FUOIR1EJEl4FiY4WoZMjlBy1FTMZsU3M3qF1x31qCLKKIrIt8Rwer2RWSZZgYyUgeDhQtEo80Ry4NE52YvPSF1bSyzRPkK3LFVn9Gu+1K0rUgHDIUPnF2Svg2gEnXfYe3cD+PBhyYBiF+SQLGL5momeH2qAibQi4ke5hdLL3JOMKqK2E1vuDjnRBpUFqwU2OWJJxHPyIdFACw2hwAY+B6m0nQdja4+beP/e5NqbSKMlVQKMRPjd5ltq1JDr4GvDSHi+HbAh0esY1EjC10P5v3RZXVAQAZhD2JFdII/+fSLMF6PwjJczGtmu1vX9Wfjhb8Z+/df4ev/g/OlcjIVL076RoK7OF70VeRq5hC/XKjkTxUGsPeJWEdc05mz42lxDYVCyBehDc7RMlVTDIZ6kdm8XPb0+hV43n6Z9+Brl4/7EfNlgYrz4NGJpL7Hw9dLJq5fL/TF/tBFCc9IWz9jWOkSZqMM0Kl2Py1oAZA9BeRr3s5txMq8T/oFyBrhzKIjaMOddRmBx+WetMT7q8V6uZYevd0+BMEDoCmPu7brOSSeRefwl5uLizvnaPA4lZGL3sKsBCyl+PhceE/r3Q10e13XB8xQnAIqoaajV503N/+OlVt+yLxzq+kf7unweJYq6foQ2Qxcee5nrRhnd43SSewGGzA/XS43Tul4v5CFZrWpvcPORGynVWoOzxuGXCr29I6X+biTVDhwqmLD2I+VD4zw18W8TYl8o8ct4/mYC7P71joO2CHHybHIPQVwYkycXXuk6/Aya+EUeYWsu73E5M1QkOP7zXtCAclqFX0RU9he02bM4mR3RlX2RM4PoUNFY4NcxVeoGBiP/ky3GGlmywrzTSUx/oFjyvnnnsReEd9PTpcSSWcNihL8j0/S7KLrEB7Rli84EXTU332wCmgJxjOVZ5ZqJrsXz6pQ6j9wDorAHwofTudIWOQIMOtbU+xnomj08XawymTMobn5f2y4tbhwDhmgplEJn8DuN8C3yEE/hWykbzmFThLIHt5eeYtJQYi/AbUAeWcC50OqpwmInpQ/QavBMM8QbjG2OCrzbFLBTnFwmmkfYwh0BHSENL1zV37W4g0vIHrVZMZYa6jRe6kjM2Be7WjMz/3xULuz6PYXcqq7v39fwM+QtIqzV9Z3l18NxrAuWJBKGQBCf6nRGwbuvyzTWCxdh+1A/ezjV6ukoHgn2H2JhdwI6RRjh6mx+ap+Q1jv1YhfJ84kODe7EZIUNRSuwL/xxoGchRjF6xuJEmW6C45valNzFEJp5tHRgKS8ndiOB0KU0NYQQQ2N4bbY8wIqlDW/5SptiGmGTNFwFGE+DPbKkzN1gdaMgq5pJJ9GhTb4wrjg+6HjIlPGZqDR3SVYdGSGzzYDGDEIh4Wga0ZO/m7KFXaRhEO0HfGv+BeNUjfPwieOhNDJHMoBQvriycykEw7MhwPLg8EEowsMhyMq8Qq4V15KoKVptTdPZdNqJfrUWYbo3LXVrnQWa+yl/OT0s5n94PM0c/zau4fe+Z/yFCvo3eDD+db46M7nFEz+K+mrlbkdENQiaETEvjSTbYytf2A2LrQCMdGl1BogQsKGCPrVkSNJ69UhHKSuOMuoIM43YNb/0Fzb6u9gKtNEyfn0qAmPwHEGJ3efbmdoHpZ6f/B2qU23W4pb5+/UZhTbbJqVTCZyPGlR6cce6KUr6v2/YSw7IdPSNbOnP+zPruvgrLVy7ISr9taJGpBhtsnv/DL6KPUwjJf0cc5FUlPboGMPuDb6UVcMjexzXeadM3Pn9XOcvSSHCXgW0FwsKxFxJefi81XMsURN2LJjd76512ZnCMZwSj/i8qvmbo2mJ7zc1bzBrv9ZmX7UdV3V8cToO3CiRZxTdmM+fIm4pyP85vvctacEIVvt6Jmkgyvu3+NLapCkW19mc4/RXbpCS35tMh1gRuaHRHCEIjnKpl8mKVaaZjNYmvEyNyWP4S2g0a1jG/9qHZ6VwkMUt/1aJ32yvIvVpV3PFOtlpGiCxSfjW8Nex/zGnzkieiyI8Y/MzM0JdfDezX+vY5H3E2Vmztngd8b3s80TwdTrJZphE65HQSxny/l0uSq0QhgLEst+5GhZfEf9UijZ+tptQnjn2dj+/OpPJlF4IFZ0tbEsz9jd5XLTIpr9IXHzOs6TucAWWBtDnggRaXeBf4dAbV7MVmxewjuOIvOyKkAYb8EPIpfn3bqyjktZZYrsViU0istC+Fx6ws39zZvXoJT6RAq7USGaU6w00jX0jjInMVGRp9tR23ckGoucro/HmE//OOH7LD4mAQocv/3c+1l9/nuvvfc3nm2o4n2uYuC1UPo+1IjT14AQOrzof/hKC7C41PD3V5Zu5LptTff+MendbT2xK7z7Ul1/va1+fazhizJsQS21OkxWiKtJdsAwUhPDM6JAZhcCXWUF2ZSHQlRJvwwfwYnrwpFj/znBXAfGbtR5GoXm56Ly0cWsD8J/7Yid2B44Ip/GWfFk/mH5j3JTZhspNVKetWNNNmxslXuIox0Dzq2ayiff+fWwuFEKnS5F2p61YD81clzHe31poIQknX5EXD5uI94RYU2CJl/lqHqKQtBjGtKS+TXLjU6WCUGMeRqne4VutSc5wk3M9cvVo1m4gcjZKA+2CWddEykHfezYKPr/HxNwn0M8eGXEg3ew/TJzPWDIiEbnvM/aOSMHWBeHr8HmvCDuG+vKR9/n2X6rd4eiAnDdinNBxdbFk3oYTxzYnBfZioxMH+43tF1pFLrQ34wqumTlN4a8JybINiK63NrUbgdgbsInNsi/vTTvFkO6iUB3oAb1ubt1qq2JbpWxlrHfZRnz1ubNWEQokIGJBZ3W0yEIiubKq3pprZ4Wh9t4eYUUs1zm9+ukbewCCmhM2o8/BB4PyQfOirFnvZV0z335OCuAIVTzeCg0hOZ/dlHQu6IkscfHzQeExiE2RpPV6oxz0qOgBTiccmf1Utd/W5SMS343oMjS3IIeYn1t8MtXleaz9mdjLtThddT7WfD5VEZH5QvGwq8tprPkX51p98sRjeBQtvoYJSw7zo3E42k4l02Un5DljF6N30e5T+CxhUos1TSsLrV9jWtJ547IZ7IK7ebdv8RXpqsudcFeZ7iRRQvypICrtutECEO31+EtqEba5sQu5RTB4WStGU/6QsPQQiCh8gGfHtl0eDyOwsE3W5mCOIM8YlmYWjpg3h8BBzzDPDsgWAqARKzKmLEm7aYUnMX9w9TLlkQG3isW+KTcbG0AbcdeUqb1ZkPRrRtXsz0J4ZUFkpwDOIzflV1mfrZPvy3RFCVGaGoFWgjYDEvizMLFz4pbPE02mJMy61GEL9cLvw+dqEj4ixNC5Ejsa3gPAgt6z6BXyXzJ9KZU7P1/ayqRrMbm7JI5OP1M/vkWLQVMTrcrYNLufGm++TmPe2DL5yDfvUBMuNRFzBGXeC9aT10WXS3K3yGhClnJMzJwuZx9FFeZtEeRn0VzQtp0xoifKgY64WzIWwEzTu35PWb1Rq/IfVNPjWE+v5qZhpqhNH08ijYm8uUE+hvdVO6A0w5si7bMDbp7rehzreDnWNG1rczzXWI+1/vChPv5kW9vpUJdvPrtIkJrTpFWhB4pB8k3moR42k8fCXCDmEqNNh6nUH+aqj9NQz9ilrFd5aGy/wo1VlA0PjqLQupJGkZsHn4fVEkLHmqXiZpEIjaCgAeHETBekJLX54njOdTlfasyY2iaTCB569IY83mphcfZEnobD4MOGh1Bh2ioCQpyKZYsXjh9wDjuPpzfaBDTaTTKBOsakKFjuLuwoXnruJPshlc8a0VBh6Xc6oPI5uU75xUtTILdz1JXOH7bfnH39JMSgt4NHuNsbVYgpnfcl4vN80Di32D8yfWdt4DHKkiDjmDtel0Pn4xcXWEyjgmRKLiKaN/pidCMFuIhF5BKH4C1Bhx3bLYwIChrlnYos1iKnVTvhq6vMARw/PhVb8drrcalGOSmYwm7w96a4F+Ag5MB/burCnRNPigU/Gd1EWCUrzpSKHjZD/wI9W0F2td4zLpzhgiqyzJvt4sPFZ8JsVmhEEM31ILsa2dAkfJ6DUag310p+dubjaEw8gkAntjEUDT7YBbPy3it7wt5WkB1RquI2f5/8ap4N7pOizxJRBmqj68c2JvSA9e9UDzVGEVrJeiq+XdR7jznInAu3kQ/nGTrMw7omZtQUpwi8SFwA6cfT/tO2rtttrR6Huvy9qYbvt7X6Z5ta8Yx++1rDTIEH8X1f1z+e6/rIIT3W6jwIMVyd8ZvLGIzxr9wDGlWf5WHaBrF96Oj+9uQpCB/Pp7nMRsPMT44JwUIveJvPW3s0GjAxwqYmKwWFiqglq3b1I1eG0Lc0Um1qhFMo3CWwfimohB6pCV2pGNLziHhwJ6wvoIl52/j9Cd3SOo+Haxo9ewd6L4OONCjCkkLDD7LGzNeVk1QYVGHfstsJadREJ8WNctA1reI54oxeAtJqA6wcLrh5hoyS60e0LhVQclNwJKjQ7gjLqPbdhLkI0/sizUm0cJu9K+HCc++lERVdKt2e6xaEJ1bFN6dloagkZo89BODFSR7erGza70JJ8x4mf1Ht2prSI2x9nnQlbc7dHNbuVrj2EmOocM5sgII0iuQmBa8XhwToUi4M+T0W17rBtlCuc5v9TKAbECreKjVvjAuiucwleiDS4+DNxbZcid0Uiso6yjTr95LV2y/Bw/GsgxNwOp0F9T7aQ8WKQk75+SzOz3U81nBE3MGGyQYVewhYxig499c6fz/WrDSJq8bHjgiD62MbF4qpK607iFBidlyt9+6dFD0OqG2k9bh8219bqqKDZOLX2jGmRklFBiUSbPz6cKfXlbYUX8Hu7cIvMqpvIFYvLSyh+6IwEiNhovvwnVsOM8kqvSBnmYIOyrJEZevRZQi0QtwGub3L03BCFA8/0ZD0xGhUGw5jzqge2YXRrWSjdfbpbbNgFK04NdStUv8GNYnfEwWFGheZT7tAY7HFm1k8OjpL5SXKncG+SvAmbRCcwky8SxeLoKViTuRe2ABT5bNtC0gN4Bs3jMlBReBn3PIIjVq7C7KdS1zTQ0RTN6SNLMUPRa6r4IW35ZSV2OVk1PeWX+L9xK5heYbV5cWfTkTtHDzheer7YiTa5GyKC+2ld2rZdo9vE+h7T7umMngTTVXYPLf+2ljEKH82nMIm/tsOyadAG/j2z/W/BFFeFMEZObUJaQ4gC887/zJrAKEW61bK7YzCZa57UysKlc6j36kcen8cwG3zEoVfI4oaX7cwY5H1ZmzbBetdfu/NzaDR8Ig7GgHINdQh0rxVdeZGbK0sNEVFVOJpqAMHqQ71rVARWbHsh7oSg7m5qsjDqgPERleItYBvpiyQ4PNNdfliquFyrtWHvVV9FCcvW1FqrgeiK5kTw7mGNsJhONpMnn2H/YSohxix6zr2USs0wfuWz50cOD15TGFsWknWYsfjqUbu/OW3Sa/I9uIiQBDUzYdRL40zbwb03g/tk4kFig2LbStgh6nmBnr8q11OkwnTKyY18zd7rC6aKHrYo7DpMrjmtCb+J+63lLlpzsMF02TnupaF2nycazraOqtzuhFgUMAxEXDiQ6gZNJPLeDFFafOro3y1l6HXO25HFFhO2oCqE16cPFNv9kna6dNBmY/t+DA9b3Myb/EnVTfgwlETLiov+fF5X3C52Hy5LsyiPE50WnODheppXL5IZ6IA9oZ1E7X9GLHeBLXv0D15mUro4RGwOHdBFuXNORPp6k5GDWmoHTKG1iTK+8yNypq9N2JIi8zcNLbkpOdxOqNoqjX/jmfoQhvwz/Kt6gYkAp3Ui+bgei2puL3+Hgq/JnRvZWhsNInq9np+raeXSckQlCzKB50nx/+gZlsZ7dFOhOqXgomNaT5ZHTxUfbpMdWJ2vzdXDH/A4fR9DT8Y1jZvLjmcio3zqILflzLabzIRKHpGd7O4hWyudHIYWr4LvM8Foxt6lN+WRRWkKKyvxONA0qabzqG5ti+gPgKLvm3HQQPECrXrvUjnGU3BZNTBJxVtDqYUo+INKaKLkaWLGUf6REzRtsnh58lglWIVZGgdlS9u6c2mSbHTNgFWzEYsMQz1ysOu4s2fbx+bAAQti2JSh3m8ztnAGZnCAzxbkYV1wbgebS+DIlsnZEeKWRRgzCc5vwq89iYkRIiR3mWq8+k5nA9D1kIxO+Ra18lIpPk0PPyWsGv0rNBRUBS6LUf3dWiBECdxHMVmlK0A66M5JG/19fxijyx5vCF4z+kkgnB8spbCRZ/dY9wWJvRoWE+A4RgdBLJwEbGnjY/ZoCOUEKfvqpxgiSDuxRIZoUI4p/vtBBc2TnGE0ikrSP0+0SMGzR5DpGvuv+xoslZ3h0vnDdgpPNxzfl8tyJJNum1loJCfxcBZYyHWBvZH8phLwIUytW/CFjWgUT9baOI9TGhDrgOPQiuK+TMhhy0U8qw2PK6bErh5bVZFehQn+6YuyHXQsb8YQeK97iXvuNSOw1VO0ynYSNchz5XCMCPH7vqvVAXqsraiqwxIgT/ONb+71vZ78nBR9E5VXwx1/QViEMuFV8cQLekqIpISw0n7iC0meEZB3cdccyGYmp5Y6CH0fzk03BDqmUTTFzs0XY+77krcXvuov8lXp2cYJ2ItJ3lFI3sQL1MqWHmMZr0nusloU90YenV3oP2acaOzcH1cUzgrx1xR9C4CVVSHm8t15oYr5agR4zU0jrX+R5GJCh2rLCpD8/i5L2uNYo+I6M5j7a8bc8Cx1bqS1e0zGUseqUBJo4J61XxNcc+MxEF18IfP7D7PKM8GdC4a0WkmkuwiTqn880IhsXCrG1TsvxZ354WXRiEsMVBb3IhugUo4vLtlX8szFsGX1l7TJDSZ8KRKMXJCuCwAEXCSwtPPXpJR2ms07gcDnMiMOlw05bmN4bJ+FmcrDVTeaBe4nixmQndpxNHPqIbTWRsSOekaJfFEj3DGJ8pjXmwQ3ChqYnGL/etgYivNc4b70i2NR1fuonHxr86h+438aX9LiB9XBVUvXBmi0iCKPtfL91/Ulz8l6xHy7MZ+brzF+VTXZ+d5XoC72Kxlkc5tPkuVc56m+u401ZEPft7XZrur3ddf1urvf67rf/lJnBVFST0wSrVPnGbbfep356l2KocORFehZGNdXtjIGKPOtkbSw7YRmoKdxnm9rePMmNS2kC84AzKylBeLnexN8O2ujsXXXb6LJxVl4jsw7vHBtd4e1DVhKIwqeUVEHHXhMx5PFxwc/ABS3PE9FMuMYcSVs7UA75lMXsG9yOjDL+KlUY1G04bLPNLz++HzaX1cq17OHBA7IXiPsqeAs5iNEERPnf3sFJH4E/UYVbYNdJPjtR4fHuvl5VRXIZKeCWIUTTE7vV5qy8UM9L90K4myE5l+jY+POUB6WELOh4vhRJHb72aB83m4JyqMUrnI3mLZxj3Kaxk+64rzjmLxGdPau5HwW30Jj4YAnW5R+wbtcEQVIF88SxqP0CkvqSeJTIroyFwgJ9OwEULQX1LYOGjYeMW582OJ0o3feZYA4wbSaDzM18GB49721KGzpKWeuxWT+nlewo5g62SN+zi5WBh1k8HmLw8ykHv+PJnv/kwe5aKUDbPCohaD3uEKRVIqc67k997BlYswTh5nsfBQcoBj6JoWoZFs1g4jWY9tOq3BCICeelCwzn24RwyDIIiLelc4GznL522UFQQnXMENFTf5uKMTN6jYRGNE/CbOKt8H9SQ2M0RzfbmtHR/gK3t4ssYV0cg49921hq+rpp+f/bOZ7cJ5hnOdPGxUlgxMzJny2hmgrLSSWsB5+FDJa6WoYaLD79Fu3ukyMnQwMqhrgs2UnufsT5jVvcGXU1pa1etkBiNbRvn6oJZgotEgFVDwpRktZqzXB7R4zL6DKnb0W1i3zF4tjtIkSj5ygA1uuLEBg6Yhzm1yeoke5V6Bnkl8we9TnZ3nOucdvxkxxfGMz2LV9t1eQAQWXW5g7AuqyQxc9j1PuulBG8CMcOJa1cuRvNVZbVoR6U18f6PgolPEpEXja6255g9GrMhoOab7rmSNSLHv2zYmYqGmqyx5tEHFYuQc2YKfVw20mvOXSUHzfxfuIntCR8Y5Q7hpTy0wWmOywgRJdiiN9rJvhQKi5wEVNag4vEQ4j8TnhZOXSRJFKzoBj+r5+yiHO20tNUfH3jV4s9jT6DoiNLEjBpY7UHkcMsA6hMfZHV8c1e/yeBO6mMKUCaK/x+vwd2znwkvVKhYFl7XH+ogSXsf6fEKccKnDRBEz1fWVPN5Z/D2cQ69fnWr1iYKvY0tG8eGA2j6f4fXBu9vWl5tNvazGmjFik0iDDR7uoDt6xQCzA+F5RUGldj8tJguKnZZNTycOZs/41a1rjZcCegLdMP4bF6ykB4xz7XBG57O4rha/CF9A1xt+OLX4ZV5rnkFThUQB0CIYa5p3ekCEKKJW1hgrFvmaoa5qA4FbvIBBfKcNqkU+25Y0EpRlnffLAeAuVBwOM0CFOeM/aEsYb2lxObN7eDYfinOEyji+ow5jkZ/Pc20YJ0NEbjGAnnI6NFYkAgmjbUIgeHAUHVF1+v7sPM8aXdhPByOVWxteNltBI219q0fPTnOYRX7drrceJS0JCLZpsZ0LRSkFBjxBuKKxjYmFvbwOsx6lYuQ38X2kjQhB1PBQtgCfL+9j5/K2X5ixipeiSjjTx/bk40qfuf5dELVFRNV252tgO6m7SiTjScYzGIF3BuaiqpX4x10wRT7rrTcY+/mZx3k809zFvoCfC0Ik2xzUoelmzz7UKPT4fQsvLo94u+GL8pC3qHSKjRsjqeoCK0kFqWLJnnhGJaMcDBLn9+nxm85QHXC3a9n1/SIy7lzN5ifeefXt5NJPMxJknixQrgejd35IK0jyUmRcBA2NdvCF0Bt4fjWytg2ouIvK1o7ier3D/SD3VNzma61A5w6YMHsPUDES9KktZzjMN+dVrX4Yanfa1nV9qgllxis+fVO8r6aad+dav5/qupmrfjXV8BUjZAR1NzpMj605NODhalQVeww3DVF6y0Mz9hWx/pHgKrY8bRhO/9UTfp5LDPD1/mXh8TbFHQZXmpvY6ndzznODDVx1IoXWq0UWCG2MsBvh7UXmIiOFSJA9jPJpVq0G77z3oK2KZLMZfnM7EEjY9sjRbxzy58tUs+JHDU2zlwtoBNHbAE6c6/X1VO8+7lVAMuIVGNFNcgR37SPbQyojnhTtFCh2UoByo1IwCn3tqTHi7/GneW5pCpWS1Q11Hs4JilYEHkIpzUe8pInjuVEyjp4T/y5PZPwjhFby70rmSOxZJkpt2m/7lmRHc6Zte6zcOcDcWxBQq30XisjVHGPnhSVtC7DGoJ0nTqh4mSim6FaBHREF91eBFclm1juQ1NaTE/ZJEqwSXmoepug1bXVlw2k7MiSDvRuQiNqcj2z1vlM5zLv0JYl3X3NNU9QuRvK/D8QvTZEOA/YuiqqX8VKfTmN9OpqYDVRNrNuGnLTXU9XpUMMzBnWCtSK7QeVK9uNUz+NZH+5PDl/U3/9yVX/1+lTz61PVd99oI9NG2sHljHJU+VJUQZ51npV9dtyW4qsE0gYxuqbMblbX2m/XKoJO52u9smD0sA31OlIs8GAnUzCZiqBg6v80tvTG2IezotBaiZDwZUWKiZWPuar/XfyjRbkDcVdWkHr7FNH2uOveIOO9M4cB4/A5RaIfHC9wDjtuJbm9U2053GNExsLVW1NhSgE3y6h5+7DxAxdLCaWnqJiNOlTO487h1YOYpBH9vAXhoNNb1wGrh9x/xhmdOQwYsYForoVt2wA9lDpI+VBsSM4iFkQftLQ5Mo6Qs2El70cfMYRrjZKD3MgbMEpV+S8pXB0VdLp1RmfXa/3q+xePnu8O77f4orfBCJ3iQAdNzOskUGgULmo8Wx0Y5ZTha6L+TPO7bQEqDEMraO++LoY8rgxSoclw8kJBDOCGLkarLkAF2qfJEbOWRypxfFKAS8neY6KMOnukqo004ptwTBOLeXuj6fP1qWOr4FSAm/CkfSvbaFfh6FmDuu2Zi8RdKCPnFGL+JMsy4LMZpYCjHFPfIFXLiCcIA6+2vGlDcp9/PeeEi+hr2IrogJc2rMUAXhM1DHCddiJ6syC2jpDnXku1Jt4RiK0eRozxn1a1/a408Rg+T6q2NsdNbX641vBEUzvW8EDNsqlhPdb6w1CXX54Ty+c4xOYficu3utbrMYk3fLgU2t2yaRoCRyxFterRQKdWwfo+Sd0tr1QfSir8b9TnBYF/ay8T/Fk77UfnP/OfB+CIF5JGero3bQrf05YkR4iHZ3HdYgztYGNf2w1JSjSwLebzaFLZ1oACMlyWB0JABBeTGneutnXie6JEEB9QQr9uhIbaPI+y/zq9nGv3xYOLhhURpaiH4XFipxJqjMa0hqZsNJwotyRtuRS2LZjegc5SU4kAQGw34kLNXDoKPyg4cRDAfQKfXvleeq9C9W2o3uw+aFYSdd4VjHoHLaVflLo3vl470NqEmWbVuV8af3Yjl/ADNbXxWOpGmJ8xLgKu7KGL/+a9d2M8R7uQX4z3AgxpX7OoFc6mYIZW/i4iw0F8eN6IFLzJDqZ4b49iTbUWI3w3XC2k1CQjx5XmfQkOaT603k2nXjUXnrSr+wSk36mqdyG5XOvhAKdvqON8qpfpVJ/GqscjdiMeVdBZ7ph7qoCiAHSBhMUDGweFx8vpUqdxV1+/29TTdKzvLof6+ouPdTh8W/VXn2r+wQpa5EaSNWuWnyw9nhVGnbpjEJ49JpVySVl6kdqDpsFA3F7rKAf1tQwzT5gjr7l45tG1QSVFn2xrtGGGs9aJAylYQB3N4QvlI+HNtlAZE0SPp12yBafwG5aDOgtVI635bix5Nv9pd631K+NhOid4GxkpRM07ofYBddXzzO+xwVpn5PLzR8QU17F2H7f1esZaYKqttfRRV8emJR3SfLZyTGOg9DkNrceJpybUwkrf2EhxpKlOfIsuZwp5IwRA//z75kurbYmjw8uKi6iflQdBfoheWRkLB3pXF5q/yYagP+8YnEj2bX0S5+B+yOeq/+4v/johrPWmX2xc8Kzw6nUBFn5KgwpSCaYIYXykdRYy8K3vMLqk5uB2SHURYw5oTEV7FJKzuQs/RurLf7cJreb+i3e3xxxLestN1LF45mfddRXEKMN8P6+BZeLeecMRdrA1IL7q8RJjFd1vjXpT0GX0yNix0QyI6b42SZ5YJr8uRHujt8q4o5DaMug2jm2yO69GE/pa9QHhqYcvupSEPS68hR20eNGkeTJ0OwkEYZeI7i569SzwWWTvcC25zJ88bxfJH3T/c9XhrzZVP+d9sgecql7WNXwz1IAS7biq+cNr1TvbNl3W21oxPmb+x6G/ikm+3hsNbXLHQ3a3MIuUnU7MaZAzwrgOpI+4alGytqFwYt703Idi0V6Ic2gmb+3VEWotFgjul0Y+rXcQdK+D0Gcijmg1uCcr5p7lD3xAc5Hh/MFPD98vQFnOidkcb0z4hUfEIF0FoV0bdMZpP9sInZJdirjNLtbm1VoF+ocvH+rzN891fDnV43vONsSKbq5t+eSUD/muiheW0aHG806zAO3vvGwn4vCMZSIbIxvKyKb1UDAaNQ7q3s++moD8zOTpiiMYSxZfafY5F8Cb/F3/LKcLcc7HJjr2UPx09kU3xLaS01vJ/xBXciHb7F7ntwSD8bNVYzzc0k/yrKpxyR6lO5s9QPckFi4Wk928R+WPGQFLrxr9uATmCIRKHJtudX/u/NrbNCJ2ZdQqyQl2rdtilFi0LUsrFJubiiFFJUG5N/Tvd57Vi1B8u93VnoigSJ83+6HG81ifvl3Vu8ul9nQPqGJBhKTMG2t1JJLXPj6XK6PCS72O5/rV56c6njf1R+8e6/3ja313GeqPIShPz3X+1Yv9vOSByYZt1ZLn2r78l+tZ5GhuzNDoxhT+kFmXUr7xftj0xNxbTXqIQP5WMxwq3i+edZhPIvLY1JlINwq8LHZ1flEyi3Mjr67A40IghppPY63oavZ49e3Cl/MDqwYrE+nFkFitufkGMtm9wHe81Pqwq9WGzzXX6dNU2/dbebVpPDsM9cKBxyhhPGuxzlf/k/fFnx8/M56wMm/YDbVFZEOoMsgYvkl6Tmz6qkQUHnhJmlEB+o2ajsL4l3vIQQeZeVWvz2dtbHx2IU9SH9pE8/i9Wj2m+HW+zDWx+VD8f4mf3+A82iWr0BvPpTcljQp9mNJJ6ncmokvqusRAyUpHNhOGxOUin6JPvVhGIv/4z3+VotWcx7f6emGTxDvrOtWJzb9Rplj+eHztIgavNXXN1nBYwa4zIkWJNrg7lW6KGCsFfdhr/aZwWXhqXcTdEatVAvZlS2OjaRhfn3qwU0aUHnP3mXq8pRFX8oTtjp+Nu8Ud2qwTJWeLzVAP4t607QLKoxCvmlvCR0etyRXlbsyrf7YtUDhy2qCV4mNeTfN9fr3os5gzpqot4gyy2XnFbv4S2dTUwqAIepaUgHNTSc8zXp0R2DD2Qlgj1P0qust6XNfmhVFTRDMg1z8Mtf7VpS7PlxoOjKQvNbxsC+7G9QwVJO/nsqvhFTFB6CNkjb9MymQmh7WLET4vtA+N6nKQ6plRBrrfO6gz94hnKxaCDlYS5zkSbCkrN0bnEYKQGMGeEiYLH5ux9lt89fph6iCvvFAJGuhTWlGjxRKrsMfBZw7fLyPdbhY6/oxKWjYmSjtSqqsbU9FPXBnw1ToPR1MlxI+DhqQ9L4j2fKmzDPp3QsrxrpWCnGnUfCWlz0XTdagP7/f1+ulYl/NUp+dz7X/yXtMzfqZ401vQt42oPRKLbTaKQu0pC/88y/4IpC1TM32uWSlLyrntCVqM/4WQRjCnz5cxgmzOZB/lEm9OgcYf7wApGr0Lf1eFL0kyQe05h1azTaCVBR5QCD4uqVjy7mN6hU/fXVY5duasXYtM/VwvDZneAOeBKS1W7ZqWYPGclcZOtIJPbl9cj79tFePJ1EU0FEZ0NJ8yJste6pxvF4tCRmkS0ixQk2qWkSZiETpGkmAnAC6Ix8sdeZl2VZ+vLeV6EtEitOH+d/ee9LvO6mUxoDDbbzZ1unh0Z2rVXM+f5/q8SzzbONf6hBr2WteTa9NhvRcczSIGofr08lK/OoO8nev120/1b371vi4o3F5+Xpe//lSX16H2IhFTrnmW1E7bcGiEIFGRqV3Jw8jhmJHTErfCTZ6u8gE7p4iRlNxipsV3aZ+bQ8F3vnAznSGsZTTOEnmw5RLWDXwutRvmqkIYiPSxoas6kdxhFpU4bbKmoXqMB1YOFAorJ1u5cwHxGsejunjilljqE9wJKYnCBRA8YnXWDW7mQF4pM1Nk7n06Uz2pCFxOi08VMB1u/XQ057ixEdItng5CEIprFVo3blDzwDY74qHMW6TIOh85JPk+ED/PekZ5SYWXiBUFG9F7OZlZTs+G2jnFCqc24ogZtpRSzQaA+8XvkZ0I7zGGoLQfGFz34m8jZ4jTxHJdNvWrJ5Ns33hwhw7M4+uq3r1z9+nQdj578p+JPwKBTqGkYsJTwmXkaJuV27iCFyMGFx72dtS4lOuYArlRtyYfe/STdJxERZnhmQPM1M7FBFbvJUigzLWzX3ksg42Fnz03JI2le1/j4ILjNMyzFPwaWfckQS21RRHTzuhUGzk3b46NnlhHxU+JsuAfLT+vKJ2z13t9QFhfDUrzgf8pbDx8LI2VZDUW2kMSR8wFDCVYaQQ+viXIja2Cyfo+BPg+oRiwgYSM537KGaBqTxrHcJVw7GmoenxB8DbL8FfIqkbBjzWcL7Vj9P/nQ12/2daAyfNX2nXqupmE2AzfYZx/rfqEWT1GzWdzBrEiQdH5jGLUeyPviAP1rGb1KvqzDBUanRU/94Z87jncuKZd/ORaChHcphkTKuMGmENxFKriK8FV/LNf/lBv82Vo0+dC7v+dCTjTI6s2Oc68n+izX+94XhI5JT82XG9FhNJcr9e1EUR1+30WA1DQXMSBn9eXOsDjS/aquWhT7YYHNQhr9sHLpGYO8375TpJEhcF2kGo/a9f68icP9cNfv6gZf3zk61jXsTjh3oCScT+nWbYuFI1jzNT5exS7imvTuXdL9xCwImGPxRPQkzJD9WSKszPNm0SKTVTSJMh2SpyPoPXs/VvMsePB17w0ng39fP0g/G0dvykuPSITBR04B9rX3FGeGERbCMf3WmQo5DXNIWEMQtIluMRX8FK7FMPN/ZDt0BIhmZCBRdzE91LTxE7K0mBNBm9KZKuntVfIzD7nTxS73sbMU0yghwMt9B4NUsmhoo3pI1pxg3FrqXs0bMNxg0SuZnzea3LzG/RYv51RL9HgG5OarVz2obGtS70+z/UJdItNCeXLjL/fXAP0PvyMzmcVfhRCT+eX+rNPL/X5sq3LaqpDnevb16faDftavZxqOp2VUDGtUEBFZ8UYdRxDfgwSIhJQTn+KCXWbhi0kRBBB1Aff9rLSSOlIXBubYNRcXFjUjUS6eZO8xVHxksWIrDau+juZN0qtFBKtCgzCzznl7DNnYrTH0jzESOOJEJOaUIIT+whdFL3j7lKLDgQtCkATRdd12SoevFarrbhYW9C0WDLIrkMbdEbh/OythR3wCL0xYdwZE2nxktbygSLNdtquapIR8LX2HDh3RZ4eFRF141XIyCfcDcWsYcVzQmXmVBMejvFlMrePToURE0Ty2FS04hRysugwPKjisgX+lpI5eax6WrrPvo3rKIA9BXCAOiR27gub7g51bEjyRIZ1d/6WXzwqr8e5hg/mhC2E+XD8utvzQLxtDeKjF5sVKdPa911514xsbojdvbf7rYi/8db0k1uddo+aSYEW0VC/ryhzpeKLubE2uE7A4EZpp2lz7VgQJFfUPz/CHIpWRA+LfYI5jvyuvQ6x8OvElfN9f/zAmlnX6w+zBS7sEVwD0atuRtM9jjaFQoZmdYz6X9fFPjZBAn6MfmqUJQNrc/0Y9TXfSKknC0RoPqrWLtciKslGAO0neUNUVYypaF6pmdvOL3WddrU67hRhOeyOhHRVvW6rvmXDmev6s0tdvrYrAA/o5rir64v9NEn5uL7MdfkViDsJIHArrjX8gKJ0I99TTONfQePDUmprEhUkKZgXatsyxk/hj3DFbJTFLDdn1S1tJRw/8z1pgqv+2Tdv85lrWzCvkaApSo2Yf3TQ2geP5gUQw0R8F3nt03YLMlCyQrhrABHyfu0EpxggazJ1ubO5EgIf1CaN2MyYZEF2HDNqxzCrylugo4Yjzwj76P7drs7Ppzq/nOr9lw8to08ChVEqCSWC9JNrroQMrXn7HimLOc2Zyox4x6kB5blmn2fs2VOIFpSpQbSZcNsatV0QY2sGMaKM6OoHhFCxaO7cISp6v2Wb/juPIjna0jFSEPlMEDc3qJiLyDSk/iOdDbKdUqxrWOCrBBd0uocKbRtkG4RJxFrvE1EMi6enAouzyFxNi0TcXHPNKE79kXxfRZNZLKBamJv9NQkitqNy8WZhcMxOdb1tSeMqK2Pem9w8XGQXiM2j/Q38m/+nq3r9ppn1r+uMZ9Z+qHdEtPCWx0kdDQfuq1THwKmX2irDb6qROLbhrM355TLXL19OGuvyISgKvloT1XauL0+vdXo91+U01Bb1G4VU+F9y/6aCJ9pmyI7E+Li5EanGg4WYT6dVuFvsHBBGwPnz37VKyIcC4125HsGZ6a6g45tUqfPQsLm5MFOU0901ak9HFzzOZwS1lNv+KobUSaDQzxTxO7YZZytTHa3TaA38w1HoSHd6nUrQPD19Jh42KD3KcnTfbRC/i4MWa5h46nglbwSMWuftwdxIeJKMLFBDh2e2Phxs1fDKiRbUAwqjUhAo9rwweQ8WaZtzp/GfupmQg9n4xLWM0XRvLjlkbTydRR7xx5LS0WNJrp+823wNQUuliOuxJOizOksbgv4miqd/3S+ajU8zG6ZTKaRwbV4d1x3kIeo6j/cS1ba51isSdIjTWrPm+IknqGxPxg49Do4Bs3KNrWjtmD0hgdAUKHTSrfL1PKdWuGV0pQYD5DzGztIZeaNVkReDfl4R4Dpvmn9PsSnycgsuksKhxqWVu/292xLarRQaGoxYq1zx2xLybVHdmYWpgtXXT01VZ6/2aKS74hywtjAxEscvXEyt8943ve40xUixlvUk/lIQRY01EVuIexvj2dOdCjKGtLpuAZiai0ieLw3XjucYjxXGvT/snLZzGGr1UrU6bmV832PvFR4E19eqz8R5nareVdV7Goa56nmuy/fPtXryBqQDHQusr0wdPMleaqjXeVWvI84DRpZ7KiKbmQaCsg7Mo8xYLKpTChwwRPbSttYxGf2Wmcx+8BdP9SZfejx6HbQ5f5Ao87V7NNcLIjZBURqE+tVBbfqZrFGQ5Ct7tDzbjCg2V9w0H2M69kE0BUICtSDyqkczVm5vOKYfFFttmSOzZvLuO16Tceym6t37rca9zy/nenz/4AJHXn0+sySW0vngjHMoU0ofkdDDnDVEitf26IXKBVCRCDgek93W0xvnMZfMyFWgRLgkRI61nAZIn1cCBitRGeuK9xfmYGouo6/h4/czYysyu2IsUkSNQsOzjIjNSSK+r6C0qg9aoJWkH3EoK7OG5k4zGbwzhm4CplKEJKzqyYXXxsKRVCEaUVuM7Gm+2Gc1jQu6nkHsUqh1Aorphjd7FiHm4kqa43jH4AtlJKheUPT0WEtEppBaGsjfl6qXm/l0utb7NXyxtSpy0LrL07reUYRtJv7Lh8/lImPnHePQ41CPOORchvp0mes7cSyEC9XldawNyN4w1/T0Up/GuT6A3iBG2G3tPM/sgcW4S8xMF8Lg2ehHsuDVoYjTF6sPxtEojcUdc0Ei0YEePEa/diZXsTZPNTEukRLOnZn4A2oJeq51u6GKw1LhZQXUfuvizuomj6gR5E/PY20+8HOBr9ElWdjBtsJDNY+rGlW4eYStSl9Ra/ccNasfFeN2ZvTnBxVOYLvQMwIWNkExF58lUgAY+4FE8EBy0GMFY/NkLy4V8WuUWaNHOUDbBIkP8PIea545hL4zAf+F3w16N2v0JNRUHEmuny1v9rtDza9zrbaojhPdl6K8J0xsbHaqt9BGnMnwHal4IDazOSqaKAxpcXIoktrEkzGEOi93r3Zsn2u3QwvEOvEh/5ZRPwqsH045UDo9Qp9nEFpjIUyMwXss1d5SbrRl4nqcJiOvjPDDn5T5fNI+/DzcyOscGqxa0RBCEeS9tJ2J1KgpdFTUMHrmd6WoF9IIRzYcOwqcuJIkEYIDwmvUitK8Fz5CJmzi5rXwOhuxzr59q+BvohE8KPnnK78zyg0h1ydXeaJNwJ9q9A6Kia5wNk5BpoyNEscWpKE9B/W7t1ZSdsMCotIOWuKZNkIotUnySvWvFpH5Z5mzdKOZ2LuvuYLuV6/1Ol7qcN7VMOwU16cJ+w9QSoa6Hs8SStXrqGg2Mnevdaz6/lqXT6Oeu/UDH2TUvqQ9590BpUbN35/0nIPoz7+81PWBqQnF37WOx0keowv/syfruf+iE3DpXP1ahKePfHMA0DgsBazvZxrt7FEIEZ7eqIGzrbhuxvYsBpA2aDZSvEYc0ck/5npmvBb3gZ6I6OhhH2Wh7/f2fVvU2i4OW0rvqLWdOW+bnSdWmRxpbwqa7QCA5NROXn8AHfCkV/vHOtarjewxgWYt69yp2u/Wotc8f3qp3cPWXpHrlRwflEAl/ziXQTQZwouS3SsqVjhjhBbw5z3iteULsya/NzWG0IMyFmUS5/jS6PIl5orFCZxeCkyav5xFzblOGSzsqnNuZ1JmRBGxYBFzcXPszMZzwWfkfzEKV9wdyHR8BJfysI2kwydWhxvlNVZum0uNhCCouRlqZr2fk7jRz2zb15wi+ogUqO731NiyCCGWPc2N0+fDLAIW9q8W+3QB1/6yeY48Ycu9SD5yV6f83MxpFgGSIubuEc/flbhj+fc619NxVQ8/wTjyrIP7erqosHj35ZxECgiZU30eV3Wqkw7z1fW51t84mujMTdgONgG9TPV33m/qoabaDqO6J40F147zmk/k/vY4JTm5kiHGqZ64o9H+fRQrbPCOzaGCMprIi0V7ugx1lOJ4Vy+Yp9JsQzIVVw8fv5UVhTieq0MEfu9YGk/gOxBbKkKWGdAHUTmpwsczXCQecnvSrQ4cWJ0pFZg+akPc2cWpU5HHz8Qr6DY+goenEGpF1K2lutKjEuRRiwiu1AFsNfEJ3OXdTiHg6vqu+HYFvlbB7Fg4LCDgUPCATS8vtXv3ULs9/R5flfeCp+J5qs8vl3rcbGs34w7PITLWds8BuKn55K6Kb3vYX2r1sKn5fK4d/Eb4fdwH8ZcS6cOvV6HO2HqsFeMIxfBQ4LrTA44HTTFcH8WbHNJZE/AzMePm6/mMoL8rWTlK1o9+nKQRTGixj3nrHL/rUN/CPeAzIdvV2MxZqrvHlTp1DgqNxFnXQmvsP4f4QagvF1+OIPaH61i/RpjEkyMDNMk3ixAtCk6hhlT1d92j1ZnZqqYcAinqlCFMZ0/0dg6BNi1W0orC3Jd9q+3NFt6miqB0/SoXZO4ehJODJ155+rvQZdurvbN6hYqISB0ETuhKc9VuCQN2kXHLLT+zXAB+Bpxe+appZ4f4HhpHbBvkI8bPFACeDTnTD4j64sRzCOmf3ohXcJwz1uvCysa7N2SRWpVG9Hg+16M8SFdVR0xk5xrO+1qB/F1fa/U01fBnp6rvqwbM6+Hu7avqMRdTnBUbqJOZvoKD97gTp3d9GOr4Az6R1xpldWnOEYU7vmq+L0keYPkIBQpPKzVe+yVC62m/P/aqXkt2LsBQodMXaCJX9ZQ99629lLvb4zv5h9qwv1Eae6Z2Tno2DtGBMo5rKx7a27OzcrX/kgffitFwvvxYdKoLD9MYxSkPgPc6NRIbkDVGzp2C5PUpH0DRgMynPI+vanppuGgcdBZOlzocNvXwvur5r8caz8f6klCAYeth2LDRc8rkUygfxT9gxoi40aglSJf4r3vn0vcM34pkOzFowqQtPmbS66EeGRnHCka+q0Lu7Miw5KcvSBXnakRgoh5da+J3KnbTI1qd90rYwv2Cn0U+cWzZlHLj6YGR2jSECjCIobsM5L3XaALJFED7w8q6WHEU+Eu4+p5e9IAQDuK4Rjzi9A1d24xvPclLEph+Jihoe5AaDGLs78LTyCl/NofWtSR/xOGgkTtvpRH1xGu0JXIt3uj9bw4PUiUEo3B9PSIYJn7tivE7RvyosP/iu5f63/zd9+7Ya5Kaczg81OERRdJUE/+77uuMs+8ajsnksPTjVOuXbe3e7+r9dq7X6ayb+Hg913mECDjXF49b8QXtGm8enUaf3Acla3iTUcasyFzh6Ypz6CxbHQZSAXs02lU8N+x1AjGfJPSQFx4HJz+GEVjc0gmqVm0985DyqfGJo6uacqAyggqEHIQAS45NKOA+JF242DbCpM7284GUKnd+RahZ8SUwmwWVnFYXu/ZCg7fXskAphqapNqiqY5AGx2LJyIxEfgVSOrpzJMEEO0OowxRD63RIPOeHutRP3/P0TLV+xUDaBzBGPROb247OkRSUqusTKN1cm3f2ExTCwgOqw4C4KJt5DQcKMRCoHGpwCFX8mSujmB+hOWweGFGTZJJYHCmz4VTcjQhlh+GRm02ebaXDm7K7B+MpQ04eMw9SGgb9f9MvDtAfjhCRuQaYNRvBEmeNYllde7hnzTnSZ4aWEG1qFLd6NUomwrbV2TKCh0OajUb2k0FljLwl6zcjP/Mp687ZvscfnqOKKxX5sagF3SUniYWzTTZIbJqbjhWMGEPc2Bu3UOkZPQIBZeCQCh9LY/vwDwHcESzxe/cP2xp/OC98NPv3DXWkSM49N3J6R4BWlFtECMkL5vqo0Ut12iphx7rlZ900KbfRnMLVcx/iwWYeLBUqe0X7iTVN5Kbaa+HJpN+3quu0T9cOzeJSFwzvMTs/gKpfgDhVFPL5LyA8D+FivcITtuJGJHS4tCM0DTfXGr19RCl5qflZfvkqhkHXdTuTd82zy/0bsbnKNYrBoc1kxcMyL0n3S39tfrej73zgyfQdoVKt6/WNFn6t4nYhFzP4hju9Q0sA07mwTvnw7mwRYAQ8k+n2MtoWqhVES1QKUE+u648wGhXb8spsxbmsqNqeyfSifpfsqSvuv1zFrzWeSIECjQOxdiQlv5sGi6JtvdvUu/cP9fLDS708j7XbYu9i3jjNO8cY63MnJB2HhO0SjzZt+Ux0Nn5wWB8yde90DhV73fR1I2mHDHmKhsvtJI44M4StIzW5il9fC9FNlBEQVwHUvRsXn6JRCEUPzzIIugpoocwWaPhneE9slS4cTcVUxgqJTSMmb2VqVfJ1pQx226upXI90wysXvq8iLSJE8ZYzoF5sdoK4gdKbD2KOsRZMdrb40ap3SJNrhfePQTSf3TebrdSacb1Is8xKS9Gq54znVQVkJwn9jlW9t7e6qv/2n/1Q/4d/51CP8FQ4VF6qrj+xHFHmwiwIFinjy3c5VGYgVVTRUw0v/KR1fXFg8V3rUQgCeZxWG/mib+qycSelywpHTpYn9uGSOzyb2LiSY7096cyvOcOYB8XQPygCbo7rhlldlFH8ccP4e8jPe8W4GAVkGbAQZJAYNZMOh5woQgLglMUSwBNnuBVB9wLD0o3oYY8fVAfWi7QZ9IQCShwZmRH7ZrZZrzzAgPrb6FjcpCV90RyS7brO58ldo75mrs12KwPnVuZOmGyud7W6MDZnRG9Uj0NjJ4MxNqsWmXDwTbJ3uF5O2sgEN1O0senpoQPuQYWFAs3efj48PaqEr8T7BlVc2A/5fhPsjRyYy+asRfkmESovGVzIz+owzZ2R+BF1IgKetsTRwe+HVGgv4/vNXhvCb+Jx9K/7xfv+5onzfaiHXXJkk4slA20dDh6pUgh4QwzZSNmqUWovliJGszYRB9kihHMuPW5sOpRTiypem1JG5WZXi7vSI3nzavJm0+1ra26vs85JjkI+UZYBuC2q0gikEcZWpnUqDqN6QOEWWbRqP0klPQJuriqbKYebODPKLQ5p//6wDqLemcRC8dR4O1fTRWji3ELU9/5w68BjVKBXo422CuKZj61DRGCqeSIT9F5/G/v6+iwCPhPJ56E+411IwzS9CF2SypnSQwjMaOX+O6DQbRVNHnMJihI61xdbWF3eDzU8JiYP5ET31Yro82ZdT+Ncr4eqT0PV6XVVmxOOAWVeIpw0qCPsP2jiMoqniHHWuotwfX4sSoSkeKSlJtfsEu1HCp5RNutcv3ha1Ys8Rd/ey3qOLCo1Jv4MylxH8U2TnExwpzeYjqNhv2IRb2aTNGFN1rbVjxed66OmC9yIZNrTNHp0sWgKg38vF17nm+eSVq5GEKQYt3HUswRaSwHDz2DPv+o6B4H7uK3zaSXe9fF1rg974v+COkKJIMUPvZDyXbOnQLWScsLcCQv9Qez8OfTc6hFB4XoyZUcijBR3GnLZ4QFQpT1DjVGY+6emXQIVL6bmfhsFZ1xsEZGMjpcgA/95m01jLaRmTOp+X0tNbjshTtSktndqlM6F+DU1gEQ4mXxglK4GOXm5iVRIZrkFIQ00qT2Q/+7d1CKIrDn4/vnwDIWe9+i2f14vAS3AVj7b+HtJS9H6SI1hHphRYglnYuvS3OLkD/f+dlMZ/K6TO66X+q/+/KkeHv6eFuv501QTaQnbi9IwjhicjnSh69pNZ9mxACOfRqvLhABcjnXFwuKyq/172408hLB5FgrIopu8WPGKWxtaNz9gU/N01tgWqBiZuzzDGPsiLrjMNdK6UtCsVvKuIt1oLxEFG9ZW49NXefL5ZkAYlxVETJTVU6mQM7lTF29Y1TnS8kY36FC2WtieztsIla/hwRUoG+QqSRVOfl880+jaRlS6HPiQvFXYtDVGxp+QcXOA42Vng85NfO7ocCjeeDg8NrepLeNve0lZRAIPaOssYeT2u52UZygq9YDit6fILApsxvWoDsP5Qn1IQgAu9Csew1ljfYoDkLppG9FHbDY81kuyqSB7BPZsss7r1TaohR9foygCUD+7UEkR0duuHgyrFo11WDXmTcWbizov0XSoFrZ1RCLbEtU7cdJbfWF8/nSa6oBpt9AyoxLaOGJ2rU/T8T+NQjUp+u5ndQHTRRYbnUYY4RAxHR6WkVSsIbiril5Qp3JTtHcxJpQ2PCdnxC2+Um0AreeBZ4aDKQJ7GcTevefbbbhl+SYZKpvY9UfR20IfIwbptezjgCK/bWzCT2wVcxIXjDAsZ7NFL7qmfh86t6mr+OvEqdFQUOTwbLWaWtcpI2VZV4Wf5Oas7WWw8vBIh+ali/NW894KAO9np3PVD0+XmrFSeRjqK5DM69ZIlKgx7Il7w7JcTHxKdxhdnzRahP83kH/+eq3rTykkosoUGX2o19WlXjalvOqnseqFAu1QNfI8Ppe+bw0SSAqPqBc/Ti5po26hK4wWNTWI2p4ikw8ec7bUzlpz03qoX36eNcp+i69ulvv/zOm6Cd/keSmRxp2gkTXG340GHjh0KaRszzWGghQkXN8Rm5KM/bTe8gzIQ7K51So+owbM+9FIUchf+JIstp05beNprO3DVqNiJDaabIE6QWFAD7VZ1ccv39XTt6/1+nys/R6LqIPPGyWcemLF+SBbn7uYQDsr8PvhZzupSnYojf5T+q1J6hhsdRT1fhsUC7WMGr4/iwpOP4VLXJnOSDWgd/ci/I3lXoiL2EkjnPYGjnyTEHwBcJiPSyHckx1BHt6+POlQER7Bh0YRVrrZONqTNk8TMiULZcQcPucVa12n+3SOsoERNXI9z4+fsJvOziA299Ainf7cLTgLktjKklBUNL5tZDIZ0UbS70bvqUc6rZ23PsYz8W96/Zbs1K/1P5AIwRk7n2t8XYlobC4DCBwflhDpqfafz/X47lBf/ORav6KT3K1E+Kbo+Pg412E81/X7qwjI3V3MFCHypoObxk1FEBEFC/YCaxdfztrMHq9dfNIGjNcRvB3HRV3qeLLDtXyRgiZYdWWOkIKXU+Gbq8MY1waTyh5Mp8/NOmCtYizG8K4WsTsMdS4gH0H2rGJkpEvR5U7JNaANI93w8XNMcuVBhavIYSCOFKRtm65FUuOHa7/d12kFq4JwbQqnZPqJd+CCjY7esTGJeePXH+I1dbrU9sIYmLQAxADMyi/1/qtdncdTlMsWe6A2lmAGKvEFE1rD8Rt0+DzMNeGa9Gtbq0fUPAyMloQeIjhoEkxsQkTTZDPl3gred2FoGwPDRmwYTqew/H6lssXKLFu5uL3SRsxDcJlqv17VP/ynv6qTWrEfm4+/1RdpXFM91n71VGc4KMpl9AZLvyMFpQ5Z1hmG4yms2SxasdoCiRzWy+RIfouO84tQNUha/ruLIxWD/Et76vXmxMbUcWkZ9TASlH3KLSqRw0U/RpuvbVqU9dzRaUneaNmck0ZaAXyrFBZDZt45Sru2XAuiyO7L9+mxT4SV0DXlP/cI+9Zpy2lCo7bwatPc0fVh6UT+tRqg/DwpeTv6W4eAEXCKHfaQM6RwCWXg6AZpzgGqQ43mKNF7nQlrj0W/L9ajzJExOZ9X9f14rcP2Wu/J7VM+qLlbjGAv09kjQQrWc8a44jzNsk7Q5OT7oeavnOvLvX6drvWpSl6BL/g3H2m2eZy8D2weoZsNNeP/F4S1Seu+1rGUWNTht+soF4NGc2m+8A0NtxP6CY3oX36G5/c2s3onGfR7Ien5YupDsZXPSdHHCzTHzRAgBs8YI0nADbhq3h8pBMXzTtqD0Rs3MirYknTDfXGD46mOqCw5a2TRkyQYrRSadXwAM4pWjjtUmynm3uyRYrRwAkFT2DsxAoT2PNdhu6n546E+f/dc3/7qSYXR5nGvBkx5suJmIshzDi3vmSi4mYJK9BvOXoq7ZA2LP8zfGWrnnTYK35pbI6eeuvhsy2YVz10Ktei9NXWQJU6oVHixyg9X5z3POHSoW5Ytt6OH5UbvrtIF6CGWMKebKoME/DwLxxxXykK9pCCUh62YWz6jBL5klCF/wLYoSsynvvN+BpvZq0atoo+EDwPSqe7H711ZVzqOTVGSJ2n21JxIsaEJtUaDy9g4JC+bnw1QYnVveKVqlNMVdxd5xfD7b3/Wfms5OuQI7rcoz7hYqzo87OoVrxtFY0x1mVa1eTfU6vlc83fbOj1yKze12WAiuVKM2+NuW9thqvPLVNMPm6oD5FIHWOMETjFg24nZaB83U7wE3WIVdXgFKe9WnDDn4m5axXNdFXSZfjiZ/sKRYYzLj9OmjFBhHCVnpy7ZgUqtNs4abqWNRkMga5NVislAbdWXUCsgcw5l4Hed0rdRqGTyqCh1ALY6jC4SSH9dw8E/367eFI0cGtnozfxJPJ0VvNPqouvPFyKMUAzbFoQRMqw5AFyhzbudNmVc/GWCSWQcUMPR0vvrFHXwFxvzdvi+JBYQYafRrqLTdAI7iggkULyEKKxSICACcNTTnYJWbvNRUDI60QNqBBRlFa70DtmwDYlrRW8y2vfiBK+RsMYZGxun8t6E/HrBcxjLPT+mtC/Hqf4f/+0v6wQfc/FQetvF37efzvWLb1f19z/26MJNhJSrEL+1fTXS5u1Dxd3Sad86Vse23QQVvgctvMhYN4hWT0h5LV56PV6982prlKxd4qEmOBnDiOA9b8U+XuE/9VqXtYvRNrv79+vmbcehe26OXv/Oe6Swx9jNnQvn1ZnQIPmxswla01+nDp/PzudmLJkCTMLV8NWWw6yjq2ywFf5PoteUVhAyOYeOEMQ7g3P9N8aZGQWBzMl1Kf5hHHISaXkn5jpwD2EtPI/XehAaZChNH+2JVI91rTE0vNv0tS5im8LnvdCEnzzePV2qnq6DGonPcKTzdUwSdM90Hg9VD9nHXqrWsprymgFtZtzJQpGSt3mgnbe8pLm4ccYMm8McPqdkZ/tNPYOM/gYWE/86XscZQU+oCIg4KM5VBCKkiNeaDm0AhPC3JeAYjASqgcoPS+i0FfZNFYiKU1YibtZVaKRpks1ORpE913OUmMeXOrdoyIeN7oWe8Viv0ATcoP5VnU7n2sP/HWhGgtZf5nrYr+v8sKvxdarvvnutn+52OkMHjY+t9pcyex2ARKbd7MexdGJvTvybeK6x7kEUyQTNKHC46KurOIFq0kdy5c1B5hyy9QnXkyLMe7mnAnoYLbDRhzFA4v0+XpyymumH3OtdYgf93Ez4wv1v8x2VbxoKwpPOxE70r6tBgNCuVHwv/ihGGt2PhnPfGdqd6Z3brUSjnI/cG84cU6m4d3aziBB4oZhA6ZAmIHuFjZwpkP1nSx546ClCRTsRRRVs9rT6sVAmTDV9TlwOfm+F3/W6rXncypCZm7TdzPXKggXmHjc1765CXijY5qexXp/2NXyEcwd0O9Uu+Zt0Lbv3Q11fXuvzE5w+0iqwdvHFdaYm5sDexc9kwGoY4gf2UciR3RcppBhTqmsnQxYuCpDs5LgwRtAn/gnQFcI4C/pBiqru1s3zQJlLQcmdojuXuaIWvA8wFHAcJB69R43FjddI1RCFvn7Kw7+4eScHUOMAeIkWNrRnn0x5ac/5HcSigfwFgGHcooWRgGePxGw5o+IqfCrtLVIlJWNxcxXXck300xRyPXL2s9W3B1kJcN9MuteYKsR+75AN93sUpmSGPLLGMO0z5gzlXpzJAGU8ILTPjvJe6BTJDqP3eNwbDEG02IBfsbPQ19pyQIafoRgwQhcpn/F2PJrkMaj74/QVtoHvXzqb9laUvFVLF64V6/IvvzlV/QOPmWRJYtqlD5+M0iwo6Exio6lhrJos3UWINrmoSqFAaJzjYqMzarOvLHBfb0JdAN5frj7s2xfSXLzYGrTSNZVaK/dsKp31sBRtsVRodV+Pc8MH9C+7FZ6tfmsuYf8aPS9BGBn5ujCi8XLU1fF41PpyjFQiklqsID6ikbgGOPsN9nppFPMm6PCFUdrP1sVme3n1BQIhmZs+ApJ0clHgkSn32IImh8Avqg81s89j1YMObbxLadBc+K1kxG7fSpXQOmByLxjTDtc6HUvI3/lhVZ8QChEDODICszqZfYq9Mloz76ck9BxWdT2CCF5qdQjam2KEaUn0QVHrxlYoo0sXxvbK970jyHOoz8eqb5Xu8ja5tU/TtT4iegjPSlw5xYK16GOStZYKurgaCCXK/kxkpk1025PK0y3ZkASa1jNpsmSaXR/ePtzzDKv4SPxdG5kHAdI5MluEg6BD05PNpjZnbMnmOmDXslpZpBMbGJClxbzoeqn9o033x5e5nn94rccvHsyFhZbkKsTfy0RKBUcyiWNZRP+iNdJeP1dHnC4UD2EVGY2KngSdJ44pokEarBA4AGwnL1J769kzlKKJDa5TL5KYo73AnpEa/Wq06TNUVmfy/evz1LWBCuxMA2R9EyWZnnn+cHRhBVgwjkbjde/zLPgZMdc8LvkyV1fMpW6RLWuWqL7F/ggh6I2rbIywfXp9RqvJ7Oio1BP9aLRoTjz7Ng2XG8Ji+hmhX8xYY/bdVnKdEy2++++t8KupXk+rOhDXBcdumGotY+OtMl+xFeC8+bzf1PZ6qun7bW0/mlC6k9eTczvfc6c3Q+3XO40Nv/9uqMu7XY07jFWAdQmqtjE0NwleHxw1emKplFhwSXCwZYrtGjpP1LCq5dmo2rhIcP5GRqLEieFBSLEmBXF807RAW+4d6DoGrTIvbaa5yKZ4PoUgD6yO7xK/VnsHiBZoWvz0An/phg+bGB/HJFYGmOkE5lmqLOUM04k26VaQYTy7+Zx0XYGIHbptewH9LEaBTHCFFnHY2ZxJ9isRYWAzs/0CK5SM3ugsc80svsjCt2lRHsJGXFI89IG8cCkSUTRa7s4DSUFpDkyQA3kw2bvJxOBOkfD4YiuEg73O/nyO3kpnpE3Gm6wK/Px+2QwE9ud3nTUSPt5gojf8iudy/eIHSNyrWr0faiOfRTcnphB43TVpXEVLyPYyYuYHZb/QSATRRxdxMYU2+6Bj3fw9HCBWaN68pzQx7OlGdmXXZPGo0vu9EZeXwUOI7UuBHTuWnhw3MugJSwryqCRvnMVcE95/Dlxt6EojiQK1Ub88c2pauD4bnotJzaLWXUb9t/XqDjwsDI3RFuG41nbQ+KZedfpdEFUZXccDr02cuyA3Lyg+biqc/PMllsz77wg79fzZM/Qjz8S4VX23cyrGhxMGzox6S2tBmH8zPho1EEnxWtf9UK+fq6aXEqcP/7znC5GT5iOZPkU75YYZYMh+jopeqdW7VZ0pHFH9vmeEFtWy74bvRRBTnYtRjGPv4rrnbh0Mq/rmeaxffq43+yIhZ8LrlMgspjTxVjRdi0bdsIsETFL/5BsX9kMmHd1cpTByik4a2cWr0hSAuyjoCP5Q47pA0dnVaRTxoVUpGF6XON487/D8XuH5Xery3o3uDoV/K0Y1cUlhsVrXfu+M2+9Pn+vz01EP/4cv/D5lVcR7CdDBiFgTKe3JfmhJ2+LMZY/lvOFsFO+YZQcYorMv/Nh4hG72jkF1JJoGnvls9p5tSmPz2zy5cwKFbVj8/ly5mULlBA/vcUpvo3DUgWDlMUi1nkPuFdeUc3xy7Bt0MlOl1uI/Xolgledt0EKdGwYXTHrBL9HPrG4DY3O91/ATM95us/mMQJaJnhS9Ms3Pz26HCuqKpCu5IXKRbm620dPFD1O1QnMG7SvI3G9B28MPNH/S11rRjb+P5A5ecAL+m7+a6t8hF/LjRcXTdbWVnxNTQW70BtSNKwQp+Qg5dluHzUvt2ZiY/3MY7Vy28FrvL/Xwfqr586ouj1gS0HGMdgm/YlC7qqf5Ugcu9rzRw3MRt4uS3hYh8lRibBp2Me+XjEw214fhWsfVtR62lxpfiVfb6iata6zNGc8/xkAs140UyZZoQy31eJnCVKNZdRKZ18MFRPGGd19QCxA8kD+6cd3OXDv+3CMTzwq08ZC/eLS6ViOmLRsDm77RMnEW+T86lsNa6B7k2hln/yvm1hR28AgFtdRIZyalLpTH51o/vKvhuq1BUj5G6K4IdHiuz+KLnVFqXFBtGdFRJq4Om77n8fW6YAyKhYZODXM7QOb4GvESvBhlY6DnzcXiSkSNHPoKHB9qRREafqRRxXFBQ0EeCBvHUbCjkWYc5CfuNUgwHmcuyBVqIB7NTaRgkc7NLuTtv7xh/8UTli6P9W74YfF6pEGS2TbcHK6ZDK7vkDn+JefFVeS1ViN6o2nUposl/fsKY9gYt2oDvRVvVt7eiTDuuH6/Dph24W/bhhi8Kprjn7/yNl29ZeHem3x1xq8O3UUAceObSSgSC5nF6Lnn1CFbm5to5OH+/QlIzgEt4r5Oj6j+Fhctq2zdrDV6ehs103yISxnrITZa0MQtz64al5sYRSpRqSLh0Zkf3K9lP8i+JH5iRlm8txc9s74Bj6dVrT5can3wRtP3w9xGGLfrOl2nGg9VLy/XOp6qPh2ZUiTQR9dwXePI7mGFcVyojDLonmD6fK13jAV/NddMdvB7CwlMg3OBI+J5mjsdnLlJ/nHmaTHmo9H9+UvVt8d/fq28lZdU8r12VYXEcoixgfY/trmN7IjaA1aIWytfRK8wtYd7IhEHPqgNCyN460F4mmV9fQpmc9esBNVzbMmoUmScphHF+51DgnLNaYBZc+OlzsdRdkYyace66tJFm8VHoH/8LLiBH//4XX3388/16Xsq+7kOXzw4ACBpGG2Ha3igtQacehc3TiEK81iz56owTLMqzvWqw7MAEGzKvxEUv6oLbuCYkPNSxnYr3kEzbTPWyR0ejQJ+3LglTLikHwo9BRESmbvw32VCHpNoATMjhsxzTXAdwk/E7ozvm9g7mn6x2WjvE2LPdWWczVl7gZ/naSHXjlCH8ehAAQk1oGlEGNb81hW+gj2uCCquRjROBU5TjRet0FR+h0MitIVnA3VT6cLRdUV8AezcH9TRe7qadHFJHcqgPRFS/+8L8YOH9f/8r/+6/q3/8I9rv3GIM+TJ8+tc51XVu4d17dfnun4DuRT6P8kdm7q+sxsqxHBuDh8GpREHB4tvtx1q//Glvv8Budu2Dvu5pnmUyS2jkg2/YxjqdTzXB6xG4klGWdbO/fDg4DOYWNuJCCuplbBreXnlz1nx5lQcL/yd1XaKvqJy5SYpvDkpCTFuZOxLV8D65HJ7rEvSgGncLBpx0iCSYkcjpWmzo0nnmKRwlpEu3RQGjHyurW+3zp+WIUbCDYrneKh1bfa7uhxR9lnhpEDwZTO2YTJiGBJDtjjEi9g41epxowfjgm+DrpmRUixg5B8FJg3PJMRRW3bYTkSbEQHVqHoTO4RY5RZLFcFGjDoQhPTIjO5LKKjST9pexD9b5qFwEhHsyAiYe9gqJ2+GPoTXtVXeslFNTI6dJODfulSyOZCm1VaHXXfdfwgvVvJfPA31i09T/bvvrvXKutHmQqRernnsTeS/yIqPXZCepXiq+fL5nu2jsl685IK0ecP0OJ8NtBWzYquwQwQpioWZXl0MuhjrnFE3QEpY0aGYIozNTybURgjaN61HnE1R0GHC5g+ylfMh9LWb4fOdujb88lwvf//wI/TvBvAuU+MUOo6V81ptVV8aZl9T0MSgE83vzpd4tK6YyllfJ/MAKUDhTQWNTZYyxXePYxb+ZRDbDq+hYERVSY0qAVYbTp8HtFaOxOTP5D9v+6PmEot2NtE44zfnBBDcXqB/MWmZMM9nMTR5PfcdUZsL3kTKZQqh12as+imj5arxs59Fe6GCpKBydfQfzbOaXv4ZAQ77Ip+Bm0FO+a8uqzrqSrzR6I77gioNLepmeeNhbAyaxTOgQ97omEUF8Mht+8L3s3/3+rCS1Q+Iml7z+WMEHlHDQlpd6/pDdeFh8/p1QWGrFr83P7OZXClecKr9476O377AGajtPs2+muwo8qFcITaCTqU1UPVw2Nbrl/s6fTrXZ/z99judx4w85fnOOakzxjZtoGJMsVbYfQGBKDue0bPCRHM9JJ1YuLsaZG2NKCOUIoHJn3yjbHcfbJlMCQnEts3UHApA1hL5wXaKWYtfT9MkVwAV2kniEefQ5znr2XRawKW5Tq+TJmu7PV6oD/oM/Oyls7z6fjAt5DNKLBk3EI+84VBuw9U36msEmAJ4rrOaKq8DceixNBMn1/mVqkMkCmDq6ft92FqT4AY8cZtCCON6H3RzI4cOBH23CZb3J9MDbPocAR0TPXkCh2ag6/I7MHBeOC+/doBepqH+y796rplFIYSh6vJKfq3DzymQUCbO2L3M29qtQdmAArFYQUmHcu5aR9AM2dKt/T0bHrxrHY5zff68qjWxNY+kf1AIYtgcFa74GZMsQM4XluisxcSFOcJdU6EAVGqhRj/IbF5svIckBYCkte+c+FQTI1Q/vBqziULoQklijqwjlFCUJRfx1IY7/kvI7sFQ1iu4AX5Ixd1QhIu7O5f9c+0gVwc58APPe9867q3n+pDCJzh5DgC/MM4mIUAG1nQ0cBp1BPsQRohxodiD2LVV8azfjVkmdTYPHchmTGpFfMfvkCG6fPxMFl+Iyle57In4K1gi3kV8NlRbVi/ZGNugT/se4fEF8hFMKdwo7lvbeSibUvYXUToJwVlrsq3NhoedSLlI4tnczKNJ/6jQC5PR6al/8XmoT4yvvIDzML3lAtCFw0ut6i+e5vr32JAw3tZ1cvOikUsf5NLNhKsmNCtq+hTTNl32IUVXL1I/+28C0z3a94bciJeQtV634hK6uNhljLF4USVjUikqeg4zchAJ3hYGrid8ENIANTn5lqIRRC2FaitIZcuTD6gx0N2z1OPXrieaZ+aCMibK6YH42W0w28hdyjlt2tHKZbTWsXARInIAx+fPh/KNI8qYmdENMYaMAaWSTixcF4sgD6Z6mDtGgdc/TJzg9ihsbpAKSMlN9bNOIJ3zqp71fLTFiLcKxldsZUJCMjWwyIWmOAsDFJJ9KfdHTZlChsP91VgsofJBX1SUUjB+PdTmEzF8nsGsSeY5GNVXcb5a1fYVQ3H/SA3zlN8q/X59Huf605+bivJWXzSlNCecTeZlop7Ck4//GVGVJVXbLsccXGECXfd1/jPTC60nUPO+ntnfOgovq6OpA/33Lhi70Y0Iqm1O2rRcCFrUrs2zpEgASWZPoMlPUyIXDHKs9QCASO5MqZiv9dUXj/UDCPHTqT4/nwrsxcVqPENp4i+jOXsohcnqhT9KMelYHvPAVXDlDNNaxE91FFLP7kzTwrNh0a3H2Z6AxitPNig9mWmvOz8/+x1cRhK0ouHtEAIZPZtCIUpIuIia6vAcsAfOQx22W9UdovwIYAj3mWt+Cb1DF92Tqp4StWLW4IyflR4fs59sD+vaX/HIhR8YBFCTE49rXdRlxM/zgPWc9kNTlMz975EGf+azUDu1xIhMXigWI4Kjlkq95Whh3k+stLwgFj/fiv/wDFD12yz8/iYVJN5sn1abevxCNkOqovfx0znIyXxVr0rZmGtEVPBeeRbicMllHuLpovIjisxV8ZqsWOT1xE7WseZpqONnDJpxd7bkeh4ZzpraD39M6jyu8tYEWSW0Sh1KHFrVixAmkztBT7Rwz6imMntnw9WmYDd2dbByR49/XrI/FbOksVdGkgvnzXw1FgolqEc+8ZVbSPNtFGtC6nqfMS6O5RzGC4PcP18jCR7uK59xlFmrbvw5EUMKm17r7yQEUKYwiteQ0OWdJGxvIZ/q3fE7UUIHCcHeABENhQEdp7taQ8saMYB8knXccHZI+fgFChHFboPPs2FzJPjuxmNik5X6CQQORFfWF+5OFhRbxaWhGlsFeGed7syteXhQZ9M/CWlcBAneifk+7haZzmza/8U//VX9/LsfE43eel4vLzbvf/Tnq/o//gcfazs+12UY3SgHOUhilNE2EAf+PdwyjWhSnamxSIi6Y6jsYUl2Kx2sBiAZg2qDS2HciBQbn5qx8Ipl1hp449aYpPgKAVmFZjZSRTql3vni8X29vL7UK6kSd2rdRgv6Z9rr8qZa8/j2Ftze42CrdZ1mo8ZK6smbUMRTpluWZRPR45sadLMbjRxISmG4FZpWszuPuBu55gSZM+mRHg2ROL8NuN99Pt+mm5ef/jsGrRrhzATfQ/52ZCPvAY7eTkjUta6PQ50zlhZiB7onP72IM4ISNy9KmZ2K8wsSFeUyXyX0J5nIHJIgIWokUlhq1C+VZ9Xm41DzcajxmJhAFZ2LvMbk/BTy90prIgPH8VD/7PkU/7G3+axReNvCx9cOk3vRBKCTzDd/UdlIhePaJtZ+Dvi6bJISanhUbCNj7/sUGrbis82W8tk3s1wlYud6W/udjCMxIL/FCE+vYYovFRXi+iJ8HGp6Atrd11UZ75PzdUUNhyN8kTMFpv8qRpmKned6/8WD+J3n01zjd6/15ZcPOvfYKxh9nlN0ytqFsX1PCmT3YlSQ0a5QSX5OrLg2+NU+eI21Ihr6EqJFXCOWdJOYvGMGKc4yAs2Ek7fKn2KG4qq5k55g5Bor2tKCzTZlvpBmwkiXBgWkPdMkP44eseJZuO40jdsjmvXvzWF5jkJZ8BQrPL34HbaKXybSYpZ1AWuUVr9bWI5j35rr3oJcx9m1aC4Th2wUDoi4CadcA/Re6/0o1qmLsMv0EtZyztLfZuH3Nx+UvBlGADaZHFGhcZFYaFr0jH5Bu0arfzcPCpCXoe+ZYYDJ1uK4XFd1Yk6B/5FSG9j0Z42Lv9hgVXCW0vasqLdNvZLvKu6FcwEJO9eOP3s0eznj3YLB81wbcnxl+QKUD3xd9elEfqvtQDQzl4dcy6MJoHZBRguobi4bq8dH5kfwdbtw9kAUxQPU6NZh2L0RxPTP3Z/8/LxI4NZdNps66qbmIJXyq2+6OwgC6IGk1aHLqmVSwacN/YHObFfnC87/63rBqXXnw3oiS/dgAcmKEHKlaDhwmtMFx3d1TgcTWOkiNX7oQzRIo1BHdYh+ENVpXCjUm8jsB4pcYI6jzdrFl4p48T7c1YpkuxwGHNxci8ttQ0h3LAVjvlTml0vcThc+fgi6wGSTam4M64aN6fPxLC+z32wdv50Xz8M//MWlPn/a1Bd1qBNJDSoossmQuaxcVNDc8MnYZOPEzz8ZF4BS8/UnsmgRL/HDMQdXTJRHDFA+O2VDZX4sFDTx5/m7i+q6ea9kEwb5Ci1hy6RDEYSYA/tgA31aAe7XUE+nk6gXQqJFPA8KnJB1PRe9OWZitl1ta5xP6tLJ0BRykEeJDE9YDipWhPLOAqDFcVxSDb1G4rCybKKtEm6kmZEMBwd0Ayv7zA/d7KCJmPvImseiScbNyeaGMiEmTpBCvpDrl0e9LmnCdICB3uaaqrDgPfr805ve8fOge/ChuG8T/141sI+i4uc5oN/DaSDJHI6TcrOrCNVwh/ByuZDnu2VU53E6xHCPqKC/+Jlag0YkYF4G8kLlQ1LE5JfpBgggi+0ElwxvTFwRXFwaAcv4n2zVutbD5lr/LabU9r+pt/pizR+vq/ogYcRVNJvYICRhieeAvYxnwSIqK8KTSNSgs9SZRqd62iMeqroUrjmNur1HlSMbHrOKI/GazBXvFCd5ksL90sTGnrE3oVOLlDzpkMX3adTUR/v6SHAjAIFxXAm2WK/Jod6ut3W5jvXxy11999fPcqz49P1LffH1e41E1xRjezxcRxWxTMSsYIbt7nGnGgP2lwuBCObS7Teb2rG5QEVhTxISF2tsiupdRt/wwNmXlA3vooyfyTlpkVj7Ac5x0PD0SRn12YuEgLGACRfgXGQPwhbu3U4evxrrJsNbqGRoWOLsDfbpBVxibGvOfSYJVAG6qS44mz0kXh9JLm0fs9oYmujUE/n5ZmIQiYpEPo65d12haVr4J+kijPzexKKOx4xCOdxOrSEsdfKMNm4sq53sOT0FOSHM+Q2arM1vQ9jhB+haL+O1vvt8rQ9fruss5abFGsrN49DZDPW68xycAxpEhvEjNwJETtutCLQ2diSnUhYIaxbJSmNDHpP9gZHkULtprOl5bfEEI1QeJsZYJzbmqidUxfL/mWv3AIfNRQ1vDAKreC3Aw/PaIhDxh5zVa/K29eSrzc5kXzq1HKKvGqWBObFGYssgIrnNmCWnF/qMOaYVuY3I8PWLZQUHLP98mmq1390g7bi2t75MyBabq2YsljhqE1JknD2UZJAbOB1exWrY1eU0RrEHf+8scQCWMhCBeKhlTD0M9SBFsUfVcBEVdaYClp9n5ZEMtHWiekPBWgDUaEfCQHPOgJsRZiiizUU7XSq4q9RJEKYHbAiieNQhxUPZiSZdAFhY0h2NRTGNSnVl4OuxXqEei3H2xQIQunHzYcJ7+hcWfP9yBPstvLjf385j/fk3l/r4R+F2ivjfRRrotBXdkOyVh3snbGizZftN+ZTjAOC6b67renhwkfxCgaB5PKPY2Xwu0R4y/g0i52bkZnauP9VoK3FOGnXY/mF1dCIIl5ykMa3186XOm9OPhCUNfifG1BtaPr9TXFjLREPZvHkxu9WIPyhmkDMfCp3X6d1tIV7rmoTyEGKgrDK6a9b3pbGIOMX787XOqbAaxYcuceNd+Vl2MorV/3blsIG7jG5zL4QU6ZmyR5wR76Qa6A3F8kUoidEGjXERtrXKmvEZTWgD6dmPW9hjz07fVzjeAwfY7lYgck91uDXyyDVKLOTCo7xN/t2EKbJsVTPc7XGs1XmosyyBGGVB8wEFWSmJqdXNeMD/V385qUB+yy/2J0z5OX90DzaJxtL9tuJTTaeKsX/eT8gq03BcRW2EB2f/NymcJe1xJqxtyBz7aeXmzW/O2dQdL+j7PY5YBdn/EUoSeypNhh8ZxrhTPez2tdtv6/REZN9jogbD8ZVXHrIM83t9vxq5ZjI31Nd/9KF+8eff1/H1UvXtUz188VDzhgYk2cEUR7yn0Vw3LT0oW3jKIjYc5xpfLyoON1jGdBwoO778EBGN4JKByTpoZOLdNPli917pd8mvkOcio2DW5wma1cm2X3o2dd0ogFrxyjNnPge3YLdjVJXiS4Wilcc0vmcmRJlgVFB8TeQSxKBMYBXnzSt2xm+fw1wHiaJkd2PART/f/iwWpKSJZLKowlBnImdyWFwUdK0az/nP+7Oa+dZ00xyYA+p159zmZoeG6iSbF4+wueri/rHqEn/6t71+e8nZw1C/ejrXf/FnnzSOBXI+vMdwmWQOLFjWKqyApg8PcBLmmo5TXV8wi1zVRtb2Li7gJgC92+/HBdZ4Ieh7Xa+Z1/Mw7A+revhA5zorW3Z8udbzE6Pcc+0O19o9Emx9rcthIPRo8SgDvqYjD4qcCt/dbuf66SIH+fPm5c4VKFXkTRFAfCN42O3ZlJxcjZtSMEW96HjfcNU2dAsdDs+N3tZ8IpwdJbA7e6vNvJH2bqzugjzOuLsrK1IbvdhuFoYcOaRWdT65uFYBpwN0VdPJli4UfMc61XmD8fMFOlHIqECDHTRv6xrxryQmiJdXxtkmq4PorWtaIYqJuaSk/TZSZ0HzXugThUCIxJCDOqPidiUXMZbrtpgPO+3EptjxDoxEXrmJ6ZCMy9zxKU1rNJ+QdXjZ1rh+iE1H39tl26+3/LJdxlz/7//+WBeZWPbM0EWCRvny+qI5uk+fucH997Wuo45obChmZh0sImJLDUhhF34Wmz1LjHFNj1yDlqlpykbWhUjnUULJ2M+r2s9DMrZv71X5wSBhssUwtNf3QxYY4ethsURfs86/ywaF7wcUUYxPh9g7uUxomcY+d9Y28sbLm/u11yI8+jXaShfJrEFxWMXluzUhjK4Wv8L7EPW2LAoy359JIyUhA7FNov5KEd1jo1Y1y4tMvNXwi/ZWrgPGihe4BclD9Oair/Ope9zNsyS/QEGKnkbM8J9xSOiEF54Lrr8ezOY3GiGUPUhqnH6JXsPb435oruZ/Hg78DMZqVavnqtXosl+ofoAs5QJvt/VffcdNbDLV233RmHL9bBMVrlbMc11fYHR8Mwl2sokXh81zPYVo5TxcN9cBPtTlOavmwHv63A2SeNBeFDTs9BeaaujvrbKS5lBhBfyTJJTkuAJniM9lJRdr6Xoec+5gUOw09BYBORFqslBCAxzTo5TQ9PWD7E+OJ87k0d6QUKRWW42J9zkL5JwALWKeazxO9fo8qhk77La1gXqkvZyiyp54PdZU7joBDyLSR2AWoZepVI4pnc+oW/175Bkua5s8MxE6UFSbHR+dBj/vbLSRZ45fyQi9ox1FYWpKSLKWK8YRgjM6VStOCC7GE48Z0RZ/YRuX9irtJKnmxN5oLlbtWpUvioMACBf4uq/hNer3AYLEDcSghIGvJQEle0M/Pst4OH6hraWwotrto5W/vyPE71+G/D2dLvWn34z1erSHDxtYRyxB7iSXd73e13p31ohRXn+wl/EY2kJXs6LGPg50+nlApkt9Os4q3s6ba30C8Bov9R7rGDqBYa7Hd/blg/SPX5FCtVEIo/q9UMmv6jGbu4s91EKWZENuHTMKE5csakc//CGlQ5xd4IiML2KUaXAAvgHoVacK+uFn5OpOoLthd25taMvNl1o1Zo02B/TC2uzNgdO4M0UYv4nPpw4yXkBa0Ku5xtPZezoLQaNTt34sNB4KmY3imSMfKIQbnbFISgCHj0cMTbYFvuZ00PkSHwzFPAX1MdG88wsNM4kLpq7IxR1jDQinEmNIhLFRSojVvkbrZKybkZ+KxyZhNeF8SJ4ze6GQ1pBvFZUEXJ8xGskld9/Ke/zrH071T371+sZLvH/xy5SOa/3DvzrVp0+beveORshI3M26JZ2mmpT4Lebw1fifRodRDTSHtiDQ93nDktn6HhpG1TWWR8o9pl6JyEOHeosluEW7RAslhsp2Y970TxsLfWTb1Ghb+GVdhJgm4PepUXBsLLR2WlwgxDm5vEHwjDsbfdK4O6iVDpL4VlJUyWNMEvvkYTafL//u/crvp8etd6wD/6N5eLmGS4Rr+xZmw9YyVJ5rj+hcIJn2fRN1LCa1cThWvFt4Wy10kpfZPjzB8zWWWIn64sKHo6TRWGLhqH6XA1a/zwbtqInlziGj9Fy/0B36sGgKhURbNIQcREJkPLZu4YtJ51ZdcnAhlOMeXE6XGp+muj46EhIU+QVRwVD156/v6tuJoLg3/oqa1425D2ezUMzHMz+xTXT7e8wrwwliIerz6sYrHniI0xRvKfK+G1Sp7zt1JZwtFwcRHKXAaRsXNXgu6cVFJRmlGwwauH1MkDlTTs+nenwgt94cW4Uj5NmXg4I+D7ZgvDcahE2dx7OzeL/c1/P3p/r86SwKFH4W9Jqn+HvK0DlClytTpCBqnFHsK/DSbAUtp8HkeRtXau9bX0N4/+Zgq5lCHAVSHNRKJ4fcBTwqVjMWuyYhlfJ2TRRjIlbZJ4gMbW9p0bt41rqEiiBHz1EqvEHG7VYDN59eE6moa2/oazgnbeLeSUcp9LnHol3wHoLJNX3FOo88p0mxUgpJCjUFJ+jZzE9brBNu/POetXl9Wn8gRwcd43dCM9nL0QjY4/O3jvjdd8r3ozN1GTXUL0c4dlV1gF80KjAZybQMNZIsgDx+M69ri9x6xrfOrkEelziWDPejM10Ane4416vzcmoaVvU0Dir+gIdZwDtZiVCcQei/1sNuK3q/gFoUOIyMk8HL/4TapTATLL7xKXQ8xX8J8jstcnPYWDhRNrKrI6XfiQMS6wYVh8T3rG2MmsJF40dthOkSxSvoGb+JqVI4boDKbTXeOb9yHg9hv+0y6KiMFtzY49qMle27Fikcv0KbNtPmJ3uTr+FQ3AIxexwtWwy5fNMxcVCy0Y81EDKOKEOdq4tYXaO1x6lSz6rjMQNKaOh6VEg4Ah+QIzpoDsPtsBbiy8eFuL7bcWCgAnPxAcfTzVZQP/iHIVmbc9VInjtGrAE2ZD+uUYJbNiOirnwGb0IZpTOEH/FXP5zqv/6nn5OQ+of1Mn+y6henqn/0S0jX4OYBCbpb5bqINxbEqYO7U3do1A3ZQrnFcHJiE8TzMF/q5XWq19ehnkg20WjQz5W7yFaRunDRP4Nk26PLaJfylynotp16YH6iLVyyy/TG24pbWc/4AdQTsaBFTnWB86YotDZ9nhhDr2sY12oa2TE8rjHZesuaCLdTm3OKwk7jELeHxiP5xvqzrIq2gDF409YkbcJ8K667GmzUz3QE2zlRocpEPeuOFe7cUA7MlQq5+YUZaNWFrFyM7k9DXU7ExvnNYsk0yHQaxA3u2bXOabT0O/Os6H3mmXSx4QJWDauaPTlficPn4jjpGvDYRMI3J8+jZwvUFHPJNogqOWlE8hrbIaTj8kMcn+sM4sjP2Fxq3um21PplU5cfXKzLOnK9qv/rf/dcIyO6hS39Nl/aeyiM2qlCS9LXq6kOToRw886HT10YKNzUJK2koJuWlzmDF/RVT1zoFoqYXIQbVlsLg5NAsL/T7FAJDVUQudD3sbXgjVp7mCrred9C5YFrx/qwQEIgCgUfBY5stMxHXcc/1W/fDQLnz/ZxJyT58w+vAkBO4rt3DKEN0M9n9nqmdlv9D9NoItGY0rXi1jniPbUZagdVKn6jmtpo2jY7BrU3msQALo4bsfayyDn0ET13SZ7J/gf1iI/JOm03Cif+UEE4Wo6Cl29Q8SkXg9USlZcslXCXva+5IXJz6eGfkdue7C13KZxEN7ggly6u/dTn3i3xahGPxLfRYkZvUC18004otNDRorf16H3SqmrEMaF46TeEV4pISSbR5h3+ThC/Xy/4bq9LvZ7HmuSDw4mTeDI6cPEF/KAxi5+GsTbXXa0ZF6rgsero1ZlPtWMBXUuL6+lMLgdCDLhs3hglL5+v9XSZFQVnX0nbjJw0h1hbRUQu4OVc7w4ulNggnybHsn3YWc06srNlc+d3cjAc59GWLXTAoWs2p06E28uqtsCyOpkSsSMHfHsDnfSgMcIda0uRsu0rNHmUG9TKZE6QNJA1PxRCILQgGi62pYNG30HSuMHiJPC9cIG229ocdrWC6wj5Nj5lcvmn0+CwRKUHaZwu6/uTcjThVwhFENnWHKgN3VYWsH9jsoaFHqaTEwE1+bhwBrWwKczDZRDC4o71HZ8MTwyNCW36GdDdXE6NWUgd8eFE5ycTTXE1TIZnDKDic3A8kVSssrihkHSxc4RegFF4RsSksMzXsZ4z9ri5EP+hvMxFeTmv6z/5x5f6D/7Nx1qtvxdBWvdUwHhz0mI5kPg+lgqF95q1GV85/N1kB8QhkuLBea3e/A+HbT09o6JniayECAtJjcJdhYVECCk8khSid6pUFg4Uj0ubv9p8QzE5gi5RlKNWXbrUGMYuQcAg8KC7jDzxzVTMGmuEA0Z87ppfMbE2oiXkXeA0HliJwMq6BmnWIQnXRjyr5nZEDR2RlW0wbojfsklrjJrRXatOkjOKlRIiNn4c2Z/KUo2JrwVQLgoVX0azK1GYv8aILNm217pAel9d6gEBB9eAOMVa1Qm+mcbcqP7bBzPIaau3+e8gTc4R9XtrzhjCFOWnwmODH5aoRe6vxoNcS643ylapWIeaNDp0Ua0YSSYUKSCWy8S2ty8lQpy+n2p73NTlsxGMT+/39edPr4tC8q2/SG6C+oDwCTcKPq+pODeOsTFlE7ybr+nio6k8rrzVkBknFdXEqDYCA7Kg/fNGeKHiYbuwQmAAjw0KjnUeV7AA778ipkVkwnPihDgjSBrjuojgTMVg+PxyrA9fvpdIRVOmifMWoiD7xcX/LhEPDhCXOhx2NR7J+MUTFl7atebXqZ7/+rUevtrXmF84vdLMX2qvsa456Pju0mzBD2RtC3WPQldesA61F2LaaR/2G11JHAS3ku9f+GlqamKRltGmraS84HgmZrxjNZnzpsKYl2sEwqrfIl6dueWekuZ8lso4wpwr79feeTiQ8Dt2TKKCpBspBDoKaJJ5sf2B855UnJorZn/BUGHUCNhqKUEeiQO82TcRJesGgAb7zk5BKnF4945oXQq+1ppo/H4DRYyg+qzlEkEJ8Pk6/PYLv/tw+3+ROvLnn871zcuxvv5Auw7o5M0c9oH8iDxbtHHiaVO7j1tfNB6eYfShrk0J8mvHjU1SAElhB7SKHUuCpU9SEjuOqENcPR5xsDjKo/1mW8PVi1rmzxo7X+pBdglDPb8mvFycjOyqSgrw6JCdvTf/VrPCuaFDQxkkSBrB23ms9cFIIHYZLFIczHsM2UTv9oRqDoZNaRP71KrDHOgDPDV9rET9qDHhYAeRREhxqfUDqr/ws9i4RJm95a4278mLy93T9rATQkdxpHcStWzz8Ob5bPJuz4P08yjyPMrRn+d7GjanCIT4bgTW3SScwx0HCQdlNsqOeRNHTRujTUz5/FJINp8ihHnzaexKLpBiHlUEmh/WRSeIWMLrNYb0fRy3D0KJe1P+Q1H0+tW9/1Q/f13VX3831h9/7etlBbvHNrxk1SDycpCBNFBCa3rMGT6cDGtz7bU++OeZ+CpUhkEzbm3okj0tHhmoDvc6jYz8ANO8Sp/I+L6tQhBsRSos0JB/hceWMXJM/80vSxZuz7BFpqb4Y6SGvQTjM20pXgfi3Eic7KJVSBWPBMhgQpDa1sYcxXTXOVB08PaELrm1SrlQYdhqYz9D+9VewqjLXZHVnL7t420M3NFziUKOJ1pESBJztCAnPYgT0ZyZyl7P4XIcdI3m7bX2W0Zxk9HPu6QUSdzWQ71i3Ksd3z6pfVAa0XNTeRqnWu+NxqoEXuweWh0fhBynAOZVFMp30Xi6v/Ez9FnrohJVpPbf86WuD1WX/VzX41CrcVX/r//ypX6Q91/W4ht+mds8yyVCJMwUHt4r7E0n9Dr7tA/n3ks4s+7QI/Zi3Q6PyEMn0/OzY8zV+12U6fytpl8ymAdocGQc++YYYYXRL6O9vDR+j3l/Sq2kK1Vd4HSOU02QQXP446SAjZZU9Cp+3JXI65NiEB641PBuYD5+eajP01OdTlNdvr/U7mHr5Ce5RjD+zUPUmczEpO53acTtiCGeHpMuxE0eMDnBJ4k34qAC7FD0KbHDSnRsZEjlMgeSc49iNWKWmFFDVeJ79ol23Ey8L34OojQn1Wia1pYwEXzxs5pLN6jwTUOY3+WN7uaxZzpE/ulYjlBGwu2UhVqSk1J0+haFBsBIuxvG8ENFqcj4t2MdZWUX+FYwih70DqNPaoc48baqaSPSe6cLg0dWe+sZ/g1e/5MRvx8/REP9o29e6p98f6z/+U8f6xXPnxpUVR8vo3J1H7ereljRXZzq+GmUGeiM9QseVvKZsKkiRQGUo3fk8wra9KhYViCJD+KmjNNKP/eQcTJ/t1vvFe0GhsamToGn0OxE6+DtyMiQzfiVjZD/PvPcI3pg77PVAZ2DPX/iH5YCSIMcEDLtuny9HcT5e0Yhu4g7KArhpnEzxb1TnA6+PlYmwd9TRm/mYVosdq51zBxolhJMsFnZ6qYKveFaREyB8atQQpH0sxmlU7jCtZNSMWIMjturbVy0+LJp6M5JKu8iy6Wg+XS9Oeqhlso4wHhGqvY1ctayNhpdOLo7DlOUvB5v0O2KBC+7jBg4a8Px729ivt17Q5LvkUr4YlZvJls2XC2bSfuAkvmtyLFm1JyvU/3nf0nLcfPJ+kN88Tl/9Wmsf/TLqj/5KgeC0KRbE3bj0uk7HAWYvLVOtGgUy0VjiyTidblfSxDUXn+NyOrrW0XXWcx9X5afEZEHI/4Io5TAogK8RRzerOxSgr1Fr9MUYzJJtSeY1eFNes7nSbawCBxBZGQj0wkk0Tsp2rCD2/WDbmbzAqA7B7itXO72M3FvdDHvLr5G5EBwtqaymCpdttTIURk7Td5NlGoiXxwjezfBEr8fgZsVl9Hp5QAZjlWrl6h3UXLqMDWdQ8r+mEerUJZI7cdTVB8GLiwZ20twyGGvCUOLQvoGuiZdFNRykc7NRsEp2Ddm9UoKufEjzau8mBogVNpCoPld1ct5VX8qJPetl3y3l/Oim2fWjoPJHYqRqTPQM0bMR1OChJSaHhhGi5nDu2ErT72adC9AKH61LZByYkrOhG5Gwu1azh4VF20h5ghDPTuKz/PDuHs81PX715pextq+2y/Pnpp0zjSAFApBOsG2AhF9Jg3NfK2Hdzt91h++ean5PIoW9e7dth7eH2oLL5xCLKouceLg6w3QRmI1QiGj88+NvpCy0EUuTTXJ+9I10zg4XLf28sxGBj2Il75HY2nG1D5b1IhO2L0gAOHhx5aFaw8v9mYPkGN3adTMPRyi2s4IGz/C7KOAQqlPI/DM851Nw/107KAjKDPP3meR9od4zXb2eEce6arcibu6jEqkcoz2M53J37V/ohM+2nrK97v3La9f77k5Pf/WNf+vQHwKfPS3vD6fUL5yc1W618N2I9WuTIjXwKl2Bn/8uJFCSKOS3aXOz6AJ5hEhaHJcCf7v/IytBANcFMHj6VZd/OEjRMGGSMAwhE2Y13LAhkD9uB7qXVU9rtb1cb+t99tNfXw8MPes5xrqOWTbvUitLfd2Cy8+ENy1BHG3EreJ5c4BVH5z7Q8odr2YGZ+0UESLXuIOkLikGQSmlU+PCDrueiRQCKrH2EEJGShyzxqKOQs3cD/QvR38jS7I8btHpD1CbdNZdXuJhgqXxKkNtgbwaMheFCbVs+hjxKZ74vnzCuJ4SMcm4K5u1zyHqgipO/gkFL4QaFFp+bRhZMcYEmW1uRouZPSspmi1Ya89GVVIJL7PpGpDOHx2uiWrvptv5Q2BER8/8Dhe6z/+h3+5rM0/LLSvfvS+n8dL/fe/QPm9zkjvoo24FaUQrO8V6eKqRb5m0+U7bloHyEtZiifcRfZL7QTg2psCZe9MyhQISiDyX2mNyKcrY9MFFwZJg2vKrVF3m/FFJ2vECA2kTkr+uqGOvGf5CcZeBCSMR7qfNaPDVq0G1qsZcUNUyKw1uTtg+0Lhg/ggsJ59uMzrcxffiMXd+DKHBU1Ev6S3ku2Ex8JiNoS71TZBXHsr7SK0yQ+DWH9vkSI+pJTNN+sUfx1xhFWXF8lxan5c1agoQudX8/KzFaRAimdG+H5/98bJXTBoD1Vsm7mbMplV7WFVvAnmeW4yxdBfYwx9pKjLYsDIXakwHb5yEx9IAa0IQTd3vMdffL7Wz0+Bg/8AXj3l8Np3vruyc+O7KGuXgBr9bC2K9Cgu7cuXwjiTG12uFm6E4tJ0B0cXtCo4goMgQK0BXQqDcFNtkt7K4RRfnbkdw3/2hYG1BNdvJL15JcTYubA219dkjahO7nei1FYI7ECq4agPl/rw4VBfvN8Kcea+EynKKNjIGIWiFfogdF6fg5I2FjW8pnQpmDIZc8gB+7n3fU9EF1MoO2JQJDaa2JOeFt5caOQvdZS6zI0tRdYk2pA564uiP7E+ADjm8d1qFwEbg8e34i9b4hxwI0Wi4lUDqNjrPNc++cU+MWNi3RTFztXtQteIboMx8ryNL6+me2ooDGR0i70IxxYeZPYA7RfhdspP15PQLp4lq7le6xg7ud+EU/uvyHj/m39gg6QgYNsa6/2wFcwsA9X25YKDBUn9wIcf6+V5qOFAsXOt+bRNIeDN6f1+qyKRDRaWFpC0OuZhU48a+1DtT7XeXuv5NMtHENhc9hZ8Xa3qAd8/PP/wnNusFOXyk8cHhTs/XdZ1jDkXlwtVMWNk3aQ8aDywEnzcba5WCQ112BB+zR+4qLNTNUaguH7757bNCwWXxKyjLWp0dolQ7QXHe6azUeyPTs2h1ifUyDDX7WornhIRQ7JciYUG12HD4qCbMwTAmoLnZwELnZxRHcfAuMCketR1inmuNgWi3u5Uhk3qRSWFGpFNhGIPbp08kMjsXLuA7I1KhwjXLDYyXLtpWGtUZwFGRAlR/9l+AJWYx9pGM2ahqSpeFlpVZ+1aWMIa76gjISYQixnRqciwieXxWvUNDPTltv26ncsfzou18//5xal+/v1BuZm2HIAj5qqOa8bdlQY7awsukczEk31rqwg3CVeJelwkqTBwzpaUgIhouNbH81ndcKIsHeLO9d07ulBjLcY2QsdzJrbhNwcJqUmMspa0CqdCaNQqVM9ef6DhmkZFnCDicqq9xW9O68HjHR0/Ucc5mcbXSE0Qb4qe7tDJOW4k4cnps2ccqnVIcbkgmubfdUFpfmlS1/j+WJYsdJyACvCcIKrrUE+x6zWZ/GOh4TyjDUHc2nnlaq+cjz1+znuUR00K7Q02VIjkMPLNuFF/nXWf8dwi+IlFxMwegz2UxvBuphurB93RhwBtF1qEubNRLPuLcY/grdyyP5VLjmBASQ7ENCbBJaNjlXmsnWFT//h5Xb94Ov5GJrJv4dU2Gs9nT5i0X4q/HCQtSQnKBAelDZqjNYgYQNxT+8ApsxaQI1nMTbdwnm27FeSwb9RQfFjDqTLaz6SGwoItXB6DIaeZVhTqgp7liNkk5FvJvFf8zOulzk/nOr0wvyJMYayJRRzrGhAy9TrZt6HirAkfkEgMQd6lHt5b1ct0Bi6g9oDBE7XmvZsalUJDgj2jb85Qp4Hj6712ZFiefBkKKyzNEKUhyiIej/MIhwcoUgJI8MsMr83euH7WtlsgmBZN2vaIP/d18MMAlxDfvhYNSpDZoW1RAw/dbW5ciLpQb169/S6FUGps7fds4MI8O28V7kZNv7Jlk9mP2U8SvWlOntFSqEwn/HZH3C6sMei4NU9K2G9uVBZhGO0qEKGJq7a7sjlG/TS5d4GRv63C7zd7kPnF//B/PNVnbFy2Hkf4wL7UYUO3MdY4naAU1faLiwnSjFn3s3yhRrgh8e8B1mXhcYHwgoOP9vGwrT1pFForzoal4BtB2YJmiAtIwbfa1XxZ1w+nqu/nob4r7AbY6kFBNvVQ8AXafBYOnuFUOXxjGr21rw6cGeV8glRZ5y1O3AaiaThGnr41oTSHEoeiiPUJ24azxFrjzUPopeAScdSLUgcrvn+4dLMxbyF+k5zNpk/8GqaYeKStay3CAKa49tqiyxtBBelm1GFh6Gzyt4j/6TZE5h7POgDcYbhjEMo2XYTWCMLXSCKd28LPSAxQ3M5tUumNU48F6BEfkuIMlLJhcDYaRrxX85I8TqGoReVrE+fm62m0nk4RRE+Ft/I/Pa4aEd1gZ6Jix8ksQkVVEC5wi/4clfnwGwRW/2G8rvXzp0v9J//oVRu8Rut3SRetO3AM0g2ZUa/BAZLih2k/BZ/uc4oYIYhJi1nQwsUq4OZp11LC5mjyoqgBlTMClM0zqJ7VpskLzaYrhPiaza1Nkhu5EnKeMXFIyosnH+vQj8pieeF3exdin7cozzuQisNGXnZC015d4EKzoBlZwF+9yaFOeE3d7XIaJ+czt8rX+4ojINvjuWMm+3vEsev5Uo+SKZhEqs9BLXQGNAbkbij4JXulakAozD0M95CJhRSFi1uz35D8EO9CAJqbyV6FzYoaJt2bmz/mlgo896ybtBYLaFhCRbez6b69FT2aGlE/pDHQGc8+qCjMFDpah6v6y/FS//l3bEdR9PwhvFL0I35hneogzo23zYtFF9pfVBwQMRrbqbY+0v4ac0txrM2HNsne97wR5i6YsLhqDbB0vUIEG0GfjDwKnRJbVZQa2YacbZekpKiM+wSuCBkyksX3rOdLHT+91unz64L0dUaukyquNZ3Otd5sVdhpLWy5n87vftxZsXt42NfpBSNuI4M8v/DW2X88Es1ewXmrpByEmBRuV8WQaj8A7On8d9a0bL0wzh7FRQVRluE09K4JcCHcviQU7QkZkEF/Mq6hggUFJ56urZXEhzTRPcWnnT3g99liLclSVzc01BfcGAtkklPcDD8pbj35U5st2kVCBkTjamW/n3WdaeKhZ121kIRUk/FaR2IYE28qg2adxSD93IdJ4iKAFYpdIZaM0Llfst0JrSbcUk3glqAHl5oq0M924fhNXr9Vj4u+oP+XP/1l/fWLyZ4PbOTqVugkTPJUsHlta4X58nWul0+bWu+G2k5Tzd/L897O2SKKZqMTgGbJOzYwalwnnL49yvJoFBYbi94GsERFfTtd6vvhWt9h0rne1LQm4o1CYVPvVuv6anuovWxXPK5QMRkIN6YgIdG6+DC86m5XXLIYFbNBuwuPl1oI6EJXQPOkPiX2B5f4pC8I3fLwSRzwCCtk3IvFgJRePcf3xkFXpE0iaJisTrShWypo3k26DpHr3a1o0S1qD9vk+HA2N4GN/bD1A41660fAWDhlUpPPkIVt0snXOdzbvCu9BY3WONSpNNpdHaRykNIZlMHjtbS88mwzB1BOV7oGjnLovFShpYy11dny+dkY8GE0+RoUUiCGuk3DEdN6qP/bPznWKoXfHyrSd/+iYPnP/uJSL9NBa04IQ9A9bzQ+Vri1dJacRdwzrgANP4iu8ruTta4aMf/rgrlfAtLuVKK2jvEt1e+MqCRBLguiYQD9x0wTo7yxTWjTYp6jeAmq94kVjTfuLvy578nE7fErFDSaj+V33iyQtE90ioWi4iYJzlcH7C6q1ixJNscAbx2/RRP0uE933dG+mk6E9tF7W9g1HGQKbJfRscfeS4ZvikS3Q35JvKEw9c7npsnKSJrEhFO+TnnkN4Jh2181F3HhaDYHKdV3AwFtOHw+MrbHS9UcMHuEWsTQY0hx9Fp9HNPzTh2hYBTKhJE2+1tSX/gn6IqQF8/jzEtirx6v9U8+r+u//w796h8Ov4+Xdm7xW/oe3/H87op3o0VuuHwr3KROOX86bvKGKgWRyc+WYb3Ge05naFGIX9mPW92pgjHWSeyNw1ZNMfQX891idwI6NVKwQuynkJqFwF9FO1rV+Dyq+IMqRDgAyB6FIs8PBR73n2KTYowcdok94lyBSwSNuSiBCIkQWK5XVgevUNAHmVeUqV0E+B/nKf617FG4LFR4orx/1McalIa3hseokHxAnpgvG91aC9WHZuH8Y28krEGFo8UjVmpkNTe+QSM/gPciXYBxZwUJRLSjM3n25kej1ebzLp59jjSy5qjHzgYm9i72Vspu9rjd+4hHv+bumUhL0tf5CBhjn1lU2yCcSi7ZgXauNdViLxFK2k3ukEhUK8FuNA6TQW8eVXf8QMAv8zhBgVrd+je/fgfmZkN9Ow/1/TOEyShAZaTsqprij4cCBGJarWv/7qXGJ8acmzo8TjUfpzp/osDbJnJFbm0ijI61qmdlAwrkli/Z46rqiz1Zi2TlVr2czhltruqHaa6/Hi911MO20ggLFOqb6VKfufHXoR6q6oNUpd44XeR54UFsBT1QgDJRbuLCOF3jIM5h3NjZZGPUrJeKW+4BVjIKaPJmCj8uFhbuBH08SIWqIp+DHBuaeYG7Nf5pp2+tV/PbGPk2GtEjUdmh3HPZcqI7etIWMOaTeFjE59efYFsjHzZySM0pcNB9H2TmVsl8U6NZq5GEhMpg3p2OTKxRZIt/5/JT3WzEHN771nW+YL3i9QBatxuwoWmztxxyzTUTAbkPu1Zo8BA2HBOxRxJW1Gkzir5W/Z//s18t5rb6ue2N9Af64p3/0+dL/ed/ilG3BSyOsvRBQfMBTyZhAvFBNDLlDjlefLrvi2ZmIRB7fSVrVF5fOQRFGk6nHP/HRdkaTi4bO/eFze0ehQp91YhEEEVPp0GkM64UymFhh4rI3FrxzTq5g9UkcZD96TJFy0EaBW2KpeUoZbPXXuA8avJvQSIwf1fqYYrkHtH28rIgKcBiJgtqVpmAgiYKsfGB7wLM69RfE4K6RFj+GT2ukeCKww3uoQrQodZRISNuY6B7Y/z7+4y+gowbqVMxmkgwqQ07XcKaON0P8fd8HtujL80zn5FLrtitnhXfnRNtP6HD8sETC5niux9d1kcnERlxdCE5rYb6v/8PUx1/w+SAt/XyGn+N0lZt/jLO93rtvZaXds98fk1WeBbyLJnA75GwxUU+0LWHhTNoIr7HRLaNsVjQnECjQRT8jZs2P5wqfJXUJz3XIXh20ICVr6YaIe7Yvt8ru5Yx5PT5WJ+/+VyzDl74bThohMtGY8IkbnR28Pl4El/83cNWYg9GwafnY63gugflGufwz2PK7JUduxtN3bLelSN+rXeHTe32BCvADTR9iyJS2c4pgK0Yb5NlmyJ7EmffQceh+ZopuYbrkppdViZJsxnUqYSRF46ghToeOw80OCCecgPJfqdm1P6HHp/6PmkEn/3GNNfmVFh643vFZ9EPla3T6wk005+fzwilQzZTuDHkunRxKSqIeMzhSwrhTUG31HqR2vUIomP9sg+z9z0B+CyA1W+d4/cbPUN6Y//NXztxQoiX8sKneh1nXRg2TMXF1KXevWfc8Vo/fF5XvadyP9b1aZaxqc4DiqhhrUKRkQ3jkZe56nma6/N8EeETFf6HbdUDYhDNxjf1crnUy2UlX8CTOgo/bEeQp8tcT1X1g1SB19qjMsbHii4+s3pBpyKA8j5WdToyYmTTr5s/ljZqIx3YmMimAQNbGT56EyDyhgeBbkmdgbhM3jwbO0RRdL2snUUqwq0ZBBzIilED4aKr00OR75PwI4a4jAbmG7qodIBs/mwqVia5QHIcDuhZ0AWK26NLUbuM24DMCBn8Riu2RIegw9PYyOR2jcEZD7/iHWh3e0XW8eDpicw/RVSX9M8igjiwaxSsfzeMbcK7ly28KSGjUgN7wKYHXCMRmwN7w/GfaQNLx+1nCkGEPZ/+/+XFo34arvUf/+lcT6d3NbCpiutK4yGzx3h9cR9YdzcbEJG3d11gW5Dw669GNXQfc/AEtPXfi8eFZY9HtRELis8pEQQHSlBukaL1PvK9SzF4u88ep92LbjqFxHTZe+Iza5d1E2DPY+Vs2s6nNWotoUqKRSUYBIERP88PpRFSiRhAm42g8NK5v0S/NErsIqvtMZyA48/+/2XvP4BuS6+rUHSuuMP//yd1t9SyJOyW5CDLAWwuxr5O8MBkHlSRDRi41KMKilCEemWSMVBFvMTHJV0souEaGxthsOWAkyzLMpZkW7FbLXVOJ/5p773yqzHGnGvvk0+fPt06p3t/9tHp84e9117rC3OOOeYYeQ49UZEdgz+pyjGCTJdPIdqX2n1nXsckiQGydwJDigJr3v0xRj0uiUsrWWMJdrxf+tw5SrGux0DqCLvjUeYTxw+UEJTDAH6M9wglJb6/DsrJpLQC8gbeER4IKMvYSCBBp5kicBb3FocythW68FC6RCyS2vnETw5z+/jBLZiE3m3DeX34jyPQARh8RYKpztEg8zMRDnoMBe4d2SMVImza1qpEIv/r54E6qckhyonSQZLsCIAHBQ/gv6uKohfRNrwuOdJ5B8gdF5bK0CF4jymKdY3GOQRl8FLfOTG1yYmZFeDHr1q79Py+rY7h1qFnzzXqAQxsVsObGa8Ht6rdXfjH67MiYANSReSeXbSdiwmLBwp0PRQBaMPKvWiw6U4JIqHKywAMAJQA7QI/jpq/a+FrfC4kj2HpJvMEoIyYa6hUCbzAWgEDARxIyFBhIeB8ykpYt3k3Ma/Lm2ZAbRrdjhKuSdJ5ae6NVySO6Lx2cTZZwuVzcALgRsIriz+ZM1AvAwHfqqNCCZJaOJpkE3w27+ZmA5E3DDGZ0F45Yvbe1xCdxppPamABNsnrCMpNcBej3GKdrRZxht/atH8ZAj/doG//yadZEkLJTZ1vOTOXBoiWkz9RokzQ5FFWttgHl29qe/fTaM2qA2zONK3kpo1MG1w/lHJbK63PCma4EOtYehkQ7zzJE1vknV1oEzummraeNrUCQbCkZp7IsCt4Sibo/mwY6d9XprRvY4YOkmue2S42cDRUcHGtT8EG+lrksbmzBxAX1/3jxOFEad0twOFEBiK6TXrAgHXB3ctwIaOLwOgDiMlMPUFN/uAUYDEB3WEeQGsgyc7ATYQlsngNPyAxQeIAxnPQpiGLpbTNLWf5GAeCi7ry+hFswogagsj+aEPDyReA5isEJ5W1AQkFqqpW80xi1rTPI/nDRW29q5BSMym1y3q4ALjHJBtFeKAFd0v3IjJaZUWizgJljQAmuuyipPj+83NbUd333kf6YoTN06eWg73vUeglTi2DeB3uFQMmHfhMECjPE11/mtN1W5NCEHVBBm7+e/gB8kZ438OdAHPaJSsgpAw0l4G5+GhwwRF/xrvOsN5rl2Sh9+uwLp2yYcEzaCAq7kYRPtkqq2zY+6LpIQJFChH19APlANiN3wnVDG8qoS5e4eUgDxDpLIHDldZV0hpvJoOko8iPFPqHqSKkwsu0Y3nV+cT+hygbbeMU+KCSAUkm/BtZOw5GyL5wfaPrEWW3srezl14Q+k5EMbWszS2rO3Yi13SzUfmXCgBO8nZXSK2jQlUJIiM8rJzD6TaTDDa9SUY7j56viPXOA62BMEoAu21ra5patnzQMwWxPzRuQjfQ16vVAQPqepiQgkbiaG65k9v3f7q2Sir647gnki7eYD1TIF5y0ohDNaR71gLNVGzwqkkg6vwZCPBDmsztwIhAR7OuU3ZIh/H3pFiz3x80bXBVJB3DD3K5fJ0F9xnnWwuVCnJylRShqgX5IszJguteiZQcPhw5zHKbTXMrdqdUWpjmpTVHjS0uLdn0QTMEKASAt5cmNisUOGI2oCFyOp9YMZtYmRVWH+H8QkCXW1nKBUZi+bJfQ2CIz1GhylaBy1dagqZK0E4YVIrLh4mMn2vhZuOfF4GpuG1qDpE1YVBDdO90lkEJpLXj48qqZWNLNBK5kCbuOc1swDv17l7uEdFAQ/1L0aOogYr1Sa6fBO/XBBV0FOAWyrgeiQ1es0O3OwMx7ZUScnZ+aIWmmcQms9ymM2/oYuAea0JOQwQ4Qi7NkXsXwhlpK3QQwX8zcXe/+kjKNyo13uamcnQNTTwnKNzCsnvZfKyernEwwHbNvQVJVJU/pVwFkAQU1gHNmUKJv7FllVkxKS3b6Wyoa1tcSm3VIBCQ5dHiuLfjwxrwoQ3YjKjfoGxjAbjTOX4HHQSaAeNioQDRS2wK5KppZBNDfo1QIqCAB31iRxQP7mlIPQlR5bZlIwZtMj0QIUk2iLpBrueDwEmGTqDgHyhYg1afJAJCfUd8JZZj8JrIxmvvyuQLQ6tPLfcoezMo1LQQmskgBp1eIirhvlQrXDu6p8Hrgiq8++lSJVy/TV5en41eofg9/FvJrUirCMxpO+XNFuDzwVYKJKCwpuEL0rDegwRh6Arm6QDQ0VaL8hZccNBu8sAAG6ObfVMujCUjSB2onK1Gk+CDxXsoG2XHLg5T73zGghDi1HhJWKVE9qGkvX33ex929fp7P+C7cqyaxN7z0cHOXdp1fSkPCBzmD706Or04527Ur4tCnAcORBI412lh46UmcYiQDUuaIKRPFGBIlsLle1zQlK/LOR2EdqceeLcigg3wwMhN8uQiyqrKUr3r3EnR4i6uAw3swdWyE2IOdLF2L82Nbnv5dCrxCR0sygT5rkmk2oNhfhvBG3ywgT64dAn8iqNbnF2co2TFGrWM/6Y8DYJd8oMQIORjE5KSl7H+57I7Hk+sepabe6Dn3hxDcXf3HQ40NUo69GWFoD213BzNdA5D6IjpUEvI7QwtOiGd3ngF3tNUHafgUweNQ7Kh2OPcPowHjqQpiNzDTQRHnYobRFFYxXIaBmwXHz4s7UPPyFVpc9wLa28t9IHrbehNiw/KpjyvVsWz0FTX/SGv2T2gGaK5dzKRWJcHo5CxSxrJmWbNAQfNITo/pXgBykToX3p5kk0QbkuIzlty8rz5jVJaunh0usbXaZhAhE6UHT4BvM4ks3R3av0stXKS0p3j8PzC9s8dU/Q/nh3mD5GmuuU+jfW7szclJ3tVNaM/PDhskl+SrBZtifl5de8oGI5zhZMfHDSs70YKGQQGgNBlBGp0iENyLNW5x6qY7B+FvrmeIZQllhLb5uuiujbJrZiIz5iN/tKyq8PX5lDe8HNDHsxC19BzwM/Bz6P57n3SY8MG00D6KIdbiyenLs+CLXNVKeiblIntgFcJQxAHgEQRE9BEmTH2B4goI8ksqeZqHvrX/DxVj4qLTIdPr4eIAYbEn2PuPeRcreHmz0TghwtbDZk9/Bw8cjNbupcl297B//JDBkKS2KymU0q62uKgY/CWTjHRG1scNHa0n0n9G5yYFh6ycMOoLYEV10q6PssKtXVwx1JbNgMDP2ySICGj0wil4JztjCjfojCqFVE4crZIErvQmy0YbWdsKZ+gS4llF5Ss4wB1eRbeOQUiOFtz77yQVlFo7Ojf3HxdcJKHUByWRKcyG+guN1CPTFybyAKVAUFrif7FNHvXxsHXj9ONOnbqbsXiItXUuYiUIvBWd5XwgAjCtgmlWZR4QQYFL44iOo6iKKshigC4fOitqnrrWpV9aGnk+lRr+yfJ3kgGxw9Ch6A5H7AxUJNPWk4s27q4LxYc2tvRqBGt8cE5SxxRWpdRoPYuIjIdATGnGKgKgZKrgpGLeTiuglffwLz4xNHKPvgkyi3liPBGs4Ms2wDzrTXH1hp+rgtHIrHmkTiUQqf0XDTP5TUd5uE6xIUueSAYG1JoReJs8wxd0iKaAliH4px5sOHBizrhHF1jcC90CyhdvSF+rF9A0giEQ6+pgNIDPyY2DlbxM0u4mE4xHqwEb9BpPypVormeagBOHQiUzcWwR+4oGyE0X/V1BX2hicg1Rq4hBScd3VxrW4qHKzXZpE6sWAnphvQGP7trAo/PwZ8NLpYNIITlPEjw1+TYfJ7RVBZNOiGY7oEu+X1O8ZAbj98vF6QFAhVBDg7WkBKpIdeEA5h14zWPWKKICctt7/7okkL49x63L1AT/zMkdonlXu1pdKoBuulNAJrXSo6i3KcuU5+G7hXIwiH11rRQ1M+0yc/SenKBCA4aMmxyVF3kVxIfksjyls4R3WfTgaPqSrhi33Q3CXBS2VCXWYIy7bSw6d7EihNTy6cFbRP7RWMXnt2344NjBoNQjWgqdBu5m03d2t4cZ7A3kYA3FZUmilPgHMx4RoDPB44h3gfya9wnfD2MXa9jViZlBhmJSNiSy9PRLYmho5olLl9TNwyygJwC+QdCOJnkNnHZEMkdaW1GkuoS3EqKxn1MvsSoQkmWB5/FqUhjKV0e0/F6il0T6hmiC3dE3np4F/dMsEH9EtKqYF3aidH5q6QzqCPreRRahR7gRjnZUWTJ/DjnMbQEOWe0oen/Ejs6ltzQhiL4yxD43eJZisDj2977LDcRCSnGd1Sjr70zCXZqU3RYINA7rO141dkKJaYZVtTKqou1LS84eX2eWD5PKVLZFrk12DxbBCatLcAdA4IFSxcXHyXRuQPPzkukXhdHUwhFhhFRAwVsW8o/LBAEQpA5GagTOCdPQR2NtLjZsEphmwMNorEA9GAU4KltnBmfB4N8jDi4CPeG8CmyKvXwkS+HVQp9NhyU7BYD2qAMLxAU3EsFS1BEUgs3p9JowxT2ML7wo83Py4TiUODVoK+Iw26tfbcuwXrZDcEmfhYHKLOwtfwGUU7J0cu4GocAy1geMHhJODwDw2ZrRHQUtYrpQrFUcT9AKOZigCBxbKh+AIrXohJABDGY7Gvkce2xdbbds6oHL/Dy7sIrdfzuiVLUNQZQ1MN6sPc+09i5owlLLMgygwAtZTEgMCgdiedGIjM4NhAjjjKmBxsU4HV9MUqzoAwS5HFH4hC3RCcx/WGh34ZDyquALHuSc+olitA8ofUaEGynW9M727WBXcaFc4p6lCrFZOjAJXdNr08pEvJUvXrgFAb22rlGIYMcqtW48j3mY3Spuv/mGJa4hZsOUAVF5J3y/vhhjJK1++IyAHSuEEYod1DT0hMyzE1ek6xBnVjuQud8/URNd7XUA5BUsXeSXbO5ve6B141qAOxMdycdHjRAVerBMpTVKdcCXp0Hu7zv4t+RUkMbsJxdjXxtfFx05464H5x2VKYUnUtNBap2ApXXH6jM8PUbIV2TorDMm3F4MLFcnNpHnzJ75JJ4SJIJufdG7JD4Uy1r3//EplYwtvZNZfDChgz9TjTJkTrDYELnBF1TXIVC26MHIuM2JbUI6WcqAQoEL3gFDAbJM1MAinNLCYVQNlHg3XTAu3tFU1CDBeWZPanCe5STQvp5ZWblXmmTkzOeL9Pe7OjC0o4vLUiiL1Q3ZdUNCFyZ57ZzcmYdJMMq2MF1lpcT6xK9HsAJXgKTRy+B0+N2reAQUk9AL+VUAv1LnMXrZIHSJJTp0v0nNzJs3ZBT4TwuQVUSj55aok6HYlOGi2njXCDtisGULoLStS6DNBBJA+CxEWiySXOtELAGb1wsnl3+oq2xyjIMDPrIGishVxb7y+j3JzZ++D071z1iUZ6N8kYYO8fj9/j6gNh5sPuaC4UQxnYCdWIP7/FMxsnsVIU7GvglL0YId7BfAIw2ZJTqwE9DV03duZDiEF8CZs3lFKKQrQ3Hra1WiR31Ax01ur3EJtPammVK+ZcsK2zmHDWge+B44aZDrgGvV1foFu4oNQCPXqy4FQ4NNIjkGaFn4iNtI15f11DyoW9abphV39sxhH/RuYumDhJXsQDXBw4PGM/ocidHy1NUBBiINOK2kn/hgqrqBHIOEbsxE5aUsChqulooW+rJIZDuEBFCkLbZNSkzau7u9C0WGRhweVsZDbTpKsKDHHxIuh2S8K+yL0pKIpsqTdOhCVHZQGGY4fKA1iZBuJxSOY70qU1ZBzndU9ZmwOQj0ELHDbI98IxOZGmtrX9PpURtnhTs9eYWIHh4f6EXsryj2A3fTPIT4FtiYUOWIF6HkjDsuARPdLD/8r8esyfPH98TpabbGQzhk9Q+fqG1jzybW3OMksSaD6JOUyFoGkpe4m7w0eAeTrF+NM9LbxiQzZIOD+nhwX8zNOmUWdJ9wjsVKdFHxX5l86F/RzTCD5/YZaAzCT4Mr2EjMXDKlMtkhGwIPoLKzdLVVMCveSfUKnTPyDON5gxQNZDRh5WY81rxJ3QBhTYq6CEXy5M7onV+QHGtLcyyJZBwd8yIRgiueW30OUhXTt7mpW0YpNO8HVqmbW7D4WAZgBTM9zkaNNB9qc8M/a6zL7wwPh9QUVR5c4uuTog+XI7gwBHXovnfr8v1+Dlz9QCsfZbr3c7OS1iySg+xEclJjNftDQm0JcPBkqYGKeY2F+KCfRw6iwhIINyNjuGfXqR2PvKre3K5rTskGdh1ta2YBEiEObrR5a0qnreCwEDDUVpHqV9gABIPBPIKxrB2vMkKQt9OHUQ5laJlJeRMvCvYtUrlS640Rf6zolIwqGYDlTpRKa/lHd/qbMXeLYqQOLWpJZzz0rTEK5KzjXWEBpCyZAl3fmZqzSyjGQGAiYvnD22xf2x5UVo+KbgPILg8fWZHqDTOprrldaOBg+AFvkEUTaLNzPvZFeuohDcx4vwG5xu6fQg4swIdRLqvWIcQnBdSp3UM/jsbQlokpNintB84CZj7DtYr3UEMcnESfwbqD+CCCLdHVPTEdcFk8xI1qxPSYvJyqlcSKKfm6heuOxr4IekdCFhr8BYHlpm5XwZPGe/D5lCtM393rziIPz124o+C0QIwtKDV7MLl6LxpYroUjnb6VrgIDcYG165duRf5Wt7pZfHqvebyGTejNZHo0qq1Tz67sM99Y0kOS0rHhYT2StCuia5OIDbTeWqHh52tjkqblg03RXTsZnPwjypLhomVhW4SeIPQ3mLETw4EbhYya3X3UNLC0YkyFcfvUlUTMsdDo7gz7OQmnS2R1SP7IH8psWXX2SzJKcjJTisihfpADGwor4PDI5WiuXPTKCbMkgleTfwB+XautZl4xgx498GSHFZH2mDI9+ODU1mlqUDW1SnD94Gnr6MO2DLY/oDOPWTuuFc+wbquoXMJYAsgK6FpxIDThS3xlDBpiezAiM7V+YEOMbshFUUioNySMB9ZatLmIlg+vCd1X6JkQe4XZzx+AK8HqrJ4jxRpdqI0w07cH0BPjlSFdpo8hKNzTl1R4K1E8KFuZ+dURjZOQrzb1GWlLdpcAckV41UTCPrzglvNDz180b7odTM7A9tDZwyF/AilJLwkintMsV1/CT5jZJUu6irFog1kmR1R4swAElOnHOYckh73HMWPkOQ9suZGfcngRwExF6KnLauupX8XvBkFG/K45NTCIdD4f3ND9RKzBy5jyUbv5uiISIFCuuPADD0u5HnScgQ6QDcGl0AiWo3Eh8izN14ECuqBFUpYpM9gra4pe54UmtXudsPzAesLeutlTroDS2X497F3z6PRo3CNRKA3Dg5QHN5L3bTMdaN7ddKrm1l+uUIYQ080KhBu9sHEF1/Iy86G0qyDt3B0Skenpkv9gM8sqpoOHVl4he2Ingl50EB6QcjeQfPDYEnrgsJJYh87mNpHn6/GasO9OcZ0aOyWPKhgNqB6AYJdIqKeXMiXGcmw9nU2KtED16WFxlcKFzbfnxjk695B2YBlRFoMov6iZykhZXwvl7xY9BN7UAJpZAqZc67pXbqNAIKKBgBGKKotAXyqTAD4ADCCddB2Np2i81WIIn5uOsmt3imtOahJp0CQPxyvLJ/vsku2WlU2LXM7cXrHDi8eQRjT0v0FzyJ+4jIligjeH6+TaLXsBtmJDK61J01RBRBohjWAwEWBIbRfcb8ZdOFsawfSgMi2g54gnaBEHQLAggYTlQxQ8SDMPjaOYcLrnkhDmABFmcpO1tCI6KoE4TyCZ4PrJgjha4YPUR7ZXHMAbcBNb1L2C6DySF9g7EukySg4lMSUC36TOCyerHybEUyuaSdyg1ElUFZ+QjrHUrr8U73kq9ek2LXTQ1awpwpE2vV2byXwe3GI3xjT3UKXZGJ2cdnajz5yiRcGNCYnxIpyijhkQHjIb0EmOU8sLTr6VdITCpM1y+yYpGSp5XsbHlNYoH0zdOHSHQST2+8lgki3LoNZ1wxlC3Tl0mEDUTNsolqb0KdqLWAr918ptIfKOSatXJWAILirBI2lw/oqshpNRt5wTHIESAwyVTJKqsQ6/KnF2aPZdCbkpHRnbjiaJJnKxyBhq2QsIil5fcKlmXFJLFRwBgWXkd0TtWFRVd1VDKj0WbDAiNiNvKvwAA1IXROH3WfU31OQxqDOrSFw6OB32sp5Qy6qiYXDcpmjLZAAwPUQUfHymQKKEIV2eQwiU67p5npg6swVKuPCZ2qScYHtEUZ3BXNstkBzRzukwezZg9ae2qfBn71axlXoupcysal99Gxr73uksbKf6akFjOQcM5VTdLhjzQhMRSl9TdTbbFhghsskN2yKlB2qIVGbkgjjLi/gGn9ItqgzF/Sv6Kzl4SjEAb8DVYe0XZuku/5r9Jqsy7heGUE3vlxwFCwSxXIQUduoMn4JqXt/lAsTCygWd4uWaxHc+R/cGxzCgSKOsjX4HyRGE7N07teDubwa2OwE1I1i2YybhTrG/BPiKlmdfmXWHQI4hLwLqhr63KEtGXqBkmpYiyiLXwUyuyMJzkQDEogElWVm1xFs0NDmdogIDiFpQacfoh4IGv0w9LI6S+6g2OD5cD9QgECvU3ZiR9XTm/Gcd4kAhX8vUQJMbNWX9hOfNgZJl03Me3FwjnpnJe4Zuq2jkS4S0pAj8uxA251TWjjh9ACZRowH8dr+TQ03YccZaas3kXDyYB8PnmXs15LzYGwzamyqUoSAQNqtCHBAecD1etDktCNyFP19g/+KNSeXCrcxA0qWpDabTW22V5rNcpuAo1d1Vh3VdJwZ4I4B5605EMTU6uPKFsco+8IuNbF5kassncHzdyBvlBxH7/6nGDPObBdFxvnCZqEa1SsggTqLRktIt06Q5W5vJZqSXA0AJxyQTXXmAhXMWUUk3Qpccufe4TpZrXP0D++Bp0znoMQrDEyMJbfGe8EgzL/H6xdfOho5ueYRjLEBBlZz0mWMs0zmAd7oqNmkpNfPbqHGmnJh+yeu31qFQy4xCj6Z/PnvRKXMIm5yke++Uie6KGX+5xYAjjvW3HGlZMbgJdNHD2HTpU0IH3aGhooO3aoKzPq0tRWyzxJNHoP11dKaQy93oo6OrHyiSd0NJZWvx3tK7klu00STapL1RAXZzVOiLIzMDQ4YcPuAt25ve1ljJ/POdiaSVejc8oQoU9/ZLEU5GGVppfHM+LDQ3I9TCuMSQ6YdCzN3wMveio/UDpl33UkPK8ckBCm1sQF2Iil+Gwsamj/w3XV5GT4v777EgQ0kgcQdWaghQ0c7PzZpbAIIGGGPo4BKxvUIaUUIJSvEMnAxUA537lEHz0/sUUAbfaPjezv1gA0iJK/iwACfRHZpRBqA9IBjQYPWKNvKWYWWXMxU3daGPD8XqyTZSxGBIGrXbcJ9QuMGEF/WfGMjQgJA0gafMcQ/UV6CVA19Vx2xoeClE2dFttdkfuT5ffvYc4e3lPW8GhBAyAl93+OJPX0AZX/IMkhIdLQWC0IwAwc1CY1VBV+ntkEtig1VmlbywYRECgY0xqTG4DIIzskby7QhH+MZbdjIuXQlB5MZovPugjEmGOL/sLDhvLpA39hV79zQKPWoack1t8ZPsNYtJCpMuRUvhfG6FGjyAIz74kkHry0CMm9gIKJA/qNfQ+u8RvD0QMsg0qMPK6FzaVuyTLxMLF3p++0ktWEiuQ0i0eQj6kAhGO4k8gguglJC7bLVWmA2niPekaXsKNviEKBjD5jr6lKm3zDQCudioszMP9ALhS4fl5Fejb7aDnyMfE7XGGMDTNA72Gxl1laDfejpwT50rpL9nd3LYwPdESxBtHbFXkBH6+K+RHCPH6WWafCvXLWBMkgRQrqAsFSe+RX61UIaBOuTIsMRG7jllwcrtF7jgnSZMpxToUXnXeakdfiZQatNCjTKQi/QeKL8CKTa1vu8ZGsqizJYozWjrSYrLdPC8llhxem5ZfOSgd/xuSM2goBHSo28+cQWLHO2RPuJmrOqpcQyLcD7Kwk+hH0kk30vn6tLP7oC5S9LipGrZcgtB787UJQZlnIM2ChZNlh9tCK1Cdz9etGx1KyigoJMb3D3M0JzXJhH8NCV0EhXUQmq1p/usQJyd75Cmd5L+lwbaHZkQN3bpAwgyFUPKG8VjzQ6+1X1i/1JDUJh/bduxAiHXVnKxY6oOABnYwRpUeL1NlnK1dVwUfAJzJLxhmPQnQ381lWdm/+cmT1+qbFHLrbcbMu8YxftLCttng42TTqrDQ0VmTVpYfMzKslU+9iwUiszePIl1gL6xjfIpVMST24ekCu4b2SdnS46e908tZ0cdpepTdPE5pPBdiaDWq3LweZFRws5fG8KRM3hcQZH3uEIuxns5Q02abw3K14duYjxrJghuNAW9RkZrKHjUNZFEtZEAIRgUcRSdP4ADlerPQjEQilROiMHKzhrfkDjj1rJM3EYIgsnyrImB+N/wV9KIbniYqGxCUG7TE0TgbGLr0RUBVkcNfjcxsd1DjFo7eRC2AgGeaRgIbK0LcV3ZU0qSwRSF56rgvTdFJzyFOFIHkxWccXw2dkYAiHQjSZcBJ0xhURmdlkAz4wiA48jZxQqTjI7HHZtCUTJXgwf9e4eNwpQccw8fVzZD33i2DKbsmEAcjYhSQLuGsj+IQYrBDhkBvTMgoQtL0nfdrghKvli5yADESCp8XN4dzULkZDtj5em7EDgcTi5phgto/lMxAsEr2x0OnDtwTgfEdhpLromGYL/IrUGUkFZYiusnygleylHaOG6/EwLKgjN8gaocYXWmx6k8vP4mTwGgRvBF18PpVmIw0KCBvdwWpjtFlaBF4sgGJ+p7q2uOhdy9ukLUvFhZumhmlgadKGD1wgUyZtgEKyjW3cKJyMEZhF4eQwKTlOwikIfcd1J6FI34SHKgx+HpKgfZPeCq0mvT+VdssxMWXlolr01FThO/twdfowO0qAKyUdcQXvow3G/mw12yUr7rodhhwc+2T1d573sLItdAvsVwAj4OjNxQGDnkXEESezYZWcvgACJKasJTUGNUCRK+46OJ0B36AeM6igkhIYNmgWfrSdmoxmMGn0C0ZGSgot6UKPWxbnpcuFyPECycU0dTlaXBXO3HQzppOJnqZEgChJ5prBqk3gyJvRkryQv/OjSwvafOmsT+F53ne3OC5uWpS0ATGDu5oUVKfj38s9lkatrLJugAYOFXnG1iQTiLFKQ3EEOhmADAm3XLvSGEDRykTefquKG+7xaVLY4bGXHigaPvUKo/VFjhxdWRCiJhoFO4nIwQYeg/7eX5kdaRqa/5QTigS+rbF62ZwMN1TCVjPLo7okGc79jk6V4meRBe/AferTCO3nHR/9eNmiQnx0ovaN8XsGRJJyCRrkxqUk2riHUFDRte6uWLS32VOoP/rxql68Yx+/KEYftx144tg89M7e3vW7PSoibcmKocww3b1mbrTBRoEU0n1h2YmHVpdSOLsxscgY/3dlxmtsEyFkFK5qU3D+4bewA9el72wNBNkNmkNlhb7bE6/Vw8sishRxBB2zMBYshIom5bWbLHtZXCHRyRvawpmEzBCHizlbgqQ2wwcktA6cASwkHGw4blhgRkGlzgC9fnw9WoK0bCB2RQIlIenLDDAv/JuyMSVCjBbxxxE58QXj3RnCD9ybuhuAUfAIgcrTNATdPItMImjpmb152KvCewB7RNNJZz5qX2vH7pOQEwUEFAWrKyMR1qo3CpWOwcSHrAgyuWhu4Pey2yqTYzmo6Fg40CIn06aDF7zc1Mk9lfDzYgbJAABPIKPwgsdhYv9NEBXKkErsjRZk4kjiBMbFLZJXsIEawrPIJF5gvIKCCyDyPlrX98EfOEZq5l9G8UULlFgZzvL6zH/7Uyt7yhrl9xWcrUWBXHucI0NrWu8eErPH3nEtGqR2WQ7TZUGKJDmeYa72SA0fAiBp4kBephK4X81nlJHTOBxLCRIcbIqQgo5arDa6gtJC7y7gyfdgNAhFEUkRunfOXQlMXc6HFnASyAR5us9lxrICUnDi3IWT51DUB6XAVPUkCRpnF08mDnYwSgOVxTRqKmqOIA+GN8LvO7UMsh+ALnbqLCoi0fp8OOvg8E/gDyxKLArNcz+Ln9o0CZtome0coV2zYoPkcmORIcPV12dz5PQI64c1WrIQ0TiuBluVExHlUJNCkoN72xNrCOVCVOoMh5ou9MSQgQl8Mhx8tIQG6U+PPBbOj2SdP7QefHewsy132qhkCdSIxVTUHVB6UAhGosynQOaR0a3L0leuIc2ZDPgRrD0ltoLiOaFMuC+uMkK2kQyiVHCVkQYkKIHjweyMAeIEdKE3iZBMwQ+WM6BFONnF4xWlzGTB3dmJ1ig2NavpAgIZrhnEHzg12sJLDqL0AhwPKxtTw2yutX1TWLs0uPnWJTZSUm81Tq5eDvfD8gS0Xtd3/uhNWzkscBmze4FrE+iM/DnxXBH8KtiAgrqqWSyLxrHL+PD4zAkLfh9BcUjWt1bDtgrMW9v5JTvs33pU59Gg7O760suVxQ+H0FPxFpwbRUrSHaUQ8F0dqB1UrCEhSLQAdwHKoglcuPenxdWr1CQQBJ5Kd1W3HRDTK06J7yWeYqh6kTG000iX4PKJCcR9wg4U119oBSlYlCufDu/g9K5JS7pAUW8g6SXcT8QRl08jPGGsntwTM3eHALz7O+p2xsT19JELkrGwZ8NWYEBQXVhaEjiJsZsd9ZsWZkhIrq4PU6nxiyQ5Mnxu6RjSrwYqhtB1w9LLWJlwrIkvSOzOBnVtniy6hHAvQNuj80f5l6Gy1HOx4P7P5HjbwzFboue8TmzBrgoK/AoxkAog8taULDSOwKNOcrwcHEeqHOZ8K2kcIVFCqhgwFDzKeSyK9J5jAOKzCT9cbUcjro9J44V62CrYScgCRIaW0QWM3JonrzpHrchk9s6sL39dJgYOEGSMCKD/EiUCSE4HDsbNs6kRQdmaGZhQ2ApV2w/WCTxAHDjvGdKAFV0Ga5jhEW2W9zNpkNcPPRv0oLWJuaq5zhlWX5SVfKjwO9bmdZ+HyLOrodX5IEPBZcg+uoN6H8i3eLSUOWmIry+wjzy8um3/XDaBcK+luHDcL+q4KDIfEzq3M/vvHOnvzidIe2JPo6/oXwmrMJQscIUPwHyiq3tcb5tT6KfSOxH8vXpFxvpZmUEY6kG6BYEEomjrXAn1ik7hvZBigTtQgJSDxA1cH0Q9fL5BgcHEdyfXyMeVcEHB5QgQuH9YGq2WOEGKTB7Ctpgs1oUSZm6gj3jNM1VkbAmdN3NjoSheqhvKTDujQywNqxq0ViaGLonPPaV2InqcMumr1eWF1Bk6fGif0vJiY+TMJL2UkeVwX6h5TeS5K4mzs8q5kEvuduwgmiSOCfA2sPSgEMCr2dYWTizpv3vnJCoR3FOMtSSXxn3Hx9Dhw6B/KUn6UN9R4QzmlJLOfP5vae56RyPerYdAfdqMgJ9RuoL3oTp8TPcf+hrMF/thAeOTIsPEi7qrE1xubqpQYUTbIRYBZCmYTEzhx2sMphOM6bpGUMT4glAd5mFGOU3PCG6WEhgPqEA+QneBwrnIkCucs1mQGWaukpzwPO9dR7sfZBG4rm5NaK8qCXEEiSlBVYGVHjVuz15+w6sKxNce1JUt4OJd25oE9S8rcVocIuFp7/qlLdvLMzKYnpnRxAoLHJrweirnYu9XtCz4tumkZoJKn2rMkTDFkVLkiyWMVK7XquGKSj/uVTBJ20Ops0XlNviBoXaemlDuqq8aa49bSSWppAfBAmKuaukIc3sutvAbVzNb2ezrqyAUOJYqxcXKwCqgi4CXWh73xjXub9i72co+d84odRFGL9adyJeMCpxdIPnStUzv6mbvCjBpTojs5tDqB8A6UsBt5qKPkSsilfYacO0bUKjH7qU8c2uFisDlLOm4vxawpoy0MSq08iKDDB8mWk7gVK1ucqy1pUpsUPcwj+LkXx+AVSKMgoGWUZWE+VLP9FEHXYDOWZuHxqwiZ3bkFuAadrY7NjprB9uvMjtE1lHe2NxtsDl4cn35uqxrBUGZVJ39fwBApsijUrUBoRiloKZ9YNhlMZUHGLJATzuFrt7/hwm9QVpYOm4jcOpxol4PghzMBE68RCsYDAqgjviclTAR2Q5dJQ4woZsLMfAqRfWSBvlGEVmQKko9BWRyoppNYvbuT88NRtti5yNMgZw6bjkSZo5mA7gEegIZsC/WamIHquSLTBJpAL0MPKhAkcnPCZhNilU76D71Bvs8ofOnicE6WV0LjiyGmrAsV8/6Bh5Zm9r4n9fxDi+m649aSort2XB4Yrpl6j55v7CefQCRT2Bx8PFezZ1ZNkpoaMXjMiZEgC6Ug9SPBSWDrBCV83Ftv3PBDbNyYgu7h95H6i2PJ2Js5gPw6l0cOga4kiQ0zU9KCOQEuK/U2PepcJx7e1OHvRV3HUcPPidKOkHGdOIIXxG1J1ig44j3wMjAzb29qAQEdsk1jp6ETuTkPyWnVtfMP1qM3OgS1ICkpyyfOVGFWTczaKRJbBKYqJ/PyvRwt0ra8b3EA9A068t0GytdhmMGPZWuXWwo+olMEx6a0FntRJV1F2Eq6sQnRiQxcPvJ2x4Y/CsXjWhm8wgnBmesRdOjgk/QICelY9wnI/WafPkjsez/Z2SVXC3g1jMBJYkeI5KKqUUWRFhsS4D5KeqM6QzQRuJqAC2wLkQlO4NqDVkmEeK3gzDqFed0k58+VQcK4uPxg931QFoeSkBHJH/JVqOx4gOKNdhgM/rwCwzlP4wSVsYVmCm1UMg80V40nCEJDazN1GaT5mR0rTknzD7x0WI+euW9u9z140vJ5YYuqtudeOLQL5w6VdADNpA2qvNpRklwsOjs+qkkdQtLO6h/3GcUEuHwge2zOdZFsdMeXu3Dyyi2f4LzRPURHb3iCU1kgz2wyz2x2YkIXk+WiscOjmueNlxT8KaCasEb1QzSZzkCeFPMvHs9iwQc+hyQPZz0keFh1YnKpcoI6tl2PFzd/dM5xlh/PMPfdJdARUmeRFeuZrT2iHeHjs/SE2fnaBG5c4gbNMdHoqBfYyN5fWcTv6nfEh3nyqLJzB519wZmShwHsoVAu7aGszMnmBGJeeG7znc7S0601ZxtbnptYNi1wlpnlnR0tMqvKjIjfLkqIQApXWJAegMAgmrA1Os7gTZraZOhsVhS2SDqb7rVApG1R9bbEhpkkVqWl7cJvEyUxTKpmIIehYb3fI25qLwGpyF10GY5xDXX5FJRLmV+UPz3AqLkL7RPBSGUbQevS/JJFDjIudNApE5QkDYi8nFWEHWG3JuAefEOUp4GCFeAcUd0cfsL6WZTBF31rfQYIWu4WzQq/v7J8r+CCwPvwUHYelxo0HA1nUO7oCwjr5ExE56UWjHSLIIfhKuIsE0DiBgtLmxcQDm4w0dWE7AdIQ/DDGIAiiNW9Y0uCR6zsQvONDr8A3goDFX8tTtzgx+SZ1Ulq//Fnnh0dLG5WMuW7vFpgCw7MWbP3fKqyt79xZr/k9MIyNBQ5GTmaOkaCulc/KIHipREmLO5IQHQqmug3UEG+U5xLPifof43/WMkmDtZ8WM8Y45zJLm9ecHdCTjhsYnSlic5tR/mCo8j9DohGlEJxUHinot5E76UN3UsuHpwxAUFy558dSZo+g7sGJJAH6jaC2PXnlE2TnH9YBnWqKgJXikiEggJllsTfGxtbSPxW4xUrG0TlVftDUBiuD/hxuqxscCjXNfS1NIjfGUdBXReMnZGxBrSbR1MMX4LVCXgAKwjga7iMSLuCdRwgIg/wnB+GpDqkcLAHyJ6ts3qZ2i+cS+2RQ7yf5DleHWMd9K13bakzrJrOZgg4eDgjQUU1vbMBqglOT1EyghuWWjaq8YrrF5Im6gZ2ezM8G9BxcBaQSOnv7KLiIa+jwND9k4O/xcQJnatrH1vyPEEpIPBYCPUOByinKehlVb1hsAowwpMplBe5pLCPg0JT19YBoKHHuhYReNyT3amt8LkOV3Zw/sD23nDaZvPUyjecsOefN1teWtrFC0vyBM/ct2dDDm/fBeWbKNlWJLZXTkkBCp55koKjVnMugomAiYkEbrqLgHPdLcuArW2JGEouLZFAtkv0S/9CSVK+k7P6Vh81dB1hjAUQg5UC9ekOLC1j3/HQzlFZdvW6Kw+t5cJyDsLesE8FfQUIpdvTRYOGaFnrdRr8PKw9BOWxiLHOUXlgEuC9BORlYn1GSj46YMa8VHc3Ra/9e0goDnlmqsFSk1fiP7LuvJOI321UxYJYjwv9/o8t7HDVWlW7Tk2eWpHA2k26P5xgIIWTJ1fYzsmS7h318WCrS7nVXW6THXhhInMI6zVkYQkPvGVjdtj0ROiwsS5rELOFQqHsumgH20eACNuVqTSv4PebwC0jbS0pKktnrU1OmhWz1tJ5Z11R25ARS7QhHyyfJJbNzLJ5bzaR6TQl61By5QGpsijRCdZeI9NOycsLgi67/wzQtqySWKbhwSi5F4rVuoBnTKeqQZ8x0Elo1OEegU+htnJ2F+OgKaA/UXDRQkSUJQcIaNfINiAXk1mzaikIzeCNnWue6Tq8Hp19zAydYBsWUuH5Kg9T0kGoKBtZb98CWVIpkG4nILZPCjaPCPr38q9MxVhC4aZA6ZnoRHMTeF6Xi+q6JyYyLmS4tKNz+iw6LxFsnF8ktu9IxE0n/nqvv6fHlagmtoEn9xv7jg8s7Wx10mYokaMTDwcDGz4kiRC3B+iz9Eklj8BAhycCAjj9DH1aKZ4c5LOrb52QLXSTinMAjuvYrDA2fQhJU0OFgjSVO52O4DIsY3OQoybQFKxh7+jfZ6crCHaeD0FEmIGWz5/YZ6OUEs0KDHyD3+iak2q2kFwGSsXR6BDlGs4yNEdw79Vhgz9jINaalX1K1CysqYRCyImGXGZk5hTeFd0i1g+TfQ9Oce0ovca1440BVrBc7uLRIevg1XkhnwjSsEZByJ+p4YzC8GhIoeOHUALKZATi6ZxIHMShIUrxZ3+OuG7wallK9EYczJufXxT2Xz/ZUOT+VbF4YsRkCSF61/rB/x3CqhL31F1teOh6N7nkWTxgI4E/yu8o57r3uctdqfMTr6UmDezfTYekTAGhtjoFH0A42CgYCr2eBa2nJt4fvDEFcNj3aWuJb9INRvMbXNJRwJ2UKsmZoE0bVnw8N1q2L7JiAiqTlri0bsEVp+YqKzOdzcrMdvcKy3cndnI2tfbCwlqUf7PM7nv9ns3v3+VCOzi/tGeeOGfVqrEFWqPTnsFYAbMDb1ygluGqtsXhkvxUxnhlYsWpgqgdq3mjbzf2+45nPeIDBHVE8mkqAADDPaRhhuBKEwhi813Z/6yWjdado2E69waXA5M4PO8e7h0awij7IuNumAqQcoU1gwrBRNIvTJTxPgEwuOMN98gALtw/SULgIQINTqWLaXolQOLO6/ROHeRKGsjfpqWkgBRv++D5B04jG4n0ShtaVFHG+wyVenUN0UnT2X//6FlbIOjLvJvUEQGQWHGYAwkkRw1lIM+qs93GknJlq/2VNQvXLptAVBQPHhtuYksgdIBie3G8VnDuwMMjRwlq4sqeKpIwM6ub0g4WgpvTrLN80lox6a2EuGO0ZKOuDE4fiK7w4YMcQzlYMsVCk69s04bos/tlRmDvgtLUcuIX1T2MyRsbA0qf0WEEngPXPQnbUsynujqteIT+UYMN//ask+UBz3NkU5XYEpC6l25og9OhDDxRtx+0yEDMxWdxSEIVXNcHazAhFWjK1g3ZiJuBczOSwj+yuaCRksMASzAcquAOAbGoB3aFBZlZjhzaJJ0myJ8LpxBy+dy/UVy+kB4Jz95WPqlED3OXj/HAMLrn2Jbf2bf9xFOWQpvxirl3w3F3UvxueVz1+bhJNvaRZ5f27o8trLU9eUmn6FrHHyDL4qipW1SuMiwhsfsXNAqXgqIYvw6Llua4QpYpEyIheec6rYnM2N9Wfc1ns3a5kfgyD8YIOAnnJpZOwP31rnPyoBTNqUy27qJ3vrxQKyIFsHtaI4MRtYwC1R614WWZnPlrRlKjcl0Egut7KMeTcApx+zIHcUI/jahj/EHASOKdO3l4JyznOQ8U17dcg0hCXrzzOQ7pCk0qTroPOzgMSDjxmimo7QchStpi6VtzDHFzNTip89MLBF4G5lmH10DZl2VbD7pxbQWabxI232OP4DuEZqI7D9R1wlL8xWVm3/nRzo7F0bmmXMS92jmvo3cDX3E4mi06sPMkYo7n4qhQUCXc/USosnMePWAkGMA4zEXq8QiIcEtnkR3yXjLmNkaqhXiGQQOinpsL/OJMkV28AkEe/i67xSSDVSrRcDDfWRTpg5upJjjaNlLUUYgT+GqgCZDvN0iTj1265H3Cy11izxjBvMG5VsxzW+E8HHpbHCysWS75fmfu27Hd03MGT8eLzl54bt+OF610Baks0Vi1aGx1VNvysGYgOoNXa5FYeXJiJ++f22xeumaru/Q4NQP3GvOcz4uJj2IKnFnYo7CWmfOTtoKzVQkl5WkAlCwaxgy0JGVlMNH5488AASvPLyoeqHkqZGoAgCyhV0grIexlSpJFDQlVAoE9bKpz8XMFcAr9CPMgbnD+O++vl00k4+MhPpMLN00QlOgd3tpHtf/B4QSbSX01Yj2uweQOBn4vIcnDBR8kif3EJw7ZiSJCs4uC4kNDFJIRPIKQxlvpzbpJb/ke9Q2suTjYcpWZ7eB46KxbJLZscgY9VLpnN5Pq74jS0SXM2+5QLIiQKWRjVoJf2zKjQTuQPGQ7QKNAlwHXAQ93Yr2VbIvS5oqBEikPE0baWJBANzLwZb07T1m/F/BFjMdJGS364WVLCRSpsHNxgqNIpX6VD0JEVciHZ/vR7YP75vIUIOzivY+hyj7kVoN8TLRFr9suRAwfu34wWek3qM8Rxt4KvrxLjxA2OsASIrLo0gTZnjY1WFTxWZzXoknK/FLt6CAcslTthGk3EiexHF3E1PvDwQq+o5veE3nyrkLXgaNPK8zhfUOULpNeVzZdyriwWA/r0j5xAQjqvXn43OmBzfLdH1/YT3waPDqZkbOoUyT+RyUtzEVwOiMAIp8PSC7tkdgr6I4dnnQx6nG5D/9DIvEYgHtwMuqISoaIFkbBYYvoCe8PnXZcizchBJ+UZS6Wa/0Q86uLX2XpcuO0Fr8qkgonvrtejBIIIcg4yyL4io7M4CEHh05C5YGoIf9TcDwe0vgbWxj8cvF5wJfz+x7NJBhU0mRXoBBDbdwu8ItAjH97hk/LKmiCuqhzBG6BgmMLrOUwpAZnvTY0/kZfZH5WCTaLP6wgfezM5mEtAAEAAElEQVQycO3L8DTlHQXfCdsQEnKggx7xJ16WQvmttdK+95HOnlxCZ+3mSMI9NxwmVoOPEvfxuB1aO4Bot++LTItdfzJQY/Vcaj6K4iPutQIyNdGAooPnh9JiBALcRTf8kcMNKdZToG+sy3vzibrlNQcwV2q8NvjTHngiaJMfgPPV+LjULIWO2JKLGWeC5g2NFHgab1wDtVtV/SEYUaPTSc4XQduhSPhOyWupj2F5qoBld7e0vTMzK2ZSkUAwuUCgB7098PfRfY7kApwmIIo7hZU7E8qzADmECACrENSNdL94JpbyQ6YbBs820YYQtNZcNLJ5xMA/UaKHqgZv3ww0scKaVWcDHXy8o8LLrFo4yigp4+KuIigqDH6P1UQSCSOoEwHNK/iUuHRUmxQb0GQB1CUG/NJAIJK7ocrH93KB71FZ3itZIxtbpEGqkUicHnxMF+72LnLOp2hc4WukLy/iF6Xca2mlXfk13OR3fnhfxGdCpkCBUeoD9ByWSdrcEDnLCaK0ci+x6cmG5tD7l3KrutSmOykNqasjoG6iKVK+OBlsl5p0kjdhdyFkW2AT16acoB3UVye9NdZYBx0qqo0DPVRLNh4AsnhM+nkGqNej7VDcJ2GdzpfKztChTEROC4UbeXAHuADF26HtGjYIcBw5MfzQ8b+RMZBoT5FXCURLKwiTH9IUTh7y0kDTqvmkG1BmyFjaYXmJOkm5dTVkU2oGXEK5sW25BDzRFeckRqcxLGs2kAJariHwwiZAhK9zRXYcnmNHCEtYJKrDNYDiolwhbi/j/q2uZI5OatnrjLNCXaLRXcDuXp/8CCyKgvwMIKxAnVjS4qJFY48aZ/AG/+V/PWvnj1b3LOpwpwc2gAuV2fd+tLZPXtolggtSspwyVAKKxgXNX2+YIKoXQsf+30SIgo9qG/Zra+HmDUH6kZ/CDJYT32zCvQDIgnc/8tmaAr+pNjeiWL558Xd9SlBOhN2skvvhvuDrcV0e1gZORMMLNUAEO2RFnqQEdOj7sqN4a2Fpdg4j4EVwROKWglp10El7j+AN3nMl9xE2qVDJ36UjxuDW9wuipZTwozzMqumpCwhUHsnleoggztUZjVnhlgLpGPa+ycqOrBi3smPpm8mcOvsghsvPSGRB94Fokes40vbNg1M9Zz0HdGUPoMEQRYozDdWZif3oM6W958Lcy2HlddfYvcuXjQngf3snttfmWJJUN220XKuiQe42rcjcTzkqWF7dANcZ+zEPd3aey06GygSul+lnuhoK/cZjjbAhh3IocsRRFzrkW8RnC5cHAB6osIA2JZQKZ5lzPx2RYtBCEWghk7hO6etpzeB9lpBMAQeA163yaXhys1rTwh0iZbUuVnoxL6zYBWTf2vHFYzs6e2TH54+s2l9Y2nQ2SVKbT6dsMutXjdXLypJZatnuxIZZbtkOfHtlBQkEDHZyiMtCbglcQASDUVFjwOni8VqjrmzhFpO8JURWVZ0CXYrJaJbYzk5Jygs4fziJcti/+TNQE6OCLAZ/4K2zaRB2jdIKLify+aYSAYNmbwTrwQ/W81e5PgRltXewM96dq5QsKNNTruGxgs/CkLGNysTY5OaapaC46TUcdXYunxIWPM+N+XwLS/FlLfWOw7PIZ44y++izuRXoUqXOTq0H7m3yfOCj167084Yitekps3y+sNXFY1scgF/XWzaDFdpgR4fqQANSB/+8zLMqSDIQIcoyO1j01q/wuggepJDOrIiehlKj3287+VfSasxr+lwkri3mhKEZEBIGX0BQwIsQ8kQ/P+78Kl+iVCuenyB2BF4M4KhpJK4cRnB8cu4Wa4NR6StJiZtb+LrRlY0OtF1EsNeg3CrPQFwnO56x0Dt1OsleLhAO143y7l2VK8KtQVOPz2C0ipHKPz4XS7hetqAOYUhg9Dk3OQaAuIZMmYjEsZWd8cB3srE+TxSMvbkEC5AlR58vCEZyuQXwPlCbTAFjqNtjgCNZDZk9egkSPrfRp3SvnlU3GSQrW2ufeGFl3/mhpZ0/ntkUAuJA0FGmAZrXg6iMjS+6z5HJ5+qQRjKE4A5ZOQMIobjo9qNvujdP8FBx15SRvwfEMJo3EPzkcC1EdgtNyZAlkIYd8iNaDOIggbZc4I7Qj0TTj2s7Yk0yg3crN8rTBNLlAZM4UCqhMXBUYcG6erCKCKEQQ5dhE4JJno+SEyF+OmDU2ev7lmshIucoIH1yCEQ0tW4mzh8Oiti2ee0gf5OTq24PrG2UtLDnQw4E1Qh19fk9Jtop67QSb+I8RtlyCS3NgRRM0Ezmyv1NRmvLyQSSG4llOH+hMsAkTDcXCIH6AnAwiWsFfhTfE19DYoztBl7CeF0EsbVZeyxkCffx519o7d2PHNlydaxuUwrPv9oWzRo50b4b+0h4Otd2qWWaLO20CLiZ00M4uyEaJYRK/DGICeOAVkVDVQoe26xuiLfFoJByVnJ+UklXXq3QakVpGYF6UCGwj2JOIYjMpxJapswQ7NCcOkDOO/l/WkdsToiA1YMSNvWBXw4haUckR65h17BCBVcKWrM1+DeSEunCurcS5wpAAAR/OF8m/WB709Lm04lNysLm89xmc2wEgx1UjR0sW4MSSjLJbTIvGEjxrjMO0llK0XKUhLHGXLeTzRi+vzAhdOvQQMtQJcM5zkY0V8RAUAhVD5ZRvdSNMitsUJO8sOWysbaCCYESW1Xo0VjpPruuH4UAuFlCgkzOReCSSyXAGYCs6GWXiXYH3IH9V24/LtnGr8MjzC3rPP5guRpTDfc+LOpc/UDJdNhp6tlFCxLxD3hfRnDPa4qq3q0da7cd+EXmt+bxDTe1cDuoK/uODzxD+JRNEK65BS4EgiHoYa26Gm5H6grMO26yyWRms1OY7EtbPA+9nonVaW11Ull/1NniMKXAcDEU3PwOF944UZl1KFHAHd0amVVDSqECQoY2cigZd3a86qxqcwaQIaiKE4f+nwgeLacIJIWDG1ixybsQiBps0KKmJI5uwUAHnCp18kGKBULTGdX+hWCAT5VSlJmuHpizrXe4krOjJg+3yRXXj+rg+DpeK1kTjh0YBiqH98CEPT6oLd9BR5OTR6MUBycOdNO4dRAJ/S7xwWCL8xjkY6GeK2j1pcg8Q4KF5DAvo+laargBrHp1HOOUZ/eyb5w4bPLW8gLuBioz0Q+YepziU8pKa9Qg0PvQpgsLTZ+TwbX7zEr/ENmokNqPP7+yRwFvDa/GQ+n2RvBH8PR/+rGF/befr+1wVdosmzLwwJ5BDptvQuLTKMkg2o5dGqQZNAl4Vy6FvntHgRmAO7/UD0EeZn77AzUKzhrWWTRs8PvOd2MJGPkONLtQGqKsRPBg3b0GWT+60pnwCEWjZJCLZuJSRcUWl1DWVq6RFkmKKnX8TKB3AF2kBIPbsYU8DOSKkFQxMPSzRLxv8SrgysMtA9EvEEuQ6ylRFH6rkouK4JZl3t7saLkiyielfgQJgRatu/gisAD/j3IYpBoX7GIEeon9B3xo7PqyjdRSA+qI+4aPB54yCePsFRNCgsancEnBHot1qk55PQkglg3oFyDNyw6EZT9YAL7rk2bPLW9dTPyeHBvEetF3AlL2sno/2Oqo8qqPROjJqcODZcClLtVAn6OUyX62OEr4OjgTonfTbbrABQ/+lh/g4QmP36c9GLnUzq9jQOYJO5IIV4VAhUn2cqNFhM4H0m30/FEFQwJAgRrSOxwFxJqhharP1xa1FQRjzmEnTaOhjR0+Mz4/pigaKRJw1cvcjoGM4r2mOYXLJ3szK07ObHJyajv37dhkb2qLRW3NERQ1wHME2ifXKFwcRJ8pG+ShZdCSKAcF4WnvOCdLzMugChhVKiUOukHPwMzH8kYipUYMnX+UhMG1r+Agps9PL+NwAHJOPSRpcKaNblsuByWtWofhGU971693jenpChFm7Ol0FSyqKN3i/JSXs15H1Y21O4/UFNyvd6MCHMLMdB2ywWZwEorqmWvSrkkE6WfeuWNz08CHf+Kgs6fP1vZ5DyJb4D5mBWad67Wpw2Xt4hC1D4gyTs/U1p2t7NJzmU32ChlOo2h7KIJllrR22OO2yB2C3Z9U7EeLtzS3kBmv6s7qYbBduGEMZkdDb6scmYtarKV9Vli1VMctmh+6NrVjyMK4qwQs0hpk3BPv+qNWFxvNRdAMOJ+iygpgwL+DFAL9d+mI4D658FSkBpdEi4l0gQbhmxLRweAhONKi5grdYzp4OF+kb7H5w35HWb9K1coweMDn8tIlOpirq1ZehE4k9wkXUs6hTYgbJaTPzaG9xjeZij+CSdjUeE9qZIjjR1V0/b4OR10jUVZfsJD+4PNVm5U2uo2O0Ng4ZcitBgBiLNg4uswePt/bU5e8pvcqHJuFteFFOnyQC2Rm3/fxhZ05cdJ+z5fnViQLZaTQcyPioLnFQE2dQ0IAHfUS+yByTd/zXEhY89u7YSlG7qUJlGycp6QgD5QKR7m9i5JNJO6ji+OIgRp9NxGUCT2Ul6cQGert+XXgYAJVI9wQuP7cBD1slCiVAAe1lZAu/A4yd4mqikoyOi6MiU3I/Dh9QRCADfDLBZqNNcWmQ1FNmCTCDso1NdXZqaoFSdzuiAJkNbpqcbCR10qZF625aIJSc8ZAsWBoqC0WclaQo4qoMEBGKILOaxiIBLLRBbI68DbFVuCNOAjS2enL8qJ3HDNwdsHauHcuBo3AEsHJpXxu3/1Eb4/uv3rX1TicQ6wDXA8/Eqc4w8A7P65y20PJzw9WAhK+SOS76xpukWzHeiFS6l0KCLic/yf9Nc1HXUN0xytAD44rMQWi2kjs19Ub8WLxBj4/wHvvJZYsqABLVRWfCAwU8KspUBp0Xu3hugmOq2D10Us2lcZfeHjT0xZ6n2VmVYU57rQR8PZQyoarBeVXBPlPZplNi6m90DR24fyx7SxrO3n/jk2maLwEJx3gQ1SQ8H7K5MTDFccbVB8iqiGeHoESO7FdjogBlD87lrpDjsn/wYZRBH8Qnq5tuWwtn0LbdqOrFmc06BgL+GUMNpsjsFJXO8508vJDXDtK/mo9HG3a1PyhqSWZJU/GXPcREbboT0JPtXSjsrdONkmXCt4p12dAearElVAZgXB+XXtgGNTdDYmXlyPwu50sEBf2xMXK3vPEwt76wEkKL0OVGx6A1GbDxoNghd1QKkoigMIGCl3sbtesrGprDlHXkNxLNhkshRVaV1g6xYPCzQUqp4YE+mweJzaBNl+TWEtuS29l1tkkX2qzZfbirdqZUScPqGSFZhAswLy3eSEirOr8yMI7W64S66vSWsiWQMFfgl9Sk8XiKcyaFW4ydJ/YG8nFB51BoBfgEJB8Sy0+mVTjKdKezXXGxDlxw2s/nJGxrTemyBbUf9nW6EJWKVidfG7FQ2TDvTyZrOLUi4YOTVpmjYq/1A2Fdn+Whjwgdz4lS1Xe3YQmAM9HXOAX9niSMwjaTMgYSAVdQb2katxHlDIEwQdUFsOi+egXC4TV/WURiHon3HP7nf3Iwxc3VPdfW+PGa3D9vcM2sXd96Mje8sAJ+9/fApX7BUuvGN6U6pxUNSBghIWbGkOcfwtrRC/pRpDEANDLywyoorkgNj9//t485xluNP04Lw5BGcqQTUJdOqBpwaai0j3RY6DjcqjAGaO5IlSLun30hJLSPVEZD4wZHIHXiBI31rlfVHCJcGjjkGJJhh7c0jBkpx0QhqXLaKLUw0RTCB9Lfd7pK7kYVtbGwyho2vzMEH51iyiuAd4z/2wuvhucbCaszKOAugdp3dN68vzQue14bugZemOLyGJ+UGBNYw9gt3DIQCiJjMSKlaq1YpTruuX2n3++tvc9s+6Qf1UPT16YRHgQvqG87SXDnkHObuHJtnNeGRRI5dXdiPiCnjQrYdFyws+7lubIN9VvMuD05iqgeO69p+QcVAGignhuqL44TcD3X70Lnq9kgljWBBKIl0NQj1KvfzCSfCjKLCoNWd7kF4bVnM4WKjxkQuQowEyOqDQKceZBLBnUcYicUcS4yC2B8DImf5axKQizspjkVlUN+aNAAV/3WamdfebAjg5WbCa6//U7Nj9R8vdBsQoLtEC/gKpCUoZdwaE/Qbkh2eYEShqPStqJQu8rlxTjOqTk2rpzG9zBybywetnYUAJdlU4ggjI0tSyOgW6alRCNRmDK++j0MfojrxsqmKTSmUN+udHqozml8p4kotZBNOtzfL0wUdCZqxmwqcMXWnCq8LHjN9Q0+DlSK0vQrLBOo+ss6FrDy4v4XQvVu+GhNKgD9eefb+1CldgObFXAeXNzYzQlsFNWSr0qiYCDgkVDlrPZiZOldUljKwR/88KSyWCTSWbpMZC53FpYu8zw4FF6bLn5zSAqvNtY2yAAU1AFjgQsnCpCEvLfhS0UYGdwnJq8ElePB2DGTIpcPNfWmfNEG9iijhIQLaOOdFCqOTExFAjwuw0OkllmyVQWZMjMhqphgNtTCVxbO4JKTfTwoe1tkuW2alpuMpzMCbQMI9Rx+yAGUSklZijuAmQA2mduXYUya5nBGk6Blh6bSrgsFeB6eKiJe0lGB1DIPBf66BkT0Up2QCuLImeQdSUJL/OgdQPxhFqCKhFqPrjAtpPOsXlKS0oBNfs+yDNZ6wewBBy+mNCk63PLwQEhTzK3s4eVPX5+9ZLm7t0+lNC+hHKb7yHPV4m982dWtjs/ZZ97ZskoRcGbrNxU5o+UU0M6exJYJ6jrwaGDFI4WeomLfJrQ3vK39r+5pSMIcYFhPPPw/GWw5slDvF5bmZWUjFAAIzN1pz444iiE0su73hRCdNv1VHxnIsrHA8Mt5YJXis5lBnjewc4A0InXaoSAI4ajC3vw6NbBKkBbZTS8z4SlZNmfYfkxbgBnhPfEre6CA+mGxyxfty1pJHw/8o3iAPcuavw3EqCxw1Prgk0dldCPkm5BchEK3UIiEo1LhOB1UAYMAXUegNKT0/pybqMH932/Y//t0cp+6vlXhvp9VwxXU4hiGW+m8zZ1OMtWclm3tuoKOkLBZ1pzVROcDGZvmiEC5N7Wok1H8U3e9EDmFLytkfYIvDCvqLAgcqZUILzUBxwNZXoc+5yrgdaBf+d8a1pcAhmjg0emcj+aJCg3EnqQoNqIHxiuPeAbYq9WybOzspzKaMGltRAMgkgq+oOSQCV64oofIPBbtHby/tnoWAJZqbIs+TfW2y4Cqc86aefz1BaXFvbcU5fsvvtntnNmVwkZOe1Q6XCrM9pD4rwdbOV2tEpEcdbAaEFznaGWC7Xj4wD9FmUlGi4QmMl9KBItw2tD9WPZ2WSnkNwNlDEW4DsmXFdlIRSUqB7ADIAkVNoBJ1OBJ4JdcHwlNQWKFKpp8ifHGa+qh6R/gqEnmSqh7tIS3WjUGFFjnZdBsRkbKYNO5gEgO68BzNDAY82ej0rgjcZLWuEv9jByyUv78U8d2MefWzH65obnxP0K2SzoRTUCgI41/5oIHTpqzKbunVuc7K2ctVYt8W8IUimoarPOVv1gi2VmTTuxBHWZTgK/2WxiNs3kFlJqQZRlQS4ZSqwpMhfKwqDzrjH24Ca5tUlGZwJc1zzJbMJdHNIxCJIKm+wktncqsemJzvbOJLZ7BiXpzKZncpufymxyqrd83lq/aK27iBZ3cAzUNVyU4CIEAVjZI0tAhNbXfoZh1UN1GZKC1+UIDNlfUe2WEw1IHUQsSbfzDampK/E0XBxSVmpacHwfdkFrEwEk3lMfyUmrPCBdxwrK8R4ksN0/yV2wFq8dnWgQxpbbSQQLEjYN6yKV3hD8JZTdSWSRxIBCEz68UzF6GjGrZI6NKEsndtS09n+//2lyv66ugV5RI73HB8p+L22Ae9bYw0839o/f/bw9/By4SYXNpqVM1ZHRu9orDcf9uTM4Q5bqki4MdlxSKOR8KCDvpXihcMq63fFr/ScaLsilcQrohsMEE2QgzSBS42CDxpgHfXi84MfmABXoyuf+vBBHFjTI96OyfxjDjLQCBFmBZspvl1p4rrPp7m3j3oTPUS97aypxAZtddO46sT28jL1bNpBDoBXkJkmn3B08FExyc/agTERyKsSJ/O0ir2wGgcWdc/CJsiIYRUOVz2X5HgORUTWEHf9omNnoco5OXXY0OmBFhxD372Vlg4f1enGQTI8Etk/spx5b2g+8AE3U10CJ90rwwlFrTA4hSL53ecsRfK1VoQEyJNRVz1TyYAo8kCR7Ss7lJN618FZHBdG4w713rdEWVn4M0tnkoWaOUDdgcoa1gOoY9ltfUNivcVaITyaCodvISyQZEkHgNrmcEtQz0FkewsKQQpGU0GArmCs0CJwSWy5ronB13VAsXdIxSybc1ap2eWAFn2jOxDoBAFKtKjWBUSpKjjhsNoTUWpfYLE/s9ImpTXYmdPY4+/yxXXj+QDxgcPyL1HYm0BtV2M3ydAFHLdzPQP3kREU+qhsKYMGpmRCSbULEZHiFtSd0k3fay6ZZkbKMy0YNrKe2t+PDxlZ1a/kssxKqI16GJzcPnsOE9SPQFBIPTn4EqSEDJDoFPgPUKnwusJQdEggRTG44flCs2fehAO84a5TRBZUM6KAE4L1ywc5lL9mz09i1g2+hAvaSU7vbQSJWltoPPLy0/aUOGbZkozU6TGpwk9gcgeBq3YSAlmyQpCvg1btw7+jseN9sdYSQNzWbmw0FiJWJ9YvB7NAsrRJLERQCq4O1F6L1pLSCCukyiGYLN7mBzknConAbNeo3oUxJ3UF1FlEOgwROuUhgIrJ0iiCWGhTYwUGEly8OiNPZDoKxhlYyS6CTLJnBOD6xSVZYWZTebewxvXdFiu+De6EOLXnXAslDPSwmGk9lWqVlBZA6XJ0fjiTkqiwU2lHa6zJaysSC4ATrpSZPFA7lWKCVo6is3DbUQYTfyRk86Pm4lAsJRiF0KqFMLKw49SARUuS47p4ew8ic5Q2ssoJyVLX38+hyVXaYhWchmePp3JPHqX3ybHXb2mK3JPB8lxxKEJJ9qUMyJo09fG6wb/tfg31qf49uXbD8E99OSQACI3EuQ0xbnYDeC+HZpugRwWvB3AMqDEoDHpj06FQSC2AVHNsUHs4s3YoQzY7vBuVLEZyjYxDdq6xagpTLtj7vRmVZRg0g3GRdayvAF2pMhs2fBz0IqELCRU0bEGVVORXrfDLflS4m+6DRkWmWwEIKF50NVqIpye3ZQnIB6D47YpnwdCS6UyIJ1nOt86AgTI8DnIKsKNWg5OTJHQna4vOxHERNNXWsU9KF0lHg6QolxN4XzToU7wTqU4LQLq4exYHxJBiAyrsc+5UsgfW8uJu6WDqCx5DDQWkc5aufPVvYu57q7ZI7K93ufL1XkPT1CP20mERRB9f/qNKuyP3YA7M4WCXU6/QYQrwpNV+5q/r84FHMLUqVJoGrTlkZ7bY8aHMpMwVOgs5Dk1VXo3Ml6pyUM/Hmj5hjDPDZBOii0KQ+uaa5C+ejM7mqG/4ulSFaOF4BpQLeps5aUpk8UWeAM2Rr+0/8jGsWUWVhArcoOdggaKLvtitktNQaxH4vmRwAAydOzG12Ysrfu3ihsuefvGDnXziyw/2lVeDTcjlldOWRjZr2HwpUY124xy156lzHkcStu1vJXXeCpCplzmpwelSWpVbOclstWzvYrwg6lXM4jEDeZS2Ho7416TgxHNyoaLCB1G0uuU8RqEUVi6SuMeONTt01qrwxh/i/OpsjSY6mL0m76GHLM1r7W1yXcgy/IF+zt7r+PiOYPjay//HwJXv0vEontDXyBcewwnWR8ACKYbA5+D1wpKDel3S1hmlBi7Xj/dq6hfxabZbadG7Wzzv6Sw4dgokJRZbRzUfBZkeUaE3ohthKrhySpzXTYNXQcsOnNqqrhGMyVJGtofTK2F4bR5jGszuIZZ2w8xFEC0mSckd/0qy1aoEF5oGe18fERfAHiPdOAR+r1BYWMeQBQsMPnbQ1SLSZWYUJCU6EJhCtrnDg8bBBxqlOsGiMwAticpKczFKXbyTecRQeqsxUAG6jm5mZhiu5M05oFYznsMhxXQ3cy8o5fLFAeGCKCI2OUnLFsk1LOy1ecTzEVVI3b/jKMoS0wuVgcB1139q/fd9zLrtx9WFzd4dzL27cyYOUfCBL7INPrOzb3rO0Ry/tWpFOrLDMiiQ3/R94OirtqlNcZRPOB5RoyZtx/UnIhgyZ7NIQCDqXlIi082biYVDLDHQCT2xojM6GoZA08o2bMAioEeLjSs5CTSrM4umoAR6pI31hr+aHanijhjA4+xiVF+no9DKxAkZ3CsHHq8yyBQRrB+sK4x9wdCEZMaLdIHmj6oUmMCSKCFjZbqzzGBsJebLRVe1+xESEgBa4DiDieHKsQFUGJYPGKApugZ5gv2DwjECODR9C/4hwAn1ykV68N10lcAiGk4nzCMVHEsrDruDeaGMp79O1DiL2jYcXJ+2/PtrbU5XzKW9zzt0LydRVI4IxDlnYxX9LqSGg2t4a6NEhmg5KBJIlJOEjdhfyzDrstWwAbLgOoL8Pf4f7nndwekLLgINrI7pDfWz4TvM1vQGOyVgkVh6ggJtN1I0aduK0SZ9WIsvoWgfSF4YDUKXA/GADIDvOIX/UsGqE/8b6w1zDeSIOeFRs1AyEZGM6K23VNrw/TVW5JaGaRiQYgb1ATY1wEZoUqd1//46decNJK09MeU8vXVzZc8/u24XnD62thdLxT0jjcX2I36jSN2gWAA0AusgvMYSeKUTPzmUvpXMbWlfNklE5oKe8y6rqbEpbuSAG+vrlge4OQFQUUPBK+8bIE0Y6XtizrdeO0FdPF1lZ8HkQyUbQ/whs4Z65lJQL/NHxYywVSNVDjUAyYWDp3xs/g3SwSdV5RQK/F3NA4QMtzexfvPc5fsASXSoeTYOnUyLDTwabITugHEpvS2yYI5dloCdvU/SWJ601x5ktazGsp/D8A2oBOGPWQHzLknxuNQyTsXEDnfLImxk3ykpuok2kg2KY6M/wcovrm02cgItuYPxBp9PEEpvKZJefixCs91+PEio+ORXFqxwE/SPcg+MD6dxho4achYIrbNjemM29AigniLgZG1CaI/hxtpZDjBKZO/0KXQOP6KUiJr4nRdDW3qwMDoEWQNcISAQWYghChtMGPn+XSt+pqS0hqdhFKBEMO6GeXUk9TO68PIgyEt6LHN+wrPP7wQ3KeTMtmncKlu5gDy6PYxvLKUHAjc7lMaGJzKoze+Jobg+fXVxdzY2N9Z5GIF6+gzQKi0gCPvCpyv7uD+zbExfE02QHNpon3E4IKHgBkjeakeDi4i4r8JVn5kt7L8kehZQRQG+sL6BkmCNEddNMSG2I7Xmgh3VF8ALC30SrPEnO/SDG3yDSIuDhPBfE0UJzjmRbzFV3pvGEF1dRAxGAD7AHhZhnupd+yIetFiQo6s4Oj46srxNL0cQhYUEGnATDferAS5yKLiiXuVeuEiWV3UCBghk9gjh68iIwTnVISEojvHrV/Y4NHhIsK8pWebKDew/+F3iQhdl0gteWBhkOZigRwMyeN4lG8VEuUqC8AkfJZUV4MIwlbB1U1BRzOg27RBMzWKm+/4mp/YsPHdnTi027kGuZsr06hxxp1qrekM/Z4ApcxhlBye/CMcSMN9AWIspCZMn99HmIAMQZntq7Atxzzueo2eaoMQI9nCnUnvMmHAZe3rQhP+21hyGCP/j9MqDzUiD2dTl/YC8OtwcAIEKhyMujk9SaKsTairvwALnWWeiSXa6MUVeVVWh2rGWhCR08Iuecb9IAhTYo9naUiNUApWYjIIAABwYXlwaQwQSw620+L+11b9qzU6/ftQR0rTS1S0eVnXt23/bPHxGJBFWDForwG8dnJEUrt7wsuJtJ5Fw8303UWw1p3kxDIWrX5s1A7eptcVTZ4UHNpGoyReVKfGbao8l8frRtk5570Fv0EMcg2KsMZIO6hrCqEwrOZVmq589q4thYFl3MIavjyqK8Tv0Qf8abPliNQLUUsUI72HFltlrW3rA2ZhQbhLpXQM7ltg7Xvrcff6ayZy4mdvKEotlQ6Yeg6CzDxFKVfIlswxcpcDZM1wa6cbPMsqax4VJnBxcym+apzXcwWbyLFby9Cfx7oUqfc3OFuwfIrziUgIBwf0/QPIEuV3kdovRB7z4+bEhg6LAj75AaCEJC5jC2pqI2fl7afpWXX+m5i+5cmrTLN7gdSVBG/9wZFs4ioUdwMtWCCaspce/08zWDvJ7NKDP4a05cIJn8Pr024XSWWpUJacNwJ/s0uiHD5sxZHiQB0gZAWkmyuKYROcRmUa8o8py+jQwSQYgPUrF7d6Esn7PupcMLHb3UGmS5WYQFLCDy3Z2byAwZkhOeMkngFJsPoBbnN+CQpoaiSMnolE6yjsHHt7/nETtaqfx5VWB078Z5r9jgYZO09vDF0v7v9/b2f3zlCXvLiUNbGoI9dYFiLrHDL7q9Wc5XFj2iyeEW4YFcv2EMz2wXUifRWBEoHGusKpuAHiAaAp51XJ3PVyrLACkbLCvZ3aGmIYq7axmxYuzamPE1rhsXJqcqfw4eb8MDjJ1xpGyplMztphosrb3pbgbkU6VY/CyM5UF/GH2N3fmCjR880Dt1P4ZNojeHsCcJrxH3gsmN9oEIkrF/YcuRoC8oIq24kWEnR/kPt7Cj/ijQdP/8OK5xUOPc9/fQPgbUxkWyeeiFf6hLltDSTsEpqC2fqk/aO588tEuoPryqcPJbHwgs1nYl/MpIptcIyNoTi2ppq65kly5TCFpPIMgCfYdYk2N1SrMSd1kKb19WbyjfJW9mvmqURsamKXWvqsLj3T2k2IgIq253F6EhhU+lQDU5SbiZbQhAHVENIp1D0T5nAhJzWhjKOQOIJPZdVZ+gCCGpFdF/ovqieclmAzQ7IuEZ0AEs7dhip7TV/tKKKSa13GB0hqlBBglNC3pVCo3d1CZTBDxqsLzvgV3bPTW3S/tLO7i4oCh2dbiigHTbQhRazhng5FMayhkgACiiI54AJiWLcG+RMMFcQbJHjBUYjKNK1ttq0dhyheaoic3nmdXgPi4rcIrYwQmgSTKNknOJhkVVlxAntBt6iuIhMy5gEKyqlqpl2DvbsUlEtm2hFu9In/P9+NzI0YQED85jfC2l+PyF45WCypA6GxrJ2jj9RNMXe7Rz/m5hKd+RwO92UQl8qH//wQv2h7/qjOVoGggEHWUWasDBLNo3dW5cfDdu6EAJK0utRACV93bhYmPVpZkdY4IBqeKNzNl2DqmUdqV29gQWg5HJu+ctuWk+UM6kuoxLJRAU9OAJvD+dc0IOV31vc3QBezcUMnl8JiAGBAJ5cGbe3dRbgiCKPpsqEQyZyKQV7ZJSq7Hxe2ooX0ZB8uTJYULOka2QfGclCdwOOXvmQFVzRxhEDEaDRSORaJTHKPLpoDCRVJSb1q4ekY3qUHXEgp27yLqQ+awnFQJD8Uhcg5G1CPzxDmFGiNJJBBpCxJD+gpr40i0TywULTLmnSv/U/qMGGt57GK8H2fDHz7b2zOHajuj6k9JR3BhX7OOv9YFbU1et/eTjnaF35hu/bG5f/FnY5I9ZIgzkj9msNz2xIYg+lhvBBLkQirqIUPp30GAw1lSVW3CEHBV1GB21omyCzzc+NwHVsmcDJbQbrABiD00/JnT+WiyHqjuRj9UTIH6PgSO1AggLQvyWSRQsqRgs6g1YqkXiMRmsy3WYU0qMhHtHLoDye7dKONbIY9t9eP09o4pDio/r4vF6qRfIu+5rTb8LwXp8nfZtzNFEHFcZWps8lxVQFKwhIP9tb8XUhbH5+94YQy6omka0hp3/669FsWo/fro0tZ99JrXv/tSBXQJl5DW8KIiIxb7mCSxGSOMrpHJtKj+szx+1NjmBeoUScIY2TIbVTER9zHHSa9/T3BhFPDRnvBrDn/W9NvQEZTMYzQHhHyzUPLT5QlqGX/Pyqvx+aezGOYV1qBKymgO4lwK19rkDLwWWTx2TYHcqJcO0zsFdV9etO1TR5gznnIwL0NmK5kJA5HjNetVYuVtQziWWP7TsgKIhCKKAOtYd5NmQgeC9W4lD78wLm5Q7tli2tjquKbnSnF/abFbadG9i+UQZHipCDUrRDrq4XC+BlnpV8bxSrije7piUtYOtjhvqXU6naPBAcCgnjLZGANgyuSXvlg1RG0oFLtvD/cHLzRSsp86vGs0QZLIUv2HrGo9NjzISRiWrslYUB5lVMk8EdGwJeDp3gBI6yhFRunBkmfzNqD5EySNqzy9zV+9LHdg0f+KJY3v42RUzG0x8mYyjxAppfE1aOWhowmn/Jd3Uir63Mi9sslvYZK+z9ggyL5A1Uf/34Jk+JhdMJTARsGHjQSOQ5JaHckpE9FGuBfTtDxVBJlAQjBqHoZQaSJ5GuQZBHD4IdI6wcUCShVtCoG1OyMXEY9s8+RdrJ41imlg6B3+xt65CRgJD74YBJDqquq62YtJZNk+th8cgZV5QVuO2o5KSE1MIitBr2A8+tp/LbxfXjdsCYi9CLML00Szi8gFs6efGAUQBgR6ySy8Fj1wGoRewdSPaKWa5SmgI+GLyE+kUbA2eET47NzR0Z1E6xqF5bn7okoI1jkvq8BzUpqm5rHL2ssrsxx/et6cvYiFcY0JdzpsdR+gdbseVA5ltZz/zxMr+1XuO7BeegidraSW0uPDsSanBGlRtSjIEEBf3oM9v6ei17VwWjrDnI+cVkYgHfRRoRoYM5F076soz7Ohos40gqaSLQcLmkIKaVl6n9C7W8DxV4qHEhrGmI2kpNDYnqWWl1klMD3BsrUF3fsJmEnbwgt/UoBtS5TZ20LvYs0pa/sfvC2VAVLfh4YYIlBxEBFkut8br8G5hZvS+68O5R7IYongkRGP8szjRW7I0a105cKOia1gizuuu6bH7BkGmN4swGFe8qwMLSFI6t/c+Ptj3fLK3p5djzfI1O9Sprt3IfftcZiUo9CNxxFu6gfqt7AgILDutZZMmtyOdB+LnqZeXvzJSHLyMS06di9q7/ZiAoLXPq8IMJb0qC7pe48Zexp8jfUllQqBzOPsioWIwSY92BYljCZle8Lh+l5hBMOGoNqtB+F4L5G9Y6+b5PMFHAUKGbmHRHEXJUXUqtWYF7nfwE/X6/JuLUp3uPBq9WQt6fWoskRbndF7YidNT2z09s3JeWp8WdrRo7cLZI1sdLiX35YAAgqWoABBhpZyKKlEh8kykH5+37hj04R5NEC9AXg3gQqhI4LraYWzUoqnIWk3Z5ZvWyW0Aw7Q09UoEQYpwHqEXr5o+Qg9VIIeQeD5N3yN1Ix0JJE1MpenDqrOuXrqAvu5jKBGM/VcR9G3O01sYtx74vUzn5nNHjf3EY0cu3CixypzNBKhns39NytnUhEMEjzoFbSksS1vbKaRTNTuR2azsrbrY2bScW0nfUXUZ4sEvUb9HxgCIlkLDcsvI04JBB4rJkEuQsPFgJUsqzgn0LiyZwSubAjyOQ4AdTjIZ5vfKDAZv4kNxTyEisLbloS2TdziJ5J5ajUBrnlg+hydxb/nJzJLTuSUnciKCaV6yLK0YKwjpmPQ5DxDAFir5yMKGhXGgfb7JXKbniGyQHUjKZonkQdYIZWlD6UrwP16W3rxss8ShAWgb+nnyNaQ2IIWg1iKmLOJC4BMcQUeGMEkhUM1287Bz8EESuvMZhU7I/QF2OlgoCKKFAmbWLDP7xDNL+9FPX1I2O+qPrefn9ZoRr0QG73Xu350Ym/ExkKmfO5/a3/uxi/YTn0AZaC+0Q7lxQhAVzwmbYjwrjys4d8pizb0N71lyUmhriMBfQurOE3BeqND2CFLot82GRZcXctFnNozgMAXi66XPBE0I2AYwD7nuHEWJ2gdQQvB+aEsY6DAaQtR9DnvEbKUgUo0fKOOKh4fkCPOWpVWWjjyBCu9VBHWj4LKaL6DfV+E+Yb2Bu1hiHUTJUGuQTj7xFb+3keUjQYLQNHi1bAbx90YyRccCrKNo5pxoSSqvXM9rJHxIuoheMsnDoe2fwQ+cPpvYf/tIY//p0dKeWmmvfbE98a+2tRNB0dgVGeLYbEjTE9NT9IYLygM1dryEXacqFJQX8VcLMX01jaxtt4AGiXOm1wqEhvxAJhguwsypLAkZ12Fwjl8g5e6PnaxJ/qriKGhVQ4OXEPH8Efyw01fBmSRK+En5v+oARvCFtQq/e1d48M+GOcRSNvmP7sgRThmogFG1wUvZRWqrDpahFZEsNJEgcKSnOoEAaOBpTVfL1hoGylLnoERKgRIz9F8zm01z27tvbvP7Z5ZNxIs9OOrs4tkjcnMJbLgjBgCLSelnNWwLPSBlE2PV2fK4s6W74NBJZIobCGpWCE6AmqTKGqp07MxVN4f8T9y9CtsX1xZtLQX4kBdI2i0E3i+z0PBn7BqF5PKtGzrCYUhBpCcI0SlNt8yBNncSbF4TmcNRS6BvrH9FF6EBeSvr82WzbLuVgQUCof6ffqKyX/e2xt764IT+f7RWws0lEiTy9xLZONjIZWotupMguAzphjKzVaVDBHp52X5Gq7XJCd3wDsbjPSza5N+HoDKFS0cBsUt10wB5oyI30D+St5UBgceGFncKEXdAQQS/CnXUQgYKgYMBIs1AAfHz7DRyHi7bFYiGAQWUhh6zEid6EtWkcLUWk5T9tcHISaQl6Vxq3F6GgLNI19MBhCR8umX4QeqNFljQ7Dym/IwL7Y4In9vHEPZHKTwX9Jzmo4crpV4waUniV6CM3yz92fFzkewqtXWcOWpbV3kbJyg/Cp4LHB/IdVEHMb2LoweOiwBIn6AK+kFiE0ATAVr6Vyjd05jPPniutX0qbl/ewMF7si6GXDtJ2Qj+XqtOH9caAqXFa3n8oLH/3/sKO1yk9iveXliaNNKcY/Cek2tK60oEHgiUPJvZpEgB6VIFygnVKONTZFYhBoW65clEPgwI7eCD8nepTeIv5IjZSFxGoIgiQCDVkFTByyCpoN/oQPtEBY0bHY+BsrSp5dBoW3WW1HLmqLLW6onZxKUYcP5gA+ccxMaMzclLyRSRZreh96j44UhJF5S4UFGm24YLNHhHYSQdShqF1sGRgPOeXxNHjPeKHEJ1+PJnvaQudxVwK1tKVjlYwDIdGhFRCZHHsbqHPafk4QiQEF/br2b2/3yosfeeQ7BXb66WFzdf7rWu3ZuNzc+DZwIZrgjRObGlVsAD2atPODGg+XZUlbZbouqkSgdb8RxBCv0/Jg4Ubl6XclFNYWHL1SBCK0GorHcLg8tH5EcUIpE9nQrkjSF0pfAGOAZ/4L+5uLP0TtdlwxBfxnVIWB9VFM11ovrgzSP+ArqOyhKdbHR/EIRAqggXOqW8kXeiJ+K8cw+mRyLoTKBwNWzQ2LtvzwMhASEBRNCDl5PXDehwjlCvT8EqJdHYWJnZibnZznSXPMmDFw7YSHX2+SPbPTEh5YPd8Vir0CBU5kiea9WG1qc2qWKSUTcX/PW+w/xHnQ+wApI+Bb0G7jwTP+kPsumnkgsVG1+Q+HpwzTibsKDAHQI6iC1oJarkl1V4vN9oYh5J49o9R04/EQAiRlCwvqigJeoyXiIBeqIX553TBzg3HHQJCGa4k4Hfy7beB/vkwcre/fCBfdOpUzafatIxwGBmg/KoPONTuMsTOjabQpSZYqh4aJhQalRI89r6/ZnZTmE1HCysZe2eIpQT97RtMmuyhoGdJjEmDspJmbroEKi10e2a8QGiW4lWaSibsu1XfImAfXHra2/1Zqu+IClOLgRJivGc9uuEUSwyHC5cgCzX6r95oILXA6QEAEYBCYmM+lwQlmaJlcYCWPyusB5zC40Z4EDArQQtj9TZc26RQ+4ikbs6eovrVVcRkE/A3bR5cmtp+g97G7yqHQoq0WUMpIjcRRyobjDNfk6UvPOCBzQBSe5MCKDlPMAyF39PFm0kJrM8L74feRN9zmwtaQeblak9d1zbd//ck+uJ7xv29bKbq3vyrv7+qwi4uP3hN8rpJfb8cWff/uHWDpuJ/eovNNsrYJ0DQV/YjiHp0kzCs8fE0dnouSeklpgoKFARbQIlIZR/dLOxjoOXNqHzACMcIoOYZDxwSO3Q+kcHPQjgSMzkv6vgCAkd5gYdQaZIAFWCRdcxBZohtYK55lUU8OgmaUEqBUs8tEnEuopNW2c8ykV0z1FsytejlKBrC1KDGt3LtHl0vmqHCoE3xBLVESrKW+KWULgOWX3hYNFak1ZniLKJcO8ShB4Q4BAUuklfHWj34YL92uiJXIpThkEE0bv/dB+VTD55MbN3PTbYB8/hoI56enSIXj5ekkvMvTi8oZBnayT0ozMSxrpr8rJAvmltWTU2J39bgqtMClx3cSzBM+AS/UdBjpoMRg6fJ+IjguPzBXNNjToeeKr25Q2IQv6IarmQenQJE9VjS7oCBZYWR4kZaVKy9IwgkBw2aaNQQqiVrzSEn1muZUOJWYIGSpyDTGyQiFc831pkYvRPlyMUpF/ySWl7p2ZWXart0guHNpmXVs5ErF+C48ekClQi5wDiPCOKKekxNm9QUgaNI9KLBfUIZ33+ul27cH5ly8XKLp5fkBOIzwdnK2qC8vZKFolBGRpC8DMhrcagWrxC3mPWXOWfi6AWHEGcQ/UxzmYlpnwdnGMFqFaqHBCpGyJIdQWKkJRyRQ90WBMlZqevB2fk5TkPOsr7I+oshxg8GtzjRYUGjsbVRoI7Ha8lHnx0oqtlfCN4vIVp/7IhftfbQK5n8/a9j+zb17ztjH3hg/jwQM2APqEL1/WJQGr2dmo0cs9hdeat1yxZ8kRJyIOpl63VR7kNe9CZyyztIEOCBYPSjrR2VqvcenovypQzh14LBcnkY+sMQPVo8YHoYKEHMLoeuUE4148TKrEqnDJiP0HDBw/JtTgxg0Qn5tbI8H0iSRxSPqPM3rDA24FIYoEOqUjhkX2hnBqbk0u3kODu5VJ56YKB6BQe5w6Al7cukY4GMZ5M6jOifMuFTEhepu0sIzlJFidydDLJXk79a+xGZjlPnzvKEQoG8fu4p2xHUZZEUVCXfGG3kzJeZHQU4vXut3JiVua1/acPX1CwccWUGufRFbN9nbXfsSn9mhjYPJ86XNm//eDKzh2fst/w9tQePHMM4yRLU9gbKRnJ3TUAHFPOO0JNiIjay5uF8KLkpfpGx/UVwVGUr5zzSlKhSAMqZYLILWRMDR36Pb5ueOmilLlyhw9IOAUPBvs76CI+DxEoQmuM7hZoHsP7ehk3eNFMgLxbanQjCXI9zwZpfnrvlLoj3ew4HDQYVNJlwctIOIQcsQsJFvrwesbOsA/X5IggOf+kVOIg9iYrp46w2EgXA9doIwLkZUDGESEBhfQL11rYzz7f2/c/ntgnLy5dfPjaSXzs16+poA+DlZH1P6M5AuNKKkkw/xQp9na8bGx3VhDBxYOTSP66IYj4gEueAEWLA0D3Oiorce/VRKddS3PFGS3umOSlWed0if6kgDF47yxF+7+5K9MKVVagbPChA4iHD+sfVDkRa8znNsEE38tFK0LSJcF0dsSrh0+LB/9PRFNUCyZdXWfT01Pr9wc7PFzZDhKjndIGRsWuJ4rgGLxWBq1SzODKRbDppXGJvbeiC3GfSO3+B3bs4sXeFoeNLZZCG2mxNoOBgoADCP7Tx7brramhU4jEU0kdkq4Mr433Ttf8dHAP8dmKEjqHnSUFRKmFormLqkwJHGEJhQoE5gq2VQ4nld1F28PvXPshbqUnmOO56zZ58d++1yxaswZewizTrfdRJtje0SF9SddC8zXPtUu+avqZC/zEibt1BsnFzuydP/Os/Z3f+otE7E966vlxYiNDtsF201TeukS+Btqn1dDBAzctNk1wxHIQOVPLZ7lNSzz0nGUayFBU7A6FVy4mCspYkohBVwHLlIDf+R6yY8EBhvMF70c+GhA9hINeFmgMchEIdLCZq3uWjyE6ulgeVrbHhhGlldpkUS6DYjjgc6CX3MRVK2PAVEZJB5/fHTsocCy9NA6/RgTA7DbycK6EAjmDXHB9GFqN5VDA385TdkssHBSejbDTSHZq0p8STygIpZFbePMTAzWZgItfiI1FkqYq5iKwlTel73uUI0Bwq2APSA8CzB5uCSDI8nPDgWSwyUyo7k8/Y/a+Jw5vHMRtfs8TocuC2+24+fCGJvx11Cb2Xz9+wR472LVv+iWn7QseOLADdNPnUA2G/FHLOI/oLw4Kdy7gtMQmGqTokYTs/D7nojKGj2AJSRTRQ+3wnJt+0CEzxvShVRm/o85dIBPYF6gD7gFkCwtiL8URI0OQWKaWLFMrq85aOvuo7IVDJ7iKWLMkdROFA8/HJSLcU47cHsoGonwmhBB7Abpys7K0qqmdm60kNCwNBeZBhkkBGs9NbQtah4iTac2WW1bpgEPVgAGiuPAjMk/JDdwjnlXO5wkZhOB4O1KJQHeVzu2HP9XbjzzZ2AurtdbodR/9ay3gizFm6YHEiIsVqJ0OWJ/Eo3azB2FtbRcXhRV7BSk/ROhAe/EfDP4gwyI2aDhHC2dLOG5gL2WpVXp6IwykqeNlRU+ZWT50dwoGGLIRI+3dE3BZg7n/OQnm4Nq6qDEDNEHbruCiYE0WEZJNclDAjUP8HshNiTqa7pSDkrI00SUdwzWI9Zhm5Kry9WawT5hatagZdE12pmyGUA8Nzle9GIwHcE/QdAitRIhH4/0Ah6gpMEruaIoy2z01Y2n4aH9Fwfm8VPCnxND3MAR5LQCJcZPh9bPG16nDmUveRZPDETeFCQLlk9QoogDPm3xYZudVak9ikSrAD4bHsrvkx3Ix75Eu4NaUXrkgzMEO53B4EQqJoHf/CNw+StR7ohDzIeAMyo5oHvLjeagfZ+wtrOUXH/iNG/m6VHat9yGf4Rqo37U2mMh83v98bR95srL/7SFj0JfjRmGiuxQKNnpaiUHtfkhomL1EJxNOk9LJ31lvJ8rBXjjbWbOfWXkaXXbwOOzYpIFu2QIBVQXyKXZ96SWxo9gnFrmH4wSV8GTVoyNImz9uOuRn8JoAvUHoxmYtQU2vuGuOKBhitI4gyg9H8g/wGpg2DUvLzLZcDJOE+lVNHTFKaWDBMaPMKViLa+EGsnEvyUX0zSNMp8ncoFprQ09WwicMxhCoSgOJsh7U0sNGJhItDhhcNbiUo7K8M2GRKbGkJHY6kQf4wCoBASzjKCqfGY9Vtas7osiOpRZt955tu0F4lnaWTXsrQF7nvGqtscyWVth/+NAzOpivNR2dGHsZc/4aPzPOszGL36KBNx6wOzP7X08f29OXGvsdX1zYN7y1tum8toZ2ZOuGDg7nA7Hc5Zvtmvqjw8zNWYRySO7LbYlcqsnLXWg04nxDWcilXYBusVPcEW50A0ZfhzJhuYrwsASnBmUsP4ya5WBlmdh0J7El+LJ9SkcOoWji2ADBwB6ASiorQMGX9/UYZAmemygBedNJjZKMVyVio3dgXuhiZFgMJoLTqqQJyGPItYTzRgpzeL+d+LyBngKJZJLmB/bY5SkNYauxB6K0Nwx2aZnadz9S2fsvlrasXfvmFgf2nOYOWATeS0MB32ZBd3NrGH20NhBshgj87+q4suUUdplqtlA/gNu4IakFbOvd1YriHe1jRqE5u5b52HAK8eCxG9E3F3smCuydskiSPblQzuQduq7HqveS/RjKmmEQkOP6KEcE3U7QN3Am+cRX4zgTFZ4n+qikCOSE+VRGhcxY5gYBHXUKGyk0ECFLrAZNBw2AQOLK1I4vHFtdH9n05I443TgjSflJGfji3oBbx7iJ/EKnMHj0ic+dl+pExmeZzwo1i1SDLRedlSQfq1qFz1ytGlc26ayHLeQgcwCeF6m7bXlzDP+PlA5H4FByXrUEH9jk4txLyEOtZwa7H12Lz6kZvr55TnrgrCqHK1T4rwkTclSYCSGqX6qSnVv21leosKy57NFbLjofDce9aSSOMW2eowXgLdR674ycyx3iSiEr+D/f85RdXOQKpKh3pOAFdXwSPolSCRZgx5K3nzcIkOY5OQZDmVlTNHZw3NhRA7LpYIuwZnNNpHSKrAKdPQh2HO4eFeu12IkioNvDUQE2gvBpghwKzhqYGw5RcwJk8j7ERHVtJBe50GQrc7eH0+uT5AoVfrbMm2Ugn1IOAlnHxFogkx5okuxLAVY1bagcJmKs9L/CYxWHkpoz2NEHle9DLAQcHh0PTHxdHo1wDEFRGAch/InBZYXFEHiJ6hpGcKcNb2yn4D2sqpqZGaVkUP7lJtNKYR25G4nD6oQG6bauzOpFYqv9xKpDEEXweo2lJRp2GssmEIiGdy9K/GpsQSv/9/zCgT1yrrp5EnONEvD1koy1Av5rc9xK19c6WO7t2ePK/q/3Hdo/+7mT9uSl09ZVExGYafsndxryVUetzZiOoXvnciY+eOtJbI9ypZozRCHQgUaBXOUW2vzwtWlqCbh87OaVvBPLw0FedzmTDAiAd/cVtcjsTSH9TOna6TpxDoNuwb2UaLWs4ajVCTTOXULkM5ywa5E83tBD8w5XIeKu++VbiFetJUju6LasD737RZ1f1qPRpJZFG48V/B4IgTms4xJ5hDPYddBCahWjAoQ7YVkOblSP7uzc/smHzH7iBfB8q411e2vjtRb0cUTt3snxIToZfCqFY2t5FikZRBDQ2cVDMMklNs7yqtsBImiDVmwc8iL3+3+jtBkWbNr+nV8TJ7y0BXUmqZQonqxLvvhVUHfO58Pa3xzXKXFxomrki4pfzgTKed5qwHLEL1wiNvzdcT2SpwlDOhxFAmJYSaLvs0Qr6bLB8qyaIHBcNzWkb1CyTGxyaofd/ZfOHnKNM5jxZAZNY3T8QDd700j2ZoOuI296JUZYrzy/UE6eFNwX8ryw1TGqdXLVoulIJGL43DifwO91kbBOHgxjVy8ao8S5k/cw5J9wjXSvAqrviR3LzU4DWStkSPOT08i/N8rAxJQKDjSnS1i7qdFTBUzFGCtQ0PYhVbbZxCHaU4SB2ndcoofv4QoXIxDk0kR3HPHbODD9492RuC/QmKePB/u+Tyzs937ZrlVDbdMhsxq6c5xk6CqEW4YOBcgoYNsvCZkix1EvVZ/2lp8YrLzU2LDMrZ8hxQbHoGEAR82g2WDDEZ4DdLzUOA+4HosWbeboqk1hzEmSK7xiITQL9A/WODJAF4zLviKXKhEfAAEr7axYfgUYjVKsy9V4SoINgM0VaGTJ2Z5EZK8vc6uPAYdBrRyGFbkmCLoWqa/n3iV0w2DbJDcKyM/Q6mXct3xrQklqIsFJknoplKudgsFqVpKDSC4i+XfI/mRDhBIUStZUkCcJV7w8lsOzwhp0QbuCvA7BdSmkWmrRQa4GJzJKFClQPZS1UwQM+G8JWKKZRDq/kQGr1Pap85W99/FDq10s9Hrz5mbBzebPXI9j+loYL4bHFT8T5SqkOt/3C8/axUt79vUPZfaL3zS16bQiubll/XalbDaoJ+NvR9Dn6H+UncCLoiet6+JFN/low4RgK2WDU2TLOJD4+kQCo2MRiZdG8E6Dk0dB1SoccQKj0YGGBJJoo6om2pD9MMBZGtZKbLbgh9F768DyUq1ff0hwhawf3xvogyM3PNCIJPhrUUzZjTncbF6C0y6OFEElIR9HS4Gyj/0ASkCpQMDOTrOzVWofuFDa932isX0GEJCuJyZ15zLzV+WI0lXgrHIsGkto/hy4v3voR9HmKLVhXtSVHaxyu28mgX5Q2YiGuYUekmHs96T6YC7ybFB3LOeXTzz8ewQKqJGKdaGyMLpFqaFKvnVcOaRSpLGJrxJpR4XK1ZgJLPAtpbTAOede3HLi8AqIU4do8emAhRpV/Go88QANJ5Is3QdnPUK6pW4sh+wYvH296Q92baw+cXn1VpyY2XJ/YdVRJT2/IiOAAL1A8PL4Ph6YJUNjLReLkFGeJkArcVbRHEGcOiCKx/s1u+rbo9qKaWFpgTMq4xmpLigX5majIkq4Aj2c2SIE1hMs/DzvGi3oVBXA+UjaBZNTSUThs4uD6KUKb05T4Ke5op+LgB1j3WgT3HueyY7qX1qiaRPRg3tmb+p6RmOPh/zKClxPNUhczAnWTNQ7zvG7poTGlcvpVg/WTWLtMNhx3dq7PnrOvvgNU3vr61De7SicDGQKQQYQAGQqNMfAZpgDGsUDwh8y6awZCpvNWysqs8WllgTcMoPOFhwvRF6tIemCrBrKzuAr0epFnrg0pW47NlVgMoDPww5XFziW/ZpPCEC1jsdKlwcLzhv6k4yLXd67XgJzEijcPkA6xQYS/CESUOEskE1Gk3vpEWFRp1ZOxIlgvsluLWUcyti4pYySLQwCnRCKHwoNsrRAt2ygB+496N6S4Fngs5OGxdKCyrbk/VHCA0GaNkFJVdFk0FvSuI1ZVYsfk+bu/DCAuwRys3EjwDPSxqKSQT6UCk4hryPCItHCakjtxx47tkfPHt6Ypxd0g/jP4M1eVta9Yp7Za3PcfrCrzLQ2s5986tgePpfY1z0/tW94x6694XTNdRgdiqEVFtSW0NQKpDp00ohkeKl2LZbqMQ/QaOf3rTuivHkpfDIJlqtYE04w7OjDz7HjV+/TQCAdSRbE0UHxkPzWOGGo3+WlGYotO6+L2ycV9dfXIAQyIV84gBn83aBszc7NuNG6ViD/WJ9IKBnDjVm6kD0tTRfzZXDh9809xVn+rfA3/INlWk+ZK7RK5b2EoofMPnaQ2w8+WttH92v67wp79Qu57O9rjc0d/LW3MsZAy1MVNZ9tVDdc30Bl9RB7DmKgl+ust+WisUWR2byAQ5RjhLQ6xOsomKL8D4N2f5YBDHlA2MgDQJajnJwyFZXPu+aKaIBCxinZ5QRXzWGVUPn0yfGP4ACBi7x8I7Dz1nEpU1DwWNfJewL0C2oUCHzY7Oedzmhk8DsT8l5MJsnTDrFo6NjqtaMigESNEktA06ZTa5e1LQ9WduK+HZZw8V5Qk1BzhPPVCIK5A4o/BjGIvJGQ5V9YS6ZWzib03m2OW5vgmndyViAYvMZ+FCti5N710g726ik19PQYtH4RCDKxUhIIahf3Ntd8JPdwg2cvmRZ3JQkxe59GQkjFAyTNy5NvrX1d53EzWL2oOAEk2ePl24jCPYkUN1qTZizt+kyOYPBW5CpeWnPHFfvEbaEpca3xz8Hs0Qut/c9HDuz1Ozvk8aHUS34YUnE3LSdUnWdWuKL+enIKgi7hKzrrrD2s7eBCYXv3rwVLoXvn7bs29ECj4N0raRGYnTu4zuAvbi7eK6BZwr3O5wCipwMMnrXoCIKVDMrKytAQuAJ5YBCHRc81qSwJAazum3MBKCUkHqK8NR2qJqrQWNZBJwrXokwo0A22pYM/yBuIxZwLZUA3kwtPYtFNdzLLT+R2+Kw6fkcx1qg8YXV6O3qoh3MSBmchuJs8hHSwQhCXxNQOrfD6fLA8BIo3boxEOL0lnpwVZ+TzcAXy5xxML6cjWH3moLfv+9jzyoxuMp2u+vbIPV1/JwJDobSXz7ntuPWBoOO5ldl//VRlP/1Cbb/9S07YV79tbulQMah3Exk3KvcD0OdpjJH76x2sEd9FRYy8PsxxJlodOXByFvCfA5JH+CMapdQpi4QGgRJ08Fh6w9yHJhnWa53YsBgsQXOHH25B3odagFBmITR4fwZ8TsuCNAynLBpCgGiEpSMz/MGmIKYnkHMS5wp7iZIYKrESAUHBa0QRHWmAGgb1O4GasomrlRyNNxqAHjFdCdXrik4E+zCQ6BNb1on98FOF/dBjrR2sxCWKtppbH6nt7uza0fHR+tR7TQ3ca7LjNj576GNh/rkVZlRgXRorAuvAV9q2sUWV2yQTJ5yyP6QlIdCSfzljGKIEHmD6/o+TiXJzMBSgrZR3agJVWmNKukIXeRYA6b7wLvKL5D1xUiwqZOC0s8nCdWPBK0cnPM0HEPR5IoVVTT90//gA2iAZRqQeyCSDTEevcD1o7IC8iytfsAIHvU6YAPCsEDLFUxnVHb4gqj/SwZuc3rF2/8gunj2wYlZah/WMdUN4TfqvCjfjnjutCaAKywMe9NC1I7USxg0TrM3Ojg4b6vJBQiYFVxhIqfeYKmDSWSwWu5A7CTN74unNHnjIAGwS2ESSfiUUjrIx3Fucl+9leHXwSvxHZXDtBXJKWXt08z2o46fGT9x0UKyOakjShPDbRmbqbkehuxucy3VTh5IR3GM2Jd3i+k2GW4zSGFxs8OKv+WK3W0a78nXdx/Kbv/Z++9qHdsmzqyGJMklsJxd3YILafiEx5zmEfkHgpF0NyqPa+FdNY9WF1JZHUzv9utTSeUsh6BlkX6yzowFcwsKStLGsR39uascGrptUyru2tRI8Ppq7O2IGWHoYbElkCgFPyiAUAV9LxFB4AcrBCEp56GUpCy4SvFVHETIIomzeyYTZV0B6hqhDZlXtXZMo+TLqgjCZRDmnRWE1+BM8V1rC3xOI1zo6GPZsMq9X8wRz2nJi7WRutlhY6l1DtL/D+2CiI/tylENzUlpLJKc6nDZh0OmkdQpMw0jaWNpFB2+e1zq0afMj7TcFkb4wRiN7bTS0iUMZAM8cFltDassusz/3Px63T5xfbvAubzJ3YjiEfjkb+8r5taZx02fyLhv3kjMC+Jhf/ItO2Td+fm0PPdDaBJp/fWEDzMkzoeOx0WIuYh4g0NdhhK+Dc+oHHzRdKasCLbFBjQ5eVkoaL3iEjlpIprCZI7V+1dsEAZo7gSxolwbkQFxXiqtCF1MADoVcAweAlzfWgIBrbPJI+lziBX1jSG5g1UXP6bV0S0SrOUpAkLvguvCAFuvfNdNQGRg9hL10jL0sJFiwFmCDRUs8lLNwLeDeLiA2D6TGrIWwaV5yrzjqBnviaGL/8UONPbu6d5x270Z6xaREdUUIqwIK923nGhTVJwT312ONTm+OtCjsgVO7NoOgM/a7NmEJkznMhnUegiR8jUmuUxwIMbCxQmcC1goDOS8fMshAkwbRu/V7Sot1oB5sPtGakHuHKjCQMQtuKM5w/J9kxoSYo+QKhDmCTeUrCjgQ8CFxCid7BUtmU+/aIiLN8wGyKZ3NTsxZthUXUElXFpaNaBareiunpeVTuZ+szi24FiZ7mNfSdcK+kA/qyCWvnh9IAQ6NCfBKhM7hMqLPQW5h19v+wcpaNEcQaJC4eoFAGpq/CMDTlIBQ3UPeDcCJAyzj5xY/U24loofA6g1dx0JY3QLOUV7cSzBRpJ0t5xXQL9CroNDVmaHoYCalRQGyiiPqQMZ1H9SD7V88EswZ5VvXASROyN+NlFHZ6EaoNFLOxkJyklhVgS52hxC/m/H5bnthX/lrLpT6XR85tC9+/a6dPlHI9omcMU00mUmLT4eaP0uI/GU0JqCsm1qTTizbHSxf1nZ0kNvJiSYtmhDw4JGxtDh4gFT5IlKHEhTQFYDBPF5EUWUOU399dV+5bISLEavMFRZS6w5FlKpxAODgKNEuziYNNwbnxM35UujuFXcBHcgqb4HECj5daN7VEJpm6RlIn8s6uHQENaMge8HsAELQKAkpA8FEI6+hOxrFJTmV+Dk1ZfI0F1LS4cCmORyvkYild46xG9J1/5gJAgWpxFfKCtwZqaGy65Cbm2fM7pnMXipOYryHSs0I9hA8k8SbJPYdv7Bvn7yIiXsL82lzBVxnTl01b0eI/t4JsO7Wgfn5occu2jMvTOxXvWViX/U5hb35DDr8ovFirQmhzkniI645pmSAxxQPQM2xEV2OZgn+w+WIfIPL0Di0VBcgKR7gNM0UWeFASivQJjTPEPRxQ80dowC81ndcGxgDfi4zq2nto0SaItThmOGcQY8NFPg5ejd196EAjFi68cYt13cei4iBNmMoGJW8Tbh6qIFDwZ8SfF0X0MQWFJehs08tpvbeT3X2M883tuxls3gvjLs3mdEetMGu05eVnfrcxXnj8imOoq1Tx/VAB+/+orZsd0LEjHsnDunQX/MOdAYE5HiHlV90DkuWi9iSCH7RE+IVitAIErndK8Qu/OxSYKQCuAxSVJKw67oMEOS50LyHM4CBDjMciDPrZYl8UU4MAZb7zXrAR56hcwfTkVKE1wBimJKDH1xVgBG4VPxs37YENSC5Qk43TAPAVT8xtfZgZdVRbdPdCQMxrFA2VCDoowYmpTcUlOM+wkvbO/ghvSK7OlUEZrPCjmH1hPOEahyymGtqmCGg+z61BSSREr1+nHtBudDtE/deCKBLqWDvYYNGBPwAmYS24vPQShZ7imQCFGTyWUtfN04gBeOO4JOMDwApsf3jpXNM1++xPr7Q6AhEZoP2sjH3PHWVpJprDN7KSrv1wC95GWghN0AQsUl++PzK/v2HLtgf/+r7xM3zOgeprAgoXJyydj9LyBAhaGGHnEfsmDPpjtnqUmuLo8JOnAThVJld3kFKBZIMCHpUTuHe751P5N9tKHIjE6AFGtW1daPlmajnoo4padShtMOybBDducmr3BzIBf6uUI6For/DueDy4QBEyXeKQAydYVUzBqJJBj1CiMiUsosD2sgMg7oqo9K8WslFHsXhQhsolJIYxEnLDwsZATA2G5LbXcVczguwmgEHUYsd/8fCsXMWEcR1bWoDSkwIMCeSokiGUnPUuxo3Hy2fG0sVWqgRMI/ah2lqP/XYsb3rwy+QK3H7tdhNXsTGy1xppXgXIhD34sBtPLvo7P/58IF98IWJfdUDqX3FZ5vdf79LkPjJFYEgNmQmF9x7gToAMddckBZnaonbL7EiRjP2tawJ0I20BhqWms16GwohJ23t3rptYukSh8hgw0w2WpSCgXSTXAql0u8+mpSOwaSo1WWLrmAEWjyPseY9aJVRve9BLpaMBjOsC5TQ+HMbzTO9W09SjxSJHVC9iBF9yXJ/4KEizhJ5hRCX5X6ia4Rx3sXjxN7zlNkvHJg9cRF+oq4wcBvj5XLnuJFo/1271jywcSEQ3yACAlrvGRv/M9KTNv7DPyMqHyvqXe4WCH7CRCuwG9eFY7K7DiOARKl5SJxV+QSrnT0alXSZahAE0EGuODXD3MnFuaQuE+mXpuAufIPhI+8FbBcwhz4kEiD/2KDjoGTL15HKBata1CjU3MZb43xNgxNPBxsWhxSEuOYQOW8tLFDh4gQPXp1vqNZxz89TrsHJ3sRWBytbLRor56XQtkwdr2iLZAnZqUbg1eGPHEU8CaRAhJfMCSik1COczjJW2upVayUCsx5n6cBKWoNqGkGbteNV0DZE74yKkRBXXHOAP3TacQ4vGy1cqBsewRsuyT6V4rmvpXrcrkDnqCV2sGhsqKvRWm/UowmR5mjyQMwSc3Bzjm4cdGuO+83XWn67cRozuJe6mG8GIfZmP/zphX3JG0r7ui+Yj0xLolckRvY2JydM2nhsSPAsByOHXheuc9ZbetTY8ji3ZNLaLjbavLMSVnB9rYlpUGCHVpFsjZDFCK9WrxW4esjamiCT0x/TFyn4PvRlVFRPqVb/PsrCCA4nuSZe7a4f3GwokKz3QVbCrzn0z7o+F19nBRA/2l0J6p6gQxkBFw8UQfGUkqB2LhZuRp0xdhI6IZidS1w4ej8gdegYQ/DGEjZbxfF6WrTafLC5uPAuoRl132IBQ2qmbVIr+pXN5wkPOQiToQEENjsKrOh1IOSEBOIgqwKJnHABikgsd5MLx619z8cvke8govuVJNL1vFkDCDehF9xsjm3HHRg4tLAyBvvYC0t74lxm73+6t6946659/Vtzuy8/sLoE4bq1zInZsB4Lza6xwcityMBlU3FINaoWgoJuK0DCtVgPBl/HoRQ3iFk9uk/wWzgz54irUOZxKA7lXHCJWM6V8wKLpJjj2IrV9qumMZcfZ5kWjRXBwifIr+t0ao0kpTwIxOEg2zQZtwfHXp3UKPXp/WW5hqY07x70rmG/espOpEDuh8H2J3P70U+u7MMvNPb4El2ckDYSyjc6cbzI8XIEYdQbHWvg986QS0fo52nfleaijnGGSEThgtUcPOgr0A9PDjCvFovKip2cVCTMRaLbrslHW0EKfa9xQ8G7SkIQEHbWWuHQ8+itjiDMeXxFkP/HBra10ExwZ7GvpgOoM3LC6ZzWgrMhupJRzRq9rzE3EUyiDCweDwM7UQh7BjYILAm3kGKBBExBXZthJQl8wWbPNQEdP4M5gRI7ioyQ6gNqh+6s4LGEpd/jAzSJZZaUkkcCyYjnmjt5UIi6bam4MXYUOx886EOB2nUN5N1ay6culFnItSqHr32W0bqV/EsHSFCmhkIGuMQs5VLdBp9HKGEgtDjz+bjgTww0j7JjAnP0dT2vTYUANb/483EtTz/pbX/ZW3288CRgnXhEh653UI66jWvFewfBwgwuqE1jwHdHnTvWpy6Ci2h0eDHjRXMAE7OjprXv+uixfcHr5vaLTue2hExBlFRJnG1pVN5iwnlEjtIIgquVex3SIL5MrF421l3MLD+VWAkyKKxaktyaNrWsSa1DdzBgwxbEVtf3w8LxrAuDbdzgFLitDuc6Hj0XkB4+OaoIHKm0IvM9eo8ik8oyO4bzgFOKk2RmLeFs5/KBVOvlT3DeimlmqwoBGORlUlvAS5BVAHXMQosQHASQztn9R8RSVWiIc8rNw9Xfi1LBJvhOCWB5BZZYENrcBpKPZWkj0jMttOhPjOaahH6MDbXRJMibznD4FutEgKRhBZdyitOBEFZSiAm1x1aWgVgF6y92Qg/2fZ88tJ99+mgM3O/U2MZ+1xqpFfnMmnZxhwj9azTkqDf78KXUPv6Bhf3gxzP7tQ9N7Ss/d7DTJ2oeIKPdoHPgQlNMLhlCBtiRR15dZwVmJucjkAUQ4P0QQZbemC1WvQ0NJmRv2VTuPeCKgO+DuTopfSMmYugiqvA6xVopMmqR4RpgETnWzzxQE4fcieng+JG/68kluMJwKsChAaFYNGt4kxUQEDqHkAKhQKJZqdmK66v3bl/SJsBRbl0FAMlhZ+eOM/vg/sx+6PFj26dwdTgdbJZ27x4U7UZB312L9indWO8OUfINYNc7OMfDN5j1VI9Ql6uDPn4MB3zU2tEqtSmUCkYLLwV7mh6BWNF91/FGJcZq9lHFiXPDK0SUY6H/spAp8aXFM9P9dZkV169Tp3zPv8mDTeA2I9tPUb4lEYayL8uE8DREqsRmYpdhAaondXJOeFAepEMt4X2cSZB8kcQSPLCBrIuugQpVAQoTA04AKgIp8HI4QyQRkzBpy6YTyyvozS7txOndkRuHcx7AAwJMlrLT3PoavsFCImlBR/kYoYAov2ZFYW0NH+XeygE/izNWkjfkElP0OhG33AOnbCb5NcQKGdY5z3IBG6Cb4IfQAAaQBghkB+47fbU1J9gAFhUtb8DC6yEOCYcOxBpUBPFPt+gHWy0WLqHjXD6XalL3uEsI+fPWrLlcUUWzcRR70VcjYLxjgd9wjUV+rdffKLG92Ne91vfw8T72wsL+3Qcu2v/nq+633Z1MnsoQfIRrR5fY1GVCcnQV4v9kmMeIvALvADc1762Ym62WqR0u0OiQkfND/kwCIjp4Q9i5gdap6wqROMiqgtJl7o5AheVXduZIsBINH8TwaKkEkicWDnSTlP0AUlfrdm9LPyzA1yFMDe5fD+kYiR47m1ALEAgdDjN6B6vdER2DQ9NRA0kcELXTI6MhYZ38IC0E2f1EfZNuitpUwEAF8xwbCzWaRdQlnxBTyQ9AZHzs9qIWGYK+jvZvzOQm8D1FCaCAiytfLq6dQSb1ktTerm4qbXcoT0FcV8UNIKWSzfjpJ1f2n3/u7OhRebPk44Y0vWtwRuPXR27OGhe/58ZksmtVhS7M21lwMRJ78PVvsKeeefQlA/ebQ5UGoAZAqM2eWHb2bR/r7Qce6+1/f8vEvuIhs/tPdHbyhAjPPTTGgHi3siyLDl/yYFCSZXLn7gVZRnV/hE+USUMwCDNevk5vk1lmDQ4FOANgKUy9wSr8sQPEH5EVdd0zQQPKMdF6jthPB6LKuHhvBIYsV7VqnqKuGfQzIXmBZg2gmN7NK7F43ZOGyRwyMb1sTV3P4APiPnUMaOEW9PSlxH722cR+9nxvlxqIucZGDsHfe3XG3isjjtCg4jjxckNQN/h+G0fx2sHKm0SQTLdNZYdVZqeg/YrvAG0j8uc+vGjwCKoBQCLRUQWssNFDXL5AIikOzOqIitKMxVg6RqAiDiGaIMXDE1In6S1RK5jI4FRbfwyVLhm4INnPJFQcvpzeiYoECeBIiFwjmASfDWADObIuREwh8hTUoMwKgCrknEurFeub4bXzdCMYVdys68vnuTVHva2WKysn0Or1z+rOV8BGUFXAa+H9IcVGhxQqTKjxA1qCvF8IRiHf1CSWY106akmRaA+eWp7v2AcUkAf1RxU8HSwI3AHgVLB7pOC26nlC2QSUBP9yPI+8eYN+HCwdy7uZCKLv1bg3x8foLQjdxPU84KXweW2gfZfR+zb7dj3VCO0sjlvrzH8RiN/G292KACxJk64L9BJPFmySP/bYoZ3ZKex3/LI9mzDgwGRQiRARPm5ydAqmIN6ENDe4M3gymKg4CLrWloe5zaDOvZtyApG/hqARZFHo0KG7NK1G2zmJE7v4sZd8zaFzdsEiQIJ8TGRqHo9DBB/BT4kyNCpJU2V1JIMDSifBG4slJx8CARd5ezx8OrqQtOBlUCZFhxk5DhRr1j1l1xaLWnLM4JdJTlUDRpQCwAchd9EzGIlLuzYVjcrFsaI9G+cRgtmcKAXaJLFxQaYlRdslfoDexuJfIPujmDbgb64ZHM2uMaXeMl0DA0kn9aNMTR3Cwc6tEvueX7hkFT0eXxwl9Fbm1pWU1BtZDd4LYzo5bVUFpA7jdj9EZ08+/Ul72UYg5LATs9Y+fZTYUx9e2U9+urAvelNhv/TNZm+7L7O9olFzBhsqXIcSHs7oUlRdjIcTYi/6d0YiVikoo3J/YTbZEd8J01ni6i7HS7cMZcIqXTmNwiVTmOfxIHJrNkgOUXdSnDvKVXj5lqZP5PQ5tQtBG3JFPwyw5xDdi5INcjNcj2uz8b9x+UBDwOeCA05qdrgye+R8Yg8f5PaRp2s7DwRT3S32mR5r1+VX61jvDsG/viyVwl48on3RaCQEb8ypLzuM/bf7wRarysoisV3IiozluKBxCXHmb7Bxz12ZPJygNp4f7Ar1VOqVH7TEgxHG0NBiFPZVMx32fXrgkm4X3Fq9PcNQl4GhvBh56Wpm4t+hoeKNKDwHGHBGYKQudyL03vQA1G5FVQwZuOvanSfvPG7x5UXLEs9XnxXBGAauuaYkEwAMr9pBLzdAA4qlK1iUWoXKzhUCMnoUu3IEzi/cjSyxClU3BMIF+CHxO2qjoFwjn4G7tHhwH7QM8Qr1HOjiwa4zVdXY0ey8QAEtawFlBqwuAk2kMSgEbEjBPejtsIYl65JqGeP7amL5DNJ+s472fD+4jL8XUkJR8vWG041E5GXT8Qs+oibc5Sfsi7UKutlYdIO962P79kW/aNe+7E3y25PsAR4OyrKNJYjoMYFGk2RNqLaCcKQy/2wHJZfeji91bAwpZ8h0NPNbkITQ3gRYOoHMS0+kkChADW6e+H7kHow6T5io4gbx4HAfWyIUOExY65HbQMCyOEAo24BgDjImYTRP8UcWgAnxE1lFcIgglkRevLagZHAl2G4PSL5pyCcBAsllRX9fICm+mUEIlJISupcob4XNjzYZOYJA3JkcvU4HLxss4AqS9VbsdNYBIWW7uQoQ1BCkA4G4UFxIHrxCKoAdv5DYCYYMu9vwxi0PcC7+IbVve98z9vALhzefbzeL1G6h6UhA3wYZ9h4cBwfP3JItz9008OygLfbEUWuPf7y1n3q6tDftdvZ5O5197VsnduK+3mYN5oc6HhKUVVAnw9qgcqvQDRCtQYvFXGfjFvaAXFKv7BXmYSVbR/CMCEVjHqJxg+4xkGCQ+wy7hkmMFTGcW2gtAVy6bOBwpayM63EF7YYlXR0eAB6Q9DCodIcdXDaHC0RT08t5cAxIgfKb2TP7if3kY709uRrsheXEDpdh/3j3RVqTycTmOzt28cIFe7WOaB5UXu+lQHZ5Bsc+nGfWwaGbj43h35plBXpCZ4eLxqZ74kuHrzjjEcwv/uCGpaHLM4w6eB4cqWUAQ4m2u856x7gHKq73xioMtfu8O5wNhh4cuK4mpbZYUkRyr/IrdVZppRZNfvocGXiuHgSR60d/duzt6oYV71afDZUjcu9ptIDKkQIkuvMAJPHOaO7jCO6w/pivKWiaTAtr+poIGxoF00w8O/FmdcPZPOmNk7QrhGIGliJuKl/XObtAQCEZUzV0+9JzVAUqCU6mP0N+5pCNcqUM0aAUFuJzwB2M8jHcM3BfIbe2btqQDqJSQL6Dq2SvVQoUC0Cm6ugYoNLlIAeRYg8eBfyEVuEaUlyfV5szLZKBONOiIeRO6vhdvkpG6EQODVeS7zcyqZcIrYyvNQz2+hO5/aPf8tl2ctax+426WdJvZea/HKCCre7ejFpyiV06Gqyca+Olz9353vpjKO5PbX46sRMnJbKJV6qoyq9S7TQ1W0KQuWvl1AEeToaMSoEbWrEhn8JAKjIczEiXskAHES5v13IrusEO094uYnIQFeitALeQRuwIAlHSFTEUH3de9jbhhEdWo2wQh5kXrlkaA+9AGVxvSZ7LNdibPHA9XPwsbXVCEuFKwm4wSMSoXLZWbU+s6nublqVVBxTOsdJ1oQpA3uApePDIA0xwoRV0+tCGyPWbdhQxZQYJXkiFZVCQx4iysrqpENiqvPBvP7Rv3/3zz5Lj92KmyZV80U3uQ8zBq3/J/x53Z5QI7j45jLtX+uKlDW20EssNtATJ105h9rYH9+xrP2vX3nHfyublPhMNzglYMXZTG/qlmiqWCMqQ2PihGTu4l8vcmUkbAiJN8Hm6xKoDZeHw3CUlw6UpsUaclmN9Lis3IIb0o+faAZoPArjQf9o24Y3IGYJGprAYdC0CuQGKD41NoONEPXLM/UZrpE1skZ2ynz9f2o89fs7OHvR02mBzyFguunHpvixLq6EL9UoP5569lAaOu5HrNymnV3TxhhuHzyX+1JoDqIaKOPsu76iM/wocRtF+ZuVsaq/bgUi9TAIQXGDeeeHFMjbkhR4DEm5FcvSiHtR8N9ptEBjwBMf9dbGPM/AgNiDOrDQDnYNIXUkFXTIREHTG93JKFJsImZjL2ECaGVif7jGMc4XyWwMrbnCMkaTXYC14dm1Hjb4IIiFbRu4fEbjgSK6bQlgCZlk6lwQYreQQrLXWHNf8vJOdQiVu17IjDoJgFbp8HglCDQBvinObSgFw4yLTC1p2KP+2NpuLs+jOjIaPxMKXNxay0ZHo6FqQG1p8QPtQYQvAFLFEhXIyED6ob1Cr0N2JXApRrFGXj+I3OjkFEfHs7YWD1rrF8eXIXVA4xrm30azhn18MKucConrgXclree91YIh/1VB/f1mdO67jgHCVZdYdGucOO/u/fuxp+1O/8kHbK1N2yTIgalsKZkKVXEr/QMdgkcLGOZVnXaMIG3V5qrF+sbKjc2gaL23OrMwFZ/mjjdVWWoZOVdL+gD7kDJjAvxiAsmUF+QbqdMKsdHFNZBXgTYC03XbsekJ2AIHoWdfJG5cBGFWLLK3rMQvBgVOSu6FMaYbOIUg6cLPAHQBigYWJjSQTSshOJ0nJSAZCpx85EoSYCxJT0bqP2ZrDdZ5q6x4meakrbXPqJYKfh9IZN5woZKVAQBFQ1xKt9i41oTPQRARPUArwODjVuCISLTdLunP4xkmew2A/9VRtP/LI+Rcd9Nmdmm933zn0qhuUJPHgWrfbBYd9s4MUEyr8H3zyyD7w+JHdt5fbOx7Ys3ecWtobJ2bzrLHdU7XtooSEhqsZOvM6JhLs8A0gxi3XpOuljnUkPGEgzIYQcm3luQtgn+id69LH/MOBQB0yQPGOxJDfs0EPIIWC4rKuj8lDR+tuSeEuNHGJv7tYNXZ+Vdjjh7l98NnGnjq8aFVbCHHcuCvr+X/jSflKB32jFIsrBLzaunqZKjripD/rRjThJ44Q8aDzA93LcJIBioQzHqIHOL6xspy/WNmlYtdOT5Wkk7jvSA3jTbWEK1F3R5pwwKH7DVlG0SnaympTfXTCftwkYNT6Y+OxrD2DpiRHHFR2bDx3UL0hzYEomCfN0LclciUP+ApCygj4Mde5d2cOAAhp43oBxzBJWXZlCAfKE87gkaUoeRg2g4AjCH4u/o3zMmt47UQnwWHHheRmq+PGBgi9A10P5yisNfAG2dVPw1IlfOC801DBr99LsxRlbxKrVqAp5UT8qHyZuE4ixbC1jonWB3jl+wmdsbyhE2ciKg9A9vHaKEfTztSdPRhUMwzzjNaBJFmmKmC9VCXWLxeXo68oi2+CFlEuvpLPO+prxxyMGXrZTB7R5zur43cZuSp23BssqRud5ldc22ZnypWvufk6eFw/81xn//UjS/uNb9+16VSEUwgeUyeJiJkTSh1OJefBsxkWQ9PBinlpfdHYcFjb8lJueZ9bsSsvYBCte2jU0XAbaFpm6aEmN1u1Xd8Hi5FdiL5w8d/UOXJlb16La/zhgJlYZisEX/AJdocMsgy8LSwEOvF6WJQEKNOBLiagC/B1sbJQEuvRCThYCfSh7Y0cd/fLZTevQ/jIgNhZC4TPoX0Gv0xR3Ke0UfMGeYd5Z9lEnVi4hyxPM5jVIkYJlzIcJNyrXoHX4obCD+G+llyEQlfwFbzeGqLO7JHDxL7z55+1s4fVbcVf45zYmEehn3T9X7py7t2dkd9drXv2IkdRFL6pXv55rvx0cODBgzl71NqPHF2yn0wSm1lib97L7W335fa2M5WdOVnafVM9PByAlG1xCRhuTyQCeukGiDhTdwis6oAKxXuaAYR7Cw/b6MlLraX9Y9C0vFxD9RdRNMiJIr3Em738oMJ/02WnL+zi8WAfO1vbxTa3Ry509tSytQrtxWMHHmQi7oAc1iswbolDC5cSugnV99y8jcQ3CrXqqLycsbeGUjZY9h4chAjw5UxI78b0H8JPLI8qm6QT24WGmHPswNUOf2lX8hv9qHW8OleUv7I2KOCXGczJ9ovnB6Vi3DKNPx+CSKI16DPKRSKcJQRISZcIAQ3547gGIGp0DvF9HOynHueKB1uNVB3UHKUmJyBv4LILJBBvEVXCZOQO4kyD/qRbL4rEOmoUSo0DAaaauPCmq2XNMi3XIcENRy3x++D7emc1GxyZzAkwiacg54+OCHyBzn6ewxILVee0AiwMad6KS0eWoJ9xBFnp6hNNGMB/UOkb5fYkbEjDgkyJpGvoxsPDXV00g1WHx1QhwQ9dhs/F1InuXn5Z5++6mWNdm3YlQM009yLexKZv6G3/cnj13t4JvvbjuxVWIib2omrsXR++YCfnpX3N501tAv4AeDw+EfFwHdxjRgO4OoQV6ZvIVnEIPRY2PdFbt6ysOsSkzC0/gddx5gbVwsNXVtm/BGKx0wNzA3qgrsQgRbDlPsfkTNXy7nw+dfN0dF4D3wF2cMkksdzN5hlAojzN1m+UkLz5whGzrnVI3LkKeF1WtDKzPJfUA8+5IO9RBV2uBNyMmTnBE1STHhO16zKrKqmhFyWgelj0gFDrXryUwgkNNdegYqyne43BPTKSAFTX/BCm5JGITVz5DAfBv7TOFm1u/+b9z9ijZ4/vSOh1VTx3i79zm/q3L/t45Q7PeEgvH1KzWt3YOihG2pfuYqEdFf15EGb9yH5tH92vbO+JzM7s9nZmmth95WCv3y3sjWdSO1MmtltCrakzkR3887hKB3l5NKIP3S4JMpOYnuEMUyMHpZTYhCHZIq5HR7k4tVF6ClQQTh99Zou+sMPW7OmLnZ09auxC1dtB39uF455e06JlYKyf52XAnhPkPxOo2Z1OLqqquoVWrLtxRIuuCq3rSG+NdEQznwKpdXOCgndtJCHIr4DPf38s4WOvbW3/yCzdm9i8wDzNhTq5ny+6ROXi4SeJu7is4XE1c7AT1cummiq6RvUAUzB1RNrWGnfQsNRnABJHoHF0mpKcEM+WQAnZJeuuMxBGZ9VINCTMWZY/g2LDUjQszVoiefS0ZYOWkDVAEeLPyuWJ85vWaFKPUKAm7Tzq5FEuhTVm61et9aBY5LmvRawofEoElC77BCROumtqynR9Tr4/1i2CtFo+9GpyUYDHa/JOXm0HIc/iIvDxjP3MlWEKQA/pOJLPSJTRHb+altxjNpaNMixKQlfNYMdHlQ3Y23AShkRLlL83Y5/whAwpP48Kr/CVGYcSghGTvuXuitsP/K5Z332pL3WrL5DYhUVj//ann7XXn3ijffHrMkomgPOnJAuRvrfDQ6eOmQr9232xOhHIIfJyD521gy0Pga5NbHISgWNmFWUYFAaylR6SMGitRfcInAN6idKxa6/MrG5rZiwgggbPESKZaq9HZoeArrQhHyydyMOUwSEnZEu+BJFKV/LHa8FVpIQbBspNMJ4G9x0oYd9QWgWfJS8dWXRDevAxoH3GOjdhQ4l2Qst2teqtOm4tK3Mt1Gaw6RzyNuIqBipIHiGRmp6il7g/yHpwWrIHbaNkobIyFiGQTNwMEB+QLbnTRw9vSrTxoyN5Yv/mp56yjz535JTll1rjvUXntWudQ69OKt2LGLdWFnglAhOKEruECv+9EQDjf/ebzg73l/b4viNMWU5x2DJd2c6Q2Il0sJPZYG8+ldkbzkzs1DS1+6ZI1RfyzfZKHdcYtVhQOh7TfclEYCOniSqWOA72qa2q1lZNapcWmT15VNmnL/V27hBrfrBF39lqSK1uc2u6XJRCqkhf+x4pCNB7Znlmr/+sB+2ZJ54av/9KlkrvZNB37de6d/qBhf6ueVVrplcwp9YlNAUEl2ebrm6nZoyRcqJKUJR8WdlpGjtYYi/MrUCUQP6czqEEdCASxtaVC0muQN5FZVzYDIQVG1ElD/AQ4ShRkR4da1+QYUGQxkqYzkTq2ZJlK7tTNWF4t7xz3MDJmwD9Y8OfkEk1LiA4U8CGz1KgvOu3AAEekbe2pfevED9pU3bgoYNq4X7Xsq9TcyI73ENJArQgIvVI/IAg59ZUjVXHNStxRNAcKU1BW8K5CeQdft6uHUgKkU85JTZyp0LVrKG0C5BCsvrYLEbwgnGAOCOEaYi+ohGF4jdUE0gpl9MSkYzX17zR3KcHcglgJrO+qtddvRCLts72V6114NxFkuBzI/h9a4Hm0JxS9YHzis9M/4oEZAzyxvnlU8lt+4Sm3qHmju3Yju3Yju3Yju3Yju24t8fNvT22Yzu2Yzu2Yzu2Yzu241UxtoHfdmzHdmzHdmzHdmzHa2RsA7/t2I7t2I7t2I7t2I7XyNgGftuxHduxHduxHduxHa+RsQ38tmM7tmM7tmM7tmM7XiNjG/htx3Zsx3Zsx3Zsx3a8RsY28NuO7diO7diO7diO7XiNjG3gtx3bsR3bsR3bsR3b8RoZ28BvO7ZjO7ZjO7ZjO7bjNTK2gd92bMd2bMd2bMd2bMdrZGwDv+3Yju3Yju3Yju3YjtfI2AZ+27Ed27Ed27Ed27Edr5GxDfy2Yzu2Yzu2Yzu2YzteI2Mb+G3HdmzHdmzHdmzHyzKSJLG/8lf+yvjvf/2v/zW/9thjj930dz/ncz7H/sAf+AMv8xW+9sY28NuO7diO7diO7diOG44I2PDnPe95z1XfH4bB3vzmN/P7v/E3/sbPyDVux62NbeD3Iif9dDq1p59++qrvf/3Xf7190Rd90cv2vvEH7/9Zn/VZ9mt+za+xf/SP/pEdHh5e9TvIrjZ/pygKZk5/4k/8Cbt06dIdv8bt2I47ObZrbTu24+4dWBff/u3fftXXf+zHfsyeeuopm0wml319uVzaX/yLf/EVvMLtuNnIb/oT23HZqKrK/ubf/Jv2j//xP35F3/ev/tW/ag899JA1TWPPPfec/eiP/qj9qT/1p+zv/b2/Z+9617vsS77kS676nX/6T/+p7e7u2vHxsf3wD/8wr/kDH/jANbO17diOu21s19p2bMfdN379r//19p//839mMpTn6xACweCXf/mX27lz564KFLfj7hpbxO9Fjl/8i3+x/ct/+S/tmWeeeUXf99f9ul9nv/f3/l77g3/wD9o3f/M327vf/W77oR/6IXvhhRfsN//m38ys6srx237bb+Pv/JE/8kfsO77jO+x3/s7faT/5kz9p73//+1/Ra9+O7bidsV1r27Edd9/43b/7d9v58+ftB3/wB8ev1XVt3/md32m/5/f8npty/K41UCb+63/9r9ub3vQmm8/n9it+xa+wj3zkIy/L9W/HNvB70ePP//k/b13XEYm40Wjb1v7aX/tr9ta3vpXQN8o/+F2gGHdq/Mpf+SvtL/2lv2SPP/64/ft//+9v+vNf8zVfw78fffTRO3YN27EdL9fYrrXt2I67b2B9feVXfqX9x//4H8evfd/3fZ/t7+/b7/pdv+u2XvMv/+W/zPX1pV/6pfZ3/s7fsbe85S32Dd/wDUTQt+POj23g9yIHSkC///f//psiEX/4D/9hTuYv+7Ivs7//9/++fd3XfZ39jb/xN257YVxv/L7f9/v49w/8wA/c9Geji+r06dN39Bq2YztejrFda9uxHXfnALL3Pd/zPSP6/R/+w3/gugMn9sWOs2fP2t/+23/bfsNv+A32vd/7vfbH/tgfs3/1r/4Vu3mvLBtvx50Z28DvNsZf+At/gSjD3/pbf+ua3/+5n/s5+zf/5t/wQAIX4o/+0T/Kf//ZP/tnuVh+5Ed+5I5dC6DxkydPXhNZuHDhAhcOUIp3vvOd9k/+yT+xBx54wL72a7/2jr3/dmzHyzm2a207tuPuG7/jd/wOBn0I1ND0hL+vVea9lQEaBUrFf/yP/3GWhWOAV7sdL8/YBn63MQBDI/v/F//iX9izzz571ff/x//4H/z7T//pP33Z1//Mn/kz/Pu///f/fkevB6Tya3Ucfv7nfz4PH0Dzf+gP/SF729veRkgeHIrt2I57YWzX2nZsx903MNd/1a/6VWzo+C//5b+QkgGe6+0MJEsYn/u5n3vVe2wR85dnbAO/2xxoTwcScS3+ESZymqbc/DfHgw8+aKdOnRon+p0aR0dHtre3d9XXv+u7vosEXCzOX/7LfznJ6bPZ7I6+93Zsx8s9tmttO7bj7htA+JDc/LN/9s/YEIX1th33xtgGfi8BiUAX3/WQCIxN2PrlGtBNAqn2yoMPA2UmZGXowsKhhIPoG7/xG63v+5f9urZjO+7U2K617diOu2/81t/6W5l0ve9977vtMi/GZ3/2Z/PvRx555Cru38WLF1/ydW7H1WMb+N0BJOJK/hEmMjb8Kyfy888/T1HXmOh3Yvy7f/fv+DdEZm9WovqWb/kW+9CHPkS5ie3YjntpbNfadmzH3TUwz6FfCamW3/SbftNtvw4SJgifQ/sSsi4x/sE/+Ad36Eq348qxDfxewoB8BJCIf/7P/zmFXjcFLq81cSEAi4HupTsx/uf//J+UsUD3I9CFmw38DAjq1yPKb8d23K1ju9a2YzvuvvFN3/RNTHJeCq0BXD40Y4GPC6s3NEahWQtOOvfff/8dvd7t0Ng6d9yBrkMgAZ/4xCfsHe94B78GLSIsCJSmgDqgzR1Crug2/C2/5bdQnPLFDnApPv7xjxP1AJqBgwglJSAacBO4FXV0ZFV/8k/+Sftzf+7P2fd///fbr/21v/a2PvN2bMdnYmzX2nZsx6tzQLwZ6wp8QXTif8VXfAVlk+5U4rYdV4xhO25pvPOd7wQGPfzMz/zMVd/7pm/6Jn7vHe94x/i1pmmGb/3Wbx0eeuihoSiK4c1vfvPwzd/8zcNqtbqt940/ZVkODz744PCrf/WvHv7hP/yHw8HBwVW/8y3f8i382bNnz171vf39/eHkyZPD133d172o69iO7Xilxnatbcd2bMd2vHwjwf9cGQxux3Zsx3Zsx3Zsx3Zsx6tvbDl+27Ed27Ed27Ed27Edr5Gx5fh9hgb0wPDnZqTXLMtesWvaju14NY7tWtuO7diO7ViPbeD3GRp/9+/+XfvWb/3WG/7Mpz/9aToBbMd2bMftj+1a247t2I7tWI8tx+8zND71qU/xz43GV3/1V99SB+F2bMd2XH9s19p2bMd2bMd6bAO/7diO7diO7diO7diO18jYNndsx3Zsx3Zsx3Zsx3a8RsYtc/xeCS/M7diOV3rcjYB3rLVrrbhYhpuXnaUZbct6ys9d+/du/H5Xv+bt/AxaI+hMu/Gz+D38M/Hf43/7zw/x31dcMH4nH/T9Nl4b/07MevwZlLHi5/Az86ywIknNss7y3GySDlbin0NvRW62OzE7Nc9sNp9aPgzWpWazIrfdMrVJNtjQm7Vda3U32Go5t2W9tMN6aZeWnR1VuL+pLfrUjrrEum6wzBKr255/rE9tGLrx2lO/ByEGiNHFf+Nzbtw//DO3xCob9FlwvzbuQ+o/js8c9wv/E1+PnzH/mWs9mms9r3iv8Wc2rufKr93KuNX51t+Fay1L0nG9vRJ7wc3eC9+floX9H191wr74PqyDwZIhsbbH6s6s6zCbMmu7wfqhs3SScG1leWJp19vQD9Y2vfVDb2mZWL3KbWgHm05SKyaD1R1mZ2KZDdb1nRVFapy+eI0Ecz2xo9VgeTZYmffW9Jl1SW5NV1uRJZp7qT5D3+MaEusqvEZvWdZZMVl/vklRWovFOgx8bc67xKzjdZqVWWbLRWeH+5ntnRksL/D93lLMqMSsxeIvUuu7wdLULE9Sa5re2nSwpB0sxxcTvK8mf9enluG+Zol1Tcfr7ZPCLO2twYdME2trfILGiiK3bsDaT/jaaZby3ia4b0li2ZDZ6iixbNpbj98z3RPc63RIbUgSK0q8vTaqDl9PMzvqM3v3x47tPZ9a+L2+9Wf/4iaS75/XeakON/gGY9vcsR3bca8O7I8DNmAcCuvgYfzexsF/rcCNQRkCqX4doG3uI1f+zubrb+aBl+1j14gCxgBv4zVuFixgP43XwzmDowohVWFmZZHa/Xul7c1T25sMdiLr7My8sL3dqZ3OB9ub91ZknU24MfbWWmdd2lvfL61A0KbwVBsxP7verMBBs1paiXfbTaxKMqsRXOUTq4epLTqzZTvYxf3G9o86O3fU2rLN7cBKOzyu7OL+ylqeLwkPxficuOZ4Fjhjr9yS/Ry9/j29TtCIwZDzGr+Hw+x6Qd/m37jPVwaC1/udK39mBAM8Ir0siPefvftCvVsYtxsB38K4bsDnf09zs1/zeaW97eRgXZtYmijw6XoEOApSm75n0JImg7VtZ2mSWdcgCUgYKA59z0AGr1pMemuH1OpKTygpel4DwitcSdMlNkkxX3tLUyQxvSGH6pHkpBkDtqHvLBsSvjcCSwTLDOLxs0NvOzu5rY4H69uUkz3NNaG6rvF9BZ+htzzLwC3j52DAliSWJxmvB3GK5k/iSRI+Q2JD21uZ6b4haMS14ZPhPRjcIjA2/DfWm3aaBGswSyzB50LwhQA5Q2CIqLO1SckPZQM+R4br1ELF58O9RPCbcJFicx2swH033G98bu21TLS71NIhsXRAgJ7w/XezwX7FW0p74bC1j7zQ8H7GwsFn78eN+QZz7hbn3UuB4raB33Zsxz00rjw3tNV50Hflz17nv+NnuXdvIj/ckNa70mbAphRT74PBzN8Dm0C4xq/7LzNg2/iZMdjYCHbid2wTyYvfwS5viU2Hzh7YS+2hByd2Ok/s1E5nrz8zsVnR206BM6I361bWpTiUsLVigzarEj8AsPempbXI6HmIJJanJQ/CIamJpuDiqhIHZ2f9IrWizq2etETSSmvMhsaKdLATZW9veCC34T4cNEAUEquG1C4tJ/b8xdaOqsTOHpk98mRLhLBO8eaZ5UNPlCXQOyAl+PcQKfsVwXOa6pDlvfX7kSeJdTx2NuaCB21xD+N7EcxfNX+ueC/+yBiIX+tEWiO31xo47K71rUA874U60bWCsetdO4OP+IE7eQ145mb29pO5fcn9pWXAlREoILjrEdwJkcLd7oYEQBgDNTwcBBeYT5jcmP1JoJhcg4mlk8GaerDFore8GGwyFcrV4ec5UVL+HBIg/O50goDSgxwEYHlqaavAKOEvdgza4v2TvrbJLLd2lVlqnRVcy4MCtyQl4gg0DPMZnyHPUyuy3H8mtaIAco6b0FmKgJSoID4DAlFi3j4zBwZlWZ+wuoHv5Agi+4FBHpD5vsKD64geYg3lCd4TqGhiVYtgEoGmXk/7UmJZhjCoU/Do6ynr8Pk7vVevqgoCYAzcpwmDQQScDDX5S7gmPKf7Zpn9vz5nZi9cauyFaj1REA9/+Zt37BPPH9kFXOctzrlrT5hXqLljW+rdjlfjuJtLvet/6+9rIjib30cgcxNE4crA71YHyps4mFDywO8z0NiIWbBvZ9cIHfA1bJEtDpVrBBIqd24ELGnO7+/lnb3tDXN7630TOzMMNp8d2/33mZVAClJcDTZk4We4XzwUc7y2snAcIqwUZbmlQERTlHMj+8YhVyhgSjtHQHB+9ET70kVOpKPbQZkH141DKLOmwQHszweHFs6cfrAUByQCSZSUks6WTWaLqrSjZWfP7U/sw+cbe/rZpVUI9ZKBhyPeEPcGIAnOBrwvUQ2/KXiPKI3GvSkGs1Yg5XjjERvzfvoPqZC3fi6bf182ZzYOmvX3kUIMt08UT66B2N7law3o1YtC/K68uTcZm+W9G5b6ErM3nijsD/+yU7bLoB9/OsvTziYlyqK5DV3LsiNLlB2QOcwklCbx+ylRQSL/KHMWKYMqPgeuj56l0+UisVnZWzEdjGFWjnmldA2BSYZEBSXVtmewmOT4J4IlPGi8OgK93mbZxLqhY3m161tDtNcDdewSK0uhb0mmEjVLt1gn/PxYe3wpD7IyO9gfiGrOTjSW5wgWM2uQISX4ek9UcFok1unDEKFTCDzw51H+HbKUz7KuOisLBHpYZwjnhGYiuFuB0gH6R4q1m1ia5bw+3M/CUu5RaSymNrGu1v1LJr1Nc+xLotOAVpJhDSf4fAkRfQR8q663FPdhSO140dqFNrN/8uPn7Rh0kCSzb/yyPfuaNxf244+t7D/93IGezdUwulcHbn+tYJ4hWbjhz2wDv+14LY+78TDaXGtRjsVA5nnVz2783LUO22v9HMbNAj+WdTZ+gOUVbLoe+G1eX1xXlA+uDPyADiBgjNe5cifBRtrmme2kZm99XWn/21tO2xv3VjazBRGH+kJreVtatlNZtjNYn4LrpNIUgi6+Lg7BoXM0L/MaOA6X1DrUfvqWhWIGUziMHFbEFp7ie7gonF8ZvlZYvcABOFi+K3gSn7FH9u+8HSAM4PbhfXHIDOAS5Y4g4EjiIWxW8YDILElP28df6O3HPnrOLlSpHS8HooAITlvn+m0GfiOKF/cUvEdLrTEcPlejcDhIMWK7T24W+I0ldw9GRuz4xa+Hkbd5jZLzcC8Gfi9qXBslvWHgpy+M38d/nZ6l9v/9dW+w08mKwfzhQuXWpkKgJbTI2kGJ19BaUWSWlYkNaWs5shQkV0C0I0lDAMGsC18frAV6lZn1TWLdsrcyzyydCeWLMivQsRTvQMQws64F9JVZ04lpy2U1PmbQKUprW8z9TkHoMFhz1JP7hsCTa8Q/8DpRdPIu1mCecx0fH6YMSE89MBjAN8zvFqXTpOM6KpIcq5SBb0aoc7C6UYpDnG1IuX655Dsgf2ZljpIv9oqU9wU/uwTil4PXqzIwHgGDNRIQsR6RyWGNozKAz59ZVbVWzpGYrbm23NOstzzHz+iGIADnPTMEkqm1VWk7s5U9ej6xf/3BA/u8+yb2e780tZOzmR00Zv/uA0f2vieW5AZeb77c4hS75pzbBn7bsR03GPdi4HdZc4SXnq4M+q7kbek1N1C38X82f2mTw6dAZETmrijZXvarHoSgAWPzZXlt3PT9PyJI8B/A5vz6kzMeem/aq+0db9ixB2cVyzQYTdtakneWtLkdnkf81Fi5N1iXgcwOeC+1HIhXj003JfpmSc3gj1wdlHvTzjocZJ0IQiBlC5lsiAQkAxpDVObBJo4DFodmAxJ4bVbs9JbggGXJJ9DCdbOGAsnOLBPihzLTkIKTRZoSCflAA3AY9zhEbbDzi4l94JGlfeootcPDxhbLzpZ++JIf6Ahk+Ih4TKrGEUf8rgz84vmM2/0N+IJjkOZn8PVKtVe8zA2/vvn9651T93rgd23E7kVAgGPEfXngh7jjD/zSXfuKh0oiX+SeoQFiUHk0aTX/aiBsLRojMqu7lggY0Lf5PLMU5VIEbyh5go+HP1lvHZB2BFEdkgfMTYDhubXHrVnWWzbNmOzgmgpw27w5AshY3yLS0+dL05brOMnADVRj0xSRIFMFLHIg4mZtg+QpsTxvLE9zIeIMTNeQ9LDBBanrweoqtcWh2Ww3sWKGtUzSnBIzXjBWkdbaMORMMBtfIznpEmY1+H64vkEl2JwkPex3QCuRsPZWJ/hMg01AGvRoFHxJ7lFAUjuhjdxnUVloS2tWrWUTs7LMrU9qfp68F2+XgR/Lu7mt2tYmBYLMweoht2XV2XSG6x7ssDHbKRI7Mc3ZeIbf/ti53t75/vP21GF73QScrBtPuF/s2rlZc8c28NuO1/S4Gw+jm621ywO/W9sUIvC73vkUgeJlB3vwmWIEF+w6Z11yHfQH/1k4dxCE8ZNpb295/czefF9un39/aienlWVpQw7bBCk/NvF0sAadEgjI0JDRpGZHpSVZa9m8tbTEuVGIq4QMHeWsoSbPBzsm0bMMJauIbhRBs8xEZKNnoIcsHYcHWEOIKIEEoOSDcs1QJVai1LSroBJlWnRC4tqA9AEBBI6oUjFKWzpQGLh5wI6DJ8U/cLDw/gMdwV2Z2IV9s7NHqT27aO3DTzf29CVwqsT/i1IVDtUrUTyWyK54LnFIXNZN7c9UPKTLx7WmwbUqnNf6vRsFivfaWnvpgd+LGFfcYFFqU/vah6b2u760tCwvSF9AiRTzr6k7IrkpulqVFaiRq0cAlljVddY2CZsqugYoNrhzrc0maFDoLS+FaDXouE1zSxD9oeMVqPhg1iwHa5LBpjNw/FDCVKcsgiS8P8q4A96b3byat1gDmldIZjz58YQS86ytB3bEZgU6LBTooamDM5n0iJTBq6h5WNe9dX1m+xdQju3t5H2oLeNDIwD0++TEO/EXsS6A+CNAVWCHe4bADclfVXVW5GhKEctUsXZvLYJlG6ypepvN1FDCx8CMKRB94p3cExLsJUNhzaK3oRysLHJLyR/G5/O4NJ6JX2ie51Z1gy0RzCIQnCZWsnSL5pKCgfo8T7nP4bn/z08t7D986Jidz1cn6T7PuIdcY4+/ySLcdvVux3bco+NmQd2NSOY3l43Q31eBF4H4bWiGjIe9c3PWzQBXlxNHt1tv7oigAyWXedrbL35oau94oLDP3q1tUtYsP9U9EDcEUOLhsd9wyLUBg1WOjXZqlrat1Quz7ii14pRZn7W8HhZ8wONhMIbDSxs6DjAUifDaOHwYkAEl4eY+WEEZHCfWkxuvMio7BVG+mSY2HA3WLVpLZ3ijjFyrfmiE8jmS2YHojoOQPCghIjiIskzvB44hDmV2QeIacRC1K9uziT14qrd3vLG3L3ndYI/uT+2DT9T22PmOnZjrx+FlQr+uKM/Gw/NHMvL7xuDb7/01g74r5tZlXNFb5q+9OJ7ovT6uvZZeBOK3gaaLx5naF7xhbr/6HTs25JitSC7UcQr0CfMWcQm+hqYESrkQnUKTA1mpROswFdsyZdkV0ip1rwYOoFt4AXSl4m8EcRmkWYaWyF8+T6w+SqxZ9jbZySzNIiBLwYzgPEUAkffgC4oGwPnLkrKj0r7IkTCxmaIw65cdu2XBH1TQiMvG9bVjkMb5B54rvo9mj2KwpkG5GAgoOmZF5WDpGu9JRC+1CjxbXCeuBrA6QUmsiOiAbm3IRbNgUtj0luWSkynAHXQVhASB4uaacV5tlqKxpbV5kTNpxJ5BD28kk7iWDNeXWrNq2LBSsntaDxZobdU07PYF6onyNJJBXHmNvafD3iQOJfaar3ootU/vT+zHH4V2wHUCtetlWi+2GeSKsQ38tmM77tKxyQuKf1/jp/i/V28AXpZ0vs/IH7vst27QuXnFD0eJ9yq9OP8Hy6cpCqiFZeiAJQk6tyRPbTc1+/KH9uzLPvvYTmUrlqdwQHRgwFHjC0FTYZbV6mTFQZIh4FMXHik4COJOTFTuOU4sPd9aen9nWVpYZzUzfHQBk9uERg5wjwazml2E2t6LXIcPKlQ43Hh/gCACoQBnaKytAg8kI9D6LLeihkZaat0uSq7gQKnbEpl+i/vb55YSoQCykFiOsi/U+YCWoG0jw6GOk6jUAdM11DDritxWDe5Vb288Zfb6E5X90jcn9uzh1N77ycw+9FxFknnZt7byg5alrkSMSY8lx+dPXOUKeRaqvnkDyLV4d1fNget875o/f/s9D3fPGD/wGE5ftc5eDp0/YEdzS+xL7+vsBPTyms4mhUubDBnnqd5OD7nrWkm3sClB4TzXSQK6Q8emJ/IUCigSJbY4gHaf2exEZ80gGoLkSAYrUfoENSNLbGdnsNUiteZ4sMmu0C7IsLD7lRy9wtoVAs7OClAeKCMDbqFr5gUVxJsSwDusagR9pXTviPTx7o3NUAhkybsjAg9OXW3ZLLFlVdjquLWdk9hw1nzIdmjHDuKcHFxQPVKWlfGR0aSCABUcQJSiRfH1oK1U6RdBMxA7oIGp15t5L0HrYDAJ5A6JYio9QSZvKPGCqgGkv7ZJUVjbDNIxzHNrenAQdQ0ITrvgDoMl7J3VaJJRt7AaUVgDwAWmGQPR3/yFuf3sYxUVAMZEboMGcKvzLooat7qCt6Xez+AAKXcCOQrXJ9rcsFFGaprBGnA+7rnd9N4Zd2P56XbW2vW5WFczrjZpRpcR/a+h0zf+23/X2THj1+K/I+8FCRoIGNCuU9PMvuRMZr/sTWfs5PycFUUHKhxRQOTskm4RcsbSUSa5BqB47NIljJULfSyAfgzU9WoOU8sXJWUq7GRrHbS4cERRh8y78tAw0uDrKHu1lMcAAsFsn++oEh/PkxblG2z10kDh50I/CEnSqaUrswKcv3lvnZewqOVF3lRiNdEE/R6I3VkyMUtWLJ0N+H0iFkI9a2ib+cGdNBOiieVuZ3mpkjFZQQPQSbOn+tP2oz/7nH3y0sSOl413+aqsvPmgA/GL576J3gHhCIrVZZI6l5WWrpg0NwngrkxGrpcv3AtrjdSAy8K+Gwd+N+vM1Tdv/J5CljL72s/O7Ld/2R6pDNR4RJnX0eGmjmBHWncpGijYndtKJ0/AoNA2b/wRmq1ra1ap1SsgS63NdhEJqUGD/EEgiZApKlVaBrrYrdBBPFgxNQqcU3gZgR9esEYyk1heIinTJtEigES3L6kOCCLx/k7RWBIas8kUjU8IWteCT7pGrHV150Y6umzMLr2QWJb3dvr+kA1QEwYrAAgYEewikcuIpfFacM/Q8MFyaSPoPhA+lnC9koDfA0KH0ri5RiC6nrHOO4SOCWSdNQ8wJ4gG9mbNMRD6jt3NaH4hl1iBk4SeUwR5wg5JSenNVk3GvQz1YAKCCPPxmonZjNqIKt0n2LfSzD7wRGvf9tOX7BiLVZPrqnl3zfl1g2MCQeiNxhbxe0VGYkWR2OtOFbY3hdOAeAfzSWL3n0h5YOVZZ2mBLCUjzF13mR0d9na0wiKECCcOocGO686ePNdZjVm6Hdtx03HjU+jKQGFzBMdmsxOXtJYrf9cJyBiQm3jw9MzecaK1L3pDZm86DSeBSzZp5tauKutLbIiN5SUCKLDrMh1w7IpDkAeunZdXkKmD2E60QARvvvsuTprU+pVZd9HMdlpL5wrGFNSKC8V1h40WaAeaM/zgpoi/l2Nb8PiAHvAAjcBK3J0OzR35wDJvBHohTssDkbw9cHag+I+DoeB79UPtmmgi2A9dIeHZVJwtIR2otfVsAEnrhFI0lN+g1l9CHbE39xftt729sMcuZfbhS4X9wtnW9o+qsRTN++0EwCvD+82z4kokb1023ij33n0x2Sszxo//8tyAawWKCEZePy3sN7zjBAW/wREQmodVBFgMdAMEN+LboZMbUj5ITOBe0bcdES8EM0x2/KAnskXuglk5AWdusONlZytIuEyBMiE9Qhew0jfOtqG3aZmx8ahfDlahmWGmcqYCM7fNYftpykYqTSpcTaz6YQzuEIyhwZ0iykic0KC1GTizAhHzUcGTlAI6m4JLW2VaOxBcRiMLX0fJk5I6JIbaedSZr6563A90IStAVnDGOY79pMfnhRwLAlgkQxmDLvFltTgAsCA4Y67JSFEJE3UQ85SfCc0vqEiQE4zzuO2Y+DWhXACdwtadSdBtHWtdqS2TLcnQuC4hg/rEvvD1if3SN0LmBSzEW0+UNpOVW/n5zbEN/F7GceZkYl/4xrmdng42zTN7YMdsZ2JW4PDr1KGFyYWHII5pynb2ijyI3JL7MJEzog4VrGUgFtt09uxha0d1Zsums8fO9fbY8yDIBmNhO7bjxgPBx2UzZbhGF6/Pyej0jVICt/8oC/vvxf5zsszsl7xlZl/wQGeffQK/v7SkyPgHyqp5nVu77Kw7BvrW2eRkD0CPJRhKSjjvBwQkbKjIocXnMUuYqSs4SrPWkhO91ZPBhsPUkqPM0raxfBcHGElQ1lbSBMPRycCSdlEKKhEMar2J0wSETbwjlK/Y5iHeXuZk7iS3YQKN6F5l5llvAwJCR/7SXge2CNXqMMamzs5IdiQ2lmUFCd9ASoiOoHSGi5gCbcksnQpVwDmFdV6vltZ2Oa3l3v5Gs89902C/ZD+3Dzxf2s8+esiAOHGeIRFAb5y+jHO50ZwTpeDLn3MgRPEz14asrgxebvWAudXGo7ttjCLN/MeL+cVb/cHE/t/vmNjerLCKcwKTH0ivmpnQvIDACyVFIlUkw6GmiWftMiYoe+boFVegwqDQEULSDhA2ZoPNpqmtVq0dH2eUJckhs8KQD/8nWgS5gtDJGzprlhBcRvAGtA+IVmtFnlh93FPEGQNLJYMXomJM/j5LniWCK3QaIwBCAOYi045UMlci9xW/h4BQqVzO5qfU0klmy6q3pEYzRcZGCzbjoz7Ajnw1PJGj6/cBr8cGLlwD1j5emxw+0D4UXPHaoPcHOZg8tWHZC3Xn91XyReCrRwhnFLMZeIIIYhNUA7zpCheD+8r7LASRHF/tAvxvPJECiCICUqxlJJxAF+k4IhFuBIkI8aD5hzV8ojB76FRiP50MVo339DbGiygUbQO/OzawiAbbnRX2lZ9b2Bt35A86z4EsAJ6GPMRg6RTilCDXwsswZzKV9C3iQMLwdA4AEZbinZi8mfVpYztY5H1rO1lqpycltcr6obXjNw+2aEp79ri1936ytWfOiUC7Ha+tcV3e1hX/FlAlxfl168DVPxil4M3ugPgn/2b2is0us3k22Ofdn9lXvzW1N59aWdkCiSit6jNLwUlrG+sQwJUoy2DDyyw9Rrk2Ycdcl6JjEDBBa+UktT6FDAX2cEhZABUbLOthvqtyVjkprW5rMwR+SOEvFZYcl1atFlaeRqAJ7S+hfSy/AlbBIQZtL7wu0ThogYEzJCSQiAWyc5puJjp4MqEYQ9tRQiaBb+fR1LIKorq1NVjzQCVS+X7iMMEBgG5kLMEJfEvZUIK7h8OgELkbJO8MHJ/BKkhuNKklbWl1WhHBATLaNYkVc2ivFQygymSwLzhT25tPpfZFr5/aux82e+KFGnoU6qp0lwaikRsPMYJ1d6Va14ZjMlz2zG/vyLk+Z/DeC/quNaLEezuB7JXSL3ge3/AFu/aFnzWxtm44t4EkoTtcPrBAuSGdklrdoAtXGnWQb0GTBTtZESTizMCcAlLgNmagK4C6yvYiD3IQ/BUIqI4HWx4NtntSyB/RdDRQMNmi5wQDEbiZods3g8hzqXIymhLUaQwU0SyFlh6SNXAckBjxbMLcVzmaM6lDg4bADNnLKQhUwKamDxruQFuPSFxKb+HGmyJwXKZloWSKGoQK4Drw8DI0fikAhHgzSr0Qm9bPkNwhVxAgeJFMgvSBRDBQvERBNH4Hnx66hjhzieixAofA07U8s8xqNHQxqkQjmiR41CClEi85v8F3pjOIkj8gsDkqGfi+B62Qf2nx/NrOyrwgHeSwkhi0z5rrTKYbzS1P0m9xXm45fi9xIFvYnab2wP0T+7rPL+yNRWszwL5UNU9sKFLLsQggAYHDCNPMYXR8LcPhiIwD5tNYRFlKoi50vZhYQAuJqIMOlR7EW8qeQ88ImQ3tts1Ajs8HGmz/8COVffr53g6WnVUUutwOu4cOp5dzrY3WXzz/b+Gzr+k2605RL/8OWWYPnS7s6z/3lH3BfSsr0oUkVYacnYXYeEHwxiGFX0YYhkQHCDZQumQJZhJ8RlsmQzsnJOBKfbEyX2/6eHsEXnluNQ3l4dKh4BCuFxBksYPB2uPEJpCnOJFYV4JgDrzPTdSBoqNkw2YSnrBE+qpVZzxPvQMCqAYON+kCKoFq0K2IgxKEdvBw9lEWyiw7AX4hgMLS6qa1gbwhkOOdmA8EB4cMToQMyRyQBqx3WWXho/Z9Zt1+RpHp4rRZV7c21OhiTs1mQHtQm0LjS8VmEMQCJQ6bvLCferSzH3u4tQvHQPwvb8cdkT8S6tcC34HUXjluhdP3UtfKq8K540bjphy/xE7OM/tjv3xmbz45ta7p2O2ZBCcNdAMgzh08ewtbDECKARSgUxTPHbxwBGNCo8eOHQZLiWVoJCDarLMDyB+bDsBXHcyODlBlmtiQLm3KLl6UGlObTDyQ40nSW3tUcr2UEC9H0ElZJaHR0zk0BGGJhoiQB5Q3dgDgwDzEGZVQyDmfAknM+ZoqESf03VUQBATOKQ/ajBgsLfZBv2ht90xi2cQbMOgdjI5/zXEKtztPrqW1GlxGgMTheqXJyeoZOHyoOTujlxaQPfiPg+Xo2Hd/X2iCwn0EGnxBPRm6xnI0cwDhR8g2hfg1gkzog+r1sRcheOsYTUoaCnxhbHdYv7R0ZFONRKUxpkGz8MAySVo7e5DZv/zpA3v8kgS4Y1++8hy4adPHxo9vOX4v20jsjQ/M7A0nEnvHm1J73WSwebq0eYZJhFoaMnqQdUHSRYfi4FpKqWWYxDzJkKGBM9DRigm7N7qHuqJghi+TABweapdPABMDYgbhHYcLW+thhD1Yn2dW9oPdPzX77V8yt8NmsJ95srFPPlfbk+cHW9WO02/Ha25sbhSDi5+O37vh7/nf3j2gLBuK/BAkNXv7g7n9xi88aSf7fUkMk/gmZKRktt0RQaPvKLPjzOplbUk7kAOUTBCMJTY0E5t3GbtgIYXAHZ7ddi6BArHmEoQ7CNDidxDJCcFDoMc9dTe3Yiexbr+31Xnx8uwUYXRm9dQnI3dKKB/WKD1QC/GokLlDBgbiZ8jhVRbVoUYKu+u+QHYj3QG/EEEgNMcgeYEylpCLFvZRfs9xCOLwkUUVuIWC3VDmxaAXaN5bNWmsOzSbrkoaDCc7ifUTJIX8KZLLM+wX7WCzwbla7YpyEG97cMd+8BdW9tEXWlsgCsZhvFHI39z/XUXjmg4v12sOutX5dTcGdbc9hpdn/UFc+Te9/aQ9eLKwtqth4cxAj9VQonUK+tgMhHMBlAfs72F7xmYLOUSwQ9eFy4O2QHs1XD58dulrKwkYoF74+nQvt6ZpbHVc2uqos/kOyqvuq+vlSaBPyU5r3ZHmcjEbbJL2NrRCtZm8AJnCOuX8aum9y/gZpVHMs8KsLERnYLlUPIvR7xZJEwdK0gQxZM2GvSWf9FYvBqKJ2VQev3gPzVm3UPN4F1xY+u6Okk6D5QV3KGryAalEUMyyeAHuvN4npeYf1fE8MYRVm4TdQzxbGtL6OYRjeHawV8QFiE2J3wUVBc4mwvKQ5DLRY6dxZw0CQErpaM3NqCagJhW4BSEBbfrCfuLx1h67JFrJCMbfVM3hGt7RL2LebgO/2xgP3lfY2x8s7e1vntrJrCZcjyxnVQ8k4WIy00waQR44EtBFgh8gFgKJq0xV1CFF5MGheiehp9BZwuTAzgAi6lCJZ+R8BB6a2CS4CGgWYylgas8XQDfdTcx+5edk9kveMLVPnuvsw2d7++int+jfazLYu66Wn8M/1+jwHLt8r5gyQBweum9iX/FZmX3BA42dSs+xcxQ6duAjAdJjyYcG6TKaF6t5sALzfZHS0N1mcOXAVtda2tUqlfC9cvLzKLvQF2xGRNA21Lk1x7KcGorE8jnk8yHNklLCAmRqdO0Op1GWGSxbQAOwt3wv+LMSwqVnr8tgEKHAQeCdr+DkUKDFDXDHgMY1vqKDMQFagFJNVfz/2fvPX9vz7LwTW7+8wznnhsrVuTqwm2wmMYehJIoSJdsCxrBlwLD9zv+NAfudX/mFZwADlmwYtjHWeAwZQ8nQQNKM0kgjDSkGUQydKty695yz9/5F4/M863fOqWZVdVWzJd6qupsqddW9J+zwDWs96wkBR3Eu+B6/Pxzm+h72MRcchs0pS8HglbdaKQRkhMqV1xYYKJPn4xIV3Cr4gzZ+0MXGpcx5QgrDMozR6AlRyC7xcneK/8mPLfGVR+fxD//1Zfz+m1wmt4WceE53Ptub8f17XBLvjHBb18LyySj4/r0+ivj8c1188WU+x8HrjTWosaBvcJCr1SyTe0KjW/6O8X9W8HwPfLx0Dcm1eUecJaSdNUhz4aJDf8V+xFuvWSSsOl3hRScSQGzZa1KdZvYv+6YDeXPBJNFD/j75ZdKIZelDEUqRpfzp/CJ5YCq2xuKmccB2yXy85aY5pLhCFGWhFMUj6BlRb10HF9h5wtFxT96qidefw//azoarFNJFk02WsjRS6JHjX/Hz0szZORghSoTVHTEO3vP+b77bnn1iDqYRqe7olMc7IcQoorxGMwvZND+mKRTKKQDLyYHt/lwH8Fk4sWWJt+cifuM337ZB953Sb92m7/b4bv/N7+fxrPD7EI/Npotf/Np5/MhzfTzcATcj4ckAeF0UHsXU4lc4eqYrao1utaHSwJUurKF7yqG8+EH4+hDLI37EFIUIFvx4shu5XbCkcEc2Tb02P98vmbh+OncMMTmdybB0OcUYDzdF/LlP1fGVF7fxE69G/L3fPMYfvn4rr3/2+Hg+OFg2m01cX1+/+9/z/62jg3f5e3W/KiCMeAmRjiq+/kIbf+1rTTzcXKtSusYbqxUbzyMW2SHYm4+LjEOwGgtx+oSC70D67LoP3aFum4CtxP9JzQffZu/Ip4UGCASi6mNMMUNLukb6fZXHjZqipVkUqzZvSCsYozifpdaNAwn0cxRbBBh+oUrlKKym47JjyoVt0s2lkiMkjce42ngP1pGxaBrsUQh8jGCnqI9jzFt7omU88E22ryjfUiqby+Ts0rSw4OvFP0LIUUTXEwk1R7lLxeKK3C2lEE6hg+x18QjlNhbTPOiD2nRV/OQLfXz2Yh//1b8t4r/611ci6ttK2o+79dkq1LlVtN5ZE99FAHifGvHj9fiu8e73VdS+25friF/ivKvj1374Qbx8bm6XldX+Aor7hSZBtZO5ZyXTHZl9Ax7oRPcgVkjyJOqBcD0sSkiXkcXLWhB6sRsRNOLG2uP7WDCs8S2elJdVzCcoDIx1/f0t/nSg9y0NWRNQ28qO0bKLStbrwJ4HvUteqcRK+RzwrVP9imgdOsSKeKuwYh3DS7SApSGSjrdArtEehwrt7Ja4fruMTkII3itSM1Iokrnc3J4eT+MvSHKJ0UeQO34HjSNoG82lMox5HxCdZJbvjLiSri3FafDlhRDmuVALweF9o3mFusGfe29iMM3EgWKP8TD7G74u3n2IdfgDeIgDYpllihb0VuIRBB+e4DkFiMZzFwOS/rTbubuYlg+yCd9jzX2vx7PC7wM8UDW99EIV//FP1rGfnsQZsPFYRd0MJk0XdexrF36kCzhTqVAuHyNb+iFxlyZfdoy/OL7J9jsyYkL3N8D/kePsyiGNUQu7jA3kcb5GWvFebu34nknWDmeqUH5VtHRf4oVwcYArOzC0nIq4qMv4yZea+MILbfzGb13HP//dIS6PzxDAj8vjuy8q/v1wwFDrgz/udpmrxYuYP2UVrzRl/NLXdvETZ0vcL661NgtoDQpAN2l7iy0ExQbms2ky3C5NzPBk5kbijnLH6JJ1y0HI4euCr+ZS0ZTXY1bGpDzajr3GOGkb43Qd9WaJadvH5ryS99hy1cV4tUTxpIyqOSnKDaNZkLP57SL66yl2r0aUe9G7PdJJC4l5JEHj1oRQhauc/R1PZYK24TM1ZzkjFcGd/bxZon9bPi62jUjyPojI4TQIqbslRjqJQPpLXr4EwGWUpyI2R9DPVu+LExIQfJwUYi914DIri5SUABXh00lWHTR2EM15z2n4Xtz38Ze+UscLu7P4O//yMq7gMjERWGuM9MV9LyqaQhjWp5vonwdT71wjd9fY3f/9aD/+5Gv9XsXf+6Ey7/zRS7xyMcdPvXwV40JD7+aCy18+coLI3FqwOOQBB9VBSFFaHaX58dzDb7XvH+tYQgUKnPTwM4UBs3JXC5o0AdMXowpIxpKaOC1FtOyJvpbwY+jn2O+nKDZO9RBa3YAMsvcaIZQqMDuKGoo6N0c89WHqJYaS2hfkWukUbQzzSYuqAekeRxWBDnqz+IPJmFS5NH2ae/PWzLKTaY9LzJdVxN6oHUWXkDTtHZoaGcMkB7C0SAx7J0DCTSsQRH6FopmUNmlmP1NcV+xz4h49gZN1VOGzjDNh5RtqLK04N/blYKqH+Ptu6FZfTP0jCBdlfhV9P0SNUwCfEf5/8CDHKU4ChBpxfoVgFmW041V09RwHKZPfsRzf/b9/QFvtmbjjfR6gaQ/Oyvjlr17E118co8uxquTkKHWVUuARLage4y46ClbfOI3R4s0n9Z5XB4tqgu8HCVSO5CyvIQa+jx6Ot5jLSK6rVcxYvwgRHKOpyELw2EwB3mWj0Houj1kd0aDLxLE7W8Jtoo5OvwPYXY0gKExZC2H5znUZ/8//5jL+7RtDcgk/mY+n8dL6D7HX3us36Ffn2JM7B0Tsh+7v4y9/ahefu/+W1tJpimguQCI81iQRAy5rUzQx0blKCVjg4BLlVaPuN7Yc6CDZBLOjkFu9uTCQteO9HPGTj2TeEUVaJQK6ZFHYw1Cc5MjJDRAj0jL6x0s0QxsQcWig6OiruZUz7NyN0b5UxNimsCO98tjfeHHN4kLN0cpewXwfYQnyzoTO5KSOelXOqkCQDW30TyLm6yn2z4GcIOJi1JMB8pkNbN1FjpY8H7Li8VBGeShiQS08thJ1lM/1Erf4Q+hiYQYgAUCtCwP6CKRwpGA6PWb/Ti5a/rSrphjnJn7v7W383X91it/85iHzf/2pGyN590dSmO4ggHdZR+8DMHxA8cdTLe6462L9QZ7mB72IMfcul/jf/Mevxnk1xgkhwmAqBApSTXX4OqgQQFET69pOb2qipAZPIcQ8RZcRYdwg8GhlPCw6gb33juMQC/eBOH75+anYhx8L6pclvfKgHR8GOj6xV8n1jSHOz3Yxl7hDYMY8S22LDYwQ+i0NFvt2iAqKRY5HHWVGoWmErX/sWLJuZ26fotpEl8gYQ6XspCEy/y3+XqF8Yl718ATlVh31gz6aDooE2dspUOK5q1Cymta2MUWMR69W6LASkSVuJhN1EHZ4d0cXxSqTG4syVmWx1meOo9PeT1ZLPJ/mIjSyHhC2lJXoJz3oJz6jnFU8N/6vR/wyR7mlcOQche88xxYKB24dFM8qNCFz0ijX8bd/8xT/2b989N5r7O7jA67NZ+KO7/PBQvr6Fzfx4y9V8UVyQfkUqdmaUsRMtUUL3AL+m83JmhmiRQlExAz5o6PTAjDgpPNQXiCqv8HOP0b7nfE5lCAkKXunmwAeFocBZZDTDLhI+EljMcQgSILtbb6R0EJGQDwvgq9Z0OWgDSWuoMZoPLAFiPjU2RL/y1/Yxd//3T7+2b8b4vXHz8QfT/vjT6OufLcz5MaL7+4faurpAmzbRPzsq5v4hRfKeKm5jHmootFJOUVxtUSJzJAxKxfPGgsn9Qh5uvDRWllENBdLjPUo7hLiDY2e5N3n70Nsweq7SUzTIe3DV4kG0BYYH2O7ovPMPFfphBlpwlt6zjYK08nZokxBh74X4X051jF+Z1HyxozoY5PTJUZhQhAgz/Oy+D0mxMtibM3Gpehba7aVd6VRDSPfRWPs8WqOOF9RIBeQvF75j62Gs8nJEk+QNDaQyi5i2ZUxX02KhQPJV/QTv69mwCfZiAoDPhbsDLnYNXhOQ1qLHTUs19gISskPXVzHxU9s4t7vNPEPf/dxTpLS7iOXj1SOKrB9Yd/yGY1IrrkK7+Xv917Rgh/Jxw9irPsuD9bXX/ryg3jQkHYBrcDcTXHxVHQ6p1p07+SEmdeZBQXnexYmKkbYb1KKe3yrsWEKfG988/LJTStHLY03paFPXqniEPOFNGdlLLtJa2To6+j7UciZ9hpCEfbz1qKS6XEKOphY3Ud5m2sFRJC1JRulNga4dhRRUrojVKozNcecO/Y/Eytx22W1RNyhc4jZA/yw68MUxXURu60TaHhSK1K68uS09rj7xK1HQIVIK9Hbid9VmUIhpbMj8Ub2l4BX29BwJyt5Q+pitzum0ToGknNKFgIyjXaqDqcB5814wyO0bYxbQu5r2+TgJEDnxxkmTJdmt8y7v0C1X8SPvlzEP/mDJr6Rd/A7Jjc3tJwPvjS/29j53R7PCr93edAd/JWvX8TXXo3Yl705DXTxFZyDUZw7+SfNV1bpiqhqxREKXjq2YV4Uz3Q6tdG1lUe+UgCyUHFf95xfZG/cGhQCzUKGJIiQg/bfiq2tmhNzBKWSKh13JYI5iAubYKawdB4hBFfioRgps+iFbqgN6KNst+KAcLjc68b49R/axA+9GPG3/tEU37l8+jryZ4/bR9MQscR48gdTpK+iopu7QKcMnJwlXtq08WtfLeMrzw/RlkfZEqkDPoSMmJcDxYsTaVCiw6MrNqRQVHH9xOgf41UulKEkyYJDlgN/urnYPPKEG8Q41xy4NfppHbvhESYriOXoSyutEHSArgVSRsZzAdQ7ALPZtii1i6UOqsTjNpa3I9rLMYZtH9V9fMIoOBmZrnQrB6nr93CgJwRmLp6L2pUfR2MomgdcJoyjr0A0I2q8BdObn+eFOe2NgxdfX1ci1YOEltUpqh3IIkpIFP9GoFaEENoGBS6jdniGTBGceuDnAmJD0azkBC4sKSNtOsu477n6Ov7KV9p47uw8/ov/9lpGt80MqlPgGx2ffXEb37nq440rj99Nere1zSom0OPu+njPtfTxOjveoZb8sI/V1ByPviLiL3ypjWpehJRb82A0W5w0cchc4JtWkPbENsEzJ454NdXoXod4Jxt59j7C+1F7Scgb6Fqq0NenokUzJ0pudFsiw1TF6jNH0NFGdG0RR4m0QO7cFCCqQuzRPTDaRvE6PqniwH7aRzQ7iIC1kD1RFRBzqAlZou6MPup1s8dls3KL+q2Rf1Ihs9cJ4F1KJY+cQMKPTZyux6h2Bl9A6W1L5IKvkhjSbztc2OW0OMpRUTh+n2VZLfTdhWZpn2tzK2WNY+R0fb/skuP3xV9rzi4jXgp0+JU+BOw1ygi6rGiJ4Su7gSw1Wi6i5DWDYHKdUwRK/MUvwWzezecr51X82MttfPNxn5ked5bSe63Pd/u7D9F7PRv13nnwEl98fhe/+tUmXtvBlWOoAqLnyxD4gEBsGHdtjqM6+OMsstnoGst4rIo49KNyAVlA54yYuCgyfoYRmRR6qI8o5CqKS6cJaIDTF3Fi02g01Whxady1jOJoyPsJSwotyjnqSUmNWqUQTOH+kBk63dlYSEMwom3qxhyMshY/nR2JTvDRaYm/9Y8ex29+Mz3BPiGPp/HCer+99mFJ59/LrsVWI/kHIEhlGa+ez/HrP7qJLz907BDJAiBdXDCyWsnuF1Pl5XKOaiJz2uTx4TirEAJFmGuKPgovc4ygRhA3taYOcAGtr/XEaFYVmA9i3RRpt6A8zGWK4wj5HOTCXngcuIgYKuxh6lKowJrFO4KSwC9ibDbw3JsYDxHL60xZeG59zJsluntd9NXRdNhmjcrKNFyNZGc5768WODdqWS4gPUWjCdM3y2j2S5T3LdRipCOOO5cq92hlUddI5m/vqUCxJ1KAIo0fU0XxjSWaFyOGFmsORrpLtIyHZILoiCguERANcf8Udm//QCcc0OxZ7EWBQLHN7zlFG//wj9r4e791irevynhh08cvvdbGT3yuiNeXOv7Tv3MVjxjNrxyq75p2vhfSfHctfpB1+bH38bv5fv8ASrj/xU/t489/aRsN/G7G9NMYvSIJa1m6rNQhOGGM+G0nwnp1pc0NpGTaLOYQLNQk18i6pNH/UqBx9rPiRLkVrEwxwv1CPrY9UCq8XvMlwQVkHcmIXc+H4s/PmyaAvFsKG55vnDYxPZ6j3M/R7KpoW/jm9sO7uoroGtC/MTZbUD24dnMcHxVSv2MHAyVjTfKgUZRAkeKwssF6qkRyfbj54pdPpyUe/3EV3dkSm+f93ow9061bV3nWuVpS1l85xHLZRV3fUi7k6CLFMsbYHl0XO7vRALaA4GVLm+eR3yFQR1T4/bU5v2U7xwhSp/Phdj9QH3BG8X4qo+caIGiJDpEWU4HBrgQWe2X6EMJMpnTyj2JeDvVqiv/kH17HHzzq32dZ3dmH7yb4uAPMO0XofZbos8LPDy6JL39+H3/hK028UFxFg0IXKaMcVeimIWsvsVFxZd4OtiuodvFZAsmgOOun2lyEmYuK7iViy4AM6wjZNNifiQO8R5RRzb5cWTiondgUSxXjeIqqbUWS5xNtBedDhGWB1R4nC5JIFVPyP8Tzg/QtL6gqxqITQuQtxveQBAB0Psa+ae1ZlMrD4zDFb/y7On7jXz6JS9rTT8DjabyMvp+99l4X73t2jCztVb3oJEutp8/dr+LXvxzxqXtjdG0ttRs1GIfXGuEmNGG2+avSaqcyyjeb6BgF0dpyHJ5XilQbmzGICVV4uigLTuPg38knoINulk30EKNBBhlVUsXUFDROBuFR1qMQLSWyaX9QKNZxTFK71PJzryaJ/4e6nm5+AwqghAAuIVh5ZQyPlpgecUCDjvTR7Juo7kUcil77VNYaqweYLkNbzfCecZncvK+rITKivEdlFIcqintzjB1jMygaHpdupjamipSNMqpHlcbexzMjijdimqWO07eqqO/1UZzlOEtKYQ+ZlwKcLtGEGr4wvCVPBsQBSwSHKpJRIjwjGPgIBOAU8R781utt/OvfPcWv/8Qudt2VigSEYZfjFP+Pf9nFv/qjg9TD88JqWMdO33vNfWDPsU9M4ef/ub8t4n/902fxwy9tjMZNUxxB21TMW8gklXYicRIAQVOQf5x5e3BmF1kaGQ3X1+YoHnEg4bBXMhb28E78tMSbMSWuQZIbMesyFtGFKV+HLZAsVoRKUyBZWMIYNh3a4/RkipkYt/TNNFqHgKHXOSBxEch7VQvtZpqEIAu6UXFRRX3hwot9P12bYepxdKJsEmD49ws5u/PmL8clnryJC2gZzf1BCP36cbEX+Tn96RRt03md0pOSe43Sfnd7tml/QH/q4RB6tL02Ymu0m7KH1fSkkZLIuVOMB0bFESPCNAlSPBqWyAMRm+xo4Orxkss4XkbstnxNmsZLgGMzZ+1bkF9eLyPtaYi23siEnqnd//2fXcXf/X2a0Oy+PkDh9w5k+kMUfs9GvTyKiK+/dh6/8kNt3OdjKeizTTriQ6hkomw+nlS5LCghvURHHaVaAoEApdNGkvKvir0MLFk/c/RcjuIyWcUocivGlNqSLO1RFyl+Xox3QPqrGYSOsTGdeBkn4PoElCtICkpEgNNEliEFnRV8g2B3Li+e9BgNDu4SkKyEbTwGGRvSCRmZ4PWRJ/wXPxdx1mzjb//zg5I/nj0+Wo93KwBvOB+q3NY/u7XvkP1AFPHjn9rGL722xPPdweHpeEMq6SJ/JjxTs1qFGkv9eipiObmIHBjNNEs0pzriso4dpHEi2GqaJvNrIDST1OGpsnmCU3dUvJQPNjphYgr5TfBcLZASoRuUhMMWpKIB8XPxxMVzOg6Ke6vvPFdGwo5UIgmEjeFRc3NeKDpxehSyhJmfzDETkrnBo4/oKI+IQFHYAfwe/ciMe7prcChfTfI4uyWG6zHaoYqCuRz7kjEe7yMFbV9EcQXSgGWLDW5F7k+uL1fHCYTxuMhaQ3auOmv0DKTQF0fJ11JyoWwzoWAQuIzyCVUJbxXoggCgyQzYIr728BRffRgxVcebeqYulnhhs8Rf/SqXfMTvvAVRK5NHij8p9rhr+fKxUPW+W5H3p3w59o0s4s99Zh8/9PK5vCGFporPaqSaokvFmb7YxbrcHSi8uW4qVNx83iZlJgC4WmKqENQdwd7VCNHqVvFOVTjiRmEVOWiy48OgCuDLZyNoRo2AFms1pfIQzizmERQ8J/4MWeocy1ZxIlLGzzgTNxRHjayapp45qFNxpDsfnFbVvzlExUhzh12MUXrOCq1r8f9sD8PylBBFgIjpH9oXTcTuoozjW+b0wvMFTSflRkzhYom2BcVMXz6maBhHH295p+bVer3S2EoNHzyHUWeKvq/KbF0mcpmDDBXLHphGH+EDisSR2b8MMVZ7GYE2TO54/vMgVBZXgZiYBHoCkfaF5i9ntjKUL42U82f8hS9dxD/+Rh9PcCv4LgDgvfxYv5uf/UEfzwq/oopf+qGz+NnX5tjO145iolMfWSBDnNL/AGhYgcvaHHAzqN7hNpgHUMDSnuAyDUGYmtq0HMcyciV3Ef4TixlJt3c3T4DEAl2leTnynKbYKtjeB7M2JCOupfaIWKRULDN8YDQlUnlD3vyMnoLSdvARKfAQeRhlGAcLqzbdXqSm5O/EYfJ44Gc+W8em3sXf/AeXf1Jm/uzxVD4+yCW8niN87kxVQYEpruhgf/azm/iFL/RxDx+8Oyn1t9/jAlBYNdwyLpKriPKyi7buYr44RLEFwwuFrFPcKWyeDnxoohyS11MReZTkdhWQEdVuEErOup7AtKtBkUoSZvB7VYhhE2FCu01Qneoh7y9G1IiqxFGwQlj7U+TrOiripUi/iFajF5UwW6gUY8wUqRSorxdRUARupxg3QzR7voWfkz5jOrx1jeaIXHCeHuVQxdCOjlmTtZ7FKppWB4r/JpYDI7kpyotCxbH9XJMwDhKKqhhEw1dnenjaHmOVGGo7o8on0WHpby/15BKyxxGFraIUvdJUfIpTjHciiIUcBayoVM7wNMdLm6v4az+2ib/935fx29+5tNBGvoS362lFfSkOPi4t4W1R+wP8mUXEc+d1/LlP71QI8G5JpCNvRX9ecMApFFiXAAdq9jOvV/ePCv8EcjiXQcjF+zRHXA2euHoWiGgn3zEdl8VPKonE6dMTowlzfFqzIlESJ7i5wqwTS5TxgKADGAoPvymqjnsBexendMiRYvK6Zb2Op4jH3zF3bXc+R4UlDMkbl23Mb44RlxHH4xibB3XMGzSRmVDCns+MW8WyQc+QsboNobnfoiU6LcerCMKU1eu9J2EWH1yKpuA74C094um5FlrZwMIfhPeqpKCF//adS7FprnPGH4C61ktMiumggbKdDq8NPu2a8ys+rfSVHpdTgPd6/uZ3MHEouJclQFt5uFlcr2lcTNpU6BoFvdcu8XOfauLv/M4H2F1/yiblE134MUX62a+28QufK2OjkartJUw8ZbOp2bHnUHa7IspKtWcCLjYrBVwnSX7hH9TaWOq4J3d0FH9z1UQ/jrGFeA4KmCNfULuCoGZCuZXukXwixcikDUuz9XPg7zOQyRYNLCvzRcp5UNB9j51LFIKTJdeXNQWeg8IhTQ4HwpaC2GNjBWfrEjCXhGfzY6+UcfFL5/G///89UTfy7PER9fPTn9mfbv3j1WKEv+3qMn7pK9v45c/O0cKRyaD39SKBsoy7iHz7dAkVMVzX8tYjHaPa1nHcH8VTpVdpim0sjEwbBANjTJgbY1tA/JP8xmyyKpWiUCs66DrG6yHGgctnG21pU1ZJIqpRKDnquWZbSI0XW3hxiKxc/GngjEcWP38BS7GSsexdfMHV0fiEC7ix/9jEyIcA++0YpxZ/sk3MV1XMj8soj4yGhijuw0kyP0m0ChndpYJf41N781FwNnCtYpES8ezcFk6gNvx+zKbhF+7uhXiPquO4kNXE+ZKH/6Vcz55L19y/BtRTJr4uBCkMiKxD1MXFhVmuff7sSSjOEOcL48H0ISxGjxClqBbvLxs8Rne83fMxLTnKeLE9xt/42gvxfzxcxR9f5pl3Z4RE/rhv2o/P40/9at5F8Mz79vIm4ov3fWY71cFobc29QmMwUEyttkmZ5FA6rx1+qoy9uV8oeuRjN7vQy1EuJ79Ee3hIDoz/F0WEyepFtArvDf03AISKR9bSqEaqBq3DuBkUj1njaYnxsojl0Ghytbmoo5b9khQMOfHKopL7DuuXwesQ4cfZc1WcXl9ifLJER8ZvF1Furagf3hxjd9nFk6vr6B7WQrx5vijSNSrmNVAIgqPA34Mvj08t6x9Pzm0R06FwY7XJ0XKi0baCYWvq8In+BCBSxnxCbOaxNLRk+Vunr22hfG1/ZpxrQkv5vXJuR0U9il+PNRufH1+7ES/eCKKIEOI/ztpf/FiU+Lge2PePO7tSxKpdN4zWSTWMeC1jLeVLyKRDo2Wj/3/xy/v4jd+5Nj//w6LpKVL7IGv6E8vxYzP8/Bc38Ze/0qhgE6KAv5KIo230ENbjGCcQteTXwbfDO4kLoy7amCanIlBwrY7/mCjrYp3L6Cm/GIGB1HF2972zQrtWMDzwAFU/hZWDpyGKZ/eGLH2m5epjbhstQllb2LwhYm4lPjEhnzGBqL0Bvqf9zxrGNmapo6IYbCyp18BayEWOcWQYCrbpC5IzCkUfPRacqd970sZ/8vcfx+Xh41n8fdzEHe866k0BR042bD8wL7Gtm/jpT8/xq68RdTsr71nigfSclKiCS2McowDVQtF7AkE7j3G6ink5RfN8GXMzRqsmZo6u3liZlwkZSgwgqUbiJRz/08JBPBc3QBrjIm5grbZNDHEQcjafqojjFFXPZXauSzOKPnpQwWaOhYKN+DT4Otw1VGnshOUUZTX6IlxJeFL50XSx5+xj1h/G2G7aOGlsDacwonzcRfF6FzPSxf0Q3XNlHKvelkplGduue0cayiryYK/xHk0klDRjVHsT9g9v2LB9e7+KqUvKiMj0ENwtbhF/EJ7gYRPF9RLlvT5mLnKoGozvRCtBwJKirpHn65+h4i5NbWnc8PAD8TePvNJ7zKmhooEJXY6hRbDny9T68zN5vx0u99amjf/rvz7Fb/5hphnk40/b/31kOH5/isKP/9w0Vfzv/tqXYzq84fXNgIURXwl/0pFi2ocIeODQLrMEUErmmBDseBJjuy+nZsC/owGClLGp2aNzHK+WaDetEXAmPqn8ZUFABUBIpXwPWA69EV6PaJeoTmXMvePUWCTwXUVjwjv2nOhAUwXEK4T/lhx0J0Wl5VH6VK5v4XAsY3nMOLWPzUtk7abNSV/G8J0hilMllW+xYV9VOjf4AdOJRpD9wCKES2i/SgmrxiVOV1MMb3exuR9RPSS7GG4rhbCsrZ1Vj/hF3Fyj2xPKeQrGldiI3x50iyrjHcWXFLlOKJxARO54ijfxEDm3qhguKaop0DgPOUM8HYOOcs0HxVhc4/cijleVa4MNe9FZv+L2Jb2KQp6GES9H+RfKgcPZvi3pQHx/M8Xf+3dD/M1/9uSm+f7Qa1HinWccvz/5KCJ+9ovYVdRCM2ZWwyrBY7EvqBnx68F8cbyNSRLn1RtFG22pBNkzjqXLwjdIiqiqUIQLh+hQIf6YZKQcLRylOfqRrMZSox2Nd2XTgEu7Oz0WIoUhhShjYOZh/B2ogIK7WVCKxOGAsMpSvAcRdR3LI9NK+TchRsFXkM6n9wFVtjqE5GqeGY14pCV7S9nCKj7qLr70fBn/858+i//bP7mS7cOzx5/t4x05je8l6LgJZb0zysoO2U4lRezaOn7hlSb+/JcxJD1ZHDESdcT0yYIjzWOmIpojZsxk55YR+zmW7pJKR8WE9gH8lhx/IkqSwJwDLT3itAwXeKnwxU2EdnOTMWT4VlKoDRCbByFlC75hzRDVjtkNaPjjWOD4HVEZEuG5jf4Nh71hQ0FjMzEy7o5CILgAIF1zOyg1h3wAis8kyAv9ass4DVM0HWud/T7HdK+P9qKJ03eKWB4Vcf2HfXSfqlRochFCJld2cJo0q9PnKld6B8XTFIG+pUHhx5lgi5noHLoloYlEGrepHhQA8K1GIR0mjlPM6qzB/gYAMG04bHBdOplBiEdelrwuKTJPIoo78h0zZ1tgaKzHyIvP6I4S99ZUF485klUYOR3i177Yxbe/vcRbB3uOPtv57/H4ru3HPvjS83Us01tRMC5SIZLGxGnRYq5fEcOJ8x7kq4xrfBoFYWW8mfark1ykGmXNKQbR4gBJqICdZHFiA2GnSFnNrTwdQIeeNQoSNsUgsWERbVMLnYdTLv4bXDsh6hH1nlFnUhAykYfna5jaGb1sK/5OIQOsySw8d+dVDBSob5QxvDFF/TJNiQvX5sUmxmti4qaIxxHRj1E/t0R9jx82O0uXurR1xBsIhC2PI7bnjcycj0/GuH+/ApeJZbR5uTh3qxJd3wPatsQyNnmvclfyXL2OefKlqBv2wcUOhn2yFrIyLhjScoUJARY1nI0YWIPSSmhFsUqcpD+r1QMQsKfa9BK6UDOUozmX0CsYIcvx40Z0YcNuEblWNFCA+hI/9GIV9zZFvP1hwZZnHL/3f/z8D53Hr36J3olxy6SxLSpXuipNPYUKWM2okHm6pzhFU2+imE4xT6PSMhTTrDzRKdATsp7kt5QkdUHZLGjI6YpzMX8D/gBdP20+XwtQISNbNiwbjJtMHtG4pwNI9lIWm19o/yDaQmDiYSLZwEkf7EF9/zTIvgKTZ7A8xc/IwBPysLsk0YbVKbHpTJxlkc6aEaEd9gXDa/vhV8kR3cTf/IeHuDxFvHKviB/7VBX/4PeGePvDpYI9e/wAH+/VDd5V+t9VfGmaQQZGUcZPf3Ybv/LZU3RSstr8mJRnrX9xbtyJVldlLIcqli6i2vaiDMBNggPL12R2lH6uULzkwa12KPyLbGBYdUIIXPDp0E0Hr4nnIBNXfi4NiZ+3HCXw9iJ3U8i6+UaUUGStNYyUaIxOi7r55dECEB7T2aLnqwtNDU2iZSqifDHKyb8yomC5ozmH4i/Vxyifd1M2vjnG8J2I4h5qQKMwWDeI2yOUAI8yKwNVAjZLtIzAr7HrmKI8K6LB5FnjHvsGrgiJLVj8Aa0IkKap0EhG7KBUj5pTxAie4sA276lidlHoVIK0ssmfqcIBvuPaTELhSHXvqOLR6k2Z/C6gi02UHEQNQgTnrMrjLDOY/1SPj9ew6H0fND9//Ud30e0YhVLMgSzkCH7AUsuc6iMNQVWqSFczRh6zR3A59rPZ3Ir6GK23IbhRZhB6+8PVKhzWaL5cmxod8780NPBkq6g2LBYrTQt4fYx8GXtSUB6mmE/OmmVKpGskTZ6FfvEhsiH5WZ0tS8ozc92teofaAb9vibio4vBoifKtJXb30h8S/uoyRbcpJRwZ3xojvs3ZMkSxK6JAmKWiL3PgZB69RBwBJ8zHnQ6zEnq6562YT9KTKR+yUzHHkdeDaTTvIQ2VGxvTmRS1WKY5ewpJKMponHK26gi3HI3bEgbKhgtMPXTdVko10lkAHSanKPJlTHdRGUXDzUwPUH2NCgDzFyXowT0kKRQq2usiHjRF/MRnzuLv/ZurG/HH+y+62+f1QR+fuMLvz311H3/+NTh9NpVcCZ013CMNTNlkhaPSdMTCGcJhm+9mACocTzwE0IOm5kPDroW30iRyWT4QNYVkvgrnbNIJLXWg6+DvCopHDoEaSTeLhoMW9IVFAjph4ru4SsDJGNHWhX6WA6OxejGX0Bgfz5LCjQI0CacKh9ZTjXnqNZ4u7qj/QDCBps2JZ9MN+hooRtpMxPDgC1ZGfP3lNrb/URv/5X93Gb/+wxfxyvkSn34x4j/9e2/p6589no6Hpf7fddPeEP1BsMv4qc9v4xc+M8SmkmxPfK8JrzsMjdNdHwQ4Lj2GgVOHHxcXjdA7AC0p8OgiQLM1pFrrvJtIEI0nVYh4nCleC501B6GJbqnARdzAwculZPTJy4+xFI2STdFVpDG1QVwAkocXOT99B4ewiOVyikXEdMeglfcwXecMNycJHuCm63QRKokH4UXHXrRSsSGVB7NVWaIQn0beZhXxdkTxHfI/I9r7jISJbnLKgIBxCiqKPBVoEbvmXjw5PorqYYpDsrDji21O42JKl7pGVLy3RlrVqg2o/X3PgogSGXfKC84fZSb/CClxwSeFofhI9g7lwt9v78XV5eOo2ePyXizjcD3G3BmxRDWKUC36NsoDBtRj9MUYT477+P/8s2M8BqX6IBfP91yUHpM/jY93Rc2/u1D9gBequH27JV4+MxNbBbmsTijqi5g0pqffx9Jo0l1g1NzWKqr1JKIyF9O2HqC53pcUdhhBS50qbieFv7PeQaEBLyRqWAYVICs3sKQoFPI7S1iotS800cUPU6RTX8XhknViuoeaD6gZMlBHCb4OLFn35uvWl9AQQOaX2IDMt7ZrqfD6G4oYruro2zHavV9PWWMthHJeV2bEZROnN+aoiVF7YY5mb+WskE20kexdknamMir+9xLEEH/AKYrOSLViSHXu5DrVGaM8FHknQh0hvtHYZQqAZyuprdlKD8BU7uMaUMPbT69M7SU59FE0ujFcF4XiedmNCiXizJwU8uBBg/1H/f2cDyj54Qbi8CGoXob8mFqPWLHViNNGoZTdZh+fvxjjv67nuF69+lMprn/9rvXqvv7djP3e+/GJKfz4IL/0ubP4hde2sW2OMfYgYWmkyUbhrUCppHacRX+y/LzoA7YfppnzcrSqcK6U5MGFpG1Xrp8+BzGXB6265i6C+EDyCGiW1URRxK6xofKpt6yf0G3SP9ZF4kWJwWbEQIrHUEn1B5QsYrk2+aTRskZXBYHUMktTB1lh6SACOH+CHH9St9kXQzQLearmkWyxj1FXNwkpbEoUwYyh+Vl0fhwC/CzbW3z54RRf+LkHMfW9DHV/9IVtfPozTfze70sq+ezxH+jxPc1ys5vVv2aDq4a9LOPrL5/Ff/T5Oe61fRQTZqd0Fdw9+FxhrEwcVMRyWUbZd1bqnoEKcomZE8XIkaKM0TB+dRIYKX1GqyYvhxwhYkIr1ZxFCEYFPTrS5CtRM5uGe2QqREN+cjQudOO2V7D9P6bGjEwkl/eFwriZyKdNRNu3MeLTd1iUCdyeF1Gh0GVfQM3oTyZzgyKa2KMGqq23MQwHHdpdhU3TFHM7RPc8Y9ouhj+O6N/ICcB9j2d55eOIv5h7PjVyB3sAklpSclkxBpfaEFWhDZUcNG+kDiGXubYA9dAsIPTX8vrrCoyblACq5ysVqBSasnSOEeNqKfnt77eO61UgzkVcX16lLxzIjHO827KIa5JfMj+umOo4voVaM4TmHpcy/t//9Dr++9cddXWHNfAhr5Y76zUL/6fzsfxA1L7mjZbxN372YWzxbMS+IU2ShTYpcjMNuylKUI7CpdZax7rE8WHkqqi5wacS9IhpkygTHr4KowUgYByrRoGxrnnhXZsBAgPiJ/hkKX5gc94UkllESLRF5m0Zb70+RjWWUW+XOH/YRCvag5sslomM2SdETLZD4n5opjKuL4cY+zmmqyKWa17gJBS+3WDiXsbp0RDTYYqpY5rF+wGYYQrS5qIU57XgMnxSxPiNPuLFKTb3a4ETFJQ83xobpjSn3o11XH9rjuLtMbrnOEdsdUPxzHnDOSFQBJpVU8bwJKLjfNhhBu39YspU7bz7RNN9DrlpUmEqjt9t3J2FkUw68my7SQIpo+fehJoyV9EiFuNc0Lnl5govYN7+pmHM7iJaNNui0fjdiR+ZySyKhn/Xj35mE//km6f4F390+t5rb/3/3HV/oPX6iSn8Hj7Xxi99oY6XykupCOmw4SbxPnXzJuYCF3UUh6WdtnHLc8RtLEqbp/iyh49GsnztzPzfYxlGsQ1Ig6Blo4RWHXrxoFRkmFYuSJdwADQfgwXJz4f7VNKdEA+HCjHjMwAUsQOaBnz/KM5Q7zlhQZyeBdUjRFiet0UZcnLB3DJNQOnOGOUdZczK5d1EOZ1UCMoxPkdwcpSXvB7SLWPwrQ4iKaz4STIaH4R2HKcyuqWP/9VPn8X/4cll/PGbz4q/p+WxXta67FevzwIftzL+wtemuNccPZ4hMJbGxYb+GkNVQs5Y611UZ6RbJAF7XKLDO48PXy02Y50qhnGKNq0hpDZ03lhGnd0qzWiwaONB9lCvsvYZr1DkaTgM+iAvrDsxaRJJAZHY/09jJdYlIgV4cZl/qWiptBpZNmOUL5URJIpcl1G8Vcb4pI/zfRXTWQQOdrKQgUiuA5iRGIfBJFI+foAyNeeL4Dq2U4z3+6iWNqo3qxjfmGJPdN49E7pbVM5K7XE+L+Hxx+EyynMXZcIVNf5GkZsXuBS8Rv3wF5R6eizj8jEogEe+pIVInZuxXyCcMpkVfdDOAcL/KFwVdMzo1+WK8rrlqWbETrYteg72B2tBSTDg5hLsu9jWU8z7PnrehmYfv3OJTw/cwXWYdrumvp+86KeZIfi+L+NDIH38/y/fq+L5BtJPRq7dIefrfZvnkOOPeGUWPpl6AErFmrv1KFlzZTPs4QaVYsQoIY+8Xf3eGhmHmw4P1bxtRU0LCbYQYh2BKg5Rqvol+kPE8YkTOtr77CE3HqLvQYfgKSvKz6NQmadr71o8dPGgigFkD3uWyyV6hE1vFTGfzdFejPLg69+so+kiiha08ZZPSrdJsxY7LM7KOL1VRXxjiRG1/QuFPDlRPgvVq5Zod2X0RzhJ8PrqWE5zNCDXqVqTZh8bs6RtUODNbalmtt0VMfe2n5FIJTxpEJjNFIOCUZ/Z+v767CpFgfJCWDnSQuBJJ5GyxLw9f07wjZfoB6egmNMMn9Iu7RJxor7mvFPzRvPJfetm1lxIPERbfa7bco7PnhXxW8USfRpsf69m/8M8nk78/Qf84IP45S+U8enuaLULJGe6CQ/7JZBQr4R8XGgEJ+kSjZS1CtfQH3ExJZwRZd1E1bVSBfG/QOKCC6T0mUHbtejw+MLksmAeOl7LtFmeZhBPBdP38kEaDqOQtBKjMUjWUlKJoqvf121rIYaClJWawMFNl1NLSawRcW4SAXaMq8VDtFpS0XAi97MBTBqmgEVtWaclhs1pbQ4rLiGXI+Rk8QD7mLgMNYMD4odTuMS+ivif/ty9+OzzlLLPHv8hHh/00l0NX7mYvngv4q9+pYoH9UENz42lyio0WC/3A8jYJhpI1xtbuyiO6GZEkqrBDF9v4eXYKt6Zs0kqh9cnn8Dkyc6ioy+I61JJiRCKS4gfDMKweletXBoKRWxjKqVuMCJelWqsU6XRwJ3VPwgWfBmyVsXJ2U9RPyyjelhGg1jjtMTwnSXKx4X/uSY6zRxc0jumGe6uo+RKMrlV+MwxHuGFT1GfHaJ+rpcq8fDHc8zfpCObpL5VcQ2CNxdxf3/PCE6b490MfOd5waFUJrf8nO4MjXgLhiI2vGOywXF4+0pa17tCcatgBPMFOZMoCHUha+SQxW92/DeosAQDFNX+33L14+N192VMT2haxwytp9Ec4uc/sxUisNKhVubA06fJ/cE8Vu7pzePWOvGD/4yliJ/6XBuvPuDiXkeHHv+vzEzxR+Xfl6wghHckXuClmHQJe7ysEaFGjFfumVMuLApg/JvkXKtuV1849l0KNzStye/l+ajoSMHWcFXEkX1QT3H+Qhktog6xmIzyggALQJCqmMkXrzLHlrJi8htFIdg2U3T3l9g+NFdxelLE9MQmxqDtZP2yj0AxTYlwAySls8QYs6IKC4q71yOOfzxH/4SvXRtHuG9zVPBlz+pYjoUKRCWd4ClKbCpgSFrf2NoQzqARTfJ77XPLSMKqdmgt9vRLxdvNOqcOyCAGq9A8VVPwAp6AKyaXCySFNfYkhMaStLC0mhHHk9mzeMFWErMG4FKKs5+8XLl6cL1CCSCe8jTEz3xxH3sQ0e/lqJK/713+45ON+P2Vr3bxtYtJnTHKQIWea2aKlH6Jns5d95n0tDn6BRVb+XogZVyC9r4SOqGRLFCty8eWDoO8UhBdxqUsswmvLdSPqIeLaDmtNTIbdXBzAZ4GBsmZ+3k9R0l6Op0JyIagEm+uuusk5qAYA+Er+0H8BcazU+VkBL6+pWuQN1KqDiGJs2vrNhqSPfIgMauE18TiNFqi56yuxokH8lmju1GEqo13eW9gyHJ+nEYXnC+eT/ETn63iW4+KOD0zfP4zeaykfh5WpK0E/iUebpv4tS/W8WB/tPSPhmOLfI2CAMpAfmaci7jetxxS1y5oxohNhy2IQ9SnfrAWwq6XzgMFJOhLWR547OpnwmFW9WRb+6CkI4arh8edEA/I1lnIIiagYbKjvQbCTjsQ7QIenekL4p2qwKEQRIRlNFPpHmiixOex4AKVbNEiKUScEVH3bQyPjy76ZGBdCj1HUYxz0rL3oSsfTl67QTaPsbqIFg7cxSK/weGRsMYoXrDRcjvVMfdLbKo2ht2VVZiamUfMvZM1ZKJOzcfGrNLTi6BehMCHRfzDpTvpYsz4UL0vjIA17r4ZBIm7Yu9QcbFoRNP7Uxw/j35dydmmW6bb8jv0z9LrfuKRcLMbAwtFrY3xFD//Wut8398ZrBRNjuJN0osK/NsMj1vl+Ie0n3hKHj+I5wxq+gICBL1XVsTiEadJpTpxLnkoNni/GpGV6w53iPYLRYxpAlLNUsQJyk2tA8V+jknN47QPpsfFABbe99xX8x2IdjUcRtlK89Q1dRwezTFeNdHu5ugusIRBHFXGjFlzDw+Jhcd2NGdcfpOpDl/fKnjjijMVX9fFZbc3H3F4VMbwmD09yQh9eFxF/2iJhrzd2Z6e7A2BZoxpqyq2O6JGIq6fjDG82ciOpX5+iv2ZETAKSpDw4z7i+CiiOhXRELJA42WxcZTTEq3y7GoZmUs9vytieFxGcR+LFYsumyZdL1IAIkUutjriC7pIW21+SvYnLxWu4+CfqYQQcS+NAPZHUHdTpeDTajKhApem1DQH7UfGynlm+nzTp+uGTfGRkq3puXcdLgpNPH/WxJtXvNl3D/h3rr3vB4X/eBd+RcRP/chF/Nhnp9iPk/MrlRd6Epo2IoRg1OtI3uhnhPL2SqJD7ol1QfoOmofXEVFGAr2MeMEZYNxZcCjrEiui3fAh7syLUFQviRt0HnzQdTRzbT5SZt23Z2zaVmiBZORYWpDLqa5jZ1ZHP8h1vKUrbxHdYgKr4CbnCMOdKGzFzNeDQIJo8n/9jNiDhVrLm5B9AS9pKpqoq4Mv4LqR2S2JCTKdJhyei1YcwCkGmUDzfnkMwO8ymGCDWkjiX36xjn98HvFHb/1Zf+jPHjzEXxWBv4hf/+pZfOXFY1yfiBGDF1pEr4LMl4JzKWe77U90zwdx63R3CNhKw1SajfSdG5Rsw1qg+bGdC0g2f8a6XEebqfNQcahYMbhz+npzohRtVmM7YgSbw1AZphrBerxLcbLZbKLvj2pk7FPm7lt6YXlsMs5J5BJCe9nI4w/e02kY44ScvT5F+2ITdezi+OQUV28fo+rL2CxVbDGZvh5i0yHiKGI4juISekwacboa49hG1Ls+zj/Txlt/UET1ehPNcYrNS7xXKISLeHJ4FO1FEUeNdU3HMPqXhR4j8jYVf+tZTn14RFnbR/eQJpBLyEUfDy4Ki1GWKLH2FP/Jn7MTBZqYSPIQwuDLkJ/cVfs4jgy3c9xo4pLQVZo4COg1MXV6Ey1okR9ifYpf/twmruez+G9+98ntmrrD97st975/7t9T8fhTPPkblHBZ4gsvtPGzr50byQYpzq/BcoSCS2gbBbpJrW6DpAGERmEUbA1eVSa7FKI0CoadVnGMfR/N19OXy6bHdiBlw4rlZzGOZH1lQZACK6hJjGP7S1MYunvmtq127jR40Avw49Nwi3QLh+y42Kf4Ebedsa3thcSxVUFlSkG3x7VsjOs3UPYW0ZEz3C4xHxApmvemwrbxxAEEQUpnOOw1qGEb4y5i+MMilj9s4rrvY/eqdqL8aDfnZfQcJAIYZoEaKpY0HTN9hH8Xzx0BDQhaB6jCPoKv1whZBWXUME0jCSUs6Ptl9i4+PYUp1C3n6lIoYK/ms44zwQbuvBdC+07m39NUKX6OCVvuT2cGuwlkGsH9KlN70no6Jheqsp3MgsUVaUMIuk5T/OUvnsdvf2sQDe0HsWY/EYXfc/er+HP3h9hSUTdVdA0fCIhFFS0zeaB4Lhu6A4qishJ/DfVfUbWCjqnqsWLGsFH8NzacOg0uPTnE3vCB7KPV2O6iLKNuyihA4xRMT5Yui7TSBoI/YMfxMRZF0liWP/e7GC4ZPfXRgsrI1dzRPziD2yOQcdYSU3/UmHeq6tixkGarH2nTuQx1+UHeH08SqRBqD5lcsTgyDWqcf1gsMXBZKADe47eyZlbtbGCZqcsaAA5kG1vyg4eIY46+cSj/735/iD966yN7/H8sHmu+qrVxoNBF/PwX9vGV+5fRDzQoRnvXyRE3Ofw4Vm7L2QZCjeJw78gjjf/hl2oEtKbG4FsZctGXei3VqYonAjXDY4xNpIJFdl3i9qTdVSZHWPzBerVtSKYMyFeM7+TrfXmpYCzLuLq+urnInL1p5EMdtBoUE6s1luZylP3JJJNmVjvlnlIUsEaqh6guIi7gKYBiz6Es7fnxGMcTvEcf+DJZZk9h40QDxaEND+98ibOXy7h+VMTVm3O0SxXtc1U0UcXV6RTbbS0/skXyeK5ij4vk46+7DgsJWYuJb8dFoXsBuxnOqrTjoAC2+tJfwx0li5DkVKrxAhUdhxRi3Ea1UUiM43X0vYPlDTqZy6TL7QjHq4/uzF5iLdcnFA9deuR19/FLX6rj9et9/P63D++gA9ystU+4p8uKsCCoe+HMFTQ8aWLwlGyjjF7uFwp9xvy+/EWF4G6ZF0e3KWkjBQcYGfMzTNzUHQNKLHEGxR/ob87f1XyPXgcUhieskARi3TZEODWwmcfjHIe3+bMyNmcRzR4OumkTC2uEe4mnh9hgjxiQfHfwDoo8nwESDLJeQcySxqDn3jZ6TRRBEgJWS5w9P8blG9jEVJjZqlAbEWbs5piIfmtcFGfomzxqJeK4nKPdFFF/qYqrby5Rf6eM43GK7atlTKgi2kncYnH2qlom0KhteY1qfNTggCry/ABGFtkpTZf27VNIwkZhbaIuCWzJc01FNRtRwzwbWoOUYCPFOYkVi95reQa6mMekXg0Uf3caZRHHT2eizJlEiYAegOfUw/sT1SXhc4oIWTQ5uYQKe74ppAsJal7dDPHcdozv3HrG36RzfD9I38e+8LvYNvGrX+riVboaZvoSQbk658PSGCXDnUHjygWbBy4J8+aM0TPGnT3yQZ0o3sRkXzLxZuY0pJV+XIWWce/BhHGNUm1GqQs5izYLcIuoRkbJqfYC3eDfO6cYAB9P/UFqw4KCVahgKsDg3qnjoVhtY1Mt0fNr1fmbaF5i0EzyAvyPpo4esRhVrCKajJC0q4O4bmSPj+iWsIrB9R33dAxuZBdDR8RYSZwSYuaKKHuELSaj90+vbO+T8cizJCmoMRV1fPmlTfzUK5CMaXY8BlqTnOQLJrqmLVNoKMnoZDRDLNisztn0F8ZLaoCSmpZ6UHPVdH4ZSRIarCInzYU1egE18Hpj27FbxElSzu6tjYL6Ff202+ByHZzZlYOqy9ZBo11fkE1Lo8alcevTtV6IMkNOjpLD093sKJhRo2JUis64brtW+dojlyQvsiK/1vtFkVSg/VUTY9/HcB0xPTZPq3lA0kEVy2UR/ZsRF3Un4+kTe6w3guDsUfO1dLGIhe5JrwUuVYxHkNkyiq2HuUJv5F2WRQAInxn3oohIyQnRn2IBURpFgmsKK5UZ4SvykZ+Lb58jpmqZzZdxQhV6qoX2yX5DJvLOYlbaAJ9hXcaL1RS/8pUH8f+67OP1SxCaOxm9d9W+8gV8OpM5vt/Herl+zwcTo24bf+mHW525Lj4S1ZpL3e26/KHTSC2aRULyJTTxF2rn/SCkSXGgRubhY67emtj9rL9T/oygtvjysY+Um5sNFutYAh8oTSwAzMTt3LB/bo5uy971WJbfj3ax6owgMg1ijzREuY1O/EDARHFL87Kmg7ASBNjr/kyjcG4eJXnQqEScPSyifxQxneis6rjGkPgxlmZ19DSKLfQNkE9UuIWMl/FRY/Tdns1x8fwSfVXG6e0xpt+LqB8UUZ1XUbLHuB+jjK6rY6nh1VHsGfUTk1WN2+pBCMJXiBsIetd2s+xruONWaU7HhCsDsUFgR6YjiLCU3ZvCMWyvUHymMHMVyuhOVkRrxkeKzrHmcHvPOaI1oTpNAqBb8H7PooKM4hvP0RK0oFjLWhzkbRPxa1/fxf/5v0YF6rPgB9FCfSwLP7qQz312H19+0bN7ReQFpsZcKpUWGcRxeWjJysJ8haIGUvZhCPeCkgcyNguIvyDSEEGEUAala3jhmjYn6MtmnRRyU68Fw8Fvy4bMV1SxBg9viYmWn09f5pArBExHBpTcxdCPcTqchPq1u075f0I3JMzAYBq5+BjLFQHvlby+xJFiE+mSTQRBC5P0eFu9aHBLEcvBhCoY8jyrjOg52aKb1c1zpoxcfYIUWyVekvkMbAqrB5Y4fcwyPJ/mx3t1elqm1EdFxPNNEb/0hTb2myuNEHTBrKMiIWZuhEgQENh7xWi/VcA6zQM/hEJAaTUUIut0QeeW82ntY2cfLG46G/3e8sGcQZqj4jqVc8k7WpMv2AfivmQWLVZDfCVEcBVGFBVwbuQ/BhJBAbMig1k8SQHsnGn7b5lsL2GS6B3eyzpM18JSajpvfPY6quW1wFKGNft/GWWELmo3F1Q3RtPVMXBgP5pi8xbRwlMs+zGmt7s49dex7CeNY/3CW6Gaa7GtsVhG1UnwItGM0QRui11bxiBvzhTd9Lb7WEdEKhqp60o4xGvhlZY2npp5AdzJD2O/Yj0lNIdzgEIUC47DEPWOyYQrOAscjCbZC46R+hRfvHgjfvGHtvGf/ePL5I69O9r3vjGC8IkZcXxUHnePsverZQ27xEU5xAvbfG9zb3kPWEWrfGf+/U5YNhe+PPZyZEhzIq+/pE5Yz+rvU9OQAo00hszpkUfCNF4SjkCRyGg9J+BQfNZxImgnIvYPI7oWTq+pIPaRzIg0iROg/YAqmuJBgy8gQuk7jbw+JwpOqwS9v1cFUnrjiV+atiiMK7uLKk5vYRY9R7fn/qqjv55iuFqiOMoR1Or8fiXU8hKrmLZFHKuT9hLFGgDD+M05lick7dRxQpgBwvZCGxWFJEJKrX0nbyilUZ5JpSZq9dmsyLT5UEg40pz5tbP3aK4o8rImM0KffEnZxVAD4MOr2NRUzmP+juchqCrvc41jgGsJJgiroRYgky1j7I4gixjOArwZ9WcrYluZtpWjEczbBVRtivjyC220cZQ87u56fIdi/BnHL2LXVfFLXziJ40S5xcU2zE16hA1RMu6BZJryeFzMm5Jx7k6bZ14GjW3kyk11DqSrvFEjDT5sGbFQ3LW2PVCVTlHW26+sakT2rptJprkj/83BAAYNV4B5WYOJMopEy71R1/Jz4TRtt1WUTS1ndsZ0w2GIrgNhaCWPn/V7xyjFj+BrUrnFJTVcx9K0UjVVZRMzpFPSA8rWyrGRjodOa4yBzE7c14ibEVeRw8hcIUVqKRpqHalRupoYjiBGJuTOf48zjHA/ylyfj9DjZsOvf7Dy6PI/t0Udv/JaFy/tHiu3RdIkVKCg0pD6G7k7CrFmfU8HOCpF1Lsq+jioQ5X/fBYMGkPoYnBTpfEEIx15HVCkEYyego6bIsLJAVx8KGU17sjj0LWiUyH4OyGAqeBb/17XpqofE62FgGAlAXrYpx0D5zLCjRwNy5gc1dyJ3G0buRLdVqLuI9EDVSGXLYIs/DWVFZrpOCD9WKtMtdAMK9wtXAF1Ye2XxUaNVr2zare/jGjemKLod9EUfUxtE6eiR+gv5BCvtl6xXH4vNC6VQMwbZx2bAuAz9hP9i2Y0zWvl65ZWNdKDYPPCt5aLDLSbJS+PO/YMsywjUgSqJsCiDj5HvpLiueihATSy2MCHzO8l0wmjtk40sJFvsZzix7oxrj53Fv/f33t8gywnHW1dkTf/9m78c4VX3qi2n8LHuxxc37233uvBiv6f/dxO/FQrc1MlKoTI57EmtPD4MuVCAiJB6fC8zGelaGLcqaZHtiJFCphowJzUgihqVdZq+gKHzS7Ebu5tG+siU560S/RvzzGepuge1NFsQHf5cwtJlLbGtIteP70gV8GBlb2OB2XfESpgVSuVFSNUeKhGJPW1St5phVbZB6WKanIDR4G7Aa3b0QCO0b7A+9MIwe+PiJmMwGMvM16PMRxOMT42BYTXzGh5aE1l2F61ASbJuXX15hLVfoqzVwgm4K6qZV8zX16r/yGhhgoAakOQVUwx2FTRP3ZOcbW3h25JHJurNQE9SkqsGvvjrtFHel8ScYVSIo9bCkGbQ3Nvm4Ji5DW9j2xwnblGeJyq6VYWc6mIRL6/63gO8Ip9ttPEynMQDUAVcRZL/PBnqvhn/+7dLdPu8m0/sYUfB+z/+Jefj3vxSONHDmEromTaI4Irs3rFFqKWrXMcFY24fYRmaxTM5ZAzMUmuORGBYnU4WrWzbRqNWB3E5K4WXkXaoqk7Oo5wOUZ3LrLudGentAuNd3EKdzqGRliaMfF8m9hgJtsVcYlBJmkewxAbuIPbUt5+sIrY4FSHI6MsVMiYxUJTooHiv7HbaIo420Jq5dAp5cEnCBzPISmRyhhROMMxydB22Uk0+BIhSaSz6zyOYCSmzoYFyqgJwv8Sf+mrm/i3r4/xmxhxPnv8e318N7Yqukh2l11RxM9+uoqvv4QdkSOViGiDjI0hsZBmDvu0KRoOU5TXdbS7iOn8Mpr0h/MF5hEHZaK4qFrbpi/QvyzYFAndsmeY7iX3RZmAk+MMkPM1yEhIQHa+GTXlUWGOieDqlRieT46ZgsM2R3TlQEpbVLlmxaE5ghxwx3DoO1qJcYxsT0D1dyDraWQOjxfl8bWNlDn0lWGrN7COSV5eUD0GGS7zkLJvZpxMVJ3993SJpMUSl9myr6N4c4rpdZ4XRrgR8zeLaD5dxEjHScEKGiFbjMbZnevFLz+wIuCZY3PDe0OTCJWbXwEPjMKA90iW6lxWTQTJW1TjqWXJRWAVN5uz2WBwjVgk48fl4eePZldu4/J4iprou26KNvx1HuP5c9fdV01RL3WMj+fYt3P8+Bfn+IOrLv7Nt2kl7Cf43dfNqixd8Y7bv4deEk/tYxXBrvFoa0rCrVr53dEUWassU3yVhBcljCXiBTqMFRiNNPQETurWfpN6Z8TN5Bd7s1h851+0xgZqCiX0OZE1hkhkaTP+z4xaikOruG8MRmxxIlVoE9ePnBvdbBFzOIIUzpuLx4R2UdTTUKS9kERa6vQYl7oQUvEHVQ9FOI2app2FOLUqbAWOsJ+OKgB1faZqmXOC+4dmCd89UUB0qKAiG2O3ccFczVNszhFoUfTYG5Amsyc96O05qgEAw0kWHfc1BWXVxKPf5n19EvuX2mhaePRzDF0TQ4+JtgvKaRqUrlPjAXi+xLyJOL5FnrBTRKod5ySNHTYx1Atl9D1+jM6xVzOW5+HM8+bcIuMbjqHEorZR4vk4Tcuficp0+LfrGNnttgAbag1ehxBJ5yva8BvUV0JPJ33wfp83RfzkZ+/HP/3Dt/S9N+tvRfrysy8+yYXfa5+t4tX6bSuG5GGX3YhGISd70c2tvLqc4en2WE7hqawSs2+koLHvUvas6uqEakMFauo40SWwSejGcpyDcIOxso7QJaH8qlahJ/CMyS7dflWLQ4foRDJ+2adw2tcxDUdFusHPAF3b7TB/RFWE8hLKxpTGkNhR8Ko78TdkECmyfhPz4RQFXYmK38FEVgXUW7Us93eNjtMZfXDhWst7ylwpbXQFeCMlRtXLuJeuEZkU2cOL+EmMjC/aKX7y81X83nfK6FMC/+zx7/9xd8NTS2Ai++OfxpT5WmiVute08bCfnM1hy4MNfXXhM86RitcI4Opn5bPOhPIVjZIdkWLK0tlerqZ5AaU5K9FnN7mxOdbVwajvnTXmEi+QC2WdTKaXFUWOXEj4sZkH7Ng2ir5MAGE5FnN07LWkGKw5pnq9HJ6gg6B7Nx5o2L2YHzNewddlDAWHxxndQvCFwvkwlgiF4lgO/Fbcg5ovlGVUnVx55RhjPUf9fBHFsbyx1WCUVH17jvJFqzHxSlMZkbwu26ushEwLaUA2zfowf9Djujscyiw0pjvojjh9CUbYYtE0k3UE7Ko258PJNUI4Vg6l0BeKTUc78hFnHmz+Ax+JUbNGem0RzxfX8bOfq+Ibl6W5Wjorv2st3li+eC18JB6rNeV3XZurefL7XqdLEV/71F5uDUK9M/fYHLhC/DgJooolWmxH8n5f3xkLZgqhgbYrSqqCbFr4HjZZKdRYNiF1nY2SJ1DwXrUvZA+y7iGU8KjQQc9qFTv1Gai67zlNbNZXdSOyynQQ1joo5R0PSBBi+/9l/CJnBChZKmkNjDOlalQwUfjIJ1YG0UqEj2YHCGHrJZ0LWeSy7s3NTZ4cdBFJdJdoNtnknJdRvFrH8KSM05tLnAY7YnRVYzFLEXH4BpGpS2yen6NsawuWjh02HUYvKcZJ1DF9N7jHd/fGGLs2TldLnB7N0YHi0ywyam+cwLPyGpR1zS6igdR7ZLoLnwVfo4bTM4MYhsEcxYb3DA6lRZ3QvURv4XNtsJSzqNIfxG2WeS0xQlqC10OMfD/xx/UYF23EY43HvYJumpF3oO+fQAPn+8+dxa98aRONImpyQWrq4nl8jLYlNVGc8ZRVSGLX6cPz5am0AGp8irY0N+b/KN44JFs4A1nQWSnEBsdBne2+uqSzydjMg1ALBkjwLgSTy0w5tURCFOnsR6kAdfnQa1SleHt86oxsdfhzMaDu7Rkzmwys6CxJzklSQJTSYAmNLC/m842h7QGJPl2GF96EtyCcQy4ZdYDOURTykWQu20m4q/JrAonJ3gJ0UHJ/P1cZUUYZv/iFbfzIp1a889njP8QjPUSVMrPtIn78MxEvntlrT2NFLpjLiOEJpsVVlKNzqGMzRXNRRrnDRgGk2iRyvMdoIir4K4c65idFFIcy4tBEXFUxX9Ik5CgS5AfB0TAriaZJCwOaDYkXlL8L/y5D3IXw5aGZYgTxntgf8k137qgOMaawwOnXi0jZBbwdXktDwSImq9Yc/DV+qHODb7Nx1byIJO/xNOu25vlg67e14vZ4PbjmhOOTvByLUzg/Mg5Kwi1fABrBLviKocyv7RmYKn+KtuPxFLvtTrmm7bGNbq6F2jkm1xtLNjtSnZibKDQWywu9/b4cVgsc56u6KQRRETWFohSebX74NKkax2uq4V+z8ojwDjWQ4HSAZWpiOtQq2mNj42A4Vx6rc5bgXJBcJ27lE3YTTC44B5b4yvMRP/KiK1alkOU4+S4Ydtes+CPz0GtIDt13/fn7Xahsmb/89TN9RvDa5NEvg95b1TzZ6kMWBmnX58LQ2gsLn8QFdMEvE3KNBP3voNA0GDI7tyQg1wXnrtW8+gm2f9U9QVTZ6ZEFfu2Fz2uZkkuma04IaL2M3LOok9GwijJn2AvlM05982bc+AiL6pF7C26iGksXiPaTLeJwKGM41Goqy3alXnDOcAD4xtCeotHD4ol7qRyj3kCjgKfu+0UIWzlEew9l7xJnry6x/UxoxLvpOPM4G8o4fbuK69dHAResaNwtzOXP6cQJOB0IM4t87u3tEO0DRt1FjNdlHB+P8g+URZm4v6tRvUfwykUWhxjwhEeGIsg02s0ihbcde5iQAKJ4OiZVPvGT3JnJQWY6wXRh5euudGnx/bHNEKhkD8HPv3gWX3hx++4L8oN5Nn98C78feXGOh+0cM9YVOpQltSHvTIWeNgtGy+UQTdeZE6ADEeg2ia5C9hxXgxCi5WtYqFoEbNZERlSHZVzOjTu/c0SxWFHah5SLIHqO06Grw7JF2iPGPeNRBro8JyHv5brxbiOrKB61teqI3a6JdmMBytjDiejVLfK8PY6jkyijqZvY7DvZwRR4hk21uBTz1VHZiRSN6srERfGGr4VSSr/ve45Csu0sT9frZRiuPDoZULOnYAfO1SzeIoHhcBT/+tfPbswvnz3+/TxuTXzvFn9FfP5+G1/GBw6fNj43vghjVgqLiyKK3RILhd5uUFD8msW6ZkOjjFuGNqbHEdOTKYbjJCrOsGXiyeEFojxHdbnEcgWC1Gg93wgC4KTgoC9uWqHu/CQei4svCsr5RtRgMrqfv8eeEr9iJ8IYBTSPQ6/hsJyi7YgjSERK3l0E1w8x0LRhnL4iUOvBKL4TNAZbT1Aw0XXLK6vDD7OI8VBE04Neg6gzS1v/MR8RSoZzNtmLcAGH6MeD1YdSGyPegEG3RLFN66d6iQefvheHcYzhDf88vMPYP+YL+SG6l/h0jmuSZcadjGUJVPS2GCVUGokQ04yTyi7fNJYUtKyX893fw7nGu0UF+GSO4hAa61N02H6D32N/NjWdmUBCMgIXDmcEr5C3d1PM8atf3cXF1qjv+s+7rs2PgxN62ny81+thxLdFNAeZYS2EZU2Uf08hpJQNZ7TC5RbAAIIE/5T3X59rojc5QOLPJURMJAwR4SoQkPWPy3ln5ooLqNY8us0chzfnOF1W0XRF7C4s2uAeM9Robz/xelH5A1RozHz7ChWjKHEgn7mDDmhulO2bcYMACPZ8dzQdCP7Ne8KvORRxfMNpG22XK4LfeQKBL3X/6EyQvzjqWhewUJOod9zUZboU1jHy6xvkvUcOcHMe0b5SR7GZY7NZYvecJwn9G3U8/uNJVz6iNV1DNH0TAg88eZm4OSFFHoVprF3viii39i8PkHuQUiZ/qHlVBTPWtecvz4bm1JYuTgLBn1Be6rJpcm45s/F1Lxjd99lJc6siXk2lgZvi5nPhAHHgAiETcJGV0BJzbNs+ntu5PvhBPD42NzSRYT8C1+Jk5GzCl+tIlwFnwNYU8hqrInZt41EQULUUt2xOFHx8qOAIFDNcggrSdRSOxA4IQwyHm+QKaqjkaqEcGwQVDXw5F24iVa8kbl1qQwxr9ug8ytuJS6Y+uVAlGgpuBIT3gUB5ajJGYxzu+D51XWz2bWy2jKqr6McqTgerDytFwPVR0yUygsVguqyi3W2i3rQxTbVQk3Ic1fiQBMLPFM9QEPZG42t2i0x+dThopp0+hEv0GmA0ulDhAtUYTSrdxDc/l9PD/Rx/9Wf2f9bL4RPzUHEQES9sqvjzn9/FfY0Vndm8XJLEsUT9EGI10Vw0PUYkKO5XNTqHHL3HcDlH8PVNFe0ZSjiUIlOM2zGmDerVOfqHSywPKpGi+6shSkQhjB/6IiZimS6XGJ8sUR4jumMRu6sm6jeamK+KKE7+pboI009S6Hiq7ZX0ge8WFitSDHokzFGHqOKmKBIJmyKz0biSkxXBB8M2FXYqomhm+DmIu+Bs0H1DXXBTU7ZT7DZ1DJdTLMcpGhDOa7z8lpgeDyp88ewbH40xXvUKoo8TvmTwpk4wgmPTNLFlz4PAtWO0mzqW/hDdro/2xQ7npIi3QS49TmbCIL5sqm1dwKXARaMvuHmarBt5zCgp2fklB0sq5cHIqN4H7vQc09k6xtQN3guoGlwvvN8V6UHXhQrzODOayKUiYU2O2yie+V3N1MVyxHjaTQHjRnzNKEIv6qv4H/z4XoW5xQofw8edanZlUf2JL4kifuWH78Xze7jP/jM+IjAGCZUEIaypG0a7Ne7LmAkKKDfriQRrH9if0UWebU5M9nODRPOi9I5srFNGYD5lucTVG5USMxSBdpECQk27iBJzOg5rQSrSelFsGQAEawjh0Go+vU7KSKrgH0PWa3KHTow7o3DGmyuxd5FIbHqEP2wZzT3GpykYSpqU8neTX0yRDAeSAoeHOIOaQIEA+n3UPtFo1IIp2b5wT2+H2L7c6fc111VsGsblEfNlHVd/OMbh6iDvwnnpY7uPqDammsCNKDsyca1ghmplAHCJmgnIvTkmTUH43RhA235HuccUezqHFtFZQMPrzRR9NcZYzQKJzBE0iGTvbRfJK+reNG4UeY1O+XDRjy3VQHFLQ0mxrnQXuI4nT5ynPr74QhVnW57vu++75ZPG8YMQ+emHZezqk9IplD07O24I6wLgqYUIFDqnGORjVUBM12iE1WJem7yR5O8H4dZ5vfpQZOvicY09e5zTabWTIV5bMNDWgZz53xkBS1GZBFl5JzWgMS4eKxFF2xixZhkziqoEPcNT0FYyGu+kwlAEe41l2cT4/yxxuKL4NO+JxbEsTR4cx2irjVSQmz034Sn6kzc7BR/JHLoctYjwQELBZBUvC1eB2lIber6t90RTgj45Dqih59iweW7k60Ylvv58Ef/gvIo3njzFSr6P6MOE3lsiti6QMuLHPt3EK5vrGIZKXaWU4mMd7R4F+BDFYA84O0I4Toyfgh9WA5+lmqM7b0Wkm2rGvSZ2Y3wM+18JYGURW8a8qF5bo04Vhze2Qlcg2rZ43uyaOMErJQKKOgQfpEMdcUClMZv8Dic1ES0KUAQdeiS5HjRP/4rLkNAAOx9JuHFjIkwX7fxaCjo0TaAE8HUldlSiASOXjF3SlZUCBDrwFg4NkU5GIs2Rq+SfV5Jgc8rcXPZQuZEFinh2/RTHw3U0O4o+/P+Iq8OUttE+KodTtBc7XTz9m2NsXk5rG8Zwx0xUSGmsY6Lc3CHcEnhiCqHH4OIZmg+1Esb12QuJN2WEfg2+sV4mR5MKDJvEASJgWs1aEN/qrIyrOAqRFTdMyL2/XtYTiFmuB6cV6aYDkayi22ziejxI2PXl+3184cV9/JtvZqrHO+IC46P9yPV3+9/v9YVFfHo3xqbojeSNgA0WEFLkS2SRIgmvOVuBrfNjCmwpsjURcuQgH6A5dbfyGHllQh3QnNiIrwo25VK7QNQauipl20L82vbCqK3sZVgDGkP6ewb2nrh7ipmPsmU3cw8lRUCtfR0DnoQowDn0ERQCJMij0J6cQoj9NuhrZCQG//yxeeCk13gL2l9TTY/WU220U+JAhwVQbGrfkr/LRE2+ybZxWgA0YolO41arb9nzvJWYZBcXppwU1yz0U5yqRtYuDbZt2zmKDj5rGRuS6BCyJZ9uSesWcWQZwZ7VcbyaYiS9qAXtdt4vY2rxKhkXi7aSdlCrtVGSJdmL/WaW4GzZclYa8RPQyrEIxM7EI888RcaR8MI9G0Sv8tJ9v4v7jxoZ4EYcY9DdMn701Tb+i911PDlK6vXdy/F7rNePYeF3sSniF764iRbEC/8tLoORUZA/XWxUKi6vzDlEZQi3BgKt3DU9P7IEXhecD0KKMxmhSrE7ihwtBZOSLOgCOFvZJizi3iaxyqUyCkhnLhSNBIK1N1MMDBcVvmmWm4tDmKayEn6wgyBcs1joSCg8xQXIrsopnelHFnE6HLVdyxapO/D8pPEURucqQincyAEdE0QHbmexqxg1Id/eYknLJmNQ3kK8/sxy1dzQbuk2281cSQ4kkkw0pi6ijzkenlXxc59v4j//F9KGPnv8AB53c1BvEORUV798r46f2M9xfJuov9pcoiaiOmOBsnY8ouAaYgTCN3cgDxT++pIimosqDk0vMjp7xxXW7Th2VQ8etRtcaOnwReyQigA6VhoE/LeUUiFfYacITHsskoooT6WKRNSJdOELIit9O8i1RWtqm5QAsHLI8nUr8srourjqNFZZJPHg5+ulp1m1LWam5L45ZxSjWQtU3EyhnuO9lPVRR1NELptJ26TUUE6KhI1kasTLzFFx8/UU49WoFAL8t9jmA8XfSAbuFJuXyzjcr3QR9I/JQzWfqmFMLIANLzfsWDj8QQuIjuRsshf26sfoRG1/5kIBVAxYZajXr+bQTZdI+atQRKMyc4n4TMYr9ngfU7eIU6iCTk2dfRpXtwq4Rfo1HU0uf8iZOcZAiDOXLtF60xR/9bUhvvFWGZdHZz+/l7/f0/54hy1Nqnn1r9/jxdzbFvFgs2pojLJ2Ov9uDD1ylLeO4P3ZiT++ZmlLxWvrFtYl0yYj4al6Xzl2CQBQCKgwzD0lGutcxAkDcTVeZZzfAzwwYcwZy/bg9PPwVEapTvod8hW5Qd0lrEq/R/Y7RSEyFYkSWVMrzUB4cmYAy5TaXNMJLnDM0VKMoWgWSLK+nxZJycw8R+jr+21HC38Y/v1GorXHZclk7iqvS2EMBAZckTdsJG/zchXjG3Us37E9DR61w2Nz6hCJcOdx3tiOQEkOjptLUUy7qWI4DubjZgGs56QmN2ks6XepA3P081zRU+2bKUUvCwIc+whaGX7XV9PpWiKHyWrO1lggLHCleeC4gCWOPrUUX+kso4EYQNzfzy/zEzTq5fP4hR99EG1cK36sIhhbij6UNUXsNp3NEen+T8SezVEoSskb03J0NhzwMh3Yut3StphuRyvUJHQPlBi3gPjJDME8gYWlvxpaUhaZj0GnRPFUTmO0JIMAowkuTug4OXZ4Bw4QQrm0JAih4JqjFDTOYMf8G/Ed+lHWDvo5PKeBkPchliORMRwALFdc3R2fw8XE4mYMTUA4f6+Sk47UmXTaLMkWc8cql38uEhuB6hiR2SgLM/2dJPrAgNb2BSADsiIol/j6pzfxuee4OJ89fhCP9SJa7SZuHsUSP/PcFB32A20Z9S6ivF9EiUdVUjiNoN14v6oAYQyoi5yMZkUMegyogiIJZL588hJYx46MLjKMxhNC/i5zePPvV6QKQCOdJnxY0nRt8d6C1DzHAgKY0UogATgH+ZDHNsVm5asymHORnUcxhHLecW7uWIR8SHlHqo0RcvHe4NcJ5StT/TurIVqT4RTqjs5hW2isjcXJtIAbsj8HFZUYOHf1PXF8SvhKmyXqfakEAbiFKISHRxHxRqXXg1dgfb3EfHUZJWNyUIDLJoYrCPZ+b+3n5TGqRkxNXv4aR5tTqEJP9m4Wj1hVCXXlTiybMsMpbW3XclO0uJ6zxQjICg5LfRHN2RJDtxpXc3zQ7LrQ8IfLe1JGeY4VTQ4YeROwezqBhhAbtsTUjvHc+Ry/+NrWKtEVgY2P5mN1xbzJ3r3zXr7X4/PPNfGVF1qJCeQYISK/UycAFIRqr4pyFXz+71XhzmiVQsPXCgXabdEnC6A7/F2XkR6zKsIPAGLBBy7i8q0iZZf6xAABAABJREFUhusiys0cXbuOSX2XKWFp9ddMFSkIkn3n0qP2BpYC5YJSdFexMwjsMAeNtZGCD539uUZ1l5RR9Ig5ItrzJVpslMQa8hnEGp8Dz1uaSQMKbhTycEjR4GpErrMm+aNGQ12kzgOTMdbzpIZq4j7dUBhNUT8/x/5TG9/nB7isc4yX/LpWKPvE96LWpUYosyirFo1o4RFrnAt4AwJHQgdTj8zsFTIuvq9pGdhMiQ6l94X70lpp8QGhaTHhWNeRLLGU36ZGin/V7U/By5nieCGrwRPxP/W5N8VJ9n4doa4NS/zcl+8rVvXuw3ZYKfOPTwji1zRN/Mh9+HlZYIn005q/oiKb/NoljnS8fMM8qrsWGscm1YiHN7mJjTx5GO2gxHMR533BR5UxK4kO8iHjJYSCj4OXgq4odjHNp6jrRr57SNML5eRiMOlRDCTxmlGuEHDUuZXUTHAZdCFQ7LHoZYdnX7+5xpPI0QtcrNcnlEp4AsJDNBIzXi8x0P3syujOlqi6rTa+ug/8yaomNrtJnC+B+3oNjW08xPlqYq649Dxyq7s6xtMpqnKr94IRFlm9fJ3eiYztKctOxSGHULs1AgHS8MqDMl64F/Fv3/gzXiAf0cf7IQ/ygkwvsJ/+7P34yv4qtvfgdIJOIWoyX4uLCNQN/7sWdZ1i/kCrfVkzRAFcrjdF9HOvIlDEaOxSxEHyz1D9p1hDsb/V/ZOzCbFco6jsiNemOF0qbsyAeYC284NaqBjElDFCuV6iGTySnCkC4e9sKGZAyn0YSv3GReMERCuYe8jWWQhqgpQmx86E0wFJ0SriuBJFUmEn8ZaNibUZD1BBKOTceWNILfd85QMbxVfSr8Aaxs2+hKyGhQxXxrQ/pQFzKeEEFbA4wI/7aF7cxe5sG6fjYwlmdhddVN0oVNw3ImRwuFi+DHAjENVjNXigELMRqV47ps22HrAZsAo/Plw/lVSBYlbtS43v38UmHn37GHU7x9KU4vqNJKBo9MyaSBU3dJgD7xmZfYeYKQLYywcjQdBpIMc7yYdGdomvvjjFb71+Fv/221dp9vzRK/4y7OG9aFPv8g3+wrOmjHsdgqHMWC/qOEHw486QKXKOOmmIS6YkHqci1OMDoxCRJ2Q2NmrEF2xK+EwzQzeV1qnhdgJVBT2niqtHc1w+YcNV0d6bY3vGZ4VVkmk6FFjsc0ama+8llE/YBqNV32c3noW6LIXNO/1JQJRj41TYZaGjvHamPskHFOVpKOLqUREtfoFbGhbTnE46g2wgzzTM+mW2O8UfT/02ntGRaI5HU44864wCmhVHgZRNj0aq13CXPTGozyvtAdI7mocRZ1UTV/+mj2Voon97iqvuFLsXbKAs6yq2+rWTe3iOLQA/Z935FPPjxo3lxkUUmn+eD8I28eNVHHpkrl41kT7hr1nMRosyOKLGoYA7nUYtG2ThoxO8PcRrmEfrJM/zxfZRM8r7o6Ndx6O9U9cYRqhoP/HyJhPAbke9dgL4cHzbj3bhVxTxP/yZ8yjra3NWMH6cSeHwmFOHVKZZ6I2mk5qonv1m40NXFl0UBQA9eZaUUh5P0kXYq7ky3wATTg5ofb7w8EjiyLD0uQ/sHjcFoy4XZSKl4mXE5ZumrVJVsRiWk+wy6LZx2CQmDagfIcowjOpoDAg0ycmAVz7FEVMYvJt0vlglCG9IyQaoHgeCuE/6b9AbMkgd1wXuQdYVuYYc9mN0HQVnHf04xCSDScLmO5vbshwJ5K7ruJ4MQ/MzjstgI2AVpyCrQNdJ+k38lAvZ27WKv/oT9+J3v/VmvHH1jOv3YR/vN2oif3msqniwaeJz2yl2eLJ1jmJacdsVGZLXm2a/HhWyzuzsP0U3lYohVFcryxUDwOLcJCpB9XBrc0QjM4mkrodSNd5p6SawmYfMU+3nVWBizk9U0oxNT4VEbdkftj/S3uB8G6bopGh0YyZ7hLSLUEqAxjCZNJF3lfBrLqXVFmMdc9Hf0emnLYO69FQ7LwPea/ARS41rbQBQxlhMsdFsyygM6v+hv9JLoihiPFoyK61AcFAoYosCGbyMaRvBsXz4zjGqA3TGKdrnNlG83Wl6PDw6RvGQg2ey52YmLIB0yh6KzwzkD/EG+1ppH37/ZcGigjHH0Dmak3ADfhTqyoxP1H7UAbLE1aMhzhkh38PHE44X+5rftXoKesKB3QURWEvD5MDTDc460JDYUphSpML7nZQyQsVzMRbx5XaKb8DXlJWPKSgfxceHib9i1Pjy3sieiyeT9GXrIS86GbRkDq8Fc6tJM8kSAsRTrHOTBiElpwsIDyDtzYNRsOgZFciwS6fLJxHXlx7/7h9M0aD2VPEO4EDTZINtj3ttsbMKDcQrlXefrLqTpMdUyF+v3OB8PpRsolzoh1jwIZun/LnO+K7i+LZDAup7fi0az84oeu0dyLnEhEG8Q9nQ8GerN2D+g/o5DeOFgKVNjdXmft5EhSpLvq9V3JY7o5Lcwf0wRDfVsdnPMf9wF6c/mKJ7EjF+A+ucJboXPc3gubddpeQqpRgpU3yOnqJS7y/Pzf6ImsRS2acAgxvOSSQemYPYiVYrs27zUmYKfpKFQCazoPPoPefW3JsY03PHUuRz38t1AOW9zaAR2W2w29o1cXWK6E5D7LfOTz6Ox3jYzfEdqZ//5Pr9BIx6i3jh4T5ebQ5Rj33MvdEtTSbqJQZGEtVJxRmqI7pbnLLZHELSsFvolxhOR0HBED9PxylOJ9IMZsvqIeAyVpXRLFJziqBRHAl4dIrVydEWXQfzfg5ICjIOYbYKB6I6KDo3Ohe7VkY/TXEc7F8091PMEMEPQ5yuRkVO8dzEJaqrqHe1FL1li6K2jKqr1VG2Z220511sHrbx4IVNnL+EhcsmjpdL9E9GHeStxl580q34gkvbCgESaV4GvpaUY9UiZoFG3czf7HEonz7G4Lxehd2z4VdnYHdRcnnRSjI/iC2L6vHFzRhf+3RGOzx7fF+PNf7sbkeXLgXx5fMyPt0NKtaxUDFpm0vYFhGr15tJ/MmfSZ5PlRFuXCgumta8NMcJiQuLVRAXkp+IxRwq8nM6lOTmpKek2XE+x+SXkpZxUldMsRQxbScphLFiQPEHsoQvX1woa04ee9MAUZwf7DYMzou5tus4yFFqQhP0Zrixo5BShoLGwYTMew3buDaRQS4yzNAPOVYrHYtleNLZuB7b+D2YRiKlLAsZsV/CQ1A2oFwj0CCIW/JliIEzGGGPGrAs4/qt3gj/q2dxxejtSSvVsHQTGqW6WcJ2Cn4YBa/89FL5azPgOwbXUvuZW0XRR6PIgc85gantjTmwuMkR8ymiYtJxXng8pCSPRGmTX6QCETPvqzl251UUuz5mOIdwhBXDmPFgeh4I56ooLssYL/FQnOJHPzXEi1zATABul9BHdse/q5/fdz0ebOv4xS9fZDyt3xs17BrnYj8E0mYlqJI51ss/sTelSVCAg9oKKrB9mFLUcxwIMuRqzUp1CpDxao7DG2VcveUi8Oy5iGaXpbsPYFMg5GO+In05Vk2HZwqydWQsKlKiYHpkp2g+r5Vg4q6J15f8WsFcUCIs0OhRriPoOnchyWhSViysZRDDjE0sFvwjnUtLIYZqlmQoYmtYpwip9KNBoClqoBXIKaCS+TKcvuAeh07UYqbue80cQCOUINnct5hWn32xjeqlOqq2jeMfTnH81hDzyYLNaCLqrQhc5v6qwbVlmpXVitny3ZaiOEAQn3vc6QZcJMQANWz4OaR/MAXJili2PkZL+Sw8YYNmhdk01BUX1KLISLzFOcfzh1fNyJhGeIx9lykm2Ux0TRu/9vX7OZf7/h8facTvR19dYteMMaJy0cgEFI7KmYJmkmEro1uM5vd0FPrYlljoYhnb5EE4kIuX6l5pMoY5UFHfcIxGJNuMRqjW7f+jUdhM1q0hYy4fjVUT/eL/NweKTjmf8GwzccH9GdiOqhIFIyO5aTVO3nRCaVpl59biEuE2htKuFzcYCBlBMHm+IJEOxYZ2X9dTHB8tcbxmpNzH5oKxgxMFGEvTNfTDFP0R1G+Mpu5i6s1ibUERZW9joYbRFC5fLhajfOpqJHBxfqRcwjLD0Wai5i5SU/B1v/q1Ov4+0PtNh/vs8ad9kEF5Vke8tp9jT/Y0narMIW0pIeRB3bIPIaELOXZh3ctceVji1HukCgdOSNEaMZkGyGpwbkYU5nyKT5OFHmtW3bBi2MxXlfgpLb2hIWB/VOy9V7iAbJns3yNbF4oUKVjNBXJSVClFbEFEmXyzQNYoXjKdBt877QOyq523qVGZYhmTjkFRQ6EHXy6NokEP4c5A49N4p51soruaFssNwDAiaBdHAoctSKDEGPioSauVgiganZbX4BdQRRsD/FwQQyYLJ9ILTlGflVHcq2J4c4rmMvTfK7WRwgGj9HoArSSWbu3jKQ7M+bOnnwv21FhlopCRPt8g5lRqhCYldBUFo0DOtP2atZ2fm2o4KB6olxl3V+JKjZyLOp8K7ljTWepW50E91xqx0RRLDHM2RNVFPKzm+Npnt/FH/xpx20dv1PthH7x3XbHEg3KIvsejMQ2gxX+WM7KuVZTa4pKhjo1b0YKUvDeRcKslszNvndaSzQx/P3jsO4BGzXVMJ6O/zRanBlC6bMzS6FsesEJ7E/mVepZz2p+r0Dvd+Ksk1U0f/yfhiFTCWf8pTtB73dYt5vIa5bQPLYc8jl8NzgEl1mj+GnisMjbPxkICRjhyel/w0+VMAiQwtlm3RuQlsc2ZhSYWGpWPem8cYeezQubuqlB5vjZz159DPVEiGvtmivphrTMu+iYO3+xjy1j8UxEET4nORVah3qMcWyhYgb0zifowDzZ61znCgcN7qQ/J6l43pG4SvTic/AHIdDqGDKZBBSXmEmXFz1+iNdlwWfGs/yareIS7T0nHuZI+vkTZkd1K8UfGerHE159r4v9kHc0nr/A7u7eLF/Z1dIgNcnNBmxZXBvfwgZHkSf++EUHVo11ecYMukbSBGkd0/tsXkCYpjHRTbq6CkDErECxJGdk6IfGmHLLBIxvWp+5AlX7DqPdinReMoq2OFcRfoTrGPsUwckknx3lRVLHtuKg6kcwXOgMuPVzbm43zRpcyuqaL/nQSSRfuHQ82Nl6ELLh232nzE0NzuIIMP8bmIWRUDCgNe9f7Lgbyfzn4tahrjaeZFkszovggGTmJryhnQz1HE1h98aNUNq4vAvBaAYhUbFYKG+jlXROfvljiDyDAP3t86Me7oQ8cvV/cF/HZ84iunTReO2KhkEozHeZELNO4qpOEeyl+f7QYOl+jmKsC8LvCqHdzk87rbjVVhBy+RHlRHCoRQo3NCvV5HNJsmsBG2UiJxx7KnF1qde1G/qA+ZNxhFizipWJmKisWmil3/IyROdRrFJN0E5c8qTmGYyUkiktjAInq3HTwO+KKdAQ6dXOBWIY8J0BuGyfPpDTq9WB3dByG2CbaqEvyJumDkarXOrew0BxLXTXDpnAa4brmmFVI29JHXXPCD+IZRdXKF3AmAQDzo8Mp2voU58+fx+XhEKdjGcXJTRz7i+fG86R2lLBDESYe9+acLv/x2FsoY+a3LtWogpgKw3FzXh8yfQXBODTRXhzE91OBrffd60dFLZTeyyKKDVQREoLXr7F/nBCcuY/hANrkC49LftnCH3NRQT3/y69t4x/89ine5ud97B9Yi2AaXtoQYlppBEZZVYgrDcbvH4XSqoj3cN88behIdtXWVxvRl3l5xJFpj+4FAxXaI8UQHVYtu03M5UlCrmEEaV4j24z8KocKIQ8IuEzXKSBduPlzX2MRU/ktKoUItRnHlr6YmVVt5wfWoq1ohDDTMHJm8PuXLJJunHD0nSrIuPd4BdwP2Ec5xjGdKxI8Uf677GAyDSTTSDi7VESKnpU2VPUtpYPn0ZbEptL4Nla+kuNLI8g+PZji0TzX6H1arro4fYvqoI/zL23Egdxs2jhcUrwh1HRxxl6k6KrYfxRbiEGT9qJXxniYAC55ZPJItbAY786arLoy+uscCa8ejWmCfpPIoyKViUImeUglXcbV5aBmAss1FZVDxJbCeMG6zdzETVEFtGQTUD5hhd+XL07x6c0Ysv5RwDjyRGO/oAIsFAQfcAt2HZchY9pCHAWp+zjm1AJnxwSBE5NkELyO8VNhBGxwwHzfl3E9LNGh2hsiNnI3vw2jhzez5j3iug7SaJIsSRk312pa5jNiptsoYyBWq21FMrWhpk1XSxxwFVVA13GMcWp0UYm/ld0Pr5WDhfHLlKa3dAQl6s77bVy/Ocbx+hhFN0X5YOPYKoo6PNi4HI5DjKc+mhZI3DK+g0wlQRc8egB7FrkXzhHPTW2kTof07QPuAQbRkFsHDoYDFTE8E13wGH/jF5+P/+1//vpH0+/habJxyf8mme+nP3sWbfMoBmoOeDd0rywtEB7x+vwR8bnpQmedzBQlfbTnBKdPKv4blOnVaCGBkIvbyG/biGQGb2a6uttPg/IqD0AAbNZxDVJmpeoAfYHp7t7jX8eUO/5IP1uFU6IHKV5YY4t0iVBDbRizWEne7NuYlutouXBADbjglogjxQgvvcV7bDBPatpG0dfRnIZYrsYYeE28Hy2XA7ZMwDbQF9y5g5TofTPk4i5cdk2s58YXMEhYxWXLVMD0DMVlY4qN0yfiGCV64OsHEjLF7gz6RBnT9RDTZozu/DxO/VUcHp9i/xDTZlSFGbjb1TefnTi0ciKAO+TziYJajZcM/hpHZDWYvvqNM6KZpE4I8FjNnPpoL+o4UgTztmT2sRAXxt3HUga0I+IxcZOt7ZL45mirJwy5i2ijbkfl+2J+y5c5Yi9j8I5vxf/ox56Lv/VPH8cw+WfJK/FjiP/x/v2Nn3tFsCrOP0dMghV9BqvZ1Tuv/Zr3ngIC5M3Mb32/zlJNiSpbj5wK+auyvkCjKeGQTmjSuyzRbcvoWPPEZHKLVFAPnB29NjV6qBFDeWo/WnnuScFrLps4mMmX42zQrbZqjJjpcKyzx1EGs7eXVneUbZVs1QQlQnZRrdco4qyaNA1CC/SbEjWDqwviyatRBrYnapoCKI3Ee567mTNkjW8Uug0YQh06eeypyQO0ExKA+AOEEeVGYAf0KgANIuI4T0CwoZWYT2/1fLkZo3nYxmEoY7yeo34z4uqPTtF+Sn4rMtRGsa7fL8SxiOnk3G/6uOkAICO7ZZ1puBGomJb4zSPahQhUzoIWU/k2NrsuTpjAY7cBeCLBV47MUUEXhDOcoqrw76tFD1NR1xdxOC7RkT62VHE6FbFrGO9WgUHWOBIVW4qD/DOv7eM3/s3VJ6vw27RlvIRCrkDxQ91BgWX/vAXVmmYoNqpUgTNlZiVNNjAwI1JdqBz6kvD5B+uC9cUk2FzneGXFHBfRlZU3rL8DSRbDGM2uTkdzCkFgYRlj6Zoj74+LcCI9gA+OrmoY43QyAol6iK5sA1KYMnaRRbFL4TDhYuDA1xjAvEQBMmq3yRzOw2YkbYNOCu4EpNI5um4T1f1TPHlcxOnxHHV7jP35ThtxBNXcEjeFTZmMgmwuC6wO4lHU0cgGYpBCawamR7YrhSMWNhjwemStDg2uB5c7BtK1ncd0CekCq+PBZopPPajij978qFK/n46iz3S2JT5/r4l742XUZ77EaVraVJ+CJqy+b0YZsnjgyqFTvyhjzpEecW6x95qRxcuQqnhRDGwDxMhPo9Xk76m94dAVF8kdqEej6RlDE8QY5TRHs6NzNzKsUa5c7K0EkS+sRIlcMolCpQUmRUWbiJNipSTMOmbsFQizSRuIIrRzLwpFMsGfFTepvhKKTQ2iWHqslzgDiIxiu4Nayb7GPlwrJwnEQJwciSw8Ul5OqCghzVvGV5GU0xuxEMG7BvmHStFY0ddw0aZ1kgq6MqYj6Ocpqn0d1amN6Rp+Hmi6ye8q92r4uKgKbRelSEXDqz7jMv5L6St8LxdoX0dXuPhTgQ+iifE0KC6jpuf5eaQNeUFIDJaWGfCm6o6fZ1QWysqaHzyAVp78fmi6sZ20ZoQnpWuvsCiR8jnfyvjsg0Psyj4u4UXfsUj5SBR/H8b8dqnii/cMQdHgbDZ1nFBfTsDLlFMUcE53oClmuR8xi0wyrCbBEyp6CwcpxlmyzHc6mpDaMWRYj/DBUIyoeKTAYf+qtl/vKTcK5mIXSoUYJ8SCfiCG4Nexl2RFJrrCJOGfbILuMDFF0xFZkf+CUjRFs4FuxDqXA6hU5XammGN6k3WzRHvfSRK6+9LiBa4a/DjdgiIAJ69w5YACLKDw1yw87+j8XqloeW/NHbFtFKstva/h7gqdzAZGv5uvkHWZoyWhl8ij1ynI0T2EM4i4qY3TaYj4FoKZMern2KfYFPHeUAiunqX4e/oMAEXtVWTnqJZtAirI+4eQAwcFWPEcLNLrb6K/tI+VkMJKgYe2RcJfkLQvmuSitShzNC8RyhbILPzsHWfI0uhzB8hBuOJkHlK5KHLH+NKL2/i7v31MVfTyySj87m2X+OrLlHd8+P5wgEQ1ZhLitWpM+eAr3W+MSUWjRV0FX2U5JV8mI1BQq0ldn+RuvaGUSPCCjCSWQC3CeemYSSPwEdhwgOp30i37UhVyoUJOTF3DuRKTmAhOlmKR3ZU6f/gH4ldM9hqi89Btbx8lIRMiDJvrI2QvOViKcRJx3YoxcRPxfj7rYtt0cf2ojydvH2S/Ue+wX0nfL/yW5lL2GFystFrYBaxEfnu6WV3I5TcOFJ5FAJpiYaGLX6TflT9k42df8BSQLjwwOv3FL3fxf/lH5rc8e3ywxztk+jIkLmNTLPHzr2xi11zdqDO12mVFlFwwVVmsdf+77KXwelwY59PlUiC8MwVk9asCpTti66GM2vSQsBPZqvy4MY+WCljO8+aF8ftQoQO+w5EbFXdjE1uPgtIYNUEK1qjWsQqg27/XpSH7l3RJSAuFdWTG5aXgI2LFaJ4a9oeRfL8Wj5elMCatR/cL/MBwaDxIJMpVUFJ1YH6FjK70vPgBvW1lNJIBO5iILuT3V1FsAOmcuSp+EKfG0MYCVw5usZBWRt6tUINqs4++v4yiGWLs5mhBeZ4ssbnv/ezLMLmO6sbyoQs9eU2rlU0a6cp6ZrxNGmLfM5bXTXkVUV5HtJ+e1ZBJJanij+/FrNbu0PMObzSKh4wLY8RPAsJh8rhru8h2Z4G4rkLFfFF9niJBuoCmqNkVh/jp1zbxX/7m6UZJ+pF4rCDpB/xyiA0ls3q83nS5459XiEtGI6LrpERI6Hxc/mwUV88NBT6r7KuNVABzbFiPup+yOSkm3Q3Kc81mQwVgoo2sR4SB657zWl9NkJ12ky/LHM2stlI4L5BDIII791UkfnMNcjeKZwtvhPEs6mR4wlnoerW72G82adSc3PnVk877OCcGsmBJS6QbI+P13BiNfKbfob1C09NQvpwe29p83SNvJZwIg/BvpZuRtZEDj7XP8drTeFjuBCz7MbYPGmWHD3xuUxnDt5co2jnqizq6M1BX7w8liGRaCmC2DpEJNbyBIIoIuK0UktCrVJZy5umlb2M4wmdvMuOXf2gK89xSYlEqonmlvfm58jWUAT7rgoYRrrFySkRd4/Wop1aRP0VblLGHWpJc+u9np33kCj8+35df3UbLKFSwMXNyEIQMxBa0TpfDoWjStwqmAsMVdxgo9QpGQ8hbVaGhWPVGQ7GqN/KY6R2ZrsGfMg1Vxh+f5wDROSQDn08o3EaNWE1mtcKSIgmrB/67R7V7KTMuBU1L6k623wjJFWg+ozNkRdMI6naeYTp902UxPhWRt42x4RBZux382ICgzSNkIYkI3jTRySy3jMdvLfHo22/HxUvn0Z7ttPRQKgWmtAMd3kloAlCyg703cQJdGIeoJelnnA1k3cdJaR9kqtpywJwo0EGK1E4G1Dx/If+1OZav7No4b6/jyR1zy2eP93+sE/313znEH3QRL7DdW9Yeh4A7ft2/GhWxrFKswZfJ5s3Ffbd18aARrKYykzzfXLSjHrOlCstCf39CseZOXAcvB794Oi7mhi79AsUtRJwwx3bggB2luhNHh7VCA5RB5Oaa+eTzAQgHCTsZj4Do2lVw5avOvAOP0GT9kmp7ouJI4El/v5UMJ9qH1JHOR63pUPhh1wjlqmh2NGeggagJx9zLqaKt7CPGCEZHBfugaeKINcXeMQ3H4ZG89ZgscLij6BMCz+8Hbbs2P6stO4k7qDL3z53F+M05ltMxmt2ksU6JeIWA96WJ5bqPSokDmEa7oGh4ffIGNQFeNi80kKlahnvLxdJPvRoALidn/xI1V0S1n6IHPUx+FCjqoL51js3jfYznRxe4fL2SGUoVjGrudghmGF/dTV7INVgSD5eNhdBZCn6iser48stL/JPfb+Otk3SMH9pi4s/q8b2KvrsWLz/5+e1ai1ntvPLVikHCP4qLpUr0BpRpmKPHYqytYr+3T5/qCak6WSd5BSnPuYuTKDOZIpIFEWcpKDINEWsaKpFznW0TIhqAYtcLCXu4cXw0O4P7xuJImkKaPoQc7pNuWIaiAfBNFiNKRU9TYlXFO5T8NesdMGCzGi+vKVIUKKBVLvqkCZcPoYth20Q5IpD7iTmveLfQUMR5xUPXfpncu0dd7LWmHHYmsGUVQhKJKK3aWgfoRj55Szo7UTR1fSPqYnnX9zCZXgLQrziUMf8RHr/kGlNDWMGuMXxTyFmA5meEz4nLRtNGgQXWOYUpo3iQfEG1KrzJDeez5z3j/Rb3Ez78hnOUe9uvSaN80TgmTRHhyQL/gtaD/LX1ENu0wZmYgNDcp3G9uNcAXLHEbrvE/d0Ub+AdunwCCj+8FX/lFcvgMc7kMJzGJrqOcWdeZkmkLHHlVsA7RY27KDoQWR8Am5OBqBioNFOey6AI74LRpV3/2QgcvhsOWn0NiIlHIHw+8DLI7qRQFDeHRcd4TYvbZkB49QxHgycdhV/nS6NY8xQLBnUkd3ijFk4dtUca4yh9tpC6gat5HYP4HAAUjAhm2gEpg+aoRMT1wbBZ6BmqaM7b2BdLPPrOEG+/0Qdi8N39cxted/YpnB95TMSJIESB2Ldyjl4yJLx1PXLolyo2cIDkam7+41ERUkTQJVFjWpNDOAR8MH751SK+9pkm/tFvmwP07PFBHyviZvudn/j0vdi3dB1Go+DDWGuRCQqymMC70QUZ66A+4gtXSwVo0wW4fY0QQFmDJMokUUCOFilAECBQCFipYzDJjbULTFFAOZtRHlLITEscGUPuyIF2Cg0PqWAF4Jls7kgkm7eu5Gf9XVqVSGQBKg8HVeR1mwevgQIUbhSpSmBKSoZ8xtYM0bSqEKdVEW8uVhjL0QAyusJ3jKB1jWOUluOid82nXceUMn6mcRvf1ritBWkTN8joH+u7ZhLAiLQfpMiXHQ05v9dFFMeIq+FRNOfbODwaxeeDG+YoqEqj4OZsE/G6x3ajDN/9mTu+NY2xU6XNe8brl1smopN8DzSO43M62M6qPLPSl4eUzPUSm2Md05M5lvsHTyZ05yxRXpUxPbL5bsPlCGTJB6YIqjXXzKNi+YKmEnrlFPJeU+y/dN7G1z7bxD/8zV4c6Y+Eo/PtR/29H0URf/kr5z5vtdYsNjqNFBApaKjKePNteF+8P5Mu6P2GQgSu1+p7Wetr5d+cHnktNlsUEjdJNW6Ebpqjdby5Ku4znYX33Ue0Ilz05/iuSmEMKpZImNuHW7NmiSywC8MRwGiFTIPlYKJpgIEUilOBCIw/FTNGQVtopCo7FlT7Qhsq3T1MiNQsJLXDMWvMzkYVVEr1WePjUthltDvFk2pivcdUiOo9NuK3Iv8SPuhnp3fkiK2SU6P0vbwnWr+maklJzW8kInI7RVx34mBuQXBfn6N9UEX1sI7rJzbHg9+KGhvrmKpt4nQcYntvicvvLNFtqtjda2J4e7KxM8+ls/k00wtePw3A9cLEgaLXY2s5DnJWyiKKhi5b1fKkwpQqj/djj8KSnzP0UWySRoYPsLKZV/+9Mp7ftfHay/t44/euPxmj3ouLbbxYHON6xjWdog97OtzuMV+1PYLdGez9RReC6kgqvOxYZaypMSX8hUEdhcR7KFIxgabrZ9QhNW4qjejAFWKeyhz5bcEVRPIOH26J4rjENZs3fwddLw8ZM7ZVbPYRLfBymnKBSgB5j/NJKksdohrReREASUsxJXIOe8IeXyLo6rLMRAV4POIMoDhsnDAgXz57E2kq07Vx/mCO03URV4+xYrjShVWVJHqwMy/i+tFjp5Tgvg6fI3MU2awOjs5H8idkxpkHPMw/+SSWvZTUVla66BvoZIoqnt93UZf4zj3tt8HT+Xhp18VnujnG9hQthrt5MzjU3dZRMhJNUzeNcWy7FQVRXT5XXShSDMBakDqKteaRCoeLaDRSdKZpL7y41V8OJF1odjZMFCK1lfTF9RwH+LY56FuLOh45UUqit+0aVE/WqaRdDWXplkWJGk1KZ+TFxTYtKtSUo0Nhld5dFB/mH7rgExJNR50JOPLCI9KK59HZqLa0W63G0r6JEUrQQPl1mQHiC5IzoYWcXbbi3xUVsjCjkmT5LmMfU0FiSqoXec3YRZAFx3MeqjgeruPsIWk9mxguea5wRKqYruao7pE60MVIYwfySCScLmcLOUgmkjAtPQzN2xw1tpagRueTo8LmQxPxxNys+dxqTpnXp90Pfmn1vonr7hQl4zIymoc2jq+P0d0rYrmAwma1tn0EXexwFtEEuNDhQKCot5Ja3n0psNvHHJ/ZL/EvmiYejx+dBm/lxL7X/an3PK292uU66mZz8x7hrCD/vdl+sdfXrNU5qj35sHO0UvDmz0mDdHHzck07E9poNmNIrLeE5KkZ8/usqYoKOnKnTUWSujbvD1lq4W8Hv80TXO0LR27aHslpUxnOwfPGpDibI1OGDBxIKCGaEnvBu9ZZ1TxnJcLHfKIRSzUIz1v9kteFuHkOfTfMrPi4tJW6C87fETW7FkTEsd635gJLHMIUSx4zjkWTHYx45bX2K+AOe82ReJllLUjWnim8PoIMZmA+XstzXVy+NcUJl46piuqtiOIbc2w/zdi9jMMBOwQnqpQbbI5mNUZ8DvvnfB/j94twsnvASBeuLsglxTEjcGyP7OcoL0Z6MwpI2bj4c/eExpM13m/u0ePI5z76bCZ2suWdlrdcDBkLR5ss/ww+h2mKB6CP3+ea/0gZOLOWfvFrmxgTNQAebVZHczoQQdp+Y1HLcmlRHLJwOJR5cMHpPmQjjaNDkSn0VaNBeEZwYcUvPLU1XBqSuSxNhNPzpU0SSpnBl84nxGwvD2MWXpGj4ea8jM05nBlbsHCQOoPbWDu/AwK+DgXtXGfsQtiOPDhEV8q8YC5mx8flaNk3qowyEa+AvNDx0AkhCEF1xJPfXnRx/twuxmji8etHhcwzypXZ52YSWlHCT4DMCom+qTVSglALnwHET5eseB8chDnmSw84uq5WNjT2oupkFWBonwv4xz/XxoOzP6315CfzQX3yqft13NvPypFk1AsabD5qHqKsK0yXuYScJa7RQAHiUEuSo89NpGLUb+wTTC4lTKIAW2LbWoNoDhAHr4sg9R7sA4oyYuAovhiHpO8bh93U2JhVyl7WuWofowQ3l07mpGsfCalkhGnTWU8G/dyLtoyJH04RShOMwg77lCF5i+kLrqM9x0VC7zJ0XoVOHzEhfKP5b0EpjHCaw+ofOmAcm37kkON5Yt5m8HIzo1gjpZwiCPrEoNfRVIx47KVm1SzvUcOTZRpR4Vo4RzxCcThGdR5R7WB5wf2aI65h/hvtmOsppr53SkOOt+31nrYx5Crnoe/3LItAGUqb4tE/tniK4pGCWtSXCguoMsoTr3eO+QwBnD3bxssixtfnOHuui+WelZisBdwB9D4mWtugONan6PdFhPt0sVjFu/JTG6f40stNvPTi5ta+4ml/5Me7euu9V/QV4MAeagG+jRI2MX5zE0SD/uRyjMsrCx422yZ2Hc0uRZ2bGRlzy7fOXdqajyzTdfYhPLJp/SzNCb9NE1lxHr+nNmpHiGfzfT4rxf+tvFtNZygWchxwN29bPE0+P+44o8zvMK4Wwh4aQVuAb2qGGqxMydG9i/UY/O+MU9N9JVqAkWCbkHN+IEIEoTNHHSCA9Wu/QAvG9A/nlaIWUwgiUHX1zK2TBWVXAKWjpN+g3k+4keoOTZMgtm6NmJQyXea3Xrt1PcbmRbLAudOKOBVznL41x4gAkgla1UrQIp+/5SQ+r0b5aRh/Okxx/TauBWWMj4sYiTSUECQbRYUy8DY0ciAl/IFCnvdm07R6TppCZDyrnEI5r/sxmgYnBOxxnOBiyi5rjLPaI3SZ1qXIs5bdTy7ijzPix2f7mfqJ1IdwbFigypCk2meRa51SXDEInhw5tNpRrOiI+KBmujIu1SWB/UmG01Opi8LCG071kiarMm/kQkuPP1tduTtyTqk5Tc1ONpVOyQDdMLyYMLR9jaz5tapLasAFpM4my+Dsa7EkPkXauwhhq9bxNtY0cKdKcYG4bJDVW2kHHxAUEQNnuoRUSeFdCO9hv4mzsozjoymevDXEPXJHKSS4IC7aWJ5QPJyErqiWgO/F7xA7/JZHJSTdwImqEjo9RgWStYsPZvdzHQ5ipc/x6Ys6diI1f7+U1E/u46wt47V7ZFIPIvfKrFiCJcevMX2SiTeHCvQACgUQhK5SM2NrhBzdsbZZq9sc2/oETfL0ja7dXVKuQ41o4RrxNUlncKzg6uwD9QC0yhVcTof9vLhFbgoV74P1rOIyVN5lHuyi9SisnFH26k9mIYHWkngyboqUTcvPNT/ixseOMWsxZNJADffWuZgiOaXDPxe0eIfsXae2x0ENUhmdItvckJl0br80ClLsFySCWEgFYsS0kZ3OjShDFyZ2RlXMXRHX10NczHUcv3OM5pV7MVwcoim7qDF7fnIVcYVn4SmKbaU0kXWcK56QBFxGWuj44SQr8F6Vs0f24jAVZZzwO8Rc+ayW9UPDVLl0NCUXE6+1OWNfMgfAgqWM6e05yvMx4sEcxclFvPYmexv+JoUsf9LbE81TX/O37OHpv6c5PJ7gKi/R1Zex16XtjOSn/pEF3/cm+kV87bMXVs4yFcK/rqjE18SbkfHo+TbE+cQGxWPTdI+Am3mTiesGxVYi6e4gEaAbpJyqZ7qGo/zU0CEKSfcJq9BX8YaRSI0HVXSBmBs5VrIExb9UHfDniGADLbef683dlsIMZ/xmussagcj3JTdNyJ+i5YpoQfwkOnSBCPhhtDDNlPntcNIl8ruNS7t1zki+Hj9DdKrbKDjdG4qXTE7rGs8o8aRHujadtrE6bhQU4iXFljJv01MxeeYUmhqJcwdikXS2xOb5Mq5f9xkz1UucvtHH5jN1bPdNHK+nqEbbm8ksBGU1lmwU+0xK1CiXcXqCtyLMJhd+Fsa7OFMc24SNUiaoqP4379gqZlvfcBCfrkkumaI9m6PuCaGwHY2GEUJ48UFcl+FtrN3z2zL2TRGXUnB9TBE/3qovfP6FKIutFFJ08BWu8qrMTQAl4kSE6PmYcm7SORbx+OAssaAbcnoZE3NYs5AgZ1KV52W69tuMXtXJQ9KkwNKi8+jE+4NL0N516thX00k4hlIZDuZM8XNKO25LIMHmy6QPFaT6Mxd6uHRzyOvy1IYC+s1UDHF1MHw17Cuyb3ZvVkPxvZwucLJ6PX8k5/JmSmsYlZ3LEPuziAu6/LmJy7evor8+2eYC9HJbR9EXMVyftHE4yDhw8EmjoCibOorGr8EZqYt4Qms0EJfKhuBrOkUdHmxsI4cQaV976PHHs8cHe1idF/HgrI5XHuTIhOKfz7yfoxmNyEBN4O+w5aAjNE2riIULXIes7RoQUmiZYGQOEpTdvjp0ZYFLw2ouTTKDbIjKGmdcmpYp1rrqQFKR1pmvh9JUCTYZDcrvGSScMhqx8v09umKSYdulZrKiWAo+uKRy5L9FCw0x2RRZxz6HuhTtLtwkSElOHGikEjU2cyx7Gju+hvXnSxTDIfy4xPc9EcU4WMm38obU8aNwbzOv1Ae0RCO9qSFG3+y1Jy5Sfli6iDB51q3teLrDPMXwpI/h0eOYrg+aKOxf5gNYojxBEqf7H83FA7XPqJ81sWP94fp9Kkb9507KSU7tdWVkDwEPEXZcxuVoPmNfR7ttlCM6k5t8iphJELlfRnNOwQs6eUvkJ4sWjij1OqiSKFurzyJ/L45Vqkw1RbGqUc95nuJnvwTKmP/9IcPj/4M/Vq7VHbP0d0P9+LuvvVTEtjH9YJyKuDpEHE6c4UM8eFDG+VkdTemIQdJY5KA5jdHJEswWYdpnTGpERUhREfuH0SsNPbxbST5d2CBQADmEh22emzNuWSOIepzf6+kXdw/NHMbDtRJ6QGH5mRQQyQuVrRkCBvvJaawrGxTHkSlYJHmzmtbzuauwqW4y2RlBI4Qwiuipqoo0WRB5P4t2gX2JLNY8nk3ViHOF9fMsSIHaRAdprj1NHduUsbYLLO5D/GHFi13V/3LWMRWFjld7A46heJZWDes+Q5wm7KWJCQuXTUS3r2L/yhzdgyWm4xT9WMX1VRHXb3Ci+c7jLHP0qHm9omF0ZXQtjbQLb+0HAUDUFC5sqU3WLkJnV+Y4G001Iqyztag1CqaQg35F7cDnCWVGPHsKabY2jSRAizifgDJeT7zsH3qxiRfPvvuc+JgVfiy3rz54M7p6iGbfRVs71aJEFYtDePry0UbQfQhN401mvUtI4XEZ4yPZj3ABtFwB/vuVHyRkMFERLkpx+IIdkBdhwtjayApSd/9BceVOwN2ueRX2o8DeUiMvxkHpswQioIuR/5YSyPP9lgg6STK8yc2TAjam4KSYg1RKOgc2n3A8vDjmCqPZUiOhsWi1+U4SWhhBpAMVcpEqr3oD56+NaW7i8VtjDIfBIzqKvHOKwiUqEfvpBPGTsveTZDWYW2tkSBfaxIaDCSLwsnb6NqOdblTXvd3Rxyn++k89b0n+s8cHelgR18WLXRHnLepx89vkzM8ByYF/mqPFu42xLoIDDqChMi9zGaPH9gOqAuhb3nJS1zpNSAdsBd9rLuQlpi0jF6Ip6rGIrgcFg9/kvFdlUMq12d00KlIp4tYnnAWkgHJGqPBjBRAwvi1i0BjYVkegJ/huUeh5YyC68gXp4jBzYsUX9fcJB5Aoy758M/ZKCjgtohhrIRtK7WD9Ad/zM0aSeEzM0lkhHz4MciudA05fqJS1KYRmtdJteK+5hLQDVV1qW89NVMjuRJxD3mo+8Yiog1K76KONJrbdJpa6jbNqH+Mjq3Yxkj7O13H+YK+LfrzeKD8Yv7UG9L5oRBexn6zNfuEkcyZwMXAOYBYtsJ1Ndxhjcxxi8wCy/hgtjSFUD51JVcx9L4Nhpe0Mc4yPlmh3U5QE2nM2pFCAm6xrjSBRgLJOcPXY4EOqwjcLPiYZmOGLT2khEOMxUV6ijC88LOKVjufdedSZY8qn9/HeBd/6oNm+x55DAHjdxvGykqtD05Zxfs/0F9aXRpXqcCjSXeD08xwn+bWltyxj1lTrrjxK/Q4aDhDwcb2L7OSwUg48qHKRDbov9C7zfFfLkwqlVdlHf8r0KICGfIn0Y27W0gIs59y26bF1iwSM6/iVlCktC08VtP2HIrbnEFj98N50WLuCE+T4kClVeq3ckaYceKrgCdY6VpYlUqZZ2MfdI1Nl/fJekIFM4yhOqu1hLOZy06fZgrIjb5NrPHJOekk2mkoT4m6ap+inMcpdEWefsnjj8IbpFMWjJaa3PKHDKF5FLkDSbo7xgNiR11Nr3N+cQY0i8aqK4RrOcuVC2TMKu2Ho/c80nDXBI0f++khwXnrbNAmcPniOeD7aJcDvFwcxf4YgRK8joyN5Tx7ea2OzQYp6+3g/usJHsvBDhbfF0gSXfK0CF3AUYJLGk3errgIxAUUIXRSIH3pZdyfCC1Y+kLzyIM96vKLjWlw+cwjSIz9jkm4YsT6+uMTSB00O9iK2mmzupiYNWBXCvULbvkwha5u8bQi9T74DbQ4LfxxQClo4wcuxLghvoBRzgPhpA/B6eSpW9llscRsbtCx4Ot3JMGTxCY2ZY8AwKJbYXNRx8WCnBXi4PMlSgM222eHOvomFS5SCDUWWiLIUoj4cMoExBlBPCl5eB92uxmg8TScTMIbX4SSUZI6L8vJ2Nz57vO9jRSI25Rhfe7mOaehlyCreco6IsFPppfn2YYj6ejNi9jpFEK0lb6o1kMKUBSljGQdTMG5TGZJjFjpmpQbkRSQ+XZVFl6xB8tDmz9OZWdSCEtGSHyAD2jum6IkLaGqd/QO13jVO8mtYFbr+cW6QeDje7XatyLZCv2DtoG2mqv08VeLdDDJTm2IQIgiKyPt2648nQv6yxImLGmuSgn9G/aNaR4hjms4GBqnr+NXPBTTVaKOL04oKE7NbcZE8UgMBkLKSHVJN0dxr40jzw8WACAzRFvt9Y/uM9vIQLbni4s05F7RqbCslTjKXqfz7rO6UdYv286TRUHnVREUecIfxegpZxiqaeYnNoyK221IKzKUvo7qqYtM1UZxbTSlacQoMhK7QVDIyxAqHtcJak3px/XpHeFXr92STLBRUDWwZ83GIr392L7GZJolPe813yzy4Xd/v8mXHqYjry4ijIg+n2J7N0e1lEa6vcfYqkW5608z5Wv/JhkNiKz6/5Oex3jHgVkRzCvhkhZLNMeNBccLl1cp0Kbmy4oatiJP3tHwxaR6wm2D9aUEbkMCHzrHOHhXqhhOn6I4Aiy/HQFnf5mKTSZZWyfoGsUmFtFl04qRDCicXqCAf4iTSuPAaZAS/Iv3mLvKwgtevQ/xHjXDh6BkscPwjd2QlsJ/7X5x5TdvSuy9HvcICM3fY6JqncBqQKx2E3Gw8K10MNqLHLDKY375I1n0Vw9sRx1MVx29h6AzqtwglR8zRkjVOEz2CxjrijVjVesd55nxmc265rY041qRhYfPSNlnouZDXu7BwBxNDGXH1GN7orAZU4pCkwYD+6vNObjFNfPJhXBRTSK/imDto9Qd9fGQKv1de2cfD+9tU8JGU6wUi7ziZoPqw1YFMvIzI646uQYnHCEzwbULmFVJ0cdJs1MqiFwx7k3yw3CIXCyRNiyXFt4DztkopKRa9xLT4tHxzRIy5pQ5qqQixkuAfyijzpVg0uINRTtHFUxCq4yIJQC8lCyY55CcnRNwQpOOOZ4NCuHCzCQ3g8K6N6oHyjFxc/AgyiXO0LM7GpK59XvrodpaoE75OviH9IbFMxRbFok3AuMaFiBASDUTvjC7dut6IRg5E6hWaSlEqRobGB03TasxW1U3UXRs//6O3HeOzx/d6lHHWTvFy25tGkOOR1b6EzoODWsUa1gs944A5urP09cNuYfUd06Hqy0Pjksmxa5qkriPatbLSJeRM1r5aguxwEGShcFkArhw//C0VF5dKUO0x1jljT9P/kgaY3f2ajJbdvTy58tcmA+oWEbhD/l4751XEJbWjDQllnYKvVtFikaIQKjUhjFOEdKSYxRer0WsR4PMQdBwdvGBgUyuMbaFg2yIuE0ZS7HuSRMyp4sI76cmZAsIzND+vxM9S3mB1tOf4ZYKkMmbFa40Lgwb2WvSJamqj6hkp2eVfZz5oRhbI6ySCz4PRuFCDNGoHbcDfrLrH+D/PoAYXgjr6J6VEMHCYllMZ8QS0booaXh9nCA2AxsWp8sbzcbJqWh9HWgKVKux8ZvAMOWds2JT2UzcfqkdRFLg/9kqr+Muknz29hs4pjrtBob77r7OQftBOQsQP+KXup9h0ph1oyoHKMv34WJPKYRaHFPsrGjMI/t47coLhLNSM1HNS1idfp5Gvy+7kf2PEzxp3RodyQbCNWZNW9JwNZrAp5RaRzZTaDpBDJTXxj/chQAk+gBZaeb0wVlUhAeWJIY/uzckFq6LkRt2j2M3IBQBWibja/nvr+P2wGMP7QP57mWVLYSS6hMKAU9xFM1HfpnAwlgVoWSkh+jgqntttTrBpFWn1koI21Urp62cjZaehpDW6LN/0pwD+GC+P5kcygt49nKO+Z57y8TTJe3N4fYy6nqNuUNcW0e7gO0WMMnlOLiJ7VZQI/tdWcWsXYbcD3+8+Kz2Zs9cpQo4y+mMRV0+mqNs+Nnv8Q80LXCMtpV1gKkHdgu5AN7fXD9EV7v+WaKVy/phy/Pj4vtz18aIIpVY0iT1WVnGaK7nTszlb4pNkdmy3fpVUoB0D41PGKIsOL3FZZhQ2HlApMBu0StCxi0c6bxFdlUbBz5/FFaIAFNRRcKnw5ptboDB7oVwWfDiaKvN7geeLPmqN2/jYvAmkGpbrOkRW1LVwi7ZC5nSw0z3A1YudJ2yr6kqXrkcJwMIygYVIm20jC0XFrcikJ712qZDV5XmD9/OgwHk2WdM1Gkc9Jlye383IoaWoq6IEgcxDHqsYRz7ZMoM3RqIYEW1BARgzNjEwasO8MrkcrXgf+XPLKv7iF+8/3SjAU/LIUIT4wgtn4kfynuFHhzMBfDByY5UjKzXpatWCQttjXJoQ1gAIMQUPH7aHIi6AZNPDJWPiTMYlicKjsQVNT8mMl8tGz+WO1YdQW6MO4vjpEkiU4ObkxmQ6hKyNGQFnE1g3ShxlzshO9GFNgEsOoBH65AOusW5prKyqRTZKZfRPpugvCWuHy5eo/vp/jIHSiJjfe5IQxs0Mr90Gs74oNZIS6uXDXXsrT0j2LVovrWmhLm6i6I1Eb9DWMw+KC4/4tbNumyO4U1y8/ECXHdwrlACMgkD94CkzMRiPIJV+76R65GwoaxW2IOncHJxbFHJQQYT2wpF8MtiqR5YtWdSryE915MbNbwC0Xy+xOWtkDCuUiwzU/DrWmmxf7MbuYn01bdYEZOX+UcrSNOQZBep3wkqGtUZRCMe3iV35OF55fpOjwKf38UGeHm/jK/fP4sX7+zi7qGPbon4vRRFgvVAY3XAghb65CJBwINFi8zEdd0YBL9V35tXKusvyixt7JqG2yeUUp1f2Lb7sxeuW4tVNgdNxPKFanzDcdUV4ZlqERRfpg5dKdRe1q9o2f3d6x8Ljtjce6uXkBvIEssCx6j2T6CxTvn2zZDvmTHqBIAmQqGBaVfeprKeog69uHik8x1sYS2kcWK6xZzPQ98av9I6aH1CBgok9M/RWOVd4ljIm1njd+dpTOSlmdUSIlHAs7217gfiNs7DSKHt+VMT0xIlVotPkiJ61LdT/ZHFY3cLnR81PkcgJgvjKPrjyJNUe9XTAfGDTUqae9BxrArZnpYVUKk5zIjGmulsTg1s1sxuT9CoF6Kmm+MxztekjH8fCTxLumovCMW3yGxPShT2DLwPK+Zmw+tLdqeW2zPV9ykk9yBsIT0PKpf4mtgZnBdPxVgsDbwq5sEucQPVeKsf0BnFI7yUhbXCD4NRq+InaGLi/tRUMC0Sm0qh9i+g0CnL1rxSFzAoGlWOkxo0rM1D4UBmgPRTXdkFX58j3+98JhBb4A7KRgdF8PV08K3ZuKo1ulLc7Hzx+zYNi9WKA79Bu6tjvu4jTrGg3jGiBn6vtVsokupmJ91VJJEn5p7DoXCDWKrRtLM3fAqWTfiDSPftf0VxGm9gELzDielb5fc+H/OaqJb6yY2250djCSePtl5tuIdKx3nPQ5AEhEYWBR6LwjPs8nCGIc6jYQNljFD4OJqOmMadhrC6ujE67IZ5bzS6ebGe/LbMbsmhYTZlVFNnOwQ0PaS9pBZPpHTJeZR2BdDFKloTepuvyFtNY075o4i8miZrYRRUj2to0Y2UUfRXzkQSBOoqzNGFPqoH2V1pY6FA1G9xkcpEYQU95PlitULQg5DAfyTcu4iw+BZ4ZUYhwrwZRF0zOx1ICyd8mpqFTrKPaRlGOWPRD9McrUTL6a9C9UdxkUIAGjpxiIE9Rb4sYmkFnAOcIiUK8JQuqRhXM8HdLZafO0SbdI8fpynKto7kQ21d7mkhtRlqMikqUnQjSaGj7JbqLiGmXgfJZUKzoiVWIrDEbAvuCycSWjAgT92w0KkXRCio5nZQBFGc7eNfwge3BiBDuF147v0keeVof32sSvSrRH16U8eJzQ+xafB1Xs/TV/gReM/eUvVlpyCSygouVwg17ytpvEbqPkGc1TfD8QJ9RGa4GzS42+Hp4gxRD8Cel9M7nJeFgIpWsBYklUpzsaDciCNOGKKFzUW9SMW/kzCAIY0wnkPA1zmFHTHATlyaELp0sQOiyaFxRUmVEJ+6kpg+0X3Si2/d4xXyFoq9VMtZQp4jxivGqC0ZFB1LsaA9TFHoH5o+9eS2KZtPaKvR+y8UAsAFKgzwriTSkwCpiuMK4PGJ+o4zTt5c4vbXE8Y05hqsprh9PStXCeaB/corD9RL99RzHbziFo+azAs3fE9lom7WZvVQX0W5IuckYORwzaDxB6pIfbQDZ4wpNIHtGzhwNY1TtEPvn4OqaU2sOpzmLKdm6iUKlMJaKGZ6iEvWYKJRC8X/k5Z343rfr9VZA95G3c9mfVfHiQ4jCuFSjqqPTYoFAYgZN8yxL0UEsxLqQqtHdCHN5z9+xQpFIXfE1joDxuDjH5fKxSgPKtGvBGHONHVfXywGrkTBcPGYj6aU1FLFR7AzKPydtWHqenkbpWEncmpVNHKyDIlm4zQo4P7qbEE/wR0oBliIScoPgakYEQhfSaFaXXClVLTUjkUwUoBr9yoLClixGNDiI4GaYXOz3Dy8jH9Q7guuHbVwfxtheTbG5aKLqThFDa/g9OXvtcIqjTnerQ9V15aamtF1zYnWxpv8ZEXRjhmi7Gx7jiy9V8Tvf/AjYPfwZPCw4chH2/HkVLzQQhemK7fso0rPU5B4BZo5G2jvcZqqyxjURkV2KUUA9svbn0GE0jEpTRO5UoCk2TJQFz3LMZfWf8XtXNwIp6kQ9ycB0Pll4sEKSnPygOKb0PeP52H7GY1gOaBk7pOKRxyo20YWZtAz9eXrG6fVR3BzLGE+FBQrkydIp93kZ3CSZeKQlN38pzDPbWgWo6RxODPG+5YJ2brZ5OhKHLRR96UmWNkRJzVZDZCucpJhYieOLcMbKwX5HBLL343UUGwQh21iGa12wasRQSbcIc4o4XJ8i9g68V2RUI2zNnEJZfng6wL7nd5yuIIXXMUDoB52kwOciRzDD694SCj9pHKxYx50V3vCFeD8dI5Wk+tXWJMdkhlZvbXZWcQ00j/4E7Gviv5COaoyx9FirWA26o4rnd8c00Y6n9/EBnpuJRDQICOA450yLYKojdBUuud5PwAfOWV7zaDFeCgwoqIUODhrZqFBRxrI2eibEZEa6f6fHhhSJ9nKzCRjcVatnXTime1LSkwwg3MCGTMhyLXDTs7ZxltT9x89ejYfX+wk6kdavf67aR8U32sMP5wvGB+Ydkm1fRQ3AoFjIVSHkdaMlw7LMu1nZ0rmGeH6aOPSrb2Gt3G1yoZttpu6sklkQZVGczG3mXjSVkHNoieuT7Wtsq2YPUXHO4Zr23v8gaCSp+E5v9L6zZcSQ6ueomVRcoK5tPepFpMQU4VtDtK9somiXmPdVjI/55J2+ogIZtw4iT7WfUlmtpK4cT6sBtlhmOi1xukasU+rnbc6l+TYFjJNV+2ZJpbbPdiGeTBTZ7/ClS1QJegZR4txQlvG5B42FpnfOyg/y+EgUfg/aOT51DhDO9sNeJH3w3Pqu5+5N2lKrXeCFo7GJ0DzGSqu0m479ttvzWGm9D1PKwQchKlXvy4NFhUx+HZPkyFZcPiFwcILMn0uWkhacO+BUUmU0jhgLutysvsWGJqUkyasCKbSdhQd2fH3+Yq2z1cN7NUkfkuUOLG87Cjbr2j1SfC2Zs8uC5JItanckddVYMcSoZ1dGcT3E9WNg7CamwG/sZG6ClH68kZuo1FJVOkR8WLC4ea1OGXA8gjumdewtdGXywbSv6vhLP7yL3/nm4z/rpfXUPuxgMsdX7p/Ftj7q85T5N0WcxqPuoafjbRg56A4IkT3CjPIl2UUXvffHKnNjJDxHdcC2BMoEXpK2UtGYJQtIkD72nFbfTbqBxVMnkAo6UPhh8F6LuyMqCzW8RdNkmu8ENQINUEh7FmwUJRyW3CsZy8TTRqgiFT0KZRqh0RFujFogXS97RAtZDHPgyvcPBMOzYdacES1zkTgoe7z6NHLO5g6URnwkr08QC+KzPB7i5+BI3RstbRoVr6eepA4XBHJPwhId/ivUE7JzQc8Qjyjtxk3mOB810uaz24MeMr46OvC2JFHkKmK6nqMdsYuo43BtKxahKJlzPE4HNZpc1FxQxXVE83wRB9nnTFEj77+2oazitNT8FTEejUyIZ5aosN0LjN4ko89rjn+VPYdRXz54VOG8FRSjIElKCdEkI1F8FaeJ6lIQyWMUlfhlPL8v4luXHwyF+DN9vE9yh94nkKqMahMzVPvJ61MecfJbTZGUKAH2dtRdc1NUr55uGH8n2p3NCEcwiNE4YJxv/hpuCgn9ePNl9FQmmalwl3FynrFiJ2Werzh2LcUPf++8eH1O6Y+5fiDiqt/466VYSykUWWAl9093CNOmFq62C0S1nEKlKGLclQn1T6hBxSZ3lWg+5ua7mGOkmtSOjF/jRWFqrvHq1jYtLmqN2Ktx02SOPUfDSlPD+Vc7YUjdBXcQxRHP3WNSKdPbOqa9PTBlgzOTZGVbnSABideOWGNo4/AHYwxXcwxEHr5VRZxNUTFl2VTRf2cgzzXKbRXVhvqgUB6zlMw5EZEbBip4/D6ZFIp+SUawKRPlbo5y68AJpZRQQMoP0ebT8EnUWEg0B5DlRCGJ67hjM3LP3FRZRN9wPW+rmI9J4ccZttWL43DFTJSyxxeN0Ae5xtuLiAsILpEj05jLE2QOXOo31vQGNioXDBfkItWPeDZsCqruvLjWiTEIHNwmrCPUefFn2VUJXmYUw9LH74dOJC0fsF6RPyAbNFXDzPXn2egNUW9mK7KaGBFgglpGDedDC98WEj0Qoswn/Xy5/DR6pnOMQU77QgSwcQFp1EXPjc2lp5TfLDANE1PpMqIppDgapUCCdLspp7jcdHE8DtE+fhz1buvDTsUGQde1ij6R2vkcRopSNh4+VRg5AE66Q5UaSyNoH17FjEE1RTGQ+RT3M+Ejj8tnj7uPteuflnh5f4qK0PuLMaqpjIZLXzxXI3OQjxnFsgZ6DsWaNsDO96w5eU6uo9gkY8sKRncIHCRGHbYSAuYiw1U2Rs0tV2k1TlbuJ923vALTxFcI80pG5vckp+XW4CXHZSjsLR7gcKMwoqYya8CB5RISrGgka5ixyDWZ2HMseGSKa8jBucTY0LSkAXOKPyqsSGg47tKd76iExWNLHp6yhNfLEqpCmq7X0EWyCAW9VJxc+pqBLIw94itHWnWyVeLrfDkN172QzBoEVT1b8uyWY1pyOBsb7kNxIITdXerC7H4pYgOHFsIIyGhXR5+m19q1MjGzepGLsr+cYyNZmD8IFWkHitc6ZhKC0u9weBufxyqKPfZu3m2qE7Pos7J6Ff7YpNpmuDbVFeJLsUkj2dTRc1HVvC7jntLWgMKQ7kHjyXkmtGOO5+oyXnt1E9/+rYNtN57Gx4pev09sG8jSTmkWlRAlLIiMXpn20yJ0yM2gMlgit1siFecehH6GO4pDBBlU0WxEmPMSWxgmVsPJkxFd9Il6iyfGMVpzTvvzV1HJukA9LDpUpjbxZ9o/TpwCeQQRkjgkPWlFE0gaR16Ifp4O1Lbvq6HNWBQogBiB19kkgh5xumT9TtGcYfa9kWUTbhtw2MSHw2YsEUQPBihmzBvGaop3EPowIIdwMVgtmyKpClVUu1k+fbo73dXqzmI8Czq4pg1RRDWg5rwU0jjGOirQdlD0GkCDwtL0qoV9OTAiBa2zKl2jbiJfzzn7eA+6OH5rjOt5jD1Rj+yflhhGotnKiP2k6RdG6OL7wZPPGbtPPYu7eB+FZo5F9D2pPJzVQ9Rbc6lVC/ChNjLYca65xC+rIrqOtil0NgPOkL7FOdRgkoughGKXYhpqRvKtP8zj6S/8iP56gK2IO0tV2TN8GB84tNy8CLolyaDTz0djiOyStuWdbmtk9GQEQl6LQgPoYDEW9s63VYFPAOD5iSQAp7CoQMyJjsYeuHqrI5c8kGgZFps3Nk8yQXkdtuoCJ4q7jE3C/6426oeBK4gBqMRJJpT5YcoSw0quCNAEnkkbQ4lWzMWW0AB1haOyRSWPr9vszBlJ+zCXvF6FmyH0ee6jxvxaPMYl2k0X5xdLPBqGuD5E7DG+LesYj1MUe4bc+FRJWxaDbmJGdnCG4CPCRYR/ZnyoN7SauYolosY4TYWFHxNmugeR5eFXPnv8yQfjj66Y4yECoV0vda6Uqbn2pObPxn0zd1ENfXQU8HmpU9g4z9lEfRVYnrL7gN/AkeNzh1dm2gLI1Yl81zlih/qMjlqINc1NFQVjYTX/qA0dC8gWxE6GgHbzziJ6dApraGiqNdhjaBCEtqkxcMHBvmCpNxOK2Uk8VSUWHWqNbumQx22Ol8V7zPxodcRr9ieG7DzvSY6b1FO8Vl3mSuGwVpgGStSLaYqu9BgVBasQa/Y8lBBdnE4p4P2dmqMoDKgSAdR4l0C2lfRBzjc54Fz4vDEnmN5UUpY5T4denBx8N4/jSeh5U+3iyLiP7o0ifjxFBxWCS7LvdbifjkbQSeqBm8d7twGNXJo4kcvRz9GxHuopuH/IEm5ORTyeh2jPjZbiVzodIZJblX02FHG2reO0TDHg9anRCZ9BE/NgsjtjqKZopd4s8Pvj52+WaDHDlprQyAOFjxWKFg5gTUGpiV8dSJ+OQv1dFS/XR58v8dF97Ld1fObFTarLzZ+jm9BEHJ++U680HRox0JleCC8SHCPRxPqNRHGpI1+zmOPGCJl7RMkPFDOcmCq6jF6x14QIKQXKPF9/Fe94Tro0Gh1jRvgzgIY7no+mrqo6mY5jXKwpU47H1NDr3sLbNW1fuBBpEEGM20zPoMSFQrErogIlM57AOMHpOZNTolScUewwfKqwUAMlyWgnRUh6rIzKnucBVxAVur0HAQWsYgcVX06LohY1IQJNkz0VXCZUrpU87+rO49bYTAJ61OhKbdvn3b0ikaY4yb6KeBX5i84xXOLHt0TdjX5d4j8vUb1Qxnxoowf1o/B+g0ZzVQxn8lBL5j1Z4ghgbuuBKWsFt7I00PY2HI8APUvU53M0UDPEmbUvj6nHNJurfUGvz0io3wjK7yaDM2c49TEMY7ScqTK5XqKucQtNPsHyMSr8Nk0RP/0aq/bKliSod6WOXbk8PkOptzAVNocN1M6HvTZUYr78mc0z2Wg4oFvgwSGPYgfloS62RAJUFI6z/o7RmorAzLOk2FPwsnB2FgUIHtdOp+QMcyS4sDxa4Wsg+xqpZHS6QutghY02EQWeuDSYsy6MWoF6rX807ytzg0sUgXRO9t1TSYspUFlHx+hWrx9TaUo1OpPaXco8OXBea4TxGl5mjMBtazFNp9juS5Fhry6PMhErd2exzCehSjdWGxK00LW0cQShmKcMcS8liAGF5LLU2sZBnotNHkseqXGwPWg38bVXtvHP/wje5rPHOx5p3Pvq/Tq2dTrvp7H4GngujqYsPpbos+v0+jbHzBSG5LIJMChiYF3owPThisdl3bLG4aRYpMHClxl5zpNA8oTOcVHMFOpWsmkvKiAeBNF8p1VaLDQhFX08AZqYmgP8JvOTYiYNWXM8BUJlH+QqTgcan0kIAL9D0YCrKCn3vPc+l0Wl4g0CNCHna57lTYRaUjE8abN5KofoEQ88Rq80RBpjklvNW7vRc+csEbopz0PUt2VczyeP1IEq13g4LFv0s3sZ57Iv+Ey4dGUBQYF6POk10FKqSWwKFeunUdCFE09mo+7jdEzfxKzu1cUS12YHW6E8JH1kKgs1QkuRxnPemT+mbx1KEdur/RK7rop+HON08FrS/p+KaOdkLfL6OUdl32R+0rJ3Xjl7HcRC77f2/Fr8cfasdjxwz5wGoVNP645x9hIXTRG7pozLtIh5Wh/vJ/A421TxmRcIYuesywQkNTO25WkyM10KbwzvRRBNz9c0MraB7+w7Stw8hwH0oPmydKH49p/x3pkiZGsdx3zZyot/XyUeN+IBiklGpkIJbg18hVpjT8SezBEkRbs8PinQZtZbmkML1aahS/Pj3gp8EG4Vg5U5hjR1Uq0j8mA3yEC0EBIsO7LkeLOWpHZPrrD3Jc2debUqhHdmOXpl3EaBShB8JIZwjnkdxTKVk98d3FcLU0TToMDNCZOUv6tRcn6iTpqhybu1SCrKIrYXSV1hasa5I4smvniM3UtTTH8IJQWLqCbGt+cYG84JTxOpMZptHfPRIjKoFQAuwnqaOgYKaDkgjBpJ84F357USluDc0jxogsI7AdLJ66GxZKTLWoBaAUAFGFPVNv9Ot411ArMi1ey1V8+LeOPanNuPTeHHi3+lZuZjnt401ze5vIxdcYTTmygD2CymKOwYBwPnJv9FYLNGUFYAU+rgy0XRssbA2PAbewvD+RsWQ2Mpu5E+dxFsyDU1kcMN/pW6C/QX8CroVJKhDyLIYWBJpHDIjDhKk+mijladROvnN8ENyFxhMLbK6QmYfLpJSLHJhE0KKr4hJmBhrCqA5fFVa+QYpsuHMayO92G1euBAInLNzuKGTSg9GfdVMWBAerGLw9EH/mafxpzEUHG4yJ+KDs2iFCn+dDuW4mppPMZv5D1Szmgr9InnLX8n7EiOS2zaMV45K+JfrLyiZ4+bxxr4c3/Lxsdpfo6trah0uIwr1iuvk0WjQYoJijNsXlzjpGnoekkwfqGrYb1yLA51DAcQAUouFzomVPu3m79pDqutIry+2XDqmFNAkdNaFQkqChJpU3OExkgNEFw8j6R9ON8Zq6HYPczRwuHDL5CoiHPzU0EbbM+SF5MDT7WvzUHzoYuVUEmSD7GCecmJwyjbmndSmHjOHKLsgXEk0cKTBFAtUmw5lLvOivv1DVc2tlJ7bBNlor0LT998Vv8LUV9HfiDrNapOlMQgIVOUB0aiTGqqKI4uvDTyE5cxSeqcc7LNCCGuGtV1Rh+F1pLBOxWxOSvjESzcuba3H2HynD3yHCxjvhYoE+VuiUOiQUwLOlFcXHibt4tggUu1ELpnZXCqr3Nj8n1WXHs0KAHXOpCQP6rPXxPZV94afoJNvHxexXNnc1y+hQnaU/x4H7RkU0W8sAPKzoteRr2D9qFcRuDnkQed679UbrqFBronZpS8tuJXekdyaG1IzroiZhSVu5E0OLAS3qSztAozccQTUL4TW8a+EKtgteRxl6TnXc+tFfi1rXfmY0Yqji64RHHC4xHfRwoQ+oba573WR0YItqzZgaIR5JEzHtSryQQNc1DFRRdlgWKGn4lY0ZQANYBZUAKGO53DFCiBIHwPxWu95rxHLPBeRa8AfSRqjaLURaHSoAaoHhY94X5g5b6Fj6xDj8H9PhCRKOEFDRvPua1iVhoPP6/We2K9gBNRKpJYehI9GF0sMb0N8o+jhd9DYa414QsUh1bsiltMUSg1N8Uoz9EFWr2NKLaZZMXXaVyZfH0KcX29ASdQxhKuI5z8yhY0NMogv1ZeZ44yjSIo4bDE1z/1IP7Vt17/eBV+Gu/af0AecQqbVxFmZZmpJjnzySpaH7zgBSs4KMqc3es3mAxKmbuKTCH2nH6TeHuyl6ADgOdkcYJQVD5kCXpncSZsJ2PExeHTjLn4QE4eL6WbLZeklY2MY9fbp7QNGRC3VJQgBO6sUHFBruX7NKLLS1UGsbXVvXgN0UthcYMFhIQVc22AQIcAr9ciEXMR7eHGrgEZ8OhFrYZHFjLsRApPqgiLNKQWHA/XUh4TTO/gaZ6LnN88ouW5pOEncLU5z35N2n7Cv21qjY2FiK4nxxBtYDZKoPDs8d0PjULmMh4SFwZPTEiU1a6sEXn4MV5JThzZmxQyrFeRs1NNa7/I/KF8Jgcr+ig0unaWqo5VX0NNoMjgU+NnaB/YSlacVU48mhqQPXGMfHHxedLhKlaKDrWr9XtViGSGp02AQQoyI1hFnJG4dFxyMcsF1bJEfZtorQwrwT05ixQgCqz3z2YvytJPKEd+mQ5hz8DEl1Emqq9ChdazkmlIpGZNiZTSTRBECRbwZZRJClYV+ucKWxfSg9GzbviYNDWw36b/Dv5wjsySAM/GlBBgJOLJXoEgg5uqi6kp4zjNsWmWmE+g7C7V1SgpP5i6YcT6T+9li68mPM56VOFYMQrWZNnCFC5ZCX4oQHeLGrn0FU4kMlWqtbmiuoRZM+klBxlfOcfO6tJet6VVflarYEy2FXYscBKFL3CP3MyhKYsxLrZV3Os+Ms5h7/6Q8AezLltnsVc0zReXDScDUpK4CxAczLHlPckmylYnHjWq4MuOB2qCmmc5PZijtpqrG9SncPF7Cp9LI2DlOGcTw8+igEjhnJJvaMSy2JSxF50aY3mEE1cojgE/pmgR8dEICNRwQ6WYRPHOLD4pKWRR8+8pXCyQpAgrAKlPZZwkCDSRSZMBHCLUSXi8yxh2khDIaL5syCh+VfTyWog4487x10tEko7wNitn6mmRkgIFkjak+1/XvRXnN8lb+d4KV9QBYPCFt7uXVYyjKNk7IeSTAtOB4TZctqk7d7gM2LslmvNSXOLxbRtkT9xX/B0jcNnHgN4S6UjhmR58NEi4eij8eI7u/qL4SG8az8NtzE1DaZcRjcjFv+Qs9nnh6WYmnDSV6RQCT+YbNTIN7mZXxVc+08XyTz7ckn7qC7+zTevFr2q3ttQZaJbRrGu5JHDTWWRaBgdcOoqD2KlSJ5upqKKFO8HFiXJNp6Mvz424R2tHkhwqVplm+FbdsBHlg6ZRkjcLrHNi09jEXnis3Sys8mc7xgZ0pI1+gsd3VPfBIcLGHCD2Fr0uOfI1+fDxwYLnRVFIUVWSm9uDfHocQMeFgEMhMRScJQgghS3PFvf4PsapUUGJwoiTX5xH8Q0XeOBRDgcFuzfV1pYa8h8sxVciyLp/7KzEaucUj7ptxVHUXj+c4nSaIO7Ftm3FWu75u4rbm1g5M+45/E0yJiIMvyakJs717NKW4AapffbQg/W72xTx3NaosLpdEL2MXcJBwMgzpuOs2cXei/oai0LM/zByJZuRFTFLcOOYhqEkOahRYY0r0MGQgn38bEBrZDGPLaUikiNrWyQUo3xfB4/nOKmAoxBzoeFRBuuzQsHKRUhRKrsUF4BS/masYGIcOXpJwQIIJns49+eNICFfiEyllSDhaB0bL1tFyANxhgup29g1KQDpU9I2wnUlinyH0aPS1HsjoUs6ANAkJddKySlwd4QYZkxV/gzuciKfNGHQZQBH7l4M86Usc7Bb2ZRF7LdlVHB4Or/vLQKM4xJXkLiFMoKc8/n53Km5oI5NTNdFjGfwexfl+87sy84jWNBPig/sXLrzKiZoAulRqq1/Z0zuFBNZzkbVghrK5t2iL8bsGddnc95Ud+qS9ackw+GsjlX8pcqZwp3Ptz+RekAhP8cZyuWndY/fKG7fO/aKV1yRSCJ0ypMYZbHK3gZOtcdzEPZP8xKdaBelrLi0Z4SymjoAvwseN2tU95p8jtfRaSrghaquyDjCKRoM2zW18n1LSzIhxVamQ/1RRrB6F9apUbH5ADUAhK6O9r7V99FaHOnkGRweUiixKn8r4gvtKFdtjQzTVIIogw4L8btvIEAyDYy78+7izsQXD+c1lMsqOCl8dqBkqHEZCbvYlakxnEF54rLH1zQfF8zsvXJrWySaGoRt8vvMvGIVfXofSp11sm1hHyoJ8fask1UT41eaWprXyTb2rllpotnTvUffvdE8JmPNgyJKlL6DG64Rhws+p4aoy4jDY8RnFJMcnPYDIat7OaFsmaLYDhrxSpiyFqd55qxq/dU3VWc1KHlnyhT8Ez5vaRHSL1WfTQ9nEGHkKTb7KspujuenwQ3e2kl/HAq/V776IKblTSdlcAme6ijrk9kuygRl0Q/ujjU+Tb+vdZQ0FnEt/p3HUkCwLF4Wnw5tkDQ+jGFVGVH5W+WLclU2LXnJcaE6Fon7CFQm83vxQ5MlCwUoIggKwRVwL21+K+7hGFtV8nhvIfSYo+hHmabo4mPMJKIqm6OOkcNWEUpYpNBhUQjiucZm73UZcajUtBRKJCmt4JOfWi1+ofNDef1V9MfB6sqmkdq5aLdSER6HIXYUl+ICWua339dx2rTiW+063m17JsKqnfrBZsFklDZlVMxCdDGLZpoG1UY62UzEOI0nOEbYyRSxF+E94qX7bZzvTvHoetWHPnvwoJ/Yd2Vs0+SbQ9J+jloCalzWBwpdFUh5eTG6WRW74oXIQ8yjKHfNeeZJUcpBbGEPdQ18v1VpbScYF2ger7qVEZdJBRjRYmkvQKFIpqWtKjWiXCvO5cSBHTFt7DmYFv03lwWGyALZExUXspQkakxV2ZdcTtp/WbToshkZm/l5r3nmjnLLZiJVzFLlrjyj9GZ2GofVvqstlNgK2s5w/xq9Z3rNZRP9cPIlw1kBGqaLF8V0WpnIl2wdsdsKVIiN3KbnOJ2upPxsu23slirOo4kNClxIjfsuyuNJPB8KiNM8Rp9xfBqtrc+Ty4tLlCgplFL86L6InrEi6IEEXRHVE86yIoaNESrzndb8z7QJYqRELS+AxgiweEYDVjZwJrNQyymKLh55M7JvPYKXhiv9pPQbNHq/jZeTkpSM2OEUD1BeZsTX0/p4r6JvLjH2NmonzqeKM6xx3BBowrSOdOXbVsY19j/p+OgcZJe9jP9tGu7osuPS5zTEebZC/nIP3NheK78Vc3/MfpuoxikmeIHyFZtipkhXHCh3Ca+jErdbvZpyt5fY3GPv33r+cSfK2Fsj0czvlh2Si0eJDST0oGBMWyT2pMbPjlpzEbPaDZcaeypYrnEjMG5QKJvXKmbSFYi3o8kmCk3QzAGxFalRGROXx4ZQ0R4npdsGcc3gtWE1jR57HNszG7fnIejnsKAwp6GiEUPJy/kBeMOTx1kjhTQrCE30Idm9WZTRQCnwIebY7IYYH9Yx/WFEscFaBQEUe62O4jyjF09W+U6nIk7XFLNLFJsx2jNzAg36eP94muC9xR6SgIe6ohebKsbjEPvWeViKduUsGDMpq7eyGc/MzZagCBeFjEbwJ4QW8rEp/H76olfyhN2B+EAsf2Zc47zIQbJmOcprXEEpmC7leQFoHKYuV2tWlyWCEKl7WdOMn+haM7DaKtyVVCWFgn6TuHdKnDa8CzFW2brWBOpDhsPMiLXSJUTPbqNHX0y+1U1KzcQDuHiSmxOHVEajUZUVSBXRLd5n7uQZqyVXAhK6Ejkyz0+1o2ZrwOnuPlf+kv4HCwFGhpBZRSSCNA+8725K3PFiDiLauQGrtotqc1SGL4RU3TRDE6WsHOA1wD3A38jFiH073dXaA9ukVqEr8DQG5PCYU1qqDm/ryy+W8dz+6lnh910PjtBtFbEn4UTjzaxQMlEDBaiDu7Pog2cllxSr8yAJi7+T80+WDMIlkNUNyK+aEjhdMtcR70gJESkY0bQ3833FT0OQk6gRBYPW7Q21woUihxkoPEULv0CjruMcstnT1CMzsiX6cMGgdZX6BRtAl45UXAVWyXVVFi97iuxL/VqbJbOWlCigYpB4Rita6X5pdHQeaJRjMrULszWvO1EOxBhC6HkNjDhT5SsjZwoZe2SuUVEasyR9hPdeYhesLNKgs8r3W2NoCm1Gum0bXd1E17TyGN1PTZwfaOoRBtBwkuXL6Omo8+CkZAUK31ZjRN5z5d7xK+5xdqDm5ffUUiRK9ZdRT9PJn68MdxEapDBMJ1CK0XrEIPn5Mp3gGCOHVmtH6mwXcvY5pDVMyxE1lB7zUsfBOxYdJZWqfGYew9t7TM1oRDx/v4vyD5/ePf5+xrflMjj1hrdfdilrbKZRKpSXIHhoeDlXeb9oNmS0nEW2GoAc+4sVOo0qHPXzVdAkH1em/XlvScXr0aHOcA1QJl1F48Eouok1tk0BLtM1JfYGAsEy2k0Vx8NoyhJ3mgr/RLnXRCxLQvyzQRNRqVMYIvqo14hEi5xmYoD4l53Vw3XH3bHSrBAF5b9ytyjxw5ZFWLzgxcl5wGVGUUYSlCdhXm/6+fbC8Xj8xBhuzRS6tdwBpZfIRW/eKjUE5bQBNq/BiULm4Ko3y3tXzZSUvZMLNzGgkhIjypSbLEbQMs3Wez5Hc1FEj1H8qYj+7SmKroh9V0eN4TReopyPxyb6AxGS9litd7PQO9vfgOjZikm/Q96KjqxzRrpjGgVE1WvUnl+Zvo/D/UhDZyu57RlKcTdZ5pW6wP/geN9HoPC7N2MHYFm2+ou0kzA5NI2BM6WA2sQCDkMDQp/4IfqmlNbKbd3B9e4m7HvGCIZrBSRhVdCuykhHN5kP5a4DnYaTEKR4DNuYjIuSgkX+9YTE6KAXloOcbXCL+tCvgS8VoTQXiLN0k+Cvy6OTQITFysXMoYKcm27H4zc4RfRtSdJOZ/dayQiGQowBGRZXwkna11iNYu8g3kPByMtJv69p6+h2jGdN6m7wEqJzIgaKVyQfwSm6De9va/9DjCrF7cPjz1xGYPWjpO9erFWiPFy4u90UHWOAZ493PGgg4JLvpbS9I1rKnpbChj/S6EOoqg9FRCBa0ze5jomQEfcky5XMyF3TXqYpWol/UmGrw4g1YMRKnnXJt7MlkA9+jw/XRI38PVxQGG6qMEw9Fa9FE1KrR22pYFNbjWWEIiRhXj/X402ZRa9qSPmz8HPS9T/1SKCF5u7djkHWPFDpXjTSNaqvp4IHVo6zdNinIlWFzhpNhbpVgKQbLhHnQWd0yfoSt6pSP9CRdBp9WlSxJgJhrUEtV1dtdF0Xu6aLrqhiVyr3J86abWwqlO9z7Ks2APSnTR+nbtSYkMjG6KZY2iqORRmHx/iATTHtjc6VJB3Ar+1MyufPbLtBMWxOFv/tdBFD8Df+vKn0Vq2RBrd63VzOQnbTEFwjeXNpPLbPkajynf2Z+uel4XcS+xGi2Zc4edBFxHP7OhriVj4ij7ujX6HGKmRqoe4WOzF5wbDESJGKJdmasAfJaTbfehWWizqRFARTbSjWQJZsj6L3nCJSxaRHy85it1qVomBEmMFof4OHfubCil7kMwExYlEMOrNVQIj3u9LKbqMSk7CeTVueDysnjmZCXFFnZKOi1drmz7k6+f00RSCDh/waZT1THHoM69eZBW/+cPFJKUZPIIm5+GSjUjuVRmh6UkH4d+4OREym1ulM0zuSGdR2tzBlSYk/Gi7cuIamYbs5vjTBCJsVHWkKanjoYM6cfBSzQXGkXcbgKX2E+ytRxIs5im9juVTE6fEc3dkYRVdF3RYx7cooYWEd8wk32CBxP/r+XTmL1DFE8MV697sD1rPGtFv1DChmn3xdXhjUrhMcP9vOIATlNKd+FaGEyUsFyvnh1vhTX/gdMWPExFFqI5O81/gZli4XmOT0uKGrELO9Cbw+Nblw3rQJ2qjqo0iXKoRkxBl5OLq4kTpSNRsjMr4KmB+7lQyQhlAvc00XmSQXyFJH3QRoAXYJlqx7N7tfobhjFIPlwU0nxYxqPFmlC+oQ9l3T93JJ8zzZYED85Sl6oYdi9LEDtdCVPbyg0CV2plVW8LhgImufw6oYYyzq1fA9mh2wYBON4oE81lbUk7iRKDVZlHPUjAgY+2TBwL/TMaHSXUTStyWNYPvMIpa3WV40zQIOO8VwQs5u/8BmgwpsjAW/NsQEfEapFn32eOeDA5GPqpG3njllq0JVPbvkfUSUMZrzgSkbIw4PjeHygsoxqIQVkLUNEqjI8niplKkvSLNGdfn5UXjCLbuxj0ltkAQLLCERtm3ZIOYDZ3GOHRy35kJRhyiFyNTIjkSFKYXDmhzBY/Xk0xnpaCfxStkW4uQYpXNOKGsdA1WH1qsTTqswyNpSufEa+F6QF+29RAhAC13N3XTGHmf70nHXbV82ikaK0zXqjn2twlCXRSnlnaw8Vk5iYd6rDF3h1zV1dG0Vm2YbbdPFrqjjXruJDfsS0gSM+eZJtNi/1F1sSN1ppjgggnj77Xj+HlFuVTxhpFWUsRmXOHTHeGtDyPwc3VIqp/uygivs97Aa61gg7oJMbIA9PT5X6Z6FvCx9lPmbhvacndy7nIO8d+Scgo42VOsQxFysc1ndYis2wUbcYmGv1x7vlazxZSKemeD5ue27KrY2YvjIPWiqMRAHwZOxrrxYMQf2GmwcmJQ8ZouMhhzxC/GVcpM/sy0Y/DutXWU+e+9Oq52IqEhGpKvGo0N82gZZdczRnPHeZoMh42YK/Fn0oAXyv5C/FDhmmof3MPea5lj6PolVxBnUTFnjRpu8OzNXa34EILBQjxHi6cDEibG2C6yFuwGfTSgkSc/QtCdjH7OeS+GGEWL+YjpOiidkxODJk7/GKKeLXhWSOkDMB3YiVkYJ2jAvx+q2EZPT1CqyFEc4m0SdY7iAMAp18pGu28JNbAan+P6VyNFnm1KBxKW3yAu+bXvexvWb7McppkMVxzfH2LyYSUF1EZv7ZTz5lu1+GtTxNLmIr3R+mYOLWpvXoX2mBsqopyqZnNqoyGf8Bk2LV8jIezwphUX6g7S0E+UGSxzOcPx/ues/BOb3dBd+QrAH8fLYPBxCoM1wKU2QLKODODyRKrEiExlnJk4ffBw2YSN+nbyEsKKgxcZqAtRAnnRp1pwcITUc8mPqb8YV8h5bR8dJRidbnQ2gi4eiC4HFOLiyhwSelhelYpiqaMluFJkjhSNFERuKLbBhWaCYs8iHaIzaqkq6Di0gtUJ8TefxWWYfMooQ4gDiphFWIw8xqUC1952vKLFFOfh1z4yRIBonZwIPQHWclZA5GYCCzrGR4BW0ZEtyKWP3gPUL/Anei9aGrauaTOq3RjNBxByQUJszrjvUyFykQ/QcTixeiLR/1mvsKXw0M+KOMvp6iI5CCANS8VltuIYSTjizJXgx9BEEQlCUOyFjCdK9dICJvG++Gfw0HXA0pU0VzViJ3zl1dNO2K1Dkm4pL0wc0EkwTZCHq1AgUfPB0VtpBfoi64CpYO0Ug/hP5m7VDjJnmY1YNwlkRSpTiLDiBiKtk1SDOoQtd/lwNS6bw9HBZtL5NyJYiPlEVxo7w03TgW1UhoQnvpdSnQgQ8r9a7okPWBZ5oT7LDMA1C4+LkMSq1JIs+kAcMrsnQneFnobKfZ0WatRqhFxrP1k0bu6aKfdvF+dLEvXofrcxerba84SR1bRTYOHUUlnVs729jfvw4NtMmxr6Oe9Mcl8MSj+MQ03Ob2DNGfnyMkjzREr6szwssnRbl56LG7+KICCytMsRBTiGGGtgUalDX8fpoayXASUEm6GY/9rYLwiMSPlnyH2VWO2dkHkpLWeNgOWE6iRXbdZxOo22sKGhxXrh6Etun3MfvPUe/1SI/TagDKHZXX0sKfKl6yyKOvc33uXi5UNVwMDrMUtlK3kRQ82fL/gh0UKI69ifm+x45Os2GxgP/Rfu6th1/iL0Ia2+dSkERgs/ntSpKBvtDRV52NorTtIURz11UhtVyR4UtTRF3jJs7oX18mDWG3Pb0LLF+WkYBK3z2FPb0+fDdxA7MyDklgyRVimLzxlNPgIY9C7E2gf9RnMoo3y6iuKCIXv0hVyGS9yG0AgthnFKlRlNE36R8ZHavbsKkNuntkx9M1giJ+uvOzTuw4h7L90FCGnEPDX/LFsbEQQNHmsalOr8Zdd70h4hrXDDOB6WB6D2bR30d3GmQuRyyiUajOxsAStzA1coln5cKeM5TN5pq9Hh/20289eQ6imaS+TYpHitnV3Zw8DC9WKMNUrciLj8Em+KpLvzas1ojSxsM24pBCinFsOBZkBMXxB3i8WSxJcopNgmDxjsVSBOLE+Ir/Tw+TGp5VnmgZdZ2I2LUJAzAUUT8t1ztDbEaxqCjpZM45WUBsthEKcRPpChz7aXOclf1/2fvz5otT6/zTmz9x733OXkyqwoAR1ndljo6uh0OK+zwhS/8CfwRHb7xpS8c4fCFHW6F7bYtudWSbDEIiqJEggRQGGrK6Zyzh//s+D3PevdJwIBYoCihspibUaxC5hn28A5rPesZlllyuViqyekh2D5A7q73joKDhGqdlcdSSRtXBJYQbi5ESLUcxKvSL4zzs2BICvHFdqNUAR9BG/8mTSO44NP6JuOEpEzaSA2xz/hTN2SOE8+VvYA68HKcNPZbd51GE3QuuhRFSHeXpKxBwdM2dx1OXKCr7D70PgC5k9rBSJxPCM85HWDfULXfb/HBZ//xHnGOx2OOv/Xa5jCE+6kRbxZO2BNlTZNijIjuFqTWIRIgNjsQP1kQlIPOiJBAwXSHx+utKILpjZQHnFxC1o6QiiQr61Adk39a5ic8SzpUVGrFIiFHx1IOayTtQ1UCFdA3+GIVyL5RevMKMQJfYrdL3y5GNabIpL+l+XlFFcz7gypu5iIUbwlLBQq0NKcVmll80WySquSDGdWrI7L0Pgvud7EHcu6oYX4pnFSr0XXRqMqh4Iar5YZUhSWRn00Th10Xt9U+Pqop+vbRHIh2A63Jo4b+jcseg7S6jQXfQAksdvGsu9P5RkMFrjrRcJEwUJ/jsNSx6/ZxWdAX2ptT+d+M+fhnh5cnsVm8h3xG5ikXlwOrUq1q1jgu32/dhxoVWxiCee/cs95IJkqklyKAlAouHZ1/3usUOVxWA9YcFMbyBbT3I4U6HxSTgzt55bx/D2g1/+N/8D2NVjnnxb8U5bbyhAlUWJQaG6irmEqrIqFUGTWqhqtwWdU4ddHCl9aV4uaJgkrA6brFgGk2dR62InsaZQsT6a7UBKaqnx/AnYMSWxYhKmg8Zi90BrAgR7glP1Fm0OW50dChtjcFKvo1amLNBAggwAg9F5IyACY80qUga+UxZ9uYROnoSzM31gKWJxROPw8xGQUSfpNzih6PESuRPrvMgBbVig7Gub7sBaWSyNy6ZP3maxRgmJYv4gl6XG2yV6Z38Hl0zNPM+1f8WQUvl/fMhaG98XzQcnrgwzdP+Bfa5gnbYD7n3XeaWN5gjk5k4hbDwxb1c4cyMMljf1cT71Hm5/KZ6Pm7wBTai/8ggIqmi6tVxGW8TPxfnmnHyzGafW1EGaQ0Y1oMULrTFiUkthjmNZ43EY/Tt6Tw+90/vI26OplrI28kRwFZSWVTZC0yFWcUMOYyFAWQOUAUjYaMedChsitEaBbqbSTPpvPmurlDSSpEyt7t52eSLf55GNipcKdzpvAp/MENV0ALIKS0YZSmTYYKB+d+nfq+UHQ6wHPwiFXRbSh0E7aWjYA4iR4l83rAExk7iEhMAQvHUZczrYkJwV74jI6RkTuDuF6NEooKlXmNeImpK0HFl0hmUd9pc3d1TMR5nZzXS1fr8UHmRWY3ZJ+y7BgpDAeSHvBtkqzSm4IDUkR8PkejKmRW/u6LLdqfG1n68PCDT++j3SZkW8pZnV7mm+mgT8Uq0zlZIBRATnWNc3M1zgGRlt0LiDCRYnT9GS6O5QJrRwbjItK401dNUlLgc5Ka41z4pTwfKjX51uHNqHVTRsyMwvLwZJ9SWIpH60K/k8s9tACjaFLecUnWVexy9JheI9GbOWAxe46aZUCdvZcLPFuoCNlOJSRIpdeuEwbgvXkUBRqAbdKTsvVarJZ0OZBSXSTJQ0oeEZY3cNos9kjiOY1a8qWgZaDa3YPy7fax63fxvLmJOzp3eEyHdIY1DdFNmUZkhJC3EtlI1jdOUZPF+TsfR3zURDufo5rmaCdQzzbO0xzn5hLjHuEX66NSwSxz+WL6nLm6Jq1H3Byex+PpXpeNzqtScPNBU1DLaBa7EtttiFpAQ8fnMS8xnUFS8We09yGf08if6141osz/P8AHhp4gGyfTBUBbdSzGFh/ffTMLvyeW1a9+UMB8cpv5EilggT/nxsaTHUn/4ISltQ2Im85njcHTQxZLDylwQX0MPHCTGVG2JQuIGffJSHHAdAglPAJXGjWhsf7ZFpO7MIerLXVuMXlW4UfR5SmZt1PShlQ8UaDDAffPoyDC1ow1Q7Mg9JFozaRJsUbaXZrU5Xif/xbiV2gCmb2djkFJjVqjFdUpDQdU8PD8GCHXsUFiVgBAJfSvWmgyUC+7KXLcGs2XLZIKZ7GY04tKIF4cRrLJJ83xOrZSNr12Zj0Fthq6pMwsWN1QfFPgZnoHOcmqBWhq9CKLbN2MEhXMB8VuRz9FTKc6hpdQbdaod24w5coHmsk9nwRKmS0LpcsUpdTCFOsdPf/0IWaiJg9f6DSYZud5xJoZt1kNOGewOJt6fayZRr6dH+3b+JnMpdf3u/BjE/3Bd1AOnHTB6ApKNSIIVRkRqprWB5emwXRivCkcTlqTdO8UVi7axD9IEoLTOPAtQqLGzebMUeLN2BA0cjuFiWY3Iwi+pHw4bYBCjAWsboIDt8bM0xwEMjAt3uIDJFXASmQVccB8mu17Mg/SqM5DcvVO/ne2nrBfoUi0sA6l5N3FzMg2ZS86DLbJ3WS1REf+ptP+PB4WaOFFY0PdVO4pwBvrPSwc3GkuSh3h9U1KEYFEP9ANqjbFsJQb1hprPfcrvyfj5ChWZDbpjQ6/bz5P6g5HOCPVHA3jLd65bY1/9PcP8U/+gs7nm6v6+0/9YBX0rI9iN5JWHBQvjgQDBbLtRjkNdYGlFRBEfQ0wM7+yHJm2DHmyPfH3pMJXI5VSPabQI7vPEmJRuHvKn2RDpKiKxiLtnsXjE08u0T5ZZuUlA8eVHw9SVtB2Lo/9HtUsVkM+ZAu66UzenH7peeaxVpSSyV2lsUpDtjTQSF5kGhQrJi0FU/aOthpGmavX6KtExGQAaj6xxFvYxiBZQoTFL4PCICPdFFrgMSZEhFB1lPlVPN/q+BiO4X4Xsa+i2jdRgXy7gvfE4g8OET+fInZTbHdjxBfYNXQRH91EfKcTClLPfeymJtqpif1ljVfLm1h3ZDhHHB8IbbfkTXY9nfNBrWTxguAzAe0tqJITVoj4CyXBbMcsFKEYHozu8VmiUG0Xk6G4gGD208BK9clIHn++wo8WD9C+Z3p/rEOTwbv9xlXmxu/fxTfzURbFu3/0rq+fFOJpc6KCw64NSnzCpkoNUVIT0umA5ov1Mea5LcU1/NacuDjukyIRVSfUDZszIw5gnNmjGBUw7kIxSwSb8Uvhz1mb53Fjr1eSqnSPdN1Vpa7s7H7T8yhVh5okASYZ7SgP2TRAT69MTbcwZFZCB/xgECdzEkv2PLeWLGLyyNAYsyi7k1tIwUuDp3FwihdlQizEgHWU77MKSKfNKJ9X4QT8fS9UrAiM3LRkM6qUjvTK5O7WeYaFVRXrAPKHsnZTUo716D6jSpxbhVGzasb0QyxWNVfFM+ggU700fOdzozikyAOlHNYYUPh+pMwS1ReOcKaRcowERV8HcplnjBTSKgYzlYQ7FBAExFbNG/XxFO2hdR6Q5u9J11IhYbU9z2va6jiflxiPiDihZ/11Lcx7Uvjx+B9UJx0as8aTHNaMc3whYR2hrilVUJRBbDLKwp4NSeGhHF8bCLPYFHHP2Q2MDulcJmfG39gQEHAZR6b41aaoWry5MdRhwauwoVrVjNFgmy8kD7TOPCGl7qpFm3UBumNgnKolEv06CjYHDaGqhwyuYsu6YcHhsslIZZwuYnmXoRw29Iwth/KB9X5wKFFYMh504VqtmMtiLg0iwUpOgjoLT0KMJXqSUFL/x5uqC2TYYu2TnYKHFBcrlwrj3YWOrJc4RCgkIg4C71GAYjw7LuI/iPty6HQoiYAGt0yqMRJGKA7OzvttdvF7L9jUfNOHwq882L6Y/JZMJLhkEiuB9g5wSZjmL+KVWQyU9Z8UXxY2ePTrUY5QbpoNNTCONFPBJp+4FGJkiCuFC3AOF0C/72PEs/F6oDsZwlvRFAdd/EL/bH9S1il7DwRQ4s8USpTEAcWT5cfdH7rYLnOMTY7QAL96DKLL3nTRyDrmktQ5elVn+F95z1zjo1RkpnqVbpxTVOpg5Qunt10e+KVDFg9OIi+rVpUfTPXCGcI9xUVE3GHrTFo4hYzeOJw7OJK3XLJV7Oo6cMfkoVEqCJ6UOsh8kzDORQNCxvN+WKJt9hEPS2x3TcQfdhEfY80B1GM0nQu5n6b43ZvbqDBLjy1Oax0Py4NsXQROMqIX1zidDGanoSzT0cpfjWur2C9ddIqZWqK9gVfs71emt/hSPu/wh7vyN2VLY8srRB0a5RZxqMa6FIxWPzKh4D/5/PURa3y3xj/4ne/GN/Hxy1dlKfrKA2GhXosCAlIBKgFDrwKFE3aUkXp61l2FT1ag7shlZlpFNJcafvOhpRzXuJGCnSgwFMGzstLtA2tOqDBVeL2c+6T25CiqJIDwfrO9RWkSkOCi2wJHzm8SYVaNQ+VZ6xlw3ps2PBdyJ8oDSJkXPN6xQiYp6lV4JR9bDdGTqpZiWPdqapFZ36yHMiEwsOWRBPeFotZ4sioC08ZGkYvYzmBOXMXyYK/S5aGKoV5lbr4wznU0hvcP1AgQSmJN2dtZXKqIo3iUmKuO7VhyBxF5ml9YdwpfTQoWTaiBIKurOSrB3uhcmBoiHqXog987R006kRq8nLKgbm5s7k3RqeYZqgWm83DpO6YaMio06pvwYTGvjrkV/z9OSoyI5pmVzvAa1RhwAau4Nm2L7ObH4xYj6J7Q/TWWPuLv/c5NfP+rR38Sv7SG37vC7/n0oFgkfQxSDIKy1fYrU4WPsMGxRCJGUiDiGh+ts2dZFnQFGjvBqXMIPVYLmdbiQGwVTiUWy9+nETFFFBC5AENGIGkzIRBw0mIAeYCES5HGKMrcF3yyuPyY48PjYVztAo2RLJ15GXd2VR+zSDnGMGfI8Rhw4g2m/UIX2UYn7zKHvKu0FGEokRuUS/jxuf+3iIU5q76G5wlStPdoT7/HnAmKYm7Cjk6Gg2a72A+RharLBA8yHPj7GI/naJZeBtRz1Uezzhoz1UnapbgACRJhuQt7k61bnIGrM02FQp2wa3OmQGEm8dPoVj88nh5EPt3s6AbZ/DZXVdGEgIDCoeOQAZWBv+LhitSGOoh90EsQBAGfcS0FN3wxxioc1NAPZDbnZA7OogEj8W4XSzVYWQtqk8IAURDsRJFoob9HhRXNUkHAUAVaAO74M5mKJ1IoH79Ey9MolcLoPENJ2DSWll+Y8mONDJoOSNybFcpPY1oXeg4GS6uRd9AH/d7C+2OMWeXohEtOQeigbvkesBrZLzInxujayIdI9bJa8jiFpnLQmjWyga0eE1/2/N1tE93hRmv+RX8bz3Z3EShzwWi6XaxEZPF5ospDaKMGLDmUP3gW8dkS63SK+Q+66H+PL2IP+nKShVKmZ8TtTTyrLnEez3HYNXHaET1lY0HQSxlg5+gadI4PA/4ml/kCp2pgCoEPGQT0pLkkKmyfwrRqoZhLM3u4khp/894klcAiOBpIzKT4HEE5PM1Q+gsNrmKnMMA3ZSSBj2/e45fQvicbpLQG0h9mAy6PS5rqOsYhY9oQu6ydCj0NfbPgM6BNsQYHz4kOOCcUcSDvNN/DiB4knA1zuOmcFsN7rPqON43GgGIgbXjSVsfHgc8G/g6gwxFv/mw4N0DCRY8iZjMTVRD/2VaQwsnr3mpSK5jJjhXcxL7Fg0+euS66ZJqsgp41Nis9SvtLiv4r6O50EH53Ub6D+pIbzC8h1KJ4aarw1DzWKJ88A7eobyAuV7EQMcm5kQbtuncZb6KyL/xweeYVeyGjdZxv8M15ffAJeXA+8iLnmYhJnyVKvNq66Lo802hOdZ96Rs7UjQhV1YjEltabGr4asQVq4m1RSonGZgA7nIM4KID4qUaheeN9mPz+Jc/SUW8+xECLVakTZX1LEW8nR4mIKPr4q6GSP+fAmY8HbvHVBQC6rWL/vI/fFwL/+LWX/Te48DMXiUsFJM1+fD5ZpD3IfE7JGFirGUNUxl4J7mVmKR1sxg6wx7gY0l1fmzTHyCY/pwLIVaH5BsJwSzC7YXPJs9PiALKovgQtnPOdVKRSuetDTyaMckAYHWC/kn5lsh/UheLLYBl4giAWyQXU+MrQcFFcQlxCDNKAY+t5WwUlBGNrRRClGPalkAdNmrda3WR1JZXlxkGTGbAUr3pziSPqeA2L/Pua/Rrdro0D3nvbokuPqDDURBot6jTYtMgZku/ag4xpJ6K69sQZIa7BTR1YO4n5FIGoNMXX/Gbyf35bD8n8UflJaOFGxGMW0OvMm5W67UnwwNjXSDUHpdXgEm3AG9IkwubMWE2IgyTaQXaurA3GfCC6imUSpcaZpJoze1z1Lj4mjnqOcpwj6T+3PUoewUn4sao0M1xTYXi9xFii9Cjpd6Utl3tO2bKprDOVNJGDPFPLn5UoOtmTlNFN8vi4EG0UK9BbD7KEraijwPEBris2zw+9khIdKtETezpRDwoynheI2VbHbl/Hru9j37Rx1/Rx2+2jOvSxUXRTaOaol/+9HepY95DinQQUhzla4MTHU9TbLrrLHMuxjvp5pqzobOIFwBUWg0zqvWdk4O72cV8d7euscVTmv+p+82tTxDKf4WBBF5VbfdPEAEcNSksiyxqm5WihjO5RNXNB+l6G55gFTboY8HspaoRCqZD2majMWF2eUDlsucElvaNLeR8fFfFzg+o5mYsLVp4cuSYagf1amewo3SJdILSF1yUGIjlJoEgB1jp5f3JcMtfR54IbxA5Vr5sNCfYyP1lNijwpCbPIHGdNu5yrrOtGzwPBjbmFth5ynjciRHOC0wJFI00j87JTyTQdCgrPbDN5BsFFNuzFcgXBg/NgkpM4Z258Gr1fUUD50zKS9BiZZBFsYmpiClNZTOPqI8JrXGkh3KkoeQFQmimq2yyOSgSw87oystX+gJi2lwfjYltLwbuL2Pae+MmqBuRTLzczpScylpOheubrPdZFSKW7SWAQJ7E59ss02o8PL0O4mpgznyKmoRbipmoAVJjfgUGzSvvmmnGtzzxNoTWlURPuwgXe4IZFCHgLI2+IUEOlSLjxQsayRXtkK9ftJFRYY3niIEEf1zGe8fyL6dLXuE+/sYUf+0jEZfgIVG3wzOBQMIqVPUlyBiSlmTXF55KQciozRk3lAe1iMaRbqTaAx1QgfTZppSDxDShFa16sLGLp/zRbfiLaC8wvxsjAzUje+Td5KlzbksQXA2b8sLpUJvHz8sIW4dBWCJJTcsDmBZbCbZkfMw4FqQFhJLYF82opkkuzSpfCBtOKN/5MrBzFnRZ5wvRwcLC18ftjxMNJA2k1oALWxS7FAMuI3F5UilCV5l1Evy3xHH8i8YogSAymhIkW5UXedq1QPIvF+L0WFmCFQCGBhYzEHnyGFCFXl9MPj/Lo6UApzDTK5UDz+pQDiEZDvkRLwaNjPDM/hZJNtn+hVXE6QxYxnHeJlqkQyxBXI+FWxNX4eKUHGCUnIfTtlN14jjd0wOfvlVo7zZZVXImMlxdhxhyySCgSZXeemiZxlEE3sUTJLlvPVdwWF30ivQtddyFDIayRd/EI5PKU6WyigemlZxNZX5w9tAdxr/gec6Pats00Go/cKHoLiliQHvG28rXapKOItzIsHeEhhRPcvraLQ9PHXXeQ1QtKMe0olNTPkMZT9DUxEXa/K+NevwmycuFHP4uIu9uoX82xHYfYvmOEyB9GF9Whiu141OfxvNnFsY646XcxXMSaj23CE9Bm9Eo6QiQwRBwwkt27eLMf86w0lfTLtQ1TfiaaMJTxp3wsaJLN5XTlXyxJ3DxrbwtY9PhPlz7vG4gGRt3V3qK6BmT//Sz8aNQxzaUuGsuFTlGeKnQsh6DazuNsg/qivJTQCEoAiBA2Xhmf6Jw3CxwodsQ1sz2H+aXZNkmYB1+7eXJ2KPywYuNl1yzdPbJ8AmGWkqkYdVPcACxUEu8Qycia8nTIcVYlu1lUD5Awcnz32BSl9VJy4hSfkCpk7UUKyjT49ldkqBW/XBxCC1dIhFEEKgHjaTzvUAS/l1p7fC1jbxTlzROoo6aFuzwNRbFUU7uSiL2oFEVwQ3IIqmju6M6islVipWwyM/eN96puEJotNk63h02chwSEeB9uM+lGojZGwzmBWBub4AMm4av3dovDSmiB948NPWqBIsogRliW5tMepSv6QZNDiX/WOtq5l9PHeuC8QvRTxzhW8fiKxCySVFZl8kIn4UziPWCSwXOWUIY9jM+g7F1+BWH1fSv8eExA3HQwLJJUGdJ9c7jJL0npBUugC8BSAaNFmWiuzkqEY2bNbsaKS8Jj4rgLN/MM1JkkXwnI2nJ0+5qZ1AvM20bX0HOxmCptSLyX+DsVgHJwt2BBwQU6s9m8jNmSSK89Q+ZwL77ctDYaFSGlLyR8xigb9jRtrzgtRaOhSpKM3l6Enm8pkZS8DiVmYNkyi0NIkod926aVPNTiX8abx99RKLOVGO1aFckFiQULC5sDBPYKCQLP90183HHBwM1oY7qfQKOFGHEQvuU9B4bUaCFipwBxFyvDarHJMlZRTW00G36MDgXXa+Iw0PuB2+I7UQ8fHpnEkabMrIvsuPlveVk1TfTKwYXvB9LiQ7aCuyqeTRoS69t8iMpYG95lXtxKoMlxiUjZXG4oTYuyzMJVq+iTqK/eIsdM2SpcjxkXSfa7Q8hANrNtjdLgNyOuOBDlOchrwZtPvpc2ONfvU0NmQZX0LOiukncnwbmQRoquvGTT5kU+Xhqj2YBZhAiKPF1s5ZLy1EDPXzBCEhzTmITRDoe2Y61yTeL7iWefMtB4ghTPjj/UiH3Z4hDPVYwdup08/ATL3fYREMsZ8cIzpHA7HPSmgkL02ErQBIGq1PtYn5+j+R91sf20jeqHVSyfnqL+Q3i8u9iwriKa7WGn96Fvlrjb8Hrs4+2x1pRAPOUcC/B6EdDc0CTze8dRqIF4XWlzyHvtws+KzAR7zPfT/M88pHEb9R4CA8MAEaVARHuPvaUn4ZvliZpIsmBk/gq7q0ZikoaL/xv4+AUhxzuP8r+h3MDR85nvqQ+qZvNhfcavOcURKs+6hqOlNBMucttbSXiT6HXOGQNjK3FnEdyPc+x7nfhWpIp37kbFat3CX80U38zStvjJFkkq/sTJ8z6QgUVuAnNyeRWtMmGhivKztHZkSj4rhUKFOxxfVYxG3xWLoOzvRICN4dt/L21GOJOgFmHUbkcNK4vND00EPX1tNSIXVJlBrMokYC+0igSdl8k2TnxN3negmSWdQoV3sWDKNSeBjIor26bo70QrMcKHeCYZhVHszJRMpfjRKqp+iOXUxwSX/WGJ7g72piliol7x2l0cuCFnIrG08RzOKwU4L7Un1SONppV4sirCjdele5V4U84WmiJsYkAPqbZvahVz4yni/BBxvHchvr+boztUcbOHS+/XwwNEnvrD4AngEc3Jb1bKfXMLP61u1H6jDh2RqzNzEMNiPgCAwBP/W90VSt8kZfJn1Dfw9XQwWaGmsUOS5HsO3VxIymBkw2iNgZjZIFLkS4qczCqVC7jgZjgt0gybmCt1LB59vSFsRiNSM2XGrnhLkHWbqzHZinKXBIJULVLMIs+Wia5eeXblYry34gzIvgP1rlodF7NaAFxELEZFdtnYEWTwoHxIqmK+hmWcXmZqvoaY4DfQLcoXrjXXRDY3TfzOYR/f7TDqNPbPocBYrJrnOGBl0cFH8Xt0YfwF8b1p41LPcVFkji9PouymeohtdiHIYQQBHnUvfmB0xFJZfyj8rg+zN5O3owLH5sA8VksENYooBp68r4wv7aeX5PzMYrVijoPe5GTbr1RKbAAhEqjEPc/Co9MeM40DqpliBv2EQKn4rBjblctHow/FPnO5PZnTkkWqWEDJCfOgpAtOLpEd813cKZQ+4xNLxhU0g0WRSfBrk5OLQlzWQJCcCzKXhaUuOiyZQL5y/6XZcBnr6hIVGiP9ZfoZZoSbCkC5wuv5jaN9P+2v1toySZJJWxLNkN8Jdd/jZUleLpSkOlr4QLtOyj9yRrdDG3HbxnSgEKxjOSDigjBPTJttaJbnVTQ3nAFtbHd1TP8FYfBtNH9ex/zlHN0nyn7z5wwnkDFT08XuUsW+7bSH5mXwqJbPmfe932I51HHBAuJijmOJgvSAtxjfJsp3RYnSn1HTEjnyxg354HqjBANfg+A5j51MBNJkJF/vaaJNtu7wRW/F6tcPkP8mFYHQabAfZ9KE+fxpGITUyKdQJs7mYN0ot5ZWxvmbpczQ+uY9dayUqErL2uluolGR/6rOURAe9p35pCL4a8gP6GEM0TGJNAMeL69ySUhkGg5mw892h0aOPGNZxIckRakpA1VrURHnPiDthcptn58lYVJw4de9lpx4gXpD+Loy9jWwAVginak2Jz6BNAnFDsVnxDjPEhD6f/P+pEG6BEFuG2fiySiEOJAYmSbCaNoB/BOepz0QlcajyR3vs5UYNlzGycAFnr4zvQbNo5sknpS2S+ItkwUp2nHC4JxgL+52TUy7Ic7HOvrLTYxvxmju3DyPeNLSEYnu5bOvuZnFz3/RrNoLp3aJ07M2zvezRKNnbnSMpyuMv11rzNjWALq0jSxheA7z3q4kTMOGhybmIx/FFP0BgST0qE0G4fxeZf4mP1BUMIlPAARu4+en4RcsaN7fwk+EcNSfXWb0zSYO45Mk1M7IA9Cr5O0arnPhmETNQlGhxILB/dosV/P5iKBRmZjQKAakoAolX1A8IhdX7Kj0vI9FIgpTIQToa/xlZ3t7kqHwNbSrBSwipzcnySFajvp1/XXUA8cODF58GKEPTfSZOUx3zWIdQEPkLp3KMCE1HuUaCQI9MDEY4Yu6Np/e/t2MWoUvs/ixmOHnwiEClrZDurkfqwjczw9NfEIXkqkeqoh7zCSVUye4+SZzYjG7pEgdcLBv5pjE9YGcTlELiwWzTB8EXCbEufmlePTnULIPRd+7DyKYdInChdG4x3NROjtQBMQasofIz9mxQT74nD/r0VTJ6qSwUlCMqaxZuHHR+EAVtw3z3mRQQ2ljbKUzlcNZX5Pz4rzIpPKUchDuj0UCPFJsmEasGd2k6VamGHBsazzlM8ruIx4mictX8rF3VpwazTCJnsQYeSArrsh8KCcHlJrT+Zq61DQaEpE3UQH8y5IDacgzOhnJYv2Eca1HQEZVjHzpnjXL/kncInK7845RPZPFe9h34vvh4m/jW+fskoiy0OXvW+V6zvBpLb+MlbEsJtUv+ojnW6zHKepzE3E7R/27XVTHPuofwaYYo8JqhYNfhDC5vUdf7WPfeqSvMRMjJ2qLPWN5Zo80yH6vKeKd9mBhgupuTYsU9i2Vrgtdf86aiNC4grKAKutCzlzUtJcqI0eFw2fcmH5OcivNjbS1E1y0pZb08hv3eFfM8SsfoLMIjEDtECKJnwfJnhnLGqcLPnGdUOnkGpTRznXdFbRcQ1GNX516JGS6IItCTzOA1R+oYwM1L8rRpwivpjyp+OJML2abzRzrSHKEqjFHlBUT8rSb8fPxIrYrzCLVO+e5CjsR4SnjWRd25vMEwUIN26GYq0ajp/tMzZSnbUK6NJwqRS73C/suDb+LVib5kYiR5mlSwalfXSyZmifrMzeILuR4FCsc+/KmslnhBUXlZaqIEEFZj+1Eu1IDkiPrza/QHryyJnAqC/zV/Q1X3DnisYntTRXVTWYWC+TFrxbMdI0943A8jcaI27GLw9rEbbfEmxRc4FbwcCG9yuIx0fpUg0C1rWIHtquzwk0dOtbh3skmN3i44vSh6YupATqzmb6QWoIjiPjZTAzxVp3iYK+gb8eoF+n5sk3C8cwxspkeL3oqPmd637ggk7tUjFxZWFItLSJcsmf0VvLG6fxytJvQQ5Fq2RRssqLsobNx8Za1pb7XU7dML9DPMsdASwosnMqJrltCDmitCD+M+hWkgnEvi3uJLlpeR/LsrgaVDSkgbDynM2zrGKu6e3fjuhAz+k3RWrJasKG0Yt8o4pChs3BUFJs7IXUamwQVssZYk7tJOo+Fro0UqSo+vmmUmkIx6Ce+RNwCN0TEaxtUcokeBpwntjju6rivqzjKsoPPpRgAs73IVjXnR2MiHYCTDgS/9baN+PB4emRqk4p9/Nk0ek1UC74aZwFjFnmzSXH7VDpDoqYJF/U1uXqsXR3A1EHZfEgoQYlEARlVDBygzFLpTlVn5gh4q7SkxVqj4FRagUe2Lv28REQB016x3YvUi9cRcHJm0nKhxFjJ2DQblOvlmwoqK5QdMM8FCI8sJygeURZbF31RolVCBh0zpQJV4ypPC/Sa0/pJv0soc2X1qw70RLKktjJCQlMCysNe08hIF3Ymh2i6aYpIX/cmx+OTmPnIQkCxMYIEjreanrTVktrXfR8kmi2nKrbv1FGdqqhez1Hf1VJTxvf2sfx0llArod2kvaRdTh2xn8cgAQtxhXiKvQWZnHP6nCn+hLZiocSHwFmYvmC8/9KPecbr97uQpHk/aNjS3FnkJdvtqOilE1BRbZSLP1cklUAYUwgEzMhfDocFJhnfVFnvLxZ8vzzyRSE6jqOQXRUloExJNwCS53WhDrU/I6NPNxAWaHiPqTlhpJ571Ye6BRzaZ1Ld6rfrXMajjWJT6yTFe+W5av0mX1WFRI7p+Tj4jCmCJKAQhdwcv+trS3uoIuRRWSk+k/eK9mLh+0nCndSNvJ+s/vYBZTeLd62kCohiBF/cOIm9vN4LCl88QqVNu3p0elde6VAIqVIAyPvP7xXXUZxiEnQYjVpgpnzdwt8oDgSFR5+1IL8IBzM+WwzsA48DARMAFE80FoQVNDlE5G37NZZLHc3jFvMBtB3wZY09RRdBIzSjt/ASl6iJw5ua2D1jXEYSzxTPPuqiflzinvMUBAoDeNUZvhsZDY/sR87MqY3L64j+JqJ75gNTfHloaEnBkPNHOWtBbjURse5gTzKOQiS+/uMbXPgpwyYayaTtjM6HeaN8TNSg2X3Dk2uWuEw2kNVj3ZTp20H03CvQL73HWIjw9VZ5+TW98CghKqUrZjEXRI/unVGlVLx58WA9AVQuI9pcNDL0JBqtnVxYpQDEzwcuHws1/SbWNsAbGQ0tiFLgF6YevsJXTx53toww+ZwIJD5s84Hq2Pu1sCnytfJWtXTnQPVprNxrPFzey0Wh2638huAdAufT4aD4wjmeMTSK0YjvHPbx8bNOKIVvsJzPdclbGtKfA3S1muPuWRXNfhf359njvGmOpe2FOCnWCtJsRaQcsJPj89gA8mIi9k6vE5j6w6M8FCXEpSmCMGNHd3xYGS0DvA9ksBzUto1ws2BOiSYvKXwoj/rdYlL5kS7gCtrgGshRbnzMBbzgEIWfpazWnk7cik89RxUipiUoZL4AHqnOVWKHeK4uogzzmSZnoYn3WtvbVFyHdFpdGHGyRYmaEvYGnbJdhq5RjQLdM62ApwXgLrydS2J+EoNQIMt4XCnw7xi1pu2FknM0SrNwA4RKnEEhnfBSU4Gowm6NHdQHzhcsYdomDodO3FwqqQ3y1M6cYJH6uQjk7cbl0ep9V+nIRcvP7ddY/7CO9r6JOJqDtXVLrPs1+gNww6APrzrh7RYRDxHxxg3o3dDFd/H6m6qY0xttPbs8KOrH+ciou439DKeXQHsY54xDyATnMp2EPqDixaPUFyZOCbeKZtyWS7QcJLgrQILnNUtq6cJFTbksQrwYsDtRjigNCmtEOeKMsr7ZqP4vI3/lfzcI8+DHqYJwwSxbLSInZcrspBRGjuwNUZJgY3M/KBHDNADbnbgh4e1Uc3JFaFi/LsSUAoVdUFq62BHC+1lFfCJW2vf+fy50QK3doZU+yrFoEt74u0DVOPfbngFyghU6D+wVWg4T9o585HQ2ZKKIJv/wQ1C1cmd4aoSNj5I0WEvyheHr7dpe8oMLj1i84lQoK8kJ3zsaJX1tp3tQvOYWp4BRjQfhAk7TKmkX3MU0LRZ02DaI55d7W8V5UhZ0x7mw1mtgQtE2MZIHDtqoJidV0qoB1hhB6URdmmPtezVm+8c61mcRzxCNbEs8q8jGbWP7pI43P4LLXEfP87lE3CZ5lgSvpR2juq3jiNfjjCIYG0H2VhNniS4b3Y/jW1DxOXbPTa1Z5xyLc48Xc/25CFszDSSLbXEvqQ2AFr8dhR9O//TcqETpsmwcigpUXmaQriFsbnVcIFAWyFvOdU3sQQFZhxkyriMVE00sStLB3pYT5vSBzdERa4ys+yaD5DMuq07bCn4Ooy0O46ZZY8JIkYIMhEDB58a755WRyBKHdpcXmK01NEerdwoKoUjcyfOIpI5FqlnlISrXL3Mfuzpa2oONw6COXuaeHEb8nE68RVRaI8ay7Eu58UIGhfivXZUcC7hJ8ArTAkBQstM7QDLYrC/6Jn7noy7aGysRPVPDhFlZUL7dWziX5ipWRPn0XbTNGHu+XrQDRtsWwTASYDTdj/Y/khhGXoud+GLKIhYOz8ZjoX9Q+PKgUUDR1eH8TiefYgVxPUD3ptEkbj5XT8xVHEm9nuwiK918wYCck45xUQNkBZhi/ziAaRa4VNJ/j8/aKlcjbgVlG8U7ehoVW1RibqrNaPMKSw89/i16goRSCMqdD6qfDWdXaNmmPbXbsbaTe5pKZl2qmQsM6skaLSlrT6PdrP/4no0ilf3Ve8y1DrZAkJo1aQ+ZnKELtiqXV1rlYAVB4aSfnZd/Wl1Q8PJ62HMSkMDBTaNaFYr8TPl9YS/hCxaKRyaWGU3f9ZlhC1qSmhLI7Pst5o+36D6+ie0eLqyRXv1uwRRTTPfnaLDousxRMfq9xQC6i3rs4/6LJh4nhGgpgOGc4lIF5aD76o3YzP0SMw4DjK1UA0+aCHAe8PmD1GKEy9mGddPIL5yr6Lc6xgZW5KaIK/JjicBCVAZCRBMiU1osqSDPCMn3GSQSu1SQdDDXLvQb9vj34yRKX2j3cRkpmNlnnKvprykUKB0h5LeJmAP6C+e4DV+FAtLaTgh6LH4TX1forc3P4ZADAuj900hSK8rcWZwdoFNozXDR27bJVkOlWUr/S7jjWreOEAO9UlMkP1k3T/6ZKFWzCFXB5DvHkXROaJFhPzxf6DiogmUVY9EGiSVwzuHOKaAgI1JlCVZSoaABgbAxEM+CVUkY4g3SUEziJWKmbB67c3/1vnL28LTSyk1ed5m7K0Wv8omNqPKcMCo3GcJnAeWRQI80t4ezm++YvDinEXDGIQlXJJ+wBX4fMXzQE9gT9RAj99LUxe/eN3HX9/HsppHYBwAontcx3fUxvh1j96yPuGxC/0DpqTt+B7oETVyrZ6QaoRtovkyLQLN1OlOcr7F/nhMOFfJPDgXrNe4SrrGFMBTgTvRKviRBDkm3+BYUfnTrkhVqfCHvHt1L9syTakjRNJNTMtK6H3sUOFADxRgXX7ks+Gtibei+ZNTotYDy1fWiO1RF9sqN3FE9+jZRDI2mmCfhEVRxjoUrsRDVNmfY+oJLuMctRrrMCWIzyiyW4m2ja/DPmKqLr2vZV9A9H92zq6PyB1qzeGR0nONU8QbsvG5Juz312AT2LXJQtTyLdMmAhMDvMzFZ2adI+7EH8b6LZzd9vLhto3q2N8LHA8SUn82lSpH7wOuhtZe3SFRrJ/f6PVFxdLt0ceoOMealGZrl+UVRCIqCcztiDjNc6B5tJ/Gh6Ht6UEPvhO46LB00SaNZ1N0c6sq6ddF3VfzqoMzRLmsChZ5mrlZjnqtJ1hM+IJ7WPz/PYpItLi2aBApzhDwuduCRKT7JNMDk8BkpZ10h1qQf4LOE3E2twgjR+ZT5KXOZJHCMRYP38Rqb0jBqFUsUUnLw76qYUbkXZBDhCuh5b9CQS0AvWURxvyfy5NO4mYtsjFGxWDxn7wGlkSRvlj3EBQT6ZVUqzaQvZPmeQc1oeosVuE70M4hsczoJlw2Iie2XnL5xOa9xOFBUt/L5k06Ea0XjsCW22xvnWmtcDgcXfo/7px4kDq+uxymqaYrmaIuP6nUXMRAMGtG85JeNUX9sDnG1jBp5DVzAogq3al4v8ySen7RfymCd/B5nQgMFP2gHH/5OSKmnGObxejyrXGdQPcZeGtNhILcxZ9DPHXsaSGpSPpBJKNeoizNiOk9RZQwXBQoiE0+OGaERv/nNf/zyqFfgqNRIfiC0UobqO42QkhVowbFAUgqGz1vtK9EWTCGQ+lSfTRpTpjmyOFwgRMUyiCNXHEzD2uJyJ71ImcvpPSSxNX6SmdKDTRGoG6ijvSxTnMW4VNN6e+bh+Ql4Yp6u7zSSOkqTA0IoiyEZSzvqkXEl+8lG1lBQqAod4aY8a+Vze8yv5kgiBPOE4aUJiUs/TSFx3HUg4Zh8q3DF4y/5j6KgMO3YosUD82r1ZIGREHkdREWiX5h7bjI0aZPHJ+enqvWkynjU3HRMt/g93H1GojFI1q5lkiLKUiUPRhqp+nYWH2+3rLG/mObBXmELfPd323j7OQEGpjKROCT3AQAqxvucX4c13h4ZJbvJRE9AOMJyYmIzR8fU7GCFsZq0BTP9zlPGdGUwKlyKehsnOuGDsxHl/PJtKfwsNhDyIBjcvCREAWTrMpbSHlVXYuWr7BFEU6llYAyK4TzrhOMT+eIPRW3QgrUKyReUXcLlAaZRe5Jp07GeBe0MxOQQTEDTJRGg5Ig6L7ScCiwIk1QZzTF+gYtH9JkvpEVtlXl0A/xF/eJeyJ0hfSxZFql5tCGSIyLbFmLoKFJR+vHfyUPkTWHUI5d2cZsMFXPZtkDqcBXFv0k+gSThbbwgU1RoH2Q/ZlnIFc3l0Qny6hzxCgnybMsK+VX4k+rgPqgTE7PfymN1vf4QBLWnaRTQtC4s1RCMnz8Ufe8+zqneA0XApb6YpnB47/Zk0ljxp/eU5YPCFBxLtb+jAyl8lFkNupOHIgCwCkPqebzssFDI3ymEgANfe41RVdotaGRLh+sMxLGMpbSXaIhsw2IFYkn0SD5b8djiMMy0jsJT0hksno6fm/afwF+LK7i8PMYt3FhzF/2weEXPIZM6dDFqzJ2FR3IObWLo5sgoXIqsPPjOxAAuSF51FwveUBDXleMNow01ui8MJyWkUrlhj7Xifm179jNF6BIV8Vg8d0ovaA4HaBxGTxZ4xATLRx0dSYb3W7Svt6j/YontZ8eofqeO6nFjAUR8ucXGeHfYov7ePjY8cBgpnLiROV9Q244WvJEgAMonBMSeo8nh1/92UortV/hsGHtL/CK+Zr6jKV4x58sefeZiOk9U4zw+e6m8MZgf9SbPEpg54J6iUXnmaeGhiyk9Q1dMzd7DB+UBd4n8XKE6EEGpuybP1Uxd4nyVO4PE4YkiJ0cVtEZ2WfJgM7fMdAzfAfKXFF3B61gAV9qS8P6LwymrkinWBWfitCfLaEF9doX76o3nn6Um0XeeuOhMoaa0cUl6RE9KzXlWQ2ixXynMaFwyLoziDNstCXywTgEICBUbjF15f9jHiqBLNN7TpBLV5nWp+1fAKUpm7nF7ZKaMQ3eo1bNMpexNWIEyJ2dRgAJZvFL3JrdEUYTJk0/VPq9TvxcD++SmImh0sknKzDQloEhGgGSVe8kZ1nuT4QRQXG4PtZwsbttOjXF/7hUFB1J7c7tG/XEf9y/HOE1b7G7YVwxoUd5GPJOXLgCJaRL3+yVWOuijY+Cwa6kPVu3y2nybYngNjSBjHVMcYq9U36OybCtpIBrn03F/fbr8N7fwY7QL9ywDp41e+UDDRwljcZARHpKRp61Aq5E7Y9MceYmobISjGNByuSlPMvkn4mYoiifbmTSYVQ2VYx+JKaRCTU8+qnn+aWd1XHT6DZtaKAekUQss5LUjQ1g2m9W/WpjJ8EBNROxc8TlCBlRVvUUp6VsIX4jEBRE9i7ILzqCeLaOCSXmRFHtSh6WPUwXxOn3UtEgULefwboo/q7DSCmPd4mPsJ/DBgd9HvijIH//sOjxbIh4zy8eeL8kBnDQexK1AWcbVRYeMeqwxRw0zhWB+eBQijOY1/pOTpSD1D4+nh0YO8CMhlcsUu3jrmc8zDoxHzUuR8lJr9omawKVtFZ5RMACLvfGmaxfP0cYaVwTRtbh64owWvyqhXKJvYbztCCVFJubFJc83RZcZkMSPzxxUj5WkO1w8hkWBJtaD1oJjE3W+pnhWZHIoCboQGSkZEZHViyLdUnTiTsqE+ERoVOTJwT3Hy8RYtWmu7rswTcodr8iIU2iWhCKoLNw01g2d9iBukHiFGlu6+eSSQ5RFkYVh8rN9E+PlGBPq4MtN1KdaCR3xSR/r3RrVjVWBzYWCyRFLvEkNRPAfLdH9ZFClUP2kivlxjup5F/HVFIEH4rllPhjb72+xfaeL9bGJllEwBttTxHy5xDBeoh2wpHBpL9Nr8ZX8+VKAViO0EzefcIYkXpGZsNE+Cgfi6bJOjw3us7JMjXo4i9n+B8S9KfWFcX5m0lL4sCb6po8T/muyibHXqd9rziWjp9/Eh8V2eVuWadk7lycCPjJveXPwqOMhVa+oP7z3ZfRWzJTtp6e9I4FDrQKJMxc+t9OTiqG5GGsqkpiQYNPjBAhzBCzMwt0hz3yyWlMMJ1Qvk3RUlCYw4NhEc9l0BqhngePmKYF7b87kNVrOewdcX5M8PMxCvGcEDC68rFhADTVF4F5BYb/q6Lfi2Of91TIoObtsHWyndGMIdYd2JajFzcf1Tff0gN/PRAB+qCghoxsSHVkaPHmKAKxdRqHK4YaOxISh0EDEnceChu9bJNbgMpefn+r0VUUVzx3ElKaM93jEV4/iVxnZUzx73srp5qat42MKv44yFVspZ20vj/Cut2g+wdKnj+PPLnH7XI6garQ08doibiRiq2PbV3HiDHhw4d/f0r9ZFa3pTKa7iA9Zilc+A3kQuthl/wr0ot7h3u7qOC9TXHAPKeb173NyB4uhkyjAPAGdv2mxAPxKQTdUtncwGGEEUEBFqnT4bwjYvKd8WKLKkY0IsiFJOwRyLwYWCHwM/a7MDVSFnWNKPhh3NkWp6A3KBy92gX4PF43n9zYzhZ9QLCzg1hh6FscQ7gObSt5gHq95A7UqorR5FXfTR7fMMcurjwzMIu02KgSfzr6BvkF1/zWOnFHcHKqiJAHLZFO2OKlSynxSCmkuMSTqENNlCX+zi/h4H/Hxrf/3Azvm6N0MP6RIOWUY62Iab0DbePjCVli4GMW8oxeTfedJMXAiEM9D7Egt+QD4/cLDliPe7KqrMofalwFUB5PLt55ulsbGfBYOC4pEFW0aGZskvLVEKxkhULRvjkav6/v6e23LIvFfMVsVV4/YsSomodQZJ8WfS3BhziufN4e7JEF08xJ0Q4Y2UokmqPy+ouwVDxqeE4TxEqMoO6JUCWfxassG7+mCLpYEiQT4jFhyZmAknJm18s1MRFGI4LhErxGKOVgyaW8RVNlIlz2u8deVH5LcKVnNGMFxuchZsMSpnmK/fxYTgrN9GzterObYa2xvx6ie76N6e4l22wt9X0DTmfEOc2xvThrtyi5qPYsiEa/W2O64BOqoB8EQUZ12Ub2covrZm1gfTlHruY5x5p/5LPRt2+1inS8eP2sM5oxmDGeLepsRoLxG0wrEDgBpUK/z0ZezL84ytntKSeHFK7c4BTgOm/foXU0KRV+x/aAommdREnjIvBtE4j17SPzDOYwCNEUAuht4f0bnnV8rnMI5zci0aTACqEI81ayO+kvRQ8YdUozTmGlMm82SPkeZNWAf5sg70W9zWZY1P5LaguCoqaO7cf7heO/nxKSJwkwTgrwDhBYlzu3fzWcPtUFyHdOCZM9El2Ueo1By/qei1hIdy9hF2bZoKufXV5BhzgImBJqCMeVan84HqezloOH3AuTchQrFMWJAc5W5dKWHFPHYvxNj8O6wxvrYxjpkPJk8BNNXMKkbePoNY54lfAhCJTzGxS6lArCR0MtpGjX+u2njpFgEAgZoWptWlki72OIOTqM8fa2oVaRpv0bzYIXxd/6gCYK7oE9V5Gvv/brk6HFBeYvfcB/LV2vU8xhbPyZPkZEx9A58T9nyvG5Ej6bTiM6ibhnElNDXzqg8KnpFAkJECXEXf5PHN7jwW+NSixqaIx+THllqgxC6zCwlBxKXcoQE6d+jdBZGMHjnoegDMaPrpNOCQsuYU8hDWoq4GbFqSOkBCaFqRglE7A0huFWoi1WJMrhExSZuhju+TFvTAShMbK5jLny/ZRKZlXB3DZnaPg4izHqsApcELh/JAJZxcwCPMTPu7YoazGHa2EzwRRBGReLiMtNGkc5Oxp0iqstc1UIWWceIjA8x29Fy6r4U/4RYA9jGRr5C/vod/i4RqEjPnDgQjmiPKP74Nzi5wWl4jXQgXA4ilzPCzbG5zzLcj9w98iFBesVYWws7UcoPDz/osoH9ee84/MztMJrDu3TY1XEm/3hBmWn0Sodo6nFApMoFLpVcKSavfmJl/VL42OVZggjFDlmxXnxa6Cgp7K58WS53igh1yd475lGbr6cxTZo+p63XU/RaxsoJxUzRlLg3dkHwDwRZyFSEKw8xi8Ty8OXnDsyc9EzakTDL42sJ5RHDoEbW2NE2RBphF58ZXcA+YDE7BvWGssB7IsV0ERzh3ymeVFEsei5KgzeuY4xrFceNwKxDVMCeu4w4eH0REhaPCKjyfbnNyfTzJmbSE451VN9pY3mzRfslBeFZnoJxBmFdY3szRrw8R8yniOe4/jcxTGs8yLmgjctpjMtbze90gc/tKMGIwHhNLaye1rzCMQuOWCsi0/xc9B5Kfcsb7GJQxQkI5whf1zQY0amFAjYxgJYk30xRcVnkY8EFuiUzYHLHt00B89/Exy+gI790BJkqkKrJFBCZ4lPFhbMzvVoL6iUBhb7RZsiFPM1wZCxj03SzdIYtD8enSfWb/nlOP0p6gcI6DTJIHCVz6PSA3MFFTR6hCjLTHci/tsgqPVIpEoQepXccvFieD1eIYHRPwDQl0nPzPajvyaQmioyRsauKe+8FjbTTfkWsUkFu6f05bTEuY3QdBs4GXDRhkhNG+hr5TXZDqCmAiy9JKPWzNtVsuiP0HD0aXtvFtkk62ywa0+VsVaYFJQg5VYiad6jmg+d49MSARCkOoUZ+SJ4ktPs11gv54M7khtNOM/fRTROHuhNHNmdsThyhGfxuE/WbNW6aLf6zf3gbL3/+qCa7bg5x+eoiEQvNOFOB5RFB1RpxY/WzH9k453orlApeG9O7a0Qe/EFxj10vcA5p4pMUlp98eZ+Cove+8EOANusFi3OXCkXzJsz50YElY1tvFjL6DHRBTMfvx4vAuYqe4adT39UIlo3jNwHFka8qbeI82JXje40/LsZkiTool9mWGvY3ckd0PVBljpoRbsp0MXpTPPUgncL78ab2pkKWvbV7eyqlT7hg4znNYWXaOzrOSlw5kZ2u3BARylW9OorNaEeJ9zGCwa5h02Is47FvhnTT3oh9nOTjwr3jVHocPYK6hVTm/EkVfvL74PAC7C9pEXQzHv3ybBh/F+cCDlBxLNMwdpIS4APk9+5jXPg8ONlQcGfRpfgmr//zOkW7A/K3DRBmx1opyT3VQ7QASDEWdMhwVSNARnY2Et5ylKnRglJq+D2cis6vFR8TzpuMw426lSLSnnxZTEr8ZE6u95fHT4g21IzISD0RcJa9aA2+NCR0T690y6uglboZkKVR+lUVY2j5Fyq/O0UsSRiXnUiOn6WuLaKF5D9RBNvjk/1oyxfHOTmdYwfvVZ6BBemykUaJwKNhLDa4TdtZCT+NcbmcY97vYlTRtEaHVQS2SaSMnJZYX21RP+txDI2mpVjnzG9iJmidPopR3tRG/baK7eUltuEc9eEgMRl0j+1ZG9vhmZT8EoVBlZsiHh5fxeu3CDzyMBoitkur51+Pi8ZKG7ZT7LWCoGpdFOTSRaG5ix4vqcFGkCGfQvMGpKamQM9pixGdKtMWzNfkf/O5QEfhA9YdzPNKZFnWPrtdvI8PIX2FR6c0Im8wterFkDhj15xzXjg7ptc4mYY15UWuVaSaJiPG0jvS6xD7nzx308+yBAIIuZYXbTJUU9qrtcmaI3aMu1K+ti6yQaVM+/Ho0XzajFwTCpf8dD355GBn7ClBCBJLJhKv53AN53ER66IvoyTTLkV8tLLt8HnMb6LQFBqc6S4YE4t7Lz5f8nXhyCZvT1MLcftyP2palB6dRfWanBLtfRXgmZPMeiNVQO8DDZELKDF0VQjW/kyh1JwtOCM6dK4nFYz4Mt8cQEuJY6ziebWTI4i47Fg1pVenamZL/IXyxds5bu9ozOo4f37U4dZ/p4mpbmP9aoldtyjxYz05Qs7Cl6cIOmen23lf56ME145mzQFKglrYYDlMIom88fINdKnqWzDqxWICiRpRLGmzQmXM+yJeJ1/DvYa6pvTgedaosBNZ1Sm5FEvMxcUVALnj7ztN4mMb7T7fMVYRedWjUmXhSpb+5Bpu42R/6HY+d/2mkbGk7PY1U4OmMWeOp+T44gsMWJbgePXgasawYeHg9PPllKZLgEvI4aAxANfVNezQebd0OuLftE4bwMXdaSH8HnuEidQqBIW+0R2k3trkR3ABc5Dw9+Jn6IZOxE9ZRIsUfXE/RfzkHEEsDOPggcIvDeP4N2/snD6KEiP4tY+KFsu5kvyW0kRbMKEygUQmjjjnJ/jhwQNw9TxXgR+oqAs9Rb+tF0B1ls7qwVYq9YjhvMZu76LOXWNRG2YqQHLuxNHLcWrx4ROnRgRzizTM3PRhCbJuT0ovgzIVLqPCggiwXHw0eYnC9yvpIeofJBj014o/q2xt76VCFeUBumhFI4iEUSobqydfkb0hcnYWi0qlSdPZbHaNRPhryI6GdK+RE7ZImhqk2CMvOhlJb4PTcDLVo4hQCsdmqzDUST4TFwZ7StuRkdIYx/Mldn0fA/w9imb2Bxc9aOO5km1DMxnJVC4o6L2yXUEC7Rda71Z9rhKv8fqf2R6EUZxsk+iPNixZ1ngYbQx7XC8ybRaKQ6TiMEY9brGQ9XnCe7GOZbdFv8dyRcY7QmytbyuO8k++OHYH8OSB0aMKeVB8+X3yfG3dw3ujFLnC3SL/FbpM22R2uIn1HMYFzUGQ934+oAWkKT3IGY17gkskyXhDea9R9HDmGUzO9bRWcVmIaHNDrnW0bLFLGoJshhIlMIrt7y0oomgVNCv8txA8We9reWKxpImPBA2l3rRIQ8rP9MzzHZj+eUmHwgKM18KoXuVRiYTMtV/Qu2Lx4i7Nr0fcOLMCTQMoDhIFSU4UzpThTPjQS+VwKBMoVk1OKpT/bLRUU7hciypgxS91drAFHkt6/3lSkS1o/n6LYcoY13xWF06MgidN+LzmyY5WGhHPZV/Fcl5iIT5uwKmgUqTr/lTFTcuIF0FLjlOAID+uMPWT4l6BNLyf+Gfu59hVt7G8RsFyjMPvcwY0Mdwbt70D/N918eo0CD0UpJQxtNpX+ZaXgYuLdmeVSwAp4CbH1klVs39oxA8/t+jr6xR93+zCj8uGBQa5smo83s0pI7Sxsvgh2UJORoUENNpXu9jENbPnke0jfaCqAW3WWCYOb29akA0WA2Itxx573KHZf24Y5ZGW81EKK/yL1uRbudvjIka4VfQhhSslQC+nmbrIWJgSbqyxA71Qy6A5s3/BQpybhSoygVXRxyEAlwFfL3eDNeRdLgLI9jJ27KMSKd0JG3qtoHpaTM591bhZBv4m5evCluQ8CfcKZU2iYDEcPQ4Rr+aIl0eSxH0AimDLSMuKxXIpqpCg+7TZW/LBnAhPnii/txx28P9AOwYhmr/NVfYNfNA1k+3c2+yaQonCHZoAGdHFcJkDC9FNu3VWC6avE4eURieiDtA82AleiF3pCDWuSz6R1gnrEvVekrI5uxIpUwpFGfMlbwyvL10BMw2ZeXpC3/DVIocSYDijmMzNNV+x3TXyupLISTZF/CwrENmbzrCvbKie9krlIQ5RxlfZ0wphUBYgKfwoBtPiAXMR4aPM2rwYk652jMP8HjhTFkN4RzNK5SfbDZS8Pl88Uea15XhB/oUlfso/hziv0zzEsSO6rY391ZqIrtRjwu0rItn6qJ+vsXUIoDbz+i51rK+mqB6qaG8Ivj5Eg2L+OTf7bdRfnRTj5oNkFq/vy9NjvDpeZAshoJPXw5N9Btq4xnaJqB4juksXzYm4RueLy6z3Zotqb+sInQGpoC68MAky1ATz6xz47HzzMvIDrdhk7ymdLgb6GZFHsafXRN4sBcWC+bgbvsfraOv9erDv9lWrSErxHotHnAq1NDxQMpMROQPP9soTcyjTLzC2lrWXA+Gx9bePZP4RJeECkq8COTGe/Fm2K3oHTbwWMBaQaCwsZNGbV+g5Y/ZEq634NaovoZ+mUgU8cOqT00FAcxsJuXrEEHIi497F/sjiD9EAmKMpFYR1ib7PFAIlvWSh6pfhQkQIMlGB7fxUmJFkkUwOAQFQLtJ9QxzKqzl9lkHprOEEEO7kWc/L4jPu4WzKFHnZaY9qKK616+xvwCAHMWy6P+1xuEi0pLMK7qI6mim67xkIuTm0EtL1CNOgP40YM0dUt62U9uLWY8W0n2KhKPxxpebrBprUTRMPr9eYXp/j9rtNnIY69iB4FJFQdUDJ1cxbi60JBHY78GM1Fsy0EXGNW5tRY5ANIENTrUQuf773l+xV3+nl3svCjwXxONfxYhnlbiARa3J+NAqSapbF4Q1i9R7d8kVOJPZIYiGzyfJrZGsArMqh504GNE00pwyfFr8v0xNA4pxL6ucE/G2rl9mEWw5Cir0SmQVSw+WWwiz+ASArghOPV1YZa5pnyMLD5R/uDh1/KzK8zE9L5qrykNIkVmPoLlqldkzRKZgxR3qyaMnoGR1Gi8diHLhCeoZY1p2b0wyrZnMwO9qRNUnlOl0ixp0D63WqEZINBDV7zHucZSLrmY8va5LuKQYQ/U6apeH55ISTme5fBz8lPDwFkBIMZjMvVbyPLDQ/PK4PPorLcYsbxD+o9AFVpTo1z6cZzINhxNMxpp/xkQIc91qlsELJZF1NOsZj5gp6Lp6QxzFEPEn4xM9Uw+IiUSkYrGMQQHJam1qH3yhT8ESyRF+wyXIxWTXdwWNhK2spCPERrGR0rinWAu/L1gwa/wIwwzJIgZSMoadVOboy/U5UUfz4q6bI5sn83uIfkY2vR5biCGb0oniOHNoJ09AQcvh3KeDif5eUHNotkPKqS8ul5KgyilnlhqfJgUcqJlvjyL/UD9oqNxXZvU3s5sVehrpQQMWnqNtnsT4ssdxfPNKTBUgd22WMigPuuMR2MscLg7+KBIFmUDZz3M9R3Vqw9dnpEq/Pl6jmMboZOxkQIPjCeQ6RDdo1Ub2IWO/mqIc6Wixm4GchdjtWsd0TL+kRPx8yxPADdAHytqGb7PsYLlOsNJc0D3htii6CHY6UXKKosM5o3liwfF7w+CiQOTIG+LyZ2U2/+vBwivf1oTF+WqgMyRUFLbK4IYV+afqf/cA1xsY+i/a6E7idI0oYfjJEliI3vzdRN4NSWfIAMKRFEpZIJQfZ++KaU5Ym41bNGjV0AeUH69aKfpoEioryd1Igq/nKu5IsdtmlueASXpdqUyNQiVCxj9kDKfa4TraShyyeuzk9Pvt1R1kpbupWbcoJr12UBwtnFu5YirtsRpTalfxK81FtL6T3LfnKspziduT12SPsitoXf1hAkuQ0hD1APcZmk/MzZ1TKMyb5/Azn0e+7LW5usMHCF5W9Wsc8DBFfNdEcu6gO0ClGByoc6qg/uYl1ek3ppnNs3pq4/3yO2xdrNM8cg7p7G3EIgCxPM6TGzgi7DXucRGvNLfZnYZNuv35ZoSmpo40Wmx2p8rc4J73guv7e18KPZ/+T3SH+s2py5a5OBuSCSgpiYxoyanGp3VchBao04JOF8ayADVRCRTXIArW0HoUOFZmNVkFkDdmrW4PMLiVvGpvmMyrRUIVb4T8rm9BUuEyZym+AqG/E4yo6SbNkFiC8ITgOonOqQ3aH3bLpuievHhTH2haZ3bM0FlIQnSOV7tpFtTjPtO0SNYHDJFk5BzrPG+GG4XMhjhBU696mo+sqW5n1XEVNgSeCGBtkFGKhqo7jHPf6o0INgW4UUQPyx1TguDB6mrVx62YnFMSKQTO+zPEy90/uibz3VcSbszzNjXp+eOjBJwCaIp7NlHm2GOuaspPO/7ZskGJup/Rqfa8UrZZrOn6Nyx6/YUa58u9abJ2SKXymS5uzJQ4R3BgKHhVZtZMXJLrDj8zZrSVdQHQKRoEyTs9DCiFAX3gzbLFMDUjeqwBjniejSWoixiUFKtGLeyI6S9WegZzK1CwjNYlCSjf/ZMmhf5cRri4vbDf8Zw6O8IhNCucUmTofmANUsjFjPDQnKiShYDBm39kfsZihF+2LBBVskzUuD5cY6ymmcWdyN88Qew6JpEDZekUktnWvvSouFQrb0xobt8CI6Z9jt9bP3kbzoon6ozHWXRv1eYrhq2M81BEP0xwTlxPve4efXvFANCUF3zExPkv02GGJemdbG+GCoDgj6QKsE6LVOIMc98dnS7Mbj2Q3YypbR7Vbo95xOdHwsXZMKRC3NPObJQlI0j7jNFkG0ZCIW+Zc2h/87D7exwcNBKNaVTjRRY8ojYMeBCazsFljSqFJg2cZAOf3a00mx4HzGWSQqZVR40TzpE7NCUtyUhHPqNnTxZ/on/hzJSHbjbMoOmr+/Y0ewKbX5pUDaIPtwqstNBBoB8aaXGDarSL9765RZkbUQMQp1vzLGCbkWFo3Cf0UjX4OdBThtmpftCBUOfbFTsyekvYDFF/yHSGk0GbRCxJsyd9h7iF/47PE4+3SgFEseop0LY4KpVwIdtI7VEz5d2/J95UlUTE+liuz6VOI57ifD00XO8SSUB2weGnn6P/LXWy3e7/GO0IWdhEPRKJGbJ+RGbaIsrIOc8xnnCum2L3geadR/h57p0bNroRmxY+VYtya4lK+WTAjX0HXEKJSlQQWqZERq23Ra6+7Lvq6j29s4ceL/+nLiPbG8WqOgzGSpQgX+ejBv7CVCxvKiJc5MyhzFKui70lrBrrQ4qAPxCsCuSu1pqPiRwmLCosL1eMOvo/NDfogvrsDDE1IldFjRluVrNL0VwX1kgAwkUoKPlHnnOzkS1Co46SA57VuzU+ULxS+esmrEJLrw9YfvEdOhsHdxRAdx/hZUTYLRs02BZWps2xgPIYVTSA9lZ3ByKjYlzvd+vmyxB2oHjuHOxDJPM+BzaGgaVYraQI28IyJXOE6xmqN48zIa4shjTH1nmj0x2diYq+8jOTD5pgnkJe/+Gz4BWf8Dw+//Q+Mbg+yzFUhh9WhEDQQOPlFMoIyHxRjbgoJ1Kji8SlXlq9rZEhc3EnETxI/pIg0jJohwhCqRtGuzqQwD6ySVyqIkjAyycEpT04BEUshRVcTDVmKqNIepORKolWR6J31XREIk9zZzOEVn65El2rK8pRHqj0nxsCVTZ/eY/m1Is2nZ3SqTBlb6rItZtGG/mPWuDZfl2pKkCkRpjSblv2ERC+NOUEHyuJOYyr5kGVovO7ihuaJUTcqwojl4RzHGXHGTdy8uFXcGVm9Ud/YxBk4Thd9TwUXzYkh1zmqu/RYpNGi0AN9++JNVJ25Yedmjdf9Gg8PEctl9BhO5wjoIsWa/UUhfQsVUaQD6A6xThmhJz5oFgP2k9KIjX2oOibHBYqL4zN5u8V8ryTzqBg97ys9r6lDcGd6S0P+aF7MKm44FzM/mSNDo32QrbWJz9++nxxe1vKw1nFb1zFMWfwLnduiJ0UDqgNTj+TzldgtiRXwXFOz4CQLv1dsHN5Xe0OKl9Y0EurZ9dV2I6WR4QHirPSZItTLv9PO0nLnZxSBh4tJqWj1zck5lGWMoxq1j66GxymMMmOvUOeuYkWXdq1j3nJ/2qC9dt49BZ/Gsk768WQ140k13vb7yPpyXGNBR92QKYGrGE6LZ+LRddaEvr8LJiCTaHCejMijuExKkvxti01N+pmaH8nD9CRNugQUtRkskP6BSmfh9VBk+X3hOVH/9Ry4F8Qia1TfayPu6tiI0JZhe8R2U0e8aGMj+eMnRC496jxBzUzDfXhRxeEFY3HWQsRpnuW6gHG2zLJn28QLDimG1Dmydsawp2ZWjyf/UX24aSlwF8/blEEQ34LCj0/8y88fY/x7EYerv5SJoStdRKJzUqZx+CYxVkNR8mLzjZKxo9xHjOyVsY4Ou/Q/Zxrai0dqk1opeVU82b1cG4fFrFVt9386nKRF+JEk+EKsh1O3lkSD4jeWKmLWjPiEksNzmHaxUwfIAeA8U0W2SWeBm/ocDZ28oPz0kZKy3BJvjJpB9dw1sairWIclJqmUuQSZj/vy9O9sM1bNpq6qV8ctvro/xzNi2DBv1ouD0weBEUQCFYFVe5ql8/5isFkt8bBO8TDw3o3qZnnVoKxkfEoFeIZYbkWmOCV5soDl/vln9jj88Hh60JAcQeDufJErExVI/6LMB6EuSuXgc7cj+dXj8sqDkYnzqpxb2U4oPWGV2q3tG/FyenUiqexk2TByVByTBRiOcnJT5eQao3RFtSjFn3wbC+/OPB/FKckPDCNWsC8KvzyCGQszOlFUmg91IY3yd0llXhaeoifliFc9XHqAlQmWipzsj4WoC9XPSLdy8YIgJL+WBAQRojXyzMJPuZx19CRx6JbCb3OLURFyLP1JyTjK40adp7OIYpDx+ihEu+MuWZu4zGMs+Hf1W4zbKZ7FPm5okKSgTHTgOMX85t4TBTzIPumiYpx7NM9JVJS7XUwvx6heH2O628eX8xSfXU5xGTHhZbw8qYDd6lFjR6gacIZR1ZbLTkiPGtN8D/PdRaQtGpOKPRcenG3OS81CHRSWM3FoYjlxNixRP9SxHquob2VsJsBfPSh3XU3BbORRQwglDZgPpwu862OkE/4GPkpx9etI8TQCXx23uKM4h04juCVtb5RP7DNaCLRswYz2Welr9NmRZKZS2KXBvEpb93oapcmOidnOqc68W412lcCTqQ6ZvOPnVtDxIgjgTDX9CZjCogoj83DUdI+hZNWiSMCDn2lzgOTU8vpScKKRLi8z7181cr7w2Pd8rdTtGkdjCm5iLHui7ylaDIzo9akps6G1ii3+mzNBKmRHjMJ7JLqxpHRwl3D+6L3QfvZzsbpsjq5tlEwigEXvDcWneY9PjuQWnSh6kT0MbWODWtX7s8IMfaoSdbddGrhj2+zcLMJbRRgDancDr5qM5mI9ZZPfqr+Janoe8/mrWJ9RwHXRLHM8+501uk9u9VSO50nn4tK08ThNse+Id+M3eaLjRDBSuFw4XMUeyhSHQ+oUJ1neaArhRk1QChOJ+mJD/Pe/8ItYH+lWTMxUgd0gYcAs1GoeA2w2OVSFLhNIQxT42TlWh0tmkYEqQSpS8vDCVU3rt2gjTE0XLYe8lMC2dWHsIR5eblo4fUD+qfkzjJxGuKx5fC8F4Y45uUo+eEkvwzxX9haCmm29sIMfgClrbrheMxP0TrY9gSsDH2nHWIaBHpe+uIuMXVg2JH24a9LyQekHpK4L1yNdTQXUrdpexSMD5/Tua4KnMCmNeDxGfFlf4rtTrw5SDzH8CSTVPNfhrMLTLck/zpP+eJpcJHAIbBslXafP6pjIqcjxXGyy35AwXkjj2RaIHx7vPOgEzwvck51GBerFWwq1JiYSHoZGnowLowq+ro/Y3ZKVC2rtRibdWawQLGbkeWbK0LX36InPkWIK42PWmugJWSwIGJBfFiM9SOGbkLtMhXIxlpeY6Kak4CiaMM9c5dlCC83De9zicOcOiUtAFAxdilaip2tDmtderfZM6dievOWcN5yIiMZdT9ooF3zpf8VaF0LA2BHS9z6WR9R7OWZjKiAEpokKGxOKNo2LVhVy2zzqgD4RmxZ9XKqTxV6KFDCiDhDYOhw3zvUUZ/yZx3M8Y7mDco5r7Ndz9HETy+tTVEeI23PUH+0j7gSzRnXCVmIUqbvFg4/c4/4Qj28f4rFe4ufDYzyOk7zgRFPpu9hI9WidY+5X6vem7/ZKfMlckvwcHNHFmypeVq4LUQhKTB8cJ8Bc+KQY6cIJ7ZbonzGaQrW4xnxeJULZTlV0z9tYlMU7x0xhnA4HnJ68/56UgPyvcV7GuM+kivftwWn/k1en+Ps3ve4RZd3q7C1pE55uoHUrmfD29OvEx3LUlvnkKorT8FjWJDQWirK0H6AoEaJOiIiTZ6lzuoWySg1PxrQpS9A2aGZswZQ+g7Lr0WxKZz0/m9RNBJAlMlPnbwpERjoBjNbhhXq+8MRRFM8wRSKZjQuyVvjnUvwKxk+6SKYEMU2bzvzMzjGqKVLZ5sZZ8vneiufKWpdjlItoYTUqGEGxW5uFF4W0vh5sm+kW91taqfGpIM5YUAmnX6hiJdMWoTCXEJ/IQGKTjRg/Uyp7m6XENHhKh9J2fLnE2EEbG+PwvVYTQZOeGf1mwAFiDn7ZcBvbX52j3bMnD7EsJ70/7e0uuq2J6ThKUDYzVWi8Z5dp1oiWAlnUiLmOCs/f9Be272oW9jzfdVIDjqm0GY1uKlS8spZm1yXfisLPdgEZQ6SDP9WFspIzPEymbcniVIwTyBfzdxFHM6uUuBzVMIkOKHaGS4evza9hU0s1ZW6RLtCilkhUkEWlRikVWkIbCnePjq2zokqZokIonpALvk6h7NxAysy1RQ0/p+PZaaRlrz6gtAqzZEnZl9hJDOECUh0JX76q3zKKqZ/pzF3+tO12gohJJRBPcZ1iHNg4+MIlX1ILuIpenCpnbp6iiq9Oc9y2ddw8a97xG2T0ywY2UkfhwXcN1RZvxireXkAgnNXI+Hhp4EAYuVKGLAR/RePIyVSClho+YPqlfXj84oP37e15jinXuDJQkx/U7Tbl7MKfWThuQXUua0yMdokU6rFI0RDPdj4q9OjAzWEFoeVQGYuCLoPmV+gC7CtZvNjyRUIQpcRkAVm4M+muzOUlz6zMgtVzz59RULqijrVPGcBZ+lNehUhpMJdBMAURJxGEBaKDGLVvjm8kGhEhOv3B2H/vIO3JzrCiUpmevEfO3x3O5+i5pPZNLMAJIg1a5YsXaMPhqr6rEVqOoz6RZLvuRkh5TTV0jR6BvwTtZBcLJtdcSDVWJo6tuz/NMXWk8txF/VjH9PiVmrf+to/AquUWTz8Q0+RKsa/w9RwAHtZ47Ld49WaJt82iOEYhJSDoLYX0rOxQoUpJdheqyB3OdV+iuQRpcmlkUZ2+fUrKS0RJujdFtlk8AGpXmgZH8tEkWGBU39ZB5lR9XGN8M8e8B/nrYka5LC93FzdSVKpib+I8zUptYVz6TXz8dfYXnHk/++IU8+91SjjaO1YixXsZ+ZcYnOI6GXfaLftpMXLeC3b1/SCbIRZ68SDLmMMSJSqkMIuwomznHKWxU3Sj4tvcECmh6WpB5GKKgpMGAcDEd2DyDlMlayDMawTkChBEo9biJ5JjaIOhoNy5h7WKzDeH40bCh4VgZSzN705qR+F3XovGFKYkAieeIPcVylxhCy56eWHseWgMIG32mfQ0wPdWGrcXwCdtZfkVV78+9ok63CcOpJDO0WdhDWJ9Y/GXeLYAKSgy5etHIPqkPdoc2mhfAPhkV5O8SrU35kd4xPuW/WPvTOLktr6PkbAGkj7aNkaSetIVQQN9LNjWLc5DFTtG73w++vCoPRr7Mqrof9eqx76m3KNMR1KCaqS3B51Mv8NvQ+GnhwqsnNkn/0n7quSS0h2poMuNlmRJqnMMimVVkJm01lJ5hIU3Uwl4z7G+PkhZEySpW7YGGpPYFkW5pCoy/bOo4MsldPW1TAWvABDGZ2mLB4ndvCIXizxnjQ2kZHQouvMYWyFl+llS/j55Mhkxs6dfTRF3DSC2XEwXNKHXxVxN/hsmjnY7bxQWniKE4ADCAVJxDdJoe5iHpYqXA95fkP/zJkbwIeUoasopKnkgVYEI8fXUxsPlInsWEkdAcHxkWZlcLiTxrmRGljmyUjR7fP/h8YsPLvLHtZFIaSfCMUgb2SdW5U7VIHGEbAdYxHBTRmfXaknLeb8gwL6cUG33NCzJC1eIi8bvPj4wjRZLAFVJNitFKssBzVqgW9/TNasZsJIwq5b0cyvJMv4+KX3rLfo+m4D8qPedLWKEOK6L1b4879QV0US3+TNkB5djNI+5HBcHkoSCthScvrO8p1SgZkG5YWwsgUsXuxu2+yiStnlv5mCQReseh0EZaHsWVeTQ8mQOrOEt9vNO20E+e6CEGqfSBJ6j3vZa8+JQgsYMS1TTEPOwi4eT1c/Tiy7am8pK6YlCkyd9jmUZjaauTTzOa7w6v4nL6JxUPBrnnmYKY1PvLWwDZMUCApjNMNMIZTrzc0Es5J9XxAPmR1HrggBN8v204Tt/plGvKE9p0l0ueq0Je4yKDwyl5vkU7e0WyxGOXxPr0Tm+M2kQ8LGZNDAaSyNsLqi3Jysc38fHlqNe7pS+gwNu31SP/ClSoP14X2rwprxpAwnw8pw074aH91nzJPZOfr8LvJKfzR7w6F0lnxgTSZGQETZ+it643AnOCE5VaKJ4ILu65/j6tIGRnyIXpyxdmMBYwIQAy/nOab6coQQOMCj8w2IIDG+T+xCU3KrmMvbV9Vq8OkHERSfKtZnNnxpRcb5drMiCiK/Ngk7m86k+tjLViBfr1AWoi1demIpHfi6m8RqF2zJHd3N6fV5V0TJKXv1zmzX6A42MGyZ5jsLlhfY0l/sRNf0W2y5i0n2cVkkyGGVEbCszxFrEwUmR/2aOeGOhlp4f8ZZvtthNTOvMM5EfKY2dRFj+7EAgz4M9Atvbxs0T1BoVDxbcKUox/ZTEMrBOxbxK8Ua3eGRqaBz/21P43dfPY7/d6wNiAcvgVIRxq2Q4pZaKIS6B9nK/i7qB+zQ7FUWQtqtGex8lqbU44evygkTN8mUOb4dvEkPowIp1g2wk5CuYhSFKWaVeJJlXfkwmtbM3x6sQ5Gk0pty+TOJQwdj00eE1iHxckVNpszFX9vjTAW21WE9uI8iHDgXsUQ5CaSTooPNBlVvigxgxkFmqhWFVbU3liQQ/+T+F48FG7Rgs6JIFSG/iK8ZTwxzfbTptLvgcQvimxdYf/Rav1y3ernU81HMMXcTlbHJzTBz8RgcpEAz9815ZaSb4mtekuKvSsX54vPvgPRoWTHG32DuHRR2r/KvgxyVhXNmZbRP9TURLN/tgCdB6a382+0fmaEV9gxMYdCFoDoja1SOaQqR2iLwvHojDpaHRjmv4zBj7m8BNtQCwoUzNFIOwRziZTCkg0zN7kFz34pkS9qI9VNJhsuDQ6MXIlDNmUw1YGM3FpF2wpEdC5gD6kJe6r/ju8RuxRxjyoN/NgUZBYpT0MyxFUUEi4O7Z99McX42ydPFS5NWxtPj7yXTCCQt85Ugz04prO88gIM7ChjvUDXU8TBcpY5tnfbTtOdr1EjGQ4sHPnPMCSCrHtMQXj5e4HykGTfKGJ+k0DRf14mkqpbHS+uinWp56+nsU/YzAxi3WvomWwo1iTW+quUTY/0D3rYuxsqYRT47/NIAYheMRqEiqtPxIupjjuLgQn9smaDySTQrqXEe/Mg6fo7kBLcFmQoao8fpcacl8Ix/FMffdP3qHQ0oBgVhu1z358GGfJVS07EEaAHH7iDJ0rJfEFyqAPFGZQI4lWqDQsCetPTWNYmtQJzsGGuj0ypRIxAI5o7rZ52svW6yjCDWhIKxn242JY0tBlygrwh7dPwgyqNBKbmMKCkAq5bspQMt0KfMUXeDBmxP1B+K6VL75tcq19fTA2fEuSgVOZBqIIuEy81vrCSsWCVPM8TUdKo3UE9zRz0jPzKfX6WQi0DmVi1fzdY4ivz6eK6+lGusYKaBkH+UUD7xCaZahO1VSq+UYTuPUwukHjSsJWrYouyLgnKOZ1rhd4PXlBIsC9vEYy6dvdE4tDOpoJMFKTpMylGkmeV+lJs69NM353HdW5lZn/huzdDeOsq2RcIym369fgKiKaO4Cn9mcB3/2U6xD0jfu21L4/ctLFf+rO/tYUNAgNqXTZaHCfiIIaF544RkGnhFrKmQWOHJt7OHUkEWrIgmIGx8cQ6fiVzRTQrdurdbG5pQccJ3MOflexlPzdXzGJ9zFaI8wLTwjDHA9OFnhzDHF4ZJlQQjF0FrD18qXDIiIUhKUg5m+PTnSLWMCY2cs2DGadifeQ6ekBV9wdmofLW7RHJzfh1oPCJ0b1uoqUAUByhRzeahQxPE8VIiiLEMdpFFtFff4rsUazxCWLEZoLusQXb2XYu/1usbbiRzhNTbsRBgVzp3+rtvaGNZZ40gqP40eUrCCMIaFCyH8s/tLHDE+/PD4xcdGQt4Yb4eI210mLSyLTGTh/kihhqJLiKk/u6n3IXEzrzGRFqQ8ZRdhLBMyaFkX87mKmfUnE1FzZMqMQOPRJBrDRWVdgFr0OxqLOkZCpveMJI0wKcmmGBnnGEued5tRPDVL2YiykqecmJgsbiHFOtkDkAVNd4tHJXcMwhMVckIHoHq4yxVflp+tM66OKRMxikeaMjaaLXZjRD01cW6It/P4VTGFjJZSaWzuoGkTMqKtQKxpTHZRB9I9kKujlNMopJ2sAC/XKsetJjAdrtwQG/EcKoS3WM9b7BjVN0ssN220t7YyqpjHTxzYZ6Gl3TbHmWjJZYuPxxdxrKd4NZ+MnMuwFO5tjq00DkTtbyEBiAUkcz5zEF8uN2LzmDK04m6iaIa352KvEP4YF1J0YnWjZlPOA5WU+eKVz7O+XvxEIbIeZKoFSEX4mYJTTJTVCOauEVo5nEYJvqpTH+Npi+kjjG+r+NnDGMM3U9vx1z80rsBr1ZFqFLPEZGoNC2m1BQgHvLw1Od2u+8mUBn18+g8rX4uqlp8lwk6ZVZJQpTxom4s7Hq+4QiQKxx4QxQLj8cnpFJnw4fvD1jrmHnogaCTPhtpSgoKKUdApw8BImpFJCgrTjeD+kTeBI8PIXUDzMfNvI+pKg0wKXdpEiC5E00ODarjdFlSKiytj9RSw6B2i+FnfKVhZYkr0sQsFjQUFMK9J6UJJ6+DB/smhgNXUEq50MQ2s783rkq/n/kl6Czxz1bybG0w1btgYEdOm5zBrX4tWo1xvv06ehyYsIH1yIeCAToX+oY/4B300t9+J9S8uMf3wFO0tHRE2Tf5+Gi8+H+YJVCcy2Jegziik6gY4eudeRR5JOxTDlCRwLxmp3+wEA9r6JmkxpMBCq/jXf/nFOyTnb0nh98WfX6L+nzXyfSv8YIuSrLJTmadIHbrzokjiIIMEzsLxyEEWeeLBudNnvCpnchVusxzTZQzptlqdWivfIRbkrIIRGLnwpzSewaxAfCIHQpOs0FDsaMxLikhyL0RQdbfMuA7rFW63uriig17q8DD7Hs5FV1RUV4+uLjeQqPdP3BIOcYjohDirMyzeajxLrBdaQfM1foiMIUogO9+vvCxEMGPySjqZVbJj4MC+HCelnLCRGR++nfkdWwxVHfdzFSfIqNjfkBsIz2lcxKWcZBHDnTHGNjRRj7iRU6DM0bddXNZZiOiffbnFF48fCr9ffvBpP56neHuO+MN9qv2u3BwQrDotAVqJMvgzpQo8owbYlNiwvZ6i+QjFuHmfcIP02Wcuq6OnkjwMYpQfA4fl1TkiUztQ2GEv1KVNksjqxUczLR+MhKy/kGohy5f8e8RFcHZMj/OaVo1WvPjssnI1aeYyEm8nD3dzBLG18CiZtSuLiUwZ7DAOlsdSmrlzcNKodaVgshWNmriicb2SYpx44q6ZQ5lGxjmf63JrBLDYNokfZ+Qekvc0Qbkg/gq+kIUP7cn5v+u+jnEv9o8uqmkazGniUifKC66lkAQM4Y8x6dJnn6TykTqRy4/3xyE+uT5SIEahkYVaQTstRCSJyPF+oqWomPd7rM9UNhxpGyelfcbtpZ0H5QLnrc4LqYerGClYsbnSVCNDRjd4WL50GZMjMGr3XQzDGCsJB8c2puEmXp9HEd6/iQ9jcr94BpVlYSTZfqs6i1HtiWqTkydEfXpPKZrNheVhJa7BCT5rp8HYkUJcVWhEidqYj8cYGSTKd5IUqInG6Uqj6JSQyWiaUFdZd5gDaydUJkhG3fjd8lDktU0WMZgR5BQW1owj4ZylqySb5PeJS8ZeBkCRMKNyHOTSxlqju7WLhj7+5OlZ+bsIyZS3qJ434hO7VpiqZGRbTYQuTSNpO+5BxqBQQbCp4rzRS81iL50JlRBFkYaQTPcqBbapFjrHJIAxOsg5wB4iz1bvb5Y5/H4VvLUL4wbQI/nLTA/4Or0jNE1SyYMccouOsbYHI4cEGEi5HFEhsBLNpYntsMb6cRXjnzD9epR/KS4J9WWMZR50f86tefErtAgM5bVnXYTXXRcXfEeHLQ6gktQSNBrLFIedYkXkhqC9qTGj/TP7roufvQFNTFf8b0vhNxzHWBg/ZGAxILSzbounUl408pZy4SakrUSaWNunxUGRp/l5qnlFU80iT0tN/D3Dv3ADOPQYjtIpoDoi6aDL0HgZLWdWoIx1PXhPuThfB6nayIir+8zEhR+Ekja7HJRiVsRR3KIUBHaxp5+KTh06lgbLg1DGqBkTZC28nhuCCSuyzAMSCrl1jk5Sfm5CJZl6wBvBpmXcVGvElRevAqO5VDjs17hX3i7/vcUZNSSE3rZXmor0VYKkk6CO6AD+CoIVyON0lhybFAvnWehO2fgckmcKxxwJfHg8PWSkQ1DKaH6nkSl4aTlyIykB1d+IQbHlt7IxgSPCuYzpLk4853KockgiLnLED6gMhf5OB36qc4VOOEfWma6+APn5zVTHiO0PNi9pFaO1I1FQGqenaEjogzjjVivykNXHHNFDfi5q3RypaeQqD0AXmEWhYbsRG+LKyys9+mic+Ea6aNaRUGv4O+rY0heMpU8O6fM2+hqH+z6W6eic0yxM2VslC1Ujb4louBiSS6TpAO/b3ihMTJl0Y5sXPwegTwqhPkZMlo9TdBcFYMf2SR+xV1yK0UG9AQpPvL4HLSxzPst6p9zdrbsxlV/KYTwEG4XIS9imSQbxbxm9RSMscjw2SyCZCFRAZQyx8r/Zi1oyfM6p6uZ1IpxhwCAVL+gslzXIYSZJOInBVS48RPG8UCtTMKRRtCnRFId8dDaZlS0Hlliwcm7WaKaI81TF43vO5cUR4vXSxnOoDkQmiteZMZWJbFGxKaVIY9piipzFuCYrrDsupRzLi6tnEKIkadA4mPftxgGkx0hjQckKYzApGRSIWczrXoG2w9k6w/Gk6eE+KSN6+/SBcIkWSsGR8gCNnNNDXdPsVBqLr5i8evMQW8c/qskxz5s1xJJTQyfXDNsSCDlMkEYJVAIF7ZFpQZ85gvAGZUif6iyJNlV4pl1OAiB8j6gqeu42qjYS7vCDApCI67514vQxsStNqT6PRAcbccBSLJLfhwC0UJanAeTSzRSNFxPAaZyiA6GEA8yLxNboZLEkVmfV4xQ1DU8/xAACCQB0j50Lht9QxNY41W1MIP/F8oB9c0XqTK0hQ3jAcPsCzSsbe9nRFFs6P3eN10XbSHpXNnffmsKveCGJEKrKPknXKgLTTJMPWuNb20JgulhVCiTM783LijGkeBQy/ZKNCXDHNk1y8iZncoYnkz7JE5W3uAh0bVvslALgvF7ZSGDZoClvgaKzsNM6a6LTRYYdjA9dXODpFmtFvtXXhQoPQv6TItTWKmwhUvHfLM0OMryMqY1KcjzbMBrYmY6nc2JIxilJ6s4hBNk77Z+V2aqfR1Fp5TIbm3dRNESsbFB4AUamuaTej22LB1n4JWRObNNkbpI4jIKdGT2mqkyWHkns5blTaDbA1k1cBsxQR6GCulcK4vRbXmPfyMdWxeePWxwvW7x4TkE9RUtcnxDeMSpFC/niEdrAheL5RYzNEv2LJqoHOsgq6kOigiWDWhFuNEHpCp/IAmNQ+FqMe4sqT81VCXNhbSSqziFIIV+6f5vHV1lAJB9NnXuyu4uKUBedR4esm6s+RJ28XzrPSbQIXQBewf7f3k/pU28PtbR5cCQ0SLOjyZqbTsUaHNq6Ht18pNGr0TkOXZvm9j0+dEZeXLymYEW8RMZpNEY2HbSCXgwlN6LdTqOg9XGIZqTZWaN5cRMLqkFQd6EmXOAkPZhHZF8yyPVGxkUa6dYY+LkaA8nfIkUEFmxxMdDM6vxhtD/QkpLaAjrXaX3Ae0k7PnOnOvw8ncSgyzWxSycbGDGE6SyHAzi3St/wbnRhXsbM/lwYyQuNZHRV1IaJJmFUPU6MQTPnF0JUU8WX54d4dfnm8nj/fare8nfHcYkfvz7Hf/0xzb4Ma4TgaKLuUZLWoTijaQqsWiUvZ7lS4MOJ0wLnbQIVKpTtCya+pspFT4RVwHEplLQN8fgyczuZ50Zo1bwk0m2EwYKpjJNTQbOam8seKwdueW3itGc0ooxbsAYp+1fFkb36vHc8PWPkC3+b44bkGPwjbUnDlMtCIQomCRoMXVh4pi3k16Gmrqj/s1BWYcqzyDQaF372DnVSl4s8nAxkISW2Sr6uJMFCYRD66ThcFZxS7urOd0e5ZcKKGpyMZRWvjv+D1zguMX2BgX4bp6jjGdXtBV5vFxURbiCH5zmqCZcKxrpbxOs5qnERyn+6p1mGZ7bF8uNTBEhgv8X5YkRzGp0ONinlCOcBn4+y7eF50HxTvJ9nCdj4SCli1eixD5NHquNQiUMsJ71j357Cj67iJ3ET/2UcVcxAWAWlkgkwih1QCI1o7bdH0dIQOk0FoxzZwkOqo8MnSab2jDooeDjA7LGDpxz2PGw/PhyQDaV6cHjLvAxfv+QBMnvXmIrA5hwZgQ5mzickKBC3jQujavXfDlNm0ZjTZCNQ+zotVR37tlNBC/wsuEbPr45OBHB+F6/Zo1Y2GTm9UoTRwcBHSKK7SLE2etGClw8UvAkuxJTkW8XMyJjfxYWHZN/dYt32uniXCVC/ilF+gBCSLzFsW+xZhbLJsKH0vNEF2hZHI+09hPMmhuQNimg8T9Ed+B1EWhGs3cSxWuNeopFvLO37t/eQEruO1xMc1T6WYUiSPg0DCso0FlX1A5o2GRXMUQ3Fuj6jQxNAsyC6QwOy5AO3BRKXoD27ZMWxkZ05Sa2pdJDkxag0ZxRl11SHqSdSIJNnpyVekQiKDSl7ZSTMWseeYIme4lPpO2kx8dTkuylH/KOO1gkhQp/TFkJ5otk8CeGAL6v0nERAZRDdx3qa1TQN2+BzwLEzsVKZ6fcQdO5ikjV/nqbodvBRiT1CMcnFM8kYuW/3VtSrPZyiQhUN65XuvjPauCy9OEX489XDEvW+ieZZGys+e9BDViMCMnxN7zHbSzFm73RRkuWt0Xl1iP7AGNZ+fqZ3INywvx6foXy7csqgMXnLOHGLGTufE0geilLzgIqRNV57ILwwRMyLAoEoZ5sLAFCHnDqZJM+ZmQMCnZhckngMJieSZYfgQbSAhHXEbeuZzHCepTddVccXQxWvHvM5vw+P8kTfuUXPwxov34xRf/dWBd3AfhNiRgFiDq1MeGWRZNQUwYfKM030nLneyZ7LnGcJAlOlqeZpyUkL57B8F2k4rKzlfoDjJ/FgiSfMJykPN+5Azfg9ArYAKSPSskGHd21BRImRs9WCRrU9QsanPVeatmL0LPWuMnSzGdtWcUXPUie7cKOhsmWM784+2IvORbwiiSpiXRjSpPF64KG60KzkBatEKYqY2aNNfT91bW/3DAm7VDX6rhO/T2PaVP7nBwd/0cb1Fs3gnWkU0+crZ6TyiEE3ESSSbQ4yKRPoLsb+HMPzNl4tS7zo4TZWcXw1xA5gifdLnm3mN64nlHVjLCfoVZvyjiX0ONRxvk89wsdVvDkR4YqtlIVA4vq9IyDlfuTRKmY14rKf4n5e4nZq4vYWOpXFchI6bFsc9m3cV735yyUT89tS+EEK/rc/WuJ/+PdSOVRi+pJQS3ejYa14bGyoXh0247BGUUsggnD0KLY851X3rS6G3wA6RtedUS0ZPST3c20Uhmo2P9ZITR4taSsOj0HO3sDE0nQZ1fNJTUq7w6+FmCCDh5Nn1jscggPj3QoEzuINPPUEjU9LdHtGslZmCaYvCjEIWbrj2cigmpNG1uQD0sovbDYinWAFgixGf1UEmlDLn5lnAkqnbl/egGY4wB2TClddO4gGeZ4mmvK+KVVEXl2N1IQoB0FLMM/hc9i3+xiZUyayg0fhwFBYnEIKd8Pmn74e4k8+hUn44fGrHnTUXz5ucT9V8T2aC9Vf2HXTAIAWVbGjUAC+41KX278P9QPckDNrlPc8YnoY4/CiU+FoMMt+i93eHD7piorb/Q53eUaBeE1a3asIoXETykfnqeKOv2N0z8WRvFEeV05qehBSNuFzSjUormFyB7XPbOdl5C7HV74UjORJQVeyiYUQpp/XO2JMpe6A/Z9HpexMPUKuJLLDiB1dbAn5p/ErUUs0Y5iuBwg06lmnFm9CHvFscyPF7tstxBIq+0OIQL1gkrzFcppiuWcWO0R3qKP9GIuHnaOkqjmmDGBv216xbhji2UvTqndQ/3k+x0ZTlJei+Tud9t4wnqJm3EtDyP7KmBMuTEjfynJVqPOk9A6lkBB43yFCQDiTgg2NaisVqZpWpBpVU4AS5VcjuEpHOtwCchRsF5DkSQsVslWWqwJb/nD5M7HQkYypOMgi05J5i/sR7qXt5d/XB6jWA714Ns6kS6g4lqvRGt1+p7Gsi2i4ZnBa7c/mSE+PTGnaFeQSTwWcPGeL2WveQRis77pWa9h5uWnyq/Pfo1klOs2L6BdMALAB4y6hiNcE4BpbyH4yolVSRDS+1ajZGbL21cvCNa1hbAGZllByuUiPwuLLV7Ka5bvnhk4NDM0dwiXdaeZouNEzN1G/qnB4a+gm2I8ZSV9Iz8jixY1PDqPlVVmU96Z5NFIYZwqK7NFoLN3syPOS3wsST9MidF/+aPq8orWRtJ6PJhyV/FFlXo+4cani8XGLw4stHpcpjmMX+76Ljuf6aovhlkkKG2+WoIRif77YoeJE3jWvHeDo+W28fTnFYWri8e0Wj0f8dAuBNOkmmka2EqnteF5EruacjggERDV89CcmN0MT+30T3d4gEIb7X51622vlo5zD733hB0rw+PIc8fcyfiml7hxmjK0opji45IXHf2d3z4WA7J7Rq62WzUVytA43pMUO5qquUqojwdYiEnyesnE9B28kmStTzFGEgYqB/Mk7zdYlGkVTRErhZRs9xwWjSvSYR6M2INs0rVSYOUgbnYJGLVw4FKaJpijH0bxADWikbOJgRhkoqaxOXXF/xCNxNyNv7xrTT9vIeIml0XT6uXE5y0STC1EqIUjB9mES94RuSNJR0NMhNrnb9kpF8QicA4H4Nw4VeExk/irzxjyQ2QkhmagjJj8JCTW8n4c63h7f38vgP/5jiblq47U8JdsYa5Ar51PvGKeCTWFJB0KW8WwccirEdDcnqkYfcAZ5ILrCxePSgBwiALAhqgpG+bilB1YqdK8cspJGwO9HMU4M1N62H7rxKQRzfGR/VcNC4tqx6vAPEd8VqwV3yXjZaTSjvYHNjEcd/F5dqFwyyYO9nmVCCD3qUXwcTdvERWmxRHXgucCvJfuadQ13ip+V6naNS3yRWsIAwkLn3RrB4+cujTiBoIILNv9Vi1GUlBY1NJBoYjhWMR3n2M5YSG3R3PbRPd9FddNrPwnpY4gKJaW1AlinAAUYEYu85mGJ5XSOaVfH1u9jHWe9X9Nyira+0dkEt1aRTQgrROmwnQjPH2sRCgo1mSnob1PwM4Ly6M7nNWEY3MSo2AdsflAJ2q5Cno1Cnjz6ZtyoIzHNu83BzJYxs2F1AcsT1dnlvpjN4Sv557I4wZJojPjxMc/N92Wr/4rnme5B1/F4Q8O/2b+QNcZkheJBiBgjXSmnSa1wwytTYxEfRTqykXkeiRIUIp4Z5+gIh81fqBExjckAVy2dKpJDoSlRhgPInxFuNfuXCUrG8DnlZnE0nHjltPUJj8vf098PxcmTohRcZAHon2P+mEeKHtGKy6nCsfjtFdVyMWq/6ohTnGj+mXTqicAp8SprXdmvpEasWNt4euS1Xsbhboxc/JU/t3uJ7z29fopz0Dtl2SOcci6xhVCAERm92thTkXVseoc5jz131bbF6cRYto7zI59JGw/DGs/x0GxnR6q93qTsB3SClyyeK44jYxOX+zE69hFK/m4V/QEE8P6Bu3LO5DD7AJsXao9MDmpPDDmzXG9IHc2bTFwrv2us4nLmdc6xu7uNrpnjX/6bz2Sz9tcZkb93hR8Pd5uZrclFqA7SfCa6CgXD84bp4ljUcaHS0Xuhu2kxty7tJ9SJUCxRhInLw4XlbNwyR+E+45AsBtKsMk/RUdDaid1MH49Oixmz3TF8ackVjOiiErIsNSA/14sdJSLjGSkT04aCnwF6oyYQUck2xSp78iTw6zDXtWKlMiRaXdjwa+zHBzqAW7/EHeLgpAwco0hdhrxXPE8joQhRmvbgA0XFoZ8vxTUPlIvDNEd9g4o3yea8dsYcMuozZwKPQ7zMJE7hz4iiE3oD6kgHjJt5iAexdPQ178tt8Nt5cFD89NU+js/ttUjR36+tYsDWdi9RD+tSXDCWNBzWJJAbu0FBVkV151ERh6JMwZnADMk1S6VB0u98sVy79Ex3oNjot5jOs2wSpHRk5HjYZFlQQYbujJBrG2ShVmLayikDYnCzv4tlebwe8kL6Osb/2bBlYGLhLElNX6PK7ZzGo1vH6JMQZEbdQjahIECVKAbrtm6ieHLKAQUI+wQvs0QxxctKtE3Frh3xR8yXQcSrvfY8HpQSllzaGM4cwIt4cx38m9su6jv7ZEJtWNYhYt15bfPZcM6srXiCGp+CzG1dbMd7I0g9yI6knmnpZFpFXeH710u9PJ7w//PIUHyk9OXTZ6ZxGGrBOQ7tDsmP9hzvHYXciSkAdi8UG+lbKDsX3Tv6oUqjoABwGhL8sDrGFLuVIkH/LSsJ/1soLkgr0ZjYZaW59qwIrDr26xovt1386OUlP+v3eK9X+BBi3tUJ/cRFQbdB0lukLk2fPQk7KJgkrjMlQeNAWYSYJyS7Ft0D2cgojzUbnCsKiFuC1eJ83ziO+nP5blLccO9xlgq9NedbDDD2kUb6T+r6hb+X2TF3ZXpdOmvCwQSJ9Jn752mU0X4/dLdJv4iJsxt8JWyIG+e/LyP/Yvp85WDIbD2byEyLwStPKTRSw5Mnnq4D2jIp1CjcPxXGLpgFuGjPpo+pkE+QZaPfgnVwMUheJE2ax7ug7nLntShro+BqhOS6dnYaippBGaHzfm/xcF9F90nE20sdH7UR+30mqei8JF2LumM0haOp4ng/S2yxtEvUH3F+LFHtI746jnHkHmRCJhd7c+9BFi1o4XPAL5GG3Zz88n67tnEsJsIOYlHnpY3l7RR9X8XPX45X2yseX7cA/Gbm6PzS4+XWxg+5rcwKN2cCRZ8WXTrCg/qp+U3FIbFgUj2BCzDM8X+zSXTZKPIo5eapRCzKRIi77kDscC9vP31UJlnL9LKQbJOL1zT2xVJQtcaoIHlALF20GDT3jAjc9ajjkKHqKBSNn04jsSczFfFFgxKRZZtkXS58xqwpg+8EBguAz2iX4ZpdmMRBi1vo/CFcUxBI8QdxNh2bdOjDIWSknGNlzQEp7OQSKZ8y/ABHoPz0F5xV8JrYi1jE3JZO3AMuWcy0i9ElOYWyBBCkbTI8xSSH5M8fv77Z5N/VBwjbTyCGrC/EY8VDilkRCrGqG0LqIbXNjPe62Ck6EtsWCj6nKFAH4mM34XX5lp/hcRPDQ5aIEjdUZHGgOZVA56pQAHtqqbVmQxzquODple29DiQJVxm9wJPzPqJQ6MmUTu+8Eqrj7jbH+xz2njHLzgT1qCLM1LRZkIARMftzN99EfdliJRT64ouwv9mi3RGTFFHtbHeiLr4ozHn+jI8aeLgtidZWxrIWRU6zpQloOoRwhdrD6yOuqVNCoSK62HyKM522GB6GiEsX1dJGu49ovtNG/aKP5uZG46hxOooKAqo4hqAuJTtoZyK6gvOBqfSrR6EL680+YkdBeIltOUn5C9rYtc9imiB2H6Ih/omRK2NcoRc7czPTGkTjr22LHdxC3t/zqs8CznK/bfG8rZXxbEqfzzIi31TswqeC1wiiqMqBBjliFO/XvmzN1muEaFWqFZ1OUTD/WoIzGd0aNaLRUErDuMVn9W1MGnG/x0Vf4levL1O8vhhZAc8VAqsxYnIqlQRhlEzItRA7/ox/2hiVA5/CBtYi5+eMMtuCB6FshUJOw8I+d6zSFRVUs5LKVigJ/MNo3cVQWu/oc/AIlM/YiSIY5sMVLICmGyooAaIW5dj+ioRLCMGdlmpjpXQYQVRiFcWdRk8uDnkdSsfQKNj354hfa9KlbN/n/GDuKyWOGE0xaonBZxZpdszw85tYp9iiEIM2OhcYlpUGunmuzNMcI8bpopj4zLLbR1FV+/kLn8i7vBb648QU6A4yY9foPNX9CXichfxtcdqWeDtjV0MONyIomkd0HRZKIdpBCUw60kLKz6GJjYaN1/qsjuO8xcO8yCWDbHBqF00K8nOTqE7rxNZKiqlNwIaH0GR4lTRjTDSgge39/gzia5d/vv7jvSj8Hl5P8fmP4bPZrR+KCQsNpRLdr5R/yooUoOuw6PxvoV2MfFXImCFEB84AkkPLbXgiVqt/poxhgbUzf9FmrSB2/kBA7LBdIR5Jl5oUR60VrAg7tKD55xLtNmTt1kVHNrBMccHrQN96XcQiVOOPx6JLhY6uUA7bFr6E2aoQdSUMWTp3gqAgqsYyhBt/vHmKkUt+qQRHq3jkNS117EgrgbDuZG0hfSIpa6xk/lO1YsLsTcY2H6TNUCsb/Q61tDsy3gc8jii4ZcqcHAouUgpvXsHAn5NnL87g5PHDvMVxqeMf//FvFjHzd/HBwfV6XOOn5L7qsOZzJkbMy5ZDiv+tMT8FTN4cQoXE8Vpk6UIVo/XEx3hq4tnjPmr8hpXt7tGt46foWeDKYvbMngKyYJSUCAIkcVCG8xrdggGxD7HdwUWqPbvS2WiCV+NRChYsPsPMNVLXTbGV6tOCCOgfxlWZYUpnj30SHpRjPccG/xC0ErUqP05UHvvUKSWCSyfNUj3q4nnA/XOCgNZ68mFs5pp8KVAr0Zy4nCnQQKZRAk8xD+foLlWsjxLax3l4G9PNY1QvFok24N3Bt5yozkDy1iV6mSibuVg1eyvgZQNxG8PjFtPjEMdxEq+2CCtqqtcFC48UwJBuc7nENFzM+0M9SeZnTjp4cPYVAQxf/8joGENrfX5GfSlMKCIdfoLFy2JnA4W7M+ZuPCrP/+N94K203pmzlOuG0xThF0bGboK1FpclzsNwNRlh3FW29LBU8emX8Bzf/waPl/STL87x5f1JzTejREaXFDnQekzZMfKlaYn0UiVNwoj8u0UUbzI8QXzaMsbWFldX0a3RLMWMpZqdz47yxnQfpkyk+6AafyrKik+S1dg2PKbBYjKzZuHosak5nXouqeY3QGfBg1Ka8mezl6wbkPOg/1ugxtNYXBx3IdoW/d3gYUtKSLoMyC4FPqJsn1wgK5kGpJBibmCN2mPPHIWcA9PIgpAhWNLo2J+G7iZ7zDgnPAtFq47d9fG7FS4A2MI5lxQoFcW1pxZCOTWLstjCYimnlCj+cGvi7esljvMcXw1znBBR4SVYLTGQbkOk4jjHcolYLvy5fVPpwDUyjjU+H8a4bLX2wxkB6WrvS1F0lJqFJRVTPFtDufBL8CabCeMx/j+hxURLcs7e9bExLSnrNKc036pRL3YmEybF66RqW4tQSETmY6bnj4jGIrBptqFcS2BkDlj8+Km0FVHjsM5omi7D35P4nMw+x3iaQCr/NHhuQgAzzib5fzX8C+1xLjInYTiJw/mlqHophhCYmEyQ6IrUwMDtFp3w9+L5acTi/ByOFlBMxc5p7GyitzYe3mRsiCW7Gc36eH05OmD0pIQMithJr1njA/05P8djIlCQme/j70noSHdyJON0bcx2h9EdFSOijSB7unyHcNmVXEHzswrbk4ybM148DzIKEHWr6dgOLws5iOCrD49f+2ClcZj8u88f4/cPbVTLZDPV7AS10cmA5cAVJxRSsTe1UTk3SMq7vWk0ZhDnFE4SI9j7NprbRWh0dQ08z7ipcxrCdiVPMzM70yJkvTAOJULOBz+F1ZiX0NXaDBEChSLI3d6vSZcUezVzhaUwN/1Ta3KSTRLjlvR8HFklFElusMQzkrXINXXK75U2cZqnczgmR0lIdgl4dP9iB8+0XCr7RaH0Nck1JjEx6mrqPi5DxISIg4SNXRV7+fNVsagY5uDmvJllTq7RDb6V6xytRCVjjJwvzS6qupN9A4VkCwXizh6XHpG5ALDXHXsa2Z5cRnU5SXA1hVBOfr74QZmfWrJauQ2lZIbgD5Ikg2GPd9X36Y5Pgrzojk4MoqiTMpVxoCpQzgmb3MrqJdWr8mJUAo/9zeTnl+I0EiTkjyB6r9/vy0d9/On3H67GIznAfy8ffM6XuY4B1Wma67B9ZA4s0QLNPOipM6SxyLJK0/umKOtsSm5US4VKjt6lA0yBlfxeVWClv17eVXwevLNyb5Bv3dNoVjx13YPkMJc/t/K+5Ftn9opRR1nupKFg+mUKGSuhCBojF49AnqE5xEJ4N5oxZaFFlzxiJzH6uSvuTKNQkqkyHScnbDYQ9T2gOodM3LxJaRxXJnL8nDQRhZ+vAi3FKjpTEim0uXgmDHPniK9nYYsEJPn+2JeSO8qcOTKvNzV5fuFF0AJNhDuW+0zNKsUyYrop4v7NGoePl/hqXuLjZ7779BlzmTMgmBn8RhzTpJ4pyHFZ42fnKV4N5PN2MWL1BImXjThz3ztxSA0W1GSQf6GZtsVRhZHRrkVNr3dVfE7frz+7jzhxDidV5zcB1t+Pwi8iPh+6OM4RL5RPS46KLw3H8dp0wc2TFzhvhgY4fLD8WUPxp/JMEK+C22OOeRUekUq7AkLRuTAekV42aoo+FgwjKb3x7pbapvPFJW6hu3d1N+qcIfyy7EDU1JJpo2NsrLFJSvI1BiJODcWQLgIWJuhmLbK2jhGKSamgZFaWmxd+XqJ0GpnhRWPVsyTvLPaWnA/+IJ2/FRXkLFSNAglZT2URowDex3lgUeCQLh2ajChngqR3HingSK6RgAK0TVK1k3rag+hAcbagYH1i3IR0cuHA82viB68Zg30o+v66h1bIGvHj+zlOpz7usOaQjZBVlSIm8/lmALhSMvjzjOTSZSAjVcYTVrG2DdYtOb2d2qgeI+p9FfXe+6XohRgDCc09m8NKcShOZ6oAMYJtWSvsEw5UcXt8rmlSZCMze7ViZzCZ42KxiH9m/meOaeyBSbHRos7joLTLsTg3IM8CIFHgMibNC1OXo6hq9imUuCTfPRo+Cf+hG6TfIegeE3MflA5Kl/kx9AnZPLlhYnmigsVAmaKqfVZH+3wfLeHs8l3zflyJcsvkE74fCkVBTdhXvB6KsJnM3ssc23CM6oB5n5LCfTbJGxQ+IBdtrQhKfc4qtvD68iWNLZTogEKN/FqNnLjIgA+IVYS4xhTK73B+jBCnxYV+n8e2Lgw9nhMPjc+N+Dr2Kw1CWkW4MM0jJu3LNHErRt+oUDlP8anu6vjZchf3w8trNN/7PezNSZHuhTSqzthM5T0ofYn3wDQjNzeO5qJA4c8veBkmGKP0DYkDnepRkieE6Gj/eERpf7mMXmPCcsmM3/R4vJora/Tv8bw8LfND0l0CTWe0/5uV+6bcKGlHokHzzg1lGBnTSFjTpyf7E9F0VCTxfD0dg58OoKtkGk3KEqHUzyv8dhegakzkZ8go2c2fUm9Yw3DtlZLjtC2dIwILDVDYuzMzPNL7T9zjNLaWUl8pIf568xvTw1f3mr/WljFP3MdiVyV6i1TyFK/OI17esXc7nep4yz17t0SfJGaBqUsdG3ZZd1U8zk08DmPcHDbZV73ZlnhzXmJCQMnemisp/4k3pHodBva7f5ct10zjoiEr3qyFk6tnq25BDr5XXumf/fQ+fv6GJvE3f7wXo14en34+xOv7i9ELrA0yhF4xbaBe8gJzh2xlvJE+ibuTkwSaYGf15NKpYDHPzjmDFpHYuDZVqPByqkmXEZ2OgDUd8obblc6hMduky0mmFdkJ8/34B8kao+bPIQe7HRPZPsfOEE2t2GPWz4ltz5QC26rTFk4xewQt9REFYKrsMKMRilg8gegQKSI9sLGNYSfjV4qCBvNekJu6iUlkYH5ldlu8b/hJtRiObnF/HjLiZ70eFCIy8+C5ZBB8yfEEBtchA8q45ajncjQKkcrf/+P/54ONy9d5cAhz9LyedvHjBwsEGP1TtCMY2pq9VXSMTbk4EANpbOlPXeMVuu5C0M+MZv3zPGLej+KqMcKc3nCQJY+UdUXG2X6LZo//ZauRhIonQD8utB2h4m2cH9LqQzFEUBH83EtSg7J1+VrWV073dfGlkEpcqDQ+V6416QUjI5FKVg8cmmPaAbHHERDlL7BpM/pZRk2JTplHmkUsqEWRHXbk/95m7mo59vJypUDUV3ZCvMUNXhqFrDfLGNVNGmIzagZxS8n9FrvYakwPDzJl1c8SbwQXszpm3iT5LK7RjV2s95MUtt3dPm4Od9F3OzVPGHPpAlekVRmbtbnvPL0AeZwnikIjdvwx55GzUimiE+GFl5hpUDpSUnmqV5sKR76yh0/MOsrzbKax3dVSkTaoxUEE9V6Sf7wSTmAf1eS2SchVreSZ6LM+UdSCIOJzt1bxT/71WzfYaaD/TX28Oxr794/KlngYbchdGFWqNxiJykXC6lJd3jQp8OdSIav4z9YKW9mzlIF9TpXYXyDMQq0yXVecPI0++bmgifDoZosD5LHpAlAFvGhOnr6o0EEdPuIjSQOYaFl6uhqBS9FWKdEkJrRKnMF+oU+kNjdhv0TGMuXDUaNWGitNijgxelDx11KgwVxHkywKOaPbsrwRVxBgQDJbm4KnqfXIOpc9TIpWAEyKxYveb9OohPiBQOpvkhusRA/z9a5IYRbNPHcQWRVbm01f2EuEkuvMECCdCmAK8q6O/a6KAwIyIkqHMY5bFY/rFphRPE5VnB7nWNstLjdrPJwZ/25xrLe432Z9zSCz77SPYqJSohe7JZpDHfW+E11GNm8pjOPM5/xiVA19xNSXXEdqcs3DBjx6jEkuuNu3ufCjw34QkuDs3DoPe0xnWYKIFNw1cHAz6rALNwvoQgwLhGzBw6R8sPHwXcpImQyF5nLg8uHE5CPr9IE4Pm1YydsD7WMBj4m0ETeT4uyqjT1iCDTl5YPUqesR8kJVqds37TIys4qL3P5GRgm5xCGTMz6BQqc8THlx5SYBjxPEjQ8YLYkLuwKFL6iHQCIx7OTAYLRNkZujGR1TPRYPeAStsb+5NYdLhG7er1WkeDbVw8Mcx3tbdmgzi/dhVMI3DiiLFaVcYKAxNx04KvyhPDaaKcamj3UedaFOXR33p/d37POf9MFFy9qtlvjBtMbU7Wz4Sv4x6iLio/Djw5aFS4OxLu7xkw8M9gQHBRxRGoqM0nsAAQAASURBVEoI4zJaReGnVJVGaRFxZ/HR8naL3RlNuIUebApxmbpFJsES8oj3mjzDWAMHihXTZ0RUTzZcHk0UDrY6bvZlFRu2d4xHQLdSqSqOGQfypY5q8Fhr3q0xM35JlKnBZoUDWkkhIG5OzYGnhtrXvmgUGqWLT55aqnd5WuN2UfYlv08EcxrAtvOFRn6tfLnWWE5bTK94H7cIwt5vb6K6OYjgOJFiLVsHClqQ1iGW+V7/9uVqhwGK22m9WCHZNjG9OUcP3eRgEjdq6HU4yuphXW/12cjDbcG2Z5WK09xhSNxLVEMT84Oj1tjHvLGXwU2WJuAysY2YLpSvWNI4mrGukw9MwZajIi48xsegejTDnDNYb8qqZI9oAHVLZrDmqJHlAKcXwYtygJOyomB71kgPr4qCPeLtuo8f3vOnT5SY9+Xx61SRrLkfvBpl5ixXhWy08HYzyutxIgvWaS0urFCHwr9GSi+uZ057+nqLQw9FgrwMkQ7S9sf+soXXxxsvqpFEAAYOKGhYI66XMrmnqqLDOJx3nHFjy2mcyR7JPdR4OUUknA/mx0E3coyawgX4Wqle+R7oDqYXuWHIe63wiNP2RXY9tTlrUuDCQVR8HHeu8+z7nmbIa5m1TjEDjcXG7RSda9RYGzEKZu3x9+wn0H88IZMXKB4v55LOIjd/cGM9vvU8r6B9Ll5BGTudRcqoEtK5qU6gUEZ0I35uvo/cUaSzKAqS/dAtsb/bFEAwblW8HSI+f5zjdL/GOFfxplvjq2GNh8cpLtscj2PEZWBEzP4xOljvKp0VwxGu+yIEVqkk1AZ7n41YcwlEtwYmm/Tc24WXTGFLUwgHH4/ieZ8G0L/4+Do0v/di1FseP3y8iX94N8ROBHSPUlDTKoNC3CQKO0ZFdv+W8734d0VrDiHd3ArB9CAkCU+bI5GSfK1shcfo92rOrrmKI1KkfqVrEV/BHnuoaCnupHYiokkbxdYsQiKENIjYkF2TnxOKRrNYeT5VDKByCFiEVFJwpUH11fzWP0MG04xWlJSV3Q4oiZ6m80A1FpJSykWoosHV/WOayV9i98LoKy0IMsORLMojssZpETKgc6twSXRQOcx+XWwjg2XH2rkonJVIwMVijiLPBkRmm60A/pNPGWN9CGr7Wg+EMvx7mePtpY37cU1lePG4c+weaG2r7MwlGg4ZOnjGq44NiEvmrVL96aCALjCPMvtlScrC4K5St8/hJANkgGe6eKHLHkEhRHKkoc2bh3WN3bNGY9H5yIjZlwC2A8YtOKBXpdxone7sDWmoHgsUDjoq24jm2MTazbHuPFIupsHiwaYvk4pDCjuHx0j5a3qBUXQKLGX48lIZd/stvHqtSc8sknoWprLIAS23ElrH4TjH+Jp93EX7fKd/ouVSXxMdb9TZ80OYGqixgeeaF5gDh/FyIyvVkVXLl4MUts0ddoCcD5DsZxPFM1AeBfQSuyTUjzoPsOHAlB5zgO2CzcwUPQhtjhKVvUzhSyHQ9rHdTHH7u12Qsdg0BMtTuFFI8oIze5RqrrUHI2KetEJzUyyukrnSqJg5KydYIiqIPF24iCxvz1LH93GCWrFqc98m/uinj8rhft8KvX+fFQbt+V99McRl2Mf+mUxzshEyLUjWLvLB82ixwXstbYRUKHdQY5y7XZCywi2SYS+0ouSlCyOliEnhHbeHUKgs8mUflqh14RDqPEj02oJFF6L8jKp1xI4FGinqqBAgcM/QPDg7VgWr1K5uEGzPsqjgpFmyATR2Q6C77N+0kdHvcaPJA94ryJ8pSfYUNW+Pgsr+hH7yph85IQeLoeqaTqEhUhaf4srz+zNyjkLQ/rqaA1tFruLXb5CBCaOGeu+pFxiPKyIyHREBKlRAe1JVjaCquuicXc00j6YaDjOeo4pJXeN4ruIG+Hta41XPpBD4r43puChQo5lQ0wNUGXVX0cfTuW1iflvFdLIriPn9PoswY5cXK1GoqQPgM+F5S4clUVw593EMqeM0rvEaK61feZNW36LCb4v4wQ9O8b/4mLB3OA0ubS3iAa7lYiCWCoKrOwSPkvhaW5AgZCgftIyfcx6CjxWjrAHz5yTDgLBVwGcpiUcn7GI84WBtWhHltNlEBuXf8vyyTJ5Hqdrt+g4Kmbm+cBnwCFQKBl/JbpicF5jzfiuSGb9lDp/+n8ybhBnLXww18DIpSs3gOr8wYfWE9Ql7dt6h+SJ0+5aRA/G7OJB3FNDy5DgehWf3VidRYKBiIq6K2CGsOmSBwaiNAlTEKpWV4kGWdAWZaZN00MBNaqSu/L/+q7fugD88vvaD9fbmOMWnD7v43scQg81H5XBlHDixjljussqxN5cVa17OuhgUMebMSuKg4OegIdCoXtBbRHULQF3F9joD55XNmmgvPwMj6PSUAtrxwe5CQIr3sY7uZotlAhVJNILlqqQPc4nkVs/44lQJ3ZMrBGPGlqxZ0L7qSeGY5uR0uB45pZF02lyIHyNLoUyo0H7y97K+McWVbZP2EuA9l0IGtCdXGF5PBxozdzF+RRMDzyeif75Gd9eZLD+DBWJ/sVfyhiZFzAzmo9T2umzTDsqTVtBz0J0m5mMT1XGM7fka24GJAAd8sVTyHtdV5Nsn+Y9QImzdwYOL6Ajvb65jmhbtTYRqGg8qDzgFbKL/QC2pYzdwmRh5IrN7KDmrIunT/EILBkFEYW1USeMwgRFr1M/U90U1WdQWJBuI8G6hALczqmSa5X6zUTwf0Cm6+PFj+hl+mx4grNISUuA43UgnthoUFwVOlknuWyJOrFei+EB0OCclztDUxxw8sbhl62HhjSL1ZJyeY3jVbD6nQct0bxUV/hNtMBYJ/yyCFJwBwk6PIZP1XL/8UDUnWezoe5ytLB4mCDjTIhoZRqqWhxizBUVUogDFmu18xJOTp23uq7xXHJBgxYoYa/J2TO55iphcsKZtk6avRvnEYdTkzmcOvZ5RRnPGaRR9r6XdVBpFO9mDKZiFmiUFR2UsTZmOOI98NzWiUzRMxZgW9ilwkZl0MXU2dYp/GK/zvOaxi+GR3N46Hto1BhIfsCs6bzFeoM6s0WZ+Obn09b5ItJpo91UM91Usxy0OH+G24IxhOSDIrqeObt/FiE8o73FbvHlTuUDToHPNCWA/fhjjT3/2YADplyq/r+Pl9/4UfmyyYYtTfRt3cdL/Bo5dKETYSEI16MQYozqH0Ka0jDl9wNoI0vJodQbpgSV/IEnguyzEQO9akeBFUN1mdTqyXcyiz1weG05y2MovEH4e/DniesS5wJer07tMsUcHDZKnorEk2wuJsyGkFGNSZboInIUkcpmBZBgeVo+Ick9h1rWigSCm2iuPwpbBt63Q9fok98TUOoPvs5tkR9FxTOugUSDPD3h6GgbHVe3raDFaJmLtTPcIo8lREAgJ7DtFJiVwfip4Jf0fhQSCis5wRigIpBJr4815k/Lpw+Nvoirc4tO3+/ivD2vc7DMdF5SFzvrKcUkrCIXHc3jYIV/xTZCa2e0IbIT4aFmk8atFTzr7iBN8VsWG0nfZYjdinEy/MUc9oDzDzHmJBR87wDDRBOhsmxgfFtcHVa9UkEAB3lVx5uCUiTFIFTYpLm6U5kEh16+xMEnN50BhI8V5jm2EBzj2Uw8sXnSrcUlNk9amSN1ZKHGYYrNQDNx5j1h/1kTM5v5hP6MisI3H4xzVYxf13ETVr3HznUPUFGmwC6EoSCRieweJKbjj5tEJOjxXGj2Kr0Rh45qr3EV1WWPsp6ieQxlplQmKyS67VO2cikX2oX0NuQRk2cAFnuM1XWrww7CVabqY2lX2EYzq3TM6wQPeHVnHCEfOZwpVUEEGEEbxnL9qEj/WaUKYpET0OVSGslwyk/wOXQzymRNNhVHVrCZ01LSE3wdFhFMN8Q5n5ZfTFi9PoP7jN5rb95s+EnOOr6Y6vgc/Uh6xvGezed6WuWURZxsxOUyUsW3htxF1Zvfr6zhS6VIizvmOoZhW8aRoTzhyiPB87ziey3QGznFzEjPJQgWS0SqJJor4jx00u4gp+e5SIhuNyMIh4/quIp5M1FDKk4t9nQ/yCuTvUMTrhaYKFYDkakaTvnRGEvHCxSrJ9BAryqFskDJTnDEUbZjRiuxB7jaaGamB5VRjUEINapeosxT73L5+TSoYxWMshbGFEDoXdI87l7oWDSzNzEu+L4VychuLaTIFLWdHR+MK5/1iQQcv64HiXyK0iOUBrj9jXHOrScCC616stST6atfodlWMJ87d2aK4QvPivlXdCa2G19X4Xk9LG/GeZTnnopZieJqnOA1OKPlWc/zK4x//4OLxpXKgHJvC+GIRbGuVjDqLNCsVTC4D1YMIyiAiMkR0/lNUPSavgMWjbBjWEbUekDwcAI+GkK3rcGf8W1zYWSiKfZO+R4eCYGw8s1g4wLUyZrSK1rW/FXmtQgRnmbvS3alz29poVkZ22KvYm00FXHqSOaYpfcgUGWfftKbtxavRhhBZlvGvCVY6BNK5XMd9DX+rlfcUK3ublU7q0RNEyPGsg6XvmugPto+xMMDIov0TsdNBubTauJN/+OlcdDKUxjjbDu8T1YVrcIkR/p//5hhfvP2g5v2bPDiQPn3zNn705RrjOcnKtN0roeEgVovGr0SOiReaVhD2u/PYQ4U/aJqsDzJCDWRBgiEOVOd/OtHGfz/eLlF9skV9F7F8NMV4N4pzWJ0jNkYXL9dY35jbtT9EnB+NFjcUp4eI9aYSXaDuZ6W1VH0V9aGN5nkd7UdWxIpeYeF7Kk9tfaFJjsykKYa8kBQtKM+4NcYB2Yfk+fomeHMgZTOE9vTH4r3ge4fhIqRT2TQ0W3Mf60Mdly9OUb9mew6x9UPcfa+LrRtjHI6xkL86c0khJtPQVp8F7pgSPyy9FP8+bqzOVX73RnTas4iHJZbLYzQfUZzjuo/f5ZT2KTZ27inWpHjk82R0DJJvH1EejNQs5rFamAIYGxH2+Pno80Oj/WJgT2PVgTZUEfd1dMX6IBXRV6sP8fdALVGKpg2H+FPplsDZwSXHn+6WiB3N3xjTeVTxYooLH1QV7UIiuM/EH3w1x6vj47eq6PPDb9w//3TU1KNMccroVGPDLLh4uNl4sguyFxsorM/wIpSDI8hfnoEE60WGwbz35lfiJ9fr7LTQ0NMmEFoauTK9kk1MmS6VJ1BmgAAZ6UGreEMaD1awLQBs/6Oi4ykVRs9bwkQjxNyXDUeNxJFP6LsYdDmOdWIHTWV2miV5I98fIWhS4fo19Ho9HoEr3lFuBS6CtV4pWHcWHJpRUEXPBIr0oeS1Ox3H/ERQTnHgika5mDjLbNp3Jki46UyVVbN4lILL6D70WeEUlUYNrazZdL1XMQp+JEGojonJBGk3AE1YoMFJRHOw98ifEbomcto/RUBUR/vMApr50rnolSdxq7G6xt+gp90W+90SexTAopjhn9voOe52fj7UM49VK/FIEld+48d7hfjxePyiiuEfdXHDIY5lBQcUiqcc30hrVO9jqSalVahTUaOAd/8+mm5SZyJOYEZbccDJ9ZzDjEJr8RiFeCVx+VRQrTJm9f7ng+b7XHha5ZeZwT1dmvt5+63Bu/MG4/mO2m94pjmZg4J1J1NoW8GAoTf1Xp0k6ibUxm3aUaiY860V4NMQ+zV6U5eQ3RKXkhr5JP+W4q1hlM1roljsIJ5o0cBF4OCYTtiSb7Hsm9jdpJ0Db1xXaeTb4dnGhhGx1OMNEkMgQKisFXfLHk8THhjwJEbfOHr/qy1enlEK/7ZX0Hv62LZ4mNb4fNnFH5yG2LW7aLtRa6+kqhDhplJPnwGEaitmoficpEj0gahzlX8QEaVLvRACLhCWF/YmjPERAmxLjAWhw5gYRJqkDM5JUENGtjQRoFCk09yAQtP8eFS8ovRlPaYnmETDrDyZmq7RYv6MoAO+yjVOClWkWvVEMTL+LVFOF7LeQ/Kr0/iM/OA2JmwS+H4aOqHkIA1csCZ4VwhbpiqOD0Ms2BRRcTaTiOWHTw6OxFKOu7lDctRhtCWl/hK7/kYX70TrDmep3sW0PCqlZx4juv1O3EWEMsvjFNUNdh+HNKQGAbVJtcRerVMQ5I0o0Qn/acUl410+D1NrneONaEsFMEeBGPObin1QPZ3kyYsiIUTWUfteFjLtHbZOFImJGgj4Ne9zaVKtL04WSLHFMm2OLh/hLHFp83U7t9vbRSZaTp5Q7pgL0bdTH3/1YPGd675vH5f3j398jsv/5FZoEmuaj2PHCJy/vHqZOLNaNJl0kWCfrcl3FrIqFMzXtuwxW2c4817Cj8Z5wakvcN42oU6ILlDqFpUqym9oOWwqqWZlx+T7Tud+WoK4OCVHXWHwEvWJy6exJ3vVYIiwkrrWSBsCaKcYRBdL9vRzDJn9L1O4w53AyDLHv2XvqClQCkhaLlFk0pwl7YKxLHsUGyCnn0yOTFTjWjwn3QheZdQVRRBvkf0kmbLJ74KRr36uCy01Qxk5aG68Dd9VIxDesNhvF4R9Kln1GnuZlCnbHCni9KHqrFmgPJz9/i2dbWEQ54znJqlLS+wQagydnBB0T8vXM+E16CldE/tnfUxHmgeLa2ZM9vHXldUbTbl9bkEtiYTcLoheUGozq+D+hry9xacD3e7bv/E6fu8KPz68P/myjf/5dyBg2+LBVg6GeeHkiOci6hofJrw9OlnMjC2kABFUZErCpCLmQgBP81rbmti3DjEECAkXy9w00TLqUooGRVt2dnPyD0ABqfLl75T+XLpA8AL0iEj5qhqxsVD76LZR4+C2ZnSLEtcHAkqsFd8++Za944ME2xDOBPwkK1FiPzUxQ0LlDcoLEiRPqR76hEFBtQPtecRixt6FbuUyxnBGijRFc6iiOXT2DkTtlZoYbVxeR/qliTYvhIK9mBmrgupJ7QAp7DN2ZtVFvLVtfPpyiR999cHG5T/kARr7b+/P8Y8+2sXx1RCH5200+4jhwlgtFJclEjPoc1Gsy7Suiv0NCu8kQ1cWXMDv4sDRwWmjE2mPpEJHeDAVgcITRQJUqXB0xGvd+WJbG4sq1jYvOg4qSXrZJDQE9tyyXZJBARVzHLp7mihGklatan/QLGXmLF8s09c0m/XI1pQFHe2p2j2vc/S8BynyEhLYg3RUcX7ENmnVaIYbm+/f3yK4WmL3CQgA6xvOjgk/ygrQn1HUjG6Y5AiwxIyhORYtPJfpktmhLmrBIzUWfRyiaeeIXR8Tv5SmCGR95rA3Z4qBQlFocqnecMAryUNSaF+SukCct9tfC1/2b5puo85Mr0YQE5lz8zSaLS7VEN2xlhcha0NFXSIeOo84/1QYCFLOv3Op5mWzip8mE2nWQ2aZzi1Ti0Z7e+Z5oCCt5/jLV0v81ZfJL35PCr4nU5Ov9xiiifutiRsQWHaGxrMURtCB/B7rzJa62yNR1xNewx6jsgf9fosnnRQlOJnwt2S2TwwiGwCKRs5fvUvNQWPN09jkxDI5bRZ4pD7Av4s1v5Wz2kIDAJIy4i0+fa7Tc/wptXB64uX5oL2QBtQlUVtUgeSN+vsz915pJk9ryfee70hektepuXpK3EllqnjCpfNLWsJVoQoaKWK/LVnGM6CaFcTFI1tIW3JtHf9mqgRnmdIXJYrMBlM6Md/xqipAQkvMnYe+bF2nndBcQWPhjLp1rKEmLtgcnWh0q+ieuavVe623t+TvZVRc2kvN/RzDG1T6W/R7e7CKlyyxJMfHFru9QSG1CmBL0xZt71QUVh2gzn/zLz779Su3+haOejlwf/CXJ/OONgqMjG1RTFiOXbgQpFDaJMGmGKSAp3J3bJQLM/6nCq1EBlmcMmPOYpLgeBaoRqv6GrYn40xzebCL8fwdUqlRDAyTvS3MQ1D6oRBJMdIzjqe1B1+DRcwag7gHFK4mY8t8WjL2tKkhDq5HwFIpq69uEVaYd2fTR+B5HzjaOErqSW+zLG6Bub2pGBMssQxEQg0xnobYpslRdC3da/q8FSsGeHplrKG9wW3l91vIPTdEJiSIU6JuH05X4bVQDK7x45eP8eOvPox5/0MfD2PEl1sXO0YNZIeeSXfhs7USU6Ho8ks0eqdjTevL9ic2HvUEfu3xijN6zSejrM2mcRYnql469My79LCi+HC5+OJgxrBWwe08OQlLUgAgoXqlkXDNCFPFlDta/Sw19tj+mINDwYl6zgdcyEh8ljdeUgWy87c5bhYqdP65zoTcQ8BGmKsGBE5QHdNDHfN9Fdt9F/NrlLGb+Iv7T+qoGWG/wKJli4uiH+FB4kwHkmqVYdXrxkz1ZcTbx7eKYlSHzqi2samubDrqUYjO5eXJBRvj7hYkBnslqCKc67NG6iVcyNT5LPgyCk0FHxxN3tNM7ZA3G+pZidgsDAGVU8gPCF0a7kply3PPwlopRYS6j3xW3H283lL8JTqU3E59znkj8NOkKFeUnteQni1vdst6yvxYLlusaZYq/vufpKfde1L06fGbTsq2Nb7/+aBiiMfTpMXMbPPCKTRsiC/rEdTZoLi5NxxRKN6F7y7ZmUgnLE6fVLPpwFoapVLwg5rZrcIG4EoGLOkfmUjBc7O9o8VX/BmcM6nqtc+NjIkNTgMHy1yXYQkENGOR9SJD6hJvloCmlLi5dgt6KbCh2+KjjyloMjpthd7kO0pjYTUs3MemMOgewlYFipXs9/LuScBBtVMKuoQ82n5Pd6CaSDjppy1GeHaZGuR/CgeSkTl8uTxH2jWq3RzVYY36QNY3/+BiAFK6+F5V6IDoyb7ngTngNiNs229R3zrWzROJKubRfL7mNhNHBNw4f9fxl6bk6JzkeWDNRFQjZwJ0LRUI77yfqZBWgQ6uI0tfbOss1CEqFtuciyNM/saP967w4+15mNv44XanbhNUSTxyqXbXWECm5OHlgk7dCvFm6iJYTcynjPxRzYujQAFJ4SirFzq03k0IUK3ECLJVjVgdvcTlqLiddVQ2r7300kNpm2PUSQ3nBn8y30wNvBCRz+HwWAjBc1AKA4f6DLKXQd8ZMwPHcJCyyQFp8Cfkc8QHt2t1gWjx8ewmWz9wktNxQcR2pqtZ3Sa14uJOruAc43GM43HQ1+9vuugw6+3x97C7OhuJw4v0EELfedsYD/Q1oe0JZctxHMjcxF+F2DB2k7XIaAuCtophqOJPP8vN9+HxN38g8li2+H/89BTVJ3fiew0nEJ6d0CMKQEaZ8p9LY1YedJocPurE+QPlc4If2aPRo0Oi3xBrGrFR5jVFBV1m+mddlbaWNajj7UmyEBpnBIMikOWiaRHjin6L+bxKQcxf6OwWh8yiAlBDFGxCGfqKLSYFaX+AAwNi6ZXFqa+1n2k44s/AT9LyTuR+bGM+thFvbmP6/BDDz9tYv0TpwZjkMbbbMarvzFF9r47l2ar8X5I4GPfQRYM4THh0JqdOyJpGWTy/fZwuF6f/CMKw114xTLa9VB3D/Vnj0BkX5F1aZJyn+O7z72iUq620DlIP4yTAXhGKqhGu3QpIB8gUrUwigLbXxAXkQpeoEQ6MtJl4cOaNJyc0kDVezJbttIi10qCYPTjENGq6zjI71nmP2Bhm9nnGg6mAgApwccgOymdG+jTeeqo4JWC9A/eoXuLHl338+G3xr3t/Hr8xQ2rb4l/+xcO1EDJaBgLK5N7G22WcrluJ4nuDd+0CQe9OcgIl3qFooogpo9Q8f738SOOxMNHJUmngrSdOIcXY06Il7gHAAluZWBhBMddtXTyemFYVU3MaMdvKzCnumEn20Jq3Px5rRzm3WpcudkV1EpBREEy7Rniki+WLU3GevegyG5gu0+Ndp31c3xIDIFhnwqdPay8JBTMjvhS9DmPgCRvt0++FQgT6TrHG+Juz6LhqnWrKpGQVzKudF35BAAGXb4/9TJKJtzTrVrHp6YW1YpWKY4QV2E0pZ57GeKii5/c+s8gMCg3/N09NrJeI9oaC0PYrKrTl6yjoRw2oB3b2eqRp6m8BfnAdKJnaaZfEJ9vj+7jFBWpOMWK/iqSbaLpd/OkbPJ1+ReFXRuLfxlEvj8f7MX70gzX+4X+Fs38bnUjbFnX0sMWFSKX3nMQRQ1q+8C7ilm0VLmRaEbbhRAkVM6Klrnjr4oCMHv85GXIq2EyGK52sIPhA+XApyT06opuTZ1hekiuHZXJoJLDAtZ8/n2f5eSm/U1xDRmFc4Pgl8YEzRoZjQSoAVX4bQ11FD1qA0o6NrRzUTnwHuj9ZQdS3ItFC/mb8tIp8PitDs136mCgI8G8bZ63/276LwCNsJKmj1ViPnWOZPO4aXDYoghGbgNbsldDQpn+aYujkzO7sQfkjyVdjjpYovHqQS9Rnp4h//hfH3/ay+RY8fCS+GSP+6NTG//SG97+O48spuu9mAbfURodlKWIzRwQ3kIRRk1FhTbpAJhkpD+MWz+YaYEp+UvjP0UTgSF9yXyhM4OLQcSonN2NxWQIjHndcCLKXsXGyOXxp5FpH7PlZXGQTySJ0uYitzE9VGyOLIxPaZQrMKYwtxk2lAmmDGAuSJwUIBGsQbhBzxtGILFCezzG9XjT6ZJTUYqYOeneLFckau7sq2tu7WLchFZCMbvsYqMaqKnY9vNpL1BWkQ0yOz87v1Xpu43x8lFenGi1RO+Y47OjaZycE8XqiicvDEN02RPcCo/Uq/36Or774VGeOxnqyluHzcCwjjR2HusPZNefWz5I9jHwBuaRwGaDoyhlaVEE6G6Ntdt4ET3JsotmpbdT9ej6hJGQ8tSmab3uEg9jEAK1EXK1izI4OBx9H6kAoG5xbWHog1Ek+ZYkHLrFymdAz1Guc1yr+6Y9HnVvvW+H3mz+qeJwABixRtQDJ1CGaKzAueHgIeXBF4FFSOTgzXRQa2boio3yOtZMwSnwXyDeerfb2452e5afHHaRCMhW8KviS1mFBhuFx790tLieESFCJbK3C9bhAVdBoMWe9RHtmcodsiwWpe4QrVamKJAMIMuZnDzJiTR6nfCS5I+s2Xn5hE/VOkL4LX3nlKt/ds203op5PyWJKcl4jY7rTcnZrSzBM/ViTLlKNJPKWW1Hc3QDkKbpEhd4OxS/PCW9ZCs+DbJjTELtTolTd1kIb5X0oEQpopdXLfPXuo4j5cY52amJ5rGW2vdws4tzpfEolzfjoor+7tXn2hEWL+M728pTop8MVwcJOKYb53dsUKz/7ElEfl+gBcfhsaMayrdN0QJM0+J+m2GjEfVnif/PffnF1BNEnkPPwkpFzLbK/bYUfj8/PET+/RHy3t8BDFwUjCTmjU2kzyjCvJ8s52TWACkr4xhhGt5Q9lECxxNlgXAvvOgaFK1MNwt+giJLdi+Tr6bNX908xZ7JH7uXzxGmgS0MbFCdww+6MhZX5qxEsF6ln9hzqHAotir+mlQ8hXA8ZPrS9cyHptLNLJNuQLm3HwpZHG0UeH2WaQYMqyvspRRfZbeIVxv/t+i56uiUQAw4p+CkdY25zmCiAxSaEk7E6cYP/awmxz0OGSC0R67XmsLbg/XY3K8Sjwlib11XFP/sRKJLNnD88/kMfTlr4i5++jf/qP+/jtsffrYr5sYru1jQAndeZoWrTT1a/RxFqQtKOiGNesV2w1LWF8mASQ9u/DUsYvP04lFU8Cn14J7c10TsuHPGIUojhZ5qHpHhF5okqEkyHevrtgQiUuY4uRvPbHB2X9kmgzm0Vfc34FQU/3LY21sc6ZvIwYaNjzk4qxgFe3RxbuyiODgsFYMEdMWrrFBvFm1ALlOdGqOBWnUfvQ3Xgzaj3imtcwfSMWIoJOo2mLnJ7W/KHOxWHdQyPTiqQVVRau2DhIp+uzCmVlVIiduMCLo+My+N0836fPmdGWepVBbiArrkhswdbpSQNPh8e+9tG5rBAgEJO05xFQp3iXjCuceFyum00Dpc1DR81nznqXoYPeHhyjkgxynpwdqwvYFNjQAcpaoSGrFV8Ne/iz78a38+i72/wlKd5jJ+8GeIPnyMuSh9Zpk3JQ1MgmRwd7IigaNDF9jzObbfStbxf8D6FGsJJTVU1YIM4Y8yO6ddQgarwr6PpW435tTaLY2yFHdckoYmID8nzEIoEYJATGpo+FfvwaTVNynIhRVOyiMrED/mzSiqe1jNX1bKLTe5dfffV288RpPi38mU9zWL6vOplp4WQxspCwmzerEZHHHHez9Spqigloo7keNTI3J8mS6nYFpLq+DynTHK2gMJVsT80URGLVjKs0xKKfSQVdWRqSe5p7fXM9NUUsKY+6ESHwo1tva2ifcZrwTimV5GLZdn8dhQ9pUPQBlcFJJWir3dTZ22AjfRBUYXqp6IZvRfgUnW09Zbwo7TbAnDR/lX+JeNwI8u9koI4LcTv+Ls26vXj85dLvLl3ty6rFCEFSQDCg4880UQVdIGoGzX5FXk8fEAVb3ngslRHxkhwCdIzR6aSSZgFRRNXQjyINOHUAZ98QcA0mTk7+N25ANvTppvcg+njoruTipeED5mb+YPQ2JnnhIUMhZhNMdtc3HJ+160L5Gu4HRUx3YoMdZXnWMkTDB+103nWRuj7VmpLuv/bmz52N426jJZVS8QXO4rIJa4g2bAwUprMe9INnyhCclMK74SdrF5FvC8U0WVF+fXwHpJ28H/+vvwyfttL5lvzgDf0k/sp/vUrYNk24tZq1eGM3N8xUnHNE3Vcn1I+0rJBDxA2efLW6dNnFaLoM1lcXLlF+vpEAPKhUbCsimgOfLjK8UAI4zuxQUUgNNmfDD6N/s3/niuNgKez3FRsnTLWsQ51TGcKlVYoGXv0cmrj8mYR9296JFt4i+HVEs3YR3vbRvu9KrbvTbH+XkT1SRXb8yqqZ0lSB7kWJ5H2hAvZqQXq9pVr1ioKCZ4tK1cXqhqqLfk+J41JOZ3hPZ1Hot9A5inmQNURbUBKhFe4EYRrc/jUT/McGP1IJZ/CGC4eMYZ1tvi9nrB7yfG8bCUUvcbIyZOMbsfvKowVN33yIF0iBllAbbEQKTYmMqj3n6KOz2uL9qZTdOU6cplmXJ7OQ493oQssM+8XyEj5/DM9ZcZAGL8yL5CBAlENYhf/9C/tpfi1sqLe8wf74WFY449/dEoDboADDKvlbC6iPmgXW1B57smTlsiCz52iL2f1ytuF18Z25R5JyxR8Tymk4KgJyVXEGHfRan/KtB6x/ZHJrzQUfTFyl8WK0UCJHpNHVuaAup2wPBKNIX1f0wBawhOhS4V35u7OvG+rd+WNmQbU+hkSRoJpJGrGdCgj/aQqTuBDecDvGFv7bk6UuFjS5BlFIbb15pkWaoNoJzR9Aim4E0t2dElJ2XR2SOiMZZJGxWliD/ACik2jtdLkOdTBzys5/mljYw6jzaHFsUPghphy5POw7y+j5ZkiXJnl6ZLPdKJwDPmHz0eb2zUED4NLiTJiekoMkfZxHedHm9tr4ifOP2cyEwI3b9O6xI8u8IX//9dk+flP9jHf0sKPzfCvH7q4ZNq7szqdtAEqUPyR5b5d2yfLKRp45RGVNqgbFy8AUQWu6FIA2biRT9R2DthG7O3tVzy7ZN6spGBzca4qp93VHNOXp2XvJGcIJheK5mZG+YRIwNmkKpgsO+cAEbqQcnbidoh30m9FYaQRSx4m/FhQFPx++l7GoBhFkq1aszqhDNx00R5MNG0OvTcNCQa9kzq0sXui2/polN1pSwd1GVgAiGRoJ3NF5GxP3oBSEyII0MnSPHmKFRXaGvG/+3+fTMz/8Phbe3BkMV77q0sXL9dOlikdIoTzGqf7NkY87vhcctwgRSb2KbpAfGhLjIDxdwaIgzooGkmHDB2r7ODUZYNY200hTWv5bJUqxnprAkGceh1T8Sw4sBsLTik+vO1HK/RITb4c+I0okajhaA3zYZUoAS+nZ/OsUd8gtp1Nu3jVRHPaxwR35waPwSHW52NUz7eoUS7TXcuEfdXaZa3L7kKCD1umwEOU7554TDRL2KTstCfa3tQMdvbAJZKpAeLSyRSKzF8K0ir6nSMPz9hqUFAtpzjgWwhXSLzHiwymeQi1UJFlP0Auav5LCsE14pOPvuszQjw/ziROhzlW7B4m8zZRAer8gStp/YwmGWcJCPz+1/smRrzOMqx+UORdjuiUPhIxwweUZYRUKYq5U55yVavhxD6KcRyXNrzRgApADF9dkBO4vD7f/s3Pl/jLl/Yu/Lvy4HN8VHZ0FzvG4niySlzjPFgleGhsiC0Ya8VCnjQ4sXXK9nRvqKmHLkFiTE8BwveYaGuQyCie8tnTducaNVYEOVnwoZLl6+QPK4GJf77t7lwIUuBQWPL71KAkkicEjjU4ZRSiEEA3Efw8CfqS/wkCJ+QuDb/FZWxmFUgSHqkwM5UgJY2mosh/9hfLjqI0h1oAs0FnlKpiNyeKRk2TaJ1BRfElRNMmzeLR7ysjaRdypUVwT9VuyoQzravm7i6xrXqd9uPTW4GSt21UvKu47ezGQe6w6lNl09dxecU0zo4E1Az6LUsloaZfp/+txnG0b6aQRQASrRPJRswthK94MEZ/fsu0klVhqg4NajnT2PP/pz96LcT9Vz5Khfw1Hu9t4cfjp381xmXEAHEvXp5IqRqxLtGqo+GDHWNtdvK807ioX2O355BmcdgNnKKPbsGmkx4de/xkscY1+H0BvVs0dqX7ZcKkQ7XqZY0BS2bXdoqC4VCtmzl6OnYu4VYD0Bwt+4CoSwIHHDpd1EvMirnJLkgcRX6OW0KhiSwZ8ZOwmfGBIMk649oGz0DUY0D6bTx71sfuuWOn7ATI5ePkj8vAIbHIJBN+H0auU2tY3bFRHpfPy3jlb7A5FCekEY+VxVb+YZ/jcBoIw7x/U93FOer448+fQqY/PP52HpoIbGt8+maKnz5asAHRXqrW0xrbsZfRKKMJjVTo+jNdhYcOe4pB0N70cFM0ESIB0CUQ4t6Xg6w8KAysSlChyMbi7+SzZ78fo0dYi6AXyAB4m6A+hY5L7EsxgSJW8keVPpkjLPqtUA3GHSJtr7MKrnFpoqdJQx1Z01iP0X3SRP17EcvzJdb9GiMlUBaoPHSZtqDf7C/GmHTaFHmgalxQRlXU5XNp6Ok0MWGk2zoGjRH4Cu+jjJ/p8GmEKJpaTNsjhvmieKb5YVKOct0ibrHS2bmsNED+76KuprBGSAE4CP8WRPLz119KTIN3qEZtiaLKgh7V7CR36us43cR3u1lTSOCaMzCSlXdjE83I2BrbC6YQmQlb5UXFmYZKEURTlBV/D+vnAv9Y0R68XgjvNIpWiac1rtZG3+5EY/njUxvHTGD5u6DeSjeT+PIx4rPXOCOsMZOSEl1MYxXjUMVZYgOLmtZTFfMpkvdneyAZF8sOxKuVUV/JOmbNYo6PtVeJH6SIEGJbN7GTtawRHk35QXsk5LCgEcshNg1CjD3NPckq2n8uXuTZqjVI9CBFoSdY8rFlVMuGY9Uqnc2jT+44uX8mOgfVSDGoNCApZDDSSdODX2by/rIKURZvInPsQ/2jhtOv2zVhuW95wb6HSL7hXhR1hOfDXlaaD2s+xTENzgRpyk6BtjfCtz6C0Lk5AeFjf9D8yudytVWKmptuL14r97WoTjOiMixaEHByLtqLVmEHHfa5oIoIqQCCluhvHJ/K5gWtq3vZjfi8y/ViqzdPatwIYBHTxHiBwLfFbm1kHXP3seuG7bzEAZRRXH0mcYA/cHOX+Dl+u38LTdZ7Xfixif7pz3v7U+k69LgRu5QJFQ7lNFYXmGImV2BgLJLEaS1Q4ob47GaGFhiUthp9YS5rN2+jFDj1Rw+EgWGeETyKR3g46pQEThQ/JLctenPV7XGQI+A28VyTe3EKOMA7FYDi4enCsiWMjtkKVdYa1eCiDkIrdznFlWxS5JzOJkT04SQTfutw3GLXNnGz7909FaI/FxDGlxSjwyRhjAawoA8sUPQh4jPa0V8Gz4oLanWR6e1YUA0qL0HvZUXhLNNNvhZT1yYGjbuH+Md/copXRw0Ff9tL5Vv1INyPQxOV6fe/muIRc9Gui/4OteAU6wPmzHcWMIlb4s67oyCgGOOPCzE4O2EKDPnLqeawwlRWFOyt7I5B+HRJFS+x5AEWi4mSJ0lsmIoNmbnakNWlh3lF0qNlIWELTRuLKwrNlLwYqiUu8Png3I51zA8IKfYSeFTfWaN6bnsKcRU3Gh7bFWEnA+JSxjZqRmhq0ruv2Ep4pGSFMF6fyzLEPJyyG++FtHGxOnge7twsS1BMrxHJDCPRhpMiEusHfMAmoQMUrhTT00wR7SA8RssFBVLlN2ZiAs1VXcV5UTicVdVClGxITzPJObXHKkQEQ5Bdj7CEylMcYvJ6FbPZhHtuIG1MsfZclNgZumEbdQHOyhCtJhvV8rT0/kiYABpi3zOQRM4XJgwIxfiMeM5q4khLOm3xb76q4i+/NLfvveT3/Q0eZfz9k1dD/NUXZ3Fee2AiKngmKESjIepj2iPel8eZqG8vr7c4f7XGfMJiZFVKlCYrSTeywTC/xaIHkFgp7+k1GAEW8+4ra8aKWdYI5z3csTRlNGot40uTbKUIFo+TyUwK8dZO6BKzYEaNaiAlyjL3QM2FRrg0Ac53LLxe7EzcD3n6w2hYfpQ0VBR5OlNS1JLvG40WQhdTCm17xvOXS4Ss1FyOcP+Ie4elEUVnenxSXK3QQbBo4W7KxBqdO0KjzYOtbmZNA5ZLFef7iPncq1lTlF1O1lbRM0DkNu2FC4lDJyaBTayvGhmjc2bA4BiOUE1MPRnPdRxfeXLS3bTysAQQWuEIAzI2u3yOJTaOuxULmzLiTgcMRtFs6cMitT7P4Rlayzsy1J1hXOg1FIu8D18Mhzhz1/6qx5Plwtfai+914cfjhz94FT9DtZipEVTx7kxsbaILRQaJmTZhfNhKXBFPk3CaYc88EEuAGpYLr94mF3Y52MXtHm4dpqhaSCiTGBVTWGGXwAZQJ1dLFbfxwWb/g6efHNullad4H6ISKsMhjeLHJwscQlaXxiriGzhvk5OE0bT4JRwMbLw0gOT5j0Sv1U08e4aqUKZNOWhy0LMsMPD04gJH4Unpq7GOLSU4EOD+qYPEvJZNAiJQWl2KzOwwRctH/CKlGQUpsPQgC46Xpy3++GdTDBoxfXj87T6eCukfvpzi37602e/CePSujWo3xuPrY8wnd/hCnAGuRvu6iezPWkziP3tFMYEit5psre/RaMgekKw9xscYmFP8szc0kvAyTU6gFaIq+KTZ86i5T8TB+fBP1i/8fJoq0wjMwTPxO5MAODiRrp6wWBhiaubY7jb5aYlIL39zE3JlZg4fVskXma1K/Jw4HxSv9HF05LwmWyyQtEGjwgPVowPPoUCYr4S1zSSVvVETVMq4uMKVJTxnPs0xv15jPc6x3TQxNhziTi1hwiyPQpogIat5YftYEooKujHAGUzkhz1Opim8YqVC0Flp7NtGS3YxiGJGr5UaEtSFYpfil/dNghWJNKykFkkf600K/jIahFtE6gd+6qKgsA68Nvh9FO7KQqXXpWjl98lSw6MpLsVxaOKPP6viDAocf3ceJTaN5vyBMe+eQmOJtZuj2q+x7OYYulEejvVhURHC5U4e9e62iv7G620k/5zI+UsblyOonZExRnvw0xWjqc8PIQFNeQ6SNZZVyfQOwu01r+ZcPm9usDjv8ZPz3ipjU3MC4XFD6+Fnsp4oNDQJQMyTfD7VjUIRPfaXETGq75ysKcWCH5GenqUBAKlS7By/p3BY5XdbrF087EWkYpGXxVLS4+YRxHMSZZ+fjUJXQBdqXE8WYFCsU2uPvuTI+jkYvRMVizGt9vQi/up43uJyxM5si/lUx/hQx3hvT1tglP5AF2Tz7K2bot27YVRU3bTG6c0SF3J5EVHFGvs7cw2F5o+4DJjbdx3FS0PgghYaGnxEcYBzmicElBecArq+quLmlr1Wq7ESX7PEz1ZV/Hf/7m18ef/rRFS/wZz321D4sZj/uz+7pC0LcLYNj5VswUaAxK5FhRonIVjtsj69rDzy0ahKo0sOZC9+jTj5OXS4C4pAz9zVLcjIyOHLNg9iH1D4lWi1NLDN3AN+lsBf8Qqdgyv1n3A6E2a9ENLlXCpMbwTxK0Dg0sWWTSTcpMWvz27q4Cf4/4Ak3u6hKLa2ipGUnU5rE29hHedYhlH5xniW2YBzeWojkx/lKQKvEQhcq9udoUjd2R3KwzDRHBGd6WQFG8af/HSMP//8g2Hzf+wHa/NfvOpi3D+PhTEBnfghdMlsj3XEEUsgRrQUNrM76SkPbRCszIC2XxR2PPZ0s3Wj+XGMO1gD8gJk/JGCp3L+6MAVUghvsIynjEhz8Gu5ciAzWpRAKsnsEv8YzXCwO+tdihOT5R+bGF5usmpZdIlOEofQQavjzyhAe3U6FmsRuSjFGRIpMNqhmdk5/JxLY3GoOhfDvHF20MyZUjFNU0zzxbm6jH6VMoD3Zmfbmp6c011MlyamL9eYHsYY95vGrOc54py+mxRpPeMvnQWglozLbUQtkYkyhYl+UgUeE2R68enyEoRWwffpubqwVmbqtEajAi1jsUBvaDwLN1CcYUZJ8PCqqA5VXC5O/igRajWk+YPFJ9PRF6yNJJwoITWpEoieVKNcfppSxBpT38X3H/bxV28HU1ze58ovFeq/yv+sFHnln198bPFHP3uMNyPRWlXcHro47NvY7WyxU7XYr4B+18pGx4O13uH55n/6uy6aO/KVbEG0niuNjC/HKoZxjbfKvMbapIuF/WaijhBscbwyjYP1DIBRhFeU6UDxQsL1nGfdC8XTkeKJCRMFGDQI9VlpI8NUU/svkbcSeaa9r8rqSqRIdfoSfZvCyczx1bi52WKqLUTxTZgTLl5tipvkc8s9rSLWMCJIJGdIyda10bOVxXB1aTxQNCGS4iwha1fiC1D9AZsa3C/qmIcqpnMj3jJ8fZoe/cPhJgurRf5+/K4e/9qbLfoXRj0XEkG6NXYv7JPbHiq5BSDioMYYjpDgoT9M0d+adiUr7MnFNCNz2/Jkw5k1it9J84ppSKk1mN1wPomSMuA5yB0dcbhtYhi72Gas45gWbDHWbbyZEZf9GtrUb1b3vf+FHy/2i6/W+MH5Y0dG2TpWztiz0p+xIaBAu3iDsMlQrDJGsp+ERqcsAHEM6Ci4LISiAdfv9HP40EA8+DCx42Sf9Qz9EUXIULKNXXMQGtcL8oVbYPWkyLP4E9X4Ay4a6ai7UWB3r98HCQGQr9MicUHF7+xQNWbM3C7hdzl6K4qHnw2y5zDr5Tw5C3K/j1Mas2okTFc+wleKWLkEZuB4F6oYU/J7tEXFA6tjmkD6IMdjWIvJs7kZcJ8QdNgG28HbbHZ+1Rm0cyEfuYnXlzH+2Y+mOOuy+fD4j/ngk39zmuKf/NVRak7lecJwuMFyA1SKYp/kjPT6YvS3oWDlu01TEO8zOWsq+nPsyoEsI+951si2BNLL8DTHKzItlchU3ZKKPHiCGiEnGqcUNvnBGaXq9licWAKlrM8+m7KkiVEw4sY/P5B5Ucd+V0XzrI5tB/LmtBDv8lSYp3QPQYT8rkAliT+kjYN3w76bZhnGevrlMTCGQ5i2agzGHkh+E3fnoKhHpghMBqaYtinGvo+x2sXp1RrNGePiPrabOqpnXRzZ7KKWVHGa5ziTT8w/7Eu9NgfA8zxlLguah2eibEeNyKuhg1cLypDFHoUfF2jTdTq7eO8HiV6syGa/qeniQxA6ssZ4TgI5XF5dRhZeySIm+X4nXuMtxXwbUykMtzr63l6ibdWnOtHjJk/oKBr6eBir+L98+taoouxA3t/Hr37uv94Jt9AF+K/P76c4ZXoNPDJZoWgb4C2ZfDLx5Vqv8TKRY3QO5aZeZf57eL7F7sbNNLVNNTVxqHfRTE0Mb6uYHmkBaFq6eAS1F+fcKROsXZoE8caYMCFgytxem57bMkV7FvRWIgV/rkqpSnW5JlPFXzA/82I6zNJGIHZF1VLZzT+sq7XChgz3CaN52voSgpjeUM6MYmysCVbbyuRf3HpRETIOTr8fVI/iiOLManEXpikWET3E54+UwxSAgsca2TJJbEHCFZ6WYmVtcYGLyfmwq6O/QRm8SFDR3LTRPWvtBXo0GBI3yYvUPW7nDjZUs9uiw5ux2uLwolV2Lu/lcLHnJXtydnaD7lJPHsF3QPMAoJzKJScF3seifKaMUOyh/TGrftX07HLO111X8cOXQ/zFZ0jL/nZ223vr4/fu43Se4o/+/Mv4z/9RH3ugbUKP02hRClR1tCRu5FiXToAgz21UoQOMPcy9xj3qfzh802yTi0aoSPocaZyECmgm/B2Ulu83PI/oQxeYyXtenPIQajTeAcVAiDKh9ksZJJsGUiwdAHA7ELk9tEjOgJNzERjvA9aKrq09ZE6pVVgcJDMkbqT5XRcL+aGgHtVOBs7KEJ3nuJxmuezjD2RwgYuGoUUTHdD/5gsZ5KORQilnBOSuUk2MqajSRABUg/QTnlUb9cyBw2W5i+//fIh/9aMP9i3/KR6iCK1LfP/LiH/w8SH+i5uTbRXAgG+G2C9VnN4gdNhFfTPq4m/7WbQI+TTOc/SMYSCeEy+mYj7VvD2XE2OoLeZhVlNCQ4TPH4iesiNzbMsaZlwh5bdUvSlps+uPRlS6FIUcMy5ys6JkCQxl61q+eOL7XKrY3vIcupjbMaq7UIRcuW0KYVq8V6mR9VvEj5PZeoGgeD4UsA1re5aXH+ItDnHZMzEaxbiay2H0uE1kePmSJT8LVLSHRxdRneuYvsBCporqbomVsV1DpCEoANQPM8xX+ftVMYj6as6U+NjKR/aZAH8QWpiiHnmuXFaJ7Gj8juk1/3GuAhXZ7q6Lx9LYD6tSi3QGmPZ1Hd/rjmKMu1XxeJ6juk0FNYbP0xb7A+PEOQ5rFWO9xLyjYQTV4IxDCOO37jQPuvjY51IeIlpTusca/69PQ36AxdD5fX9oufyKOu/XcaUKX5Wl/pO3U/zhoUukx1xXtS5KkHLBjA2HLUM8PufiZ1qitApZAoG0z9FJ0d5eY9sqDPirLXqcFNifFP5CtZYYyogRoAFBRWa8M6GxHctsbibqVEWUck5bpSqbmYU1vaXYxCpX9nVJHSkop0RWJb9XeYu2cdG6XigkrcZH9a2MYqEdCq2Js5SyFDz4ajqWlHUvX0upZnE+6oRgiuY0D6YZac/4jXburxsZ35kUmZxvlit6OmZ/3EU0Ce4vzNmYVPlzpTlqcD3IpI6aEIfdYh9b3n/GtEeDOtVhi+1AI9rIWQDUT6iqVNu9hB9bM0Z7ax6fwFeKbjxC+Tzo9lRw2FPXjVbmDIuv54LSAk0acO7fnZ7b+TzHzXdbBSyAQI6vLa7h9X51f4nP3iLw+mvW8te0VHr/Eb98fHpfxb97TffrzWXLYf9bo17N3vmUJvvyALGLsOK/QwAi/lxG0BSDfMHTStewSau6HBaqmO0WlBQbFnGBGI8A2AmCt6ExlyGj3k4O/ShgM1uRUG5F9HTaOC44ncEIzwcO3lIdTHh3/LUKVZ326vgz/xH7hq2O3b4SJC0zUJb+AhSPLxHcgjU6VMkyrcSM12HZ5H7KsFk8Pi4bDqRFnSPPGd+uufa/F7KLRQy23YWVZHRSpDfwXvRCGv/3/+rx23EjvCcPDuLHYYl/+uk53o5Q+W1SuiFGul3i8KKO5WGL9RHzYZuOyzCVBkCjUtDaSgRik7n98cGrwf4k6WMqrOhcZfnA32tNoJbnMLQXnE2ijQRwB5hGZG9MiUVBkmkSaGzEUwNJz0zQsYrhTcT4AFrXyB6iepGjU36e0ALbXUipTBErxC4D2CHWg24kf8bmzE6vFrJRkcHbxojhNURx7TNbrIDE81qqbS/0vWWL8VppoDIaa/liknlzfLzGelfF1Cpd1XGInZHTYYIW4kKrkOqvHCTG2tMWA+iDamJVpX6PJcwA4fMZwHuiMmLptNcvzRAV7zNTAdSToq/IhlOfU8dnJxI5o3MK8E6RUhwelpm1UfdNXCZb+3Dxq/E84P7MmIqC2b9b4/2ucA6figCi6v70TRt//PP3L5rt1z2cQv1LQIrIkO9IxN99vPPHvFX/tz87Ke0GxSwPDUZkSp7onmioHkmqqcpEDOhC/jUUYdBnzKEj1QYDiJtDHX23xs1dFfWzRfmyjCBXgrbR8ZGl3W5ounyOpx2SxRIRux1AR1q9MFAi8q2G64ZF0CxO+u6RLG32sj0m3x1rF9RP9DKhbW10TIcKGKrYvicem96PVPl70OU8W56XPZNdPJnORKHJ3YRMNmnoW55H3KF5pgkxvQqHTL2iSBXKmH+fuWsufLO4ZjzuvFsLJHXWdZwZtoxZed8bkqyaCPz4HnAPWKWqpwhnz4Dya37I7xoZHYPSz6KdUFQLuRfCy1nhKZjfN6u226rTfi/nkOLa5IPIn8sk2JGotQ2hGbszIhgeAGqgBtAErDHcV3FZp/jJY7G0+YD4/cLj8jjHv/jROf7+bRUf7eEw8AETB4P+HR2k0zDIw+WDRcBBtQ9awtdKBp+zeWbukDGXdRCqoGiqFYNMxh/peySlnW3WVaSpqGOB4ZvmW04iD9lFGBVUQcpnLlsUoHQ5oUVdz9qs4g3CzxCvkL3AAqK74jK1mpJFvlN+apopz0PMdaeYrt2+dwwNFxdwOy8Js+rRsW8bEVbko+rSLGbQcgzSopT3WwZ1y29MtA4T+0tcDvpDoTUCAnnf4CuZME+iwv/2n9/H5/cfVLy/jcdnj1V8/76P/+V3RwnQGV/KJw/koa+jfuzlhdfcMbcY46KEmirWDoRnjj0m4Fc+k5E+jUowd7aFo0amjFHMB0rBUPpWURwi/rAZuU2KOWgFsmXxyFrRsExdb3J7OJAfm6jOdvNf6doPi5oYRAhOEUirGKEVRqb0m0pOqRB6zE4zHjFDiRFbcASo4al6jVGFxGhUZJXzOjmdRr5c0EIUeZVxd7jwt/tYX7En52hfbDF3FmbotXickCa1FsXIBodDWjYTVjfLxiUvAo2/+L1STVMNc6FaNU8xa0oWXC8indqobwiTm6KdnfcNf8qcyOIYoKF9DGrK/JkmHzwmxn9YV8ho2zw+e52a44QKpbqposLUGd4h1vaNR4tioNEMboyZl/jq1Mc/+fFkGsnf3h30W338upfxa0DAp7/M7/ryIeLt0sXz3kIGmgfWER8KDbdAB61ZI4J8n2gyq1OgWFPK6JXq02Nivh6Rkpoofh4WYynAU0YvZzcDq7QKAgjQHs8UbQkxEBPYHlZ8T+xMMH5YUROJIuGiZT1NUSkgm7G9QQq+iUJP1CjO+MSHnE/sESaNvy3yktOrAs0qcSgJ4sam8bQSGLMJ05qXdawvFYuYnYYlmzNUx+wTxEi5rm05ZQjQJtOMdlNoKVPodB3gruLM0SWbAZdpFl3k2Ny9M9QKIFNsmUDyqD93LrSYdvmeTd4yamAl56QaeIEWZiRP43ReI18juxnz8s1tKYvFnA1N8kTdsDCT5kDgKFMOFXmNePzzZYzDXS8eb/W8ieXtGm9PS/z3f/7gRuzXLknTa75uQ/atQfx4fPb5Fj8537iL0pvbxczMPn2vZHtXUWR5zGMg2xwILU4pcErMmTMr6Zy3mVyrvS7FkS5ZvD8HTaubWiGEO9Ioc6h8GeQMAcK4fTLxI3OaQNQHbx5ZYaSbu0I8zubQihyvdivWBQyw5AryOzstbjqBke6NwhZWqKUcGhnoshRnZJGflGTleAuCgKRbu2F5Xhv2E+7wdVgoog3hCKPfQUgPIx5PfU3gtb+zDUjHeZT68bOhjn/+w4SIPjz+0z62iMsU8f/9+Sl+TrwgnDqoB1KjrlHv59j6OcbzGOtXTSxnOKc284ZvJLH7mGMi9xdKhAGR5qTmsAI9dhdefqc7Wf4RioE3IBcdYyNdar6MKIK8oowMKu5TfkBNrK/biM/7iPtK3nNUiQ0Ix90WS2/0TLWdWRYWkKh2SWSiFFPsbwqdbYlxw8Caf7g0LVZhfY8XkmxQL5uE7axVLtJWI822o8gZpWrlOcvEFr+6L7eYXk+x3S5xaqGH0ExibZO0EBntuoiDi6dUgJQW0xjB0bHKMrv/9E7T9m5ss1N3rTiBFJrXVJ6lj8swxNJSTJSgdxdw5gMbUQGVMCJv1SRoB/xFijq9vrww9GmQQ6yZlw2Eu9j70saGRipkuNGkAySXTBzNKo5VFX/2pomfP8S36qHLu6BY76TNVF+T9sd799/+GYoAIi3Ti5J7BWNzzLcLly794HTjkMghxwSjrDr603ZF+r2MQ4OCgDBjw1+Os1fWWfzWdK/IQoP/7js8/lr5Lop3q8aL/WRE0Pabq1TtzZ7pUB3VPqJ90crfUSrZEdSxz7zYUkQa2XK6hNWoAoU1+y3eMnbIsG+lmOmmICmuLoUh6eunKUHGqWKFBlUDv0GAGN27CmTIvaIGx8lX4k9mggiiEK3zEnkn3uET79j/RqxFwpUjSeUPSJ012iOUnHI4lIxpaUJFG5loCH1eige89bJZsfFzxHjCt3FW4gaFsRrPLI6ZzmmCmGtKkxSJSUkRA/yxoFOm9spNX6Kvu2hLLCXc5ZstmqXzHd7WcbuvtJ6+enWItwM0nHdERsW+pfzPX9+mfPsLPy6f/8M/O8bnF7c6LDgC6gMBBTmz6pDEWok9XQYZs7I48biSlgreG19HwbgAyyKTJ3OXCh/0Apd24sz5Hr3XvtJ2cAslXy81uezYY8HNXNLcORrm+cT56Bge5LrX6GdxaTUxasSzi1Gdd28EkUJTKSIw6Zroa3gfIBRtDEj8d23Uz3YaE8DnE4IHv0hqSYLa55hXTKzXqOYxie9QkkyEpwMZONoxysS0VVQH4fgxz2M0axfEncpvt0Wp6K/hkm+16Zvouz4uax3/6//7q3hA9fRtgALes4dzcdd4dVniv/nBKb7YnpkTqlbfB0v/0RqHj7HxWWImRe+0i2ra6wDb79s4k2sGJ4eV3DVS2wohsA5BxZ9C1T1BSUsWUEWQMxRoZgQpXzY7XjvkY8MAWkgHUUd1bmJ7jSo2on6s44A/HGrwfor2hVV8SgfZahVhIntzUFN46oenp1nxVUsBisPrbWUiTEyuGObhTLO7dMZJXedMXgmfplHUBvYaoekydqeYc2hvDF9GjC+naA5wHk3zhbMkg2d4chSeMo83cgnCKKsbEdR5Xu7EZVKdnuz/P/b+O1jW/DrrR9cbu3vvffJkzWhG0bJlyUFywDjhn3+2sYEL/LgUORUFdaEIRfiDHKuIBRQURb7ANeEHNuGCbbiW5VAYy9mSJVlhpBmlySfv0N1vvPV51vr27r3PPjNnRiPpzJz+qo7mnL07vP32N6z1rOd51tL9oF10Jc8+rsE7rCwICDBJzibWXnZDWlSjsDu8tEvrNLeKoj8o9xQuJn288RyEj0RgRyAIStounQdINYE8DwTfl7eT73XfMcwF+SM5aBq1vaIa0halXUIFmWX2ob2J/dBjC9kziQoQJeBXw1gXRK4UvAr+jn6+k3Y1HvtLT3W2C9cU5wSiP8E/3nJTKDUqefnNeZtEdUghEAI9j7BchH9xVL0VKPw81jMlSueHuqLeDcGZO76unAPn9lxLJkZ0hfJezm5U7p8phB7qUuEG4/J1RKk+G6ycjeoRO15v1a2FblcgjQpS/HZonqfO2sxGrkddgATf+7xyqaBvDg5puGHMWgtq7xmsHopUp5ijrYCJHEAjRF7Rg00oIWV0t5QhQPT9jDme7NeSlUxUnP1tVEIPnqzaUzqyUtLneO4NHlhpbe60k4VQu0Jm2921USXX+T590B284Z7Pr7n6vZp6Qia6CV11wtII387knaheyzqTvU2dxJfyLo3uHTk9hTNrDkBWKaVw/+kwlNvierSa7Vvb3jb77p95ciXUPET0kshobc4mhfqdFvgxuDHv+sRMJreeQbiHF4EStXcX1jm0LC4UixNjLian5isZAxw5PNAw9IpMBq8zSduJ0mlE7ZC2shJNer7U0sZ8ImdziLJtKrfV7oCvrKdvJcl2RSOLz+0bPJFzUUff+hdfYAaZWmCKAOxcBrgJtKOq6sxm27VNKkcSpRbs4Av4Jg9pnk4ElHqE9FXwPtyWgTI094XNHTRvv+9swSEklBJrGC/LwaGCwJtLKUbbLHzBHP4XT5GDasjsxx5r7GOXnMy/GS/PeFEHq9Y9JSSzT17p7eeey6wtvOcqGfuU0gp76TQz24bnOlh7tbXFs5l110obFk5BQNQDTw6xAyV92beowuS12lKbPNkxXFa3G1ks4cd5oCVUw/dmT0gRUCxQmuY27G0J4VPQuaSclFtfN7bc2rPJ3bnlp51Mjd2IrNWDXC5du+wePADkWihkKeiTojEsJv0O+CEVnULUcxQkX1RDL1W5QTV9gjHRdcqDd0EKXp6Ujrm1V0trdlsbZ6Mtd0ZbgoIRRIlLx8FIv81Mamp1UlMrOHh+4WsZ7e1AyQkABcSAsoWrvy5DALn75sEfhKHJHjTfwyS5VZmahJP1prKuUM1RbRo5O8UrVHnYeZAcxHQkgutHcgfPaoSfyCFIOXjBIYvhO4gMwgEV07z/q/o859Yf0LSX1xjkUPDk/mg/+ksLkfXDMVFjvaz0Sg4CV1ce1lTP+7g1tDmeIlPdDz21H5YdqDC9fZs7M5hVQo+iNCp/SdTmvVVkEqpdMndcpSNlZ7TN9LPcUe3US0qCQZmuRu9XUGdVFwnWE6+U51NCdl9M8dQocZIUkDQEgsWZw/vy3L6gyUGn5GZxvbF+7iriw0DMkWUpdMMvT++vvu7eVs2pR/7ZUm9wD8aiEUJ0/NE8ps2hOHO9dSCNXSU7Fnz5+mVm/YFZv2/W7VfWzfkD/y1X8LV/fbD5Pu/DeowsNKpmQlBlFePBpwfdhAEkdpkNuwRehS2wtkJTQV/KcBdw25pBiCh/FOSGGwFiJuhkzqsAycT+hdjMz37OWj+ztVtGpy8P1Nwk3+8jSK/6KGtna+WAMD9ovNsPwfSsMHIxqBWTurQmy+wZWkcen5mrBsZHe/XecRy/1aCV1aeu2S/slPZVDwXXB3UTN15oGIoqVwoxUeiMsfLg4/CKMqvybh0YwXbXz90GQ2RaMjoWg4jVbu8CvEtQ2QtldH4PqiaCRzbdBt7gEu883j+3LqeoUlufORQNN4/XJMjqe+Bh/PfdtNMTSXg4gxYLJbHJJNpqye7FJf49Sj0yBzb6MP0kq0PUQi9hlYE4kdR4Gh4jOil6lfbWUl7QRHcZPQcOB4/X5TDW8IBS2Kazf7V5fOryYD/0oYXNMY/ejJdtvKjFfOzQ+tlndm27ru2rzntHGdBsP0icEN6e6sT/A+lt56NlB4VNQMNbLEZyy1YG5WHoCsrWEqi4wo5ggi1NZUmVfDrLakjOcHPohMGPUKVSgyZxosMOYqbBJluZAj42Xtq6wSGM6SQiXLjAeNuy1I2AvtHBfVIHgWgppQRb3pPkTe7T6ffDu4cQEKV+pvzOlZbeVJ4/oJSUgoVywutGod/B6TO1TsomrY1nMqFeLhMJSxS2Bc4zRXje+5qSrvw2oym9kJLgC4YdGa2HvawOdzgU0bw3tiupuw77wPJqbyW9t2vQjd4QJRaYKxOkxmbPQS70R4ie85UI1NkTUimbhFfI46rTSpSbFUx4Sb7hClGCoySlvshjIL7zKaqp/cwTjT1DizdUk88zVxOR/ZU0dOwfKe0eHrFHPssR8cf6C4zWtI393KfMvvI1VGnCeBekrgnHBqRKHAmtq1ARcPTw9GSh5WVNhluaBHc1+GxOTQJVym2g5K9gwmeiO1C4gh8Er45+spqbQgK9Cia0UaVoN1WWelfHHkIQ56npHelQRevHorZmznUVNgf4KFEOkxC5hZf39PYgtcAkWevAPR+hjXCtnIvFtFBQJ6BFRuKchy5QWmD9hUoW6gWBZ6xrl3Y4JK6AKSMKchQtlTrFJYxqm7itIKMlohhH7eTkEQIrzstuQYmVGMBtqmziaJvsiNzBXn3BaTxAjAD4Miqgc4i+XWa2d8lL6iOee5RnCTjF6cXXDUSfVBSenp+fKHy9+5Fz6km25IsrEYpbShW0AZqNMpLH4koOAtXSWjmEkLj39l/fD83rZJP0m6Za2Z0Y+MGV7kb7mSdGu+euiT1ULq2oQ+ghqy02ObKhymrKnTDZ4PJhZgoXQG1nfIIw8UDPBDGHzFFlWxF32VzhXoQ6WGqOVhuoQ+NqIOWBYxKA6OurvDm7zJtBCB1JVFP3ESK68xfYmEWmhdgLRM+10i5t7pyA2TYdvVmMnZqqUx7mwAZeZKNH0CFIuWjURoZSAKilYPmQZnEIq3m0Pp1nRzJklyFm3AvKvzSjl4qXg4dehq36FHI2NE1mP/To3D59sflCf+2bEQNGz8HY288/m9lrTtf2OkqnlP69+7mToGvvuVkMvc0QEQhJo8F5KS+4/CC8v6RqDY6eylNLG/ciQZL5uXNlO5tZyyFRl7I76JdY/IQVg06j1qqdzopTmNu6USnontAjId4hdVePTi+pqq2izGkhYLtprHh3wS8Vm4IgVj7hHnjJwcylk94JRPoPP9hIWlK5Sh1ypJZnnjvi5if2YN2zvU2G3Prt3qqtyhrUxSrZeplZar5QOYMEbE3c4kbIIlydaO+rw5c2kaAIA+eNt38T4V10pkP7Cw5Fr2Jj5JtZzcFS99bJ28v5whXXD+9SiI77qgkJUtSbuqJQaeAAdP8vDyxqK2jlp/Iu1YomqMhweBubEDDQjQM/N4xqef15a0OxbT9xccfe/9yzXg5/ES2hXinj+cynE2H+hueEJ53/3X/23KK3J6739tpT2Pt4v3g8Ur08F/58wSrHV1FnQahmBS+EZUkKZ0guJtgI6SCgU0rraljFRG6f0uHvmDPPvSK18syL10hKU/hoXUvQ6FUltWBT9w1Qa5wiPBCRBRFig6kDGPi+wsOrh4n1S9xr3cd1MhX+7PdBgitXL1EpkINTE9eC5yABIEYotYtNAEzU+7dtbFm2boOmVqiFi8DU+tHvgnh+Ahk8YHJaBxZM3p1KJVZRDCmphkm6ktXEI5QPhtGQA1CGkjYgSE/1bqyEwOM9SPm3ZxMJURUlaP96+a5G27+uzdO2z9IqDi9cFrMjtPw9m1ISh/tPNc4zO+XC4jYfBph851P8fFUdxPuPnuW57bcItd24GipGOalsuSQuyewDT96sU8fh0P4WE/FWcfdXZeDHuHx5sA9/YrT731DatG9C3KGY3DdCZUuUfgne+GKaaFMEnwCPo05lKrgxGE1WZGmQz1d9SQmAlnEYRAlknDqBmsAST6YM77PwLBOKJtBwxafj9KO4IzczJpxXoKyiUTt8v26hsjKjw/aBHp9mNjuFAa3bUaDWbYe5sjR5gLHA29aaA5RgBJih8K0nCtwcauZ5lIwg4VK+7W1JWzlxVUEmW2U/S4KBCWako024HwI3GvX71b0Ze3vf7mjv/tB8w+q7jQaUBg7yZ7ul/cSnp3b2tbU9MIFiECXJjg0HcUInIQZzLt/CnqSz2dncCjbWplUrqSGrPcuvXCCEGlRznobok9IabWrUK1sr1VS9t3y/tmyEOkHHkM7qU4W1dWc5ZFHsKtT314M30SjK3A4GFOz4YDkdw9uLuapP7v6gz1HSlahUZwFcPP6OyfPUmnEhVMwDIJP6XciYlICFjbTRIgGDz4O6l8dWBLcuZBmabVt8ctdq+txveyloyDF+xvAVYrgLICQSE7ker6/Oe6Cu1gS1WSyR+Gx4wuSOrmi9OWdKZrPDaIv5YANiDh0QtFrz7jt00wCZrM47T4uHN6CiIAMKbD1IVD13grO/IzuKf2XYHPeJVldZI2RhhFhI4L/FoVjqUKTTQMO20/Q6gNTpAEECLz6b2KPP9fbeJ5+1OXuKCPbPP+9ekQHhcVnv2t8dcTr2+EBbj//wuautfeiJpT3y1h23FFLJfyk0Fm42r0Wth3Iea4T2XAQZeDkmb9TkTSmD/oLyPF58jizx/XRL5m+gg/xOtkYy6bOSipUKXjhZ0HLTFfqsMfeOgCfqRtOAC95z21uG8VokdeBty0VuNY8pa8sK+mHjswlvyAlklK3ls0nKJKpFWMkQfNIyEkpJhQk45yeFJdTpLmSBW4tiHPRzinm4hK7824OxvoJ/GAmNqlu91fKQck4sWRxlUlk40Ymodju0YdlZ39binM+wnOFsptd3M0qBrm4qs1xJE9W0XDQup1WVEzd7zg5cTa2IiNckqGR/sMIW9PAdO9u6UNrBVT/flXgipuLLCMcBAnI31vT+4NIZYN8msUl04JLgBRu1TvZIqJ+pLPJzHBQIECv4lVlhP/v4ge3vz28+dSPYW/H1XsTye9UGfuy0P/PYgaxdfvnD4A0O6aqVOzO2RMbEd4S4AmWPO5p7ORiOAinaVIjIiBJO8no3YpWXXt94dw9aoGHWiIx8YJP1sqn4SXAfgL5HEA4nk2q2qwyEGVNmdTHaUj2tnMcUjZPUmDmv3OMHXhN8CKD6ciu3gYUFTtiCtLAYK5WwydjpZdguGpuOlXUTiPcEnpwCbnzJFiCndykb/YBSxsZkIAuEMzT398MiRuYDbA4EzctWzcCT+urxi539/R/Yc7h7M26bsX4wPXptaT/x1Jb9invNzkiRSgZNsFJZPUzV7YWICu02rZwWQ2c1nTJqmpBzOCw1h9RcRn1/sWIIRV0BJcFVwbJ3gb8K3032JL1l24OsQmhp5hlwQtm8zEn0hxpcQ+vLLS0oYWrutU56h0OKVZDUstAL1Nc09Rv2/y4WCyUilNaCrGstZWmuHY5qFfxezrAFIiuQTziMtbXLzpprpXVX52q31c46BcIqtwldGMW7ce+9KM3xYp3ZDD6sOz/7/Qlxl7haHJg0i+SzFwTWHPQujiAYoNuBupB0o9UgL8vBsiX2/2bDxAUuHNKU30ELiSnhVKZyF2VyxCQKJEHwS++6o1KX+smaqYKEdQWHKykmXVVycNHMFuxZaqXnnEZaYvG6vNaTe739yMXWrtCH7hXM3/tsx7qti/4e1iWr38df2Yc/eT2zK4vezm6hRndzBwI89mQGezmtw9RJhcAjgi+hfurn6tYkzk9z82Wsi0DIhB4hBlBfWbNaAgHv2uEccACE0StJqU+z+IbuF4dXJ5YhnEvu4emenQz6+bpoC7TJy9ASd8RpBAKIJyjIW9N3QgXlmxlrVudZMdp+h2ilU+JUTb0lKeKGKX2sm86qWZhAI4ofSXi8Ogci7hQNuMVJUYvw0fcKOoNqiNLB2nWVPJQr/jLZqt32ps1tn7alICgEYwSYk8zKLd9j1FVjHK2moxEFKq6/dL6+1lNd6PyjfRqKZAm08OjrzLZPE9tigj7YhGRNpWv3zcUtQzY2lJcpZcuzkFgiOQ84BUWq755zmKoI+4bb0iBgY69iE4UzDxUNlP8XPt3agex3bmGSvsjx6g38NEb70cd7e/i+bXtwughjZ4/Axb2Th5gTVYWMiXOxdOKqDhafkARI/ngRMQ5l1SALyOlFCuX9KA3D4wAJSYcQ/Rb9amixpveDwt23VndkMD6JOPEkPhEKQrmXw5bDJHO1EEnVhPJcLsUup+ZEEvpYhOoY0lsOKZ/Xn2AqigzRDZ3BFicyh04lACcAJ7shvISEEuDI3w02pbRWmTJAvM8gLOPECReWc+bSwuzf/uzc+0Zuxm052IBEe3hm385sbds3nYPY78IISjj4Ww71aCWbdOHmrjI8T+UDeUziD+ctkShDVPTKjSLYUvmO27RIxcYpuGTeFDZs0xLJyy4qminLdS8/b1Cm/nCHasrwDSRBkveYkhO4QN4+SYGfUEI/IGU3I5Kdb+ZtQ/vB6OIRbAYZq7uxnaNYoOfqN+xt7PKmsJZgC25j01k2662fgY4TUHlkCVkj6efEkQtVIiR22aSrT3GIQ3RAxyEf9hPc5yb4fDlKTNSXg9leB783+FzlaA1k/8XMltc6MzzFJnihZTLaJVlDsCF+UKhpRccApSex5MD008sNbiNCUb5H6yvoGlPUodhT+YGJKbsMaglYU7/dnu83s2eb3H70GbMndv2bunPDvrVS8Ang3/HxoaeX9uS1yk5vca+9f65OlRAmkbjE9DR1s0zmlnHW8G/1cg2Bkq9F7w/vPiNwrnObq3OXUzbEWWMk9DxYR+tleRdoOAABsJEMmlm7boTs5t8SKIJCIvSObjh4ETL/kv0QnF7QPRIWN/0PZJTjYcllOoWEhIuzQug4wVZdyUtQZtYqPXtwxRmX0GSWM88Tg1F+x051cls0D85k6RK2aQpM9Su6cFCV8IqXE1PEelJgR+JIeVVlcBTBvbdXVMtRfJNbRyOlwg3uLpw91u7BHMxvsK3TlRB6iVZoprNrGCEJbNEeJ8Nzp3Z4m7mwXtOluuCGT+rlf+6BV1wIcPU9yzDeg0Ze7snrgz15HVQwcZZjIq5lIZ8Nwv6qU/UeH+18sB/4xd4O8CeSvBdenPMqtO6CAEvpQ8aPWeXIGxtnvIZasoBGSLXeS3EjNAEkIlmjSzQBZOswsKsp/dBw7yIP3vT+CDiYAJqMZAFA4ZRepAHThGaSsGnP6b3JYpkwuQISJwMi86EdG8do01jXLGxctMooSrHIHQqhONxntXyGCEY578nl1J9xwNyViVuozVfbOGEcKB4bCRHotVCChE7GR8lqyO1dH23s0Ysb65bbfpDBWm7veXJhH7jumSZtKYa6tWKKytftJISgKUByj1Z3S3FTVnzjShTeSmqIytyegF2SaSYvVTgsqPOW2BGBgntA5B1pvB2aKyJzqyp2ZG/+zgi/aPcriX6z2BAxV3FmApkCKGcTFDEdQ2a1LEPQICt19/PTqcph5uao6uurue7KWg6aYbey9rnaxkuFDVdpMt1aA15zZrTiTGYZKl11FXExiUA71lCYMKszj9OuXCglkTOHZviDRbDAcanKD0Ff6oNFYKtWeXAK3YpDwTACgYXZ/Gp05CH4LOAswet1lDKZOis4UJ9vuH/6chUwa60L6fF9TL15pfrwpvY9pvD6Q99SAmUqAbWjPqj0B0IUs715b+9+rLWPXkrcohevGHxFjVv9aGsqypuNRZ/ZT35yqRKjswFcVc/w08QV6ErDo9OEl3mZr+6VmfhhQoLF1wP1BTxg/eU2yQvbmhBYgiCFPYzmG8IiNxvW+61MldfRSee+SXilgD964cpjlrPLFfvQQHxC+VxXMwF5u7oBJ/O9houuCInzwtsvIq5wT1DshLyNoFwBmOeIEOHLQ3siAVJSGcp8tS50QQvos0tQYi8QoyEUuxHEigdLO9MU4MrSMBiUomBk7g7AdakSB3LnG4RqWB1In1NEZCujErJqvN5O0fNJ67vSlvsErZy9uG1Emzb4uM0g4Qqq3O4AtNHtrhLK4+itgzIpJ86IfEERoXFFD2JSK/kwZrRJFSQkZf2nr7X2xC6L23nFL3a62p0e+DGevHhg/+Wn5s7R8WjGPZCSsaqQOtRPLIxW/liUT8Ny3GosKTF3zCrf1MOAtmnJJAiGQNIwRvWJ3MKd6oCQmYjO/XElVqCElGFyfPvwXoKn5Jw9jDoPKLfCi8CWYQF/gcUgpYnVUtaycFurxkp8h5aADcRFHeEJAwtbFrkd9IXtSz2FYrDTNe63o81bJh2/N1tCtCX1REW4HGy+8N67NVXomP1MRhYKJS+pncbMfvTRxv7re3cdhdiM238Mo9Hm8X9drOwpO22dfOcIJjyQFycMFTklWjZKNkfKm8qDKnk4KlMPN34XfWAaWzrarVZnpTXXclsuFlaecb4PqAck5TjbFCQxh7AYEj0gLA6c0+OZPNk4BscEpaDjUCVITijTCFWgTBRqWAK0OcjbMNh2lXu/UHlmufO/hEpAIE1p7ZXcDj5ZWHuxtXy+tLZdmJ0abLh7sP5sZ8NWb4uul7WR2sc5x1t/B02UxQL7BOU5P1sc+WRpuoxXSDnHh9qXRmIIf6/Z59DAHxBahyMCqX0bWwzUinGXILGzemeU8EZcXgSDIaoRhwhFvzK3aF9XQpr34IIDSNodHWjRgpEyFp+/oF1bJeWxLrCi5IzFjrJAFw1wdE+37aeeLe1DV9QYeTPWR/JIOwn2i5+DIL33idZayvV6AlZXo9VFZjixgrY5yu3BkqxZ+EoIlrBQIrGKo33KmSDB4WDN0rlsPEc0IgJ5Wv/JCX1UokXlRcERHpRhws7p3natRBoCO9bMf90ayBFFN5B203BZGRHsyRLQRSyOCnrgJVswiY178feYO+rugTgjok5PjHp1+fEOU+wbUrc4jw6rGURb6j3vqldZNo1w8KCNYF2GEAO1siczJDzqKazEyZshqAsKe0+o9rVeQ+ilcioBIpxVUTCipWJ01hn5jNJssL7xunUkFMzEQUrslFDvjrZ9ptT90F6i4ojTKtSDW0golYOoLgAi8XvK1frAVFEiAVPi6qieEM+MeZHZDFqLzEM62bI9dXVp7/7gVQ8W16yDEtJ/s/FigsJXean3cDx2cbD//NHBfvUX9XZuVkp4FAb2ToCNFjDu4DeqrYsaQItXFG7ikLZzhBdUZ3pbwr9rMnU06HJ3/5egSQ03Wltkg8260voK9SQIh6NwHIpwH6jpS2k5TGwktY8vekEtSCTQwooZmUvtQg0A92606YioBANpMp/MspY2S97bFANIkD03AmXjR80FYknGNlgru5hQEYotX8iMEngfzlY9YxI6B0ULmZ6LQjG8ndt7PjO3f/ITu6F62ozPx3D+z2eDvFDOHOyJq3P774/29qvfMLG78AcJU1bhYtqsycoHW6pNlxONl7Qpo7uHV5csj3KQuHwQrMUZMGv2W8vg+Mxot4a4CZKyt31yd3t/zcDHV6UK+EVueuoJDtxaud4nchUIdEKzxPvhOV469ZaZjpC4F59bL5WT3BqsI5rSmuvYJfQSnkyQLkMMn8KX62w/Wx6WhQfnw6ocJO6bIx3iNFJ+IuDUevOLV7clG2wSandxp3TPkgjC7WR0FniXSEdAhNBwSAomdWRgCeW4sCmK0BweMI+j7FpaC5rvnr+hynSBGOgPZfGlgmb/u3sUIlrxMp76gyLiobMKYhbBe5jEkkVmNqdnH98BqOhY2EefaeynL5aWdQd3DI5/olL5iF3LyT8+eXj3lvd8qrNvewvz2rmkiHpqEN5oUSgKBm0CpQJ3Ph+8WbiYBA3w8WhbKLoFAbwODZhrVG/c8oh1c7Df2taWd4xwDD7sgNRS1D0l4KOTwFHFEYtOa8zLnqsPyPXEXIV76nil92MWnV29652CJGGi2g2qXc2qGw1ng9NDUe07CqeuP6Ge8WAHmoXZpCLhpMqAyMUrDkLzdCiz5Em+COgOcSlxgoHHtVs5RULrHnUzRthQtYQusg90LqJUJcD7ZeeFN0+QO1TmFBaqdgSBUFJ4f7i/tTivCMCmtrze2nTHrNhyg+z5Lg17c6vCAaCbdBK6aGNTZxbWaC7klYqZt3Hjpy7wSgPRWWw66n+MeFRKa1qtFpk9tz/aM6A24Ut48sS9MdJbVU5uYdwRiB+D7+aDz4z2v5+pbA+PnGj6rp6bBHgd071bybLhEvXBNfIuAA7Tq5xEM+kJ/XHDVV/ZHhA44g6ygdEKWuNQjsJHCFsLUIPlqNIt2b9QQJlM99Z0S6lqMV5fLEECSvkyaQGjbhI3ww8NLWa5r0NS761ftirVcjzA/0O5rGbYeLFpQapBnEPM+CapiwFSF+fy8RqgfQR5tP3RPoQcXlyMWgeeytfdaB+72tn/+39tgr7P95Av1GdZbhMFbejtsasL+/6P9faZZtuyjI40y+CpDTZOQZ9JfXKp46CIYt6NGKrEdyzWBLxBsnQ2UA4EzFVHGr7TQP68C44osWKP5P1p/RrU5EibXhyicPBYg2GSCucFUrySGWatuLZePsVI2O0gvE+1vMoUbIUIg7VZo9IjEcKUujC7mFu1xGk/t2F7acszZv0Fs3ans6F2W41Tpy8INV9yvbpuut5QjomSUXCjuGDKv4pH4afTs5MOO8RObpfp/w3ukcRaQgVi81dHHLfHwBh5ZA1i4L5nNrlW2RRLmLJVAMl9IvMHMYkY0loCiOi9SrCICnqvbbxMDKqBabz4yo7wCvnk3gXX2A2sQWK9l4L85mjZVU9t2Yz2/ku5/cgnFrY3p4/PSxuvZBPn42N8MaXeY79790eu2TMHXsqEHSc1vCxUvF875w3BBV8FxZyCdUhPabXH845LJFYqxYIOil3hAYJs5xAKlIg/6PaSGABOwXA0z4917MHEc4WPx3mjHMyRLV22ArtDTqooCEqwnHOhZIuAMOxSECsKKMEuLM5UJWhheu42Ks4jZO142z+SOEflZB6NJVl49Im75w15RTHi5iAWUSs7VaBd5SxRYrRj8+E2K3COZejeOz2KMvYIqAIKz+u0dObh87r9jZI6rc9R95vNSat1rLQPCf0Mmtf+Fc7e3ian3aaJhVzmpdWhC6i3EVXiJoCXIbJ7Ejj/3Lx3eF7LSse9M32iUEZXUM53L5GnY67FBGEW1JLBvu8DlADWJUWJ4/jCyf8d27nj+caw6O09jy7svXuVcyhESncFDRwdCNtkZeQgWYacnKmHqtXLMxChZdwiSh+lpcpymayWEkfk1cRyJgK9cGkNNamsnJUrPy21U4P/tOztYDHaQQOp25262zkbPVk6OEKn5xNgOpecheIiEBwxJA5uW/EKqMh2IC9V7deVIddnY/dDVQuYUu+ylW2LvI46UwP4hiBz2VsxoOANslZYEXA+qym9iK6lPX7d7N/9zL7tbez6Pm/j5T5IU3/lj12b2w99srUnO/qQYUqK1QFfvbd80mOjJZoTrKOhuuwOOLAq73WJUeteZt11V+hm2z5XGULM9PyI3yQO8RKp6H7V4b+97OzJhtTxcQ28bQUSGC4JEV+F31UmJAPurTrQqHScO1fuoll/GVuSwezsYP0pev/CZ3TUUEhePBfem4Ik1L6tt0uTtZK3QtXAtFUfCwPeOBzk50nZtfXWUVL8UrbCYQXiPUhl39skG22aZTZl/aZ23thG0R6STgX78I0ys9P+gUHyQAeEFkoB6lQRBoGfDlJSVFo7Fa7q1f1Vudm7JwgY4SCLRvMSl6zmVGrzFQd/Mdqj/Rn7X08NhhWnt5B7afPulcgFvOEwXfvoJ36am5V7154DjebdH9p3k2Md8JE8rLp/RAAC8qS9PayIQ0RVh2qUoIYZp/BEtkTOG02t/9SqLxwfAlsOUZOfV6B9JGbyytPnTMIOvxaSN1EUVpMjEhvNm+j3G8haohusuO9R91Zb1Og5HUJiL9vGS/q56TxxUavo1qMkD6DE/fI8EHYNb+qgwRyFw+jd2/w9VHpWZ61QFKsMCgoaBGIpdzMrZ5XK4ioAgOhTkpUK2qkmg2qyQcMqvd8PIIhM36m4zQeb7w1WbWVWTnDe5nuslFCqJjhxfi9cvEkFJ9Jb4eW8NzQV9jZ1GUI7wObmVCkBMpR+kwCMNUyFhXUICtqZfeBZs8cu3dwofX0innQ+pO4yLzTuqMCP0Rx09iM/c90+NJ96D16WFYhWcB26bqk+ncDN/IyWMGMb5s86BLzHL3B8aqmjiQNpNZqhS2fHxo0XEzAdRsnVaOPWaFOMH4UOONdD9f/UdQDfpLq2ehvuFBkNFhveS7hG3SQCITIkSjc+wXKIviWBbGsd6mOtZOcjqdNGi1K3t265tPn+aP2S3oiDLZvWBvoN0ipqglfbIC8ofSac/mnlM7jp6/7S7PveP7dHn9xEfZ/P8bk6SMltP35pbv/to0t79oCy6GCtPCzdu2oBJybxAOEOEXQEJwivVcIjUIH2+mDD1dLKcWLVmdGGLTYyb1DOAaajCJ6OF5utVT/bcNbXaol+tvK3IuMFcaPUCue0F0KeDjqEJSAOHDTi4ypwc15NK2L6aP1eac2zZuOe+4/15zpbEOz5gnAOb9KRRFusS5evrZR4Cm+jjy7eZVwXpTuPgTOr89wmELCFBHI7IHd47yuZI1M6UsTbS7FLGYsgblbQo8BsCnGedwH9n+fWXMaMubJsq7MlZUEJQTxZ4/P1IBayWwovQtorWilV8KL1ch29e1W1CJQIym7nNGZ1WnCj60Jt5SRgw6hWFlbu0fiLu6W969E9u3rAPrjqWWF38hiP9T99vuHB0I3P//S10XaXo8p6lCARaMgEXd52UdqEUqHuKY5o8SWCFgEUTCsn/ENFTX14Xf1Kn2in8ih8QUXbRUC4Zi7tYRmGwmDY+o1+x9phPXiQ5q3cONscwfegQa0U5fcXfXrhxlGRihZkiRrl2n6nAVE2lbl66nOstnDRT5uEhDWPMMSbFSsAFDAoIUv0uF2pkBPVycUQEY46khalZRcu8m/viRtPlly6haevhh/hyhG9uyU0E4VjWAnNxLSSRZK7BSzb0S5fJmDsrT7lnDz6nS8vxfoBaSUGkIAFdNJNRaFNSaTJPhOiFHXzwGyb4FN6glHcTRdmuQE8XUDYx9j3xqq073nvfrgIxBo8CWU+0mnm2MTblHpvPq4fDPb9P33dPrrYUXhUZhMrBMGWQgApx1BywcPPW6+xYAjC/ABDqMFEbiBqZq0gZ/f2IpAiU6ptBAmUl4ojJkVV+WuWtZWziRXTyiY7pWXbUxGvy53KZlulTbYnbswJcT7DaBOdbyV0YFhi4ooSEHuGwm0f1AyApQwUX1uO4S5lgW4pwunBfm/XDxpbsBAwqVbrGDqXYLZJNghSGe7iIsN6NlPLUqa03aay7/lAaz/3GcpKX+hvbjNeliESeG5PHOT2o5+q7NJyy3KQYJspC5VfXmxooNfAvzKDpQuF+kzTOxOZbWE27W16d249GyJGxsFFwzw4/dEGHypF3ldLKnUyUNYdtkYEm6GAd7Wwl3LhuipYC8GFNuzUNzSI0u08s4PLvXX0Dz4zmt1PRwA+R9i+rIbz9BIXj8MAPqBK0pwHXF+0QkOVCYk7qXUpcSkRC/EGxO0sgi/U0rpXXeLEDmq7VFAi7xorU5spegNThn6WTh6ZZTuNzfFIE7LiiJ1KYhyklLylUvaevu0C300oIe65lpCIrsFs3flgKpKLt+k4knzSusZL8nymqpSnGvHfJ5bb9sOPLm2XaHGztm9p+B1+YUjl6etz+6nH55FoyBnfO3RkHiDh38qgNEpwQJWpLmj5Fu0JRYh11bx6phNECG0LdXAEcihpCf7kA0cA0a9I5tFZp3aPTXicCEEIIFXSdWED8DDODa6o5fzzeeQcWu8Zn9S0zLFwLVr1AlayEJ9NnUGjZ5VAanHpXERJWVRK/rBm8cYYjtK7G7tTPAS0cDfYcxSwUbmKilkUHzhv5fkXQST4IsFZPsBWHa3OagmyuMXcM9aIRGuUznvEK06xyoHn80L3zkUsVAzovQ1PmF65fu3L697ZaM45W1SigcArFC9FLSNHqyejFduFLfYHGW17cBZqbXw4JZSksxecZRdKolammQTXhxTk43uFXTm4NXDls+N830HijqNjtN393n7o53fNvnRmbzvtPRVVp4n+ifBlUCylTEi+WXJHF4FAC4YuAer7qZKxw+nq3xt9o9n8ydrceDKk+ViJDbTfKWWKTDkKTKTra7B7m8oIthViKCwRDiDBnzYEyle9FZNSgg83bMZjjwPQPQLJDlnQyx6vpIWLNOhsQOP7ZFPDQZrRSJ7OHV5Gq/JBbVWZhG450NultrL/9N59+8mP77vmfjM+r+Nz2fuULZUuER+6BHpX2zc+OLVHSm89pPZk0WqKzV88T83tXN53zfXeivngTc5PFzYvl9qQPf3I1hqyB7EbU1XKNdFWTMEVsBpiCpWInCwkBCFMYXVOiBcESjWonCJlsKgYLniRCS5efPuZVSjagb1Ojzbu5NqkxaaJIDGhjN40PThQ8lJi9boPJ0ayKGfV0k4+eaDqvQ5efaZoKZfQCUjecNzVUpEAV+3pQs2RZXag7gmOLsKbtHmpxvN916oVXI+JPAazOkkRW3GtGE27bQRcKA8c4O0SUPr3IiV18IYw+IW8PplV1naNl3m1ZwXZHBNdAkHuFepDkBsr7aN7hb3nmX27Tg/elXPjHT6S6JX/u8m6O74mjzxsBTyxB2f24UujvXN/tPNTV7TyPYD4LggYCvVgka8b5V6SCnk/qqWYlzbVvQXUbcjtoOllrF6rduledD5PXSy4t3DVPWhhokP4fAf1cvyIhAoVeLpYWQ2Jw+p8cwLQxK2TQfLqM/ufSvz3aF0Pch/dNKAUQRnwbiO9UEUBzSFK8w4oXu4EGMEhwNunsvaTVyTrHssz7zccze3EL1dXHTkHeElYrLgQPzrC6dHoko4ioPV7Xnub1Dwf6LtVJU18v5yAEGUv3lWu4IIyldMZpcefj4TNbPs86CBBoFnJHlThc+qoHVuXI5i+J3Fz+c6gwdQ0WMAkXYGpdwoqkMyw/9HjFI49lQrZyfHZiT3w5h3sBz94xfaZG5/tuIWFfEcifmlcvNLa/3zvwn722kyZNvwaIRK+6pyoCvlS0HwUgyVLx7jRsxqIoSLT0gWjmIoH6Ls9GT4GjJhUcrh4A3U88LBckdt3huM3HIIowR401kCuXoLYQd4rrIKQ12B/QR/C0XpI6eImtS51RwEmC45BC/Bg0dl83tpyQUmAXohmk1k001b2hj8Xi9MzKiBn+ZFRLtPm0ArRfHo/s//7p/bsJz98PeSEd/yx8Hkfn2vOlDdeGu0jlxv7oU809vh84qbEENIRJZE0wP9jvjaZLa5mNtCyCLPk07mVZynd+mMljRIiQaLhvTGV/QfHz8nnrkhU3hQpp3PTzFpeh2Sr8s4FytBJflDMUnoS2u5ZtB8MmWULs/56Zka7JQjWp816uo1IkuxdDdz2JTiEwWfyUlJ4hSmf8sBQTmWrW+4WFCAJiDSUhMHpixarYmgEOiPrMiGG/t4Yxi4gaocX4HzI7GAvt2YPVCS3cie3cRIXQ2OMEKt4hSt10uGQ8cBSXKEwgWU7AEUFvishnHPg4jEGJBj3iH0B7hCOASqxY+Gk6+0tm+3YR3Yr+/FPNnZxX8WmTdDH8Nj+RrHG+FKFVqN94mJjH302DIuZN0HAoisTAZNU7QEqyIrI8TQFEcx5L7m6nyqJT+o2QdCjFmtS2jqPbXuaC/WWITeAgBDxCKyI0MSvI9hRbdO7baiS7YmUt3cLVFp0IXXN9XUmYUXYkPSDK3JT79wwX2ZeipoBau0Oy6ubJ0qHzJqjk0WIQoJW5xQLdf9wX0AHSKP/LOdv8MwRuAitVzNsP7f4bKq26drd4BpEG65f20FjWXglgeBNH5vqW5jUa5nl6gNOuXx/N7fugBZvdBvxlmzdHpHuYLZNJcDr3lx3o4QxBGiyl6LrFYG1k1jEpYculUzkJfZyEYrQ1Uhs3YR+tPc90diT1wBw1ifi527c0YEf4+puYz/4C7v2I5ddTEE2ohKKshS3UNFqgCzqaYybNislYhIzm9ogsy9WqiYnx6KCrJRVdbRU4+fkfOIGUZYKBMRNIbzlVQcPAmUdqq6lFXlpVVFaUU+E8g14EDpAIHUgixuOE+Wfg0Vr83lnS4ycUfOVpTiAPLZHuYS6iqajBJ2C+6OEJfKtExMgzn7sWmP/+j3X7Bc+vveF/no243M4Qmim7/+x66P990eX9sFLhS3wDyM5lcFqYe1ubv210spd0InOJjtmw7ZZP4XI5geVfPkokUbQJxsI0QeSQhx0wzfyxjAS95+TESNkQvzBxg8qLTNV5mfu/YBpuZaatOuS6S5wZbDxcmY5TeRPmdm51pZb6i+w6oaQgjzFVwSXlKAj3gIB06G6Qj7CzgJz17BVknUEJVfZXzhvES5O6oxBoiUbGUrc4vvgjYnvoHsPqkdnX1hzuRYfEuPs/NRg+TZIoNu2KPNKhyNlwKTqRLg1YqyOLc5oS+5aCccINC8I5/Lq46D1w0gF4wo/0LCh4nVBKZS85rbISvtfnz6wH3nK7AqJpXhih91T7jTlrsaaeHL1yW71IyahR3bSPXI/vR/52IFd2qdNn5crudfyxQTNUxnf3cCpOGlrputFZBcubfCyKu39KE3S3k/8MtBdzgH46VKt0m93tGaehA5OXyBY4szwfr65eu2KkrC6Tu8Ig0LY3WaS+td5eerDDbVIMSnB2CHq6bZHwetLFlA4RXTBF4yWZUL/NW8P15XWppD2REvw9ehNrJy+oe4g2D1pbfTi17cShUSPWp2dhUrQLJyy6qzeKqyu3FmjV39hRJqFLRYop71P+RiVBN0fkkPLbX8/t/llFZZt54wr/m3Pe3rbdLD9VrmkrKJ0H9S9xPcRD4AzlXhZm/L4I/EMQaYqfto3EGIFvzI4hePY2n5T2Eeey2x3eSwBO2F+rfv6fTbjDi31Hh37+6390M909tRrc/u/3lzaaR1AcXIUh47nwOjKUMB/AeTIzOTr17tUHy+w2hu1AynL8Z/ZBVlXqAcGsUv59VC+UWaPKg8ORwWvqbCBP5mbY2ZDIcRATd/1aqOCQCaMMiSVnwqphJdLbCgQaIxmW5DEgxclWJLDobG8wlrGIRhQFVnC0DqOHSe4S+/99IF990/t2yUync141Q9nyfim/9RuY//tsdG+9eEde9v5pZUELci4W/f6q840lp3xTJlgiFmp/pbqEepMCQK6OnYrNm75YyKAVQ9ORyDI2reYo/Kzdd7NxE1GbKQ9YdhdgEA0rA9yslV51qzZHazcLwkfrTqFeqIXB44yGGa2iZUg/iCWD+LwOOqIsClEyio1q+2ZrFPg+1Hu8mBV5OwoV4G4cbCAmsmdQcGpG9Zy0FGqwegcQEYNnggw+S9iqgX+baUV06XunWxjZOFZWjWtbCmah5fYIfCrrAzveJr6/mZS+0nMFeirXwSIXuce8yUHqPO+hg4yP4dldCci0cxauz6A8rX2gatIoOcuVFM58NWv3L3lkbwjP6unZEfu1VP7o/3ic6N93YOlAnjNHfZxBWIRBEmtzVxlb8fzj44ThQc5lDQxehZ305uxNEu6ZLhTN4Gg+J55bltbJgqTWgcKOIikR3GGJ/nercNLxG5vUlrbtlZPnLfOUEtTJTteng5JrXiGCnHCjFjnYlILB2pJMrJY9hJC6eFxT+DEeQ9i/PR4D+hKuS1Z7wS5UEwUkHVufkwZV157TbSi8/oE6KOKByqTOjWiYncYKQmXSppkVE76Ja4xe89SnPoUiA7qruW+nzLJWBQ2v8Q1jLZ1JpOvX7OsrTvoJLxinxgXJGF0y/LCNB6lzguE6+j7xiwHmCFZhf8M1y+zFkTekST3LIVOonvnfbhp4/qhi4O957H9lWhlNbF06xIC+ALr7vjzXmBsAr8YLKBffIx2Fpl911srO08Ta7LssVQT5UqkdefWwNPQjWOhymGdMjFcd5fPC1oHZneikjbhJUgJEwNzSh2kYZsw9jZhoqjfry9YldbkTM7CxAMKPsVgE/U1xKdssKFErVFbs3ByeSvzx8GK2t36FRqymDiCCOrUANuVx22GyANRSxB5Mw6R3H7qE5199//e8/ZQm3HHjNXhNZpdawZ796f3bdGdsrdXnW2R7W9lltW9DbNDxIxgj44ElA8xfS0JbqrBxgWBWyAXIGSKEhE/OGtnq6ysHVtZwQgRW3GRyKBTF19Ui46uy5JBBxxE9coWe6agj6BrwJdvklS3Zj3Ng0Wmchqu7JjgQsGzIbiDs0dwKXNy1IxevlJ/bR2M0e2DgwikgmBrUluzXIibq8y+y21GsgfxnSO8oAuP27pA36AFFG2eoIgUNAvtMlsMB7Z9lh66qP2jJyeBYtdRI5AHnwRbLffR20PRFYjHSY1IEEwlgMMGyyk6ewy12kfiS6AyO6T11K9V/cPFCFRg+WxT2o8/m9nH1WJRGufPKX/0FTVOUEyu/hrVypvGgsd/d9ixa3VvCdz+23uv2lfce49VoLyx0OhAQzlQNigKnlBVoxjFr4+kHLMx0MEoyoW6m38qYZ9D3/HEQMGYYDpeN/fAEMcHCYbcrgQOusyjOUMISjz0dw9Afia+qwdDZT5xBS6IWAiGRH0AefQapaPhUb5N8ieh/qD0tbcy21J/6GGFSDNbZ6V07V6KXrpAJA1VuwRIePBa0E0IFawUjL5uqFqpQw3dLrid/Blb27lQu5BM3n/e5xjLKNJJAj0s06A9DX3r/pp4E7Je9wq7emmpvWp2ChP1Qohle3mp/r85AsrO+Y8Ap6DnfD+4frjAwgUgrnCmvO57EMbMA2fzvLWpPH2hZVCdCyd8OX8Mthgz+6lPzA+tdl4gcjtpzfrzTprMNx+bwO/Y+MUnnJf3NW+Y2hdtk4078uclKC+PMAEQU0wC6nagFzi/1Caej62iemXdIna4ulfWC0DY8PXUcBukkD6kbo6pBIkFJyf21lVXSbY/ZjbvQVOWbuTcTKxpWJwEobBTC+9NqEmvq3GzshxLCHgQuQ4X1IeeYfl/KathNvqexzv7gfftBh9hM+60sdo4xs6uzDN71yev2qXZ1H7Zg7ndvd2szJPTxhTJuzZPNUlno6ZsU4Lg+SGikmnw8VSUwW1h6dl96jIhp3tv9eslEbHHUTAmfpBz9YRGXBmtPGDzb208myGQtZJSZupNW4enHusi+niCqrBZaymFl5h620bLN7eECD4TQWKYnst7k/+FsSwcIdky6JAFgvOSmx+KfpAuryMEwbV/lEE04XG3O1h+ymyJkIXkTOIWRCScSZXW/UANOg41DlaUyazjJUhgdAThvIWcr6QTFTIlc+yXdKB6yZkDHY9FPl+VNdaUU6EJP3lxsIt77TFRwmah23oAfAJicsvg37r33wn3tbHc3v3Ygf36L56qOqQZQ2C3Cnq4Bu+XTYVG/ZZj/nvpFZjAeeLyh8Xqi/Z9TEOERZ3z/EStK0C/XQnuxf/ocxsondsHu8G6RL3Rjm3VFkxhontAqkIsLqwrUaFirAx/ksgq6EJLV3o4KxBOe1nZYtFbUYcYCVSfgCtu9cqyRMFytKuj0kb1DJCR4wtPWTjBVQRvKos7NQO4RTzBrrXpaffW1PnKnRJNJCQjErxEL2H4kDmiR3lg2MH10RZXHWjZPtXbZKe3ZqzlS8qeUm6jnq8U6KH2Las2evqGqlZCLL9HauMasmPx9MpO7ROhWtAtSM8RuZlAstfj63JiP/v4vn3wSTqSr431KbS6Xzefc+mfyez9VsYm8DthfPAzB/bMXmdvfY3Zt72e5snO45H3TjbYdJhaBaF6wJzZe5GKny1hRKh5gJ+V9bORu3+RGt6r0XuYRvJ6JFDRvmZAPkmhDP+8aPkELQr1LyIPvYbKUs4PFEpQweXLra9yW2Ywizg0EW94AKqJ22M9483aKSX5uUwJqrMPPbe073t/a5941r2hNuMOHoe7ui3H3n72+r5dfLa2b97ZsjeXC+uzHcvaazaDaM3R0RUiRjco7yi8dr1NxWtl7rtZKusBpC63pR82A8anRQSJFGSc9e7txIL3p3IPZZKwYjkobbgGCsZGO1h9NrdmQpnVRRZqhSWlX2rbFgpcAj3x+bzcC7AuZaE24SDGSxGR2zj3dnBQLEA5nCfYC5UoMGyViAOEUsQe775DP2KrbMDaZtd5v8M2XDza2WWWY3ANRYTNfwtEzm0v1J+1ga/V2biEvmHqojHHs00lNSeMy38v1NXqJiTfNxPyz68rAgJFhHQS8bZZIC1YhewVhf3k5S1775MHdp22UrdiCXtS+7I7Ypx8fySoCSX4TZ8ZNkfpVU4aoF4/96m5vf3uzL7obhwd1WfCAzCpQx3VjSa0mkcCBIR8gSh54OKzlWtyIQMIFiIGdaIIUMGDLHd4xsuSYEe+e3o9D+jE6VPJlnKqCzn0GeMPiYgU5jJtD/RbqESoWCMBBI1LCQfrhjmf9I/UnJAN9T0iRufiScUb/Fn52kkUEetR9km8j3ejVWONbrC6dpGTNzKApwsNqnKhRjva9lYtz72WloRhUO6WMaz5EHqp2ZZbrvH7JT3rsV05YCl3dvpcZpMp9w0BVmdZO1q1Q7md9TtY3yBu663actGKl6QJAp17ksGlF4843AM8orZqWlizS9erzEb6Y+PLGT0rfd/J7L9/eKGgdpUDHA/6spuvzZOYCbfKVtgEfjcZF6829uO7ZhcXU/uONxV2wa5bVsy8517bGm0uqxxfHz/MWMaUetSKCViXMnCBWtEPjZpyKg2zJ77wVcaRc7uXZlg8kshDNhWZ29styduLjhtcVI65bq6DhOxH7uZ1KWsW9SN0BzEJSaQIjMNQPATsZpJwRVYTnb3vycq+9yeu27z18s9m3Bnject8ax6+zLnHLvW2t2/2yx8o7Svu3rO6NtstB1kckKZAWt/iGFmaxESLorOhcq6pPKuwYSlgto3Wzyl5cM5Q9HG+Ht0pJGTqEZJ4qYjgj2SHuby83llxnY0K7upo+bZbL/BkEhgyI5mvgoCAMMT5SRla/atRIcqj0D+TQBG4Q2FKqdZO8INq98+rhTLQNcNJ4DrgskIlN/7FQSrAL8tszoeg+80cS4bCbGdUY3m17sSqaQC9oJcoqv1W/Vp1MA2R9UP+VnN552PxEkGjcp5VBLQyiQ1yPTXnJS0gw9IDpBQVcQMnjPtYdvbMUNvPfXqwj129YgdLvYsNXOhm3DAc7Tv5qFSifTwuTKbOzuj3H62f1+svtbbEri16+9FPtPbQ+YmdUSJBoEQ5MDxTDbRJdUsFXR4IOdLM/o21GEbHKrVGAIfwiuSDVmIggApGCuY+dKLRumVpW3T3oDSpXu8YCFfRG5uF4OVhx8m8hdqqm05QLBJsL8Q98/OIOVcHP1FlaugDQ6mERt59gr+gZoy2WLY2dE4DIaDM5IMnJmz4GZZy01CSGP15qVC58IoWpwSDvVTNEnBYZc3CS8SsWTluqCrA2nJzaypmIKEqwwKCyAvU+bztsrD5Hl16XNg028mspq8ulioL2q4VVu3QPDuztndmcZs6dlStQBTOc1lTyTzbEy+U9PIqRLSjhA20MbOtrVLtWqkcqF2l2ra55+C/+KkroaxP/b2PjfBF9L8eto5c4cSrOfni5/0m8HueQcL1oY9ft48+WduvemttX3S2t7N04IBkjXt6h+cZaIX3vR0r6vbuvddWZPOFpOHeqzHc2YV4uHel2tlQJBL3iKyCLAJytvfrNJS4lHzHzrbCyDJvOpeS0yJuMloHb5DVDtGbCa/FmLycgNAbFQkoyUHQh+vwmb3R/u9fOLBPivOzCfk24+aD8uPTy7l9/yfNrvVn7Z13jXYPPanlsdXYwbyzaqjlZs9BVHS1DRn93PDoU21UZOtugFdqNp1hadBZmxOmePsk9k7xm+T94hyahqz+GsZacNlG60/BbUMZP9rYoI4jzfGyGAkWiMcEWwbKo2TfzaDSL8GRn+tgLH6gincYm6U3F3DjaDVeh0tYlrbfUrylrGa2nHtiVLNwQRHlSZZZi6H6EnQkU9CH8pDIENNmjNaVDJpTNLYCJeF1KffSHQ9kHwsc3gmVp0QwUXoTvUTiMlpDQsAHfenlNSgyubXOIZRdVG9dy+eu7dF9s5+52KojizwBaTUlqeQLf9d3HtKXxgvwqo6omf2QTq2xUnD4QkJLKAiPPru0Dz5T2zseYl0gRCCQCnuh4GaqTZp+5ibdmOuLHwcqWOGTF10n3OXOHxfJDCVRaERQfvD3P1iYXd8bbWsHA2WU5t7/WciXeKBe9u1J/PWyjminrh7qSS1YPBlDc3k80B0uXCjh6CJ6I+GjaQ7x+rQqxMJsGUISOWO40ASlMr3hReZQf3neE3GWV6PUZg1+O3wOTKaltsdVoLed2hscKDWtykD2OBNpf4hFmgMqcHqdZAJHOLPFfmXzPUrBRLW97svWzNXx6o28Z5ZPGuf1gqDLWgd/wN6qmguXssttk1hbgC1J2Qx1KhTR3jvZW82J1lJg0Ay33uktVVbaY7utffRaKHxvZYamfeHIpHwps9lHNt7ian/Vyfhf9MjsSx6Z2lfe09ub75naabb0obGxL6yTQaabQ44ZiJ4vLrXocYaeylHqQ6gMrRZnI8Bb9QwtBiZ1IBJquI5qCKVkpwzHk6jRZiww0BSI9OVUi9m7G7ABhIIXA2jJ6CmwZbYkM8wye2Z/tB//+NJ++tNLu7q3Keverofd52qtvRRCv3frRLiAnYLZm2Yz+8bTE3vTqc62CzLjiSyChmxfwYsCQFpU4X2A35xsjdwInWhnbECrW72WFgCiCeIX662aOtcJ3mp3UFo1L1Q2zU53NtTw5+hcw+v4Zs1oCPRQEJrZgnItSF0gZBidZ723YySdKkAbltgXp0PbPyNrjxNJm7WOE0+exM+VcpYm7r3lPYEf/atzldUIGqudHF2H0BMFrLnCOLOB9mqDddcJygbbPuc9RbHJoBXblj56pr6ui76Qz6YsNcJOWQ0NVl0T4Axlup0coCgwOX+LlreB2zTYs21uj81r+/HPHFjDQazWXOkQuLVS72czbqVMfDuuNaFajDX7tBWSsj4C6Vv/DEkQdetrLbMvu39mv+MrJu67FxxTIjuERugvvGUgyUdS1nqAKFEVqYRsQNzLTz2jxS1PJsJJtBHmy/koc3OEi9unS50zKkXKliW6XoQwQJ381LQATjiJjXu/JqEU70clS3w/ia4ITEUCDD9BrzcRwC7FwfB7KyEJ5ehhsO1T+IT6xWJjUlcTgSTQOoSiBQWJc1Q8YRIn1svQ2mSCnybvzVkWTXhF18itW3JfUBVzvjpS39LNZ2k2qegeZLZ/LZfVjfMgB9s+Q6kcWpS3e2yuk0AOVuzINND6prUKk+0xs4Nrg822SCRR7HswJ5GJuq0gYAmGNPdUiaGXwCc6k3PjNuoaa3cruLTs7d+977q970kSyudZEzdBj1c/iv0qdZJZNbeLufB8Y4P43fIY7Zc+MbdPPVPYIxeW9k1v3rbXTkEB/E6rvRKt32Q+6x4962m2e5u5wSaafAlEsJcAuQgZrdTAsKX6CAbl0ydvCHH0mNgyIhecF6agmLSSCeUYN7jHGchLnReuzh1Hu9Jl9j9+8cA+szfYY8+oaLwZd+B4KQevF3K8NRG8hY+1jV06aO2tS7Nf/nBtD+40lpW9UDg4LmyaaqNGVMKE5HccUDmN3tzoVV0qYD7j+4e3yR6q+ZkES+2AYXhmxYJ2iL0NO7111WC1EDNAcFfGquVbmKAyKLWEcFHdZxA8DgjfpUIR+Gdj34gYz3O8xRMIh5iHQjVo3UbmTmlYB29avwSstKebh1pwCiePg2qwA0pWskJyigYHt0jmoPysVQLbBbEvh4i7B4iWkQ7tysu9rHlRPcK3i85B7BkSzZAE8vtyasXYqFUe19zlS1UdHp1P7T3Pzu3pAzr1uD1Pd+xb/FyP2zGoe1HjGJ/qSK/U9Jc1ov1LTc0+8PSB/ewzU/vm1w1Wd6g6Bdc5gs53RzUpknwJlsIPUu0B1wzGVRKVh2x4UUpD4B1ahN1lbvVVbY22QF26HG0686TJP0HiAoJqwUFf8+cDoABlx4CYYBCjcF47+T66K80q6BOgTOtCwkL8BQmcpFCO4ER0KIJL7/DhylunYfBZU39ufse1gE7yfoyEirqriZtMq2IaYU7iz4tfy2u4s7OQTQLAg4Pclnv0xsY9Y7StbXLVUkmW8ytzW+5y70crTvv5yefm/vZtZ33vYim+nHxwZS6KXvi0qmy7T5Qe44hpeIcSwNMGltZ2OdU+f0+SxE9c7mXs/dmumDUM2v8b1JBbGZvA70WOvXlvH3yit09f7u30ttlveMe2nS8ataIps4UN41SkVd+8Sx1IqXVVqRYvdDgIk02VofAUcrd1Mh81BmFSNg7fk/Hg/af5hfO3pOPuF9ZAtqDnbjbaos2tKyguoRarBH/v9aO9+9HGfuZTnV0SxP2Fvnub8Yoewee53Gb2nsuVPd7m9h1vPm+P1Ls2w8JAFhKqD3ubqHD298y9sKWqJfBiHQEAqijocQlXTR1lltYvBpuN27Ys5pafR7lKCTNMV+OgUWdF9dX1sli6tokQCW8pJcd/HssVgAJgX0cf6ryUdxiHZMWhFwpZ4IZBqkJHW3gfkA0OQYJVuFiGqm9auhErh5UMd3ObY+BMf22XbDkBXig+weFoB4PZwbyxuiy9LVYGwSN5rFGig0vk0EqRdzan7IQ7AMR22W94qZASeZa3LmAZa9vPavvZS2Y/f3VuB8CBOvRf/IFCKRn/tDt3rDxY/D+B/h23all/6JGf3XIg7Era7//gNXvbfWfs/LSyypujy7ZLilN5w3lLM+9lLfc98cJQycrrNUQR6kOL5596/YY2JJUYo9MGBtHwbJsFfpSYC3dCxfEDdPN2P6ugWahKREDWhXVMVUqQKqU8wU505lHnDnUPcWTLm++4U4TzSZm3dMPolEjJ1gkEDjqCEhv3xdRZFfQnnqvSrBT6rnwWmIGQDN4e1S/a1/HZoFYU0EdSe7No7yYFP1YyPJ/3N7t2pRcda2urs63Tue5jSzk8enjPd6F39DY9zRsMtpThOahjYVnR2WKPTJJ+9tzntKd5HkxrSX12Ousk2xtaqgqV9HvG2Yy1znI5KhC8NO/sP39wzw70BbzAuEkcdwO6ruTWVcxhxfiCY1Pq/SwH8/bBeyf2dW/M7P5qtLOz2qYl3fkIyODnicCkJtwygNYhlowwsXklc8MP0BWJUzXJlvhcUva+5WBp1K9QCie4D6lEoR6cBI6JjJ/bQdvb9WVpv3g9s3f97K6XC77QN+k2HrcjUvFKWmscRG+4+5R952sae2CH0kZrNaXLEjET3FaI3c4jh/Um5RulEIK/gnJJbFhJwHC9sFm2bX1xYLZDH2EOOlfkMuTNxx7NWuo4dPxgTFYSeoyfGgqE6JvZltizeEkWJWOzbHWAqA+3SrugDbmU8w2IA0Es5V16Xi86G+hcUg9S9cF5QmwlhaKugey/sH1ZJpWWqeTrWf7YgWr21uG5ttVI2Uf5mN68BH9qCTXkVmD6Dq6KL/wE3z/Y4t4tyBs8esltYbW4ffM2t0/NZ/ZDTzR2tVmumce9lLDvzl5rXuo9ZMwfWiqvjfV/3mLg93yD+f+6M2Z/6FvO2SRnjYw2E0WnsDnBEokKpuOa2dFYMXrDUsJEPEGlk0RG3S2wHpEXH0IlkLrOrccUJDJ/8AwcFfxNt2qr6l5om9TEcORAp1HmyvR/VD9nkGRvZwt9ItqY5rQJdCoHnDkXOwGl4zzRa20oh0pddoKnqL8S+GE7M3MqE++kMmuiKomf7sbMOX6BK4sZkEFv/VghKoN0W7nfJqbQUgtDZYpETIAL7U+70vaudGrfdvpUaWfO4M/HvQsnSyxzUOsejNaVS5uecUQeZyWpkrXOKfN2tr2NKTO8ey/1wmLB3YNEF9s+lX/VOo7Amnmey6ORXt5nKvYSs8XS7CAb7Hvf39j/fnx/FXC/4Fy6BWPmVPJdHy/k0LFB/D7Lwf391FNL+/RTZtOd0r7ujYPdX/Z2//nS7t7mEIGw7UwpefSpFYgb13L4KIuQHq9yvyWhgfA6lpb1lTUOhAvWJwtUw2cZQZLJeDl33pX21PXentzv7UPPdPbRpxbegm0zNuNzzAnkwHj0mev2b3Yr+6r7Knv7mYndvTWHO21DRlcbswJELC9X3T7YIDnWZJchZMPRKvACEPKDds/qbQRULp5yG/IgwSdgBosWAiUZ0IalxdomKTNVkAYOL8S3IG2tcAAnpMfr6cCU54t8lpy/I4WkWT+nTUhuyynoWylRFYfipCj1evgLgtXxfFcKoyrkc1NGdmmkzF97SrR8xEZWNyRzeTPYtJ44b2xoVC7Oi4n1y4WT0dWpgJ+BxjXWQk7PB3u237aPXmztg1cO1IvXW9ndfgHVKyuZWfc3XPvxSZc83hx5uVU7HNL6z+yV9iOPzu3b3lDZVpVZPTLvGwV89HRFMOhAdAQI0WUCBS+UIHHavLdg8OMOS9PYJ6mgiuAhrqmuc5uUme3uNtZlNXQ1qYUXcFaJInX4sAQc5QZ5VNiV2tzIl9PLzhK0UK2KDh+Ja6cgMxA8CQtD5CAOYEEXHrw8o9NVeOE6d9AV7GFz5wpfgiiuS/1uJU8UEs+GQq5HmZruNwBny35hs5qkKOxa2EOumS0Xo1Uz/PhGdbXimuT52Tty18wJoDubnpoI9SdZk3WMxJgEy94Oj2qecxh9H2pQB+P5SaJH6Cm0L/ofw9VUQmFKVtU8Af/dsrCf/szS/tfje0ecE1Y8vZut41tY2iv6wYvYBjaB38s0uOfzvc7e/d5OpNEHL3R271Zm23Vnj7ymttfuDHYWc1Ue2+EUzuHHTPcWU0DnbohO0EeTaX5GxoT8u0IH6Wa2tH3Lc9ttK/vkxdEee7ax601vn77a2iX6gd7GGf9mvLLGrQQU7v9lduWgt3c91tovndmyL9vJ7avuymxr6tYsIHtZW1hPgEZnAR0q+Ny5gaytzKDh+hVqrg5nhoNJZubixuEz6UCeutCo64Y/X6UlbE6kYnVDW0B199D3jVf4yQCKB9qXRfLFAeAHJ4+H9ycbiRaFPeszs6LuLa/dVkP8q5xuGIcGtELn5cUZbv5g/aACIHXUpAc3n5VRc+8cPtI/dCLwi/D0lD8fXQoo6ULiFf+Xn1MN8JLfM/u5/WxLgtfZ5X08PSkjJS7xyeN26s5xu1zHTcfxUu4tXO4RC5eTAsbxhL+HVR/lxfd8bN9ef3rH3vaaqS37VpSgKbQfURpc3OCed96xSTxPlaG9T6zkHkLQ06lPYOMX4MJw98hTX2kgh2K02fZo1/Gq23KVOh1DAAkSWi60c+Wn5yVYEGx1v1HFanCFrZgJYZyuRMyRewWIPC4FgQk/RYBVgnx1NgkRl6jqxIlBjyCOJcDFPknXEnQLIWuo2gMhxN8vmnu4n23m6LyCvl2za1dplThaPRts5yzCMyoH3AeEVqB0pQ1zbLUzm+yU6qZBmRlOBegjtlR01aHbCdUKlNV8HYi1dH5n2NDwcv7Z8M0UtYSEjXUuAYwLadTFIzP7xPXR/usH9m6YQzfmFtHT+UWL8BJwveH4fcEGXIbHn+7t8ZjYpz7T21bp5rBbZyp7ywMTe/Cs2dlisJ2skW2LJjxIArN/gZiDV0IEgiq3tefmuT16abDHnyH7d6PXvaXZ/oIywEawsRlfuCHmn4Ku0T59dW7PXu/tQ5cy+9L7z9iX3zOxs3bJWnzIMDLFN08mrARR3oJMARbJDSVUtqS8tyUKWGoqQvSwh3bD5aHxQInQSg3cJfpw82X1wIT+I+9lDhaMo913jH+PiDTk5ABJG2QDSyYXabDc9mnfRplnIR2zhCTDhMMNF/4wzk2N7zmQKc/KrBbEghaI7h/W0QsUgYXslDiO3cKBo4PDRSFjRqs4IMvBBiLJHHQhPNxoX9cONqs7uzxM7aefy+xjV5d2BS6kG5zpUG5fILi77YOt22EcC9pWPKk1n76bj/Hk+504gtmNJ3M61PnfxYXZjz2+sNecrewsCnS8JPHyU99b1kO3Qv3cWzmCKim9OQPUnsbRvbAtkQCQICk6dAglDAqA1kduNp2M1i4KqypKqm7145xbUPYoEwZZTOrQUDRTEqYHr1AqmgGoEUGvFm8LrMhUzMot61oFT/456TXtYkWtCbKkBuslRwOhOFAaBiUE9aYsSincBSTe5lGpElQNgjIiMQWqo3iDcPYAvrnf1/cKW1x0iyjEV1vnCh2t2YL9I9Y/wo+DzGZjafmW207hIuDv6YINNgns1dinaoJOaB34CUp8Satskkb3HU0WNpS53SCbcncS5RT693LM7Uc/sWuX8R8MG57jU0h3KpXIb5ijaxYEN5u/4at4q2PD8fs8DyEd8lEiw3HDWvyApOjVF+hQ+SHpxBeh+A/8V5r3L/SnePWM2/Fw/PysNTbZmbX9wcuKEntXDDcqJgC7d2L2zoe27ctOdbZVNpbVfiTVKFjpFy0frLlhspIR+C0oBRU2bLU20LdUpxLoH4In581AniZDh/NUV5W3tBoHawpsMUYhZ/xbKkgyJHls0d+6sH7ZW9WXVss/jE4Xg+V1bc3QWwff6iBKM9sEjIMC0rGldaOXfBCQSElfZLJpAJsgeCT0xBSWMltbgs+3lrell5fb3LZ2OMI6lbIJ7vgXvYVbFMvlTG3o4FW1dOjJBrs4VPbYcsd+4ZnLtiuU4pVP3bgd1xpzSWOtXKu/3cq13oLdxvrDTirHgeb9hi87bf/nw4gJvA2b7FWyzhrFgI74gR7BVyV4c1dJFzckloJzxgiMoguHSr2ZUPApgo219oSUOpcH8GzN6on31lbJNcQkcA5pG8jbqAoMrU7+fu7Np97bal3qZU73tCMQ4lrdKkaiDTUQCIsaoeskblxfb9MJMRfeeyBufr1yaUEUJbTRQz4pg8Wjg4fbWz0lgUylVi9DDzaxbo++uFi4wGNEyME9hPOYW86aK3DFIKesbNhj7WPdoihTiB/cXr4bCWZAV7vRrl7BgsaDSzkNiH4R/RNHs4kSUE96vTc2I9lL5VbLZ3Gw9zy+tH//gQM5c4zPQwlYqcnXBOXydgx3juOP9cektneHAaU6wqyELyePDeL3eR4+UYLIztD3s76pp7+vf9FrpIDNuONHXW1b0+5/Vq/B5nD23Dl77iKB38s3/HBD8ODdAJ5Ylvb0x67bj0/Mvvye2r7s/srumaAK9H7Vmv4SpxfabOm+UWJOjspv7K1pWylmtaFWXt6FY6NG7erP2eqAw2uva5c6pODTKD8a2IxbXQ94Q975KcYBRhczgshxUqgnLnYz4zARj3ay7f8mMO2WHHCDzKOFFohe6OgjQWNST8LLwksTSBBOIway2EJ0lI9HWii6yIsDAlSzaxup+LlHS6wn8sLmVtjTy8I+vNvZB68uxe/NOfDCtmMzbuPg9AWCwCi+3viLYbT/9L7rdn81s7c9OHEbENm6oJj1EihIkjddCjuWxA2LoE+IdiCJdQilxBAlEBTqtN6CzhW8W6dGm19nXhZWzfC3g1bgSLT676rjE73dD1FlkDn4cwg8VMaVHyAqWAJLvGsh1OZqLuB2LmVco5eu4c9mVWYtoorgp0qslYEawmd17i6BJ0pYAkCqWXoeRuWh2HWTZNBNCmVTu365oVmw1vmZ8718llv1qnflrSgkUa49uE4gnFk1GwwnKXW3ynKboKhmH1BrUwJm/9y4E6QTGTGxjm6uXc5rERyHilfBc2rsojC7t6cOCvvhT3dyNLiVubeCfJJgY30+Pg8N4UiEcAtzeIP4bcYdPW5HFOKF1tr27D7bnz+zhvPffp/h+NCGmJs9sF3bm+7estdtN3b/ltl22VmdtzYuSxsOOOUKyyaZNTU+gARjTlD3olG45KcWRgR8bMa0UaKkhO8f/nz0+MVxX4GZE6w5Uwj0lvCDtJP7ps5AAaid/CCziqC0Ar+DYJ/bAk5g7iazIIEoDNUyjiw7CPDTvLT9xWjZhLZVnMTex7NrMmuWmRDI+hSo4yi0UZ3X5HqW27Is7WKb25MHg31safaJq43NMWZ+FfbNvq0NnF/KWDN9XvvRkVV5xGD3eT7/hYnZ7/6aU/b6c1OJCxbw6ujUAdcMGkEUbjEXV//mKDHS6UK9fBV0ZLIMk9RAHV2cL8hnRAiEcl3BRfTfhQt7cJBZPs2sxPhSIkQvLXe0BSR4VFs0X3OybgHtJuhaSUn99VD381+pfbEiKvy1kt2LvEBlFUPHGzphFDatqXqtFz7D+YIAD3umMrNpFQgnl9cVLsigCcIkt6bNbH59tOYAk/XRTu8UVgYMD9KnVqXsBR4hqsSLIHJCF6AyswPa2kkwj1DGbV1kCZPn1izcAJoAmaCYRcv+wbrEQod/w7GVtZRAUK7dex+rOK3PnNv/52f27Rc+c+tJ+nE7ltU/j/NFj0y4Qzui9LCNqnczNuNVNvbnz76iUODVvjRk9sR+a0/Nr9v7i8rOz3J77ZnevvRCaaebiW31rWVVa02dVOuUetwbj0wc0VTf9FbXtS0W9Cjw1kwqRw29VWVuc8rCCCWkJIRg7a7OtDqjjEqpzJuk5/LQEykcW5mhtL5EbUgP4lIoRIcGGQsLPPq0o8JrUlfTyOwLKyibwTnSNUPZI/tHiOJlX5m5wsGtavEZeVWAgnlW23OL3t53sbMnu4ldPmhtSak7jKpvt8E9R2S2v//ZIc237TjhUD1STlsfz0O3Wj+gsxcR8F5pzP7nR5f2294xse18sCnlS/Cown3QJWZYU+46J8xd8/JoQSjRR/KhBNmWGMR5sqBn8mCHr5qVOvgB6OppZvsNYqgslL7Oc6MUqtKuUiq/F5QPHcd32pGqnmUyUIf/V+nfelyggQyZldMrXq/s60fCDr0u6yPK2QRdPL/FGgb3ilwiCxA/HjtvW4mfeO3lIrN9jJcX2Kq0tn2qVtAFDIgzBh6fHsjmVueZzReZZc1g5cx9AOXpqXjSA1QJXPAczBCf9UrYCPQUEIapNfdUgSmBMR2D+GJCQOaBvptsi8rVDfYf3nfd3vuZxQuLrI64EdzaOFrqjfJw9iKev0H8NuNOHrcjCvFqXGupXy6qV0KuxEeW7UFV2N3buX3NvWfti843ls13LatLOxhzm1WjTbNWz4BLl6GaS5t6BHWoFfOhtkVHedS5TZRuZCDLv0s4ShxImJ4TXCLLGGwylCLC43eGkXPWYFqb2YQTcOy8e0ZJZx1HC+FZwS2CgU7zeTg8ICxAiAN2L4EcjCAHIINZbvtzrC9qm53BNHdhe8Vp+8huZh96Zm5Xu0ZdPrwU5veHE251wJ8wCL5aTq0vwPhsVcK341rzkuUJYox1pG4t9FsFd/GPG8S8L/kjMndK+6bXF/Yr3zSzST+xA837EFcMBEXeRxqfPjIRAiZYsKIgwAGlLzMtA1HbwgtVKxCWCu0Co8tNkO6EoveDNWNhB9dd5DDb9vUkTzx4suoA4v5+ovZhWhfdb+FawHl1+hkKc3wtCbLc6PiAWmnR2yweA2WQQWzWItDqRtvaKqysnfpEuRgeLgGfEEYZwFPupkTsa79bEHZWtpxnUt5LRFJ1Vp/le8RYPYJQDKG95mk5a3lp1u8NVs3Myh10VHzhle22rXiA04qWjG1YsxQ2bxs7uFbabDLa5JTfZyV/JJ905iLwy0PpjC8nfZdli0OySQs3sx/8+GD/vw9cUsn4uPAnJtWxiXP0n0cqvCesu3We4EmcwU3Lts3YjM34go3k7+V7ko6AVTlDhqkDStrO5ovKPnXlim1tZ/ba02fsi88Mdr44sB5DwK2ZZeVSpSrKMQyZrEpFS6cayj6t83NknE7ghs9rKUK1oxWdLSDI4wHWcphkyuyrEn6SIwtwl4APF3hEEFRSGqNDmsxuU3cA77WLYo/X9HZRcSioq1tmPZBe6T5q19vMrnRLWxycso9cyezp67u2HJPp+nG13hr39ybjCxX0vVDgdjtZx7yYcViOPfzH4ac4RFKOPD5qucc/7UsQVx55dje09r8/3tj5IrOveKCx7a2ZLejYib0Xim6CnYzAzqwOvp96wmMzpO4rIG2ggJRHWXOOPkk1Gx6U3kTKWyuCcjdL5nZhXUtnkM7qGv+83Mqa10TcFCbQqy4ajgMSyBFrYlUizEsqeZA/VwqrYUGU0cVTBAGUQAO7FErP0VZQDQ68VRp/l1QD/01WG0HsWCmRot3biMdmS9MCupt0Np21dv58YXO4uASzUcqGX0w5Vi3Sxszm1zorJ/S3R3CGhdIog2XPG51TqCQUYUvn3p48f4AfrDCY0jGIpt9HUNQqA8EXidD6vrVJKH0BXz90cbCf+Pg1W4Ya+wW/+RS8uVfPkQl0BARYCxpPXGsnUA9uNjaB32Zsxm02XqmH6EkDhIJg5fDz+GZ4dEODk0R5ZrS9XbMP7l2zjz5jNrXB7j89tQfPjHZmMtqZYrB7tybqipMXCCcI0BBHoAT0chdUJTdHxwvQ2xRm3WhzVHzi6U1s7Jdedirc7HVoTX162Q1pJ8dOr+INhHUUcqkpvQxsCxlFY3DLEYsyEWRlwsGYlSo9P7MY7Jl5Z1eXhX36em/PtZl1z+yuNnQe4yWuV8d3zPBWX6+8tm8rle16ue0GG5Zj/zwBvHnRGP2JyE+Gk5f92JOtPXTXtu2cGm1WuUgJ6kPfR69etaYleKFfMyp0NbhQFw4ERZSF9XKUbhUA+psx/yn/UuptGrNmCSUBCgXfH20TeRkXZs13B8snuWUzEDEvcYLEhdERLbiV1LkAxQM82dlFXEkASb9c/Vsoovv4ySpFLeOco0u3jSR4JEglkJLpibqy0cubNeyVAkq7y3lvszqz2VZvp7Zxw6A1m3e2IYBLQSrXym1oD+jRW1ixRdncW6dl4aPo7UH8/SUc47kglLRxpIsW6549QwEhrSa9h7ZKqiIKu/J4RWXJR3tur7Af/PCuXdzzqsaJ3/mxkUQ3aaxvCyus+WbekOvj+Nx9vum3KfVuxp08bsfD905ba86Zq9bKSa6Oc/WioxaTfLCdqrBz2xM7XQx2bjLYPTuZnStzm4yZ1TJUkemRW0PE10rLRIK//byzCcVZ2Vq4aITsX1Ysw5ZhplfSDhE/NQ4CkeA5OogC1WDK8hGOnrOeOKjaYmoHbWe789GuNr1d7/ACLO3Sordri1YHaTKZTkYLJ0YNx9DRl+OOfr65n7eSrNzW4o4Tvo+T+p6+mO4INx3rvYBvogB++Exhv+md5+xCMYhPJhsX0DwQPgIkOvqpTdghUCygOoQf4tiFlx7eecu2dw9KVLdiMgxWT51mAPotAYP8kwnAelsuC5vTuUZB22hnztRWFsgVMpsTNAVSB58Q4QgomRule2Gc+SDlvYwE8/D5tMPOOOo0mNvWtv+X1nPqN6tevHTKcP5ft8zVgaPZH61vPHjjOdtbCFIQZAzWwRGEDygk0MuxoJbdwWjNslObuGriJthSDXeUwVsP6KK7iEyySebEC8zs6lWsbigPBxo3FlYVrq7W61t05SEkVfA62H5X2Hf/3L594OmFi9COl2DXELkb5tHN5sT6c06YLjebQy9U6t0EfptxR4/b8TC609aatlraJYGm0YftJkFLCi5ALDgAMVdFYDvBIGUYbctau7A12r2nKjs7ra3OzLbkA7awJQdCWVoZJs56T7g6LaWribzF4OfYjHKSIxUACUtKbcXU9ofRLi8O7OL+YIsDOIJmuwV8oF6eZ+6Ths3MrVmvcFCdveuCXX7uYvh2vpyDQ/z2UwXfjmvNu0scPVzTP7xPQ3Dj1sGW4yjh+s9uZTyPLUf6NfPzkTOl/ao37NgFCYfogAN/zPl0lB6lVo1Eh7Imz1niebfq/uFqVOxJEFygQG2zpZ09s+XoHc+R2Cm3JRrU3pWrIwERCvaFmyT3XW1d39jWdq5+8epQQ2BHBwsJSSRhVTTTZbRlIyjLbWh6Wza9lTNUtQR+JDZu1aS+xMvedqYhhqB8XQ+2bBz5o0c3aN1ij642bh8z9I3tnC7ECa4nbnUj5kepZm3Wt43ViKhYi31mzW5vxYxSuH+bvG5Hv97MraLcQNohO6V7odRlX3ju6mg7s9ym2+lrcgkHLgESoVAg4Lrk50JcmNu//t9X7OefS64BIQjRX5+H33d8Tpwwv06abkfG5zLw24zN2IzN2IzN2IzN2IxX9vgsTIw2YzM2YzM2YzM2YzM245U0NoHfZmzGZmzGZmzGZmzGHTI2gd9mbMZmbMZmbMZmbMYdMjaB32ZsxmZsxmZsxmZsxh0yNoHfZmzGZmzGZmzGZmzGHTI2gd9mbMZmbMZmbMZmbMYdMjaB32ZsxmZsxmZsxmZsxh0yNoHfZmzGZmzGZmzGZmzGHTI2gd9mbMZmbMZmbMZmbMYdMjaB32ZsxmZsxmZsxmZsxh0yNoHfZmzGZmzGZmzGZmzGHTI2gd9mbMZmbMZmbMZmbMYdMjaB32ZsxmZsxmZsxmZsxh0yNoHfZmzGZtxxI8sy+4t/8S+u/v2v/tW/0s8+8YlPvOBzH3nkEftdv+t3fY6vcDM2YzM243MzNoHfLY50MEynU3viiSdu+P03f/M325d+6Zd+zt43/eH9H3jgAfv2b/92+/t//+/b7u7uDc/hQFt/TlVVOqz+8B/+w3b16tWX/Ro3YzO+UGN9ffz4j//4Db8fx9Eeeugh/f5X/apf9QW5xs3YjNt1bM61O3OUX+gLeKWN5XJpf/2v/3X7B//gH3xe3/cv/+W/bK973eusbVt7+umn7Ud/9Eftj/7RP2p/5+/8Hftv/+2/2dvf/vYbnvOP/tE/sp2dHdvf37d3v/vduuaf//mfP/GA3IzNeCUPDo5/9+/+nX3913/9kZ//2I/9mH3mM5+xyWRy5Ofz+dzKcrP9bcZmMDbn2p01Njvfixxf/uVfbv/sn/0z+1N/6k8pQ/l8jV/5K3+lvfOd71z9m/f/4R/+YaEYv+bX/Br70Ic+ZLPZ7MhzfsNv+A1211136e+///f/fvtNv+k32X/4D//Bfvqnf9q++qu/+vN27ZuxGZ/r8Z3f+Z32Pd/zPUIL1gM6gsF3vOMddvHixRsCxc3YjM3wsTnX7qyxKfW+yPGn//Sftr7vlR093+i6zv7KX/kr9oY3vEFoA5A0zyWzernGt3zLt9if+3N/zj75yU/av/k3/+YFH/8N3/AN+u/HP/7xl+0aNmMzbofxm3/zb7ZLly7Zu971rtXPmqax7/3e77Xf8lt+ywty/E4alIn/6l/9q/bggw/a1taW/Ypf8Svsgx/84Ofk+jdjM76QY3Ou3VljE/i9yAEs/Tt+x+9QdvTkk0/e9HG/9/f+Xvvzf/7P21d+5Vfa3/27f9e+6Zu+yf7aX/tryk5ezvHbf/tv139/8Ad/8AUfm4jr586de1mvYTM24ws9OIB+2S/7Zfbv//2/X/3sf/yP/2HXrl17yWuO9csB9GVf9mX2t/7W37LXv/719m3f9m0qMW3GZryaxuZcu7PGJvB7CePP/Jk/o8znb/yNv3Hi79/3vvfZv/7X/1qLhPLTH/gDf0D//hN/4k/Yf/2v/9V+5Ed+5GW7FtCIM2fOnJjtXL58WSUuMqd/+S//pf3Df/gP7e6777Zv/MZvfNnefzM243YZIHusL/h7jH/7b/+tDqaXUrp67rnn7G/+zb9p3/Vd32Xf933fZ3/wD/5B+xf/4l9IzXu8bLwZm/FqGJtz7c4Zm8DvJQwyfzKSf/pP/6k99dRTN/z+B37gB/TfP/bH/tiRn//xP/7H9d/v//7vf1mvB6LrSSqoL/qiL9KCAA35Pb/n99gb3/hGoSCUrTZjM15t4zf+xt+ooI9AjfXAf08q897K+KEf+iGViv/QH/pDKgunAfF8Mzbj1Tg259qdMzaB30scf/bP/lllRydxIshE8jzXhFwf9913n509e1a/fznH3t6enTp16oaf/6f/9J/EeYLg/rVf+7X27LPP3kCU3YzNeLUMDoNv/dZv1Xz/z//5P4uzBBH8pYy0Rt/0pjfd8B6bktJmvFrH5ly7M8Ym8PsssqPf9tt+202zI8Y6UvC5GlhVwGM6vhgZQN8chBDfWSgsjt/6W3+rDcPwOb+uzdiML8QA4SP7/8f/+B9LMciBtBmbsRm3Njbn2p0xNoHfy5AdHedEPPzww5qEjz766JGfP/PMMzKa5Pcv1/ju7/5u/RfjyxeCzf/CX/gL9t73vtf+43/8jy/b+2/GZtxO49f9ul8nVOInf/InX3KZl5HW6PE1DPfvypUrn/V1bsZm3K5jc669+scm8PssBpJ2sqN/8k/+icwn1z3FGH/v7/29I4/HlJIBYfzlGPgdIa1HkUXG80KDx0CavRl5dzM245U+OAgweMWq5Vf/6l/9kl8HRIHOAJjDYuuSxvE1vRmb8Wobm3Pt1T82Bs4vgxKK7OQjH/mIvfWtb9XPsH/4nb/zdwouJxNCWYi5JAqoX/trf638wF7soHz14Q9/WJkYGRaLA5ibLAuH81sxpOUg+yN/5I/Yn/yTf9L+5//8n/Yd3/EdL+kzb8Zm3M6DtffZDrh8qBWxqsBMlkPvF37hF7QOk3nsZmzGq3VszrVX99gEfp/lgINAdsTkXx///J//c/El6En4X/7LfxEBFldyYOmXMvBOYtR1befPn7e3ve1tyrx+9+/+3ScSYG82ft/v+30ypYW8u1kgm7EZNx+sEw4e+IJYVXzN13yNfMVeLmRjMzbjdh2bc+3VPbJxvY6xGZuxGZuxGZuxGZuxGa/aseH4bcZmbMZmbMZmbMZm3CFjU+r9Ag08ivjzQjyjoig+b9e0GZuxGZuxGZvxUsfmXHtljE3g9wUaf/tv/237S3/pLz3vYx5//HG5k2/GZmzGZmzGZtzuY3OuvTLGhuP3BRqPPfaY/jzf+Pqv//pbUjVtxmZsxmZsxmZ8ocfmXHtljE3gtxmbsRmbsRmbsRmbcYeMjbhjMzZjMzZjMzZjMzbjDhmbwG8zNmMzNmMzNmMzNuMOGbcs7ijyzFJReDyhYXNmo37PP/33xxs5++/Xf8Nj9fi1Fzz+7+OD3+X54WP0GtGbOb13tnoc13z4Ytmx9+/T89feN/2bFyIq5u+8/JCZVZZZPo56D/5tVlhmvZWZ2aTO7e67tu30VmFbRWt3TTK7sFXZhbsrO1t3Nqs7K8fBqrG3Khsszydm+WjWLSzPS+v7wd87z3UdY97ZOAyWj7VleWadDTaMvY0Z72g28Jwxsz4rbd4Wdvm62VOXOnvmWmvNUFljpV3ea+yZS3Nr29FaLjjrLeObGkd9rjzL9b6Wr74R64fBxszvjT5/ZjbEveBzdxmf2qzgOvpRjx3jTgx8x+kJcR/TPU3zhr/y2un7St/pkTl1w8w59rO1ObL+3Z00Vw7n47GJG2O4DZkORZY//404fslr9/fI0264cen3/kOfyUdfL61nXzeZTavCvvENU3vn/aMVup+ZdeNgGXOv622wzNpx0OP1DNZJXui19b32Pp/4BbNuHHr9Puf3zLW4lqLINa9Ky6xgCnWdX1eeaf7Tf33Jjwac+s0mhVmla8x9jva9ZUVh7dBblhf6Xnn1PDaZkScy95i3Q6/3KdlI+KN1NlqRcdW5nsfnG4dR18VPmdJdy9UOlnGt7C1pPg+9FTnP88lWjP6+rV6PH/nP2X/K3PdKvR5/9PEzywZ/LP/m/moO8DpcX3wffIQyNjGt5Cy+yWG0easXNsSSVT769RXsXbnW+XPL0X70E4M9+txC711lmX3lPbm96TUz+4EP79vlA74sX7fH58QN8+ImjzlpTvKYNC/YW263UVUTfe4x4z75xfJ9ZdnRxeZ7SQY3St9z2rtuWJTpw/pOG/fLn6e9MX6T55Xd8+AD9qbXnLPJOFp70Fnbt1ZMa6trTprR6rKwdrm0MSs4gC3PmZfsD75lV2VmQ+8/Z3Bd45hrjjCf6orPFHOF3+q8YK4NVpVFXAeP0Yy0islT+Lqe7y7t4FpjZZnZ9tmJ5dXExnywrBstKzJjhVdFyeqzrOfZjNaKsrCyqqXaHXQ4jLodRVValpc2FLXlZal7Ofa9dcul5VVmeVnpnjTzpe8N1lmzWNpyb2mW15YXmeUV6ybOq1g/bBrltNZ96NrW70WW25DVWnDNcmmVlnlhXT9YP+Y2jJ217cCEtHJS2vx6a7bYt+k9p20cS82Fwjh/zboht557wmtn7EOD3rtvO+u0f5m1XZxoOr8zu9pl9pHHn7a9pz9l49j5eauvKPO9cH0NraZR+lmaS762h7XHHu7bfP7DtZReisfyffg1LV9mVa8O9LUT25fJkSVwuAJu3CMOF4yWxQmbx+Ei8iAsJs8q2IpNSJ89FuXqxjAnCIyYbDeeeDxOwUy8Z5GiGW2YHgSVWhhcGV9SLIi4mDYrrCsyKwezmbX20NncHrm/trumpW3POrv/vqntTEerRw6W0fJ+YWM216InoPMoiSiqsH5gMhSW5bW1Y89p4YEeB1fWm+UsjsqavrGiLI1z0LJS1zH0rdU8RodkZ6eqwe46N9obz/KBSi2+ZT6xS9cGe/rZzBZDYU/tmn3kk4M9PR9tGErLOFzG3CobrLXR+rjtnDesHSZG3N7D75bbHveLSbb+nSoY1tnBYeXfkQ6rE77i1fxeDwyPv9eRv/v37VM6rjMC8jhTjwQ96e8E/h7YnRQtvULHTT7GkaDv+RKntcelJODI79f+zf76xnOZfcU9oxV9pw1Rmzn/jTXCZqqFRDCYZdq003r1vxK4xX/jePCD1hckGzlrVmcum1mWax1oHRJMxWIdFQD5Ywvei0SpKPQc1ikbLnN6wgbPocCTImPxgy0uiHWX5Qr8Kj1uUOCqhC4CNt9HPPNJASPH5JiNSnZIoFjDpd7fEx4OUC5Vm6/fXCtXE9FMT9N94TpzBYvsZ70Oxgg6OIhZ0wSfQ6+AjYOGn/Ga7Cm+FtLa8n2uZ73lrOtM+1hprV6p53geBwWSd9W5ffMjlfVjb48919ibzhb2Ta+r7cz2YPM3TO2/f2BuzfpCupVpuJYkn5w43Nqc/EKOVUC32ltic1FOMR45XHyf0zcYu8/hGeM/Yy7wffm80VJZ5dTpSOY7K+zMvffa6+49azVvU2RWbRWW7fU2Nr2NzNnKAxWtgb63ogR08IDUD/7M2qbT3CnIJnpPSkgYPCkZdcb0mr+l9kJ9hoib0jlIMkewl1lpA4n8OBAPaU0X+WjNoreqqWxnFmu+LLRWNMe1jntda1VX1i1LBXLWzs2mE51bHAas/55ZPIwca/4Zuk7nRD2dGnHt0PbWLzkrPRdb7M2t7QarT+3Y5PR5s6Gw5WJhuXWWFxNrutaGZmH93ty63QMb896KranluYtGCE5Zm0VRKqGMr1ABZVHyWUhgCZDNJtu1LQ4W1u0trNw5rXvNouqaRuDK0LP+iPZ8j+EC80lt2XKpfYe9iuSx63z/OF+avemhe+0Di87aK5+O7zzFS2lKHUvTDydK/M7n3g0JhibVYczlv/F/Kx6O/eRlE3eskL31gOoIVLeGsKyhPDdPDv0DrsWBJyIaPsF8ohLq3BBEpPeLGzpG0KJltgoujmapTHZedwjk0Cebb6aaJHp45oEmX/KYW15Vtj3p7M2v3bG33T+1C9XczkwObHs2WK0NobSRw4erTEiEFbqW1rGwVeBUcrjpoHTUbQi0TxNLC7MjndPldhxNup+EaBy8S8uyVhOSvASkgcnXd502ex2PI8usXAU9WVnYQTva3kFlB81oTy3O2M8+fs0ef+LA5kR8uiYywtGGtYDN39e3OMWd60hbPC59t6t7HRvK+lf5fCju+lw58fcxOVboMChMvL7yrPUc5Nh1cRivT++TpvrtqG0qQczWDyA7IXZ9nnt2M6RvfaySteMw/Np77BRmv+drtuxCRdLlqHG6DDY5DrmhyK3r+kCoOHgCieJ7iMzB562OIqvYkAeClFEHGb/lOUIeQDk4IIVIlEKISOJ4btPz/iQqmc1ynuOols9Rv3gOJP7eDKN1hQmdAAHostwq3xXjuiJIJYmy0RoFnCD6+drn4PU5PDPrBjZ/gk5HA0H+qpJDLA/EESTF0cuxAzn0QFF7DGtKa2kNZSWJZFVxlkRSSKCXRdDHZ+45HAkItbj8/hYgNgSsfIYst4aEUYjjYMtWAIadmlWWcxhz3/Lc2kBauafcn928sk9eGu2LT/d2boeqQW/zzuyHP9XaT3yqjU30BSZoQhrjoHmhwC8ND0Jur1GVkziYPaFxLELf5Akb05FdLT4raPdh4JfS4fXjbPVU/SKzyYUH7IvvP2t3nfLAiDmj9247GxadDUNj2VZtRVlrjbC3EzCVSrC88sZ8KDl4hlGonCOR/Dq3IpIyEDx+yhmRg1yPVI1YjQRvg5IEhXxlEXhhYW3PXB+tzwdr9xbW7DU2Zp2dv/ecFTVzvYj9l0oXs4zgyhRMETw6lD1Yd7C0yXZhxWTq6612xE9xC7OTgEqJYkrqQeyW1u43Wntt29u4vUN+ZdPtyurtUzaOtSpc00lpTdta27a2mC9saJbWXF9a316zUw/cL8QShI5zkYC474A22D98L+monAn9y6zg2qrSFtd7K8bGqu2JgzJtZ305sSEfda7rjBRqSLDN2ixs0TRadOxd/bLVmmWwkzX9YJf2O3v/o09bv/eptTXi+wTfV0KGV6jykbPyOPxBYpmCfgKWY4dBJLlp2bXt8uUO/NK0Phb4Hbvw44Hf+txf/80q01r/8fMECYyoftwQaKbgo1ZEN9gQJcz0EdM1eYTuXyi3UiWsuHh/ir/gmBPsDfaGC6V961c8YK/Z2rPa9q3PKdt2Vg61DXlv/VDYCLTNlj10VpF1jL31fWeTisPCQ1xHFCgtkaI7sicUZATd48ArrCTILHprOIsySmk8Lt2ayjrrrTMgbZ7H8QJ6GIHj6KiDFnFE/en+5NR9sl4HQTl01o7btqxP28ee6+yHf+5pe3Ze2qW93iZxGHH4sE9zuPorRokpJusq6Avkz7Pb+DYjcDw6f45OlxcM+I4kREeTBCXia4jf8Tl1+BqHyO/Npvl4O5d6Txo3nCgxfEdde8gaInvS65wEw64dTnWR2f/rq0/ZhQmzjcwY5CgtMgIis67vPZNXIBBUBTZNDplAG4SgxdMIiEQn6HvRG3jswHopylVJCJSMlIfDitdveg69QiWakfk+jLbNIQiKMIDWeRLHvOccFCKuZMtvUtONCrJO1YXeg8MqzeU0mO8d5VoFa369JaUlzjA+qGgSPr/Z5JuG8k3mBy8HN+Wf4rDUokyd/UUlcQ8Keh2SccBn5sEmnz+SPxBA3lsHvRaxo6Isc696RAI5ZjYrSqefKOgWtqnAr+l6m1WZTSbAKqM1GcG1H7JKI8vetqg2dI4mZhzWIKhFbtcWo/3nj/T2kWeXsaZvvi7Wk/8T189xCD9mIJ/x9gz8HE0WrWB16KbANpV9vTzksyqhfSkRSohhHMxrt4Dngxb5zzOrT99lX/LIvUbMx/zh3uu70Lk9WnMd1Cu3oSX4m9pkq7Rx2dtYZULQHDDw+SAaQ57ZpBBGbM2QW6lkqNfrTUqAAU1wLZhet38QbYL3TJQApSkk/pwlrDUC0dysWza2f2lfwc10VtnOuW29PiVjqko8Rsg06HdJ1ayyfBh0newXzd7C8sqsmoDqlcZpxnMI8gbVaCuVhHMStcVCpdpu0dkIar0zs+2tmWXVzBbzPa2tYlJaVc+sPnPammWn4I+X7BYHOi/2L+5ZOetscvZu6+cLa7tGyJ8NrXVLSrMkgWatuFLsVaCGvdV1qaBw3N0X4DJOtnTIgOqR8LHPDJzloJpNr8B4KArrOqW+lg2dDdBePH/0SkjMo8uL3n7xA49ZN392rcK7QikOy8D6Sg/nWQr2HEXhrHdKy3jkbIvnOJcmTVl9uKZtXr7A78QEaLVAnu+5Jx34a4f5WtKoMy/RTdY+6BpSehgIHUGgDpUqLMtUPjqCTEUZ0jdT3UtHAONKWAyTyuyuMxM7XY/2xlOFfeVbJ3ZXveuTJC+sqmqzsbO+B2mb2JgtBfMKKxQixZSutZCKggOTYhLDuXsqpRKX9lxXoUVEQCYjcx7AIh07vTYYxJgR5HVeXgJ9sMKWQybegkplq9CZ5cTgUBp08DpfMG1LXBPBaqNFVxVb1tnCWjgIRWkX5zP7kfft2tOLiV291tq13daWKsWtppqNIB8619IG6IGzkv5EjowJv6qwrn/nJ1X2j0+pdU7g6jUOv+iEmq6qUifMvfVgb/37f0UHfmv319fCsTTq2OI8KfA78u/n+dhVmdv/+SWn7Wvv7hUk6LXiC+w6P1g40Czxtkh8QOGUEDDvg0+TEWg5MuLYgGowClZy1XccCSfD53ccKlq34gx4yUw0BNZUPrG2Y033NlH5lky7OCyngXwQsAWKB5AtMDv4bFqDCcbm8Eqbrjh/6TA0q+FNqdw1WpV5KRcYXslT7IF9p0sXyuENCAhwuTsewK0CgljwoJu8T6KqOALowR+vo0Q07gHoJ9whjxF9Q1dAKoQbtCLmNO8B0i9+lX8vXT+Ka8wGx2PzKIUXI4GzlwurKHNzQJMLgqyKm5WX9ui10r73/Qd2ed49b+B3fM6to8Ynzbn0OAL+2zPwO6xsRM1khUxFehkjbXDpcD7+mxszssNHZlbPztobX3efXdiqg6+XWVVBzdFCsqxtbRg8Qc+Wvfh91c7U6UskY5PSc5CgJDhy5PPQ+ej+c5/rzv0DJRTnNM+s6YM/Kk5toTlL4JeoSHBe+Y50plD+7c3me46mcVZu7dQ2mU6smlSaN05DINEjgKy80hRl8zzmWT9vhDaW21MbheJHuZtn5iDsHHdLa681llUTq86eVTCpwGvsrJ5t2VBMbP/gQGt/Op1ZzrlaT4W4iSfY+rnat73tPXvZzj5wysZ8agP3M86PxaKzrm9U6m071rKXeUniSpB9QJXLV60+O7N8tmO9KoCgrazFRig/yCpBMeCO6FqkAN1gI2Vn9pyWcxwAyPFT9j+O809e3LdPffRj1i6v30CFW0sVbrLiDlfUao6lPUn77WFVdP35L4T4veTOHUfOnRPQnRses/7vCA7WY9TDhXP4uOOo0JGybvz+SFARf2fz9H8HuTYFhsE9g1MB1FsMRNG5DQVE1dHe8trT9vrzub35vszuqUcJMYr6qkf1LBTIqUrUHeKnYOM3PMpVIpUSnzW+ubOp8zsFUMHzEBLoyEM2Akd70Ehm7iUjrjkX149v1ANYMj1+5wXkSlOOTV34SdxBjgfeg1Kz86MI1Dhg2fzzfKkF1VkprlA37lnP6/KKfWf3T5f2m796Ygdtbo9fLu0z10r70FODPfqZpS15X/ERMyspLwWvKfGv0veSDtKU+aSDIOglR0vytzzTbsSrCEJWAelaqe8wGHr+8u4rahz7+CcFfXbSzw4BwJu91E3eLrM3nMvsjdv71nU+74Roicbg4gz/XiMYioDkkErpXFlH+JzXk/irEk5QviWHEaI3SOgBsu1VGd8TmLeQrHlbAh1VYgn0QKL5WZFbrTIVpavDD8s6BZXkkBPHOyacB4MpGMoP34dV7Avag66i0LVp/XEqRDlZSOdaEMNBTXmOLB+spQSNoSQUJWK9JutOr58O6dUXtUKqeVWhNmkjVvRIcOmZPuvNBTLcc/i8Tutw9M9fO5VPxRMMdJ59SMF67CG8CAhqOhwIbD2w8bK7xGk22lvOdPZVr8ntXY8Th7xANn/T+XPCv2/rNZgO4EPUTndmLelcY4gmyduRCkSqeDiScLTgm4JByrb3P3CXnduugoc3UhTSHHbRQGd9M1q55agyc5WdOpv3CtARfQixZr0QFKnYSnDFPAmxncQIqyuyDGpGKPRYD9AdnMfnSB3zXYkG5UpeT4BBbgWoAh+ozG3rdG7tfKksan59ro8OikhAw3wrK0f+lKKwV8S8BBxgzZazWs/tDhobqt6yutJjCJvG5b6Eh10zSPAxObet6y7rUgnVYglvrrF6MpXhs4LSsbehJXhdWJEXBqVwzEsrKvaj3orZ1PYv79rW3VOrpzNr+876Za9gFRIrQowSsQaVhLw0gEt2BpJdUDzff+ARUoXwapuEjuw3WpNJMOW3WWtbFIFeCHyijLmYRox7e825bdt78LX23Cc+amPfHEsRTqYI3FDWCXHQqqqanhmH73q19VZW20sK/NZRts9mTa9nh57F3lgiPF4wuCEQjF8cgp1HS3zrQxstmyVfIGWOIbOtzOxLXzexL36wtAfvmttOldmU6+g8Uy9BynKgXt/MU06oerq2XyfG8p4q1+S5EAaVX/04ETKRgiXn+gUKktS0EQgr09Hn4jEsxM7yoYogDohf+kJlbCLghgaRjUDQdQ5HAyViocNH5WMhG/FYvZ8jNGT8PIYJTzg4DK34G3U+2Jvu6e1ND4z29teM9tFHJvb+T4z20Sda6+EM+Xm44tmtELe16o6I9qk8vIbO3VLgccOD4plrgcytoBGvmrGa5DeujRccL+E23XvaVbyna1eQu+CCAMFcMRuol4IQNsXETw2KAAEGmwoIBQGGgoyuEEF6hRrrQPLXVZAYhG7WjriA4kaMWqsj6xQOk7VQ1JWscQBInQg4slJKciAVK66cx1BcdyjxkDro2tfEaCutlZNj9CgOBkpkElykUoyvVV7H1xXXz3U6gb6I8jYISyrVwgVi3XuC4ihRKus4kIe4hD0hDhcFd4UCSQmvxPP0vYBEVdQUXbS/57jaY3g9Pnfw+EIgwk7C06QMbZO61KsOKi9HgMjnIbjV+9pgX/9wZR+7NtrHL4KOPN/UOuGEWZ0Lz0+vuK1G4ofGPum7TZTYoqR7VL54ONbSyxUF4mTkJrNT9z1g956ZuDCidB6oAqQenlrMoYyzIqpQk9rKurB+v4NQK/5fPqlEcSBQB7WiVOvnkSfCq3mpNUkZGZDD6Rcepjoip7UlWhAJDMmKq8FV1lZCFWgzAAmI2GRqDW84721+DYFFbtunXZlLEKWzL4XCIZ7izBKKD3JYZ9Z2lFPNxr3WRpA4rl1ITGmT00hcKC0vBLDU5ZZlVWXlMNhi/8Asu25FNROndsgoIzfWtL63lFvbVpQVknuFwVvnK9t7qrF2cWD16bNWlzNbjHhc+Npt+9IpTGJDoBQuHQQSuOFriQBypLKhrw7E1BMuUa+CjqFvOvigmjHa+1jfBHzsBTyP1W02K8ze9MA529t7nS2e+aiz/FL1ZlXFOZw76yCYTy+nhiXUL3GVV6Hjqqp1NCF52QK/hNikF9am424I62tohcbdMP3Xr+gwBV7Vnk4q566/t/NsUnbhT5X61M8Qf8mUfSA3j4WsTY4DwAqbwJ8rIUHn9lVv2LF3vHaws+XSyryhMm/ZQEYCCuE8nqGrnDxL5l6o2LIKaKqs9gUndS2Z20RScf4ow46vyssznSsehSQwOSorRkrFZOW+6AjjdECBkPSdVWOlrF33l4mqB3rkJXhdyIgHjGRX8BD4nKLsavF5ZqfSgO4EAhDCWq6pkMS+bb3Uy6uTneQ9n6Wwvmntnp2l3bXd2zseKuzqcmbv/shoP/2oWdsMVg7wu7x8zCLW5qLv51DJm7h4aa6oNBjbqVuDHFrqrM+X9LxVGW9NQXwCJ/awDLw2pTQv4+8nHT8nJQa33VjZ7Pi46RUfr+WuleFvOk54MTarh++a2j2zXkkRh5HUqCo/gmoRmEGCDgEQT2IOiqfqB6TSIZUXHb0CQVAplaBtHEWlkJhJAdcYGTwoXOFlk1AeTuEglSRoTmZwNStJzWA9ZRZeg7kqNBG+Ljw9R91XGSLfvXjrIPoumMEChkKmMHNNMgJP1Y6dpsFaz0JUksEpJDByRI3312fUieaKS5A/EeIp5SH/jzJcFTQLkjBQBpHhlTh1Uhomjg6vzR5SyZ4pOFl8FgJBITl+gHoQHnYWcAJ5PggFAYD4yKMtVGbIrFdW5oghvL+QKviIzRK0HtSDS+aw7xAWlLlNstH+H2/ZsX/4U5dt2dw8d1hXFZ7I/Vvt6y8tAfl8jaTR9X+kjQjYd/0QOqS2pH8f/r8Hh6stKRTrh4FibvWp++wt92zZRGADp0tvY9tZO6f8PrEChCtrzBaeOBCQyJsiryzfKay9Pli2QEjVWT+NyE/LISl1/RsecxKHQf91BT7zhTlC+RZeWloaudN1olzoa6vw5CUQcPb0fm9hi/lgE0q8Q2kLnte2dnB1YVmztHP3nFZyAz/OFa+RTGnT8IQOvh7l0WFEfVxYX1U2NFi3DFZPMutagkeEHwiRRmsXnWXlUkEUCVi+s2Nd01nX7UvgWM4qKyc71u1ft77FbqayemuqZKuopmb50rbuutu6vcvWVPtWb52yanvLuvm+VaJBTDTXuSbx/1YeSg66lJSjUUyzLyjEdU6wJ6WeDGuvkFZgtI57zv44b6Xyp0SsgJoznvXZNFoXZ8rcvvKL7rGf3N214eBJr0akquXaAjk81tboPnEvE0Vu5caQHA8iBlmNJHZ4OQK/Q06M3VCOPfnxNy/Zpt+vj7TO1uHK1f597Pmi6awCweAPpUwmXdNa6bdhQxsgf4926nRtb3+osF/+ljN2Pr8kfktvk/D38QCPAEqCPZbRyqIhyJXxolLYiIrkG6zePwIwfTVxPVIx6jmh1FSJ1v3/sryxgXKzkwOVdekg1GEDvoGCqLAFDPaexQHXDySBzGISzy+szLeCZEuwxyJbxFfL4eMojSOC/l5CODJ4Wo2LRIRkZuJE6OcEgTrECpUHJkjUZwt7zdtH+4633Wf/8+ees198qtIipSSkAFTClvgu4+w9FB4lj7+YdGvw9EnzY6UKPkobvAH9PXL2JPhxLVtajw1fkWM9OToxej182PH7ceLnfp79gF+9/lxm3/nw0oZ6y+0VeuZImvOBOEbJIc1veeEd8Wb0qwG8bgVLx+MK5+yplCNCuyc7ZY75SKDZCnYym4K42dIqKREPs2sJKcbR0GmozClnBUfahFqsIU0JqRRyl4w/Qx0Meuf3K4LZNbo+h408AcVDd76io4iBZCQfwAi2QCS71tcYwIzTGvz7Egl8JbTyPUpeaSBzCiSDfyIULzg7BAbxmVQuW/syXUSTuWgm0FGQU5D+MNJRQAiKoyUdVQa9f7yG34vgg6mkyd8KwwbQFdRm904W9i1v3LEf+NDBEb+wWx1Hg5/be3BAJ6Xsise+7sMSvz9kYx0Wcf0vQGVHDyqfWwEObJ22t77+rE0CSaMk2B2EvQkUgWlu07oUl6yzpUqToLSO5QJGlJbB7RuWlu21EihkW5WCCio1heg6LsYT9sc6Ct6e1LmFY3HwZ9mY3XkJ9MuDsWTWmrUAG511WHwR/MyXtjgYrD4zlfiBvaC6UMnfrzmY28FBb82nr9rZC9s22ZqueK4BFzpdgkoZ70WigSx5aOVhiyqXMwhApO/hsHN2kBRx9nEvCLwbKzDsrCYCJPquERjB44ttksbSsmZQ6XRYzrWPZKiOx9LKC2dst+sVHKKjrGenJTBZHHjS1SzdAorJLvROdBRK6I4GDjmfJc5rne0AIm67A72Dz1YQBLJPeelNlbOm66yoK7d/4YcDgSIgklf6dvLBHnntvfb443vWL3aDp5cOzGFtbsXsSlNwFchlN/xnnUt/SEcdX/5S73Fl5q2Mk8CV46W/4wKQ9JgUFHip5fBAT49Plh3KroMD58ath69fD2b3nN+2L30gs694bWGv2UENdNmFDRSQyMD1JXnkXDOpCJiCNye1XZRJ1w1/k8pvlemC3mV4aFWHthFC3PhuUd86904BWfAgxOfgoJGlg28kzuNxuILAjuyHDN0VZlzbKC/Bjr/roa3ziyBqixjuEnsB8BBRBVV7mZqLIbj0O0UQ6JwkD5jd+oXSGpgHpHBPKnJrec18sIeyK/a7vqqyDz/b2wee3bYPPFfZU09dWuPEBKGZgy989FaHV+DaABJoEdPhkLiaq/v6PPPrJM7nSeOFvGJfEWWoW7jGVfB87OfHC04rKsXq90efdHpq9mu+ZKaDfzabWmOtLdq5e4HhI0YJJoOXx8Eilksc8I7eKWghUBRfKV8p3uALlZR5k3hJAVw6QD3QIEMAMU9EZZVMBwKwWPspAwhjcEpcY5XbvAHlw1rlKAnfeaauxnMs2xFvgq289vUGqt3GJFFQpzIsj0GhWDgnUVwoT27EtxVASKCVXjO3DmFW5aiGkMUqzJM5COExajm6gMXV9r6X+R1zBN/zQVdCihiu9yDAjP1O+xoHpX82DvE2vNTES2TPi/2EAu00DEoJEN0MOixAVP8NBelaEMl96GVU6+VyxCUJdU/l7lubrmt7461yO77QY00RmRKsIwfqilMewbvbbx9JLZPXrFs7g6ZF+bia2gMPXLAt9mXmN99vh31KZVXtJHBQ7qU1CgwhnPk99CRL3L/efecmZ2bW7i0tW3ayDipnE31XBP6HwnNH6kWb4HujzAralqhF2otTSTiETyiFu+QuwVX3ttxfWrccrT41tbJKJ6qv260zE5tMCptfW9rY9nb10oHNDpa2c2Zm1XTi1keUYPEmrFzSBcLPGSVRL8IM/o75pLiPUaoOoEB0p6K2geBXdkadgrahnlhbtNY3c2sOFk6xqNzYucXKDN4v39LWxLrlYKfOnbW9Z+Y27u8rmMsnM/GJ+SST7S2b7131Q0KJEIkogjNPASkr9wM0LlI/Qmqe53teFsmp7JKEtLq/p3xGFUT2Ts1QMOdlfb+7rvQ9j4L+vtfYc099yqzZi5kXe8Aq6YjgL354iJ67/CjhzU5OcdBGoNyNmqOXX9xx4ho69u/nraatoTppJMPgdeRv9fA1aNRDMH8MNgzJkNk1F8FmCGPFrWKwr3nbeXvbPY09eLq1qsS5frQByTlfuILGxh33cD0HDodbt1rx/oX2TFYFeqARbu5MaVhBlRaNH2JE+EIUJLt3VaAORiENnkl0qHb5wlb163RD4kvUAolALPg3pvd3FI5JmcdEVIbPe0nNG/wQskTxLpx/6DPCNxXySnXZQIm5Qko9EFXpSRwrSma4mgVgw0GknaiyhsDUlvaWuwd73b29ffmu2c99+oy955eu22IxyI4DI9iVLYICwJCsByK7Hjyvz5mgMq3KwavwIM2LVcIQG+0az/DkGXh8PkbmfpvHfClI03gepO/YX0+u+Z701DUEyRG83L7xkdJO5Z6A7F29LuWquH1K4D0ZEbdMBOgQK8kRjDFIGUcmLKQPxMncTkIHEGUjeWQeZmMgcVIBasMMgUWUUFg/IB/i18SmBvKsgC5oC2zElXhSzGUnwKfTLKkeCQqT4txTHa//c6Ako1NHE13Bq0wfZIMDAjsLr3OvOLkeEPj7JtcAJVAFBHnQChz+cysnTrUgKBaLQh6ACU06WiYk2EscFSWxuuYwmk7fmP6ZlL7+Eigmk9raXyKUkqipqQxw6JOsgZZgnyNRm/t+Somd7CC0/N0zMR3u15uJ/cSn92+qM3y++fhKg9iTNcpqKEl3CkCYFPnj9CA/eI+QnVaIqCCCtVJTYafPnLd7tmeu0oca045W1HS18PlP7AN6zBxoQdoigejYL3VosH5IJFyYUZya2HK3MarCPWfW1sTLlRH4w8sgofG9kYCPqhHVo/CQBdiA1ya7paj0oOGIxIl9YFz01izM6q3aJrV3jKIa5ibRfoOqSWb13ds2310oGJ0fDNYu92z7TGfVbGq5PPsCySbz0VyMs0DJFgISgAR4HyQZ7kJBxw/EHCSQpUQgdNfgHsH9y2VT1OSVLfcWVm1NrZhOrRsW+uxNuy8O4KRC0buUYHP7wt127TNP2LC8atWZ1sqts0I5u7axut6y9mDuaCj7VCjvhfqzD7EfhMWOH4wIMEHsQZJy67DYiXUrlU7ksySs6jsS4jKp/hPHUgIbs9eeO2Xd4j678uwnPQhOUylxS9c5b6v5tD5rV/XQKKgkLDo6Zo0vY+C3btZ7y6awN33cuhL0BLTvWBu19POE+qVXTwF7UsZFPUhf0DQf7c33Te2b3zSxN94zt6xfWJbNog0L/j7kxhw2Na43vmQ5a1iULIyOli3O9VC2XEU7qNgoFFgNcAMnnhENWLAAu8uFTCmYMm2pe7y9jSt94RY0zvEr4e3iC8TnkPh9RR4n+NJHylAOE/qxSCmKyQ4XXNIGlWpdpSx0AHVkXljdw1NQtBntrrC9hfdBcQBVEXYbzYpr5ETvbNUGSJVlPI+k/HKOg2c08E4aIXnFWNuEe3x6YY98cW1f9dAF+56f37VPPVFa3h+ofOcdB+BUJcFH8JTWS1iH8/ewVBwR3nGFkqOlUV5fU8y9OPTu9i8Ajyci4iesrRthvpN//jxrks3+q1+7bW+/x8uZEjExJEzw4EtczNiw9VvWYHTXULmEoFBcU5838O7E21GQ7dYoBFKpAwXXspSli18rykAhzEF4h3sGX0Z8qDBapjzsXndxecx7nacgjT4/VVZNnJcgYXPQid+kn6UA7HDu+L3hcAvVErADJq2lk+OleBRaP3jbKGXzvs7cfB2VYKF2UtjNgOC0DcFgwJWpG0jiJ8dfhPKDJbDXRMsr2biEuthRP399N7oO0/lALn1tcN8jKIyyLSiQCPcBgoreEeIw7guf50jCLaEAvDC/JyBM//EXaeHm6v1bXSmvFIDv+FhRdVZxXXDeNFGTQC+dS2uK3tVaO+ymoH/yf1lus60de+iB0woU6K7UL3qzuhZa7oigK22lCI0XkyNEEGOq6LoiihB7aFSDQOGa3QPLmswW/YEVO1sCK+CIstNSw1LAgWIVq5gGw/9Spt4yLBaiwPKmBOloG/dAIgfW6bKz7e2pFRMxET1Rlx9kqFs1j9xWaXp6ZpOdmVS0YzPY3l5v035uW+d2AgxBLOJJkHzuwvfTHS04KbmmKDUz/yTQKLyrR0PygpjDvwdEJlyzSxtdyDQs5vpZz5lWVNbjBZi5U4X8Eadmpx960C5/8glbHly1U/eZVWfO27hoLK9dPDIsl9GCj0TN6RMye4c/DFeS74t50Ll3IZUMvi0lhWonmTplFDYULtTys83POPYEIYKRzHFPtie53f/wPXawf9naXXcNOSzwpq4Sh8GfUwdSM4L1mk3y6g1z+hUK8sKdO/KXeRkdXsgacncz5M/tVeKZ62hfvNQRQCxk4ukx6bmHLZZio88ze/i+qf2Ob3ut/Z5vmNpbLsxtQMCgtdlagaI1nLNLgi9ZsUTfwoLo23vkOqcx5PCYNEul5wiBDhFKYmRvQdDmesjYBGUTSFKuKlDKckiwobYqIReygAlrGFlHZFZhZKlykPfxrVQCZmEyAacqN2EZgbdfkc+0kMeM4JGdorSh4zPxWcjwSlsayisc0MnSKLvNbTT+NOID2lhZVRAM+o0HBeCAJVfBasZVkfD8uGkEtNwPV/6OYxWbUWvZwKKprcg7e/3OVftT/8dp+33/R2X3ninkJ6Zye9pUk7XOmgJby0Xu6Yf9ltP36/zNNTHPsYznCCF2/WC1G/+snrVm73N7jxdQZh1bUAmRSiHjeped43+OvovJDPn125CkUXf79yX1W7dUMAdvRQjt6EGQGwa7aEFzBG9LtSsjuHAzWl+bzBnn/UgluzJHjrITlALRJCLJjU4fCBXcW8zLjp5kHdIqWJsSiwTyp024wSLGSy9pw+VPLXqDH6b4AZLqOUKezE8RRGGplLLlmEDByxUqEv+VcW0qG6ce1zokvNMIr6E1WuTWUl6D7B7eoGozp0DR9yn3NnROopIZoZmHWh5xDPlLKJ4dlWHP4N56UJh4xqwdN432NQavS1+z7oXPea3tWONwDB198WCY75Gnqu/oaPZEs2Wf3nX09lYEUEld+Pzz9TaOChP9MZAWiSfTXrHq2bu2H62vzdSxY01ZrpfMKzt33322LS+7UaXHoaQTh3/3sluOBIspSlKDgJA1lkPNYT6REGgDDf4rFB3ZEWVWntqyYZJbnVfW07EivF9dlRqcd0r87dJLj/DG3YUp5rIjWX52UTL15KlZNNZXJfoH96GVp6bASke/VDwKnirzkf/UmZ27/4yVZyZ6va7Jbe/irnrkqgIggaQnfnD2AFB6GgjA10tN4OHJShTmpu2iLIXKlkTEPS6pYpm1i6WeL9Id3a363ibFtuVq2oAymHOO9dNLgFXNMjv38P1Wb5+z+TO71hzsWVXNtM9gE4NiGXCirHO1fFNbRsrLtfcTh+5U9CRTABpU6sI5t6hX55riB+6HOImVjVVU/fA2DU6t08U8d2AvfGCa24WH3mxjWafUIk281Vm52nGStkC/D9GcUMZDF0A7zm/+vJZ6U3nvBaoAK+7ecVQj/XfN7+1I/LrmXwNPrGHiphJlNtq5WWmP3F3ar//a83Y+f0aEWPUu7yhbTsxKDB0XKou6/zGBDBCuoxNkDQSCh2VeDh54dCAYh2VYLwHQugl1EpCv8wF7+Qvxtaq+o8WCFxMBGBISPywIdMguyM5Q/xZu3hlqRJmr0nYqEJCcnX2sxZ1wuLjVO2hSiChO6RiZeXzZZCZZJW6Pt+cebMLkGlEcs2hYkL7wleXINoM8zPt4etud6CsapCu1o6P/JxsRfIoVcgEXioySp3Q2LC/bl91T2QPffsZ+8AN79kuf6ezZXd9gNFFVDlwDpqKUuD5jlPsckbkfTgwPyGMerJ4UvJyUIHyWFkO3xbglxO4Qubyh3+7az5/v8Obr/JL7p/aGeyohwLykd4GJEoJuLOa/nvmr1Cofccq2fhh1YQ1BmVPIAfNWpaMILqJLh4SIx4J3F2jRnqlVAJL4Us4+9RKuo/netsqBr7CYCX6QUPQwMpYxLe8dPBshy0p+BiVdrhhOyYeX0IS4SbF/iG65ZcNhtxrK2E7WdtGEzKcjoPIyj/N55YNGcCquQqWSEmeBggfnOPi3Q7AmUQilZefTevAXwhNVv72FmJtbJ3FN7H6Ua1FXR0t2DnYCcFnoUPbu4vPo+3LKCfcG82YFqYEsEMLT85Tn6tL60X7o/ZeFZoQU4YWn6vMttnVw4nYdaY2kczU/uqccKesmZDMFhatUK3iuwZs8deE+e+0OPo8USmsrp6maEzRrUMBVZMN+750ZcgyCaQygYo0HfI6Quy8jgABca6nGd6bWLzpXdO8vLduuFHx4Iu9BkgMkbg+kVALOdvyC8io/p/SphAyRH9YuBH6rBM09bqH/qGzbOgIqkEJCkthjxtF2Ts1swf4x70R32L24b9np3uptytHVYdtj9ZOm3O3JncrMkUBx7xEV6jNDnUCxD0q9bN1XrxutVMs0khda1vGEWazloJ/w3eztWzGdSfDBaxZbmWXnt213sWvZvLHJ+fO23L/u3nyyiCFoM5WSuwWACggq6Kz34uUxBKXtQar4OVoJD5GKXVaN3jtcpXSqf/64QXGF8wZFlwF08mhWIM1b7q3t+tXX2d5THzlyaPk8OhTGJRDKA2Cnd4TpzuFevzLIXyudfS4Dv6NdEo6spyMHssCpo89Mj4zXWXtu/Do1kl69TyBt6TU5TFy8ltnrLkzs699U2Vvu6e3MeNE6mTO7rQITaIUgMpGzKq7N9VBafHzB4vcVqWQfYooIhqSeIvtw0rYQCDJzXbdMETyoAR6GzL7Wu1TlHp1ywwp2JxByDyRHPpLzOrOe7YJtOSyZV4RwDhc2+Sgg++JkE1GZzZ3QhyJ8xsI3zRWMKgrFFuXfU7gRumIJfyIRfMsjqK3zEP0b4br9b8jTk1Eli9CD1iKbqGMAJN67qkv2f719Ym996JT98Pvn9pGnooGWgldeISHZNx4aR7bZY/PpJO7nanNeM7F8VY2TyrcvIrK92cHM97tTZ/aVd7vdj9IEqXgdqU2qtnCeDJ6ZlyY90A8Ln/CFA2nyTgBJhOHfh/ipQhcIVhwlSyUk58w6Su9K78iOMT5XuTOhYEGnV+nXkXCPBwn+yNB9LkuxGNYLDPELA61bGXKE8EHBY/jliT5CQKSepRGcxf5FWUr7jD4Mh4SLXVAzp+TI+9W6KTyvWVWFrB4QTMjAORnupiAjek77npiasTs5O92XFPR6yde/i/Bu9rRS8asTP/x78hKcTHW9N56+F+9eknqUYt/C54nEke9CLewOEdcHz9f28d1mJSx5yeP4fn7bjkMboiMuAmHdk1JTp6mkp0QbwuS/tmLmZ5bNztoD5ydGG1coDOUkV7lXnK8BYUfCcbzlpjrQhIhAz8fypAXBpq+180f9Kr1kqDNQ5fvS6p3CmoNW/nr9XmP5Vq2+hTQj8E7xPs9HBRyuYFYOgmuEvneFox5YynG91NxNxt5s+blqsWmOewLfI9yg6pTMw0s6QVHlyWz38sKW+yhtB7vy3L5NDgjaciluZ2fOOPofHTuc3xb7TCRny+ThWVbekk1BcWE1QiW13ChtMkXGgRK5s5xOWjpzOzUikBJ4gjCMczoOjK4Qf1BCqOXSZnlvQ1XLQ7GqS1uyB0RFj1J3forju7JhWPj+w/cof05vlejtKf31VZkL+x/0AiskV3PJi7jsIewLCLJE7JSHIBXHzN748AV7//V7rN97Ws9zsCtKvjrjk0F71IESCJKm4iogjHkZ+8nnpdR7Q/uotZLtOtFwvfy23s2BkRz4FWyFwofNNqnLVNaI9mr4802CPL5dzexrX7dl/8+vnNmX39/YpOoNMxPKkv5lgAijsmXCUwrl75UbM6vEyObfS7FKUOWQHts0pdAI2MT1oGyltDiCQfhzvih00Chb5/MQHJIpgJCRyTu3xrMSaYitzErJ8AFZxoEwCAjZ39sbbXsuT9DovCWsVjxYI1tCNSzOHyU59eTjX7UNXSiGRdSNBkQsMs07R+pcFOJIjEpqQSKWTQU2MBiDRTssD/YUDa86OByWrNRsK0w7g08kIrHfv0k52pffu7Tf/stn9u1fcZ/VvBaGsgqTvfm8cwsPS/YKAtZK/enPurgjGirctHp00iGzQihfSeP5ymPHYdLne5kTSrz+8oV93RtP24UdrCJoYO7dNEhaQHy8zZg3dgcFlNFyoEUKGxQp8uXgBek8GLUoDPVrKjVCKZhAcYj1rEApobbRjg3RkwuqDtuoHVqoRPCZSh+r7z5KnSBwrF2iRA6GQNW4XtkiwcdblcABrNvV+9bg8+KeUzYDvSbw9Y1WAWRqiRVt1fQe2MnkPN4/p+xgKIErWSToAsXoLSuW4suCkBKYyqIiEO7kLykOH9fEodZ7q8VUqq5JWmm0SFK4lg2xK4HckdCqbKvN3rv0CCmIvSi9U+ILpm4dKjVLneh28img99KR2VfdX9hswip9nvVyEo8ie37A73Zdfb7XpAT+uKNa+hCu/FSAvuJReYvCFKjrf3llD17YsQmvV9RW1U6nER1MyY+rpUHbdIZL0e3qa5VEJULyOUOwL/NjWY7495OsjZgzTiuCx1ZYDtrHJFn21tGjlvWotnwo3mmv5tAE6OCKDs95JTZBCJgQDEbZV7+Hu6YER6FZBDCsZ/fjG3QGerJV5tCTSFQKO3V2y2qQOESM7WDL63ObX1/atad37coTl22xu+89eakEUNJNLUUJythzYj5Cb5KFmrjCvXVw8ejHPSksq4tA9nlcI5XxbDpRMjYOrfeqFj+3tayqLaumVk8mVky31Wu3PThwxXE/WtuA2EG7IsuDwlRZDo8PXibldWr/Xau9C4Wzo6PcMjd1duq718O9aueBmHi3nJV8D/xX18Z8cgUyVQoW9l11Zg8//IBZMVubeQnFi71IiG9Mx8hIV+SK7GgYp9/ewmIrX86g7wae3nGUb92fLTLRZADtHM7DzEn2JQntCuCTVSPamxznM7uryuw73rFtb3ugs5ldc9sEGJ1k2pRECaAk9+M7pb8u9kCe2euQ0UIIdW2o/ChLqaUUgZIi+0DMMHUF1UCkQccL2chEJib4Op4j7o2XbT0gTJxhzJgxWKbVzNSzBWU7lHtj89bj+LqDkKGAlwBy1OEJt0HEVXBpLZAmGrq7HQsTcUF7Gvh1alvltjQ6UKRUcsUSh7WXFdyxXOEgyIagcTeuTocCamYRvxUI+OvJ1kbWHUGOBsVUGdcnpV5Tm1lp906v27d98YG99t5z9n3vuWZPHahNgUjw3soqlTMcZYlK3WoirSjTK67X0YThsNxy+O+kfFyVZwKNfj77l9txfC4rZTuTwd55prW27a2lt64iP+d7cgi5vxXXAIe0F4LOQSRyN1QEnV1uDpuHX6XKpvSxVrsv7wzQja1sYKIbmXPeoqefzC+EnK/ZNQUvNHUfSMrcWGkQJlaemuIeDp5ItDERtNEGaimERI+NMkx4jYG8sCkrqJSnnvdC9TKWF5p5Xy5nqtITh7O/b7Uy+HUrJdndrPzyCPw8GCXLT6IoD4xZO9FZQYmUKxndUoODFAI/aZ6bR7jSMPF4uFOOnbr9S3j+RVUnPUIJM4d3JM9JxJJ4tv5zP5Q4fLhGUdvj8BX3a2ztWx/J7P/74cO187zjCDT/ClpcMQ55fI5P+26dzqHEtvV9PHaryFpWJidx9ha2deas7ZzekuqbFsCyS6WqE4II4XpJqCO+OGIbBxYKEmMCjhyEmqCSfdsdGRAYiEMbyDnfCar3CUgUE7+eqtPF8uqezYbamqsH1u1MvCWbysoFoJfPLfHMXN3O6005z2y05XKQ4MF5CJ4AqikcxD5amuqM82BJdCKUu0pWCIg427gfrS12FwroTt27rb1kfuXADvYQV2Lj19rVp69bkV+3rdO1dbOZBCJVUUcpGM8/CLl+niE4geLBHiXhUiUfDcs6kLrKimIiE+duMbei3rainlhG39/FwiblTAimTMq3CKpGm54/a/3TB9Z3rdX11La2tkWTyrOlza81Vk7odV1YMS4tL047Pw+VPB7As8wGCTS9lKvvpWndBDv2HdmksS91wd0XSOS0EdLNJKxyfrRzhfle7r1wyp6+9z6bP/1JX98r66CYXStj2+D2HktR/Jc+PzxB6T+/HL/VZZyw/g+TVr/sJNRIat0jAWSywQnkL3WF8HIfRGWzR+4q7de946w9eOqqb2j9VHw4ArIOqbsgYjZnIGkXW1hWWU/XCRBkZWN+KPgRFOUskYYCN0t+TPLa8xJv2hTIEEAM9JnEnVGfKj+MsIoJ/yIvtSCQoIl1eHyFVYNznPyQTaUylLQKcKNJNFmU85zcuNknBAexZ/fRLMDvKu2yytr5QSox0YkEawo1edPE8W0tuh3ICNYPFIQl/UD7msSqpL0NnI9CpecUcR12rnRepY5dlZLcosbLxY449sNchP9TY25ffm7ftr9uau/6cGu/9Glvnp26fIjjm93ov6e8et3oeS14O1QlHrVjOOoJuJ6UHKUi3CnjZuX07/zyc7IvGfsDm4if5905+PrpTas1peCd78aDHCGDcXi4G/9gE0qLdCSI8xB0gOTCAzaf1/iOHTaDdwTZtymf+1KrhlpfBa9oKu90DAJRD85EsfBP5YlViCx4bEH2Dt2hG62mJBAq9VWbtKAskAz6nHIkBdI216ryc+wzqIeF7sQ+pY4HYd/igpQo6YQ6l4vBdNf9N91eSq25OBTYGyr4fC5CoeMOZ6kbODtHL2Xwjrq77Q1J3qr7TyJFx/4pVW/iGivJwS9QN9EFXSsTfLfvoDWceyGGWW3swqCqqSuBsHuVqUt7w3mzh89n9snLzdFJE7d+NbfW4771afYKWmfJcNwT2NRk/LDknyhG6wz1w8ZahwdwWU/snnNnbHtKtwbmVQR6iHzCbULnRqi1+Qn8WKc0+Vz1XZcOGp5caQ+NRMYTeKgNHkwqqAe9VjblXSKKs9vWLTsrmQt7jTW1vw8dcAjq8AoE0fLM2s8gIfu06wRNizZY7AWCWoJiVMLzTaVmkMjgCGpuy9TYEeXl1QN93moHIYvZtDSr792ynXt3rD3obH9vIWN4Kl8Hl1vbzw5sa3diO6d3hLrlJb58BKK9NSRkCizdZ3Yynbq/ZjgJ9Kh80XbQum1YqAI4nU3VTQpTdYEseFIue+vh6hW1TU+ftfbKVcvKWuePENW+UB/f4cyOLff3VGLu93etOufrSSuQGxOG6KDtbYNqHsR1sH7J9+b+pb0EKINNCk8GiQABTbAzAwRRYo0vIp4u2rsIAks7U2b2yN332KNXrli7vHaU75fKvjFPk49ksg7yXTQeE/Q134xfxs4dx8c6efzIAbP20CMbw9qBvUaXWP0r2bKses+JY+M+YM6icwLm17xuau+4r7cHZleUzVhF7d/5NUF/9FKllIFBmCXA0SKhzIGggkUBCui8JaF58PuUQrusWwFqh+QcCxb+KVcxj9ZXtXQvKXE4ek3eDwUOGKdUU3JG6MGhx8HiP/XSTCx04PQoSUV755XRpjIJWcWEU7+CJdBMyOpe9xRqoZZU9BmNIFS3LzYyiLDhTaSG8+IUhaCECJtDRpkLQbIfbjK/hYCuTSJc2bkvOgCjJdyQHq/tKUpOzoXkq/TeI9w2FMGDve7c3H7TO7btXbOp/dSjB9bg4xmHfbLgFSpJhhpIRLQhPuwEcFzwcYTUuj6vTuaeHnnu7QxQxFp5UZd4i8DLW+6t7KHiQPMRLhr2JcRjNRk1vWpZK1izhB2Dd4iK7hJkr4HWOi9WRCAPzoQc+7xWkoQbf8+8BaF31aHEUwp4knI+dcYJVa/QBk+YElfP457gwvF9c9iIIO3JEcImuFNd7zxC75l91FEgCUYS/0RdA5gbIWbRbiDOraPYqPnKMlnVBFc37UuUh2P9u9o3jHcjaxFaseqs4YQIBXmNG1t7+SfEJ/FdiQYevXNVQgrVsfYDlbSciwXBX6hPXA8HcLK80cdj/YhKlLzTXITiJcfBGrXTC+Q+vNYcMQyyPn1Ys9HecX9lT17v3Oolgub1uXkkuDuBD3j8J7fzUtO8OmJ+e9ijI9GMHKg71hpLt8HPlp0zZ+3CNjtXcAOEXCSFenAsBd6QYHjS4MlNlIuTF9xqn04INimJz0MlSUIneHlHD/n+1adZBv70np2awYHDsmRO4N5YW3nw5lxOt0ypoSFE0rXYa60gYI3kg6QlcR9R8fta97IsP+faJPAI1TEBT7e/tBbT59O12p7RWlHGJxlr2qw+Vdvk9NTaZWuL6wf6fdeMdnBlaftXFpaDXk5Lm8y2bHJ6YuVkEr2Mo2QW6198QRlER19vqfoXEno0B5z3pfjBMpKWENGRuaz0hBTRR94trdw5o3sJ2o4vbjkU1lYTVSvGfagWg3XV1HJxrNy4njMeu232L9rvkcyxtuRVmCHj9OYIqVM9iZuqZxLDBI+eYHM11aCLVdY2nd11dmJPXbjfrj65K5DHd5h127LDVGM90wpoyv8eQErMqJfXx++FuFLrJrnp4Fo9I3g9K+eJG557FLLRBimloPtSbe+U9l1fcd7efvfcJgRceOQkA2WVa9jAgF9dgQvVgAnKYwjs+PJQHPGauPfhbycn+66RrQM1fkiz6vOrYJDyl8O2A4qmCrNHb/DM4lFPXq9rrpSGKsmon6l7JLHZJgRjZTuitnAu5WfCqFBD1sb7ciAo+3Z+lVR6Qj3YnChPBSelJ5gClYzYTYIR5yFq4rfu04R3n7qQ6NCMTI3/qRl97chDoJ0qi2P+Gl6dzgf0cribRpdqAeTl7yhdi0DoXQfEa0QowkbAAafExnuKqjXPmNnpam7f9WWl3XX+jP2Pn5uLYwHfo8lqK7Pe3vSamV26PLenD6Ill5BFR0ISV8gxljQxbc3j7PDfJ1IQjj3nlTBuBTw5fg6v6uFrB3Jat0y5t10w28EsNsoK8v5SjYLvzP0f3Z0+LHmizi5itzifXlIUcjF6Gynv1hIKNPGCog6p7hUefHBY+XPVuVf9MFdIWqJUrJDdwMKCB+XqcuepeVP12ECl3OXNnLjuW4hzY0mx3N0vmbO6r+SKK8hBQDk5EsaQhETRz0umHkS6YpCgCUK2K+8ju9alef/f9PlX/p0hPiNg1iFZOdo3itvr1wgaIM+xIhOvz0n5/vp8GrpqeGHABWPCaiTGCYeAEH5o1+B7o0RHyTbxMeXV5tfZRUnbJVxpTSVT69RvmT1lsNefMnvDXYV95GkvX61iv+NJVPwl3fuVnfH6Y4/7z95WI3nwHfKTjpTRUtC33oMu/TuKvdiDPHRhx3nPEexhYZK7w7jOHiUywbGES+tJkAsT5V8pNW+IBBJvrIBncGjHI59zKdDjuggRQjjE3CDRVhCLLyb+snVh2UFrRdtb082t2K4lOIGjlypJKOo58+TXCuoH4h0CEgAXj7kyK6VYVwdhty2SeNKpSn3TWLPXWLk1tZJSKWcQq48YFX5vZPUykq5yq85sOR2nM6GAB9fn1jWtzff3bTHtrNitdJ1b57atmEx0TjkFg/7cbhlliSOo+e1nJeeIks6ePvRT8d/hnI85nTh8D5ucO2+LJz5hO6+Z2eLgQPe/rLbNxrmVda/SMvdjaA6sLLdtbKCyDDbGd9G3TtFyyoRZjX2TABC48bSfdJNq9o4cHqESU/cFJlLExgpF/+o0I1bIzShGP/zQ3bZ/6VlrF5fXjVpizh2CYYdZSpR2Vx0shCl7ufzlCvyUwYYJqF/HzeCF9PvVuvFzKEqca8vtyFjnBarUmiTLGIwWmT2wbfZr3nne3nJ+bkVGKynPqOAmZfjYJZNSbZqIrUdbihHkTePFodEmPVheYX9SKQsiMOLLmE1wGw8LlLxXNO+wtJdOqdsrG+jgE3UK0PICiT6ToHZVUPB7mPgEf24KzaZeWa5vwz81k6ssJoeKQ23kbAioh7wtjLePYyMB2XN/I20MOnBcHcyG0faumAViV3YPPCPek2c8CkwlVgH5hBfi276YgfQ95NCpKMmB8nmvQxlWZuRx8LpKW9KfMINTwX30voriCbJAxIVMZd8w1KXErAM5yLpqTB/ZLeXpcbBveGRp07y2d713YVeuV/bArLOv/eLavvr1vY2zu+1vfe8zdrFB4cY3GD5uSbm7lh+kNbDOL71R9bv27/VZejsHgLeA3q33zz5s3L32vGOvwX/e+sDE3niX99IkU3WeGglD5RzSOOQ5/OVPaYe9PVdrXsiYB4mo/qTqjm4AiafnfJNBa0t8IaHpzhv0puOuuBdAkj5HmLlIfBHk80SeP1JJVLDmyZRPd8+qa4JYkgiZzXogp0tWMmWHSEF0slAwSfK0dr+cgJ3uqX9memVLmLVOSVkrvaiywHWknt1RZpWwQl07OETpCOIIJcGzvNfYG1Yqe07xTu3WhLhQvk0WTSp3+X12XqTzeLz87qg/6wrOnkQ0cW2u3Pc7kVrBOWAZFQO9aW7L1i1dUhGDHaIsenvn+cGeupLZtWW6J2uc2xPm4jQr7SBEdbc8iW+bERy/VYXgsLSb2PKrH7tRov8sy+z0A/fa9lTSO1dmEyAtARKgHYUxfrgrMH+kYAcpizJvkMQkOgSzKMWHS/3ik2l9iPIUUCVFtrdHI7DQY8TvdACC59LdokfYuLewGvPkawsbZ6V1s9zKmZf324NGvnMEMCRoiIyKauJuFwSc8HS5bji8JErw06SOJ4nIVVamm0hPyzQQOypOcH4xgO6ijRjefySarXfqGctRHD1UL5Ptys7ec9qWi872rx7Y7uVrls17a9qJTJfpIHLf6+8Tiuh2UYAyWipC0BB0cMr3+3Pr88aKbX+tcubiEAyaMz5rPVXwN9uqbKCDx3LPynJLvX45m3o6Yi0bnXdNPrH+2oFV509ZX5biU7pzhsckAmJyznu3NGO9Ya0Dh9H3AbI7PCFZ85W1MqUHyKAPc6Ugnv7eQ5TJEyn9nmlun3r4zXbloz8rOlcSe636QWvCrQgxaxnVCpvWHL6VJOtFI37H/328XLbiX60hfprXUbYT3L22iFLrNf/noX8S5Qpl1EVlb763sl/91sIe3DoQAZbSLYcJyptM2B8chTrMLlsbRpqL8/uZ2oz1xdz7HYYvH+aMqH84ITDMJNjhtQjy+D1oVd9CAKXc41yYvgpH/oFOHVNr+sZygkOIWfYRAAEAAElEQVRVTHKrx5kCx04TolSZyH3E6KLRSH0kM1vbEQI2Gp1EWO004qbUC/eisLFobMBIWgcl9AIPuKUQVODMtVfKfAiJ6FsKGugWAzieV2H94Kay2geCEwI64PwlPjdEXg+GVeqjL/C4ENgjVaV11oJtwP+I/rpqRUxQPg42QyzDnY82NVyLgjxKZnLDj1ZyMTfVaJv3SAbZw2Bfd19nd39Nbe/5cGO//peds2l5Jeb2Zftj31Xa9/z8xH7h8QU26bZk41wz8F7tv8ERfCH+3jov0A9Mu33Hi4VHboD8Tii9jaNNyswemPXK6vmeMCpFYU7A0EaXF28h5iIGkhgZIwefjrnEBijPYSENh657rnz31meyVmCDZx0IlY6yjxa7K80VFOq6XSgkKgYJTvCs1DAwATER4OBhRqDnXWZcXAUlgOOQJIXuGVpzOhRyWzLXq0JqRg+ASJRcqcjVu8XJYUCrICq1jRFaTRnHPfEUbCqI4+A+/KKSatptkA+N5eV3uFLljTa2mNiGcbMsl1wSSb9ToSHc60B/PLHh/gQZH/GUyr2xphCZIM7Snur7AoiMr69GQpxJUt8TQIb3IX8XG4hDfNXf09v0yR5G3RPwQPRA/uELpd1/sbNrzzYvOO34+1z2Tjeh/ty2sd/hp1BgFolkuuSVjYoecOhNlsq/1fbd9vAp528xscRHp3CCYIfvpYROEEIjgj5aftIQQEHEYWnfOw6Gzcqq/zUIl08qCYJAsLWMkqCAJ0VPW9S1Ehrx/brYbujoUFVYSZ9fyp3z1vIut8WVfZ9zZWHLZWtbM3xfg7pRVepSIVMxEGLQQPWw9TmiJK31AHaEXrEAETObnZ7abOKqV24iQRacPIknORdT8VjcOMwtnXpAaZZ7N9vKbTY7Y5PZTGfv3u6uVPrDfm9PfugTdurCaZvsTG1r57TQVCU+Q2HNYulBJd8JXXMOdq3Y3rYGLr/QcHjMbuOmtmy92fY9F2zx7JO29ZrZSlDQ5p3a6Vm/sOr0ljXXrrn3Z282qTnDoZMgFqktKynbwtXDq9Nbt3Gf1WqywUCa++/rtvNN1BoSAQJlOqSwxjw8t454hc5DrZvjv7Fu7ed37rN27wlH8QPpXPeNXJ+dq8QkNZC5xYX2kgK/9XLvIQKY/n2Uy3fY5MYvLG1sqe/m4WF8CNUIyVWDZrO3vXZm3/4ms/smC+t7SRmc9wL/pmIzn1stM8jUNxdHcY+gCVDyfKkSZXpPsn7BxGyK8tMxy1s2wVKhDohV3uc2Lac2lklBB38C4QS3q7OeBcWFDihso6Sq5tSFjU0muHfk2rJe15YroPRskrYuTHa16qEHYtikSAKu3r8WZsrRc9h72gRa6rsSpTJmsJeQ6YfoWWbgiav9yXsyujTeG3OzQBIfwNEP0NC08ZH5yBxSfwgwQ+kYBxZXgO3Foaei3w9ayQlfSca4YduRQnxHhw5NstSyh5wmz+115xf2xq+rzcrrK784No0z9WDf/rbCdg9y++jTWG8M1gTisu63JZL7LSh2V/SCteDvdi1ArZK79H83+VxHy9lrsN5NPtaF7dy+8rW1/CfF+1wjAader8HfXvnThenHqo8lwb7f7/HYY70cCgtGh5YCviixymA4NTEHVfBuBa5SZKKWUaZxM+jUfDwZ2Ep4EQo7V8iHiCoakyceDCiFd0Ao1CqJJEd2GQRszv6IVoup0OIBpK+A5DXoJaHkaycD2Q4ukCvlFXyp5BV8LXHjomS6Mj1PZTDn/Dify70//Y+j4a7gZ/3mlrWj72MR7wotSV6EAU+D5jjXNoLxJD4Iz7nUaYDhFi1JNJL2V0HyUvTK+FcdO9xEN7UMdj9AF4xMMrO33VvZY5danEJuCObWqRMrHtJqQ1+fybftUlvLGtfRzGRa5KWz9LtDrmMk2sXE7n/NabcWiZaA6jkrhNfpQU4fIugOpCi9hFp3OvKsW6O5dYis+p7vZuL6HhFNIPqIWypkSRYy3pFFynNACHwC1dki1PC8aFXZZDqxtsbyq7dqmdt40NgSwUhB60+3anETc1wv6Dntn5ezg0lJ0qLXA7UjaMW6adlZs+jMZoVVUzmbu/l5rB2nK5CQuM8n5tA6o111pTKsQJ7c9wSCZriH5empTc9NbXFtactduOBLu/TERatnE9s+M7fZzkwBNehjCWev9q4hSmdAQFHbdoN1pVvM6KyZz62cVN6Bq6Dakdn88iXLt06JK481UpkhaOytmk2su873d2BZORWlS0Ia9bvOtX+iMFZSWMLtg1eM0wHVrlIAncAjIa+ZBCZUD+ET0pUkGkuGyDKzvllKdMq9qKeVPfCae+xTH7tiY7cXk3RdUrl2kAX6IX/GQzjtlgycX+aWbWvXpgtwHoPMT8N/SAhQtBJaPXwl6oiMGRFHkdnXf8l5+5Vf3Nr52V700KV3LBkppUM3Wy5zlDzU4H3T1M91I1JbJowdnasmlU2/dANLkXJbK3HdrnobMVZcsgEPLpMvmPAuPRCfSTw8ova53Pgxfqzq1upZa2W9tHw2t2q7t8m0s7o6cHNKeIXNYO2cVjJk94V189wWi9a61gM24iZvN+NKWEeixCKK/nwxoZOnnvYGAkRgd/iBwa0SYZzDiQXBBA1URv+NbFboJugoppqOtnigGH58FKFCRS0RtAwn3eGde8eGUkBQRQ3IpiE4Ouxc9CW7Qpq4VJtDnA4Ibfy6fbKDMnkZzxVeOeiovic3BZbX0WD22q0D+/XvqOzND9H7EVah/0n5eTrUNLcCFT+pFeDxgHD9sbfz+KwvMVUAVLrL7J2PzGwiVCAFdB5AiWekFJz+u6nU6H1gwzfFy7ihjl21qde8WDcJj2Ak7JgURiDCkH1SQlRQ37ovoHsDEnxwDeFVJT5gdPpIku81qDYRulX6CpVvCpCFpuWZVHUckgSAUDaSgbFQafX0PcybdTitiWhYCerVqYDRS1NueOul6xDMCzFMerpVaTu2dEfqwtCazV9WSR74rXp2EiAUZpMpP2f/cUQ07YvqC5yuUUGpo0KVuMP+fAUTofBLfEcKeNBFFLKwfOOeaVvhYCEwSKpmbZBR39Z69vu02k/GzL70XGH375zQki3NrRsqPsfaIt7kcbfNiMD58A8/TCFguDnGr/Rw/fFS2865M3Z6Anp1VMwhfl4E1uKJqzNAtMEkEIDu1TmHOdlz+KSK9w0up9g76RIlDHRPQBkvU4Jd2cQc+t+JvelQoLju4vvFZxI/fbZl9Zkdf2yfWdnha4dHnm+KKvnLsglkslpxxlEEi6+KuTSoM+t2DyTYlari08o+xgMb9Z4mwRGYEDZNYcPkXEW3R/L55vem7XqbzqAUecn43IVtu/uhe+zcvXfbdGtH5dSDS9ft2nPX7Opzu9Y3nGNxUzpvRcetho8utv+yt3Y+t/b6dbO2tfnVfbWSM6ttcv5u6/fh7HIGQf8gWIHu5SgsyWhzsNCZzOoq68o/R5yrCKTcjiwSpWjbVsrHh5I9DyxsAb9y2Wq/omzNWThKXe37bDtvrJtTbjabbRU229myB05v2am77nVe/irjCFHm+mJa5Vhhn7Wa0/byB36rzWvt38mNXkHeeibIXsafaIckW4Fw+ldFJUjglI8keNDPvMzw1a8/Zd/0yMLOTOeuVCWwqHsba8o3ntn4vaCTBK8L6rSMdmxBUCf4GnFAnzg6AS+v5At0rgzBHhyclrKl+ukCa5MB+eGYSjm+JtwaIdIotWwR50EGyblI3wqMJr1N4TpMBpttm1WaBx6MOarQWd6VNixpDzPYwXKQW7n3EO0PuXHacFIHBGB3EBGIqlwbzaPZVAiWyFS8/6HEHrLgEOYovoZaAXHwCN2kdMufgMpBMsOXSPYBgrTD78wF/Lpugjzfy7xzgcrQ7vNsJQuAx0NO9i/QqTIixLuXG+U/HXT4EarU4UGA0BL1HWysiG4nvHutzJcsqrOHTi/tt35NbV/8YC11mALGZIh6SJE9PMTX1sXK+HZtPqaD2sfteRqtf6aXNI59LF6HHtBvO89GHTyvUGtrA9YG42VU+TzGulaqIXsR94BTuBO8InZYL896+LPK9dLhF509XGzfe99R5pI4tO5LR7mEAzCRlh35cCQsIfTsByAnzHVCN147tVRMamCCKwVmccCxMddK3pKi2A2nSUa0VUtAGXQEEDChE3HMlx5gaQ57ewFRPpLikb+tLJES5SaQIDeejRKtKg6JDuPoSzJyX4lgYl+pptQMKXmDMhyqlEhgtDd6YdpRx0BB3cswrjWavycDbNJBiVMUEESgTzkfSChK7VynFJu65cF1jGBa91jBMvvA3L7l9bNQEdurbwS6tvqnfpQqUYG8pYesn3vl1M6eOiUbH9EOAoF1jqwnMaL+oIpW/dUDJ49TnIaTFJ7pPf29pNRzNDwQbZ4krmwoPxAHqAMNeyn7N7BtCKBcBChVo1u8pGURiDWgQdsurUN0cWZH7zvl/LniVivWNkIF3S/QueIlAo6uVVMEAhREk9jGcL5gaqwOI5w/ZnawaIS2a9ZiERXJnegSIcIQGKMuON57WsdDcnGYqMeNP77MBbKcPrNlr3n9fXbXQ/erAwe8PdbJpWf37frl/QjGgjfLPUGNq7OL7wlzaxDJLatmtU2mlZ2++y47e88FO/vAg9bvL0RzqujbC8e+2tJrFRMHYzxJckEoNBgFmipXC4ny7it4CtKHOHiWXeLdltDGzLpFa3VFTEAlj+Xq5Kdm0dvQNFZOJ1ZPJ/IhJMDeKsweuOtuyyZnVkmvC1jXeMWrhDe1oPSk0x+bfW4RvxMVvoLAjzpJe/N0R/6kWIsAcNWBQcanlBYqOzOZ2Te9YWbf9ZbR7qrmNi3qw3KyrAm85RDMFW+nhLrUf68NS39yGTRilDz2zv0T+qVNE9KnnIk9oKQ0gsEqh1PRyXCWCZ1ntXrq0lOvimBFhOkRs0nI5Y1nB9TnteicqMNWCi9iwI8zW0opVE2Ryy+s2mqtmo023SKzQU3kgU+76G2xN9pyL7NmP7ehgcgaIorQjiXDT5VNU1/TOADIkCocykUqDV6F2gHxbPhWfvAInocCn9dakOk7VEYjfyYyNldt+uu775Rnqt62hhIQyCBZYKGDorfGbaHczBN+SSASiezvpFznjykQUHZCBxW4EOFlFi4I3nTe23Vpw2gHO99est/5Dbl99ZtLV1Sn3lVrwd06f8+/qaO/P4783dZmzsdRkvVIcH3JpRr3Set8HXTJCvs1b9/RWmFvZxbwPXspk+ALkRKmUpm4flIMRmPxFICkVkUq7a7auyW1rAsnCC5B3+HpiWOWOHB821IGmn4Od6anU7UEV1FWi/aK7oDpQwmVulcMNgV1EN/ID48kZEj7h4IrlXAzvS5zkHeBjkFZR6bqUWb2tnOHE0X7So9llL92QsLcADeI83FPDv32PIDG2PnQazK4T6t15Z9BiCPk+iCWrlMTFLyBUNYADm49JYVnUCySF6Huh+x1Uh+Sw9Kq0EU1hD+cCt5VwBNTR2QzEfjpbS40JgzsXTjiXQd8P3EubUmFkPU8Zvam7dYe2U7Gxi9yDt/m47CpfQrSw4Jj5SF1WAA+hJZz2zkzszNn3AGCJJgSJwUcpwoE9SYyUSnDVx1poJ36XI8mSQqIaCOqkp3U2CHcYf4H8qtkCOuRFd0iaAJVqRKiWu/ISSFZyLgXn44QAr4UsAyNzXcbq89MbbpdWnXhlLXYwPDRrh3Y9SevWnttbsuDA8MfBdFisiqqWcPeHNuaawtxCTE8pjrHAD2bYOVSs0k461V7TQ46BhSHKNKDSYI09gvZ0bA3o4UpHfVj/jFPQRskWJlkVs4y2zm/ZRcevt9mp86IroVl2tUnr9hzn3zKOuhXWW/dYhlBnyuVnWvsHaVm2ztKItvFrr7z6ZltqycXbNi/KFR/aOm4BcLpJXuuGT4hVUJ2tkmceaq+sWCT/23fii8Nksf69OS4EH0FbiVWNZPt2uq6srKswm5m0D2ezCqbnkYN7Q4KfdtZbb3dddeO7Zw97TWIROVbKc7XGxsEEBNm7SvhxOcy8LuxOXwspNjgjhy2KFCJ9SOzXpmqRumCD43x6tsf7O1XvIXJhCkPZMrYmOIxXsQAJhX9G/mT1KVOm/CsVShes0SzZEXlNgfOW4vN2HKr1S6G9ydCK60ua6snleW1w7d8YeJorHy+4Ox4GzZ4fd4KSXXRKHFi0EwpqLHOGs/crPaMLxAK/3LIQjor6alY5zadjTaZonoiYKp1Lct9PI5cgZC6moizGKavq2B6ZeYIsrm0PHcncYK7dKc8WAwCatZaUS81STWp5VPrwefQsHu5EadKzepBeFgJka1OSD7FpsLPLSMod2+2QyPJZHHBpgUJPVpIRecE9SXpgNDZ9Sg9e79BlTFAXVFYxaYrsr9Kk6VNh96+4Q293XMWxdlhpLNSjR8LfhJCftxiLM3J2zboe55x4iW/gNcfc/f8Vmav3fbvOSH0BG6i+um+e9LkZf2UIIEQHar4fV74nadsyQZuK8lEIL28EFyeKFFILBKlYk5SnufkdeefKoAPRTrIX0t6HIVLtQcM3hpzKB10bgfl9ifup+5815TweessFIdeBspykAlXm8vHS/YYjorJ+yyCq6RU9rTFeaoS+esmOrfOhSVr3pCy7/A+rOr0EVfvAKCXWpPlkgKrlZ+gI+58B6Buoj9w+E4GWWVoz+uc8JG+ZPVQVvk2uowkEQUJLP9TgOdCAWG5IaRxWxkPhEHrCQQVaq/5+znf0nnPLgwLBafe1w17v+nhaZhg32yi3bxV1O281FLSkUbi9PmeFQFhSoRjf8uL2nZOn1OHDvGtA2V2QCYZ3bsIR1rfMObHNkj9qvlplMa0RkQRdJTNu1NFyBRCJ82HmEv6LpWAOyeMhEK+DpR0SWyW2JxRLQnyQVj0yKdyQbnTESbvkNQ4fWBny2yrtkU3CnWiI0Zx0Ftz8cDG/cZaeHaoZpetzoF2f8/qWWmnTte6BsCOaYVA0pM9bIlYZ7y/bE1Yu0OvtmnOufMWctSldIfo5NQirnB+PsBGpgDSPRJlB5XTlq20re3Kzt93zs7ef0H7AskOLeGe+sTTtndtX0G41ik9hwmI1QbObWsIPCnZDs2+n0NDb1sP3G39cmbN/lUHrYTy8dxaSuVCxtG1LQ/g4RFYetmWapQLcEiUYk2rfO3IG+b4yyU2cUuvIuBLGGuvW7bWXNvVeptsT72qArACcMPeU+Z2ts7srrsf8F7EUUlJzNNEVPF9Jjngxs/WGh68rJ07DtW8R8m80kwciybXM9v8WCKozZ9NV7Xg3OqisHe+/ox9+xf1Nhn3gkfj+Y1c8WPDT6+QyNnekIYABKgZrzhfpyrJSM5DaUnbvG9kaVKC2LUElr7ZFihpJWF3tRJZB+hHCamW9+BORZs22Z1K7Ui5C2TO4WtHSBwScY5M8OgEv3s/QPhDZGyQZr2EgPCCQDL6jVKd7QjEgIlRiDnXUJkcF1HwvriSpxvq2YkMZuUCwWGEfxEbQTh2CV53Xoro8QI/wh6S/sUsWIkvljbwecZJ7HeJK8mi9qxPFBBZzwT3K0x+ZVwZPYGdQOjqXx180VJOZtpxX+hdiuoLRIH72PEZ41tSKSSR6/kpB/U42vZ02/KOkr4T/9OMulkQdzsfOC9lHOHLxz/WHVyOPjA9trB3vra2GsNURUB+sKnNWGodFBtG6g/tHSn8O9A8kJKbrgHJO8cDmyTySbQIxorYzQYepsEqOUWQofJsitalDPbNQJ0wuCZEDXB4FUmsnMhDxZs87RTxrNmL+D6kIHQV1XvkJoRMbXwplUbQF15pHtho+/ESWbptUboVZ1CJCaTxQ6W6e7AlLz9/rK+uEEFR4oKWERu17DtIA4Mq4gFvsMXC01NlbFBPhIVOubMWxW3wwsT0jY4pzo0KL7MUxJLmiieFehj01VEfWX3ELeH7xZqC16OKwfU1QgmRk7nfYeIGan/h9bCAKnJ7aNvsvlO1PbmnflQ3n58v4ue3w1h962t8+fQbDe1ByaLIqyPV9JSdPxXYtLwevSyb9v3k8eY+pn4ffX89nJ+p56/zKgk2Ym6AGsF1VvmUUyVyqgjWlTyJl5vEWf5efKcEO+y5zBH2/5STMbf3///c/WmzbOl2nYfNbFY2uzlddbduxwsCuBBIAqJEyZQsiSIlWSF/cIQ/+Yu/+B/5tzgcVjgc/gM2rbBNWabCIikBuBe8XbXn7L2zT8Uzxpgr8xTqkgW6GDilRFxUd3buzLXe9b5zjjmah30dn461XK+EoFnMY+oA2bqbp2Odblc1QeGrc6ckcpA46gELNY9hD6ddbZ42tX65VjOFgbv8ZiUQGWqy8D/jGdnMXvkaIjwR789xicQRMlLVdwfyWIMD2sBdgQeAPVwjoZ6McX0WoYpdLBa1Wi/q/tltPX75WF9+9kVtHrb1m599UjfP1jWZvaz5yfQE84FpKlH9DrW+u6/940MdZ1Y8T86P9eyv/bB++Y/+36KSLdY3EjLJFme+sJMKcXXLGyJQRnoRn2kr4QHH80GxkzgEiNeJA8EWbp/TrBY3OIFMar/d1W5LAU7BPanFsxv7E+o2mvWuKRrfdzKpH354U7/8xYf1+MmfXBbouFbzz6NhZlPTWHSnv6LItitKxFtGzl8Zwxk78tjm3/rJTf3HP9nX/WlbBxkwR00bd3m71CvMSF0WlhEeRzHK2WtTbONXLqange40ehOXWWK6Man1RN62h5HTKTyS0RM7eOw03c9rcsDMGSUP3le8K0bFIBI8jEsVZhI79PgxDloKjR43yaRsMCY+7FX0XB8y4kjOEZvMa3pc1dN2q05PNMUzljWIUAio5ix3BBzKpr0KIeOYOmR0/FFQO3zejMQURzwIR5YiTzUiDzYXDkY+v68P9+KIVY0I+vyeqI5bWTneUC6+D4FW1rrj8PdpxbaQiCiTnQ5gE2rhKiAlMuK8DqFus1ofSDpwD6d6mN/Vf/kPt/WrL+1beJ0a85ai/OrVjcdvs27RWPtdf/226lWb4ldNC686q8C1y/mxvr80j68TKFRsiNTscW8XcePAUmMOizuEoueQ4lDRmFcdqselWC/QnVu9anFBj4hH9TWoOZvs9USArNi+j7KxcLFjjrv5bJ0zKyVe0HoR6MNz05gy9iYqXFnLVxQIjdyw02BTRj2n8Prz2Eh2h+ynp/er0CoyAjSGkQKUMR02HeLKWTTB527bCAe9X/Y7Xir6YnN0vQf2TZSdh4TN4bvKXsXPFB6giqlS82pOmCky4fKJixeFp04Pv1ereDn7Rf9CDd2el20ifz00ynMP9rg/4d/p2EV2EqUaTaf1fDmpf/PDY/3izUUo8lYT8h3tsoTwJG2mm90e5/qVrOc+taazevXRS3PrQLiZ/oDWyvg8CTS6N7224anZM7Oz5nvPpHiwyIZzh99p0Z5SAEW58Tq0Mt77JUWdzdXdGHHfxRvs6D2aB4EqgBqAEh6tnTYn5esub+CD23CcYw9UDSIa9cOwtrcj5wy8NQ+VQAE9/t49UTzuaj2Z1Po0radfvq7TclqzZ+uagVxJ2LevDf58q0FoNKga3HLOWHHKRVly6ojN/ed13OBo7tAEZeHy3GDWl0ZRMaxwUrlo2yP1mBNBFpN69vJeiuXPPn1drz/7rN58cqzt066ef/CsVne3tUShi9eu1r06p+J3UoQNN/M67X32Di9e1OHXv6rd/kGTB0Qv8xOee7h0UODyffa1Wi8tSmM/RMSxo7hz8YZNizyDmVJtud4LRUgy0RAfnwZzu1MC3OL+ts54E+pm+xne2yy4zvzc8VQ351N98Ne+X3/22c/1u5tu8HXTrbc3//p2C79O5XiLP/R1di7jn3879voaCew0RKTjf/STu/oHv3eo22FTb8j4w15lymYEIMyfdIGhThfPr4xOepOfCRXLg8tBAdFU7v2ds8vM3x2FA8mlpvAFGCyH1kYHj2GYCTrn1i6PZPodPTY6UcB4E1bO30CkzDEGrRkF4wU4g/NB5+X6sYngljI5EUFz+7P1qZPpbix2NMYhDQOO1G02gwPeQPYY03ff0vUMGomCSLIlyRtqsvBDRkGq6+RMyNBs9cDJ9yvWM3O+i4Q3u5rOjzWcV7XdLGzySsF5GmpY8yhvzbOYLLUonYRwtRZ0jTFyvlhIcM2EZiidxJ1fIzJOefAmxR4G5+GgXFIXmBrpyYbjiic1LOr/8H9/U/+3n1H8YrdjxOmC/rxNa7gCoH5r0efa9Tt6WvH6LcaFIwKff/6f/WhVP3hhxHc+dTfvXt8orBAFjZRsL8S1lyjidKhBhmSL2mmscaw5vBV5+CXSkHEsDYwKeR86FEB77BFoMFR7YRvEWkvkm6syNU1d7itXPBm19oL04cTBQAOznA0SaPR3Mm3JIhOPeK2M30NMU6fjFII2RpdqfH+up9OsbjXCPtC8R1BlQ123lI6ds1K5C0FrFIWgdO5vxrZdRFkEAdXG10VCkxTP11m8Rh94Ji4q9zav5vN3fgjetjrk9ra+oHBojqEtcmwPwu+EX8WYkMIWPSX2HPrvEqvxO2xo75GkDyVU0y5y4FLB/7LxtVWdHq+DKO7hYIoQeKw1vn43LgA/2+S+/YVG/mvW4bv+jI2TE28k9k3zVMcRf82ozHxp/ape3ZgPKfsr1gSXExuwIM7iSGKKL9Na+y3SALcYyQEbefoEckwVKQbuqkLjDK/V68HKUQx/A4TEcoWzQh6U/TXUODhdQybLojfNarLEBoZHHBNjFL5eiQu5P/DnZrX55IvaS9wA+MC5lAaIHZuvvxxUlE1Xs3oAab+5r9cPX4pjtzoNdfxsX9svt3W4WdZpjpBiUXtNwFjLXByuAwlNoSvRTDDlS+SbUEGQQ0IVZE9GShRF7dzevxSwQWeV1oFUfz7Tc7yaz8VXXNytNDb9/JefaGz86599Ws8/OtSL+Qe1vFlqynfcP8kmbliv5N5x3NC0YhS9qdlqWTff+7C2Xz7V6eFTWe0cdY5ZCEfBR7rITkriRegZ7FPw8e1IQYG6ezrWceux/fYNJtFMsDKtmJSEn+v1bS1ulzrf32x28hSG28fPsRd5HA0wc6rffbaqnz/7SR0+/ycZLfdazNocH68uwP41IH5WpV0bLl+Ria9+/9h1quOdqYvUv0u6RnMhEE783oez+s9+Oq33VufanaY1cFLPOWQIXj/USWanlsoTO7Nk3KlOKwteuYZ7zdmd7WnLCMck+aFinz0cSFNOhyVjTDIFeVtucFR2Mp60dB4/LHfTczygPcrGhHV/EKRO3QgnDTkHCJqGPYpuoWx0QXbZ7k1YNW9tVgPRMFIpGt4FLREAGOXw7vSmzkqGp/viYbRcXcaZe7qESU1vUFnFpFldEq7jzY9zBqEDri9hVCrCZTbOIvSIGn8ou6sfxTkUH3CPY3vQA/mqceggg8/v0n0cYSW/j4pYOIZBXtRJM962zYSygHMN+FJOBUukHQeQ8ln7vVwwcuk4eBY38/pHv4BbIaKou/ROJEvhpzv/FWR5fH3NIeQJ3bvs4vwvOUCvUkwu/65J/y5IVvNzvRxoWubaaLE5kLgBXpE2JF8zj6VAiZ0kw3KTrlvWE/h2tRlr/MJGPxz4ZhZHsL6lJpQVggt9PT80BUK2rhG2cPekru/1aasEIVHx0nQkRoyVaR/GzjFfVs+/D2oaJuXhvnXdsvLDo2IfecJwdgXSGZsire32FeO6tFeauYIuSI1idmD8KCbp0Vw+VPtVyrg3/MW22PD7tZeokZCmW4jHpUxUmjPzHLU/KhkIuNJ55bLX4L3UtDo5wM+di27Ux/uNRS56JnT5yDXwZ6RIRzygJvJqMoLatyOi2DM7H9sj/Cj0j6f6yfN5/fjZsb7Y7BsX+5/O66uiqR5XeebtZ2syrfc+It4rytmorjUOTuPOuaV9LaI2FeEjacaUACZJijNL03Aa4xFRsHsPVYEvFNEINw2vCiQa/flUI3018AtGvu7bNFpVFxUEM3Zeb55o3Ow+IfP2BQikv/LhzeuqyVKjVn11Gr4lgklnbUvZKjCZETIoMB61p3r28XO95wFu+GaPlZ/W9dMXG8VwHlfw5v1c48ghpHxumzKEhfD1lAMtWxtQtVOt54ydUb/y3/ZKnhKSSTxoK/3x6GPyJccAawAk7KhJ3d4Mdf7eC1m91HFXX/zitUADKB7T9Y2eYzx4awcKu5TNyv7hda3ub2t1s5Re4M3Ng0yVB7KOl4salmsDMsddsrTNTwS5KzmEcI0xrUfkeKynzUY2OUz1FMN4Bw1NSb16Zp7dLUE7VIxTyjw+cQ4bqxdXfnA9wLrQGjpv6/s/vq8//ZIEsd2F394qcJ+EWbhtffUtZvX+tmelD9pW6Yb+Ey4c4Rj2htOYcYRfODBm9ePnp/ovfn9a7y/eCP1xEdOcBRNgMU9UoQb6oLGdYWkheDkUrVprDLFVwu17Ex4PBMzkfaLYPRxnkorDDWz0p8c8vn6BolM9axy1mNSELpzqyi60iejxCMCVvTcFPfyMMUdU4tpT2x2jb7V5PDpMOVRTNY+K2hDkyf1TZ0kRuzvUia5i6cxFeaEJ+W9F2CVCy+Nupw/4yht7VWHMn8n+JqQvHDuZje82eUCaizR1xFDWlEeDtgSRUGQUxmEO25A9GyLf63JM6LpyoIWP4MOvY6tCzM+BwwaBxc7paVd//2+t6//4Xz3qENOVS+HTRYsLi7eLvn8R2PCuAxHf5DXSHP/Cy5vCh/ez+r0P6U49ix9QXAtRNQFcG5YKINusmEfn+6GAqBgxS4GYsStrXyT00cTba9m3pRHmjI7NM/CnkYVInm2NNlysKFhcXybGxjE91Xam0a/HujJ/lyrdGdI0ek118foGdbbvntJAkgowWs0Qn6VJyrk2O0bJ8OFjyixlfqt5U1RznYKQq1Ado+z64rvR7Ig64zJ51pQBbF4kY1Ihi4rcSpGY9+XXibuVPay3cl8P7CDsIefwY39GNwBGR1FF0jzvRuuVmRooi+A46P15+G/cw0bqKfoaEbXLjguTVtfz76XuzhgRwQtF8mK6q997dq7/7pNJPYmX+Nsfonce6euXaqu3Wyh/9Eikx+8xrdn6vp6pATJK7qbYZ1/seBtWiJCK6xcqRUbKfcnscxlvR57HkU4Q0U37Z7J2JEByjq9YSXoGPS3TPhirLZYJ3E6U5g4WKMVt7nbnjHgPtU8s6JIC42lLUEUNz5dCHE2xuaDUDthJpjMADopZKBsDzYLPRmxPVje3br6edopwO1M0IVzCBgmEbQinVNE/TRHxuSqkPWk4CBxVSAJg8EyOpEuQMDd+EqsIhiZJw+ph71+2vKHAvLm7oYyspy8f6tOf/7r2j0/1/MP3a/3s3rSG5VA7FWg8Y3SWULdcrB23Txrz8rnh+y3g9p1ntX20sfWOkSs1iHzaOPznSlrBnWD3tFO2L/skTRg/O11z3Z0ZLicNElamVbudbee4t7p/EaFwXQ7HjUAoUUcm5/potax//uJ7dfjsz1Rcaxh+ZZr+NvzmVvpbU/W2GjD74tvT5PYkvYL/x59Tpq1jjWfZ9HmXm9mp/hd/47Z+8BJRRh6KNnBOB6NOgVEhSIT4NknzlF8Rk3cy9IwmOtImRa+MnQl2jsdSsmLVr6BG1c2hMN/XiXxd/lysW3SQsXELkqLCtuYedeBszmLjsDCRZ3JE+UteMOMjIH93N4zFQEmEGgIXHj3a0cHJ/xH0rFElnwc4vfNWkpwhYnw68tE0t20fjjUs2V5WtX+c1WHT6ttk+3HjIZfDM5AhNJ+BAx74ub3zzEvytYptx2jiaonFdE6HQbyM3dAdSC+3aVskahbLtXWBwMak99bbgFSwurhundfLIcnvhpxsUjEoJYW9D/yOIewK0kd8pzf8J79/qv/1f2BujdeBp+YjIT9E5t6n+69Nvr8Igr4DSMXVB/0Lhrjf8MfZaJ5Pp3XPAZDIRI8tXciJf0p8WYfEx+RXI1kViiEbN3qWRqS97Hi54UkCT9aPPL1USORAVQHVzagV/BxMRj9MuzCi508uPDDPsjiYVFrEE6qz50CwNUs3V03HsgdmCPL5zKIUpGHUs0M61GRST4dZbcmBZjyMKlKHq597WxcZRVG+akbaAtpkcN2LzutUNuYC4a7i2VK0aj+LD5/Hgv6ZA4pejeIuKl9lZrcQYEbjqsAFTSV0HRWjxXdGZQsGYtGIUdh4daqIM7HfiSgoLBOPV9A5gs7qk9p6pz+fx5yxeOHfxHi37Xr2SmWY1t/4aJAf2fU+P3q5ft0aftdf42e8gAZNj+kIUSHCk1m9fH4r4/7RZ5XVCxL21iShPVLDrj5/5VwjLYmmNqkusu1KsgXnFNwubL5GXz75TsbYP5mu57wZrim28gGlNSAhUgccvj0WYZvaPp7r5napIoniZEvRRKG52dXuYV+zu6XEHrYLzFpAuJhxt1BJqcy3tSM/eAmfF0TSD17nZHO4D7eLGp6va/7imYILpnj9ydfvYIeATuqJsTmw43m/0zmK1Yk4cwiK9kyziEWD4uWEKh4o/AWtmuXfgUDaS5CmTz65qjUYpc7r/Y+e1wc//FhAxutPX9cv/umf1xeMgU/H2j0+KuqN84xnjEKbQIXdblPnw6GGw04I++ruXs8l8Yir1cKCDHj+4bmL10sql5D6Se3xBJS6flo3z57VZBE0HtCGQnK5qDfbY71+8yRj56c9PrpQw04qGDWZWC5qshhqWC5qvsC+bFar5ay+98Ezj/9yjl3mbW+5+o1TmW+t8Ls+gLr46+pvLAS7YR4JxldTmWzIbKyrYVb/m3/v+/V772PFEgWuWMg8KJT1HmfCNVM+bDyBZMwKGVWqmmU2TPNdurPvGCb7jHn5moDt8aI85NgcZ3Qn81qc4K4ZcaJb8PiXmiWcQDm5kn8bZdHsXPMF4fPeuPn9Ents51VPVcNhVgPFljo+vi/8NR8YNlu1saWTOVLc6HrZ2468XixmOspn5BDJcsGHApyfYbV1HvDhVLsnIHMXitpoGECf8R6iw5Bjl/z1PGoebD2glIMe3/l/svSY7iQewQaH33nYY9a8GLlae7gmUkuPQR0iOR/3K30vJ4eYmCwhhw4rSaLtj6Xi7oLUekQWc9xEudnnEWsNDmEXj/Pjrv79H27qH/w797oHXUxoNfyFmedf3Nu/7j9/RzCJr39dIcP6x2uLD0Qdy0X953/8TFQENh+KDY3vJmdl2GpNtQqxCedJttCerOJdycohFIOMmQfWr1HMlAQNK3qNSmkCcOWlY0cXo2r+HX00+vd5iwgaqUaD/xEvBmp2DePyPtPaK/mGQ7G9LR1/KJNmNSMzUTM6HcQHsEezoNAcvE9MfY7OsgU1szdfuL8qrqyc9HXyuNvl8NUzw18FZMTMPfy9HvG2t6gnGRfErhvdfKXRRgWvTSv4rbim0RQCfzjWYX9Jt9HIL1u+rplQI5pP83s9OU/kYr5D/65RWToq5688WQ+mgIjz1wutR/mTad3OzvX7L91s/0/hlTbhiiPF//MZE+tW7+OLm7pdr6Wg7r2SYowD3960FCdMcNLAk+/OGFP3/CibPQUX8O8BMkDORInwb/LzBbjr5qgtxGzhk4mV6BRxMHIt5PG8rHrM6T5st7V52IlrhiUJtmECL+AZzmaKJpscj7X9Ylez24WU+uKXqnhh7biRcx518gPP53r4/EnP4XQZkRafjJGrIMiZx7tEGy6GWt8MdfPhcxkpz3kGEW9Q0GpkTCrTvo6nXS0ARWRIjU8uHHrn2fPsAhEh2lhMEU+6SRVvXWvfa57iVvF4GEyLUF61WE5rvrSd2f2LVf3wD3+3Fqub2m929auf/bI++fNf1evP31hqqBSbg7KJ7T8bLjRd13quz89zqOoCuT3P5XyQxQoFp0kZULtmstHhxfW8e7EWTw8nD536gE4TUD4KStYNe4ZBLfWqjI0pcMkVh2oTPQJFPUUv/3R//7xm96+yThv66KfwbY9NKf6/NcTvK4Ci/r6Lu68oTUbAog1CpSb0Qc/C+7u/86z++t0nNdTG3LWMNKcTCI8xdobDgOImhYzo4Jq1s4CTjzmBWGkCaEdJScxBrp6EF5Am8e9hvVndS4XPoaKDaH6uA0qBHtcKLTMCyKETNkaiU8zzAaGS4/0M4uqi5sOxyHYesD/nN+znVTuK1uSV7pyzCFGbrkxdwxwSrwnWUio3vA4KMD0rm9DcvBREkbNrS0gmJF3ecjUTEfy0m9ThKfFvWK9AlFXxbHNrnzGdtwuZlAcciwsro1VUM/bTGZ/FKp4IPIVDSPBxk1d35fus78I4QzyO3aha5v1VVCqf2PNpj8B8bCazzzJ5Hg4ViKCtFqEsQGu9gj3KVtMwr9VxV3//d2f105/c6gHTodv9T5v5jpv31Xpss9yvWdPfhddbiMq/AEkZi0C4JNNJvawnA2Ya9yU/Fl5QCnKPU3xfJMAQdYwu1KIM7taaZqhtTK7ya0F2dfDxrLFuuYM0NUKNEiQWHzOhfgZNgiw0X86jG400IpCwTYppG/aL9HhoWAfwELHdzksSXLG21Hg49eLE4w7asDNHxvFz3RucazkjVpFl6cN4f5jXcW8usLirHHrZS2hXpJAUL8+7gWIDGdeokYMkDzIH+jKXCbQTOzL/Y78QFcyNqyw6lIhiOoSbGx9krsXctIK8DGp4okyO+W5pP1SoqadM8ZkT3YwDBTRedkydzpL/ft6LYyvfMBWzJ4lClO7R6uwU3IqRm6HrtfiKGpL7IxHJnveY1n/0u6u3YnG+FpX+znRV/UGv81h6teQ1mdaz+0Xd38TWqlU6FOYaoTt1hfui50nFEFSlWPdk3xc9QcbgaUKC1g7xWYTvBtrnvHQ4sBZ5DIANCvTAiaLj9txUwI8T8rQ7KPqLc2a5QuiwrEmQQ6Pj8LkPdXp6qsfPN1VL9nGLrjZYm+mZZZxpVHxHU4XzxXZXD5+8qdN0VjfYj7AOBiLJLio6+OKoXm1ijZ0Q4NSk5s/xrpvUhNjSA4kgTFWJsjjKjB0xZJ9xKAG7fFkt5rVgFA3HTznzcNJDX8poXkbJQqXx7MM4mW3iVFMOeFD87VaiQbyBf++Pf7+ef/8jCSg+/fNf1/7hM52z8PwW85va716rcJ4t7qwfOFfdvXxRC+zDVJxOdB+ESLbPIL6JCDKedjU97Gr78FCnBdGlgEGkDFSt1jcj75jfB5qIN/CwWNR0WNbT07H2X258ti/w4qRu2NVh/1QHNjL2IJrN6aRerWf1EiWwUL++UtdyN6/hBHH+a4hs679+JTBgPJeuJiGqzrNn8VcuyE/fv62/9+NFrVki6pZctR2mCDSeasAgeXaQ7xibkIUBHtleshTdOQmZaFgz4yN15vLf8hiDxAChWyhXscETUbBzN63kdRpFUEJ8rkQo6i/F4tyOyAkHkXlp9HZA0obeGZwshkGFZQfXu3hlAbNIcFdn82Z0LUdP/RW1nMUmfGY2bUynBxeanREZtFTFDd2CRsigA/AV9rVcu9BEv4L6i16Ey0UmLs5DotmpeI3lAyNujXjoOu3jxyHp7l7ZIxpXIwJRVJwO6RzQMXIm7xezao23BXnQ/3DNbSQ7YxR/3OvgZIRhiJ7rOQh9EuqRaDYVBomI00hSxal5MjLQFhcCdfGhbuuL+vv/xq4+fj6vQ0Kg245DyEYI/Y2WvrU+v/LPv0UY+1f/ukLTGw372pScJEXUFVoWmUv9+z9mNNoCAr+ZVeBc6VhyBHkTvzOO/Nxn0j04UHjp+e3xl5oQPwPQCPrgo+s+9fsLufAIdKM/Zz4bPoygVWMo/fidcgBGpDD6mvH3KRb1DEKcn59rSZeeTq+ZAYiRUO26McELD47NpG6WcH484sWNf4qD/8zF2poweJo+Gjl8t3bOzr5M2YNKpxViT2G0xnoW9YQln+hAaChwmhihm5/lMfXI2VM+thXKNrbmu8eiKpGPQkqVbAOtJb2RinZG2OQdB7k/KXvHKnhlwF7WAs8lo3aN+mQyS9SdD1kKOdNlSFcw98qMzNiQ5Npb2R3qTcfnRCTGvSVn+dXkXB+vv0Fl9y9B4t+F15UTZBCujiTt6RYo6rzWN3cu0BIioNpeDWVYmhng9D5tQ20Tm/QMRbikfw8nOgizmhn2P1ScIGhQLWKF1bGK5gtaaDgageu5NLBw2Hl/Ps+GWt0vjfKlYSCUYDlzEwOydHo61wSk73YuZwjtDwoFtg/g4eQYRRA8vPF2j4ear9a1uFuqwcESRtxVwBSeEh4umgfW1gI/Vjws1eWYt77EBXdSR4ygVYyx/h2+MJVXqJNM5BEbHjFomvBOcZLDO0yMniyNOLMSSScgphFuLjI/i5m0UHOPwg/Hbb368Fk9e/89nSuf/eqhNg+vXTPET9D7nLmxfBLGvMuBSR/1iMEH3DT0vHJdiYVjxE6daTJ0TfZHKYv5XCrGQ2Gj2KMWgOfYIkT8Sk+Pe9u8rEn6QgR7qh0evnl22xpNfN7zoW6fv6oJKNN4Flx4TXYs+eYP21+q8Lsu7q5fX5eE8NXC8Ol8rvt51X/603W9uvmypuyced7onkGOpPlJLJLf190Ko1RafBHC+6Cn6u7c4PwyeH8sBPPJEhPDppn5vy1TPBZyNx0OWkNCOUh1gIarozEWN1LVuDfRgY1UHdnCpFNJDuI5J9npvoYFXI1TDcupFsd0wQZis+M6Lmu2G2qxG+q4hZsRBEEjzvYrs/m0Ci2EzkrSuHLt7jB1OD8LfJNQFk3rTNwbyrAgAzaH9CjIHmpWLys2CARG18u+ZEJopox1Ub3MxVHke0pdqNG5uWEm5l8yP2Vpk/G2kQjR98PVogjtHEGrj8W3ZAodu5YucLtjhOeisW8sJ7TFhE/GofjT9aH+l39nWcvwE7UmQkr3PXx7XX41reOdLfjG11dhvS7qvsnLX/KPPqajBrUJ8T9Z0V15NB+X5svr3eMHXnCB9LcJhpcoK8bDfZZrGBOenZ+r9KG50GxcsHed/Zx7KHpBpgDiLSUrOLFuaqLU6JnbZKK5Y8+ADJUek9GWuL+xT5E9RcYmwZQz2vKYFOCjM7A1jpWi+Fwr0nOEvlCsTmvHREoKvK+grLFosSjFiKBRv0sCBqR6NWO+YJfGo9eoDuyLYKaf475jPDey0+jRnYq31utFjILYgwYxDdP5Soyj38dzozPXim39htyjfE1f/9Mlck9crdjo9L1TQa1YPMdraQuRkGEyFqd/98f3v6UZ+ZoV+U4/b28zf2P/6Fc4S4vFsp7fwe1KwniKPHHv43/ZvpI+qL0ujPwG1c61ax52N/RWQB7qNMXr7mLsrFom1BiuO6NITzO8P/LAbR9l8lrDciYl7JqzRmCiozT9nNAYHevwxcbc9zviwcz7dYSg92wZ8rP2MTve7+vwgM3YXJy+1Z0LzrETC49tvWAaEO4uUyYVUG4naAxZhwgpyIAXTpXYQvAHxrSeJnth0lTxfCNu8GTKEZKimgj0Zxztz+ipAnsY65xoNFN/NFYXHYqzEMWjG0b93PRYLz98Xs9evhBt4tc/+2U9fPG5zlid7fsnewMOi1jmnGu/efQIOYI1cQ4jJAP500QBi6wjBSiTPAQdCxFzNfFSVN+FI21a5Kx2r59q//qNwY4VJEMXyRIqsgak4mzhpRFdwCVSq1arZ3Gj4L93oESfeebQf6vijqy58a9f9esb/3pdAF79/uUwq//0b79XP3z+hXNuOw6Hw5yRIUhRRAyj3Ysq/kQRSUWVvMoEil/i4Xwc4WVnvy/Co213ABdQG61GVN6EGWuZT+iiJDoZj2GQnF9taHIuT9SORouo24Dwjzxke5O95dtn2T5JGNoqGXFKaYULOpXbtibzXU2GTZ2WX9R8vfeY4LAVJ2mCrx78nSQbeJF4QxkL08wxHcMUVSFF19SFH9+L8nkKb9HbtwrAC/mYa+qsXh0wGTVJKaQun18DZ4FoOjZ+FrBtJaSI5jufL4edD33zJ2dn3lPW0BohavHy7nAWucMqwing6HLMo+C9jabEeFR5jykEhSyC1Lhz4+us0o0fTsv6m+9t6n/1d38sRMmfJZtwK9q/Zt1e0xJs+lvv9utf5cCcTOo//MmNE3FiK0GjI64aNiPNJ/LMxB2tioMu9LypdomnvlXFVZz4ExXFq3lgLhz9HDX3xF6dEf6ES+pCz8WGOGwUOuKDZjjRXLIcmk59MZ/IvDUjicrJkdUPhwdRUBCoreTXswrV4DwIwZM6rkVMwbgc/8iaQaxFMQhSaUHSZjupx02Jy6rOW2KjTjq4MnjWXmflph0A7P/Hv+aQHkUeQvFjfzM2Jz5EJYRqsUVHcrVahVFYmuAmjM+gqejCZAIQPmeYE3I66HUjylOez84IVuMlb1GLd3hvMGBZUmj860xyls5FWGaeIfdMd1tK/Kof3hqN+ro1+lWxxztd9+mV76L7lOqvifMc6HcvbSgeykw4B17vSp9JgRZzcfMubStmvqsLeRcrEUdJ9ISS9KB4TokGMfSNPZfkWXCZtfwQCzKxajX4tDYP5MpTWMGz82hYoEGLe85VCxS8rOHHXZ25t6uFRHgI/xA0qTmQ7VeoPYdDPX32Rvy/yXpRi5XXoCt/gwP8jGyBZrN62O5qwziWBl/paLy3HRvwMNQ4lO+zdN7FDgRxt6u9lLusM0/yQAChJ9FprId5rYbBVAMED28lA5E2FP9EaEISWvp/rQTW58QaTHxiT+IkjCSoYTXUxz/9Qa3uburwsBXnb/vwWjQIhJ2Mcud3a02tVI8/EQEHUnlwhKTqBurJQ22f3qgZY6wuPt6kan2/UiwdNYHeIWNpFe26LmnR1BQfa7YePC082NLHzhpW0utn4dsed2786lA3k1Ot3v/YzVsyb93Mt69omopvu/D76qvPTd2W5thdj9nUXHK4D/Xv/GBVf+PVtibnDXvaKMnscUO2SWVWUiSySYOsEdasnEpizSgoeNwovFQcYFPAEBafvKUEDlK9LZYcB7WvRW0RN0DIFLslJqwUNoyOEC0oCzaeetrHTGLmgR2Uj0lXk1EzN4mHWbyeqWKZGBdnllqbwxtzBTSr8Q2AqOkbyYYJ4rfStdljjLza1nA7lZ+PRkrHm5pupzXd7i0L1+iJz6ylmwg442aS+l+Z5DKyWiz2NYO3tznV9MDP2MiauA8hGah99ztxHyzGMSeLa8FIHBLGIoa1XOOa7RMPxcENKXdjvp/UZs4yFQkeZft8py5Tk1usJ3RtjDoaFTVZ2fFv5pNZeQwB/+DCRMU7149VZf5Jo5SguLvOnZxtxK/4Wx+9rr/z47XGC/vwC1rp21nQX6Fuv2Vf800ekL+a1zV/47fwpb7yR/zyNf7D92y+atTLjk10wD1aPWFfoPFMk8SbmMyoB8sC27/oHgmJzVVE1Rc9Iy8C2e1LBwI2M+rVSQO5Bz1uVNmliCYXl1KxdnEQ9SJd9DBnA44sIWLztnRRgaiEx87S8IEp02i8vETMsz3EFj4NgPn2KI6tuK8iyocjLJWt0ZElG/giyAeoBAq980V9aU80D/g8EvUo3MMpP7sqEjuJo8UwaU5le9F+fynGtK77r4k+tCUcaTwuOHuMryJVe46z4XV1EaVgQhsDeduGYHwL0tNIVAaYSYhog+3ObvUeHWUwY8iMlYTgUDiEa6lCJgb3bHUcyu9Pj/UHH6XQvF6Bf6HryiH2rj5qemV9v0UQzvk0X9bH769GaxVx9mJLJP6qfDHdxDiNKHQFzioJNaJ6DUDRKxfUlAZnvz3XEQQO6504JbDYSXEQVUhrZFo7jMcP0J94LxBCBFymPQiBpPibHUVMsoCg6vjmsXaIMvCOvR1Ed6BgW4Z7qHNos5e3HRy1N58+CXpevkC9bKic77mnyFLMow38D0qRONb2NMHCT37KPG/SfilhY1IDZs5dDK8WtR0G7ReONjvVVjQQBCG72uw2tdnta7/d1/awk+IdTgU8PzeITM3wv0X1W1IXw4PHc9BPIGcIexwF2qGOOrc8KhfA1BGLKhLP9YO/8ddqWBP3tqk//7M/r83mSWDU9s1ndYSWMQz18POfy/JlDxI45boyouKgPo/76kCuMZ/pCA8ec++VvP2i6nSx3ZOIAcBlqNMWx0Krd09YUMkrmIbXql65KsCbVlqPwReDYRaE/vB7N3We3cWRo/lKHcvTYMa3aOD8dWdP0+vGzMqvjNK0eZ8m9eMPFvWf/N5Qz6dfxgy0uX82FO2x8PjwHCEj8/5W7ageZ4wopnU8uoRE2HCWDp+LD79FD9fZaRjKz9UcxYieiwIeMhc3HX/kGT9sOD50qnsD1pdxcuDUVi62V5Nhf/htE2Va0hnKUDpIgPg9+X7KQWUdojBmLC1dEJ0LCDYRbSYCn47Yy2CbggLLvCVJ8MnozQjsoswzrK3vNMU4k7iYZZ22w8g11HYgVMKLognyWlCt5m1Oi65DfJImcxVUjW7ov+8ZufvAb5TUB/sFccM1Hv+9OeISMIXZTo7pOnRVAHvUh8wdDpOUlp1XqTVj5EecKA7y8JDGQgWEcHqq96df1t/7/UX9yafT+uTLrxDMfal/K2LtNf2uQ35/ydek6vn6VPczd7n2cbSnonlBiQ+TvVH4YVccwT0dpjI324cvAglI5kKTU4SFwI6QISEqIwrcg93+PFaqGrGzL2U4rW08n1GZP1qH0Qc9z5pt6xe94H4CshOpxETAO3yoH+HUacwUAZhSSJpL6oQDiiXjeFbJG53kwGTqNpE6cQvnT5w5DNWPtVb8QUbkLWZI4SYTpKsiyoKqWA71GLX5mG2XEnRJfzaq3wt1p1H9a2NokJy5HB0QEihPNTwuTSp4DvURJzXVd7gydY0ljQRpFN8gCPHabh6RbX7sKdYcNu2g2EDF5sbKVZPo71bT+oPns/pvfxnD6a+8vir2eKfrPl5B6nx4RqhHc3PzAvvgXGObNjuYKOtTz0kSLvKSAldDJQqsoHaXYXL0irM6PyGesxesx+gp9PJ5FL6ZZ0sFPhQZlMJk8cIHZBY/ekk68QMeK8/9/s229tCnbpZqasxpdwVOc8e5tcMRgsqN4hXaw+2iVhDrlURn0UrnU8tnF95e0pB2QhxQnB7pByVukkVU/FqOe8eYEnOqhNtV1dOXb2o4uDjZDgA0ACOR52UyICsbrkVUwIgeZKAcJb2LbEWM6NpRNMHxk4xs7jSt4xN6gYO5dCj8ZxFEDX6v0/FYr378QX36Z5/Um9+8qeP5F/Xqex+osKP5nX/4Xm3+9Gd1Wj/W9MwUEQPtVR3KyR2cZT2VQDPKvgmXkPrkMp1zE8X9EjLHtdltao6IRdGvVn775G0f2nh1yjA+8Q80qPwOsXOrnsPXfPWj2v3qvw3q3E9qGotkSn/LkW2XBfwX+IX9Z5IfqfHhZFb3w6T+5z+A1/fgCYesPKIgMshnE8YZBYVHph6VGnnzn6beti8e40YrYN1JR6zrTMt+YMUfi/ed+H5GP2wonIKVRYUiUMUchYYhVZt55jtJZevPgrkDhGnge3F+hE6JMutDA3SqV7AhgjqqIKT1AmInxcKqXduXuAsXB0EQfThDdAW6tjuN5pTLqXvKt6HdD0F+3mIWdxbmYZm7hyXL/kgodNV8mYi7k9V8gvflg5YxTTzAaIzw+B/f9TzXpq/RQ+BjIry22ASoALe4xsHUzmi1Apqe075+poUYCRH5V/elkw+woHEhAHrBuBFDWo0/wGR9Y5ymkAxRb6DwQWLncjrWX3+1r7/zk3P9X/8bNcJvMw3eCl1P0X5lSfTOc/1+G9L3L3j9zY9v6hnhAqdd7ZLT2UxJFXFJymCsM9ruxMNPiDTWOVL9+udcpLnbZyFS3IHC02JbCR4fvhQ0LoBSICQ/lsKTlw/K8JiCuHY4ggUmoHXe4JV3qYYmRt/ZNewVCde0rVUuyJm7e5sVC+HS48lGb15rI5sq+Ti3OklD6LyJi3LKmszlEYbx7YlcTVk8+SB2DNw1b8coplCxTkFpeyl9z2b2G34Wt24cJfrPdNHXo1nWPKrKThOxYt2jaQ77qeLAnA1MU2iDa/P4uHfypBXdwpxYKY2l+m2z9CSSwCvEvkPX2VMWZgFwBfnzKrYlXMOztFObvCYgk/x4Oam7YVZvGMn18vxt/Il3tMdK25FD1MPvS5k6q5evVlnT2daV0+wsjt43BQYlfqzNz5V2nAZmhDvD61OGrQyM50reaOHCSEnR/msUkAXlAjDiw1Al4JO5j3Chyr4uP7vptDZfbmU/wvFEutQBbnaeS+Uvc2/32zpsECwsanLH82SKAsWlEyNYAwjozKlTAy4U0rFvoMPyEwwdw/uMnRjY6x0nFycB9nbiP8+3ddxs6gyXgs9+SyQqTVymbHMAAoMCZ8a4yq5GDziv6XJZk7sbPYvCcuTjZwsZ1ui5+YPCbjCWHoLQkccL8MHoeGf1cZ1qsV7Wy++/X7/+s1/U9vPH+uz067p973kNN+uar+9rendfpzdPNXk+yGz55maoE6o3nhKTO91Y615SlgFMEQ03q6OmGVOhqXz+PQjl01OdHx5VQKroTzwpO9VBPHoX8LJE03pI7KRstaBaaJSmP//xD1/Un/5KpKpxWV1W81f54d9mcsdXs+G7mMqNN67G4j/V739vVn/9Y2JhbAvS5E8d6lT7iVpTQYQKWHtkxBiNkjUVWu7lgcJB+05DTXfzqps2Wg5CH5KnodBs7uIP2T6EzX06cMOslFJJnXQDX3CHSbcdwviFhUAYSpJCVuIF36Rxti6SfLh9OhCbF2KTS/yLqlbjd/S244D2DvaxemkI2T6LQPw/xld8yUVN9/m9KqzI6IyL9tGxN8fdtk5kDaMmTuJB54xSYLPYzE4xH8mMH8bfPmy9kQ1XOYmGZCkYxRniMAwC2kRy8zVMTOY6CwsRf8R5qDJr9h+MoS2ILxscGxqDNX8KCkGNzFxXu6bgV/Isq261kS8PA6Otv//T2/pHf/ZYv/r8cvDkUowG/HpAfGJHJHPhqr3Tr6vPeK0//DouLd/q1bCvxclBgvLBC3/OtZgNZcXbDF9Sd1dpHh6DSvwglbVReWxgdE2F/PlijgL7ETX2nzEa2MXahQ+n5yh2Puak5NOOm0YnBlzUrHS6MEblZi93ACN3Tv44KQ6qRSf8JLQLqx+bvxh1JJ9HynnQarob1uiF5yeVsp7zjLv1TLJuMZKlm3dhxZ4Pkm1fzU7acBElBDteaxDNbdhGNrLXfkSfOSjxYo43XvYr8egyMrenmjlhjpzM4g86x3dCxAZScjgOdWLONjgHtMl9LrgbfbddDB6lziBnLzmMzwIAy1amv1wnF/jKc73yyLQhbDfkJHjYQPqv3Vf99Rfz+q9/FfbSVWP1F9bvO1r4tUlzpyldf+TJ4r6ewQPwUFf1u3xYU5yFgKdrKPNdiBA5x9wsgZiGgxxhlKk1eNDZokjnhSp1OHtOwpF/WwRTCqBq/WLyzEGtKdrFzRWiyGQI79WhDq+5m7OaYD0TNJn35ZcvxYnzOgUUmK1W+Pv4eU+xxdOlXHehUZzZcOYQPXjk2GgNnn8zHB/0LDGGNs1HThwaSbcIzOtfo9DlpA7k3PJeGCmjYH18tI2NxtuqAn1PJNwygLS6W9Z8eajtpw+1ermu4f4298SKamW9SzB4ru1mY0XvclHTBZM1ilY8+Wjm8DbE2pbCd1fr+2W9/PiD+uzP/nnt3uzqdPqy1q/OdTdfyMdv+hnRJxRvkzrsNrrn+KPu8Bsk4ICiE0UYexLG3jr7DTK5oYTqP8THMDUMlgJB+1vyKD4jfwPQ0hhe+NAtcvGzZ+7o+4tp/eni/Tpvf6GfdxtyUah/k0ftL1/4ZXJwJXjTS1tUYBTlFk7n9fEtiQuv6tnwaZ3k57az1w6LlxsC4tM16glUjHfiQjphotV5trOK6ENcG0yRWWATFQPa+nPQmLC+yIc8KoDcV8IedCqv1HXbxqXRtx6rMAZz+DtV+2DTWqGTBz2g9iT0YSZfvTxcin+Jgez0DGoH5y0x9K2cjBM+D6t/Vz6bOnEXjo6domhyIeqC2OPQ6RjFhrgEJ3NqurksVbazvd6Hf2YprGar2h12dXjEYmZa0zWdKts17+sAbwlhEmuHxYsJ4nEGl50Lf9RB3nwubFimKzrPQ82Prsq8ccq/QopdWRjsmzDvRTyn6xLfwkV+4wM6oGTbko1SiCgjxHnNJTqglTaRn+/dFY8d7xe2H5ke6+b8WP+7//jj+t//l7+swyHROBntvz3uzfrIo/HuJ/X+RUeM8e+/KqSqqrvFrF4sWR+MWdp0OddCSAE/Y7VZxyP2QW2vP1sO8AyIHC3rBPOXjhCyxaF2dJ99GF1wsLbb8qAxEwoOR3xeRsn+q5XyjHKkJIwP3Zi6IRFBuJ1BDRjrmv8SLz0lakTv2mjj1UXSOrO83Jsx6/C0r8USWyU+MAeoN/Sc3SMfEYEEBTLLmIQZGq3tweIHZY9K7dqm1xnRGAAV+sAYzbXEXBxBq3w9SsbmQniZM7aErmEYL9ROdjMmeossz3UMugTv1UkgoC8ev2FZoyKS78O/W7AFpXjxwCGWV9NaRNwD5QMEQaM4Pf9QaVKw66DlE88ktOvnTQKbIFdq3OkjddAu6/35tD5abOv/c41WXQvj3tVq761Xxw8GLVJgtKdRt89X8QpN0ZtMVZ1xaqJcNBlksM8exZZ4qSp8LMTwPnYRrDE1ma+9FwuDoxCL1yZqc9WXQvC8rqTi5txE/UnaA3x3PYvK/JNVGaPEPWgatiEvMKqkaTnXAqQtOdYx/agnkKfJULOBZ8weq40si5oTH1bWiqgf4QMrMZvvcqDAMxXC0zILP9TwsUZApI3taHqDh66mNju43Ixzg0zdTmv96pVoXLtPH2QVs7hdpMB1LWGv2Ultn7ZVpIB8WvX06Zc1Wa1rtp6p2BUQdID7B+GwakoSCfuI6guQODY4rkH2wwnF8EHgyf39uiY/+rh+8yf/vOqLYz3uj6ZDoEi+v63T7rGm64XoZ7JP0vmPqwccYMe96vrIABvLHDLts5fRnG3VPcokmuzfExYxnOexohLNiaZLz7prCE3SxmtqP02+WINZiLBuPn6vHv7kl3ZICFYd9dE38vH7V0L8vuqPFpR7TIFoe4E/+slNvX/ziebteOu4T4yMO4e91XWd02rUqLvhMU4s5EUVygfEEBAqUSqd6zjbigtn00xvxrMpcWPc6Iv7vLpvtj5ix2JAbGsFDq+gjvos8IZMSJfJco+vRQxvRK5JvhOR0cUxACbPr7MRsaX/o6L2TBfV2aDh3HVWYzwIc4ZEteMH0fw5/1nk9YbgU0SymQC9M/YBGREp25wsuk/QbpHz90fb52S85fFeklF0LYLCyIDX41kFjsuY81yzE9U1D8te3ei5fQiHQfC/BoMiHJkcL4mXDH/9kB3POLKPLtkZBXOfeb+MA3KoWNnI54txp5I/fF3YGM1HJPHFjuggv9y/90+/qH/zd79X//Af//koYuh7/Paa/YsJh+/y65Lvef7tBWH+0++8GuqnHyzqeHiyebZMUc3vAm1Scu0MtCc2CUHZdD+1gUHeZ4Oz6tYIu/+8LJC60Br5nKEAZOzkpm8qgZCDPl006NnDiqRjjiiwOCTyZwzQGWHs4lGrIAcA6NYccZFruXgT+vdx+IBUgWAKuYhAQkWiqBqtsOWZ3ks96N9rmofGaelkVZD6jfV7KK4koDjwV2ySKNTI5sQLD56drW94rjWqlq1E+IWJKrQfm69/sDuhGaNamGqQUbQyrH3dRK8QL+jC+9KzFQI490Z8yhM+orwX46y9UfR4mMJL02BoUrWZHmspDq0Pax2AOTCQg3CNhM+jEpW5dEj6SoQoidykXDydayGBzbx2h20t5vP60fNZ3fzqUG92X1mf77xkvl9tUZFnocOlp8t6ebM05yzryueVx72yCsoUwcOf8Pn0lklEF62H88ZNtggIu0PNFoxWEbZlX8eFAjBBtXbjWGfFgHLId270cedQg+mtP4fNwU9uNnYYCU9q9mw9ei/ye7SDZmzIWTSlkJouankDGmaQQw1F40U6bnLv4NGqcAVgYXNOAynOfNwnWMOKkrY1057ClYlNNm385+Rtyd/PB0191HhQoAlMdMEtVTDooxoOcxBlBiYe/bxulos6v5zW9mlXx6dTTSkCH061fnlbB6GfrPZZTZbzmq6tite9ij1NeypiZVPkDm+ntd0SFUdxPNTdD96r7a++rN2bp/r1n/2ynn30slb3z2v3ZlLz9bQ2W2zIZLRksc1+JzoIzRacEsyhVcSDLoZx5z0YsItnBsh1Ze5+D0a1PzqRxNoE9khuAM83I/XUBABUmQwISJlM6/v3i/rvpuuqIzxEnns34W8nenyLhd+1z5G69/ZQU8FgHy4OmJ88m9ff+wkQdLIm6R5UDNmTzWRhLkAXCTZD1qy7zRrV5LpDbv6e8AQVTl6l7JV7igST0Tz+PD3Z34hizA1KQtObc2F1qRSqdCOktskhfFrz+UKu2dGJGM3rYxYVsYjgtrgYTisVcer8dZDwAGMj47Gyx198YhBGHzSgVRzB3DyELe3oCK/IKlayQ3dCvYQIxnaErGCrqjoRY6Xx+WnYGDWjozhj/GyV8GxpBI/N57ib1mSD1xIO4cc6CsUzP8r4DKMHKw/ZJA4YKJ9ntdk6pop7xqGyms7reNxq1ONsSZP+uXYaq3EAJnfUSQ+MGxDKeDxwIZ2qvI1Yxn6F4nVlgTFe5rPyssdganXFRXiTOtaTrHMGLiFKsVPVf/GTN/U//Hxev34d7yVrgdL/XPERump6Ryu/MXqtfb763/+FP3j5W5bRzWlb0+25tvIBk8TO49uM0G0G7M3BvC6PBBkFgfihqLd9SN60uUka0zaqFhW+mh8X7I4CzHmZ2DePd13gjV+hG7oYPrMnjNFl8SRRhxslb5tGU2yZ2nxBAS+4bScHe321UMRgiL03x2varI1IReAbU3j1zxiFz/UU3cFct73sNDxq1uHL/8lCzYWnKbjhR/JXEarMjYQvJ/+9INxdcPFcETunHS2jQaRbeoYgrKeAnJETSkRktnRzdO0kIDeAAWUo3xM+VPwYw+1z6ojv9y5xecqGjSWI/dxdsLBvqJjACiOoFt9Ft00KVIvXZCqtdDIX7T99Ma3ni6oH0orSzPf1/k4Ufyn0L3QJv8T1IhYpCHWcGY0ey9Ujljg2OTQaThHNsxQyf/tROuOZhCV7L6q4ty+CV6yOAf8GWykZVV/kYJUpOetw5zNU/qjxtGUNKXf+8VyTu6WnSTpzzV2VnZZGwkxR97V7ONb8fuU87jzrbrzYKxIfymiTCQ/oM+tIaU0o4cPLVfjG/iK0AHhQM+ILKoQ4PNbtFtV8Iu4CCcGVt3myp3BK78rVF9rONVAz2SlaScIieeZuWXW7qCe88L58quM//1S0pSM+iHerun//WS0Wi5y9kvrq84sbKbW1HNgtdiIXl5n07lDrm0WtfvB+ff6zX9fuaVtPv3ldq8XgZgrRSc3rafvG9DHAHiEq2QsAieREctY4WwAPrgBEtHGvoE/JcNpcRJpgruHpTFZ96qM0oWzbol1I8NXQLw15rn00D3hLzm7v6/jlo39HVu43Rdn/8nYuV2a4bQfwlfNJm9t/8gezWtRrccIYmczD9fL9jVlrCNkWGrCoTyri4tSlf4e8msVuY2cXKUYNAsvToyZq6aubDWgZULHdtg3zXat0J9NtOBIXn60D0TIyJQ4BXbYpPAR7j2k0LzOv6aBsQSOAY6GhQs3kcoq12fxio6EqOD6DdmUXBnOJi2vBbuwdHPZtKxU3cX5fKYLJ4mVEsAdJBJ0AgSM2DQPpcA0Z/c6PtVr4kN09HeqEwTPFqqTwbOgcahaocBvkL6bfaX81KxGvjJhDttfIFrd50E6hCZhVghYgW89IlQcg8WDqiMXJ8zWFL+ViPN6MjbToXoKQWNHkj8HGTCF8EWVonIKFBokNkNzrXHfLh/p7/8Zy5FAIKOlJztccQt+Fc6lNYf33b/0lm4Bft4t5/eEP7opBQws5xj+X8RNXiU0JvytnwSpJeYy9A9HxhmAn+ubkIpZgtDrSyGIJYgNnF3kQmK9l0772oxX7yF0ZUf6M2PTPMgWOVUq+rxCxcKO0/q7GiccURmoI8++FNkTo0VdmVALr98o0sLZ4jSlCLqMY1LFHxqrYo7gANSrujZYUofXyXOsVRr5Vi8HpGOLbSU3IgQ8CRBTTqZbLUy0G/7PsMxbnOi84GHg+j/ozC/7c4lg3a0ykiXxkn7ACWQrAJPRgKg0Xa7fVzCw84Mv/yb4Iri38Xg5tpU+CfoKQWvHIc9E8XKmPmS3nCNHBapZvho6J6RIqQSNHIkncDxgLR/p1vvL0ezU71bO5/UB9678LD1V9DUG9D09Lhm6Wc6fERKluACDnT6cKqYtofz+/h/Lb29hbyRFBEinQKDKIF+MZ0uAp+e1BrsMAsLempkAe1yYwSdZEpGOoTojHpNb17lDT5SDak79T02guSCXTq/3rQ81ubFDcxNPJGKUaBFMKYgs0OmOaggSajzxU6coi5XdBtlexS9oGjaWF37aMAmEHGCFjegtVJPQP7ThtPs5/32x92aWOcsNDceQsdz+3Z1JBZHNStd1sa4/9C/vFalmru2d1i62K0HloYIzC57VaLGtYrdR4wfHTdT5YhduaK9K2lkui2wZxCV/9zvdrGIbaPz7VF7/63E/FYSOEV/5+XHOoJ6pBzrV73DohbDW3QlnJN6aTKQvYUL3EJmLsSaTYNk9JcEEgInubmFSHN8c9EEKataaC2ASzulkt6hno7mhY1v//m5V03xjx+zoivHnLflwGVK+gXedJ/Xu/e1c/eQWC502JKQCbEf+jGPK5YmWvuAp0rnDGInBQgXAiQYKNfyMzSncos9rTVZ/xxkNkwJipWfyDsiqJDnPmJUHNwNqKUC7wYMji4jtARt1vpWIS0qFDAR+ivYxfmfHbeswHJmpau+27kzNiJtw7Cih8AQ+Fn8J5vpSvoE2J7YumwlDQUwogmRprJjOiMJ1VSjvpzlHHGOmiInGLpN5QLjm8MY/l+/PQybqG60hRDQcj/oIqmgivvlnV9mletT3VeUlBSImwskM80WxCAqRFjooYBNQu8S5O+b3mQurA5dA/D7SchZEfV5uHHbPn4wlxyVmJIroXPAxBeq1k5t46DUGROzKW9fiJ5SGyvcQfMbSEd0VXhXkADwik9j2opGF3OlEELeQK/9H3jvVf/+hV/eM/+1LjfqOILmxaOWeC8zdd+X+VhPOvf10/iv3H8Ob6/g3PgvEwm3tnrKLDfVpbqTUZVdKxuyAQEs/lVpGDE/7lFxtcclHgnOVYGoVPsj9eE5ndAGqcpA3OpPYuAI3ax+y21bTicDubtOPmnANMgWTBlJZ7RlJ8B78UKhhOoK003GAYsbJTv7m78HA6Ro2DUn9K0GT6Z4XShyICMpdnMmwQrV8l3EyPTuARinjWM4bwg5FdNBsRvoQDxki4Y5fSrfRmix2RfQtz+PDNdCnT6fOHiOKSLRLEcpR/0yIUQM8k10+jc2MkHPinPWghxbgLOCt8/dxJVJNnpdcXv0ttJ8bV2HREnDJtdFJsEq+RHs3rmkl0Y5sMbgdClb/14ar+2Rfbt6yBvjuv3CAdrh574qywWNzElNtNgL4SRtZsmOrZjaDPiB8DzuNRC8fKDgzm9FE0HXcUASQ0YHtCk3Gqs+LZzAtkf5RITwWlUURNg2J/xC+nwMAGjAmL5HxBCdVg785184I4sZgWk9ohTuA8/DDGnbs6TCloLRBRfUEDo7Gr1fpW2fs9sGfZ7g+1mPOzjjo0rQJf24k87mRIveVzGlwxnx4gghjEfW1P51rerDX2VRDnE9eOwokIT/x6F0LThHTLLqdqpyMcrjrP8l7m1sdHo9A0l/tPHizKWlU9v1upYMPV4ulhV/Xlpra/fF2Pn3xZt++9qLtXLwTaQAeySB4g6aBzH9sWKFDb40aK4fXNsjb7Q928uKv6nR/Ur//Jn9bm9ZtaydrmXhM08rUPceWgWcW7EP4x92t1f6eUkwOjfBrK7NOHp62j9SjaCGugfkAp1mbu2o5Q+TL14n7PVLx6i0XG5uYXOpe2EaHFJAUd62b1vD6dL6sOj0m5Gjl3/xoKv+vR0wiPs2Apsib1bLWuP/revJazB404ETtYbecK2SRwFtf5SqxgRE45ueLCGIL2V3QQNZuTywB36ueDOUgnIVxqqfxzTdmAW6TRxCXvVdt2IFQWKnC1vwfcg6AgGgM7UQDVqB4SoRv+OVu4cIOuoNkj5phw7Cg6d93HRZ7tDlmHnMZW3ORW9IEMUGQ6L1AbBcVpPr9d32kSQVaiqpQZLRcHlIBizSKM/QkPI0e+zLWwbAngtAy8gza1qKUI6BO5HS+MMvCW4R1cLxh9JjyU9NlsjO2NbqWNhdxcDtbpHsQ16K3I7vDujk7UkK0EyJ4LBYukjSYJ2biyW7Fy1GNHuIweAfugOhxQqlFUDFUaa510GNMwwINhpqUmYl/1cnmov/nqdf3JP5/Vw/FYKxl0T2rXhKscSl+jjfhuvK4/9NXzvZqfag3JWyN4+FlW6DXatmeEJ2Trgsq1oldaz/C+2lpkLOaSRpEfSQHNWve/kFd57ERGgQ7dcfi6ptl08dGfORwzxpsmsZg8HkgXMQJjGqECPNVCKDxSMvLi8ZfG1RmnuS6hcDEuFW74SGawv18Kt5gm83xrLK1iMzhYilMrkDvEIfBxj/QUUQVJyd03e9ug/cl71PV19Pg43z9v1dda30XXxAevVMqKbGJtQ1gHSeUBnddux34Wz0+N2X1nZQrFc6Nc8KS1CJFwpBTXTrzD0VHflA4JFbJXcs8Y87W6en7kvoZjKTFL86dBhU85pKDRuCn4u9+7rf/TPyMovL6Dr1yXhrN5aohAu6OVbSFH8lUDEoiLGSRVQAZWeDKjP8oxQvxp9hzlR3tsyX/DwQCvPRlTNAWlbYHkL+bMbBoQCkLHk4Ji0YzMar1mT2fPd/oU1iaHxy0z4Qi3OD0ScjDSbhy3dnp4cFOD+EPDN1MqxnWaaE/tDxQqQddmmC4vQJ45ZwFvoAo545ZRK+kT89ubeHU6GKCgHNWiTp891OFzLExs6ULRCPKmvFktNxqkmUzYETc0tUVpQft9nbbnmiDUwH9yuRZP9enxya4EMXX2kj7W+vm6jvd39fTZ65psNrX9zZf15Z9/Urfvv6jV/X1N4fapMPWzIMGUPDGPddrtJLYh/Yri/oOP3xMA8at/+ie1fdzVzc2hHr98UhAE11MTE1DFw1Fo5XIxFd9V7JoJ1Isnqef321NNdrs6Lgc3nQtcNvYe5eYEsgOJM849zjYXl0O9beIMVnmGIUobr9O5bp7f1mK1Fi9xnKhEzf/tGThfFZLXnkN+KGzuyUL9448W9ePnfDmbyLJZqXRKRq739stISW5G+AXBsQtHyLQJmy5a8BAl6PSog+aI9Uf4fIxohJEZp/6KEXByQPkfBWhGTdoQNa6lCPVncnavN19x6cJ/wt/KqEb7clHhp0s8QqTFoJkSFyQDRaCVTXbwv7Z6yfdCaTRcSO7EnVmtYxCcIlSed4yJ6LCFDhpxE0TO+FMcAG4d6FoMYZoLCHLHRZLzMotd1vL6nPM5qr5THbaOtKKLo3B2p2Bex+jHFlK8OxKnjrge9YYgtZe4q3axdA5xSMSqQC95sBocdWMde1h5T0XXpjXV4gAtDKMl8J3ECVH2MCgG3wXSsjfqM/F4OgCN8tqn7Fj/7k/m9f/62b7+yaezOk5BizAa9TqUYjIFyLXp6nfy1c4o02n90feIDqIgmYhjRBFMNYQdA8+uOtCInWQTIaJy+HZar75Pel7aCF58tBCHU7CIi5ZQdN6N6yrVat7H7xu1sPbZRgvbmJSfjy1K1PisYVD2pk1IQJRg+pwEOYObemC7FY2JZe9icUQuhRoIj5vcUHmteX1ZOe/LBzopo31dqysLqIxnmv6F/mIIX5dizIg8nNwWutinj/QbCmKoe67pkjSjou+K8kGBKCaH74f47F2FIapSVqhfNFxM0Y97EA9PCcz5yTafBksIuZwOjCCpWJgFQRD3WDidvTJTTIP0+Nm+spbQpMKIJ/5/NoCPICSo5Q6j23j68CnW5ydqj3r6rvD63nrF17JZUljcDKtayxjbKUX2ps2ZpTPmYpwBIqv/Jq/GdmrGPsQjWlF2RGlJKoN/TIUToifV+vOTEGRbGe3rsDEC33AFN2hYzuXdh5m4vVfNBwQiO1FQiLMLAGAeoAWNRoihImywTMGaRgKf9g601RcfdCdK1EwiTD6zeoe28lIEGuvO6lxZsMG7XfPO09ogdpHP7omps6LW1ALxcN6ua74CuXLahcIRZBdDoTytAeqEpe06G9lbjg87r0PZMNG8YDFjHip/Fg8+XzDvRb72nFnHunvvro7HdW3e2Cvw4dMvav/6qRYvbmt2cyMhx4EcbPn+nWsJj5Ooxs1WObunw0Mtbu/r+YevavPFmzo+PNSwP9VhgaXMSnvJFk47Re72IE+/xd2NGrVp3F3ms0Vt+S5fvhZ9TRYy1CoAMhSAcRvQ+Fz7g1SNoV+ELpbqSDZuoQe4ifY4nTX7Yjmp2/Xz2r/5LOuu19v52+P4qfuId1eej9GmwN30pG5Xs/pbH1WtJltzeAJngkJ570gRJB7NFQdJ+jGGufaIE0KQ/9I/1/XsMQoZe2d5/CtXlDxkoFw+aFz9wh+bHtuXKtyL0MObT2EjV0ejXUaCdPQoqvgf0K3VSzpC+XyIOfa+CVbJubBts9ZoTcbHt8m8ssdQOoItFijUdASnMjoddh4jhwfR1i/KyQ336hzzZIpWRg2NMFodbSRSpHpOLP4npHOh70WTxO8976dFGs354BAue65xmKUTVcGbwneM1JJt54gIgdBi5uy4HI/ud9ra7P4uxTTofqbxEtOk2OtiXptjjkO5qalCyYhLJrW2zZGFgfIsOdzNyeR3vpXRm/Hd3fJY/+Efvycza40Rc32d93q1qN9Rccdf+jWZ1b/9caepwFuLOSijJaKdMsJkfx0Yi7MGJIoONzMbjjziOmB+HNO6wOtmqbk9vMSFHZEtc2FbxDC7yq71/fGGIdGJGfN6D3W/8g0MLzP8QPt9pjDEE29kprXy1+p10HC7/8f7TLymfP8gVvbw9P9U5JiapXGpxt4gIeLKxV8viE3bX8hMGnNpCjuM0eElxW6Jgkv7UQpJe4+1g78jBLsIbIGAZSdZ7750I+Ku9q//pRpPR0DOZb1BFJ35xyqo48RpZBIbDZpgszadX31BOETHCWdStSMc86QLNSeM340ie6E90p6MPGOiVMSp2Fb6NBMnW5DkgPrjDwYne3znXkFexn9ExXlvrE1L1XzTtu1pAOFSALqIbk9Kc2kz6aEYkxVOmqYgyTIf12Ef7rpoEX7u5AEUOyJbhcxsc4K6eHp5BilcSN1gKijxqAALR8bZrsjPphqtndE6lLmeJl1O3t6jdQXUwMzy3s7UFQIlhftUilimQLPlVMUIo12dcxRRAApw+R63BhCGQbFtTsrxtfIl9O4v5E+XoCcNBgnEx5/PjcCtFzXMF/LI69hGkM4WwUg1zOjZEGaSho7657uXt3X/wfOaM7pdzuvNb17X7rPXtXv9WJvHTW23OxXf/FUiDfkQUoCf6+nNY52HSd2+fFbr5bKG475uF4tacg157OEIPh5qij0N0W0rp2Qlbsx1zuZQcwARvBK1Fzg+zv1wm3Gn7oiRu8776CZYN7KWc2c87nsGRb2HIN4anpM4Qo3i+ykT+29d3NF81qwbEVnjVL+dLOrHGHq+x9Pi2DMr47y5SNWT2CCrPm0WG2b2RSCRwHh1W5ApT+blOXUho5hUxG1/ImJpTJiFnGm8DN/Qo1IH0ydYvQ8OPhOFk6pqL1x9RX3eIPDiufC7rVAtvAYxXw5SWBNMHfkQQyTeW40lqzkwQuu8ETjHPjFwhsWSi8l3dzyNCNTTXc1noIj22ZLiNWbX/rYcgYlCG+X43ARGr/w7P6jHORnFOxe64nAxhBhqSibpCg81OrOq8xOqJiOR/DmP4duklGLCHeDoqxbbC4s8DLn3wd68Q39/OksjdFHmjP/tWoQjXlUXEke8nqyChq8pE2yQz4GbqLbgynfLHowUgSoU4lWmOvl0qn/z+5u6WSKmQY8VJmpbOl72+Hfy1UjTN30Nta85SR103OnSjYi6CGEdLZNt3Ua1shRKyQ29AsTGQqYkqyRjVxu1uEqdb9yiGQt85CQxFnxG9Hoc7IbBBZGFHFAF0rk2z0hK2ChK+feqF+0M0OR33b/+3UEdGzXuDV+NTgu80gzo88cNoA3K7QVqNT3Ivoq45OyaTuCjSQe/rCCMyoGASOWo65MmI16I/L3Kofj0uehMeHwKWRoQ5fhECOBi7WKRoGK0s3uTT621IN7fsYYheySoH1xiUFwQuxbaSU18Fg/R4z5v1M4KTUELcpRMT9FXQINAYLROjAYSBr/Es5BCUnQXRufxdGxvxAgW2MZs+TKvv/NRyzt+y+sdfdZ4XbsNcLbc3SNQa2HRhbt54lpmrTbVp62B2kbD511wRCE7SZfJGrgUjYgYGOtSjHlvBymjIxsW0HBA1dJD55rjtABHUD6SAjXOyrXHcqafYa3DiOPgldEYIeobVos0/UbzW26ld+K7QjmicWe6gmGzEmJEStQP8WegizyRlsEZ1E2VziGAkLMSLvSeC1MeAA2EUOn88xRM54TEfYkJTAPTZwR2LaSZqDYA8aPAjCLdjZB5rDI4Tq3V90jPpqgN3uuGm0XdPFvX8tVNDS9vhXQOB0flaVQrsOdcu/1GSP7Dlw963oWwbza1mE/qDjTvcVcvj/u6r0k9m0zrGejfw75mSp5CqEPeccIJalq7zVPV5rGmd0uZTeMUogZADfHFM9iNsRtNKX5DSZGRs+6T4/w0+pZFFei9edh2CDnV7Uv4iuyQX13L32Lhd+2J1n0SCBy5GYv5qf7zf+uDmp3f6D9iweCxiqvUTsFQVa0RzGVU012uVWu2inCyQjZr7Z+ei4uPEuVwHwDuAhyyLn4OPKE5EnjPyWWO2L2GjDF7/Epx6OinVn7689mw04cPc3W+IYpZ1Lh8mKUEHfOZVTXugM2nYHxqm31u2nL045uTxJGRl1MPgj5OljXFT0YFyrJmEwsfWjnMmIb3t2IK80fLwDtsXVwl/Td6cUae+efluaYrf4/TBhidEcBe3eF0carVjUO+kTKeNPrVECf8Kx+yWmwJL+nrw+ewVYg3jlZyabSk/7kQxdsNibs8AU2gGtMO9DPZDPj8Wu7I38U9JBIOG6bkXSamigKRzUjIRNYFvlCjkXh8x85zb9Cr4+v63/69j2sKj3EMib9WP727r7/s5/ve2kgym/ZOObQYwuKMv7Nvpa3i1D1bmR4icEeBNTLnp2dsqHy/4OfYFFxjdza7JOHoXoBeiLebhjeKW4op/W9E3FAqOoZJYxxFHvp36DBSBJQPXlaH1r1smlysCBlIZywVummiOYhdYDHCMYXR41wfwlZQ+Dt5+oAdkfhMGvmwz7oj2EOwF0juiQLfWXYS5LZpmkBUFqpImjK7C6jD1gTDYgeNdpJa0FxB24F4oxZlggNI/Ei4qpegc1FINDJ3U2MU3vujOF2gPnCzhPj5723CzsdjcgFCYA6fEKQUwJpcy/fNeyPHMithJr6w902loUhKNq0VxHt+FuGLAGUzglR8p1DsLFE1WsdTvVjx3P2rBUH9Vb6aXtRV64wxbyL6mmMgdmY3RjL4T/5uG+bCy9Swx1Y+IyWSwnBuLquak6C/rBfup4pD5Uyearc91wrfQHG5rTpF+OBRrQEM1WAasztPGxSJ1A5gAIohAQspOhm7ztir4bFHZEkPw+dx4XARV42N9wFq1LkGDIsZD+geg+5hfebzV85sBwMOez3fbuj3W6ol9mlLixW9pu9rNa1Uwxoe2RqmETwS63c0oZwtW1PElLeL+v64k3iCvZ8Lvse7V2IQZ/jKk0+WfbOLUAxvPQox7RXHGrgux1Mt1/Ma7od62G3UBNfrnT7z5sk2coBH2+2hHt88qhlaHU/13nxS7y9mhXRx9unr+t7dXb2Yr2r22WMtjjupvqc3WLqd67RF3Uxc5KQGaJcggXc3GWl5zG23kK29eWPZ0sCO0ns6wjECSiGncWPQVE7Fo/URmg1MZvVc6+7u6tC49nr47a9v/KSqU+3kseYJySfNI5Wffm9aP5x+rn9ndC85txF3ePJDVWyZtrZxGaymC5Ktgwcgo8u/TAlDkNXDZvIoF0QcFRAgnMBTqIi7gKJJHDmYr+YMnWYUi5g3O2pNz2U4EobfXUzKC6sRLT1BuyQGEMfCRzzUeX5R6qHeFbwuMQjIoP3tfMRwCOPpFw6CbiAKZUi14eWAaskRnJ+DgwehGCLwTmMW+Rm2Cay4GfxZHpiETXP9JH/KONyuDrpujLd1sMM1YSSqhxY+X1DIyZNIzDxgituBG4RCaoyvQ6HbiRsuvM3T1GMdDyuPFSHuYnI7zpB4eDWx5YAzl48HkSJAhYJ9y5UHTCHA9ySbVJuLpPde+ObTEzqPypuDfLAKkSm8KlI8DKMU5tfrOfH4aTOt+uHNL+vj+6qffR4hgrhfQVcSNv5Ovr763P7W59gHz3/0B/d1QFTU1hG2vTfa03qa+FpZ/WW0i3tB8aaiORxdIXRSLrJZIzwyAVnc0oxINdJLbBkFpu1Z0m1GqDGaCwQBoQmzIr0zrV1ImIcYo++gaUrmCMCtugJ0XHFisSDJe8p6JIgChxejTI30RxsZz6q1F1EQdf7s+Pk6KcTfW2NN+aB5XKM2TbYymepq7dsVwGbvQR4zOmvuM0WXfAi8r3sM2OIKFcx9AeD5JCpSvDzuCcihD3q5venXGxVgfzHCYFsK2XLgMShOpPc2zl0OS8QZPeoDVR2FcfjxJXbO3MWO3UsqSug7FpWGZyxg0k2xx9hx2dD2ju3SqZanc33v5li/eF3fqddo5NIc0Zu7S1OUJArdP01rwvkTrzpoLevDAJiH7FwT9rIguo6/8/v0vkgR0A4W5Gmzt81XjZJdzMxl76HkDBeOW6HP/DlpEGrOgbZKuk4CAFToZG3Kv3GbkXSEWXBGOZM6Yb0pBmLhyTwc0VSmBcGFTjsLrWhy5KrAXk5QlJDCiVTLvBjtakolQV84u8nNPoniROMDXujnRxxbCS38gLE2GSMbEXVu/XLgrLMbyASxDGcenMYkyejRQ4yEnYvEJUbDOU/xrlSdEGSNM3V2N1fazYICEUIiiCsiKjiONa2Xd+v64d1t3R7dCCkUAa/Pp8/rfNjV7nFfh6cHCU1uXtzX6+msNk032p1ryd5BDCKgx35Xq+WiNrG3YV+wujhSjLawypllkWXHTrY4FBso7rlcApNpHl42MX1soc+/V7X5dVb01d73bSB+bwk7LmIkfch1nesf/Hhaw/FJ8PIo6xdxkQvhKpWbrPzZprT1+0Txpq8nTUdGhp27qrGQ0R4tFHU0thwYrr+Ckh56I2Rc6C4Xh3QhhPEYsgdYRjA6GG2vIvK7iOMgV/GsUiUFj65HnslIjDu/DbaM8FkkEuFBbueISHU8nE4CE7wRJwju3eI91ApM/ruh25k4bF40SiLJqMt/Q2EWX7T2P7s6XIzmUCjhWo7sHLQSZS4dTgo4itIheao7PIo62zPm2lbUOJccjh22Kqqamg8ZBO3KJ+8KeQ8h1IiHxiLh4o2Ejvg1yuR6n9QXkSgut7RtBkT0VZxcjLAVOp/EgzwsepiSvwpMflOn+g9+ulbHbI7YJR/1ek1/d1/+Ai8nW3eDQYllF5IIIaukzQlTgZWRitawxiNcfyPQo6+eVNw2DzdilOzXHEz9mz3ybaPyi67MSsiswQ6F0U+5uBRCnAi/totpVaW85vSszy6UjhyesyufR4+/LvfS4o7QRXKgeCKURjJrzwdGO+dndMx3COFcRRx7hhpL/jvPfZDRFK5Ol7nmO3fOa0Z64W5ZA5ax6ziGaUUv/qbHmveoK2/WqArdP20gaOhyOin0TPIGnFtViW0EHCWNwlUsuzCVUj9oFdcLuRk8T/tlutOfUyDq584a695NJ3U7E4lF+/MBpE9h8SCSoBj8TISfY1PO//eIj9+/mJ3rjz5c/fal+s7S/8YBm9bS/TPnqGcTj29fkOYe/SYlhr1ZtNAg6CqnupnkOsnzzjxlNStaMz1hOkmJLfSWMTrvdyWCY7IkNDn+flq/WqvhC8Z8uwtRjVL5v1AEJJLoRivfU4ksSYzhPbFjQm2s/yoNIP53INxGIduEwakf4irpczBV4H1Y5/sn1iMI3DDaE6HiVVO491rledud9hGF+Tsrd54ziaJrd6rNxpSLhVC8PNgUmaIz4PZhLohs01RUO9xBKzrouI4maQ29WEEmDxtIk/YfZFR92APmIIiZi/9/x/j8NNEU4NlqWT958ax+uL6pV/NZMc9bTY71bA1/dajHX/yynt68rrvFvD58/3k9my/q5TCvuyVcxkEI+oIze8WUJHQm3b/DuA+ReSyXDqtRHQF35YnspiLm8jue86OLTTiXW6ZzexXaXH++PVOw5x/djaXcNz3Svrmqd0SeMpoNF4fEit99OanvPztpRCI5e2wRpPTTp7Ghgg9kP0zYH5j4GvNkCsM5cueDdrFdRr1N5GYzk6aoDwGKQ0ZD4fqYpBzzUqGMHBhKpxwvpv0C+bPEWkHBAzryBufzzZ/eDw6jph5XOx9TD4w+h5M4eLDpoHxtnNzBhTGvKuaamiVZETbBfGi6qxkTYDpIDFopKTWC4897VGvSsPX+6hpZTPOFLTSOG0HPp/Ewtp/gnC1ePnseCVOcNRFb+oz9Qt99PwHVy3urUEjBidXH065IgeE78JAIxeT7BNWhxZ9Pb+p43ozRWb5wNotG4QQUL/g9ozXQiyZCu2kwd0+/FYgcuH/DBglZ2IIEj6tTKOYBFyKl8Z/jOLog0OhMFgSO9lKEG/dct3ZSP759qvfvp/Wb1/H80/vEELi+g68uWnNY8V3mjnk0wpTuFlTZQJS7R7rsC9p1iUljs7X67+Lir/FhWw2klus8UtstdTFjj0Y3eBYIMLrRZxAqlyMnBZjNm51Yg/1BIy0iMcM/w04pBqUqRFNUSbwBjzBmzr3RuxAzaqiiSmvGSExz5UAknLBhSYWEFl2Qya+zzYpNAQEBN8LmoHjscXiehaDpO9h0VQbWiEOSMtLf0/sI39HFNM9pG/zqeiaLGEN7mbuPyEVQtxz8+qrwudT82Fz7IPslx33ZzD28odS8XEt5K2q85rMgTn4m+avh48CLcbP2JfPDfHBOasN2NSWRp2oZvauaVOWA89/ajzN0gERNUbj8zq1/j9fdd+vp0iWcrutWFiF+dppoL1hA+5LpCSM/KUhpUyN4ubmgSb2IPLwFtmiQQjDjd/Z8iYNAfn0YC5UVHz3+bVG96wnO/tmUAAUZQdAhLkwWS8eaL5ZpMdywEUhQoGjhM5E3jQWW6E6aThlx53cg4FAzmLG1jubmzcF3peGIlQn7MTYoygpeNaXJufL83DEZ3y2QAsQQo0IFM786yBYoKNNoEj7uHMYg7jrnFN8Cbjf82qRQqbHNXsIZLC6v4hh73E7xSoEXwR/CTCJLW3DG2b4njAB0cVaT7a5uTqe6ub2rZ8Oi3psOdSNkd15bJiH7Q63m03q9WtSbz7+o5e3zusceZjjV7jxTIcdnvj2d62G7r80SoGRSp70Lve3mwR58Qd/xIgTBtO0cTyHUKU7quIpwPx8xvkZM6UJRuBSJVTS82OuQ/MFZyyDxbKrPr2bPqw5R936D8u8vRcow585dTq90yMB/+3fua1pPWkfwCtSxy8Ua7oG7kOzPIwJgQZwkQaM3l2K/NPq5mMaaT2RVlUfNUb6NTYEzPHumRSEGV4FNWXS7/qjqXOLAnk3R1biVerh1izfTlhJyuHfXcAU+GjnR44nkPFbpzQ3scGR5AWLLIJM8H3ZSMXvDPl2pvWTbonD0JIhcMdH8EPCQgg4ma1coyOV6UOzZqNn8vPHGwGviUItARmA+cLZgQmDiDDngJSycA6yEgNlWBHHiajhshZrIZZuHL4kqbZysUYiLe9d/2az4uTiKO/e37XsuCkcdvLwnGwKjAUQekIIpXEfxQDq5dEs8/BpvSVkXZbfg8i6Q7XVGtwVSSLf4ow+H+js/Xdb/+f/xRmPoVkVpO0ok1Xfv1Z97Un/40bLu7hxp1uNRWRz4IuYgsqmxRRoWV4EAK0pqsH2Q67VkfPZ6Vw6t+Uhaj3kQpKtrzp3WI119xrSKmzqL/yMSuhKqfMhYoJYoPoV1eswMwX18pWCDRqHPrlHtQWiFaQcxmu2knBge073nnY0wigWSzfTKLLUVhBqdiCcHr6u9Pi9iNI2M5WwdYYmKv5jqJzar16XG5qJadGFodK0bWl5Ox+ivaCuNHr1yPSHB9LXpEbL9vnAUMJ1GIyssNRRKDwWCjr8J+uZSsudg52NdWcy1W/Gv/aSJ8vTXniyIV8UBybNMMUpjJnTdnw0qBnYg/KyMnDUmptk0mZGR8e1sqGfTQy0mp9qOdifv/usaj52tn1np3M6PZ7xl4bGflFdsZPWsPFqKNw5mj+1mtWdcq7FdssVijUOOrHIFZkZSuY/ca4o2odo8jyoAw4c+TWsXFFXPK4WMUmDOEiDwzosVbRx8uKxprduZUKv3bib12RMqcAsrHnfHmt8tVXTpPMJ/EcP+Rt+FVh/qKEjX0y4AEDi2Hd2ogkPuDM6SPXFe8YZyD+D53NXyNEgFLMu2+MCC0nlPCTzOcEx8VxC3nGm6xuTgsrbmytVVFvUMtO+odA6h7ntUrLaFsa82+8YgqgcfE4U59l+KXtUo2opYYgYnxz16KEe4ecRY/GoCBt7UoTbLec22u3o5ndbqN5/V0+RQq+fv15LPRkQjo9s3T/U0mdeL3WvFuzm/HIqUv9pvDlVfiM/s7y47KOgx6jgb8eMcZb+NTc75LNDjiLef9kZPA2aToQbA8yuE9wgoknwcgSmRDMkyj5959r06fSpO09VO8y0VfjbpHWM19cG+92pZv/vc82srb9+uPwbMkeW/Fqi7kSwZiVqlwkXUhow7foLBx5dkLS4i/RnML7MpbI81untoPk6UQ7F7YNTL5qysTf2cso1i1uwhDouMGzly5RpxyIjSB0iPpALBX5GC/0JGXgiaTmGioNqZRG6A1i7rZA1r581GM6oEL+pX6eaUogHxzQPx/RTLlz4sO4uU7+AMYnutbfy7yPyVGHaTCXEMOvkHFUzm8M0XROwMddwaFaHT0qaexAVxPzgEj1sXjyMqh4jFXT4PG6Rg0FyP2aJIVj5jQuczYmdzY9OB26dZ0pg04pG4TSvjwZj5LKbdRjA5FC+NCAePFn88GuPQbUHJYVs/Wu/r9m5Rj4/b2onD2M3Ad+V4+i1l3/lcv/sS/qk8IMSR5aqRpjAOVzNqZDxjJJCHwM9QNwdtIyIT4Wj9OIyUcW3o4mqdWe7eXmZ050Kw+I+eGSe2KoTxxCF6mzIKILEJz1vmrbJa0b30GErjaY1yo8XNPeON7X129Xt6dJpkmNGeJApUDoT2UjMCE8uXfHb4hFbIUfDmmgVRYO1zxFIYthWMHALal9+Qhk3qhXgasTRXkCbYSRhwku1R6H3MKIgnZ2NMVksJMjbXfpOccnMvIyjQSHeirGCed6t+zatuO6q2hxCny0xFW0wpT9zXoXNk1cRJNTiprTho51qKO+hrC8lFdrSMAVOYSm4mBJXrN2iSwKHKz723XtSfP3SW+mUffVdfV3reur11ggIFQzfrDXS40UTBDicv41Lxmv3T4lyLkw5C3Q1uVKdpMMOoGxHxsUeP2MgNshFiW5t5PEvxx6hSDVmI/mRHb1U0ZgSdxKrPnoIS8h57G7qbdwvNh0c+UyWhkvz0sTbbfS1W4LsUsHsJ/pQAw/mopBH7Duo5DICCJ52CFFTQnWqjZ8yjWa05fXBncgrRT0Oj7UA+lM421r6Cry3bEr9X9i9QGKxqVt2owpDEoWQdC+2a1H7DmepzdFgsVTRSiNH8G8XGAB0yoj0CXeYbdefv5eRCBNxuX8eboT7+vR/V5MtdbT/5pDa//GUtn93KUmZPEslmU0+bp3p+e1NLwAn4+NtNDYddHW9va0YKyZudEk0o0uEcUtCRpSx0NOwmjcf3p9pvdwJidP8HC14EJMcL1/XGJdEq8422NA3abwEQpPf7D9f1+WftlvFtI375q/P/rOz6yYereu9mq46782G1wWkM5E09lq5j52njVpsoSmNuep43MSl4DKmrFwti5qczJG+6LT0EIUNmg5E8W/xA20pIbasH0vwwLXyNNiOCEEnyJINKuDEdM9VcvnbIv/72HolxYLoIHcFGfTcrDJtobU8dumIjatpeMmvSwyfOhT+PUYQop/Tn6aw8Y3BkGghFwEp5C8YbTV0iCCsB3enGxC9qM2XG0v698kYLaZQiFAKsuvs54+ZpnRbHOm1BBpXYVoeMVDPXHaHzTBRH+wn5WIEUHLjuPM427+YaOCEh8XdZQB6NgQxycDGWOtRsQYdkRTI3R8bfWvDeaBBukJNqPzgfcCYFNzfNW6utgTrv2J3RX/tgWa/uj/Xl6/gf9mb/bp9J/8KXC7qZSMZSn6e50ffP9xJZWEV0rneyn7U+RtzsQnDv8XqPuEabpUQzOt7JZHcnc1AChfQvBaIfljBmbZGShsk5sEm8ye93TqnVwr1dWat0uUngAyCHHIR2nOzc53B000iMnzslqjZGUT4SO0a5BrWA/UQKQzd8PZ6VIrBZeCEyt0eemjgVx4xufWCZ13g13/VdGdW5odmKxweVxPSJFtqEM5XEEZAh4rT3WsdJwIk9xaioVxHSvGpzHDk32AvFZ1JNFqNdXSNfPXmdBbVz/rB5iyp8tQ/4zzVfUw12TPA9SfGDblQzjYFcCqaK5GKMtZQ4AHHHvH7yYqLCr9fod+c1q1vF1cWZPGu3tximGKKTJLvXPb9aGXuuCenOdQxaOuY+h7Ljor958hFMTSmf43kbXpvGy/FdEaUfelE4hr3vHp8oPjzCdapcaBMxCGZcj89fLRl9Ol6OfVXPXDw29VyC0mGZEl78cMKlgz8z9yhY999KW545Kkp8+1DSimMtYED+UHHMcAFcRAiyqJXNzhvSVDCONnf3AB8V3qGMxG1afukWog/gBMe3Et88nmPFIIKemQMHqVUNTDKlofdQoNo30HF48rPkWfEE2lz1k/0wZW4vdHVWP3hxV3fDouqG3POP6umzz2vz8OhJIPjq42MdiHm9XVU9Pih7e7rZ1XC7VIzb5LhVsbqX0geBC4U3CSQH3QfEk+0kIFEmn2sFaOL6wJMICmDpkf1EuvyJR6TjBNtoV89xgJTlfF6vFrP6XE+67eS+PY5fuAzerN2l3AyT+uEtD8S+plF/SlghNM+RPqBVzamZgiJpzIGhLKRpq4RGU8YEiXsMws3tf49AIQd+uhcLJ7zo1JdOmYvbGdtO+b5wkoYrno1VYdiY4tJiIDoRxmJRHnOho7brUauLR49cNBqTlUOfShnj5r7os+iwMYTPdcDW5nDcxt8rRo4t/YjvnRa5NnMIs0OdDnSbtuVIlIUeAHeJ8BtXtcfpUzvSXBJ/HkZ5mfHAifAqhy2DEvFKg6vneyf3wsJAhq4QVJCua1gi/FiIbKtDmwgw4tAS/URh7VFAF9Uxn2TmpEZgWQPS98mjRvD67/EnsuWMFZl0MRod8BUYJeKfMMWL0UoyEFoXKunS0vFoFEGxzrhdHMSMxYJeOEDee6fQSnW4mNI+1Q9W5/rTHO692L5ryR2X5Ar/PeNdxgLmBHVh3r1hklNyYCu9ZOboIBdoF76fx7gRMGi0GsNQpQF4EzKyhiG0UYLO2jV1qC0h8tlkUG4fyn6um78yekHmvnn003y+yz1xgc/rdGXVZL85+KcIFrqT6Ge9lb5SyQsVAaVo308f6lozSj4MVQLuoIRXvlajvUWLv4Rs9z875k3AYLiCHb10kTZlRJxlBt+YtIG9UHsrMsMqHNE3FVpjA+v/p18JKiLKQ9DWpKdoYqcwnlltt3tt97YNGeU1o5UWb6TCWaPcNEVj4enG0WvJhYmazLyJ8T9QYgtfTAEAmfI+5O9AY2laxt3kVC8HWMvNL333XyM2glHwfBD6AqInUIHiguIqlmKOQnMBhV2VVvSofYoSuDN3NQZGJe1DXVSIVpDkt3ZKzrFdKLQAHN9nYyUPneFOu2VDuU6ffLLv6nrhDGuNiX2eegNsfh7WLKQbGSfUWBbEknt4cBSf4z9NFuspGaNeRcvx53ZXoYeJg4QeAv9NFBFNDHhf897tKRk1ryY/nq6pwdB+7OszZfMXzSSgDc2Yilhs2Czi9Ho8asx7zX0HaPVRShPn8/h8oEbARm6o826vcbyEWHpHGxzLzF/X+1AHztGB5JChprtJ/ej5izq/2dScETWi0Re3tZoOtds81tP2ULvdTm4hq9WNCIfn82OtX7wc+dTD/ihPxc3+qY6oj/eYPO/qsI0rhjK9bVF22A96rok2VZSpQJ4QDppc2mI5fW6jvFb/Q9vhT7bAEo72uZbcw+F51e7X34hm8Y0LPzmA9fggZszff35bf/jhULvJg5WTgb/oeByIbMhWfL9wgbT06WCwOmn3fkmpuSht1xHEKIojNk4dWGL665HxIsr8X0UFvwm+nIG1TKfoLoiD68PPKkYJGmyZrt1U3kOCtnNQtYdgCxJ0E5ILykYHwZUFR6GpFBw2RcQVfcn5PCxE4OeNx6Hh5vXWPBpbt8iX4ksImSPh1PgxepaEO+NsXTxGa9t4HsKoWjsfmKLoKKF8HY9bHbzLAQamffTsczRYUcXqW3CAzWogeoo8UB7e+aQWg/l58DUOp6WjclSwmyCrkjDFHwUuXBfGgcOEWLVdTWkChG7a64lubrHAB8rFZqMA2gzZaKRM5uDFk88KX20WgTrEc1EoOpsKcXF+QMT1u+YUjMLQ5kflYI/B+H/2N1b13/z5th5J8gl8/s6+rpH6r/mYjXJ9/GxSz+8SLN/Zumerxna4xicBQ5yQFMu6JqPRuY159Qy01F7VohWh/RxJpAMKm0goKaRHNKQNfS/Fke1k/Ds1VgkaOZosM6ISBSMNEOpU8Vhjjab1QFeQojMwIW8lX68gXJpwZc/xFMKNodS5CSu3XQvjnaAR8AfxvOOQ0uDHKRce6xlVt1L8wo9z8FA3glEeh6uLUMLjmWQPhTrin3cJ7pQNCtEoq0EfUcJqQuHyCqoC3Lz0tkEsPDXx5wxq3qiR/ty+9rtp7Zx4FbubJsEbx2O/UpKKihkXnjrQc2fxImtDYSc2ujlTlnkaTo3pwi8WJeA8qSeQHxoBCiX4YDqIHJEnxKfH8+/4K4GXNV2uawJxnvsHP5z/CLSEYTFFgtA1TzFkwHDFxTzJW88oKRMP87UTfsRaQVAB94wmQM0qz2I3D+z1INAuUWTdEmsTnVvx0pxhUyZU/VRnFJ7Z+2TVhXF3Z0MFFj7u9hdOLulO8dO8WbihoHDVPErWLqZ1UKzqfGAlb81ZF+VCqOa+9tijBZnTxE6FImszXHDx9YXJ63lFhSpsWcd1hCMn7GSyF8l1gCIv0ZD8pozOxYvUmTZTYSsHHOVCzdx4iW4UyghNj/a0magbe/AGeRoiZoE3iJIT54xZPREGMdObuQk7yhGnfvTDH9T8s8c6bx/rtNvXajKrxXJWT/tJ/exXv67jblOLAWBjUpPDuW4+eFF7CnsJV1JIHWxivXt8khgMtPX2+ao2qHMPO9mmqagXgmrRlGLwuCZCdQ24gPA65jZwMf8+iiqx2TStsAMITZhoVPgm39zWede2Lt9S4QcKc9DinNWcan9Y1Mv1oW4wMdzb6Xukv5k8FmTNnAINa1CyJVdMRNZ080ISh5lGrtr0p15U7Elz/tyRBAqbWXpR0UVw49m8DzUMthyxKSU7oLNIj+q+uFLm7lEszIeFFjCEVNnIggBKqTatHbm/QjVT5HR0WuCEMd+Q5aw/BzGVh8Kgvwyh5UdjHp/nv4s6T3dj5jBLxRwpj2PluYc/ncxYzV/DvgVYW8imRCB8Tr6vf47FP8cDT5U4Vi+MbCw0YWPSSHcOmkq0lKjhMqHV4Qg6h1WEBB9VkwWg4bH2+526u7Ps3fc143cfMH8+1vyGk9WGKPINzFhIecx0WKetx67zZc3VJfMVb2o2JSMU2wJI30bg1K1M8HuCHuCGQB3b5CCTT4VSZxSsg97zFZ2+EJ91STP+MoLhCCR+h+PsIGP3mM18LUjD7z2f1v3LWb3+hd3m5RX9Dr++jqnx9uhsUh88W9TLG7p+J9v0aNcG2RdOrpWXHhnoGUpW6GKxcF5sSOJe85cs447Z0ASZjby9ACNkoADowqcRMIlyMraSxxfj1Rb3xPNzNHiNm73Hllg2dOpLBB8dHSfY2t1xI+ltJNoF/JjUcUXJ8HXMmDucYvlCjuhjUJBGRR1YnOSgi00U60z7VophidD0XyiOOPTSDDdqGARUcVgp5FrlbDNnF028D60MBaD3trx3LKtcgyf1R9f5co3nqB0XE6Hz28NUdirNjXZxaH4VRYV8F+MpJ4P1jNb1lXKzY1GvpgEja4/nHau4xXZGqQEU8DOlirnTkk46ExZf82eTXa2nJ6mD31qt77J30qRqjR+e1nHrUCn2mKZESJeuBISpCxutpYgNHPOnlmBUr5vBxnMCMnZBBhMnPYorGOs6zICJxswxZ0H2dS6wRuCp6ZyRD4sNlkWPztg20IB+Bz+7w6qLJpCJh4VCFD7UI1L8y+ib7NzwUZMxr1GkQJn8Pe/LM7yjOKSQYvwKb84XDrqWaUsWKhkFTMPOtCvUAR5n/hmwJDrF2u4OUo5P1pY+iSYkBOxURz44StbDIalVtm6xuMoewFw7ufPJ09L+Y/DnaA7PTByTec2lOuIaEfrHgbOCYlL0+kO99+yu7m5ua/e4qfkcc7ppLfCWPVb9+tOHev3JFzXHBHpxqmG/rf1xX68/WdR0tajDbFKPD5s6UGiS3fu0UTDC9HZRw3pZO1Q/CE3iyRdWX4QtbWlFDcC9mMkAvNOLRvPk5vN7I4nOwdNAU2hI7JnW7bOh3nzefg/fko+fSdrRkkyr1vNz/fHHQ50REfAQjJyq5jzLf9+O8Wyq0mjYN4j/WxCOnNFVqzf7pLOEIX59Wskm/xtq97CE0a5ydmMdwzap+CEtCLo00CNLbkbhBYUBWbhtZopohOKFm7M91ZTCZ083Yh6hsJGMg3sbg2NwPD/KjFn8OkY4gnEvWXz+LvgFPdUwxUyVyBaWLWjYVgtXW4ISOHhf5PiPVZMnIXrqGPuBao4PpPSjC0Snf5hsK48/eRvxHkdZ1Jzn+ClyrQ8qok+txlUafSNGOyFstrU41WzBpjbXItXjvtrUeb7RSICCUN9TaragcSoyGf8CNdtionBWP+FMTqGLqiqeiT0FzKEP7+G066QHXwtdO43dbFAtpFPdpw9+FzEm2TeK0no8qaj0xdr08mLIKo4aSOLTm/pP//jjkOdtg/LOZou2GPRf8PHYwBfnXS3PGz0HoAPmQxrdclZ3PO1aHW9XRRUmw8KbrYr3vCGIhOQJQgkjtYh/WOc1S+0eBE/HnGq+05g5zRhJm3LM8iiYZBnJgdnPeV5C/HtszZ9LDBYFTif9+Z6aQ9VKY/NiUrzJlNl+hXYD4OUqFOWpn17/WXGK85/1lZO+INqHDs9EV0Vs0f+z+KN/hwtoG67aMd3j5XC0cp31rjLP894Hv7DROulrsGdRBjDWGEER07h1XBsFQxcVOvY6Lk0ofNUM9CbRi4yj7aNmy6wLpcHoqD/7PhFatO/hMycJQeieQQspJRmVqUAQf9QpIfsjzbGtRyj6EMNwv9mjNdqvaf3wxbJeAaF8R159txYYgHdetKgP9tbT2hTiZMRbbgwC/2IkG7FiI4cX+giq9ZwHsQqyswNBAubkConVPWrXC0d0CYfO75YHrv7nnz8+EgzgM7gpQ+K0hUsnhbCOLvZlCyB9Dhoet7uY7Yz5IiRvMbWR5QhUJvG6Qch4v7Pz6Hl/JSm5qOIMPHBmxu9P56qen4imsnUpClVGw5NREJJ2Rl50/E4Mm/Hug/olbztoSYip+O6q8tof0e888se1v/HZDnKfkOKe5xRxCWCUGsWTnvkWgylzWZz0qYpE6FWr2aw+enFfh6etrG7459tnN7UEEd2d6s0nXyhl524+1Ie363rv+a08L+/v74wGb3aKylst57VA7btaKBjhbjHUcso00mi67r/oAS3VIkkrpvQCO0ADzcG1XdVFjKa/T/ykAxasAOY0V20yRcRadb9YGMn5Bq+/XMZOpGiL2axezI71b7zgoWexzPRG7V3X0d19aPh/3cH4AN/tyKPNg5cNXvNt/Pw64zIbvbAyul052ycPSckP/NnFmHsIvMqGht+Q427MR5LcoLM+U2jpydHIlq6cYtEdXpNgMHpUMkl30DG+tb3X4tIta8x04eDor3ooMWcOiiJpO//F3b7tSKwwsSEtxaCcPD3yVSftpAMrotxd15RrFq6RyL9w5UBE7VfmRcRmsRQErAOMRdf8qc6DwTuP7k87ksUgoGLYuIDEHHfTmh3oRK0YOu8tuokf/ThC0EDryEjBUWB62Phucz5n0Jjwz3waud/hgVJqB5QAGlf+StSNUE+ryTS+V+bPJeFhRIB0kcOtGjlhbiDap81i7/hsYdA5qfqDV1ttbHv5+blweddfI3L1lSLVCTpGrDuhQfYouSag57r+oGlRto5ahFygFut4SbiYa7slr/P2dbHqTn56QbssYkpKgFOdR0EXyL6KAz2+V9YrzfUTDze5ACoG9Y0itjBNhOfXG3zWUZxkNbq/aletpvQ439RcF5tO7PCGqnUeo2aH1FPs+D0tOAnXzUZRUbq24CW+pXhw5bPdMNrNYe9iFnsVTxZAYFS8yUgeJSWHooa55s9FLWwTa88JdP9CK+Ew6tbK9a2f2bZgcYZ5RF5s+MOkjpuJij+sXRh7QfrXfqUZRFT5+rptjN/7LYISd5a2hjP9heaSg0UeqLqnHDL20pRPJnxffjf2Jtyfw7F2Skg4yVPsjoft8crc7h0Wemi/nA01H4jhDHjRTYWepYvaXHnFLcdOZJ1TMi5KbBV0M0A5o9228EiCi5obmz/b+9B+dqIlaC/1VIkX6x77PSgWKjQ5k15vjYDdLuSw4AbRKLLoRNx7ftgz+9E6y/2NoXs1ZvZSG88tW42YcmAfUD6TnwOf4fY+hdqgQk6OYAAgoUdEFS8BEvuEfsb7Ct9X103rhEIS/zu7bQzLCM0kvvTpyDMjYR/7ESNa0QbMV+QNySVu1atEjqRXiKvrcaisrCQcZP9LQ5f0He4HptlTjbnPgKLyqn1+fyPOIfZs4trvNlLnPvzsk7rll9/c1O3tuj7+g5/o56l51i+f1/rVs3rabesNsafwjjkniclsgRl1iPxHLTpVIzzg7Zf1lf5ItIqYTiutK9x+p8a4wJelTcR2KgbVMRgQ0rXg/Jzf1mS+qvPBDh7fSuFHYaACS87bx/pbP7yvYfbGB4IKP8x6L92zuENaVR0jZs4cxRZQdionb2hNkhYC6Eq9N2Fz69oRfVo7fIkEFnphi6jK20KozIKbjyo3HzqOlEoIMotQlTSV8V4FozzOBJN7kxSXRT5+Rrha5QdUjlrKNJ1oioMyacNvA1ztsuQAW34v6wl1e3wD/PH4wiB1WAKwwdtwmU0C64fTZF/zs/l4CDB0aWRQzuYAnyZdAsRtWd2AHnqBsaEYXXBH4alEe5mZpKyouXAkfVVjH8AmQkC2lBFTFdI0EAcyaXZTfXdX4G2/0qakGW+LCpB7FgGADvagKbo23F5gd5bAsmP33CnbVsKIHcRjKc26oM2DYm5ZOnNtyr4uKqCz5KwiTxcew2CuxWrz6/rdH93XP/6z16OFxnf1xeGxUkaoC3gXKU4JMM0Cg3Q/q6M9UEP8ug9GETq3ejRoP5LUgBiBpgqDY48pNMoXp8drhWLARU/G0nKdz7MwUOQc5eUnJCsCH+6Tyx8jkaNYJc9oI7WmGnoNtLKb7wLIwHvQgffo1er7FMj5nq1Z8efK+DjIjhDRzDmVAy1j485OTVRUpgjK1pVflxXSjp70eMsufNh7wE808dq+h+FIpuAWDUSf5ShBypgyE96uaAkqPntcmvub9W4+X+IL+3tl6iw+9wKHf+dkQ8VVMRvIWI4FPaHWqLjThzz2a05yboFTkVC2ConMWEqZr9PaHo5CUNlcxeoQR9GFDJY5sgmanOt+sFLz3SzzvualLW2oWizH1BpGcFLDa4wde5KYycclfbQU4Z8oiMV95M+KgNrvY0UsSHqLOkQfSmgAHqzm0nZz5ELzojBHmGO+2+H1k5qpxe0ih35cElJ4svAYE2oGJvGBkWWFKAhIw9plqpAFCvo5bhJBhvnISl2TrZrPXhvCG4VHGNnqUvZvPg8Fis4LBsAdQZcGTf9Nit2IN7A02WMRYzsno5estXpL0DKGHvC5GXmKb0n0KnQxaFioyD2m5gyZDvDHKbAhZ3GmeSEjRqK4E9OcBn9nSyh9ppUziEnNAlGfUKw9MYHC4WKoGZzV1fMabl7W8f/7q3rx7K5eTk51/3f+3TotFvXrf/bfS9RxursXXWaj0AguFgCK6wxTYly8zhaITY7aVw/8GWWht6OHfUI7V5zjdZ9gC9tSpaBgCsIZr8YbzDPysIBivS9MV6uaoEL+BjymbzzqnddBMLJSD2pWf/dHS0m+vb596HRs1sV4190IULml5ldj3Wyyzn21DYlm+6Ec9U7nDjX/g4Mizzf+7qLq0z/pwGA8iFM3fx7Y3FwFFx4X+w5z9zK+zuHhromDkBvmTkO/1uZJetAVlaL83+sLHkg+z7Y5Ui5ajVYwUuWgPJgUD99B0XMcpnupnCTq0BjXXnaIQnTtpLgyeor7OL4/BKdPjkTIxFOMv87n3ixC0jZso8GNxwZ9ILJJA3+nu/No0Ga5W6Lc1HFQNHDDWcg7oUrwB2RCKXXVtZpRqY2j8ln3XJ0WIwSVkp3+mnsM+mFFNhwlHcc54dhC6Mh46YHk+icnauzEe4QQzpOTYy5HjOXwSZ6Iz1+jTeI1Ts717/44Clj5rtU7+brmQ11/9+vXzXJaH79EMW4UlRFMq2S1HrESUCdfuuegeUJOY11iRJ6fg9mVotG/3EIIjZB4Jm30yp+xnYo7bR2SGYn1s86L92YMpOI9Sr1xXeD8r88Q+5Yei3Z0Wn6vVqvMxz2kNWIWziGHrRI2QiaJuTuFisYqyvJmH7HPmNd+DL+ThWkUx7F22FpytGtydYVetFgkrjYuBCJ+abRPZrIUuaPS3/uUDr5QY0BslAIqbl8MrLP/aeAT/h0oiOK1o5QGbJfo5Mr0XvcSm6Xske7yGZcFzaDR7yDkXFfuqgrQHLB60sQVtPiu1xiHNgie+KCjy75H/lv3EhE4eOSMilC6Voo+0BO9HxwqxoRXWXrv/OtU88W0zDwCZbLrgUExrxOPyU8Xnqzm7yAwRqs8nIWD5zE9a0MRemNaRJKhMl6XnT7UBzt5aFToONKZzgXdI4owLEeetrV5/Qgxp2Z3g1At/d6ksciYH+SVQin0FTW6bQ+jI8QoHwMlEDEVmJO9c9pZU/FnFO+WdX4gsaITWnxGUoT5rDzJ6w+Rl9e36U/6nVl+NpQ2L7dtcGiOoCI55s7XYeBzHE9SzOpskOUJj3myqtOcmJvuotX2UHwHfEB3mrYzIrULQARSMyfPSPwlfY4/60KpLDZXRDiyuJnVeTmtye1NLVDxPr/z8zxMaz+b128eH+r1pOrZX/tBrT/86/W04VpNa/Xqo7q9/7Am80VNF7d1omCEWnViDB+0Vc0vnFo0CKa5aCqBOE73zRON6SFNlhotm/Dz+Og+6gxn/7N9W3Tlulfw4zN6yVRtUvMV/7t4Hn9rkW16TSb1cj2vV/PXIjSqCte83IWUYdT8UaE9UYVpwzbq18Tz8X2boC1KTPIwU9SpGBhVdTr2e8qni2Qiuw8fqNLtgSTxQY+psg+1EbCOgTh8t2JXnNTE6kilp9ad4tFFk9AH0LiGnbm5QlxyiKgQcxC1cvpcK2oUY8uDEIGFbmwzsuUAs9kp41JhVeoEfYspCnvD7+JNatYjiqldnYGm47GnLVwAn818ZcPR/KwcrB5jOCcQyFrocviDjqvTHRGXQ5gLnkdbQt0n5vwwTuKPRYnIw4zgoj1ixyxLzC35XkGI2yZHYpV9icNBRrBXOZsgC9/IlK4JkToc7tqQ+v5fEL5WdnvM0Rm9Hp+Ya2q1qkUjl9Hwfjqp95ePOuDi5/lOvr7JWOxmMauPni/reN5qnKBGIRYeeoRAtmO4KSQN1E7clua8Wlk/ZtBKrHNwgPypajGf1Q7envg53jj50/OMSUCtNbKyDG+EoeQX1yNkHThdEKJcC6IlikLypdM4OW7Na0UIi0akiWHKd9ZITSKTVug2o8/fgQKMsHX9u0TBGRF0jKKOsQ6sh7uqJotxUYIF1J/YbcAqYxfMJsXzcxQ1PoTsnu8i02IOkFdzmu2pFq5T26fwjMbkXtOMJnYL4W5j+eS4hq90nZA0UvYyohVZPh6a8wFuMjFRHKQcepPacT/FBbtUjvIJhfPFgQS9IuBVh8aD1IEUw292VrenCmoq8dqUbYjD7jFp58Pg5decOCZ3fO5hwrP/zj5eb724b0xrlGecKptvKL/YpC20Fx9iQYoVm9anCY3HJfec12XSEPvTCJpYdzIVlnuE6Tm8iVCprBc9l+LVIdib1GnrxIdaDjVfuZJ5tprWBuWMMui7kXOE2hhxGrT6MOFEcqEqfFpCDjc39NQq8tKISJUepS0li6Pigo6Hb+6YXz+n2k/SJLJG9B2gW+k57PmaZqnj+SoUWv2Q53nwW0GOLXyc1IJMXDWNRvxsQ5Q1zARCJ+SxdobBdYbBZR+txqIypgg98MymfmiTdHvK+szhez8RUXqe1ieff1Hbjw+1WpI3jEjjWJ/84tN6Xfua1VAPi2U9fvZJff7ll+ST1c0wr9XqrqYPX9SZsxzXit28pnIM8T6LNy4ovOqDTBQ4fxTi0A2tBIqebog2JacAQ/rX0ZcXt4UIWkabUxfBDZKth0kth0XtvoGQ6hsXfs7KAwGb1b/9k+d1ql9LhtyRSDr/+VCaIabo02YTNKGzD/vpSMV7wES4eQFJuVBHzoLhdD7P63jaSabdXCD1TrmRwi6kWAqKkQ1RhRvjaaroeUYrqritLEbDZt5abFqan6ifvR5hegGhjlWnLK4gXxj7Fgs7UBR5hJSHG3k5HI9wDnU4BjHgc3pM1F1LunotUjb/RcY76P2An1nQJue20ouCk7ENn5MNwjYUVlKLr4iH36JqziLTmI0DuIdd2dhjwO2DIHF4+jxc4+AuoAnJayQCCNuX8zaK5CCv89ngA1hjdxzbvZEp6iv8FNs3MqZ3dzbhoOp8ZO0cTp0w6ocLj7ky+nfNSUsIujep5t94MdlPzOgx601RQclfdafUViHTejbf1wfPpvWLz9JAfMdejQaill7JrNu8INkLJXasa1qvIxeAqOZ7LutiJHFpFDEigpveoEZNI8smoMRLMqPxM3GI4uy4AMqHyjg+o3VzHOKb6c9qdbA8GtwgppA38tjWKflnmZlfvAZ1cLZgwpuKR6/dAQbNdh4mzVRyS5IW1bxWP9scFH6mzfsxl9T7h0UWpkdkRNu2LylmGWvKIqPTNyDFs+Y0Mu8ethOMLtMNxVk23SGbfq8/KT/7cGormRS6es/cBzJWx01/1MJhwO7JBIWffGKITrX3Vvsv+1ZmPtzosFgBagqM1HJfxYmKd6Fox52gkKKeYl9FQ3w5DdLgq8ghbqTsxXoXVWh9B140yasxMYPvN7ohBuHjJe/RNC36r6JXZNKTszHgS8j5Fh3JAiYVu5qiWPtQ2KghEIo1rQnNLuj9EX4gkxD+zLRm66X+Xv20o2pUuPPbpeiNmbpGsLwXiS7hsHCPDmeUyXaPsCuEn7INiJ55Sl7vpqh66haVuc+05i/24qYpoIkLd7YbqRiPa52E7qCzBfsUXUpTiMYghxZNaRoGRxZXB/xpjzUF+ta1xEHEkyIBQj35lK1YoPEOfhgpY2ls9raSE584/MOO6jxlEIWJM0DNHjEiditYk8WmaZhP64MffFy//tOf1+M//bP6weK+7j76WM/Hp3/yz+rDn97X8vZFTVE4nx7EayZe0qwPnlVP8haLde0nKIHt1WfBitFyiRJpqNQ0+trQOGlCoHV4HU8ZDrVqlTaJzzWXgT4kMs7je/PCvq1RL90nH3Z1rPr+SzaqRRUHuJnPmV0bOZIsO2HKevbjFdY8pO5a22utI9G0uQ+YO4fHha3LYS8fIo9PG27u0a1VhlJdia80l5ElFiOT2VLdjeI4x3xgKzxt4YDfVDzd5Kez0M+ONiwhRfN5uYeMbIB5IQITVH6cObZJ42Xl/fIjIAszLdyZOAQUS+eRg0N8iyJc6M4PGDWvazpZaYxrWTyjN9S5eENpIOocbRkuG/WjcGVnt8qXomxhzgjVlbOydAho3VEv8rt3ndQxhrBGEu/Ra4fe20KlD9+M31ZwC7zIGCkfd3wnrGYwiz4pbB4vQCmkld/orsyo+mW8doyx9BQn+dwz8azEuQT2d5GMOhhUSYtTY8veg21XIbH1GOV2QZqEWrYQIspf14k2P9Wo4nSq53dD/e3feaZ14fd6B1/f4HOxYaEYl89dGpf02BEhNEndfLh+0KXGHc17UbB6s9f/pbN3oRJn/xQp4tsk1F2iqKTztHCA/w7WLBVdk72l+IaLCC/PqLnRdo9FQwIYY7FC+/W+gQUDm1vWoY2O/Z3gsGqcq2uVUXP8AM3R8yGuZ0BFLITymJJr3+Aa+HCWRVAQevy+KOmkgtUIsxQpqL/XNXKBJd5Q9iChgfFIbNqBP2YKh3FU32btV2P8UEOskg1CTaMPysrjDPIaxamegKQ0ZBsc1wqPEslDPEPwuy7Fc//+NAFCdRi3G/EWog/qdMZyLIitRvIcmBxiZJjTwNsdgUaTPzsPgsx1USReHlJQ+83xUD/93q2smb4TL02I8BC9GCw7Maoz3SOSUIGWbGqh3LH5EtJmSpMPszRJWiOXbGhGrMSutVl5jya1th52dSJ+DM3hYq5s3fntULMVRRu87aThnM71+JAsc561fVDZWPS0YwEjDQpLK4D9lHkCZQUwa18q9YxREVxwBnVDwyLEcw4+3VhEgiBqJ6VRyn879PloJNwoPUlYIJYRa5rmGHFG4hNVs7l8vYjXSNzwFG63P9TTjomWC2WNzT0EyGgZKodpZyoIky6h91MSh23ZdKaKdsF5ZLFk892n00kt5C88U8FHshv2MpvdtrYqNI/14Y9+UK8+/kF98skX9d/+N/+4Hjef1Uc/+f06Ph7rZ//4/+nYtlzLLdc+DiROMjFHmkuj8TrdkyJP2wkhRbTWUxpX6hIBYI2JWvPQwRiKv8s/t+uDQZFui081WT/zhvBtIX6C/vWBjvXe/KjCRz5pGoOY98epvwdJE08AlGEu6Tk1kmOSIqtu1/+e/cwuCjJVswkvp9Nhw2b16QHQCrRjuH4jSQTnvQOpKbAOs1rIV67NDblQbJ1R2uo5dVc13S9rNuCDgD+hFcY0XJLsU7zJb89zeTtuO7XCJrUs232KFhuawpOAgyDmXZI3rKa9xKrJq2d6qi3ImnwJzTOCIyDUY25FMwem9RIglk8y5dUCIax+ujR587Sq03RbhwFFMCWVcya5lvwUSB3TWzaL6dHeW3JFx+R5ihP5sRbLYVQ4h5VoJXT2PC+8dJ6oDfHzwqNoT0QbGWqOd1tIYbyvM75wMqLNhjeQKAL5nA1q7/cZuGfbSNlNmCJ5ZHK09B07Gi9LxrXNTfIma8L5VSZ00wQSZi3+ZRsD62lxtwd/NFQqIcgv5w92YvgOqnmNamEYy6XzHFSRg7O5uuZg4FHoZQyQEY8OpyBWRjJyYJ1mMkLVykahHf/LjqxSAT52lyjKKe3jt9eqs4x4qChMx/UhIi4K4/zcb5mSKynDR6DTCzyiZ3MTNx7kd+ewdmKhcLhX6oX89qwupuDQ5q9d1CrbUY2Z/O42DNBhqGfSHbcPwByWMXZH/aq4yByw0Ul0WqFQGhldHDlErBiWsFL187SGbPYqHRtdHFE8o6s2ku/M8tjJdCKCHkC7+etvg1pqnN7PY5TR9mH0FIYnmGs2rDgwOd2bAmH014es18QhjgtOL1CJq5E540txcMtqbBTKplYn7zqoA0U8QgWlgHBA834xYGfr2YOITs71O3fkdReGV5d1+442WTITXy98vmitw5zmwMp9Ct3AY0qMt0+1kmctzbVFBy1IYjx8AOEKEij0MI4GAtwz/8fFQEbk+KxunAd9XA+yBAkbJ9Sm+Eqq+AqPDTpARn/i6mGNFS9ao7P+XPMVNCAXh1vsuubt/+jRrdXeRs+4T+YW2hBY0yr2XpnpY4niBDc+J42Bp0xuDieHpnA16tZxdZ3+Y1qGxSZ4FMaDbjKrnexdqAsAPNjbdzXAm9O5EHRe41lbLMlP+7zXGU9BavN5R7Vpn5BymjW6r0HOAh6zH4kjDY9RtjUzxsSYKisXpX71+qGeDoQeYGthZ4r53Vq2Yy9/9FG9fnyoP/nFr+rNP/yv6m/+7VOdhpv64uf/tA6rWZ2H23raPNbDdlfbw057gbh2TE9mc/HKOY922ze1ADSKDlJ70jzOJcJsfOOhfgEcyamA7y3aS4/I2cNDg9Okx5xB9n65FJymNb/zuPrbs3ORIeWpPr6f1P3ky3Z1tQOJSs+M+2INYeNRFhyu8b1wk/ig+2UydrubjxFQiWLSgZeHrjPppBBsGhk3U5W0lTtEtdjFH7K60yfYpODTdVKwDkqdD0SR2VBSXncRBbQpsdSMgqq9ADUWO1KcNdJ0OVFE2qbj000F7npwIaUK0p58s+lNxAYOM6cS1mhHFhAeBU8nLlgdHs/Il26FIjUFLmT16bq2OywjMFl2kXMKX9DnWHKMYVqABsWI1geUbSSIj8OYeWCRMCnsz9re6dNDRAA2jsQDCgm9nmWKRrm7n2uyXUv8MVk2Cd+cEN3frskElTq0XqMN0cea2xQj5iTCgHRyLXFDlzhD4hi6XR7Q5m118e4xfx/uHhU6Us/cshhmXtVMzbmhs3s2P9XL21l9vnn3WUjXBWD/PQqvtZoSb/JCajzJCSpx4XXqZ0eyf1T0Plm8hFlXrBHJt5LskaQbPQMdFk6BnjHyDpGReQ9C5UxfaBUEoxO67s4PNlG78TZFGmqBHMQHluIxHB9FvEWkpFD2FoJknMhLfyaZlRTAUpqn36Wrt89YC12gNbgA4nMcdkpwH0fSGlXiNabz1LmffDfsqmRs3es0PFK1pIo+g5AfRDUqTRVpo4Eiz7n3ww5VH/eN5qoGDZRIS2hEMy9t90ER4fY1RZNoMAJzrg6LEondfL+qYT2p3dbFippSaB4888mvVjqA3BdMnLfjy1EIvMfWLm5EX0EswIEsLrQ/75hJIssZJwbwAkFiBZigfqpbxncRKXzVUPtde7HnrBdMbZJOgjpUZ118JTJS8w2w8nXHiLBV58md70loe4tavNhIK0Uhmx/+d1TWHA1MUrBdm9VkQcxlrGNCjqToO+4NMSj5KrxQxShmjEzDDYiidCXl8/rz8xnYowWIvNnVkcpK+7+5ZE6PsHH5TqNYiwNQx1p/bk9APZpBm3DNsDVR1HUUvfKOtKClESzddVFBzGVrDrmYoXDWw2NTYaOC0CPQhQAPoteUFKzkDU015pPa8Oe1SRjRw0Baz28+rwpT7UOxtoFiBWhEM0uhdzqqSWFt6zmd8gwkLOBwrl99+bp+8dknNVk8rxnFZrJ+xVWczev+1ataf/JZPXz+Rf3sv/8fao5lyuxcn/3pL2r58Ue12fP+7RKBeBN/Y4plwK9JTbcHWaM59YsGlH3Pvn3unDwytwp7pqLbbYcNrLX35Fztvd1MHFTDqJTtwHE4H2p9g5DkW0T8pDY9TerH7y/rdnmggRaxgI5+pItrw84fj/EiRZjsXeL0rUeiSdnaebpjasSv4d9Wzl5UZt50cQE3qiMidUZAXHY6kh7PavwRSN0TTm48uySFSsyfJ4M3VtA3qhJSLYilyoHH+FLms+pojUDo0QoheoHOWXYyfmAZi0iNSi/N3H6ywQNcKGNuox4E5OZcEBHLJ1YedzzdZPxOiD04CDkAw83jOjJ6kc9+OCT5ziwYXuYB9nslciqHnS1cGEHz8HBCxI/sYE4B2YXqYEOm0JB0ehCEzWKdKXt1VrU81oyiabfS5z+ct7EFiRJSucBRNe4geiO9n2l8xzJeMBpvpaGl0A4S1waKmadli+IiRiXurfRSxPS18nryf5Uqry0BWmKkAy/jQJ3li/rBy0V98PJUv/n5l/VOvjrD9bcdmJNpffQCgjlk/uSutnCjRR5XP38tItCAVBY3sZwY0amLaqx/J+veoiQ3X0IZFVPEum8VLNYQ3h9sOMt9DAoehBwUO4yopOrYbkEHKk0ERV689nyQ5jLoflK0ObW0M37FacwsvxVsagzFzU3KR6u/lfbSaKPjG11rGk3pMXLTUvj87DEhGTnzOqTxy78zD9JNh5X1nRnSEimef4nB+Ey90c6Mgpodg0rRe6EEE/19wqkTP+pq/GuqjW9zkt1qucQ4FkWn97nN+VxvdkFXmELB0d2DjmYsntg1MyRc3PPc6a4foGPksxHbqEM548P4mfLGeG3SSnuCaGsK89dsHM6brw6bmqcZfNdbK3Z40ihaLejiK8+fzO3dbfZ18j56yXXX6Zcmq63JWu/Wp5j4cjSvu4OnEgMRcVaPGnVmTUYQ8ZbYKU4FpvIFmLCoqdNybJ3D+vYZwZRDoEr4ouzp++2xdntQKMaKUwt7xqABRBQnURrsnWvPLXFGlXXtglF83KRPKGc9dAv8/NTsM7WJWkjhB+G/N2pMsUXRelCTYteBpcCZtjO2KIN9o63RVFDPEN7YNsmc1AvwgqOBpmh6ft2AKmIQnqPe2Iha1wXcQ97ntAOZjS3Nuerh9ab+yc9/Wc++t6iBRpg8eAlrDlZWb0Aendf75uHLWi8PRL3U6TTUZ7/4Ze1ubxyZRkOQxJbpsFDR5kbU0xclpZCoFV9a2TdeOSP02LjFWE1l071tZ4P2R36LT2weJqvxhj0GVOtbK/yy+by/5sPEIZcRXxSVLJZB6Q0mbI7jQguQRu+qkTw9Kj2uxlmtEEvYPJuieCv57yqamhitLtTKW7GFkn2nEUYSNHRZxJHIw6lMyfgu4eqvxdkjcivRhBypwDGsakJ2gpbl7+TAch2aQRs8s4r/H4NWDe2NTChCLr57yi4OUiGCrHzIu1gMStG8BT1kHvsKSWSVasePnF0GoD4U+bwEBvahyMFl9bB/h+UkZAcbdVGfKuNrj2903Y8kAJwkAlDwNWhCigS9vxSBIIU+tI4DmxgAq2ZvERbskwFrDpB4Z4d5YZNFUS0/RRXK9oS0UjmQfhx76Lbodg2GuiAx4pKiVpehRR+XwtD8v5QvnvJmlOYMSrmeSIW+rRd303pG8Xq1Br8L495G/VjfP3zvrk7HJ/NeVGGbxyPbhPDKZBqADcJoteSxuW3IuJ/mvcjhXui7ixWXBlGSa/PsDhTUrxu32A2FUzmqx8MndANiyAuxjintIaArccbPmn5FxjA0dube2YpFJVPuc3MCuzkc1cpS+IL02b7Gf4KE0B6PWGjU6CWkawRqXj9GA40u+5q7eMzeG+9LNX76nfHPav6gOs9W9htJo/MWp0mE+/anTKSVb+LoeuBFyp81H0xNmqw9XGTzL3IeWyQzq1ox1sW/jwJrOanVys022x88ynr09T4RP76c1MYhDEIoehQHGmsVPoVqeJdqskDl49WpA8kGvExK9jkQ4TmLXylU2F6nFiowkQilR57FnoRcVMnvZglIMyCpT0Q10VfG1uaijrF61/uNqEbhXUrxLAP9TKuCfBkBPNWZ6DQJ/RAVTWt+Y/sfJmFuxpjC2PQZgEIZr8mz1meK+4/oCTH+Z0LD76ch96FvXqIMwcUNj+eeYtPMf+8JicggUrTLXNc8ep1XTnESCzGAgF0xovqNRZaU+rENs10JxR3I/6SGZSzGLgRrF4pw3Wn2dC2z7/QZ583CKObBgA4YBklS8qZcGEgQvYHrk3sisWmk1TphNyhEfXYCgsmxYsDqxlZJFntypoGiMazC1w9hBcjgqX7+5UP94fcPNSxvJAzhGp9e72V3NV2gOL6p8yPRbJD2NpoUvJmvaw8QQ17wZBCKSzawRRcnxcdJfDWb1Y57ABcjfsAgvDR++l5jGpD/PBM+23T1vGBEhPy3XD85ObCm0D/433O/qJdq9uzbK/zUzQ5VNwPjR5O21d23SSiu8eGcUC+wiPUw9FipM0DzHa7/XsskxskyosyX1IaazuSivHWH4HFJyOfKp+XBiElkskQ1CtVI2b9DXZtGKwtxiIiQU15u3p8bJduZBq3pdtjwWOKDq2qKOSuMmlBrHqBQABV3PlhFFg7FavzsQT0t6TersRXOHUnnzxH4XVm+KHuJYgHhsbm1Cq9RJm1vpExdXGxJAo86y5/3yHhXBGQr88xPMvSs9IypEwdAKSQsAyLnUFi4ehr5fhndCd1cwnLkIZhrfIFFi753xocu+il8WYgxmBZyY1qANlLVuhdRhlBHFTFJSoj57yhc4N6JTF8Xu5x4qHkE2GiRL4ZyvNm0Qy7mgQEdOeyfaqUD+y8XXPMuvLRWp9N6gY1mHqTZfCF1vOObvNhRWTIDcSSeOZfmybh4kdCi01Dcko9CidaT8XJmesZdin6LkbgagCB8Mkd1Z7YUsUiMExc4QSsu+L2tLNgMuzvsnGH7rwZ96dzQmDorBYOfVbHngks+aOH1qJsOOmc3mKj4nRJuLq3UfVaAewwXLzYdAWYpd3a4EMjDSYVRi8N0PbT+zB/Wd489Dp9Olg18Pg6WoIFK8Eg34gB2nv9ONrpSnmWfgG9HAy0EXBY85gDy2XD0uFlU3axgIIMgnGtFgUfRwMPA2qbAs/5LfpiHx5gO86vmFjA4dZEW1TYYoCTyBhyFel3Mq/yTt91RLgZpSmUszFsca5gz4t3XgFFtQu6cSM55gCjtEqf4Lr7O85WFHLIHMq+uE5gu4EtixhC9KILQY1kQNKGBtPtaks4lP2x98HvNT+u4glu38iiZ0XoECvK1kCdl4khJn1BREAeIWJGBlPHMgXzZhsufww1xH6bs79gZuYBVU5uoQT5c75mMNok06/MYoY4EBcnIZZ3I9L0pIaLv2G6rzfXt4dcpH2F9yQw56STeNEz/kGraz6PPTjeArGsZXs8p6iz0Q0mr54R964h/LPzGjMRnEwmddqeJUU54qOHyzoeh9nPWnQt3VpyKQUej1BBuuMVcvn7EquE6gW0K4/LXm139+edf1N33bnWNCEo4oYAPneP2/Vd1+vJT+SnuSOog6/z5vLY1qAmcbXYSOs5Bg5VV78JaPML4iYoWtjvUCcRXe8HFDYQrKfqajKANYvnjO16Rz8hz7Hi+o/wBdQtICsk+LF4qfM/Vy2/Rx6+q7u9X9d49q+fJETQNS7NInaFeu5wh2hgarYgBaHP1xlGSIo3oFKeXbhTnaSFM56/lKfWniQuI4d8pi9IZeLINxrlb3jOxkchhZkiVm8FDMrfHnnXwQgwWyi9tVkrSQ/L7KW58UJp0IwGLxluWvkNgQ4ShQPfsGO7o+H7uFIV+KC9kN6ItjJhbweP/6s1WbyGdRfz9tOR8gEj6vlhq0Ta/TobVtt3NoesUD3MaorYKt8jPS5L+EipvB3g2ohD7FX7dfLB0eDIBtTn2/LQUURfV2HEPlxNeYdTN8yFqMQ5bDgW1w7HEcMSTlNoKzN7XgkN7zHs14is3wtEt5EIFkLdaxApGXtyR0tVqhJdovqbQa2wXArZERMD356ofvhhq/rN3VHnYzdBvEfiyTazIvY4ASqteCIw3UP5e2b1aUiFTR1Uqa4hw5s77rP0gT2ruUdFBXtfIOH5TGl2x2R6kuNYmpEIGNOMq2i2ZoaYfdJYvvM0g9zqoGPP2geUet7lETfPQhievLV8BtnQ3XVGe5sqogOwRk+wl7BlGU4WlAV/90GKypA1A7oUXqcYpcErHzl2sHX2ICulxF+erHrTDxVvSRcJZPvVnlBDKfKg+5DyWi0mI9udO0mlfT/92xaDxR1mnEXxQ3EnQgpZK3EK4Xadazt1kx+NV94E/A59aaQ+ggPCcpkRTOd1BZtUB9JQASXG9I9jevL35YlY7ea45s1ijub2TgHiOltqTTrXi2ROH6lB73ogDi0bqiIIbIdq57hdVP+cXvqMFX7+YcHhi1oNc+zG6SuPuRzSXZy0Jdy7+MEnnZ0+MIhHReYRHUUMKBDZiXEfuv3Y48cAyB9bjYisPyW8oemTq5vdQKogqcaYh9snDv86JpR7tag2poXX2uNbBuGG4OHQSlhFko/7H2mOrpTGzpwWmI/hZ1/49vocnRAdltVvJLq55kHRPEFJ8ca1A0WZxemAdBDWloDYRKdFp+ng8L0YiPdI1sLDku4JokhbzdKjpeqHnwnxKW0Px+2k4+NxHceYiyFI14zhOCZTE6XPkHP6k2/2h9vtjLVYLF9zYtpzhCe9rezzUf//pZ/Xq/lnd0uTwPRknax8AYjf33xxhAg+qNodTvT6dar+C8zetu/2+jgAo7BudTiJazbRWR/79tE7DqracYUrhcm72mUpRIwQU00n+SgKaaV7sdWlqYxgu1DcWXrNjJm7s+4dtTeF//EtefynI49lyXq9uWZBP3kA0j7cTudSZLPIsGIsuvCC9QC5jkdyeeMa5U/KLUYL9gdg8QiMMcnO1HvtEVIGJzUQKLQW2p2xTQZQRUp4IRQ7x6eBZzBd1Ou0iOHER2F1Qczw82k0pqIPRgg3z4BTI4gdV65gUBboj+HwXcqWMkUnA0PhmWTuFM8fXUPMd+HqW7dt8mG55Vaf51urUUzuGzW2hcN4JXdXBDkoSuwupr3g49atzwZxcLISIB0edVFSaJi6beajDr7tR5kl7dxbHA5sYcHLHbsXwFouLMwcA1jY7cyp2u5ovh5qdFnU4P+iQ0cGvWDYTVMO2iL7f42q6LgoIIZ7aEXps6LGiUKqoVIegMTL2DLI1UuBkkJu1yGYV01wXyydxI9VNpdD43ntDzVG3vMOv3z6IntaNuBexUOg4weRbyx9TdIUu+EaHPB3majmCgHWB3FM5Cw7ozL2pW2zm9aLoIIdXa21yP+x/5/dWOdmGx51g0XFMl0nFRfCgL9nE8H6mTVhXwo3Q3kv6isat7YsmCoC/s72t2kLGCJ38IJv7EmWuEjKSdNJIiaPeLurb8TNm7Xi60ErotmRx8R1DD6Mb7b/XiKl21mQfj8bVV0lBoEvSx3C9maCYpM/llEVKxE8A6YyuKPRWAHn7KoYunNsyv5UoPyqSPYkPjhkjLpdverMwQvIUPEQ2RqE/MGsSiqWJjZFIPlc3UFzDPU3yhELTKJ9oKYDJIPhYb4VXqklKRnL87p+8WNT/D5uSerdfs6W5sva0s0jAiS2e5DjoK8r20JRYG+z17IOoZP08IdKYKX9W2iMVZLyP92nEBCoeNUqNU0TWYNu9OBglyHtgDHOtfb5pupS87EFitlAi8jwqWUufuydhbWt1WcsqdJXq47PY/8VWYka6A3kkEYe/mi93SdORulYjSa9RK8Sphhmbd5KPx79OoMr6aPUzxRFnpXwjuRZG/bUksUGZD6I1nDan2m12tZA9hWuj1gpAmXLNHBcQ3U2ji6xZq+Gbd+7xq9X4/ZlwzuANZzUs5rXZHeqLzbb+h08+rx8u72pJ4aHC0dY29MjH+VL+hytiEm/X9XA+KZJ6v92If7E8TuqmJvXp464OT+darWFDL22HtuIzYHVXddoehbQKkOAZE/3LtnD4AsjEOWebQBm+nRoUisTwahuRV5Mxy8TD0X2zF9Nvt/C7n59rOZ/KGFgjpVYJhaDo3sXdL0hQnBz06k4kx4z+noUrY+BUuP1A4Xo9ngV6NmLlMureyP8zUtioYI9TjZcZntUINOo3j6cy/hG8asGFXxcDXC/sSKYjk1fsmdCEdOyz+ah27OzNHgPzvscphy43AvGGBQXOEvQ2Mjk4CQCIdn6+hLnb2BkPJlPh9YDo8PBBykhNXoPxekjy51tGtnx2hVwnk1Sd1Ci88ecZD9DOiJTxpA9MhXPPMavm6U6E1QE4PVwRPm+iLzjUGZvXflH7w6O+t8ymMZfJLFeBIE38T4rubB4vKG2OUWwF+eAeCVFpW5Lkw5oEePEmu6YL9Es+h5H9672VcEBih4sCF/T+wffu53U7t4LsnXuNo6bfApdIUIDhqEd8R9ZETtgOKLOnVIqbfr6CDvc0XPvLaPcRVX5v1prXtCWIix4O9qYvcI9kQzE+Ly4+mwfl1ObYiQjx7jyyS76vvspoJupRsg6sGAv7DEyKhAjt2St6DaeYNOfQY8stKsWIVszryV6j90iegGgBIa9nbO1HyEItZ3s3v7IbwhSIPf5TAZjDNZ+Rx0I/E89TF6hN4fBn0D6U66cYR7vRBGX0bSQ8XmM49nvQvjmu/FVrCj9GXRsos74nEn90GsfGpuda58pUndQaZJBx7G7vDFF50vOd/cvkdzinmbU1UyNYuqcCi4+1nl0QTgmohJTa0oZvs2AFETAhmozNwH/vw/v6v/z8N//C9uVdeK0RWcSmyI4SER3mCBKdItYuGKELJVeuwKwmS8AgFxvmV7sxlWFwJj6jpVcQ57FxSAPOS0bqES82Et4wOO+rwUsjyuJoWnurqZMeqQh6ulmCZ3WhJ/pMS0Ooezham4VbJ0NTmvoALeHFJmxD57rMw/P7zQ1PVF2QbCmhYwTdxu0XVbuRTO9J9iB1IkWDNEHs4GKHW0rjPllNZUj99HhQI3V3i7OG7WYGobH8vUe8gOri73IvaGJk3+RUEV1SzrsDhTOqbYCTJHRFIMGkcbs/15//5suavJrURzd3Nd1ubNpOw3jYC33kOdsez7VZLmo7YRR8qM3hoKlarea1PE3rvWFenz8+1QHE8u7Wsa3i5XJOnoqQLhA8p8bcVu2sH4DXBwLZz5+FX75ASllRko6nDqN1lRpetPRJk5lManX7LRZ+REDdrE0P5UIuFoNl1RrvmD8kdChmuSKi6mFoflYr1/xA2XDZdgu9gys2iHEroovmfUmp4x5bJoZd47SdiiDgXIw8ZHbCbiVxlMN6eHMssZqEV3sUxY/uIV6G3DEMC7t7C90TE2ZUO6q403nChuEYo4uzOGMRZylSuUvCrxsUf6Z8zllGCWJbtcHVGVNm7FIwcH4cv2KdIW8i7nCHADppryh3bP37TdNyYWUOk9+BwoDNwL6HMJESaxP+kUm/LsLt0E4n1Y7rSMNZIm28y9/a/kNQMxvBcV/rxVLFH+kmjDdkj4SzjcYcXrwaarVNTyM0VxFABn3dkZqAP9VIuzNh7Q0VaomZ1uM/t++VrED45WxMAhjD4fD00fxJsYKrbkk2eefxiK9/GWtj7Odri90Bh4O1BkbsyNntpdWNmWw6JIiJElgVmK08rOW2R5vX3cEdevhetiKKInd8XiNAEIeM9zqIE8cTc8gz2JzkUa2flBD5gbF1q5DoU8J2DY4I8/pxcZFWUYi6n5v+96365+/xwOMz0XRqibCGZOJqVEuZq0qD8WRC76X0kktbyftwdc1aTEJJIzTjXnXJ14Qby0GsItoGftm7XPgapb6YOFvE4QVpJND2LU590O46xn/Fj72Wi0mt11XPl5MaQGueSt6YAi8pwOAM894wcBgFizLMQefxLe+32jPGPcpnD0N5jfU0O3MSi0bLh1a/e4RG7b9a9bbIGrNwRchikKdGPUH5NIZL3NdHdxcvwnf5tTY5T821TgdB3V0iORlpIe4OUQ/k205ruVpYoQ3KRtMsNMqABM/YHj5e+FuWucTzrqlOWsrOhdd0zFj8OKrNO+nmU0Tq0QoXVo1KM5DYn6XABevjuRLTVJxqx8g118zr6/ndvD5/gp/WYTa2i2nEjwIPmoBMnzsrXoWh92krzCN0kVAx/pudKiWK0Lzm+gX2qOUsluFDbNtkJRQKjsfcnqhBRyB/HKsyxQQCrsiQeFbT/aF22109bSa1XDOmrdqRPKLni9AGikqvQwogPV0SRdrnE/9KqCaMoUH4trJaCdpJMXU81mxnmtnTMKl/9vRQ+xnxeMuaPO3q+PpB9CVUioeHN7W/WdWXNdX7nAePojnAZgvQPXx857UeFvX5l0+1hALFkG6AR4t/I1UewAretcc6bLe6ztsjyCKdF88Yk8jcX9wwNAIO6BUfYVVa/Pug7KLMxCAcw/xvrfBbzYd6tWYD3GtjYEEuNceP43cOHijmHrFAI7MVQK9jI3lsGgR/u9s2WThFmwoTSMsxKJQiEQ5JkLqrzEERKDs38GAPIxRRvNthv69F8jPZqQ5SNfEbwn6Lb5g7keTaRr6u0hZxQ5An8eOas6c9gv6WAyqWI2fHE7FxKDewiNhpdakzgc1pcMQOViayudBBiNmxY7LmcPgmu3hjzTR2YSwF740qaj5BhWvInYcDYrW7Lx+OVjI7EJvxsnzWQhS1RxUoLZ1Bwq/x+2ODUAE7jL5h7hBz0Er2b9j2yDVdzrWxdISPAJxF1VYOzZBop/JH5PSRshji7hze4z4ee4y1bUwphXG8BwU2pQ3W+IJOKgeyu9yLoky4cgQ+Y4eeAhfuoI2Hs7FlnAJyIs82RZdZjXnaPtSybem/Yy/CzkXKb6NYCpzzqRZ67mzOquI8m3tzRiyUMuFWnnNRDnYxrj8T4S9FEn+mE1OcNRpagFTmV1nQV4oz/uzThFEj99heYY1cjkht7JA6h7LRB1EQxrF0Mk2bJSIE3GIy60w6Is35tDxr3F9TcN0Qif+Zz2ckONzAoIlWhNNMtZIyo2uJKtow/hJd1er8xdhwUNw6z9XWHpe+1KO0CJLU4KKq7xjLTubgcMT3K9+4kxdS9CFEWiDmWJ7r/oaQ+XMBsEPu45HbPZ3rtDnXaTtJGtCk5uvTWMi1CfB5N6nFeVprPiej4RPjZH7BWd6afC6KGDVkR9u/LIZpLbB1ESXAn5Xr1URyW3if6yjOr9cK+y9FPU/5Pea2l639nX1J8BeDcnPRMorXcxM3AcbdkPKhQNxQeHSrlIxwFTie0tBX6riKt6VjyyK46SQXOJHno5skkiNknRNpQgoj/fEAfy5FY1MVNEiNfxBWMAuW7Y7njoKMc1hsGiOARgyrvnjjKZmCGOSfx7r1ftq0BDVjiJTEufYZJasezgtxXjMKjieeqb2neEcy+z3aKLyNxpXrm2st0UPQtzRj2lOi8xI3Ls0dKDYVJ/5+dDKz7V4c4/2Wf+R8YHJEk8l+T/HHccX+vzdQk5BvHHNBqKfHqX7O3qMluxV8Pe0dSLz8IGP6zX5T0+O8/vR0rpe3k1rNZzW8eF7Th4c6v3yus/u4GsQJfDof63ZyUzPycQ9UPjaCZ2I3bOHP7mrz+VMt7251JmvicnBNg/2LZx2giefa7w4SnArxTFIWL4AMR+BRz8R2K5Q5+SfaV0jrAH4hP7eMndW3UvhRkD0X9BqOjKKGou4FBYjfk4oyukFUvpFbu3OyRJwDv18UV20uKtK4COrdA8Tdv1GDNpLNMLc7daVzcAglvkR8JJCmjEq2O0fX6QiLFYmWOahIUBBJzh2ilxEGn4fUCeTcMWmOPxzEcBVJOlw6gaBRBwdcd5SUPOW0eWCyjI0TGwQ/s1C1L/EGZo8gkM0BknkrxZXn/rC1J+ebFKVXUWTHU+2SC9l8kUZGdE14gFpZKO6An3478KCY3ZUSAxMa77qLxwTyuzd8+ye6mNySfXiUxtHKYG2YHRQfHwrG56O5qdXFykINd8kH3lmdja52DuXORjb6anGJycRZJ8GkmtrZuYVWeJr70f5qskXIGlEBP9q6GelyjKRCWutDhErfwRceaU53DQKqEUFTHC6IERugVO2hOXhUb76lKATh9oXI59EoBVhSZlqcwT3kPRVDlXduxEyq96huWaP2s4vaP9Wg1mRQuVjS51kyt60zdq1Ib2pGj6guVAbvf1a5uuhqp4Ar8YqeO6ub1WaMyRw+eT0iTq63Pvf04gKQCyr1bediBukfYyKTUezoUx/27aOmcW8ONtecTUHx9+sBRFuDJCV79Dn1yEwgrJ5T2bfg1beuWqyM5Cl4iO2CovBmUhtx0yZ12vhqzynmOPS1TeOXhk2Tn1OsYA7YZBDRJY1WOJxRwPPMoir185UDWBFc4fdKOGxYimt9gMjP7xSvEA7gpRhHbeiYzXe78lPUHmsDlalUuW6mQEbBjkBBxbmaLVS4CLxI/IL8W9uKo/OdZQLu4AKulYwY4FFSsMt9wr+3qTUUJTo/UJ86LMpnVQQ/oytGq2RVZ0MHIgXD4/bp1sXgpVH2NAMyE9MAZZeHoqEJm7t6n60zpxvxvCp5KhYsKjZbHd+JL+E4aq4Egk5RklOpaTaoWvW44q4BGp513R6JQrFkln6WUElFWMzFRf/hv+kcZWybaRbPFDZjOlss1rDbhMVsnXQjTQF6cpm1AzYk4ow0ExocXHUpuCZ2xaDoJlIV25fJcq6oOO6PUoZms3p9OtYjNQ7nzGJRx4cn6O+1Wgy1RCyFsAT7ItUC5tgraOx8rOVkWnc3Q33+xaZOs9e1nj+r9bM7Ca5mb4ba7HdaF6wraigSrQ7Lo85GIXdHf36afO8jvn49IUcYomve43Y1X572Lb+BWfo3LvyW06pXINzZ+gVvNsEwOe66v5AUlbObG5RDSHFtUWbyhbzRZVEKjfGYuFMdGiVorzfTg6IEVLHlbGAXlfH14ge0aCMLz26MRQLImNUk6vPtoxNI3w0/N92SDVvAtGnrtes+KNZFZeyx6SUiC7dxCULaqzCEavVr7dTNYg/x14/8ruZcGw7YwLnOF2zvMRNRZYicZIWOa9EBL45g+B9aFPZyEmew1ZYyjYwHFAtJfnk5XfUFQQZZVDGaVp4xv8vLQ9wRxC/7fR3gtoA4+b+4fFDWZa+DYy1roa7yMKNLjuI2m4msYHj4cmh2OoKTXeJlmK7Xk8HWWTrKSjQA7rv8o7w7SeACFxOyudAJSVrGwobi3VmbMaXNVO53PnhHVb3/ktcNEYOcQkH4msMqOgV0ADUkb2/IOlzamDilm4otWUXwh0GkPMZtxamGQA6LNjoN/5b3xlQcH0zNh4xYN6fP8Y00hUnjAQlmrDHmZWfsG+pF4jxHpa6eMhG/Yy5+hRTanDtFY9tIZcRj0UTGUcn1Nq/TKvAuWK85Zxa3BLEQQd0HCY2PLTv8Z5r/a2TSHpPtEqDxbZJOXGTnkBa9ImpRdSa2ZtFLhHn3Ss2D6no04nPz+lYTfGKF+GF1ofuX6EEdGqg5Occw8IOCQQEGL1exVUnwgODKfrs61mxl1a/MoOGH6sAF/XVTyz1ln/Ze4ZxR+xgGCdIFCNKrPtU7nBWj/h9tBfdyKVPiVKrv8Gvkl+Y+sCtPJZzzfZVty9oNb/s1qmjjxzKipwBUEcFBfTXFAIWXVyI30yLhNAgW0sj4Jnu50jlawJEYwLZgUnOU7Gjx6NWt2dCfP0/BSLKGea4eXyobN88/tB03XT53PSmwuMi2R0H7rr0K05q0OAlhpOLC1NhczCVb0e7IMTc9bTMlNbGoIeH/qis3SAMqemn+fY2EvAu1N1fPvHzH3SGcUfwnY9kZogmnVbB+d7GCwpmDIY7eG4EH11TJIjkDqDWwUjkxco2fJTF5sbKyKn8m4Yyo9BKO2FyeZ3u/3YmHt9nu6/7+rnbQmILir4dlvdlv9SwMxOWdF7V4fJTN0eaB8/WN9uoZk7slYs5TnXlumVLtDwZI+GGEpxLNBDSjuWYCLK/bpqpFOBS/QO03rL+cr9/EMvMvUfhN69XtwmqyuO6PxicUbvmFAoAjjfcsOg9H4fnkTEf59nhHr8P0aGWuOpaIQwQp2+tLaENXsKPR6+Vg4oZIP6AHMWMijTJYIGxmlKpx/VbzZNQCNamKSBVItpftAGm+nxfhJaJNUDyIlhaDDWApVIi6kpBEu1+4IG01G2RKRrUqomxxQTsv1/FYqMi++Uph6WcmMUtSBdOFUFxZDStEj8Mm5GMdvD1+FWTfKloXnrK0ANSPvFwmvVIR+XPiH+RF1B17Miy1afhklknslpmCH9A2BLU6dK8FzXWRtANOhYQoJiwbqo61Tzh5ftuOJ0rkWP6diOp9vwKznMnyTXSYRlM8OIw6hDRa7uU+w8HxqA59BYyccCDbLSFIaFV99II2/LvzauQJ7zaeI6F24tDQfbIeIibKqFGjhR7l6nVpZnStezSaHEhRHjjwrjzmJKqAP6e87E5GyYEi5PEkIY9HtR4/247Jv1cASdapEL348rnwT4h7EP1x3OmPapSg0cvryLP+AhqtXdR7qOMUeyg+Is3kldVKpr499pZK/Irbx4hS1gv6TokElFdaKwP9+YSA7h363g2emVyJmsxJ6T9+IcRPoyrsllYcy7yu7PNGVJsY7fXiXGtUufiZKZEhNQr7Ag4QmkZQ/J1rjtCAw43/5XvLOPh4qPnNpKY35zqCHh4tHtnDB4x7CBw2I7T+3YTX73eXRIrxHE9pLkReXGejRzzvvVdILCL0gdarY+2uLRnesVfur19WiqqB2UkFUwOIRxwmOlZvPGc0ODCfWNOjLoCT1KA9KebyRo+9PvR35rwYMNDSceukcbrqeGeYa8za133kg3dsmtEenjsKdsCTFqmw9sXJDY/ce3HAkbYak1UTylLfHyFvhAZkf+/zhbGqijYrV4xUCtTz/R3Gkbc9dPnePPeOa6PJ81RKe88w0X4MBUjPxgnKGBM6M/aEcClJBhpUUoj0bJ5rD/dhu6vJQA6xEfPdblL7zV5/XhOfYV7DHYlS3j84RxA3aVRPgsl2Z7Pz1bLWt6t6Uq3gKNUlDxUUj+lCli/7J4ycJ3UcJnXcwWV2vi8M/A/Wq3qD4jcsVu7BguIw/puTJeks61pst3VcrurpzYOoYPObe8cliptnjqX96Xl2j0b+EJWEfoG3bmdzS1NBEZxYOq8ZT7RUlyh16BIa+K0UfmRTrhYHcTmoPltT2jm7tt49RrnkjUL8vOQZ8v9lQaIO0tYvQKsYtqHm0YORzTxSPRV9PFgpyPX/KMoOBFO3Y7fN4TLpS+wSXZo4a/zTwh5VQhjk8ic04XjAQd2cszY0lbfceRdblYvNjA9Be9oxJjlmFNyZiaq29V036hBa1QRywWFpPzAWVBA0KV9jCiFyPd8nykTZuri48Xw01wZ3cDOdRmuNtunog0c+ZTrkgpBwWCuH9SyvPKMhwrtcAMU/0WatFLEUmRawWIjVyjSu57xOw0S8CHHqomTTwSjwgbYKE06CeA61zthc5H8VEPlcdGB7ioj47gm5DRIVg80ZghppBbjWibzRA+L0kukA8RwVFryKrMl9REZcdw5DRX1dvNM6czJUG13Jj967re/ai/sFt1w8ob2tjzTk7TUnAQNFfkavKYbtx2qDdN0tUFxETXo2SL4gHNxrS/YQuu6sWvNuOQxYtRrfXBeXWIDM8HW88PQMeriA1Ci00T8OL7nnt3GzeVIqIPRZ2+pixGH82eNpNZt7jCP3q+SDWXTkJ52OX0j6uScP+A4uhH7A+9U4OvwYDtUmrIPEORPXhaqzgOACOx9NxW5o+qaTJFc8n19xTGqgXByyb4hDGZEIhdSKtB4hcRelZ4+qQV7WjBejQuS5YPyDhct6fa4lkxZqLD6kuHbeH0BehiEOCzdVh+2pDhip7ozZnIH1FlULYrUX8JqmNcxP9vvbThHv12FyVIyWKTbTmuxndd75OemINxPlXWBzqyD/q+DkqG43B5otCQOslrxRcpFH6O/yS0hVqm7nLTueE96YIjjV6FMM5axJFCHFixqFnE2d6dt02SPMf/QAFDUyNbdRuAaUiDYy6jU1x4JE+f8dDy6clagRLzk+nMINLFTiPf3fzXeVBUpoVlKrCuWe1ILPf4ZoFBgmA6AOuuqJS38+1hwTG8a1RymWDFO6OHSzQ4Op6ySbmhTDfJ+YMlHMLHCVkIG3ARUJOWPO37nH3isomkm0qNqruUEcVrU9T4QYO6bs4htK3Ues4IFrS5b0I8XDvp7dDrV/tqwjtYE4ckwhznXaw5+Vr1Mt6JZRcD9OUUvVzf1KtcWSCckJZS5FK3uMolFqsVjWcbMRX4zndb/f1RN0J+rfxbQ2m00NN/zORc3OB9mXTWbrmgOCJKVj+eKmDruNREGH2aKeXm9rNdvUYliJu0iELAIY02NMsRDsMTcVzAlH1EX2AsYiQzzIvazsDXpQUMsawOvIU5RvkePHB4LzAAdClX5Gkk06U5ecos+bdYiy7ZE1osOtIgUlah5BVDYZy0nNpogX5/eJK+FAMJEn+yFUXqUItGjnrHxl/MADKWRrghDlUDMFBMbpW7zEaT1tHo1cipPoUS8iBF2UsdC7PMweNbvjEflysq+ZkEsdh/6z8ghq40xvlAd597iTJETZFjg82KvwrXZ1OiGd2+uggvNnmxNNaCWCUTKByKt0SRzqqIeS+aeClfzMjR3CyWrSx4TVFCNeeBxNSE8/MJ8tbQmg0RwbydLF8/F19J22rFHXx3dCRaUDkz+9iIHyNkjrwm6yWysfp7NFTc/bOh1nEq8I7eVQKHgL5lHYSJpuzhsI+YIUxLpX2pmCGHL9ucyIWXKoiHNDtT5WdR7l7Rf2d1oy2pM9vtcum6Ec9une0mGxzu6f4Yz2Dr66ZfstkD2qLfkytkVRovrcMLQZeiviWS9B5xDYhLuGQMjZMcmx1Ai/kVz/7mGOcr/HqymwxNl0ZBQfczhLLeMfEbf0SpHfnnrMKsT3mRodTO5s/EISTxWkhYNVaH1K9Izo9bFiRu1RY2ydxgggr40u6oVUqnmwiAjEIm2coyM1Is93ThqOvo8KPReWKp6u7BN8WbxPMfLWHhjloJFUox4xFh0R7lbay4hZz+jbaJ+fIf8KjbXmJCQRPWVD5/R//vQ8yyoQUCHSN6PcNX+JApeDsZFeeNbDHU2C/fvYpTk8+bkJmwu3RRRe5yub32XHgbYGpHnkUJvK3cDfgyZQxW6jOFdrVYR9jZnN//pGc6e/yleL+/h7gQP2tJmp6GtOeGhHUVxw0IpbHF6nnAxa1av3PHukGOcDTOovThP+U+Jlh59qSMKzd2cFO0v2sL+kEQlAoDATro8wo/lVRhAdFsrX8b8TNUdo4FR8NBljNP1BiDAcQFvPqHUUkqTcS1meaCwNX1HcOcesgfPJr1KiEP7J1jbN2+X3N6eVvZbPrGmeCpK2PvL1sUtGuI5KFoltmRJKmkI1H3mL9qqc1PJuWafNsbaPOIocJbY531IFOLRBOeISB+Jf69hS7VSZYE2fzdWckI6lOLsIJG8WcM99fRWlyo8gUOo0LL4DdLTFXOEJT/tDrepW4qazgBLuwrZWw11tnp5UtC/ms1p/8EFNvvy8Tot5ff6bU22/fKjF+8t48AEkEWdnBNhJHaGJJcOPjGAKZIvaInDjczfom6QzAzAWF32riJ8uwWmbcWlz19wld8qSrU4CZeOfJpXR9agpI5PRRsVchEbbx7FUq/CufyYSbci209NMsvMWgysQupXA/gn7m7Hp6qLORo6Qef0yK1IGpd6hvX4y1sJChYsqv7nwhkbfLxV1HkHtTxhNcuGxfaE444aaC9MqwFa/inOR0RWcEH+hRWJysMihqlfugDYSu4BOajXlu1o+D0cx2IYKTCdztJ/gJRpL6R4UlVKWsXiWzvtVdFWslDu1QCU7NgU7FbKybxE6N7nkhuq08Hx2NaGQJbKNh3btYn2KqzjRT46zoRtlBG4VoLsPPo/RJP97cab4BR2XQNHCnkuXI8uCiADaPDeFtMbTQQZtEcDG665MxHoJBHpzNcLZzQjFXvPMZMJ+eKh39dU17XXx188RfmmIKvScqCjyNWGTtbt+klqSNIBvlpulHvWEjMB6pFDL2MTryU2WRjy7fZT0IDvcw+RXpxAcjYlzdDlnmg69R8keCS3VqjfM4CamP4gseHqOKO7UZRytd+7/rlGXi1v5UbZCslkgGj+FwhBTWQlURsugphs0Hy2j2U556eK1VeaJfhoLrlxbPdtJIxFbOM2URUPhFYnygLdXH+4xM8+4eXr1ebSH6fNitOynUUJGxBvLSS0XQQiTVTraZXf6RvPUwv2zQ0E4iCuBBGxn4zVq6gO92nmbGCjP4j1xYOwrYZZVg4ekFqGYRKndY05YbxQN9nU0r7SRBpq8EInfXtDv4Mv3w6M6QAbGgTSuc/jCMVCWrx/LtyMLg0Db+N7c0DEXHKoJmefYkPB8iRtro2cVexrHkXQV02ghqh4DS+Cgpsb/m7GhhcdnisVUaLk89FplHpK9x4XmJgqRznhUe24EEypWifpylasAAY+QRYz23EggSAtK3EjOrs5ArdcZaRFGO+H+UeDZRSCcvljctCDB3ONQJfTwxcJLBRkgiCdQu81RKOsSs+Mo350VPdEEhzfluw3rhc2cbwfniyOGiMCU51JnsQpG9jfXIv2M2x9zppGu7nmMoInVbXPt+WJeh6ddrdYrFYiMzSW07AAKir3lQt+VyR/Tkb3EhPxe9gUQx23tdo/y8OW95+dz3b3/on7z8z+v6fCm1i9e6JJz3O43YgA7avLQWcnsy3m61Yu1jU52G42LIyjKviZSgPaBS4DE/9+FH9mQU+Rh1wfyFBQOTxqxP8ekAPEO4NB0IdYT3K85yLQ5diRX/LL83/yD0XakG5nr5lL0STKvRdiGzB19lg49kDI5Lk14ZAEo7qubJUI1O6ZH56hLSaFSwKoCKowEmJuUuJTk3O7FbQN+HYTWMU+ZTrYhgl88zMKrHQ+aM4Wi0LJ1OBM8dEYG+avHYkj3LORXsSfuBrcLMHuQ4lhFaVyzZUsoFatv6fy8qPkJfgCfw2Cy0hS0dxsOtoCj+VyMjBhhw9jInRQZ1cjtzbCs9XSo5RL+y6GGmFtL+3Ze1Gl5rt1mUo+M5mlW9vua7A61XJ4cpaPijoeTQFF8l+habVqtDlCuQETaUGxnjMchipefJh2WrTsGLwxGGg25zfiBHHb2M5PaLsKENEKjkMCjcBeZuy1Bpu/mayx9vmqJMZlq9Ec5BqmZ688zqEI+BHNe4pE06gfKrZGCDw8/Hx5HusbyJsuBLxuTVqSy0VpDEOJ4q73TYUZsYIuYK6f8oAgar4vvZJICn0NjIPYHdchGb0H71bkKQnGzwfs2oUToI92x8kJbBezL4REtqMQknX6U5kHaunhTvnUuZaj5WgfauGlKYmO0Q+U3mkzbWmosmLlOaR6MkpoEbgSjlXfdyI5y8saL7I0QFX4rNYUqRVnN/jOfcfi5OJsTOi9HgvhrX4lkW3XJcy/wkQNHHKvOZzXvD8iQZnSkh8U6SSMtkctBDVxRyr9TyGAYbf0Z8awTNdnP3k5ZxCArHoWKXgFgJZW2fUNljZ51dB3T+a69OstZa4+DG/4YE52kYqi/bDQzaRcST/TZJuGAM9+1YqCcxOKmO3EVarZYyHjUwkQRpFIxChnLiNSPpMd/OsNz38+7CLEifON+WMNhitCJRAn+jChDjqNj3KlnEVAhaKUVvbZgod5QHBrPNV6uUWrK+EtTErp2nvl2tjRXlf+uIb+eRzegfH6KIXkbjsVfqGDtrBTerPYQjVWdTOV8X7h05zqvPd6V5RcTB0a3EaxR8MkJJMIN/VTSQSjWbbHmeEKJZqRgMdWMv5UYpCKe0HXpPcvjVAV2xOtUFi/duEG3oHofpDeuCXJ7/Xnfk8VsqONsUcf9RrUIH1TTkcmuJotpTbY2Yb998X69/uRXUgnPyIlmYof4TRx69iMKSNdY2p9m89pJZeW4PY3eZcETYCnG9tQqI9qcVKtvh+OHQ91Am8hcXQOzyJHjKxQFXVf0Sp0Q4SAblJSB3rxZmFvN36l4XZUbrXCHYRTOV5wvTncpvhGdhu6CfaOin/V7x/yVhaviRqRHOG4nLwIhB23IOlcMi48j20rIhFIS6di0sCOO6FOHTFtNaiUS3B0Y1SHRaw8AQWK3dZEmhJBhjMK93f2J5CpUjU0TXhNwtvN+4/dZUwrDo1GNuQyTuc427W35tLgGfEqKPf7dHFTP9gq6FvwrHSr2o8J+5UixyQPFBVJKgmH4Hp25kUysjjgeKAtXdT9d1O1ABid/YCWDyXE8xc/l8IM0NNvTNbIxYLJZdRhmtTk/1pLRMeaZOx33dZoODgNXAQqqPav9fD9afEjFLFf2IBFnTZL93TlwW4UVBElrrVGoGPzam9AjXlkFKOXsKC9FqFBWf76Dry70Jl8/+n1x46wkfPsQXajrA0nQ31vVZsfGoOsd79RinXixqVno6xje3fVYU920+H5WzTW3j5fUdaMVS8btCK3G3NuMN9nMFRWI/50RXjZ1mbw3TIL9RbgI3GfHOXlrsoLtktVsE/QozQ1tjSKePkyF20N/ULceLzpQcLI54c8k45qf2+/3Xh+5uIdrdEJ2NfvYNhlNXpANPKaSWAiiIjmpNrqWFLE9BjXc7HdXAk/yxa+aW7h8KnQP7FdGdIcUfV34S8QdAZSTQjpZw8XXeK16fKiGOpxYjYBaCOJNH49VGnb2BVVuo2VNq5ljfJ4RlJBM6RVasYpVSZBY3ifI8QL0ffL2OPtdfsl2Ct4YewMHNNdZR0yQ32RAi+ajvRTjYkaSXj9a35ocWWzHZiSxXDZIpVTE1sxCv6Q0KBYxqDJFHHMXoXUUTUYJ3ajYoFdF5zCrCSrQ41zosLjmKEtz7/m9nFlK99CC8jPTVmSIK51YGI7h/OjcdClmY/yvYo6GfyrhpZTbxht0DY7kwor3F4oEkx0pkn2Givcofq8LZrj2vS/DgUVQxR6hYjgEyeVyVtvUCvArEVusMB4/W9BI1rv8ZqP/B42bLnytFrJ1siDJ9BBnvMrgPLAO++FEY9x4UM6wuQlVS9Yo09rt9jVfLrV2N4/bevb8VucVtAi+pQUsoIGLmq1WHsfzCyRWGWq+JoDhVI8Px1rdDLX/EiUv98reS0e69e1WRs58jscvX9f6PUQqcl52Ucm5KT9gJnr2CW0xnWoMTQvjXcO91bWlfmKv9j5DPKPSSv5l6/6bPiC3ZK4yPpQ7u1F8bmoEQTptLGSKt5EKtYs1xLERprwfC0DfuW1H5OSfLyWCf7r98HG0eLu7iSJYZ1XUUS7gXcQ5mzOHzih6cCfFLaRr13Cw3yPjJOcIG4HkoGRC0qPZceysUQ7/ncVIdlIW14RF4ycEo0kOL39/q67gqCHhB607HreKOnNSh0PBhX5hiN2zhHCZNASQApff3mITj3k98omHYLiQnAaN1ij02T9gJbBPXRWaBpHjnaYCc/5WjBUPwHq9qJeLVa315IfBQr4xafEgvJk9qXsETue7YF45zAVt65acGBfO6tFmYk45AKWCzM96kA3LoE5ZPIYeccbmRVc7cLZ9itLojGODjCmv1mpbwEj1GQ6EyMEZc2s96N+9o5Ft16+WeebFevjeErX7Ri75rN0BFAaEFUsE8YPwiJzpGRW1IfmbRqtNdaD5sFWQ1z8ot4r+/DIXTEH2eS/5ZXrD8agWp/nO8XWuaR9stnWPM38M26fnqILje8bm3rCdhEnxiFM2ZWwzWEOU/hRsyoHNPVfBFFUtB1NnS432PW0aHXqHpgJslKIIEJPGht+cP6Mt2t7PKF7TkCaGHuRfZXTskrBYBSjTfhYlsJwHYiQu5S4bMUhaDMaM6LmYoHjiYJegJUIsGlM4WRr9ocRlpE5j2RSY9HtGseHb5p4+TeXRp+zsjYs1U5PndR6MtOP9p9SIrCXxCKHk7nxwku3Ns0eTpYYNn0CmCkF+mtenNAddXzslqEjXraJFPuq7Ym0vX3sV0DbVxWFAv/od5fpZqAhvy+IKCjusWXy/TrIiatoR+48O2hyys7fsqLLGZC2giiyJMMaXdQ52Tr2Sa2IoDvdZbx4/yTg8tKG4bD+UzjKrBQXXMK0TXm/izFKUzdKEsd6IHvMzzGOxiIMEtYdGyoxm5aNrHiufTaihrPI4M8hh93MptCq+hJzV0DyUKoEQ08eIi2NdMyzTLDgxqhdLoqiZK83MSEADWVZxap7vE2s3TgKkX5w3zpxn7YLusQ8Mc+8tx0O4wvK4ndVOsac0egZTKH5FuZBJtpt/zjsaFdm98IzvEH3NZXINKjpf8ssG7Z98pdXTsdarO50dmCJzP54e3ogCsGTEi+cwJtI7vPjmdVo41aMWxzo/PNRW7hc2QzdLhSrOTejdfFb7+/v64tPfWLRBGoh4/L7+0L/waZUgUm7rbiztHznXSJuUkzoAktjiTBGMqVGCE397hd/LZ4wi+SDprhm9sJjGsarHtjqo83tdV0W9GrmxcwktIVcnE6TJBNuo3OQMn1dMER1WTOEQk9/wcRyijlM5G1dnk/pBvNhCXAe9U4nbdLGxeo804uCuZ8SFqExR0nG38bNvhEmj4uNZgTBaNIDiqRCL7N02K7TqsoR1lmU2TnmMaXHGP4335eHLiMQqwhSP+hHex47rcSCzb1tzgNQmeHNSd6CP68KxvX50jXoMKn6iD1lgdVzPnQPrru3Val0r+FmJ/tG35NTj4eLnDhzVqNd8Ks2W8EF8zyYguux/QVvOM2LwTrU5HuQkL0KvLnb4WlejcRduQXMla5/VbrMXmoDLvfsBH8wm0YezlfXVo3Xx3OIZrCZoDCG/jkZ6B1893v2as5Ln7Wa5rBmUgjNFniUaFDPc8524f17f2CHYCy/IjLyg5u4uI4jR+lRnSnRXeEmjX14X4LZhATXl9yjKLY7D/YzDDdM9zGc2aXr08fG9CddtJyS8Ddr7Eb2o+cWby4hMT42KzeSdZjzqlARzoxoKk0KcX86hqmed7n6Z3FHPrJ0E4uthXy1zgQyQXJnLdwyXnvUgOgmY14bdo+T2pxyth66SSKJk7rJbUW/iYPaNdUYrdReiF3h9QlWE6ljJK+pVqAr6/HvMaauOT5M6fOl4NYlaegwpFSC+m+axXhslxGljROv7Z7SFybQ7IimpRJPIIZTchT3X6EARAEKh9eVoPfcGePclzzY8U1tNvZsFX7+U+7ri0G80dWYuX5BlfY++v6KFasSV5Ik0G9wsHU8UIC1sjBFyxp7iMMfKRXSJKKmVrS5V5iWFR026ABavaY91eXZnNQN9p5kNP5siX2jeMFdqlpqNA00DubLhTku1bsES+6maoeRrO3avuYtJ4NJZPKsdfPrEboB0i/uJl54aeHvJ2S3BkzN/J0f98eyC0Qnxo8DkOqiQYwOeuUBL3KDG0m1/JtAOx4IeDc9qr2OJcSoo6amONLhrzh7eG7AklYyUxpxBBpnk8arfEW5ipmrrxVIijTkje0WgMgK3kIMvNCwWNV8v6vy01aj8ZljV4/6NQSccDOYLFWxMvpaLm5ou1pog8tnny3Xt9lvxzvcP8CmTFwove7BhNOclqGE97mq6nijWjWkN9Chsm3AgIE/YUZMXfocaB9ZItApjtn3nHYcT8E2arG9c+AlZymlk+lyg2k60iFhAFihdU6Ug8hlxUeL1xt4ZhOlRtJn0Ya8lLwpCj6v89WURE6XmdSSVR7YuPnPqG2LXfjkTWin7kCQc9EbcHKUzmbg9AhInII6bGfFqg82mD0IH9NwcJEnSBZUfzLlRMowPFM3f0SPDj2o/Mf6OjkSbhItaqwot8SYWjqKSTZcdCXVynbe6tiBkbFYu0Iyu2LAl8DucSyBsmdY6ucL6rdjd9cPViSoqpu331R3DagqnbxApX4ckTyYrJUpLIZirSZ2/sProvLRrJqbQpwfUVkYMbUJKiJ27SnyIlEVK58nvUzc210FHUSHUsD0C40/YaG/HebVLudCPjgbsMdXMI0kjxxHSqFuPMnS0FokVyTvKOP8KyPdWAajnZ1S2JmUAZALBAUizDF+N6vV10datbtlNlmgZGg9fItPaaLXZbKYfKK8qJq5GgGSa2ih6NxttjNhijMQdmlfmomF6nWYTz0XoGhJJpBB1YWiOH2uyFf8WQVzQFSHuyebloFZHzFjEcOKF0zuq7UIK0X++KN900FE8R5nb3Kkx4i5pDFw3+fYlTYbPp0M8kKEd9JOjmSbT9CP7IhoCzDi5pxRBstXkN+9RUVLcCzfB8Ww3/0cc35hmUIBRAJLYwKOHXYt4Y87v1WTBgIinH134XYJTzEdrpEqkcseGcKUUO8azmaJVaUMpnomCG6ckiuj08oQDLjcFioxwiN9VlO/6pf1rFP40T9X7hfbmNAF6fnTtLkEDHS+omw11SEpgIzfKldfzYfcB8059rpgfyHNDVKZ2xHHdaP1qjTEaZfQX6o3QYlMiHEcYyguFCsW61Pfm9oqbGmEbC8FNmBcA93W6m9Rhan61gAtNsdxUyT5EewdFVjZrCkUdh362KOJstm8hh82bjY4jKLGvY8a+nWql3x2609jY5RqmuWJMyc+CWh53x9o/bmsP1WvBvuPag8ZH6H9s4oQypvl3g+daoK+TfK0zAeA5w9PvNJmJBjIT7cNKWZ/FpjMw8heeO50J4RuW6/riF5/WYe7ElBWAyPq+Hp+exAklsk1TFEWCkpbTPGCP1HmeNHk8TWr78FiT1axmtzf1+Mkn+owUfov7e6H52L/MKbinh9odjnVgwhZwDfqLzz8QwEWmdQe7e8jzMP6KTYD+Ngo/u/x7M/JIVLbDoyFBUPCrTFy/etSrR4TiKfwTvWcyQbstbTk8yMXoGi6peXIikmjR9hT27AoCkF+pQkDchhYK2tOq0zM03mh+jDIOO2zc72XBSFvQNOfQF7MPU6uX3U3IIuREzu6VxSccEB5woS1E63DdjNRh1yKo2MZOEsAo8QxRB4KM8zq5vwhpwjdRLBajYTbXWLDommJqzJfwNe/EjsNxK+dwqY/GAqc7ypk2DPwKp+dBVgN4+LVnF5zK+2GoV6vBPIwWVlBN8D/gbJoAWkuuyReEU5ukdH5Ceu4FjwkmMynUWIvDXFyHHXYSmp+bpKqR0KiUhjPkcUmrP23InHQAzctmQn88puiOMPcsBUwXC81tcTfKvtw8qKtF/a6eS1dK0mtivIs4kD2G5TYA7T7PXn3eOHlW9wiU+gCSCvFUS0bqjXhmXXVSjjh1Wf+2bHD6hngzjO9OUB+MTmh0GONxcVf1TPmD+1h0YeAxmos2jfaTk9lI61G0EPPDzElzca/iNQgTQ+MF4o9kDAsz7IiiWEfIxoBxSXsW8pwJDYWjm7zv7AVcSkZrQrljsSGD7wjN2hJHhstcR+gIIflTXOuaJTDP+2Be7G1NuJafqLlEev9kIeSupiiwgbRi0tp3k0OnBbEabfXUIIUJ6NPBxq5YuOz5EAdyerGFQFx1ruOWpIkoclTcp5HOPsmL52OvKDIXe42dczDxnKAClZIXFC/3iHvV6SVS/ycN5Yl/BwIjJXMM6eMJqAa53u1XiwYMXSVVRkhV+HvqeduJIhm6/cOyysLJAPFRGqUg2YzrNfoPf5NmXOfauKfatFmhBlIbWIUrDEuFfkQPASBGk2+KpeFUhw2cP/LbPZXSsxYwACRN5uXK8s10Yw+gYXqHt3Jl9olbx8wA1T5cehkQHxhxU4BByYiFIIgWzwXXJ+gwkyulJkn45YYDv9gmBgkVDKVIzUN7GLabg15x9xD9wZoBJhKMYvngbz57lMRdNiZy4N/X9O7GI1wcBPBmEd0ptQDP28IFqArdyaS24vrbjQLE+qTJRdBMcVez94Gozqe1vMWPT49WDQuQzonOyekwq5vbdb16/4Pan5c1H36jMxGPP9Ux0Jrawi7Ins9977MkdO1Yb5ttLW/van94UXuNho/1dHpTy+VKk7Dpys4aFOyce/Ae4RqfnygCT3WmeOVcZC+OAFQ2cg3K9djl2yj8MFvWgRsLCZnpxublomRLHy3o33y7NnMeQYEeAwRyVrebTVW6lfw3w+U+hBAw6IDKn+XnWi9HEYX5bCvt6CoMn2MCDNJnjoRg4DjrS8Ydx55Or1BH3W78ScZQ4ZXRhbsIJ4kwW3cu6KCOrjtoowyRYAsoAxXc10TeepJiqgsf5LGHkTGQMWIZj8cFNot9i6ULpWGMHcXdMmdkv3/jsGYhABzse6NlOsDN32BkR2EqFaTac28QHFQ+7H04cV2HwabV4rMMc2UZPrtd1ToCCpuPUfDlr+uTYHI98XyuN0eZCWuHEJywMCH6CNztbVIB7qgMZfnmf4YgFj9Uj53lOdh+TingGzUJB0vrJQpveSDxNnyPtqroHiJFjUj5Mju6jL26OGSf/CYk2L+K16jlyJd5GzkhyQELgW3sS/ycsO4Y0XVixNj5JEnAXbYReSGfnVUrIr5FQvKHC1fEkWgUTx4rwdHR8S4fRZ4BN0YSDmlMHLUw67jzgqNy3Yb6LmFXrHZG9F/NhouKPlEVTdW8zqxVvDpt0+L/rt/b49bcWPOLbdjKJq8kEfYCcfp8WXbbg+yJLM6I9UHHLLZ6s9FHjVt86NnFIciMLCJmFtPEtoIinL2KvsbClQv6yB0SH6eVnokM9AjPxRaHDGRxKFgSkqlIdYNqy5hMtEFWVmZXHDeTenqa1OmJqCqPgH3DQTE8nmbk1QeCziYlFVTtd8mgFend3GUXlxZKWTjTCKuLoJGswn2Nt5iUvVAMJufaqnK1kMR+cu++wCMDvguSIlVq7ps4l4IzQ6e5eLvy0trbIfagUDHHTYi150WxSUJd71G/GxavNQpDnhN4sh3UzPMkY3v2QfY2+bl6EiZpQyhHzp7WE6UDXIh6YEvRnuCIJQyA/8795BnXmUGKBaisFKcU90PoOOGTSQwXZEmTm6iQ5eDgAlmKXu3tWZuyWbnY0kjJLG6gi0MVu7NLoch35yxnPZki4rON7yieGyrXbNTD7UlqZhw0pvt9Ldc32huYrPGZhDkr1cr+hqw/uz44VUh0tKZqALrI6GNqbi7XCgCH4226FF0MutKwXCa1y+KKp82T97jlvG7u72u+vKlPf/VpnbAuE9p6rP3mqWY3a03Xpv19h0lt3+xrvhosrhrmtby/re3nezUE67sbFfmPT4eqzametg814M4v3vChZoyzAZFo9lAKL2n8EH6w7nD1UARK/IttRaO64tsc9W52FBFDnWEtqzoPupeiR1PRbJQ8IPAD3MG311Yqvwg+mPVTsS4SMdP8LNsndNatFyiHjX6LRh/mEkjA1NFlGk2Ee5HDznC1D5ojamDxZdikAohq3g8/YCazRcIrjYRceCmyjoAzkMukclOoXaT750fD39r0WyPcxBoOup1SSfDJU7YgApDTIlwbCmlu6EqiEBgRGiFZAu2Uk4yqRayHG4coRG7nMV3W9fXCcDg939+5uSo4BV2byM4GAgIncE8Lc63igd+LLESRUFX1bDmvW4WFxysCNRKusoyTVuc6L5fhqrqjOS/cIWMlM9nxM3OJW1jRkxsritH4DiB/SGuUA2pTYbgKGqvHEkB/tkdlEg7ZFkhohJTJ4YhICHUUAVjcNSES9kpsVpXHEbEVUVF9Was6TDPO/O69MBo92IZBVzaxYWoYehxoEn6PxEUJCNJt49SYmoa6oYI6qHmrcUW+zv0wSpAOu0nf4qQm2in8PfPuXPCQqewYr4iuNGYMIqFChHEU67JVvxbpRBspvhKfl2GMmy8jY9ZyWCQiMUO+L4WVJr1tmdQNH6/Ols34qQnTrZazwjDj6QhImmDPpyVHFP8zxyRyWDk+sDnBGrlcjwbDx2kk2gUSCJ9HWp0Fbr/AIKBEVAGukqaBGh4/r/DxbHUUUdciBfGyaripeqIQRykP0rI41nHLz4P6w89ra5CMfPPZdlsI7uF/RlCl68J9BpHBFiZ04S7S266Gw5lmi+vdU5rGkHfulMNFdrn4rkN+FK6gXRarWEBk+xHGkjbP79KX1ziqzARF/DhsVHIY2jooNihpWm2zM5pkBR0PKTTRhcb2YsouZbzRRDUPgegFDgRlbu8808U5A6cXZFcetrGdaXsHcQ7htFJMRNDFGuvknIWnLZwDTXXQ86mxt61beC8aifkO39cgpPm8eraS0mEathF1x7Nxrs3qkKZP14jiC3CGNaoR6cyjXsavAs+YRPnaQSs6vkE0eazdfFOT2VArjJRpBhGpnUA4/TCx5uFHiqqQkbAwCVGaTrU/Zppx3MlZQsJK8RnxAqaGZApmDx8NGqezenr4wqi/TJ9xo5jU6fVr05d2SJtMhxLqSKoGKCpJSBRoPNd7j20N4MRbNAITwrjJ4t5vdnqv3cNTTVdL5wojeAXxY5/h66GYZ3wtf8W5Ck/EaiD0FPQy3W5vt2+r8BPpV+Rw2x3o/xhzyletTVFT20UtNciG3ghPW5mMea0jsmGYVqbKHfcmZaA3GoskmiOAEseRYUYwnLAhLk8EEX6/i5GzfoM2WlAqioD8PItCn6eVt5eDst2wjccLT8nhaAVuWz+YLNf5toa/Gb2eMCmWvx/QrOwcw4NIhyKDR18pFoLFF/YukmFu3M7l96cImH5YljbjJX/TsQQ+7CGaBrlswvxlw5WWfRwXCAWVSSQ/zgJDr77VA897rgdUS2x6sSSAuzcw/rGhmKwPDxR68Rt8xr+eVe1wi6U7RmZIvATGsbJItypycpIycBf+pbq9cB4dmRc0WECDrUbstZQz5Gpc3cVwLLXe/qqC8t9WRowWYvKAtOKUNeuIre/Wqw9v8T3kkJx4NRmp2otCB5KVPaPCvbv5HmmZ+hI/vNiZdKPYQe0tCvFzlaIuBZm8sqKIFfcWnlzoDkSPKeqtkZ+ksIzpF/xZ9gYOJnnlmT8n4/A0c+IfkhyQNAJ+tIMOW8Ak+tQoEHMuJ3uTuFgRCenZan6QqBIXvz291aic9+ia9Gaj/52Agt+h3785gi5CjUb2PtOCDumfQPFM8HLzob2RgzN2L22a2zc06KeMXo/mL8uvzPSr/IZsN1dmqCDosyVcKBC4Uw3r64D2mMdz6JlLEtTJ4krxieCFpTgRCh/+L5nHJIQ4vs4CiI5vtOra0xIOf4oCpSnVRKIdXovJpNaqSHwYv6uMCl4Wed7mDQABAABJREFUSXQhZ2sco89ec+N5IAPdtPZNLyEycTpzlFgiC/18mc/ncAFbLdmgOTmuQXPdsWHUbMVtUxecDhrfR/u0jzxEo9s8XXhPGq3unHKKQRVXh+TBCLCMeAJhAWpZg2J6bsXTRXDB8+hW2GpY3cdkxwuNA/LApN/qcoqtagRTxZk9VSXoSAPViKeKr7Yg0iOtwbn+vcbcWfuqEWquqQXRGtEg2hOWs2IJ3862M/bV9HdcME7d/Y/c/emvbGmW3oetiD1EnHPukFMN3c0m1ZIpibRpw4YFGzAE2DBgwLAFw3+B/yl/9jd/MGDDsuwvJimCGkiKE0iremZNXV2VlVmZeadzTgx7iDB+z7PWjrjZWdVVVJq+qWhkV+a9Z4jYe7/vu9aznuG8xA5a7pF5tpnVK5sTefy56GspTvm+VRsHIljxXlwN0WxuZb4NyIHBdtv1sp07vH7QZ9lubqNruhh2uzg97uK0YWo3CP3Ea/C4J+DCxepMYUnN0FMHeNeexiHarhEvcD4cY/WE4teN6Hq9jdNmisf7Jo73j9HcdNH0ziR2XKILZJnh8cxCBVm3oj45wo0mwODXr/P69Ue9k20HmEzqocgILBY+sS56bBYD/PKgckfh6BR37iZ7XgpFXox3xR2p0PVUp+lrhS6aoI44QPmZGWk2kyu4ZOVmVmuOu7xQ/X5UVmUmivI6mcVLGSMDlHylueqKUWXykzRuYiTpzl4oHPl6wM7i+8BXyEqE9yk1IZswil9bhdgOxqag/JkOw4kFBsJXJ60TObChaBB2gNYoyYOCNf/BOR8BSnoPtbLfoIvCYgdrDytyKThTm7dESREvh2q3FFC2tQBtmWOeMJL2WGDb9LKQ8KJKcggFMYsGE09mdptRmb3x1KT11e064n6M1WOqdVSUMRJWOSAEUpaIMcZexQIbQSebF8V3KXqPTaj8qOpwFTHNNgPJ/+KqulRY9rWFC6guMXdIip4pPwUHuaghydXBrkA/OkUO37SXffFGp9GkIIoudMQ0sSLYNPeW5lzroUi/7Pog47ZdsjI7y5+F3K61KBVcYXiFqKWxOQo0xar5AMPexPnS5pLBRemRSGbMmpsQm5Cb725UX9u/Ru4mEdVB6TIsyds1eq1kjqVYorCadCBLHCE0Kw87FWMe24lGIi9IPxs6jjKhpwraGm1rWsA5yqgv+YqVEqINnK/j23l+1DAkIp1pDpcxcapn87leRsrixqU1UZFiiluWHE0jcG6EAHXhjvXYguZ+XpOQvGOKJdw8b2Pcn2I8Qko/R3/TSPRRKT4i/Wse6MKRnw2/D5NY04EShWGlac/1SL5G2w5QnE2pwe8umydiA+FtwgAZoo0hqQFGuTiwLUSrJv+dfenZLCCChsaFjl3F7LhQQrgyYTwxilTXYTGLrYJclJc5N0WxKA/lbOE+xznMizgkbTzEQ/d+K1/T2oFBpKBV6MhD7GfuOO4Gq/MgZIkarCYl4nczQVFsaQqQ+laFg1C7jASTddBMMeT8du2/C7WGv6+AYCZIXisUSzKMly2N92IRlvScXMWsQkWBu67zMBN02u7ia4mP37rVSF17kVwwiPkjI5rPMsieCi6hBHndJtbjJOX19q6L1YTn3iwOqjiF0DnE9/N9AmwCICKyjfWiad65jU7weRPt7TaOirADJd9E11hEiTuCRaQIS0y2Xbd9vH75WoXe5sld3Lz/lF8QuzcP8tftnj6LnX4uqN5Rdi+cuRTfup/ivs4SpKgBHoc4rw+iBYy7RyF78AYZ0/K/iERuEHMej3ECERSfo1wCzOH0npqAWO332M4csPMiZq617dDXVfhJnblxnmoZ5JIlqHw8RiGzkZ4E+fSqDthKsoIiSi2XCI/2/YsNhI0IHXrtY4KONT1qKsQ9R6JKbJDPX8YtZaXvkPkKwi47Excf8BbOcO5A5GJItDJHUhR1C9cnkyLyvVoRmodqfr22S8EMcAHwgdokz84Ud/E4GDO3NdoxOtm1txasaORt6Tn5t/p+2zLnYQp/5KKcMo4gYX6cVxtxjEQR0UHU5Wc55Sa+UdduR/Ls0DJKW5Y4md0pzhZjXuwkTp0WJUWF5z+52e0pHptYvb9SQocMljbOp2QL0Ht9c4rVVtH2IirBZxDal0gCRS6HxavxFMOQajXROeok88alrrdGRHmYGMCjYHYBqJSCtMvhfiuLN2HO8nusLlkoahWHpvtlh2kuzjfpVRm8vIw8G50CiVcUnsY3bkpMxDbaAHIqO6WrglrRP2lJsVAm1pcIIo0h2BxzLC6+G/wtqccTBU+Uvky21Rglqm+eoM3NKfCFJGSJ4QLT1jBSKE4WoqQ9s0VDSfSsAsoRczUj4OWx0oLeZQxb6s6cNk3HD4JFTFUNVReLlVK152QhJxI8wUpRSFEQ19ZebqnOTJ6sTMYLDVXDa66pVqIKRTePNd6rkdolfnIlZEwcrMRW4XsdM4qNfPgB2xZqaIoGtk5V7xVFmEsL0/Rbxrf4u7FvetOC8yeRG/8Oj69L77VVxP5YdivpJEBiQ6Y96OC/sCJUHGDjdcSXsAoHFae2dHE+/MVDkUZrs444aK/MLO93+KXmySG8Ht9TndWkii/ISY4Fe6n+BsHG+JhRZengK82K3RuLmBSvqegGYCjXAp1daapO8aJpL8KrJp5u+9gNZJwbZKgDXNMJxsUpjJOyHO85BBt98i5lj5ZikVznbQ/y5AJWGdEt79+erT4xzYNjL9z2mJXjoODRoqhjMgeGz8s38axi0u3ngICBLVQfUQVcvEqJX80UPpS9x74aS2eUIdeV44NotpYzoumUkcvm3GwoCkHRcCmg8WFPmuNus9X3Y76+5mf2c4yPhxj3xBJyHgi21JkDesn5Ka6vjiJEELYg4+soNIcDI1sSe3w+dd0m5oNTMjiXlWN8auJxt4/7z194cnmOuH12J1Bm3j0KzMH7sR1bcfO4aXiVcr2UBT4mankYbBLfNRLOqM4hEUTn+xCr9VNTyvQ8jPp82+e3cf/qUeuWewihZ931MY40cRSQjj8daSE0nrYnKcbxNAOXEdfXUPiJRCzlC8o8R7CINMmDJWVoGjdL0Vlu++6Ya+SRlLXsArPjzBxJdf1KE3CMmEm01e4nmiAk0XwKbjB+QyrENKpKqZRiq7yVstjsVcWD7p/rJjtTRsqWgvGv0DQLDip6Su9p6caTJIoUOHlHZauhbNSmUgA4qASwW3WLbUnyO2S9gKJXG7hHx7ixe9Pxw6oxuqBik9NZlCLmitDGZgrSB79tiJXInilMIXxT825HuanbVsPN4ky7Fzl7V4d2VlpGjQ41Cu6vvKuk8mSEK2fWiKdTzBsgZkfOpeeDzFut0ubDYS47x+omuSeSHRqx1HgSAjr3BM6HguHzmSp4IuuapfjO+1txU77PFKlrmdYWlFIqZyNUiaDwfanWLE8yFTByUQCttRrxm/K6RF6dY68RuAYgC7eC5xZ/NY83UuSRqRESOGUAuVaAVOVprnrl+6SCTV2vkQ1z39KzLNEpr3P7ffm+u+PU9s/BxgixwtgrBzfHoObxZZpKcuBMLTPiYdWow90XugWFFs/QbNI9BwprQ4VcFn32kvM4REkjtcb5HeoKfN10zCexvfxAreQ03QSTV0ZV7Cv2ZssCUeNRE6gZp4C8iJekA9BjbEfUGW2WCCyTSRSqQwGdbghSjOb79MjLhzbP5cHCQL3Txy7iyTHiyQ05pSky0LmPECdvbSKErAvbeEBctzWFAIK8XyAOFCBS7RJriJc6MFLuYdrnvpTaYtqIozhVGOX0Rqkd4q4joDNCqANfTRokefz8KCbJ6rEA6V1+LRqo6hS19TtdynYlJaTzFEv7viiMRnpc6KRwKn1s0xvZDU4W4/rRVxQEihOvLzKaE33etEK3zHR1AWI1u8U/THyM0HE/2zg9HuLUb6NbYeG10mhQ3GpSjgYSo5z5SqGnc7LMTHMiRjHJvToyPWIaVDnuybfXGSoxl/1YZVNDgyelaU4byjVDzaYpShL4rFo9F1tl95rWo9nBCkQqBTBrc+tk24atCWAC54eALu8b5qP7nKAJu+3sB4uPXzedY9gxam3V2PI8lhhFKmnAKm1URj0xw1Yx1cKlZB2fY91zBlJ4t6JS8bXiy7Z9/PzPfxbzbh/b99+L7slddP2N9hMKvKllWgb/ctK4V60l8uxsminQOKutX/A+Jf9U8SwtKpsYaW8A0rKGUDLYJJS22XYxIBjZmFIlKkEmh1lc66ZFNQjegvJ+Z5/HV/drzOq1YAyVqt+ooe0MsE5ieFKOnI0nBcbFf68SLtg4bMdSfbtn9uq2s9jTEEsbV7rDJ2xos2RbQrC5Ybcgv0oVdxd+i/34/LvrcFsknZY5YiN78RfTy153+m067yq+KPMRWxYxi8XeWZahm7vhURiZxTcauwoVRWIu7oWzAukaxHNM586TGFI2djZ3xrw78UolfzeXUsRwkSv4etuggIr6ehvJcBEN0XPJdMrgKuMJjHNLLCP3bxW8VifL8oPBHm7LLJ4bI5u6jtk1rSD+yo3ZUWEygWbxHdLvcJdKH+Y+j+dY3fj6n4U9yzMnThPXArevMSbxLMt81J+vOCx+n3WYF/JyNYxJlNQjmCQmp6nz4kNXbhY2htemqauUJn90kkyrgda/Ka+LknAVjxDzF9sIm5yK+1J512WcKzVhyWNoinl+yow8iz4VNkXKt7K9SP08PUMiIR69XivG0vMun0DlcpvMZuqSDpr01ay4NRUIyT0sZXw6ALvG84Zmf6r0z0z0kP8vhWAilXwPR6REVSJe52cTIpYUi7QTMT/PWHn5cuZVTSuJbFLlVyf3S61zfa2aLlDUfAoppMs0VQVD4ug5JpLJlTbqtH4Sx8rX14k7/kbZf1ylCdRl5WNwyQ5DaHyLSEPPconp8vAWUsQoLVXAtrLI9A+NHy9UCDh6IFlnVIbTWT9bh4YdhBfj/GrKryc18wpKht0OdB80fXFTSQGu3USAkJtkCe24Dsyo5e0a7/RL+7eKK6gvXATlT6b3Gy9QPY8jNcrlno3n6G7EUM4VZPFG+XKnS5+N1DmRUbyTmQsK1FnEx8sAq9cyz8j+fu9xMI1UOiGY72dxnjxXNRou3pobAdA/NTKJKq8pHDLRRfzwtFwBRuOeMf4HxVZiTXeOnrQWEEbF7VmwwnNFw6UtvzO/Ed+7RsCCzagBn0AHNf3SyBcRQgI4NDd1nqk/B3VM6wUFQq8laNAa632OS3VLTYHtCQVWR1NRfMUUOMBv138SS+MK5rQfJchQQpBU5SDy/jvtZy38OxfUE9zoxmAUiKO9Pq24XXFv8OQ7t/F4GGL38iG6vlOh+PT5s+g3fRzvMc6fonv2RNOVI6BXpt+ww3D2+6iCr59JSIze4YHmgaQnS4X7m5hubnLaZY6nYxLP0W82Qn+H/SHWCCrVLNphwXzk5J1W9jaeu1DDprPGxF9b4UfZsZsv5M1C4zQyzE3CU9BKV5duWtytdONILg7Gqxdkpvw1eLBQ9/V6kAw/y54hFcQ6HNh0ZR9Xm1+ZFmexmVmk0iKVsihVi7nGkt/jw299NRb277jwEPJIzIXMh8wECy1S+zSJOK15uyFw2Z+mk75Se3To8TNZoc595EpK9NpdMonNJfHi82HqES2Fly0q6v2bLM3ideKAsH/NgPTAqQByp1hF+JIikP5RoHVI3JXRaNnSYgFhIimkYa2YWIHspfP4iuxgcRhxH19F7CJWx1OsKfrE72OBGbJYPU4Rz1AvJ9s2OSwGoJDmszD9+SUYyBGbDs5E+BZRZX6fvjd3VlsA+SDV91T6Qx52RSUo4Y4G0hlyLVRKCNgqBpK33+HXtX/f5Q8jXh3J+tzG6nxMPqSfBx0QbNoFCSVXrQoo1oo9+tKypAqgLPQWcZYQmylIZK6cV40y8W8DUUhRwEJeSyXjpTg1eGIhBaapF1W8Y6mSk1PFVD6ji18dh6soozasLRsNNZppisoCYxwsT8E8pAsxtPGwCxUXY05i0B6VliOXg/2S5ML399lElBp6K4unLM6KqJ77h30+M/CeUVYKO6ow5TtR4HsExjOYDUf+N2IIWiAa1+W9cODKQsbqW4o/LDFr8uG4yRQdjNg7Mbb12uDApB/SOJoCllpYPEcKjznm/hzHweKRrEfyMTGvT+KOsmyBV5xKcB2OizlL+hKuiF1MQ16a0TQdFs+WtloWHxek8p19ZdwfL6uoPRmyrsduCpr8liKqeMzZtGjvrsSpGlukVyU/a8IVggmLUjdQppoj6hjPs/R5WkIasaaZo47P5HZrKVOYMLI0UOCYrrX4XBShNbURu1sUiVmpSerDNNu1Cg7ECU4uBSF1kzDi3Ad4fhjNSqw5k0nLM+FztO9PcTzYTk0jXTlG+5oJpNHvsSWL1l+OtN3MFxUCzQlCTxewQp2bVWxuEDB4T1DRqpxthJyZQMS1Y8xL2gUGyonUUCeACir546aNOMClUwbbksSlfURhVwYwBiGwRKcl+mYDDd87xsmbrUfPwxgvfv65zJS37z1T0ff0+ZNo+puYhteqmqA66CKmcAtEGJ4g00+7djQxDkM2gaPvswyYddBLGFuWR6mlcTPPh5NCdxXrfiPUD0EJNi963nS252Ir1wYKc+3JmeLzdUa2Sa7cb6M9731IJIJXaJ4uYr4Zuggg69VwijNchNqMuQlAoNlRmQSbm0o61OMnRjSLVU9GegRBq4ByVJyzfN1dj+q4+RUYBrMIUS5dECF1DJVgUGa4eSiWga1GMzq8vIlXcoSLNVe0GjRnMeFIDcY5wLAYJdvPZzUzs7chqIirOqt4oLlhRkohlK5wa8ekGRxV6GgiBHkt/cl5r2NuHCZzco1IvBD0q2KHto6HDs5cKbOuq6VUXl3YTB6ZYauSbu12XnAnwfWYhjF6djp5nrQGQtcpN8RTelwRIhIrEmx4FDhJICHLpG+KZtPG6X4V6wPEYdQgRp7gnqhzzo2T44M0FeWqykA4/SaKIK+xrCu69O9+W7GYhdFFierNuKjzUlad6Gz5mkkjMIjPCg5PztXxXSUgXddjf+F1js8efGhLnCQejKPNdNCQ4ZiUgTYVdJCypZ4WvcFz4TKSrXxR/uk8k80RLM9vWrRnkSauoIQjLuJchDFGsTBJT202TljBSHku/7BEorIhcxOSaElSK1x7pvq4aVQglfWJebppbZGQmQnmNCKp8tPPTUV7ZdLCx+Fni7MDAJX4/MIkWMxFvVewWc+Ti78cw1J8Fp1DxrOKlLpkHOvvpVKBu2QjW/0s5bdfEE75CmINo+LcSKq2RIQymZiw0SFXE+Z1HPan2NFgyVzXaCBrT45PNEs5vldBKDTWvDv5l2UnrhqZvW+AP3iO4yFDeDj4Vbi2y5hJ3n0019rHyYE2igXVhBXT58jObw8zdSP1EoxAhs8Gkt9/ON8oEssOq+/wS9cyKQ1qfmoTSr5oTlRoHBIgdc6UqDkX/buecQrvIvanR63uOsibspiNJnpS5CZG4/I0GZUgJJWxnHMUCyqyzMSRVQ9nj+4ClbuKJZ9JFATYuktOIEEFRZERM/5epwt8NhVMmUiVfL0eWC+pFZvOIg7bs5i/znE3t/YM5cHhuRnrxq/hqropYiwsA4n0FlXjR9FGwSjBUOtpVoKqIJNr4tFYn6nwX2MUn9+nRhXVdDZLohm49l1k6hS74r3drGN4HMwzbeHQ+dzX/ZDNCftKayrZOEXT001ZLFN1RtdvYhyn2O/HePPxx3Hz/Gn0N7fRYeiMo8aqj/nhKFszPQU6u6tyFJfCcxKmc4v9gu1l3CTQrBLO4M+3pRaigGxv3BQoQrKRbQz3p8c8+tgI9QMoEp++wVTeTg6eblXu2TUlqv0aOX4THLY57qSIyXFajdcoboAYczQrVRwoFBsnxR/FdZ+xI2X4nB2SUAAOCuDeGWl7dtB1uCNukEVDHujwFvi/dMPWMEUKF2LRrKzdwD2DqMr7StKtZN4q8HJhG6TyaMcwRyoa3fGiRAJFsyG6A6BBtOgeJEnXaAjYm6KP92xYXw+4EDJ+Pihcfa1hT7Z5xWcraZ2f7cQBd0lwMcj329uAU4nzQ8xruAI2sHXd6m6wEFHepywxtNl4VIV/nzcxDnVcy7lmFI0omY2c4qwn1II/GeY4tGMcW8vyceU6nfi+it4yjH/GyBsTXClz08eA33GEpISnEF3qMWI3xooMTAQz4jpADZ59b5DVTEejhxLGuDARVZrPBJpTSu/0tJILfg7kARz5E+dPuqDdNE0cMk4pQ9o8rk9ISWihAuUvmaUPu3cdjviK0u98jk/uPWKDRN6TTKH5N81EjlNVkFyqR19X7oMRAfFu0qKItWMEKo2JE+5S8LqioTx25aXkGynv7cNIwSZz9WotsoMWQR40VxxSJ+gqHGkRRNRHSWuTnBWJmSsrGouOJB7JF+8HxpiNj81d0r0W3JBxiihVl2aneFtpz5EFiEUkZY9Ro0gLtvj9NdJdxCRS9td4OPcgoYCXUd2CWgqxyIOPQ72K5kIQE5X0eM+TjEX5XI1NMip4/h/3Ef1rx6ndYN3CeQCFB+qF6Xf2+hJHMgtJcbMo0DPpQOT3cxwem3g4nmM84tqZgid+KYeSDGAvCCYrVWT8JKMfeLb0MZxoYrNu85coViqVyUkF5ju/GZltpIDoHVbP14TFKLQ5qxbuef9RpmxSLIQUqRGoQz3Nz3G4VXZ7RrMlh84UCqPc/C3FEv51QqPTAUJNjiYTZJsnsp3xieV5yxO57VZxPvAsuEiS9YrAExruTIhoIvbDLN4ab7LRnNW+QDRFPTFf0zqmR9T5hgKaGtmj18v56Koj+rEuDgXROrZ9Ewft72v552kfwARcnqtGgClYOeunuYm2m/1ZBSzw31ieeCTN3sRzwu/Us6SIVAsM7Q+a6VzK+PVIXTQdhQrYEkZToqSNyTOU39F3cdgBXDDC7VLdy+duY3OyNdS4ss2csnnPFwRTeTxk5J6aePXTz4XoMal4/vxJtBTJwxTb509SkLGJkeu85XimAaCAG83FpwdkLa3PCr0AbLCxvdeS9BDcW/wDEZ0NyiYSDC+RZkZguhlfx+bJk7h/8UJWMd3treoaTLeLziXVr+qci+A0rVW+JsTvvIrduI5n/M5UvNWGVvS5OmQ1wtFMP/NB04/AhOQr4vnlf7zJq4GorN0qLpOrIx4OdVSTI7/LpmK/wrT50CKo3A8XSDRHQsWSiH1BipahyZIfWvYL3tjzEEzyuopPIWVJoOcgkt+XxyTiYOhkqpETPBdQRxAYm5oKiMWIOInYiyu/vMF4qNKnRyNqBPOFiGakjenBWvhI33OLqG0s75XyA1L0YKsYkWWxAMlxoE16hwx6ToXxiGoXpI4IurQ7GcytoDCMPQ/0FB1+SpLIzoqm0aLk2u5mHSDthhxBR1sVL9F2LZMOHaKBpnT61zg281sX5XaO5g3IpHiDRVtFfHbV9qe7nN3t8hxaOKIhlsZeFfNnfpbQmibi45dAlu/g6y85J3FuUT60BDsuNkDXjnIgqh7WHTTrkK+waMNm2Y45vFK9l/FwRSkmz1URa4l5uKCpAsebjI1dQYaMhtteL+9XepXVGFZeZlJto3p0g2V0zirhKg5yeJBejGk7c3XfDKCZ/2r7IjdAipdD9JUbkxI51IGX6W0KSBZdd46M02xdQKaQwfRFU/FmLztnmNrcV5MD0U8oAIoPmQi9/O2MAtheyt+bqXn2JcwkFH8Ta8vr3aVk8lAZ3Qqpjbh/9J8R5t63KTBgrCRRnakRFCRSZ5btaHrIi3soQ0xP5nYPmTWsuqA8VWtikolICx2a62k6i9eb9xnblJhvyWufoyoOKSy/eA/jeR2//8V9jrKuOZXv3stjtosAifeseMh8y6KUJJuPIkmiBiLFlq/PhJoq8rN50fMjnzuLkjzZyAc4JziyBlpNcXt7E+PRMm09x4uO3VxvfY8iQXLMylgP77ZsICzWy+d5NQkRohBiozhtNmrkdQ/pDbUmSuFvc3sKKrxd5SOZhstMWq025b+beNKvYifOaSLZFKwUTNogjACZb2veN/++ITpNGbjN8jmEfOfXeJOhcPJ+D9Vrw9hUzrf5TKatiRNwPKIVXaNaSjX3jgdstlihTHE8DrG5sdm8zltN6fDmoynpnebhijRTe1olgqy7TYyv97F7/YUmVM+ebePJ3a2mWU23iYeXrzT9IoljFdsYBqJR3XRZrMiPO4gG5v3mFNNxNPWGAlYxcF4/XAFd74ylxFmj/ENNGqQeob6I6LfbGI9DNFvXG+6r3VjY6zc5vxUZ+2skUv0Gdi7reLU7xbee+6DXqEimqrbK0H6TKkyVJZkTqeAIoMuhi3lDiU5xUPZVKYHPHMRS57oLywzS7KBREs85ymI+LpVcUci0bVoddOFts0OCjXMd0xz5Kg+4CNJyXhdiCUFXbzYmybwn+ZFp08qouBo/nvGgw1JEX8+1YeyV5pb68jyQ6HkVQdfHOkcnq4bM3fT3l/oY4jiHppbwYj6cjhl27dYmg3La3m0M4PD7IwYOfM+FtMcVJgvYuwzxhA9UE+nFt59BPYdoG8ovW3fwWemE+rmP4TjGRpsIXlV5kVHnUtA2dJPnWCErpwOVypEHHChCwctlnOhCkV0ilWHjeZJ6bHU+6J4eFR2We26iLOKXJHm1EAzB2AvHyJxIddJXNAOI7HAWzdNNyFtvI9XX6Q9ZdTNfjzLxT39yiG/i61GbspEjN0q2pEA642XldAU9b2VVlKhpZVMvB3JlaTPSWQ67RKY0SjXh28hwxUZd5X6cR6F5vnf67iwVL42gC7n6flBpNxrymuX5U16zH/iSnJiXmpSMpFzQTHhM7MYyqdNW4aNMpHvPqEiuj9uOK/SPf+fgRsmnxs22N+b9uhgTHzFTAIQAalu+QhHlozjJ9ohXZUGnwVk6AhgVMk3EueLaKzMyTQdnXntnAvsa5Rb4lifqQAZv59FwxbwVU8aIIZ58LgQZ/3nkloWMJrIgTUbJ58l7XWUK8722mEqz+vRBPeeovmyQNOquJCMV82mWmyinONpKRLJ4jwPwX/705fIsvMsv21+VxQ8csFliNgkflobHJ4eacXJ5xc++eEEu4saKLi3BVSpyhWgpCs5q6xL5db0pS2yVMnrmDYljl3ui7oWtXzC+38hiBq4dIgQTQccDP5DJCYikc27tgXeO1ZaNNuSpaqEjo8Zs8ESWc6QZsZ3T+bBY/ICyqZgBLERNO63ihVIkEpHStMxqWAvxQAUdokBj3+DbRyPSkveelAn5ePKzq8guX08mZaCXUI1WiTqmeFETrUkKe+VHk1DT209Upg45vnVylAvwNQKM/TGazurgbotSN/F5BUWc5EsLek6BjK0Mha2Lsy4ePn8R8zDE3dNtPP/oPY2N5/4mms02Xv/w+2nRRNHbxHGkwOVsqWABj3xn0Z/YW7gmx1Qar2KcRil+OcdZLqZuoWdgTzal5STXj0tqkFG/bYyv5zjs9rG55abW9NAIhlw+avqZzf7XVvhJTQgcmSRmHbBZwJnX4q+z3WtV957n88BRS3Hj+i3kT2+GIqWnQWod2LZJyASKJI7ab+oSUl2+bgWpyz+HRAoKJ0yJc17uR8g71IIoJIJgQnyRC8svzhe/IdtWh96lOJGFiRY2hM48PLXR5wcXnwYpeHbLaXrpPd+nnJACbhJwrYQQQzTtRnN+/SaRXGtTPrrAE1JiXp8rGj/QoIwc7EZPMgs0u1CPi0EWepNOWRQJO+ihkBXQITZ9b46BkgbmGOY5HvbEuK3FxcS3UePDFNZoZR8Z94bGDurUVMTm2FoFNHYuwPouVM8Zkv1mOMRudt4z96l81Upsk/jvxZNtiVzzAV3QHhsODV/dF4/eKlPZjXHxtypw3bY7dWVzHLg+x8++ePezRL/yxdhcB5aROaO2Sa7P3OkOZJzxjygBdvC1qrsiqZxWwR/BC/LtLcGPnxWH/hVHLUcVeTjYcsc8IUc9+WcZRLsoeJcxXxHNM0Ysl3Aij1mllAjlaoJQOZsqwkrskhMBjZjSfqiyaVWIVKZpTh9YVTzbVdjpE+bvssN/vleETUQnQlRPyxUZE2fKT6WZ6FBXA3Ix+K3cYL2/5G+5ePaHZ1rgIsLj0HKMkpehFLb+exnjCyXx2ayzVlY9cp1yeocEGx4XGjHHFoqK0iMrRvH8L0a4vAX1YPlW4AX6PpmXJk82efMZcfDnSEuk/CwU9Xy/PDpVgEJYsd0PnEUePgckMCIG1Wzi48fJfnCZ+PGuvlRc5H4jAKPhrFppGiOqlFCMtCgTveiSJlUFkI2O8+fprDLS7eLe/E4dy2XULFrFrDhM9svD/VEJFMU3NGJME+Azprjp4vldpWU0GACPg0RYnc4c0z94YzJT3qxjfD3E6XarmMEKJBCtQlm68KzN7bYxPIUHhScm0emBSuPC78S6pFB/idRBH6EKWZ1if1UXUa4HWtuV3JAOZaROVBJM31GdyhvQwifHLHJemosLqEIxKGUAmbcbYtS4DacYD5xUVtGSKDWTnNH0KgCFmG2a6EZiTJ2tKxWtwAnb3dDQzCefdUir8AZsKeyaTex2Qzy+ehPzNMQH3/mtuLl7T6CNznmmVLuXEdtVbLuN9gVNsilIpVwBgU2DawpVLRgcNU7RQs3IFJMloYxTNu+J6ACpl8GI2ZF9rl7E5WsbcQ0Pb97E0EzRcnNy3dm2qhW9RsDGCc7/16jqfRyG+PR+julbZ/mxXdk9LQRt87KSsAqZHvIx8TFJsF8dQYuamFtvSNzuQWNSf7/GoYXKKaLNRaE4a4yM0wtLZcBizmxytB3UUxkkoxxz3i4jwcuBt7z59F9SQabFbCKo60s701t56BthgUgeLFL5locTN9GHg7v9ig2DI8IDeYoRLh+jTqmA+RsKNx4WF3c+tD2alho2ibvYn/gwNa+m/J8MUrgIpJjEH1AbcN6DnIIKCdPYK0fRp/WQmZ+gCIOEOPMMfNzGcXTxam7oHKtuHT2HuK5r3usuN8Ds1lx7IeRZxQQHBRK4q3UVG+N6EkdoIA8xjvpfnhNHD/k6VdGtkUkqf21NUdm8Ptj1/ik8BPFrZ/Rmu9zb/IxCa0wtMJXLik6DiC7A53YVr9/d8+hXvrj+GxlX54gkjdDzYciDoaAHK9BQ+Zk6cdVo5brw7UrqRI3F1dybfyvtd6nnNTrJwZ+MWmsUmAhdFkSKOBQAnM9jxjIujgBJpLddg5sR828rQ9fIuXwfDc0v6mGbwPtALHRQishco3CJPMVJnrAOlUtsVsWvFspm6oP3BR3SKbZyFqoLZnMK86eVpUyqihkB2vfNMXXgHRJ0ZQeu4lo+oN7zyEuV/aqQstmj2mvze/6efSHHxKB5j48Rqxs/8vrc3jbjONieA5qQ+cwezitCjX8dzjJfBkUAqZqJqEJTltOV2u9MEM/rs6CAWaTkPufugCaxumHfD7jZNNzcS/bsBuGaPHndwL/Tr+RH2VuSe9PJggqK0nRey1hZExyKEkRtG099hJwb8jRv1HS2pDrA7ze6JiN0G6pmw15NiosT2dQNPtx5ZVqcTY/VPFSWcBYw2WxJcc1QeIvLgilIQzpuiDagSMom5vWgdSCPT52LcNlcqJz1O5O3ygx5GNXgK4IuvTVp0+H0HRo8cV0c672nHZOU4V0rHiD/B6+O9UCBJ47bbHNqfMV5P0IscaJuETO5cKZwEpDCn89HccfNAUQUg0lxQ72lyE8BByR3wJQnZYX1qWGBhVm3my5GRFq7MUZG1jKO9zlDIe3hWCshAjUF19TNzxT7x13s37yJm+0m3vvt37b/r/K4TzHtdqoxuic30W02caRAw+uU9JPjIWb2490+RhS8zoBx4z2PWu+KStUdnqQDEMjFhda/uzDUpCInkYrJUP64/MsExES7ieHhEHFzivZu44mGmBweZ9N4STgi9P3rQvzOEfd7q2dNkywDV1cYchqXOXBmWS6WIzmS4n13FIMe+2w3dACORfOopAoWb6bd+hqBc2dfxHUeYh/2fm/OUKRqpiDhzbCDMt6tNteLrbhN2tiT7G/vo9zg1M3zXohBS7RRwhxn6QrJSzm1pikaT/nzWcrOL8ufU6RhkXt7BdwsqkX9kiSZs6CLxyFOjQn0PhzMb1S6SZ58RkcyqkVrVv1PcqxS0ih12CaadZ/omBXDKnJTVSZBSn5tjc8gkSN5PxC7JY+o6kiMYAyPc7R33tz0rWkXoVt8MPeS64Y3WYY6xnge4xhT7PNhV74nI2O9L5qE4hvmc5aynhJtVDFSnE81tFc2IsskqWIyy8pjIZ26wHTZmOMauf+gxn7HD6UvvYor5WyYbhE/KKs3RTKVbCOO5YKgofLzZlrqdtNXfR3FD5EqvDiWRoN0HfUzS8Pjce21OKMXoSFLHK0LMXo93k1EjQLHxQL/z6rCUu173JN+f9mTlX1M8YhtaWShj9uAt1F8jVXEE17e2ML/rDQQRuE2QjeHzxeUz+WUHI9sEzlP4Yp/lv+feL3l2pYqXw49sHqjRb7m/mpPMipNRk2sxmBep8W3rOZwGTSmektNTWZOU+hpiWOntcsEJdIa2CcZA+9QAeLl5vvk8ZFH7xySNGMD6QUgjqA5m3Xs93yvP5qazsye9RVIZW4pqes6LFGbNdHx/S6FnwpAGQDQFGAaUhOKd/tV+02tBRv908h7Li8EDVpPxo+BjifwmfsQ+5eUfHnemZOp5zU5Jx4HGwnU+kjkR+bIEhecbXwvT9Wc2uhMNYpnDh059TbgdxOFSMd+fANxXcVqB32HB4hDA2/r6TaGxzHaOzLZ/RzLqiU50VabJ/81YfiRAku6n6T88JEzBrPoWYgwDcb7+ZCYYt1I2a5np3J6QRFH0EfGo73EYF2XVIyMQtVZLz/KUUp85ehqXfHp4YQX5Yv3jRdir/EvzzoOFKCMqn27NkbebweaN8a8R0C4ii1m0j3/9HLFmHNtwNtDqDjgPtE28fDFi5iO+/jtv/5X4mb7zOsUQQrTztdMwiabPItneIwztLPN1h61uu5NrEccDrBEc3CCAQs3gEAfombo/lrIetwdBCKJv5/Np0BZJnYS2duei3exucXe5RzD/ujoRI19fR54ImFUVTF1X1fhx0E9nm5ExF6tXfjpmVwWd5nB+gDRhqtO3N/LB6Oo4O950I47ckMdUE3xY8pLboQZpG5natdLwM76sNlVLV5TNQtP9YyQVDk9ovL1O8tGZ1HTCSySlNqiDFl0Mr9MyF9qOAkxbIlha5Cym6AQlWbRsGqOsGzy2WWBONhIUqgH1bwNi4USatP3QlWcUkrxdY1Vnfkz+dM7uLo2GW+ucO84IKaLT6KKU/88FqoLU96HBRbKHMVNXBGE/HluUCJbkljCPcHriEJtkIK7HQ3Dw+XrGviTlpmc4FlgFlniF4Kaj51zFkEn+Rkj5tiod1dxWJ1ifx7jccLdnM/Zi7ReiJ7uSIFT9AEZd2V7neJfZfa0iO0lEEpmTh2ksinw4elUCJ6JTEbIHGil2bJBzBEPh15F6TfxxeV6xGtLz5ITSOC4uBlIUUeRyYXirNUNy3IgzbI1UkpekVm5XnMFgpYh8VJoSTzh5mEZyfO6sryotF0/G1VA+c/XUo0ikPJav3gJ+hNZZJLNHutOlk75jOSflfdgiSZUlCYSXCHw1QAZNc90DS3dVGMKdbm8dxe5LuL0uVMlXW5YbKTlD1rcfPlt5uEsn0O+P8dgZeeCd5dUoVmwIr7xSIumw4IbKCo2PvaoUL1oHq7iTHJb2NtZjxQC51Ucd+e4FU8wYt5FDCCBTcS29ThZGrnZ9k74pU44S1BAiuJgLiiTIopBDmEd+/ywRE+lUKwEneLyLFinr2OxTmxV5WZMBU3u4UxPHN7oJutdfhUtKcE7R+PlQcokjgkD19PPmIUJOvPYg0RVrcg/7+UyBs6m1QreatiyOc+ijZcFUjTCXaxPQ0xHvNtMI/Lo1E0Ur0Ik3ZC4qavzFh4nBR98NQKeaNqE0AuphApjhHiN74qg5bQAEtXAQ0UVD3KGsPpeYozcn7V7YvvC2qh8cBobPRYWoWT2avbniBkpUuEo4G2b538i2yB/Oq+FivtMZSTKAvCzZLkZaOEWIWE2/uIhm0q42AjNZNvyc+V5BOrntdhujPrtM9mD00vWyZosnmPTENma4pVYxf3uGC8+/lTf9/w733ZBSm2iv21i/+oToZmyfNrvYzjudX9USPIZpcjKhA0VzuajK2GFOoWpC44WWjNpWM/PHybZIin/mb1MXHUoa8lblE2Kk4LAmTYIPQC/xjGOj3txGGnqXQPwFiyS/FoLv4d5HW+mOT6oh7HmiSnpVtFSLt7ZqesCpOJEh7nm/Syetbyl9Hxr1zUBtaCb8ksSJ40upJS5XBgk4yn9lpIoc0slr69Ui+IiSYBQhhNXY0EPZU3+T8NJRSwtIAIPs/kKdnZPjpQWoL+PkaHBMg5FRAyjEjEU45L8P9s58IhVZLtDmcVPqlisLIJMmmY3YZWCYDI6MmuNDZtChgM0r5K5VOmgLQVdkvzlZ8aVz1EwOcCOsckxkdYrkn6/9xNFmpAOv08ezgfq4PNexeG23cqTS+Oi3r8f5ARu0flwlnO6YqNu4MZg97KKAR7Heo59P8fjjvtDoTUsRs3y2iw1QW6+xe8SHuoTdhkj+rCxRYbjj3wYGw0yeZqu2SovpmUuBNR15rhXlgw5pvz8xRSPZGS9g6+3LDCuL9Fiq7KOnz/M8XvP/PfjNIvDTbb6hcdaHMoSIFg5W4e5kHShhEYh1Aws1zttshLQSes+b9I5GnT+tTdtNlJFuV1ZoshZMMe8Mhcu+1/Zh/j92UMOWxCQuDL/zdFy9lkq8AS+uPuW+75EUfYN0wGcdkgIINLuy6Pnxkp+B7i7uC2sXehFFsAqYJLL56xnN61WhLtQ9jaXQ1Ea1vTwsoFvRUX5ey2eYGRqSxwVtBSI6cHprG9vlGpKch0siJ/Wgkd2pG5YD5+eizpjXfSfH/3Mb27WcQRdf5xl1cPoF5WgeIFpXl3gnSYvWvdGVKT0ZAynObMjrbT/qkhdX5qvevZ02RIj8rzfHpIq6pMT2m3itAIHfjfX15dfHp9m5S/hYqmhU8mtSYafp+KjVnwbXK5Vi1DOe08qqRY/VocV2Bmh9ipHnGWKTDW4jFr3xKw10W4bc+mZkiQlAgTIyt3kuGsPJt4rgwhUZGASnpQY3UbzqYX2kxqyAa0y/1CFhPZb7/2yVUE9SwOZdkk2R7dmsG3J1EXU5PGuUM48e1AYs99qlJqqZXnistfjPzfBa28twOM6ZRiAC9yMFsVzNaPX5EsqxNuUMRaJwXPnaKMVlXcs90U50yHxp/YGIu8YYXebWN200aCq5VzYpnkzKTY9ZzLFYO5NfR8vfvCzmMdjvP/dj6LHr7hto7t5onOMz318eC2/QZ4VjJnP89EReYyDRW2hNjmKJ0zhetyPytkdydBOdNf7rid0rpNJxOrjdBzjJIcWT99gGlMbCIhKLQJ1gClaeC1uYt5jED3Kd5fnAuSXiYNSt1IM+bUUfsf2FA8Px3h9f44PnucC0apJcn0aDKs7XtlYObU0efj4g7DRKTKLsTCGzaMVuvwMHjRMuJHsiLzuOMTkpqWJ8Ui3izGru25bRFg+rU6cboOfTXdD8QJEnQH0GmslEd2FhPmKlcmpullGrq3HpOfR8G6KuLz5s42CemYxJ3uDJs6qVBIVYcuWhUn6jtHGiJSbhFIVyHjvtWlDURtp6hAzuo5wdB+GFRCfodjFidBhY7JPqWNnuITNKdo5PfiEOiZPaonzOon46yKJb0Qy71gchCH8TrCwRzwTD6fYNg9xg6cfkWvYsJzH6E5NjA9j7A9D9Ld9nO/KIuAcp24dhyOLrJXFA5N3mdQKjRijneFtoETigEJRBdfxwpG0qXCKM2SLkMVmekXKKJSrsjrF8bzyeAF/wUz1MIqTjvYpGBLdSX5lthv56ZshDqd3OLnjV03JznN8vhvi33kPr8lWhdNmLnSdNQJVwQeCR6ByL1wI6Qu3TyeYKzsLYTL9IoU1JYQqsQcdLyp18U6yEADwVeb0gtQ759a8Ujhl9oRzl2v1pwncPpzkB5jTARGZ878hX5f6V+jk2lzeizCkYrESmSwrGc9v3TSgTi1H0DrYF4GLm8OOA3eV41F+Zz5rtUeIF7WgNsm9JU+z7S7WGCrSuD7JjctxuERsqXy1ebuL7+XaVh5qenJVVKwQgmyel8ufVAZFEFLRDevo8HHcwKN3hjpfT8IC64mdvWy3fE0zqUF5xTScHk3jW6axdaJT4seeaLStwrRTQPE4fZ80AhWHWk4gOeFJysH5HI/xJE6xc1JOCXLeUYEH9hr2NeS/bBsmpA1eViJUFEogSXipqOhmF18SpMzTVF9Ro8/+QlkyJ5NGlmth5EyH7hlLK66/LY6Ux6yudo7T4ymGLcVWJtVIQOLCyhMwJ6bIyxE0uAVNYyRq/q45a4xn+VCMJ616H488t+ThYnLs5psItB5UjbEqBRK8/GbWusBnrkQHnrRR3LCfZ1AjZsmZ30vhUfSLnsKfUzJHx9tNH8N+jHnws970gD5zPHnapyLfPHdxfrnGnAUUo+J92B7NyCCNIoWjz258hbkDSuQ4TTGoqEJwhFKZ9zMrWu/4iMp2FU+f3+U0rNO5C1o27of47JNfxPHlF3Fz18WHv/Vt27qQx3vA/aKN/cNjnKchTiiFdT2A3DkLW3FmBxI6RtumybCZvUr84rX0DDRXp2GIQWLJSzaiaF3bPsbdffRb6GBcR4Qr4KoM8vM+s182stdXUYcX4M0dMW54KR7trSshpQV2PAtfW+HHjP/N7hivH5tYvdeKSMi9EGJ15ZgPvyu1BGlKnJEzmcBhvsMlR5exG4vlPDexztl/eXMVj6w+kLptRnoL/8cbW5n9LhYKyTdiwQKvykMuN57r0VEdVoUCLpuUSJWH9OVKf6KKLNJGuLd/2eqwqLSyZswiJQ/PRDlsGlu8osxQTR6WkQk/EPUeRXIvhW7Gwdi3m7Esal8q2tt8rxZ/aB6kt2HFrL2O8qZkN+T4pcpWLh6UUQhzDJL8Wz6CcY79sJdyacBjCY8nikUW6nEVKw6ZzSruN8dYn2x9Q5HBo8F7IcdwT6HQrmOYQfsMXWPtUrUD70ccMHV9F+W11agm0yypK8nP1L1NAYxHNDaV3RJCjxhI4zyPLAyzuyhiw5NxeL+JT++LJvDuvS4j0OWxf+sFUeCnr+f4D75rF3iKIJpcLFzMA3WnWAUf9g52vWrtuM/ho2eigDB38aYkmeOnpzcLb60DQeRZTGnEYh6vqYA5nlS2LaRs4rzykBKBOY2aS/0qugSE5yQM6BAV7Tv99BIVKYGSTGaxYbCdESNNnZHmPWvcy2hT1IS0eUmoW02Xfq8OIq2cZa3T4GnzxHxVe6pztcsxoIplJ+vYmkNcRAlEkqeY0xj1taBz7F3plgEFREVYUg30HKfgrPhe5ke7oDW6ltctm2Q9r1fPAijIwJRJnCJbdkioO3rMJGQnTe2VH5sITlmNMBYUBUxZ4OyljdI8ymakhGFqRcsSxjCOI7AScXKOeu4VZaul/9fGj3Y0tPGNeKkJaXIEKf85o9kLQiq+NNcXNK140pxX3suVTpP8aSk5M9Oaay4fZUe3JOLexA0okMaDFhewAKdxLdHIamtakeZkwxBx8Bkloj/NE6bDLecFdJ6asNkCBGNnxDyiT8l2hmYgx7EgQM3Zrhqgluc5DnsKHwsDMGKW8ApDYbiBu3WctkaqQcNo3DQmTdQNxwDQQuIClaIl4qH3KcAMxdEreMF58djP9E8wKR5jPJxierPzWPw2LU/WNX71XiAOMEbijGjdw8V58Pl1GGbZrThajuwr8qdtQGjPzHPsTm1sb42anmjseHsAERSeEr62ThZadfEwHOLNx5+KF/neR+/F3bP3MpHkVupeQAiy7gXM4IKRIkoKS8QrOqszKYUAhulBSio9U9ovcoR+xOiZMAYBSDwLpm5AdVOEavnwUUA6O1AIqXX6oL81sYJG5RjXDcXiCc7fQWP4FgX1NMu66Wsd9R6miMejHeEZQXB45PTDh3raOaTeIT2NjIKJR5DInmuzZLNIsmRDxtOejQXyaUbUaFRBF2OyIy9gUy/OC9enOlsjclk8pHeOMydrQyvzv/TeqjlWwiseKfLwUXTUSCzNZNOglmKEz14HrAoqEVmNhtgRP0Pv08yzjGrFu8j3UEWmlD/yQcyCLfkh6W6xkISl1qssVdDIVaF4JiOfz5vFi6qMdJUOkjkW9rG7mLWuTtnRVRxaHpYXvzKUYKNHbIIP6HQO4viBmjVHNikCqlElwuMwqqH3BJICsgPNG75Rnl42aD5DTZTyyAiEO0mpt/NaXfxeL8Wwr2GNP4H7LRap68s17NUJe6wmrlhyAQ2um2diW51N7PSn9nl8F1/L8/wVL670myP+b2we7oDNM3LxMqaAQbwxjQe9KSoCL21ZuIe6vmqKUsGnhvUikJBvlwqc5A6mytMHotEwpUfkOxWZXUWY17xNx1Opqvi0NCnNUZEybJO7ymixxrtufLwZlpLYHo5WBTvvNwtIWTVkZmiifLp+ifR65O1DndbDU9irnZHOPz3DjPalXDbvgRS32bMtPoa5d2mMyppKZV0y3HS9zTesjOxL8+Js5eR7JWpSjgPF8BNHS8bv9j8zH9eZ4mT3YvYro92eNZaG70MKcLAiSaBOhWNa3shCIicozjJfFk2cjz5EQYZUIJOQkNfOArtEZGtnUJFoTqK2j2ziy2TwH/7oCx3G73pqB6/dwAHqwkVJUyUBk0VNPROW9ig4wM7N2azk586plFD2ZLzKLzF9XW1pw32d4uEAkmo+m6a9oMRw7kR/Mt1IIz9GpF3rpJRqfAf239ZoY7t2Qkd6vfLc7odT3MAJZfmXHQh0ImLeNutYHXZxfOMiosHBYUYACEJ4ju40SoCEQIGiZTrg1gwF/Bxz18Qp00D6Tev4TRpzuG1No4xfCZtyjweJI6atRtMepTvubX0Tsb1tY3h5MFrZe40o0cPqFBW1Rjlbo2nDKYbjIZXvK02YVt1FzKZcYv0exqqn2NDsnE5CGVck18gZZB33bx5j8/ypFM3rfqvC7fXnL2M8HKO/a+LD3/l2Jvh4MihAYjjGYfeouqO/exarbqvR9TAeVIzzvmg8PTwxD4/8ZNckVQNQGMLLs3XcsiQ0baR4XEUzEHe6tddnWt35DM9z2aMA731FSIV3edP7nAb9pHlYreN+HL9GVa8OmVV8+nqKgQgYHtTK5kyenccy/F1aKYiceDG35OVFlbZyPNAaj/h3NJs0jx1YB1nGKAWgCLiVcVi50x6P6J0syMPlDV8MZfUHKSYoM9iTofASiHq2mpFJ2BFgNswQwLFWHoFJl7fEFxUyt3CpZO1ON5iIQnp8aYSkyZf5QB4MpWVNJlWIpJ4E8iIqMU42x9CCFY4/c6vYoI0WCtVSZ5UbTtpYFB27zGOLq1MK6WWslaNpIbitiwNGCYzgOVAUtYa4Ze0ikPXdDMQBhXgJnDiYXwthYHOcpuhPG0XVjKshprkTDA43QbYqC9Z6mWbWmSHAQHug0wiWWymHCy9G/fdVMajPk/C7Szznmvp5KbJxooLkV87r+PjlLj57yLnZu/p6qwB++0W3pwxn8UShRRQn1YWNbBzSuHq+pinoJMpnpYQQS5alD3hZmKTS3rZJOT4tA+TyVkzEWmp5FRkpZIKUnZmT4t2Jj+ebW8ZI3Cc2VRTydN7+ebZUsRq71JbF+00T3XokkvdZzZjQbd4niEiOVZNltxRjcGCdhZqk+PzZxQVUgLomGE1MIB/aP3IPSd5W9R4UtRyoUE4qvleuY5yN+b5V4KoQSIVt+rq5OSrRSiFqpcS++BWe8zn2RMNu/AAAAEHaQZhQtym04PpDaTGtNt9jCZyy6apmvAQYxVskVSh9CX19bS0lNFM/3A2p0EShqralcVmUKnmlDpnPyGr8xdFn2jfhdcRibFu2VNn4a4OvpjP53fJMdTGsCZae31Swsh9TTIBiU5DV1AcbLGXQujlCvSpzfZnhZyhzFnWghGlB6aJSz1NSKODucTZgNszf8Lt4zncjUlaNqxlDnx8PcepuPSTUuoa75/hSkLZ2oOBzioTi1Yaj0i6aDZGpt953lRfdEeaZDhlTnB6PMTwkt/xuG+tnvQH19UEee+wr5K7Tb27Z5yFI4dyxhR6Uuo/8HNAkhLQ/7eL4cIj5rpcligRdSsKxIGl42MWBBpKotJsunjzpY4UZMwIK9nEa+mGU0IFcCDohaOVOAsJiKOLmzvxMEDH2hePjMeZ1G0+7Xu/15Wefx8Onn+s6ffCd70S/eZI+s2Osx110N0/9fB9B6sbob7dep1ozua+A4o2jDfO1RRbvOD1tBT5kIgcC2SMjf6g4rnX0TK1XMRyOsemY6Pm5lOAS/p/KDWeDVLKV9kpNHp35e3N7G7v7XayOYzSbPvb7r3HUa07DOf7sxSneTDfxQQ9awh11EaMbrHPU4x9Fl1GA8CUUiYx1NXYrE0jDu4sZOO+VB0Pj3XWMh7PiaRByeHFdzF0F4ebGI6n3wklKZncVFWlTALzNS/BwKRSzmxZHMXdEHWAi6cp+2epS3dDk3JSiVD+O919oRwV7cy3wS8oyrKKPUN2gqEN4JJ5TWbL4cFJ3qQc2EblEE0VmNzbs9w3CwtepsGMcARfAKkmNFKQYypu+xq8BFND1jSwKJGYpxWZauKgY80FEwU3XJAUvF36F8omEVOwZXGg2E/eGfWuMpj3JQV7qLPEUXXCLfM89aZHPjzGN5DZexrISAYiImkdHXq+yr/aY13dR3piZtbrYiMihPlV4Kpp9UBZhv2xgUIr5LKv0Ewec/+T1FD977bHfN+H1ZZ6UPNpQmq36aNejxhRYehQyLUsHNpMUNFgpaw5WRTtZDYtvVzZXeW35SpoumRgLinYGaZNKMit/KWZQn3kD4mcJ1E1ZbaHK+j4Mt1WApEclBWGS5guVWhDaVOJqOeZGapI3z0xjuk8WNRaNeZTC2rXXZ2b+Equk8YpVsxqRZKFbbaAuVa5DLVu4rXBNGaOp+PW6V7NC6kJyTYUqggYkB1mpMXzOdq1xS6Wc+G25zHU6p/3EdA/FB/Pq55mVvXZ1+EploSiAbsJ42l/H3oePHHsqdi6gMmX4XJQF/lspAlIWZoOFX5kK+toHLA5RwZxOCE13isPOhYnCiBRPZ14ZEg3Ze8g3DnQTX7ccW0906OxDzYIIujmvcfa7/zqpWmDEVMGEyS+qv9ceZfoSkV9Yd4CKOVbTzVRlTstLNacQ8mgUr0+OojIKbipekO+Dd31CJeprrvaVawgfr1JbpFBNXSmFVgtChyVPt7hbTA/7GN6MsbrbMomM8X6O9RNfed6zhD67YzQHx5etbptonj8RCnnE4PHpNm42G/sptxEbkHnoHOIF6rCN4dkQT4Yxdp8/kiEYJ7wjseLbdraPoilXNnU+TxQ2mRfNc6GPhCJYHkIrjbkxRmbUPL7cSRREYt3A3qDa4Bzbm0ZWLdvnd7G9BQmz6FCRjw3j3eQTad20sW63scJ/cWDNOiWrvdtKAHOn/53jdH+M/cNOSOk87+P1p1/EdBpjc9PGzXvPVTyL7sF11xm1iv3+GOcjdKouNrfvxV4xidiy5BSJQppKVdMEGig0Ad43xsB4GoPpmrRgRQOokkIpxVfafw8ipfYWNaCKbjFok561EmrmeEvrUGkt3lVAO+EIwkkUvQSx5dcW2abx/ileHFZxP/bxAVwzSaqTjycZ71XAdHaX5g4lhJ0drsE5c6yWkZM6f/u/ITRQXIzcuttYd3aitlWF0Ter6fyS+XIeYPmFaUp7iZcqkQALQQquMglOnqKRwPKO86Ggw00zY2/oxSUUypmIgTqrRTVY8IoPOKl1tfGad4P2y4bKhViYh6OOSbsyaJfHAA2qJYVr5+iJr3EUgj5Yex6iazaxB5nTAVRWHOYY8d8xb5zaQdkmh/UMXk9ZfiE45zWZvcxyOymu15g8Y/yZvkkSGZcgIIupczelCCCl7KCCUx+r6TbOqyH2LHLoDjbAkiiHscEF5avxenkqmmxv1eNlRKQxnmT6JtbqCHUMayKWF6RCo6iKIMNxPn8uCkf+FVtCrvfDtIn9ZC+kb+JLCOfpHLvjHB90Vrk6qYK1yFNWXbaGFr5OQjezwKcAVHpMqjGFTpV9UIlXr4rBLNr00vdforjM9ypeYvGdUiWbI2KebSFFaYuiqYCgLE8MSogzULAq8mmtg0cqPDUmLCkLKjRKmi8iEDWXZe6cCTZau3ojRF2xmZpTo0KGjZn/E02FDZoDMdH2jKrjf9W4MlqSZ1eSz/EZU+JBij9yvVPcOpHHXB9ZQdjrw36KKpSqQMtrlGNUbeSJ+LmQS4FaXmwVrfI4syE+BSi0SdIAypbGjZ9RkEV3A9pUY0P2taYmEEaCLPK/qL5lPyXEhKWclh05juYP+yQdFrda61JFXwp6qikTyf8b5I/JPmUCq5HTUqRmEoZe6cO3htYynWKzcWGhvch5gkKUNdJb8qaTgyw+Xk00ir7AfrQWVcPCHvtcUjjyj5KXKBakms1OVwh6NT1pscRaefo0NjfHOO+HONGoD/uYhptYtySQnOO830d3JO2hk8q1fX5ny49sKihsZUIuOxFL+bnLFFmEMoHabze3Me+HuPkAT8451vs5tgeEfac4vb/Re+2VaFVirTSBj5WKN0zOjLBblc+v6aVK6mN6cmPusPaFxoUwz1uHL2AmiICUUXRzzCBOKeG0Gk4K8Y32A8IGhqRWtAQJp3YtSPZYTdG9t43zYY7dq4fYH44x7Q8CYp58+DzGYY7xCIK5dZPX4s+Hxc5jtOdjrL/1XM/GNB30v8dxjuMxVbSs/+kUBziM2J3JVNqiyp59LJsEuTQql5HnyB3j6TDoLKOgP46D9hKXJ24wJWQsFTV8/7kiN11vKHWH+or3wLUZxphfpd3e1yLu0Hh1Fft5FZ8fVvG7z7J40qhj6ZU8YsgaiMbVmZq5EPQt3mzKLHnhtqQtgqBVeRMlwTh5QmzEGpcI4oNfmN1rXtQSdhjTqxgoETc8AhSU7vBoK91c2VM9ysOuRlk5mmEE4ocVtMgHh7gZecBJmp8HmYi9KdNW55exV/qeiYMB5a+hXpe3R10cc24o1DqNxmy7oFRDFYsydtbNRZngB+IUB8fT0aIB3SvTsXDHtTyBJJ4Raukik6zb8hy1dQQjONtxnEUOsnv9euNORl0snoS6kTapRu2lwcPonEFZElLUFaJEeocsRZqYiMoRh4QuJXOFR4i2vk7lu6brLPNORwbZDNWjZhvpWkSgAr3I7TluUzfJvZFtj8ed18eNrmKqMrH5SIut2B/n+NEruDNrLJDjm/D6Kp7UfjzFZw9jfOvDdXQNCtPkYKWxrlG29Jmzu+RCBVAEVRYI8s2CY5OjBAotKXUXD5fknGa8olR1OfoVLp5onRXAXoh27r/4CQq5zvWduVPp15IoO03DDJKUPFfiAyU5zNFJ2ScLSfZ4w9FsRtQqU7aap+IXclgIcdMowoR7Vpnj5cx5VYpCUQZKwVuZ0DXyVoSazeHZMFnfFzNn1pxRDaUtZPpF8faWkXnyHKV01ZrOkW9m5h6V+FE2WOlFmMW8SBTa8E/R9/zDFGHxVl/es40LUvmozsgIfv27eIJyh/LeACc/v1Po5jjxOZww4FAcvze5iSqyjEPXHCMV2Gnh0y407VW8Ju97HtN14N3H/E6QJhONcJNv2pAQPT2mKUzkS3CKOE4xDhVF6v1LubQo24uDnWPWxRdzKfASXFBRbbsTuy4wxoUi4eg89iw1rjREHPxZWOuaS1NsY3/5lGZkV/uk097fr7rYPR5iddPFehg1bmyebWN1QzQZpu8UNclf5BkUysSZ5cbAjQ8r0OIrmpJe/nkkbrVx7jZx934X69eP0b05xv0bxqcbpXPIkUJe1og/kp4kHqPXv74G/mrG/qmDGuCfe01TOzLRIgkGtJPrOxK/lob8p24Vh2lWcSOhi1Kwqq7AKJp3bUR2sX/B+kSCU877iO62i/2wjfnVzkrf92/j+XtPYnt74ymfBF9uu1DPH+93qhNunj6zfcqIuDKRuOFRnrWg4rasclyqrd/SJ1j1EdQl4+DKQWaPJmruvIrbvomjdAznODFSVrTcZmnAZYGj5ydbQbtsa5PLctrNJxOH2MSBQvKRnOxf/frLsz3yZX2JJ83fJ+NUIzh7y1mNmR5aSUwslMB8ssyBvOJtFQoX1956ZcZcx7wW4ynmA2r05NalQMLWH37B75INQdkvyKMoSczKzEs39Vxkui25adp9Hmk2C8/Qfr1PE7Pz/aU6p4i79lhvtXmXIac+l4BPip16ENOu5ksH+PJ5s2D1+Ms/m4cj69C0XMFfi9w/OAvOTywVsEXCyUeSVQldWSfFX3TE8pwkwNCbaE5xXB/juD5E9KSNy6DJiqgGGxfQCbuGnc6jkYwSz3A4j8D1cKky6HtRKkIOhnuC9SHXcVQknLcX320pQHUus1hzPJKHSwaHvP0MVfJDEqu0USRfT6yAjsK75PM+xIse6XoBJZxHiVkPiffx8hjxg4+Psgv6xuB9X3F+Pg7n+PM3Rmb0rFEop2rbyRyOASo+m1DuRIgq8xbOm/vzoqbkuFHjUuwm3K1aDR5XqTKpcl8yrxOZ4JXEd/38bNqqobOhcfp36cZgOpw2T2lTpJ9HgcRBo0zRpIAgmBBqD38n27t8GISmSWFsBW+JeYxkmSflz57xWtmqgl5XcZai3VzzCnlaRraeWLioNRp6EqFcqwNbplTowleUBq3ykJOYzUMo8ruq3MpudbyiqBGiQ6e9To6my0At3VOMECD4oOBQnEf6/S17FXuIkUcOFPYdoXQaW12MpcsuigukPSz52RrXKbmkGMiuhmw+nT8vzrFZz9Hz3+wTKgBzf6SBbiP+4POH+ARl4zflhXJT/5IMVHFJ/ZyriFsoO+aBoqRcTx4pKh5LIJmFHG66PF3Qd+ey0PeKt7w8AhfBUmVKp/m8//HYWcZh+r3sdez/noLRGNu/1cUjzwDF00zE2ZMblYbNDqeFiNWTbTRPtrHeOIN6zei51Ppadyk0zGdMCnYWXab88NmZkunsB3yZRhkxbz54FrfffhZPsYJ5udfYmM+ClQr+gzpn9Tg7PpE/h34A8KDrYSrcYvCuBCsVC94flG5ydiqQ+N76bzz0PMbk86vY2YIM5jps1tFue+cS51SRX7LtO+0Dt9ttbLZ34gZKrLFt4+n7z+P27mncPnkWd7fPfHa2G/2uI1E54xTd86dxUqQpKQXp84nwBYQtPSBVj0hM5WbWDZYFIqZC5PQDJbL8GsdYb9tYbTZKHGFszqx+xHdwGvX5db9Eg0redQrjKPq4bzpN+X0ZItGSeEKBO3z29RV+3ugF+MQP/3wfD6vbuEl4V+pjul48dFR4lDqqXLaZz5snqM1TfIUm2gmpNBcyzUpA8hLSGVcgNc5j1WdHxbiL6DRO98hWm6U4soxw0rLldFUkqIhaxYpfnN4I4hvmOFadPODUikC1Mmr1n9tryaMwoXJmSRmJJE5lBay7swcTpN7k2RmmhQPSxma9idWpX1JFMNIUb45rAaKokRGHFnYScxampYZx4PIKk2QeIhZMC5ehU8QPSMAJyBhvjf6kyKaWf7abOEGW5bOtJ/vymRte5jKyiKHQldyfcQ1FFA9QHsT4fPG/GC5zQ7B+UHnAxoOHFcoO7VRWOON1JCxlwI8KEQib1GhbFQlMgd09FpYKWm74JrxWZ6N/uNHkOZIWgjGpRg32C5O1CzdFVAKsFfCLS4WonqccecP3Sk9IfiYjUV3n5J0+Ns9ir/isS2H/rr2qIeJ10TNclOC82Oh3k21GWPwc+jQMcuLHuJgMWJCfUoxeJWhZqZ1Re4l2VMyPmzgXFlzDGvG6C07VeXLXqghX7abmxk2QUPukYzipIIVEydmrDl4h8BU1lxOt+n22bPL/TePowiuj3Dzed7i8JE/acEsVr/LOlhrwHLEXKv6vPLHyvdGsqFByYeeR6GoxYFWRSTGl7Fn2NaPmnnyEix8JMCiI3AgmpqriSYk8Qq7d7XvM7gZP/9uA1PpZ5uWijWuWpO8aw50YeeeegjgspwllxO4GuBpoRtL+Abx/WXtk0Sd6Bz9LP5PD1CMz/wyPk1Qn4tM2VLSmkRTzRk86vG9aECAONPOtlG+biDLX4/PdKV6P3wy0jxeGIBQypoeYX2k7m4oTvDQSEn5gMUJwLG4MasShv7hYoyEXJ5O1p7Emo1uUqEbTRdtJmF1/klZJmhLJAiwnQogxuOc08zl65WeL7KKG1cb8tpaxN0JF7PF4EE8mAOPJJtabLj0pLSbpBM+6uCWZgg93VNKE16uCERQPx07vthHj8Qb+W4nIzlMc+ChPnsQNiBmCjgcI4hQobWxWjZ69vmXMiyMdhUnnKVuNJoUqE89mg+msaNxEwlNjWoShNIKPttWamo7w52wzpNCF5BZPjFy5li0RpThJcGY1/p1CMVcyY276G1nQHF4/6Kx+9uFdPH3+NPqbO33+drtdUHSUyfdv3ggAOW1v4rTupMoVyCPqxzmmR3LvqV9m+ZXaG9Uu6aaFuTFieMGZ2HX4QMILnGO96fU+R/iBpV3gXvVdnHZDDMejfTGzAXM6mL36dM8LYBOQZUcRhIv7po35vPv6Rr28tEmQ0HU6xWO8F+P8UxVeskTQxu0u0BFIyd1JFE83S819RSHZjkO0k+SJXRcBGh9B4uSh22Rk3ODRnrNinZ0rzkASXaupvXTbxWm6ZOfqIqYPYClr3goSz4ebjm5xar9CJc3ts1iAB7uMWCuzUe+HkaYECOSDwnCA/0MB5p/ZoQ5OaTYnWstnEVfSIyUnlwCrUc1bwGH+VHqs8dBnYHeNtvn5qxULFmcjNnsWPIuD9A8ffoUEySZaiQmFvBnuuCivnTpSykgV8IxqOSwZd8h2kEWQPop0uahmuyaGFZsWUpAywb0aBc+X4oyDjw6zhq2L9xyLIgsZaU1THal4KVBHim8d0GlIrQPYxNiSqgrdknsohxPLxJ/zOEb85LX95nyNT9+Y0e5X/dmRAkNGsxwE8Ewo9M1xU55s2eGUGfZyfzORQrxaEMM8p3OtcI3htrUgVfLYyTAZxXKd815khYJakY3ZU43o2bikXKT5SeAq0RTtDwDRXRdHTEpT+O/apWyWbD20VKqpVJZTQBU46QsKPUFm4zx7JSxJ9JGfv+m9Pk2WT4sOPgOqZ9ajckIdOF/FMAXdW/Yqed3gY9He3Ei5msdt7jWoEfk6RuoQ2EEr5fWVWaO2BfGVV3xicRIzXqlMm8ts2up+7Gf8nkQADzJ62Y8u+9AFMXdXl1PrRVmjMWKq/om/UvGeEDiRbfauT74mf4eqf2Dvc8GJgGSJCcsv4fr4brYxpJer0E6QfllTMaY6JvXl3X8xQdmTe39reoImQ9mQVl6oLI4yTUp3AtBiM8d8hGLCGBSlaqKzot54wiQutp4Fo13y4iu1LHdb/G2fGxRbQvc0Bq587azGRfvGwsfPHAW8UEBRgzy1wf+NTvvhODrlT5OxJlpybTPW0wlRSkjIcyjidHRaC+b2ZhrSrDh6U/ANWbcdqRsUFlqd4nJjwqy998P3VOS8//I+7l8fY36/idsbAA/OKiNSQrWVHZgNGgUo+wM0nIHpmKd5bQrGirfN4yXnDEcPL9Syrul1HTCPnlZtbJs5zl0fR9FSTjFAMyIPfnbjdb7ZBmAdk8EvfvZpDOMQd0+28fT992N7+1QiRAourjl7GYKOLz7+OIY3r+P2o/eFIo7DMaZxnx6/beyPu1hv4Dtm1KIEck4csQ+hgy2OB7jwPm8wvqZCWGMxI+9FCkYuyqTRNVd3s0Wlnb6M0xhrSI5rrITSOYU9L11D1AyLUkCxbmDlgJ9nZrj/qtevDXnUudPMjfJX/+mfvIpT43JNyAqO0egEi8lah3kSj0v74Xzf3PS00duMkg9mN78ST1yMeu2/xq5j3uA8NrGaIARk0HT+k/vglX9WIpVphrp4aH1Jc+ZkgJo3+s/pWPQzl/xMj7YKglEgvdwQlOOxGJ/yBSr/gJ+T5Lz4GAlxoJXOESaeQyvGJ5i9U/w1cSbQGjNrEdgVrqtgTudfjstDpM+mjtGj04tfmJQYSTbHGX6+4ipdbWAq7KrgThQn+Yw2LoPvwKZBQUG35fvV9t5sbK58SYFQAUgBhvUAKIlnS0L7Vs0U5/UYK36GfCBZw+Y5uTD3PaBbphtkM2ZDqKKjzLx14GSygN55oj4gskZ5L8kUSurQiML3TRtnt4p/9IOHjKR6G1n7pr04HF4+TvFi75GRUFRlVqbNUSKq5RlZ4iYbKXM9vD7hrRq5ofNn3J+F4TAshGs7GKX0I6OnlG5AgPm6mo5ERxBkqJEr0x4ahEHJBULMGOHqmbyMmXjcODDt3o/FwSwRhTY1dghUe+nPaC1fcrFyKKsOXUcSRaONXtU4lCl67g+aSPDziIfKWRNKYAoukImNaCIWVhTFgHVor8EcR9EwJY1EdkdZYPP7KUAh85sje4kgvFjDXOxCKuatvC2d5Vr54GtNPuQLqvkgnwdRCkWj34+Qx7R8yeRFj33zPtjqyI3WMg4X3SX5j+eIA8rOE821NzVQc9EjzmcdnvvhHEepjL3epkJpNRU5xQZuWdqayIi4beOAx9uvlRb6brxoGIe9x722vsqUpHSe0HOs5zKfpbTyAlXr+zlOx6PtrHLcq300p0KsrUKxNQJWDGbZDPF3eUbl2E57d8azYdej4p5736ajBL6oaQ3kvoOikdQin5xEibUPx2hvbmL7pE8qgkfP+qw6nyusAAFCr2dKo9yRiD8nYJToiIIMugAKe0SHjFTBve0faj4wwqkbiqPnz+IpqvjD4Kai+B5pLm/U72IKrjQl0FJRfl0gYwwNIgkXcEMcWkadWliIuIuGfis+twonReaNMmnWrVMDyDs8yRoFxJ2bwb3Z7x7i1SefxeH1vd7P3YdPo9+SMMOFRcyIbZkR1P0XL+L86ovYPmVMfhcTBeR0VCFG0hTn8GkeZM1i4+ZMJpqyCTPUkBxeI3MyP8ecueQEich3GyLfaJwtsuOatnddNIzmKQAPcPCvyAg6W11k2q4pZy9qStYxPtD8n79GA+f8X1sUreL7nzzE9DduolkdklBTWbgmvYpftBROl5/BJisPPklZTH3W3L84QzmOUcGY0VwGOWOJGtJlnVDWnBU9Y71CRjHl2MTLxqHP+lVL8QMpY8rKPIncQtusRvOGn3NzcT1AFu3bYCTMA2wfdK7s9cnJsc0HAPWStvf8XcVbNCKZGJ3ej08k+fqceJBBSej6jBoSa6LSRSNnw705A7bdgviFHHfu5i28MxwtnoQIsJl1qofathgyZ82NTAjtogfm/ljMoa6T8QVw9B7fqHX0t1i0SH4r40+lGCR6hphEKCL2O0Vu5TDACkYLopFHFJ2XCmA4iCWGLqVmFgJ+kIu8erGy8UaYqHA25CogtJgyRSFHAIpYSv8x1NB07S+b9+Llw6sl+EviknfxVfLlLHJKdrT8Ha9zxKcPc3z+OMb7GKxW1rEsFBK5q1D4tNDRkZ0okBOgk0danDuh1l4rQlPrt5ZiM5s8q2y9+RRUyO/SVysJIb3eyoE5ZbdVCPlzpDluchJt15QCxowYE58wi0F5/OW36q1eIZd+XCpC0r6ftiz0Z02GiYpOLGk0D8v0Cc0MKJLz0IM3JKeCzILWBl2RcFlsumXyNeR3ipBefLAlhcN8QHvc2b2SAlZzh+Sw2tEzE3Zo3pKC4GxfC7sk4hLaY0RK6t8rRFICA/arNNW2W8zFp08IUn4WpyYVCm8KDutE9Jy0m9K0AyNnDmVG1bKeSBsJCnqJDZJnq4bTv5T/e7Gf4wcvPF345rxQvx7iNDJmY+BKk+Ei3BhGCg+SY2WkNjl47GErssmh3HQagesaL+krBg/UnGa0X3FvhS6qQUu+nvZmnkGLGpWgpwhNikbfMxTF9hhPBX1+TdEeAl88Rn2bPpp5FceHKbo7p5HY9ucC7uqT8zwKmfdTbV0C4o9WnqfiD8sNAC67mwfFO6ZPH5OWA5+dN/3+k+gwdB6mGB73sb6FV8fI2RZaVsWjJGZkDWpIKghUIdDSVIfnNXY/bn9EFbnSE8jeQcghSKiSP1hbABVEVMopgAkFvn9b6eLhM0KN6vpNjMfX8eYXX2iE+t6Ht/HBd78VLT55M1nXTySaOTzu4/DF6xi/+EyG1+2z53qf+/tX6rBmVLegq0K2vaa11uDIYuasCSeAiznX0AZE8wAM6aC2jSrwmo2N18v2R2lKJxI3oJUk3QXKE/SlQ/oIiu9HkknuOuUno3vJLuJs5fnNYzq5/+rXr09yyiJOuqLTOe6Pq/jjT+T8umzYdTZxCJBVp0I1ydN0sfLg0njXIgkuglynlSULOfRiT1Cmzy5zzLJQmIYMD8c4d05dmI5GpOB70eHIakFdE0UfXSqjqVyI/M7UgutmZTh9FXtW/vlQ83X1ZqebtRjbUnwmF0HbvzkZFpBkwLzGQ3R0rKRL/Jxje1LkkrAw6i4eYqVf0NXAH4S3l4UOCwU0EARkbTjHcVHiGvm4oeE7I1DJSmoROBSyWDYSNUJf7sGiqtBLCkex01OhNJ5j3GFFTnD4CVV8xnIt9Pgkkbtg1Z9eRb6JziJSe46l+VycbOJpVsIJuch0Z06X0LUXJ+z6/ufPS+Ug71Oimiyii9sl1INUGRmcJrlYqoWVEI6/8wdYHTjCr3Dfd/p11TR9xV/F63Ed+4nniM0d9M1iI32PUDKr6cTdoYB35qCLtqLv53zwOM8SJwhpS8jLBczb/MK6cgvSq9/ne14WExpNcQjk/eG9peOreYNFYZXgZ5YK2NyoQsj8fhfKRnL7eNaWAjFHwIXH0yctRVe65ffinnpNuuky1cIZtbazYB2zFigKZSmDYa0NihZLGNNBkpivbNBTHDIuag+a4Fhw8ZIPOuhNRSjuolFXF5T1MyrDV8kf7APJoVv8JoWketSuwxgLDMjs3OtsBnKIsAjqZCi8nO4p8LkqtutrF6V2RpZZTJDCGe0/jCVBUHmfbTyMpziMCFqhS6C05EdwYGXEZvqkvthH/OBlJSp/M15OGqIZsBCQkamKOhXunl7ZjJyDN7myFCTw08/w07bR9ScVf2XC7OueAir4f3m1zeszPUl/r0XoyY4mGYzpKO6y+N8wSuXZklVINePmyfrkdoOg03GYZN06tX2qSW2QfmQvTABFalTWnxo8piqoY3O0nLY//nRZ1CciSjYs/9tvOvEV94/QeVyQHo+MQK1kjSe30dOEP8qcRlQHcYU14l0LheMz4QOp/SKFEtVNCgkXogVn3jQJPaOZrHOejkaxMYmfpxhQ2HoGvNAcHHDgZpGR/Ob2SezHc7z+4j6Gwz42m4gP/8p37FOr9Qc38C5efPYyXv7gh7H//GdxwtT6/acZRA3AcY7h/kH3hmsGb5jrMeODKJ6nkV0Xnil4zNz5672R6VdR3HhZ72WOIH/YpflzcrF8Dm+6WG3vxAuVKIVfqfFuTku4/9ROufOd9i/9PH9to978X1mGMCaYVvHPfzbHYd6Ie6BFkcVDZfTq6xOJuWwF5htVMebxZHbAS4xZkZZTJZj8H4GaMsC0aaG6Ern4OjvRN78WFt5APgwQChjxuCga6x3JXZ9FnzL2t8ai9cFFyDTPBxNqRb7wc3lHMwdMjjvy51o8wsFXmbsF99r2QmH3y8dLvqKuEVyPU4yrSZ9RXAE2GRnRmlAtd/wyn45JIzTxbiYy/BinOcyZxbNw9mocXobN4ud5DLy6+nsVrSpUMZkMmWgjO29aIm4Qe4zqosRtPAGpN0sXt8JzsCFOyBwD+4NBbiZM2ny9pmOB4uvHQW8hQof69zymYvRC2nXySXIoazifhvcc2DKbTaFQFZlLalRyUTlI2SSpZffnJn7/Z4clF7F+3rv+qjHBV71E4BdoNvn5SNGBiommOKMuzuSKr3Got3YV7qUYzeIM1FvoaY6jVFBX5ENxNUulKLTHcYps7DalTWU1NylHZWz+3vywVZEVrmPQclwvsQJmp6nqk08diTkphODeqilaN87Zlc+ajczNYQQpzsM246tAsfj+UXwcb8qifJJje/L4altWNLme0xleox6EFfxeFZqyhHGWNIfbtHI4O4cRzYS6bFk1JMcvTY99PaoASLQlr5FC5kXWt8kt5emmp1AvPbGpLyMqem3yk8bQnna4w9E4RxxNqx8pouECItrAlkYxUkLRnfxhA9ysOLMz9HNRNj5WF2uPVZ1OUeOUgsf5HJzlHKD8O59PtIKy1BHfykqu/bJavxkvDt2J1ImKSWvIdDXn064KnFWTxA56LqqZTXEF16rdmEdnnmj9YxqFxdk+zFFdYpmiCNOktwgOkBKWewGya9suIWurOZXtSXlp27gBOSImTRQfvt6oXAcgsOmi3zbRwr/rMT/uIu4PbsgYSQqJ5+vt52gUfSXBAwAH/Lu+a4X4M5bkn6U4oWECcb7dxJYYtx0xYRjA218O9Oy87WL19Da28zGGzx9kvaICAzNqsna5rlKxG6GGK8y+s0hUQJ3TcxPTf76oaagvKh8QXqD3Majmm+42J11NjPujLGC0A5Ge0mK4/ESRfH/+/Z9ofLvZNPHhX/1O3L73gfAHNcRtH5//7NM4/OBPY7V7E0ee4zuu460KXkSKa5TDmHaz7sYhhsddDHuKUIthPB2wWNOuCo7BLL9cahOhtTKAp0bqTOeAa8zPSLqVzuWMpuT6iDsvy7lTNDdWK4M6Slyi8X9OINIb8iCbtvvLGO3rimwz/2eKUeOXKe7HGxV+m3mMWYaFRlw4jPSAqao3fCz1ScY/ScYh2fN1luol3sadbELmRViW3xB5n+b5ADPT5kMQpfij8MAkeN0baYTYavIriBqKWY+NQONqIz4jbVfnbXm5fk6hA3D3SvUps0sWp79W3k2CHz3i4W7Kpy/p2fYv8o2mM9Hnlk2AOxyNquUjZv86CnSNeTE4JjuRzVsoKb9nEnID0Z6ihQeF4rAsdHWN1WHwRoCKfVAZjckRjw5iCuHyxrMhs7qS0xx9g9LYfD88lHjYlCt4iNjcrqIjy9J7hWH6Ct/GE4pz+1gcn3OME6hlok6wczXCZoSGkpmN1RYshG47W43YLo/JUhe6EOEvo0IXeGVd0VwprpdCRCM6b9jlUSe4XXLedfzpT1exGyiKjpeglW/O+fSVLz7rp49TnD5ydJjtF2Y1Omd8Fxn78oUgCsk86VRwlX/cxaTZHCMLqvRfSZ0oxZnH4slNSo6uU218GDpZ00o+E47T1y85vzpk0tpF1kU82/QA+FwmTcHTgUzTEN/FxaANyemU22WDLA/NikXk63oKnyRZ181VIZNjJKXmpDJXa0aFs5F8i2CKruF17TFxoiVLkzqp4EuKrg6sDFtYxGwejuWe5ou5kPb9MavfvnCNddgt6uZznAargoXMs3Zks5TxdosSt+Lucl8VROmZb+IFKXhKtXWq81FI2v7GSlEp33NfFW8qveYq3q3PqcRo1pi5jfAwVSQaeWcKclBBTLpLIay/ArJ+V1587mGM/XGKzV0vjuaKfUQ+QhVMZVsEGik3SObYlb8lxQxOBNNwjvam6DhpwpuCJSV5oOZNSzJtS8o/L78Ii4Eo/mTpc2ZMKjK097Ns9ucVqNuZ2iTeDKYsjEeEcxHde72oChb1NCpexuZVjLsp1ne+d/aodeOsBrCbY3jEf8/qYAvvnIVuPQVTgFY0K1vUnKJ7ehOnV/s4DHPcdBQg2LeYLrV5706I2O3DY4xfnGN8/2lstjSkaBRAypMKlNw/fmcnIWKK+TSWIA2kd95zmu9vt5sY5ojDESWtEcSWwpjikZFqmkbT9Cj3nmLw3MQv/vzn8fDpp9Fv+njvO8/jvQ8+Qmut9bR7s4/h9eexfvkquqd9HG42Edub6J5g6LwXAkyTp0aNd0VRbGOJCOLiuj46msuykcJlQbSxpEpIiJk0lxOCKt6j0TpNqzS5KJVz7VMFSNkZoNaXcpn5WTvi4zhPmVx50ql94BQy9D+Q6fhrcGx/Y1XvwlM7R7x4GOKHL7v4D76d5NTFKDaNUfXgX4xQ+edYaq8k9i8/+y2PO2/MWnOlyM1iskzZKuCcAg1Vkxy9B7gDyKIVXpQ/ywhSpW5oL0zg+zozdiH614g5Pb0Kcamxk4KYQcWW3i75PPJTSv+nHI+V6lQ3MvlwWuSMdKn8iZaRU/5ZRR8JE3aURvbt36XiNf9cvU6mZ/gBsX+dFZbemMybsr2NJf6XkHgX42/teR53KzuVoh1vszZGYoxObXSoInv7+8kAWya+qehF2cmDiNAG9JBiDmsXFooKXx8mjPxVhFeMFQV/y8EWcT7yUbN4TOWaSdYmpgtfTv8mieTy3shvUAbC/M60AUFgkEWhFpSMq3NMvG7jX/78rCzHQga/sUXf1fvm6fjjLyL+w9+NuEPZlkkzKvjF4TlHx4GkpZBJDvr7i8JbopxE/ghz91eWyjQrmqKUJGcO1Iz6UEILmZuDNJtDyLOgBj0PMyEFGoWgmPV91WYtovfK+ZrQa9Mo2IdpqVHzfutN2cqiElt8gF0uiQouIZx+BqqAXELRK7fZcdrmCWaKSF1LfnhHV01PUsITChw1TkmLkN2F0TYObozAWw7oZETymbPlNGUhC7RCiBabHHGCc5QsVXqO8eB8LSDrSQkdis9CLc84mJEve6F2buLUjFqCMLD+zK/2f4Py1Xh3oUJAiaKJlMqUj+FGE3EeiKpQWB0mfj96NvK68vuh1fBcYOsFI67uwzCd408ftrFKK4nr5fW2lO7delmQxIg33RQE/FYbSoOKcbCnfno263lJFblKe25v38RZ/mw5QUqFOQ0rjW2Zm5kvTqFIJKKRHU9j6vkB8ea6wwdzmseSnZ1WPtyTN8cczxIJhjL2dhvnDkGe37edK9robzfxuBvkF2ezab8vjV/lsED57o1Ro95EsVx/+vyi6ULpTeHRkACyWinm7PB4lM3JpkWdOrhFarrYfuuDOILevdoLmZ+ePYmb2z62OenCy1MhDKRrnJhg0VhA07K90XgYY5iGOA6D+bfzpOaE8TL/ywJgjIsSV/Y6FM0UYSwKJk4aZTfx+cefx6uPP9FnuL3r4vm33oum38bjfh+71w9xfvkituwP793E9ORWdi4Ur1ICyw3R5/k8giYySp9tGUOBx3k/zjFjFs38lfoCfK+SvTjTRHfhaQHAaWJ6GKPdmAuvry8xpaL9Mv41xazYqdlX0o4BrkHIlW5jtT/FhEUF1y+fUxrh6ZE0kl/PQ/M3KvzSwWAZ46L6+vnrVUzfxssqiehXyld7TnlBye7A6gFX9DqseZizu8zUhjRP1w3ncLAs3gcJ6FYR8os3CCpgIxirqShe5kMbDWQDxBFZJLKIRKgVazYXZpK3eZW1Rzn5q3BJzy/z+cps0p7HFlYl/Jss+QvM6zGnUzku9hB6nNpGD3BL9MWQdjb0K62hYsm2BT8SwQO0nAeyiL5GQHWNUxovJEBmmSicMGt2xwd6oNicvB9V11pvlKtehZU7pOFoHyACp8umAgNoIWlSIpt36FGHfx9GuvPkBBIOG21onCxwAUFouM7yvuLgHFw484A2HPxkqfrhXvVGOlTkpW+YxtyZQ1pG2xaTwtfzJrVsqGWAelEO6DpoTHOO+PxhFZ8dUbAxpLps+O988ffl0/Ktot0o68evz3E838aWMTzrBWQmSdoKChcHIq2WErlyDZWyf4zLxRfGNiSLZw6+9D/klbSljFpz/JtysinypzkIask+3Zm8ZVabElMfbKmCF6ruTY9HELqGEKMavcIpyjW7jHrpooVkeJwrJCVTMihanPXrg1CD7CU1w0IrL8+aICQhm7UBOi1esE5LjU3hOOpwSptnvq42SaUllH1R2sawneDxZ0GaiyJJm3jmWY/irHIwcSjnevQ7z+bY41ePf80nZoyldS7uPYX0OTardfTy2kxEfYnOs88l95zii0VSzRLoik2EjUTYlcXFPCPx4ntaYJMZl8l7NpLlsTzvWAI8677sQ4oaeBHUrePxNMff/dHrX/4Yv6trTZuL9zdTdJIRqj3YGankYM+Kp2MdOFHJyTS576TGCfAB/zd50y0c8EzHyYQcXUuN6o1ai6pUE6F8jrnmjZBTCqKMPqPoIj6QLi4za9XsPILwrKO7IW/4HD3I0GjvPGg6jFpOp10MR5BjCjfTc6oB5ClHTWuONtW/G3rzAv1MMOoGYMFGhfFsTfC0FcCJVK4amc+mK8BN3X70UQzxRYyvHuO0P8au28SwwUh6o68XfngY43zYK91qNQ7REhqQ7DOGnqIfITRK+pdcH9pNxDyI7zc8ruJA6tXTTayfdbJiETd53cbjy8e4//gTFde3d9v41l/5Vmy3N7E7HuLhi1dx/uILjejj+V30770Xe/h3zjEUP/mErHoyeo2VC8Uvti7UDGDfnXz4DEjo+cb6iB1E6DqjjLQC0jVkD5tjOg7RPnX6siksPofx6l3yu9Wccz98fuq8yqZbTqJM7rZ9zAfyg0+ygakkpfNxH8E/X3vhVyPf5FBxGP/Bz+7jv/+tiH/7vVKJ5g+lS7j6nioWLzGO2Gt4A/TGUAay7oIhmqvoyzmLTJqTka6Ly/hK/74WAsFFoNbFX2g+jjEdbd+haJPVSZ5e8pEbQCFSwKBonEwlSMXv4o0n+BQZu41JtelrLMQBadm/lYupKpQ9CkUbCwsvNfvKcTCp9mXRUkiSRi0+wByrW0yqK/0DBZA3Fq6dO35AabgW6SgvONN0dXgS8KK4CBY7eHTLWBU+F5LvOo7ZmXgWG0WmpbN4okOKpVHHC18xYrUxyqaCVObNRLRlsZjkYvmvyV9sjNtTHwOqZJ7J1p9B0XgJ+6wnbAPw33NE3sB9Y28ldoqp6xGLgXWs+rLNMGF1iWUTAVd7MBoTG6amO3rxFn0wNSLms97UHJT/22oV3/t4jM9ekM37awme3jFUz6+vRExWcBfX8XKY4/07I1plS7Hc5xz7OMC3lLx+5h0P6M3GCWoXEYcViR6Ta7OXUXkKobIRYquE08lZo9Epm5t+QR+D6BXeE+42xgOVXsG9TLW5nlvxotaxh3Kg6CLec3J3E7nl+Rlz1KvCNBtFDiS/F/OOpb51EmrFI2Rs1kWNKRW8FIYWIlWCgTIv1d1z+OQ1gRcp20pXULbs8I6FFQrfi3kz6KB4xzXiS+sW9g3ZLuj3evCr33eaNBInUEcWGkLFc2QOj7fjmiZpeX3S9b3RYesbWHnHpkVVugd2SyTn+O/4eQOFrnhWpqeozdJ2lfc2M7Y1EWBsrq7AXC5FTOk6m3PlqchZAi/ba3CvHK3FxOGwOsfnVJ+/DNt7RyE/nz0gSZBY1uJ+yuRYNG0+fyuOM90RNmLcT2XJg4qK42fVrIQJHRNAUD++JzmAuq9Wadrz1Y4XFmB12tNdr9RUI9XEcCwriiwd9jjHbLJNcdkx99R5sr5lfduxYQZBa4grBFmDPWabnmk8xw3UKJ5DzJgXykRIZcpzvwJOdg5qnKW44vNipt/EMOTmqUhHmr0umm0fR6ZsGJzLA7HiyuCuraP91ocokmJ8sY/V4RjjcR833TanYXDfRvHdxREk0u3p0xgf7vVZeE80ZB0efF2vEa7sYKZT7B9PMe1W0W+28WR8iNef7+N+mOM4zPHkgw/i8DDGFx9/EuNwiJubLr7zex9F++SZ/BrvP/si1rvX0d32cffd59E8/TAG+OqM8Ps2puNeSnqi7rq+jcNgi6yKl1TRrCxvfP9GIZpaJ+JaMXodo227mM7cG6xxPAFT+sgKTN3xlBaNyp5ewBKSKJ43NW6ysXMOsUzB05kEwZUHhw6DgIPI/gZaz7RjN97HaoZlu/oaOX5XqFGKA3UB7g8Rf/bmJv7as53Cwy/8jvSS0miwuHs5Yq2Z61LoJR9HX+9RR5mTUpz5MLHUm9xAE9bTs0oE5GW71+FCQcmGCZIhEjvJFBrPlg8ZnDbm7uYiOcLGH4qiSUVenriKXNOGmCkSIuT5BoEfGda/ZFVq41SFWgKLyISSUtVGJms4iNvmrUYB5NuD0CEJ6fih6ecn2iJfKR5Asgc7IGmTbx0J5UJXaCHlYiZlFBGcB3XGr6jsNwanEvCzlGfM29vM0d5YFMIDrc1o4pG8FAUSgJRtxQRXAvjbodQTP7/pBInb4gWLCnMeWRcsGjhUPKQaH9GxHBDOkGLgZIKKOtJhWKNhHYgurmVAz+dJlaTUXpk8kQLe9BU2qvMwt/Fnj10cT/slHkyfp4yDv6Gv4k/x2X/8IuLffpIcHsaUWAsMlCLO3+SQkndbhsibi5ZqUZ0/jAUhsZt8XjmrJhrbg0w8vOai9FOxAe+HBuhsV38QCdYBxYy+DqFOptb47aaXXYqqDHZk+o6q+qRE8H2g0Gxs1fUjHMqqnc8Jar7cRziv6gLS+kS8nGreTDA3d42HMLlMCYMzKJIPYYJvWrnJ7YMuIe5SZq5KL5jcUtDm8jCFi+UU4Mzp5SNolMt7QHVvnhKIOi8QCeVjJycaoRvP9xaqhpIePNIF9fbeZxzkwsOLuBFJ3AU0IL3I4/CbmKDABsv4L4poeS2mcETFtegqmdELoikuE6INI/W0m45y85REoz92QhUyF7Nd9kpH5G3iz7l/JzstfLNevuuP4xTPE4Fh/chuIzniNADM5RFRnYc5Rq4iCusMWVLmM/tdm9y5NGsmt5JDn3spY/Xkz5onzr2m+MF/z/xzCTVE7TFqJSa3fE1PMQuh897XqfGdY3xzFBcOvzkrtP3zyiOS4ryPKabk0pDj3OGPx59R1CrZyufmWtJZo7/D7Pxlnl+ZgBFVt6HYTQop6H2PPckce65Hc4xTD1iDO4N5bBy+2Ju0m5tobs8RT/u42a5jNdhaSs3DamsB2LYXZ79hTPzd31Ljg4q86W8dycmDKbED3MuIDuHG83MMuzH2D7fxwfNt7F6+jMfjGC8QIb3ax/71fWxv+nj/r3wror2J3ZvHOLx8iH58jAG7mm9/ENvv/q7Wx/pwkJHz48ObFGWYtnU8TUL/gN6591C8tFfkZJPim3HuhHiKdQwwA8IKQkw1BhrZoIo+xYkRbNY6zr+mwXCzbmP8VPsmrU2sv+TVL7Zbom+ZykMesYVHczR9K/7gm0PJys5fX+FXRV8pQHkpcvy8ij/4yTH+J7/dRx/HRAou44FSeGkM4ymRq70MV7g+fDXKk/9YcQJTopwWJWXxUWRXEcCpzFmUle3qRLf09QEVpkgh1izHHlVELvZURu7KfwnEzIdJjWhTPKHPPqnwqGxQhBZaDKnUw9uuJOXm8thYc24heTrEXRYP2VgpYUFdtyjXOkCcopEPQ44+1YSlWk5GoHJi94Nh7vGskZkVjpnGkRixNm7F79jjT1Y3SmtYxbhzTB0dYtNDIM3Qbi1Mb2gipadZta5T8okoJnT/16CT3kTURRLQrs6UTse+RowpENKI15nGisob5TSj6DgaCW2xnF9ip8sW4dK/UIQ7st5jCBXDCH4yQaK4RLzPI/yW0xw/vV/Hn/5sZ6VrXhsP143Gv9Ov4iPmv+tV77ksOuIc//jPh/gPf/fWFkJZFNqw2ciFimGuNyObGo0vtuRp8cN6qTgn0Sjc4HtcX2slx/lJeeCFqEk4T9mK6OflGFGbpDc3u09VwZGcvKR0yLcsSdM8S9A3XP+5KdM4CVVdCT8qoUWNSFlBWAHvv/cYimZAtpMa2WasVe5FShVYN3L719OUiKBGW06r9n5UHOAUGckcOr+2FMdKDUnRiKkdVzY4TDb0PjP6rGyM4IezluVusIpNQ4g9pyqZo7aZ8afyU629RPeT8hNOrX++Dnsq51zHhZYXLxbE3nRg/7mjKXMfymFS3ZOiShhodLFKyUmRy0YncVxymA0OInpzs/1/+5NjgcrfqBciAF4amVI8d6tAd1b+szoGhLbiqMD4b9JYEkrRiMKWplcUBFt2rPp1nHZjDN06thqHch25ivZ3swMg3nXYb/nlcJlEGVN0wd2hCaPZgVNqClIarzNsfNzpeW62eKsaleUcgNtmrp7HpcAd7L9YEBVFXp+rRFNpDyS6BKhavlcJgnjyNN06xQ1RoTq/oZQQNABCCH3BqO8N3ycgpbKLvS+Lt02DeXenvODuCcVQ7sMaKDAJwxQdRa/Nz8Ei+Ljj4eDM7nPEgFmygBDUvJ3Q0m5zjtOzYxzf7KO5vY3b3T72n34aIybW7To2220M92NMrz6TCvopZ+QH7ymbt7l9Gs36Ru8Bs+sBrm6KJxX3yNpmgiTwpIouurHBY8vZjbL5tJPuFYXpPDm6Tg1tRVdmLni3oely+pGN0L1XFvda43/AEgrMzBkVCKTCPYMbyp4JnjsjerKmWYPDOcYXx7y/X2Phd1kp19Yu/iU/fZjix69v43/w0Wj7A+gt57d5VJeszSKVZtpGNhrVaUtEQFGThR7VdAkmLFqu4HR7tMlsc0Ekk/ui32d/qdUGk7KVCgsebCOOF+8fC4wv0W7iCKTCwEWpJe/q5nNDVYQSRZuUh/BZk/+SVhosGY0cxY/xhu86B0uKJHGnJ5RlKOkql5Cui1AnHPAgGmnI1ApdQKsLq9IpwDFJPJkjgBGniad0sNKM8PfiZawlhNE7Qkks+38TWpNKb+QyVccaHeWh7cPXBwKCFJS6igtLIrkHa2wOZH5S8LYeUTjFKmxRCG8kfxOfpVvHOMyxGiD8sg0lSpOjkhL4uAHOYGzdY4sJxBorv4wslrgPh/kc/+D7U+zyUvkvvYAu3Mx3/PUlYeRbRPl8/58ePPrf6EA2N6/Tad3FQMuQCtn6PvtT+t/lJZmCGhSFemJBo4R0JPcyR7tuY1J0pZvhnF0Fuiu5gu+zgpc3pyzaxROz8nGNiikzduGa+n75QT4t9g12C3GB5qzTpDRI+GW1rZYRB0wWN8Wl9f6QSCPPZ4pGvFe4aXRsYaYYLMHFPmTZ6PGnVD558q+yx4vbNd6a6VeaJWflhJtAnykpJgR6NKT3YPU9+OCOcQ+HAUUf5x3oD+hbidhEDfIIHsQNbj0sVT3zssRwTuyMlZUsAMxxdDRe2VrZush9kZFzzGJVjmoS4Gvnwib1wtp7XMxStqtUyYJhoQhw/ZS2co4tU4PzHH/6Gk7yV6im3vk1lsr1gREfhRMqFgz+OVtM3isuX8XeUXBITTliQ9XGeWOS/pJr3ZAGMkf3BONirwH7a+aeR7MECsTPneh9Oatc0ItGI09XF/Peq7KpX7nQGvFzO1CkdtGhRK7NcUl0Sk6vbLFMMbD9D5xxJiOpMk/3CiY2otxMq+ixnBG66PXKcwJPzpzWNFSHU8h9p/hqj3FIL8hzchu5Rr5+5zgeB/3vpt9qlHomqlFFlCcETOWcIw21YZYbQZmUM4UAvVcDCa8PAcj2RggkIiNe3WYbzQddjLsDUQFxfnmI53c3inntdH6BwnUR2Ny89zQ273/o81tNFjZKt3o/929e6Mxj5K8Snu8RjcFpRHLqmI6xOpkKciYt5LDXSL2U7lV7KLYxPUXdTOWdp7CVrsEjf/OgK6o2pxHVlJeLBj8nqV+GRDgj4Udz3xz9CuooT8bHl0uQwdde+C3I3/KPq9e//8Mp/q2bbdxsDpr38yCLyMwoMPkhvOTDpoKujMfLSrReFwNiHRSl+S4OYCpktYVfBZVrXJu5uWzwFD3exFeyeJER6uRs3HOppZRxmqbIGuNaRGGHdSOTvqnez9jk6TTEteFBkNiPqp+UjDSm1QjNareyzKordtkYKtQI3hSjVRN8/bA7IeTyXcVV4v+XcSP8Aqt3JJaobL4cz4k0rIWaxa98yNwhyITySCfTxfYOriTKLEc72bHe5HojEznSTzUw9iAkpoD2ZSWrjg3+laYkpeCs5Aj4J3w+eaz5ffG29f5kKwPXwYctSCBjL8ZiGrtx+GpkVWIZ80IKkbFw5crc+cIe0EMC2vfJ/Cz+1RePy6hR6sl8FhPAebdfX0L39Edfgfxxp77/aoi/9b49sbhGFAmMr/TZMV/F386KIKE52J54YzIKJkpDWuaIXiEysdXSPVm8jFbVqbpbkoJOhYGFHhQUBF9J0JQKcifG5M/MGEU3eNAhLMryn2UiTvpccs8HfpcKQKMRVg77UBTvjJGkYhVrDOsMZifupB+gbJtYH8mtE/J4samx2t1NjqMKnZDBwywTWTV6NED24AQR6CuTO+PVzNnyreAsUpGXBtJLLVlG8akS5vMdGO/CT+44FAXXpVCFPSDNpqVEdirQqLis4jC6cebQofBjQ8UZgGLQCGoVCydZYNDXseaUYpO0CbRY1vSUqtnCE3ETub75fkfsuUC17J6lJhUjaY0uRTbHmL2L9RlS+bu+oP7iy24DfJ4hdtMpnizNg6+x/y75fGpKiBLDMw+cmmb1FNPB2dWcNYzfu5uI6XGOaUQ4IY6LuZ7ay5zPK7rckRbASmHdu0z6sCtGGa3zM3kfbu/Fgd0TE3eO9r1O+yQ/66ZZx0HG93nvkzsqc3LFxxmpltySz5ipWZx7NHwDx8U4KbFCjXbu5WXrA30PQIeGjcbMoQX+OqeMuCGj+dSKFjp8UtFCwaeCkcKOsxFRXxoP82PgVGoXYvzMLrXu7PUpoJki3CoqzlYsWhTVSsxpv5HgU8kXT+7itI94PTzGej3F3fY2Vtsm+ptOBbKQh/42C81GTR0IpdYE48AjfoemsYi/KlWl/WnhLlJwTrtRcXI0XONxjGaziY6IOoUJ8IMzrCCfHSuCbTOGjRlfAhVDzbO48ymgUmHn++sZYMW/el+z1KGQdj+vp9lpKJvtRokjr2U/8+rXTs359Tl+8bbCr8ZPHs9G/PTVGH98/1H8zfWo+TYbkcLbW7gudM/pbKXswUbFobh06dav0U5alPQkECinjwcu4eN0Q+eBRdTgmDZXycSCoaKTAWJJyOY5tjJmpubvNArlQRTSlQupmWyRovfAe0ZpmyR0kccbDgJzLfidfCYVXOUUrKLRSh4OIMG6bBAqbhpxMSTdPhNMDfDohWTkqpPP3XFlCXgZocpiI3kiQnvsiiO0sgaaPFogPBLoSVWI9Dw5QxDsdQCN4pa4iPQ47TTAJ/FG0d8601dB8mkW6cIqv15CI3dm6jM4XMY2VijG9HNZtJwE7gLtK2T7Hj7QeaSghX8wJmppsjK8MDwLPerj3jlrV59/kwU9fz5iEmtVtp675EimhMpmtRojGv3hvR8UzVY+bev4r350jsej+TcUi+niszy77ywYcWVT8uscpRRf/9VPm/hbH9mIeRTJnlxakECjxond2GJEXC9js6VCh4uyxJJlQ8UzqM5dXFmPi6wKTp4oXyMTUnvBaR0kRaLSPVTsU/Qpsiy9FxPB1R7GGEejXaV2Xy5BjZMTjVIskbiGJqa7WM2CKrl8Qn2THM3BYKTG309TY8VvitMybUK4oX5/E/OIMCpzM8XpgfLgaklK5+I3mvlkMsqVcTvrmEMIU3U8y7YipBo1Km99/h4jZH3daowtQgH2NI1tvXZE5pZvm6OxACd0n3MtqAkFtUcoJhIxDVSa4aSCFNWtm7lSjLrrls2TrD6Sj5iFACNvRFbslhbSSVdpX8RU2Iu2T0OPYXDtE+uI//QXPBsmu8c3dNTLZ3nzeogPbrc2VJaKjX3bzbaQ51SNchckmmra6G4Rxg0x7rESW0ds4Cp3sd2S5TrFQWpsT2KUuJHTBootJka2/BJpRnwznt8Oq5dupfGdcp8l9sC656TnSikdd71Nv5OXh/8gvFKqCwv5bLN1lq9qjjE1zoSH6EjFanxA7BjbGlVK3mo28lnBXLwn4fDKeSKdJsSnnSJuaS8MfohvOhHlar4+B4aoE0Oe5xTQHc9iIzEm3q8CHRDSdJ3TtQQIcZ67REGQMiHM1DncSvA1jKfoGbd3XTzsdvFItnTXxtMPnsbNbRPbZ+/FzdNbNS+r1Ub3a5wGT+hWvX7fNO5j3O+1h+z3B3/+KeI4HiygUOSqTa6n4RDtCeGGpdyklgCwKEELVF5IkIMXWENDTWfnKTqEPF0ja621wMQ0bBZNJfdhVphcThLYKYuX4tfqRthY36yXtD9br+OLL1BKWvF9paD9GsUd1ydRQkL8erqNf/bnn8bvfdjF88ZBwbL0oAjG3gP1yuK9V2PXBPNSNeOixjC1u4j83WnNoYdqpBt3JewxTtlr2Tph4R7xPRlA7wvkzYubXpu4BBaC1s0JcsIExaKLIi1wCtRMUOHiezTk0eJiLis42Nw8LeT8bLXBZm7aRbKfaKbGvXlAFkPNnsrwaVqRXScgbrYFoRblQWeWrZI31BlyfS8ooU1dWy10vpeOijHFcTC83EHUxXA7r+ti35IHYzUNdc9lATOeJRig4wDS90Ppz6mRCEHfYDhSHtknzAvA3EqQGj6v0oe1Z4CUJpMzsyQ9/jbUbg9HH05lV2O/OW2R/hnJk0Qd5ffhZ4Ya8bPhNv7Jnx10NY5CU5OzWY/VUsC8e6/ftCCl0PnsnrB1iieP6Y6KdkobBBUgidhwcOR6WXKRl00khU6yBDHHTqOJRFuL97SkCmnEa2se1izFvQ7E2ijSWd7eZbWG/DtZayARdiBxsUaz4fGG94mewwqOj0Qd2Gi4OZK/ZRZ8Gs0UX8ZMBl8Txkdn1kCKHVTgpgKv+HfnU2xoMhJNB51Z1qzQQyOH4pTS1WOcmuazKtbKpDlVvaxUHQrCgqBBXPYBml+4YPSdfI3I/CAh6GESGjRHE9pEeg9m4ebdI30RkzNJWhTiKRAUiW5K0Zz7BOkkFHPlge4pS47Y8mfwezk4pUxcsocrJiu5gil6kap+NccGBSdFghJ+vGf95z+618/4Jr4uLPRVzI8PsYqny55Uxe5StCXf2zMU492T1JydRvXyd82Ituj72JyPcUSBesdIVOMRgUL2arNwjWcAfhjqUR15gmMTBc9pb/rs6xkZHw4WP+ILl2kfLPJjjlAl7GC5qffroscUcBKpQmPeuWfdpScgzyBFIAKNiijFb5PkC/HRL76a6v4QOaSC0ybUabm1G2MePOY9NWfR6ZXmM44xzmNs1n3M8xgjcWz8RNaZ8JMhzjMFmYs3ABiAGU+NoCA561drmaQbePKakFlhCyrfbTZSHI+HIcbHQxzuH+Jbv/thdM/vIpqbGGMr4QT7yLBM5EITq7bfxHQ8GrCQaNTUEqLgNDtTeg5N4WTEUw5so9FbpSX5rAZQ8gjfZ7t6BgQiGeWm2D6ul2gf/Dmf64pEqgbWdABN/WgT668pTmvd63c435znUXGLfF3bxfCLN1dDoPXXmNVbr+LkLZQq/wty7D97jPijF+s4bSRowgXVXLehjxOOnxpDZMC7ppNGm/gs6fpWEgb9t0oATWfldLcYrxZPQjEp3Ijcc1Q8yF8sO43yrBPE5kNKFibTZP8/xiUWwfp9pgGrYp/OwN+zEDnxpOp9pJmiMK8kqLPpCYfDUiEjbpwxWkIPI2Hl4yWhRSZoONc2CfnX2xFdPWT8Qrw0CrCgRBZBtcBzpKwIq1QEuVs3KsE/x5l8Qd47Pk7sB+2CxCxeeSKJW7IvP8CZ4tsbg/zIDpzKHitxDSxceRsh0vtMwjoRPcTm6D2k2ObL709j9kxR8EZjoYs+I4U3CCvQuFTAafTLQUlzyeeQD5z/TH9XBqubJv7+9/fymZR/1tXY+rqoelfD5C80il/vi9msjvMqfv5oxRxqOok6QFx1D1N9eL5k+F77VSqZRkbMF1GV0K4ssJRnm7YosgwB2aoqkI5f6sAUEaQJ8KIty8xJm4xX3qhRJ6OuiUYl6q3flc+Vn1/nV+vgzZgw/2rTAuZch6xXszPcZmttUujkHqW6Pw1p3Zj5ABdKr+eR9eOvU0JDojS8LKrynuNxqW2QGCELLYtQRi+hA/L4Y++wO6fWOtcCy4gDaUscIJjbkoCgZ54xkZFLFcBLNrI5gh478nk4/Ipcwx5G4eliglcht6zzxQxdy9mHkTxUM7+6BCuMAZ3lXL8j96vac8rknr+v+53jfFsjnWJob2O/7v/ybuXd7LGW50Ao9fQYO6FmqZ4Uf9lFUH7p4pDFy0ptkD4XKc2mi+YGhHyIGRPFvotNh6JzlE+qlkKqqZ0XbgSHLzVCnk4KQnTtFelf6Ws/HzA0PsX6iaPZqEakHl2ygN10lxmux/GmSmg6wx4vpTxr0A4QJ+YCGqN6tdn6CdcJjxLXV963HpSdzFkUf9Dm5Jz9Al3S59O+vDhHWO1+omJqOiGWrNM6C/T5oCJJ7AGSSPGa9Kx2FX0P3eKS/S6QQ/sCTZ3tcXiuHx8e4rAb4ng8uGElKmT7JE5tG8fDQ5y33qNGPjtoag8HsNefuTiz3UqDzY1AnVFF5TQchZqKv0mGqe6TJw8SgbDWhE8gCJpjSMNm8z0tivM6dLNtF4CMINXn8mezF2YZ6lvxvMRDqPC49qn1+vb+6TX/is+w+zgBjfxZX3vh9+Vlo+mED2s2th+/aONx2jjEmBvIKAO7BcyqR8yLvUmPzPfL7Dg4q/NCZdVd7LbExJZisxBnNn2QdX6eqXOpNjQb3YWVVHd4jYERsVlZvejDxkHV4lvkTSjDxIs6MT3hlrHy5WtU+KSYQevM6yVHBF4ITtjwOKkWRAJgVigl2qEYK3UxoGFwB5XQe7VwHVUnPkdu0HwexhQDrvupcq7oNhVMEpiM+uwYu05Hq4DhOzJG14Mq7yrzU1QIWjNv70HeAw//YRUT5s4cwELzTKq3tQBYSOPUgeJLAZ9g6sxPk71M67QE7CJQQummUmSkGW0WLhOFOY0lhxNIX7YBHrPks5/uw4ww4RtWSPVJnmf8Po8ef/jzc/yrX3DPUWjbVFfmvZnqUClM7+xhVBCPXtfjxK/+Ul4P0yn++BPc890Vc2fUAKkgSt9K8eeyeUuem7k3PsQVD5ZiC/tQ2iqFglwc0fKSUyoKDchlQ1O8mpDyHNHy7GrEkfmgyftb9DXF1617Al2guE9fmiqUOlbWMbJysafmAAWD51+8Gv8eZwjjvGfbFqFSaWMDraFZ/PBc5PG4ym0/Jw/mdeX3JF/Ka8NCM3EZ1YhyWGWjlz+LpxbOKy94P0LcVAye43E4qSDnc5C3uhVvzgUyyKHeq/i4fhngcXNl26bLHuj4ZO+PKlZ1uDggnr1CqDj7Xhbo7BEH3CRKBZf3RHqALJSxybppaJovhb8uf4p1ZGqNZ12qD4X8N+v4hx/v4vMdasKy6Xr73r2za2x5Jf9YQrIxXr1xgWak1CO4+hB6+vKcUIPKlINHXtmwRsxnDIK2PNdTnPaniE2v2Ms4HOJIzNkBtSjnAt55noqN8v4zD5NnYpnuWFav/XPaY3Y8ybqju9tEu2XM3MYauy089/XgNgFbSZ6Z2hcZsRo2FKih3ilLRNSoyoJ1BCGfjWIHPidTJjhsWCaV3keG0bkHdDdpdpynWb/dSHnv9Qca3BopV/ShgQBZyqhoowYA9SMOhfHtqKLqNBz0tfAHOTM6jJpd23gtp8hFdm8N/n5dNB2ilL3GytPuILRwe7eNXuNSN04NSRunLm2d5LIdAB8NhSErTwkpjKZNN7GnpgWcCBTZP8gk1pi3c6Mo25aKSs1aRM2jcrs5T1M8SiObYBdeihIhJvcZXYDA3yyA9DX57+UwoPqDQj9FD7W+KtKUD0gD/4vXnHOPv9Gs6DeLbLvy8rtaN1bZJYz6J5+M8e9+0MX/6LvmXTmXdo7YpFkso+jR5FiNC5JUbP/Di4LM+5NHJosP2PLh7f2lMZEEq95htEhzpLHE5jAGYTPWJsxDrrRrHRj2KUifOOTYlQqSOaCUGIVIeYpbZq8Ok9a7g/+j+jEPPGnes2BpVhqP8ozXPWEEK6duFiIh2G3mnRbnXPwKihY/4A56ZwHjDUahlCgMB5++zgeBR8lZ+Iqf1S4h9vMxSefi0NloVohG3kBZyOQbEM9Ci3YVx9eTDKSZDWjkTYSUfNBS8ayoJsLLF1xF14eAbY2w1oQnm4cJJG4lqRPKiUJyF3cRLKgQz4m50cjKm87yP3+nx/zmIan7ya59aLYy/v2v37Tx+nSMYz6X/JCybrnm9y1CiXf4dTGp+dVfBdH/470jjaTixpRWeZso1ezP5o3XYqW+aWM3HpU64QOHyK/iM9lbhfWlzUhIXyKyFQye68EeeJlnKwIdBO9GaLrGu9hg6F7KJGLh/sGJrXQDj3dB2n2fsZQ4nQY1HvkrdSgoOk0o3SoO8Ixy3ZkzC2fXJsY7vDYzeaPP8ZLWfxLoxSZU05CcWY2QQexNJC8qBr/gJuMYhQRiB5HZnBg3i4OUeeTau7IYY59jXbRNr+eOdCXWE1UCXmYEBhTvUUWazNkz8k4PbIlgPDqXWlZIqEgOLvymNs7sX5rDOtVEKGxmcZnzB9II35GRoC1CuGf6Mx3mFKce2cqKQ8Vz+kNm/CbvmWYZ/qWnUj7AeiGn5/iTV0O8hleQr5oAlEDiHWbS6mUTFhuDczGH169j9eFH9lBEcStBnM3vQS9otinCpTilgGaQJePeBF/VMPRx3o52fRhPcd7exPa9ow6saX+M4dhFc9soiYU1poI8XRc8rqfpDxkIcy0JJJgfRsfEbXuHAjLm4LHYklE/SUgipww17Wy5jJWt6GViAofXiCNjVYs6eFZ4vo409vDsiBOjCD2fouu3sQLlonuAZNr2xq9Ft6K8TXEfIEm/juP94BGn1CPZiJNDe9Mrvxg0ru9wFXTBCfBBRCkj8EqTQUCxHo+ZBY9yttWvxnxaWfaa+HlaIQT8MEV/GmVoPQ5DjIdjPP/uXWzee6apFQJOjM2n/aP2vM3tNtbbGwkJ9wdCHkYV3fv9Q9zib8ghe9zLXH3YH+VLS7HHFoh3IA4W5xMoIO+HQjkV9Si05RxBAWgXBeXrUoOkeNV7jbN/ZcAtZJaghczYljMG/Ef2UUfP+Sxkf2RfMw+mmlFe8I+prfY/eVkH5UJb+PqTO64FhVc+fKBvvMmHI75ip/i9D9r4oB+1kZ65eJVw0Vvpchq9edh09xK3tHjoCf0C/k1IcPHp842olBAXSnyhBQjl/abxoRp3vs6mi8rxS28y+XEJ1qWIYwGa25P5G4nuYaZcxSY32gUMrzpIy9y1vORcrSchlolkbzK0LUdsWzHHkJY26cuUn69sbVjgJlqrgnPKhjiLWcgkGlkFjEFhPyjCOXRQTHEaeciYY58kb5/WFI4ZWSU1lf2fnBPq4o8IOPa40ZZAkr0jG/dD7TFITmgzLcQE9BxYawHImlAdjkd0dHyiaaVARz5hMib1KDrtDoVWgKrAE+Fk0jVN9LVmtRqVMxJY7Hsusvl2nuJPXq3jX3w8KllBRXshOXV9qwDP/34nX6tfw9MlF+L1H392WMfnh1X81aepYpZthH+g7SKwIDJfRLwzLAn0Q0xNkIpWPp3euNS0ZdqAJkWleC9uRSLhblQz4kxoF92zn1+bgRtREQ8VwreQNtZnedMlKRwFcdPEVk70tlJRvUSjlZuVGh1GqRQq+E/CU8uMz1IhMnZWoYqqNb38zMV1nFIphxdeq7z2PL5SZFIZlYvTdeHu+Nm3ka3dNqy4dMNoJAhU28rnLvZKT2B9mYt1s0HBm9FddZ3zMsosWtzlCxJgzVOOhCg+kivJQchno7FjzNYvli1WcYqMDkqkSFB/nTJ8E92igJaMDXulRPb0sySOykxyCQJsRGxrmnI4sN0H+/abaOMlAojVPv3F3l5QtcYuReC79zJnsgpX9qT7OJ6/JQ8++TRy6Oc0SqNM9hnUbfKBdMKuro2uG8IJP6+EpjUbIsZGFSTHrovtZhXbbozT4xTz/RzHu1ZnoNdcug1I7OiuSfvyMMd0v9NT2j4lwcIRZowVqf14D/jDMcL15adZoEmwoI6NXpZbfW+j//Uqjnwo5Tra7WLaD9ExOpZv4CiUjN8NkocBGRdhfIS84IgwUHw/VV300LpOXbTDHMN+UELWkvhCwwBPj5nLto0zo2qljrSeTLGfKP801e549amJxG5lsyTDyFqIAk8ed/CJEWSCko56zh8O53i436uBefr+87jpn8RufBDAMx12UvbO5200mzt9tuNhJ4HIHp9A8oDPsOp65SPL8xb0r52jE++4j4lQBf4dwAq4B23ANMYkmgszM3i2FjoqTlSIOcVhxZy5yVUudo5xLeikxvHEBREe18kOAmkPo7PSAjFpCnJioiIyXUwe2S/e/DinYV6fSYb7+ke9yyQqOQ+L2WWOLH/y2RR/8HNbgJhDki763FBJs32wECWo48CzIasLlZ7hjkWdlIjjyUtJXz8dQvnmF3NZwQnJOwBiNY3Um7sKG8ftaGSIqTEu7Ok5JIg2OXQinmY8Sx2rNXgWInLFx7seQ4pYniabC+NNv4uHyCTpY6qDzSVMcYQAwvRZKqVdmqJqfOZEqrw+LnwVZwcamWoiWgbUThZGpLWLzzD/3G4VI+P22rzzLqL+FLooo1cX4Pw81FP6CB0bP0UxhZZDqS506EYjApHA00ZGLMpDFnVy4Umpugr7zFmWKSUj2YQ3VZSYhyYlsWoDF336uqukDamvBc9yqPt+64HXvxKjFfGPf7KKN7tMWEh+zFcdOu/qQfTl97cguPqPL83OaiHm13xyP8efvfbYj81SwJ3mqvaDU5yfRqr17SXAAg0ozuZFPSquEU2wOHOOBTOFKDdnZVVyP22HUmbPJdrht85X3FdqUAAEEDOzc20SrOangXuYvNNEpIXi6Xjxc1DGyny/KBscBJmkgcjQiGZujAbJzLNTgWk1oURiOe+2ICXzdatJLG5XqeTTO3Q8sQasENczzKSBokh+n24knZYBIdyehkci2QSSYGKetigppCkhmCclLmhlMl5ip+z4aapAtrXVCrk1AZ89zCa5SR7X+rCIyUJk3oO5MULycrwrJEX2Eb4GTPPg/i7BDfnZZWmjTdcFvCktadOhoneOH78a4o8+95j3Lzy/X1EIvouv1GZn4QpyM8SL+6MKCoticmqiWwZCk1F/GRAg7mNa++jn5XqQwpt7BTHlBkeEIeaB/bSN7vlN3NyRtzjE4RG+eVKJyt0CTivK6sMQh/u93svqrvV4VAp2fvZJogYh2FiqkOSQ1CIdhhkBqEab0TV7MRMm0ascY8pkbH+/96hbSRAZFVb7Bg4RUARYi1tHh/FwTXALZXc4OXIQtO6uU2LHgQKRM+TgOLFu24nLKsMIxt49NirWuIN+UZTamIzXJKuxAyjc8RC7gYSRPDe47ip48N40f5nCb3c4xOuHxzgejvpdTz76doyDvWsZNTeyuGlju93mRPEspS+oZeDdOB20j+2PQzzusP7CQJ3rsY2m2WrPFFtXxdnkmMgyoOdMZJJFUSZLHoR1Xpu4bpiigWI5nzWh9s6vd6GWRtEJcskE3BJu1y7LE0pTmhMwiRemRJrP8fPXc5ywccmC0d+x+voLv7fWcvFvkkxaC4hn5p/8JOLN6TYvdhZQ6e+p/EtG+HQje8aKjTZU/6zLL7KixwhRjf30IJaqMDd58Ypajz5F6k5hSIlGln/yoeews5DvolSs91hRR6Xcvc4vLdFG/dn1xmaPpgvPpcQdes+Kd3PBIs+8/NniEyicPUvL3CwvHWgW1ALAnF0o1ZZ+vom+9b3yNFNzYBSDB+/IGK4Dij/JmobffRGLuHjypsMmRqXWorzw6I5xlJIA2PRM8xbCl16EJswbVRGBlcMGJJfr21FgX4rQEsNcnh8fOsRlKctXI/Uyn377mpv7UIT0izGiUdJLpi+G0H/60MV//fPZuYl5IH9TX1/BqPhLq1UK8Z8d6ejrT0BnGClhKdFqrKskC4kPIHrbP6qiysS1S5TJgiqPaoVoS4CTijVxvNycuZAsykQWpow9qkgXn4U8STv5S4SUqDTI2KyxTY5SZY1ge5pCkDyK9c9hDVFQGX3Lvxdhvcyes+hU3WIXAZc96eengmrZYJwWoChIikEoCy5GLcrg/RbVwiidzJSzmBQCcD7HtkUolftHFZzlxyb/QnwQ17KTohg/kRaiTr8ayXKixPIqn/sy6tNoO8dJWfgx8nKhfclNlq4w+YPKKy6VcPlv5hSDYoJ/pLhEGZz8wh3xX9nI6d6U7yXcSVFkKF9a/QMK2K+thn44rOL1vrxFfwkXNdf0O99qpWWCvA/vX+c79lrSxGai8Ae1sV3JUrwXvpLXvBwqFqWTjqc2NlsK7jHGY3Kht1ulWMQ0KEHJYgWKSlMvQJ1OO9RAJyVenNous+rT+aHOiWEWv45moGM6o/i/TO2RsjQnHfK8ZKxrAQXn6HAYY6TJ5/vg5sguD3PyVsg749JS9/JxyOxVo5KtgFTomd1OEdffbpQPrMi0h8Feh5oW8aySdUwO21oiGA4eii+KR3FI+z6a7Y3iTHkdHg8xTse0AHMBKw4iMWnTUbxAGh5Qtd2rN7Jduf3gaWxunsVqGBk7iC++6fs4I8QCJR8OMU/HOBznmIcHTdIQQ0HHGlI4o7kC1CrG+cMc+8dJDZxtXijynFTl6NCM1EtAys1o+hvmNgOdawUKyoQQA2qLtrPBsj6iDK/ZL0rb4Cba6K7+KwG20gX4i05x+PReP7vqmHSq/XoLv1LrXL9c4HgTtijCD+QXj+f4ez+Cp0OX5I2pppDVXXEB8L4ZGE0s7yQ7bQWRX+wl9GZ5oBVnBOrFMIW0AjZIRlLpyTXMsYUcytgTEIyHQ2kPhlmXDcrzWYcuXxVrddhUfq8KRY0yL8WhN3l/pjJfdH6137ND0hNN0YHsz96yONPrTGgBCIAia1iIjMCbmIZGXnsqQH3iutDDsFNqZStu+b08SyxKdeBrOi5ENfzeiN3BxHulZsDZSKPq+owGSG0WqSKQ75vo6lqrHpHOw6sY11mUF9G7DoUc04oLZl4Sn4GmdO7tTagNQSak2YlcFY684I9xj7QhyNTZ10adaSZxCL3N8Z1+jnyi6lkyiqHnstnG//WfDjGOTRxF/MQL6ZLO8VW883f6dX1WLsje1ay6Xm+BgKv4o58dY6fDxfe8OKEqVHL9wqth7agj98NjtXsWgVKvcl+yS7teF1ajAQZAnzDhv0Z5SsioCDT9bMDmPCRzhGPk340YX18JO8qNEdqRecAaSafVi+yX0tA2z1SKU/+pbSR4Sewhc+Xc/AwNJFDqvUSjpFTQWv1vlWFG9yRqmCKJHKvZjDbHolwnOnPzFZyuY7VFIiKVMX2KzRohB5QWb/i8FGOV6mR7WZqmoY1fakc3h9JI1b6Td1cIn3wEiw+dptXFEdG9s/CEgl3Fn85oI7bY/qE+hpKHClyoJHxJoX5ujG0zwWHd6r3pKGyb6Hsz0MXjRKsQ6/jxgVLwS4/jVxaA767Kw89GOUMmPQR0rugL8pP1+JzmQLZdvKR0TrPwCwE9xX+ZkS4w0JULAgUp01O5qga372P7vIsNIrw3R5lt22Cf8e5BJudYZ7U3m4UqUzxzORrwfGqK4zXGSH4Lf3p2M2ZeppM62r6Jzd065odJiUb8HgrG/kb0Pd13aEkgmtB9tBPkKNlqYIs1iYg7EqQrfmP62KoGybwlRsqrMQ5fvIg9XncUS9MQK4o4iSJwldhGs72NlpFpNNFtbtQQEWHI+1zzD5M3CjLlUMPHR328iePjwTm6R3Lhz7E7zDEzqt5s9LN4b/NxH9sb5xOT17u9uYnT8OCzY17H7vUr8SYRn03Hg7wO48zPQ4hC68do+yHGeS9ep5TFp3U8yqvRqN/MWBc0HoscxB97rGkyMjVHktjHgI6OILPZXaP30QQElA/D7Dzf5XigJdYsKULErdoblKZVeWCp2HbzJ+nM7tVC+dLzrP//Nfr4vYVk5Ut1SWbu2mHaRGU2rn41x/f+LOJvvP8k/vpHj4v3kRZQhYTjd4mbN1YvjC943Po08QUlSM5OTbj4ClRnXNejIt/O8vpaJ+8Ojp8c6VH9aaxi5MJoVXWmHmFo0shNcqNziSXKn0PlrqzhVEDWTF1vJYvF8hdkA9ABmAiixj7iLqbXIDfXgqIcUZcHmVVPRjod0C63by3iVjnEwPx8Rsv86bz9QK3OfazXZPTiCk6xR1amsxanPVDnGM3tOk5KFLFNgBJOFrVawpG5ia0pNs9jHLBJUaHgBa3FvezZRlFl05oPp3iLGAWPPPBwMzRX0EOpUeMSx8c1N8QtxRKjCoWUc31AJ+fYgvjIly4RO2lgXKTKGV2fG+f4ZvFX8hPVxN/7YcQjJ1gcTDGoB3xJebna6OvhfVdfv8F7+7L049N9xKfDKT7Y5iGdaKkaABVOesKkKn2NFYQsX4zGcc/kiVfciuSEsajES+M74dwouol7hXGvnynQBJ7jjvte1AQ2UHzmJEuwqMgpbcZv59Ogw0oq7hRRUIBsKDpknJV+fCrqrJQ1sHbSiLVZdzFwkDISbiCfX7wujQabH1ScAY9XHE3Hl4A28pIWkzXXtkZVNOZzDi1jN7ptxaUhjMD6X0jZWU2cGrqmjeOUqnxxGiO2pKWAtHLoovrMiLuyoynk0QbmPOtKZ9V92Ol7iakzusNe5SgmjFwdkSaUU357bjSVbiDqxSkORO7V94jz5TU7sI9UsoeaVJupa0tHTcnXpoo33V/yIfNob+brSWdAGLRbx9/7V28ucXVXZ8RffJa/ShX4brxMFXH6jPgpNA/jFIfDpKKdkaHWTBKRp7nRsyD6XPncia7Ege0INHvr51rLkaBisEF62B7VgFvVBoese3aK4c0Q+9f40s0Rh9Go3hZhRGN06ULo1j8qRZfpycUFYcbcGCR/0xk9V+MsI7M4dX1stoc4PEyxvYEqhOsGpsl9ClNMHQCUsN8n68ooIL9DHrqbPrpmisObURm3/BKQr03LM2X0u+v6WL+3kYH1+QmPvY2mneGOVc0onl+zeSIxx2EYda6B7HXN1uNmHnrUxcOgSQWNPL6AQJV2MsG7sI37n38Wm76L7VN2jVO8+uTj+M53PogDqSik4KwpCLtY4xkosRijaNKq2hhGgKmIc9+IkjEdQDBxRsBn8Birdhun1agic0bQcpqiv+nNAUSYmvQVnfO4l3A7BM15E5oep+iSLqWGTPd99Ofj3reNBWwQWFKp73lGij2Lz6bz1IpgcfirWQX82jICz1Mg1xq1xP9vOH7XwMPVvxcaaCrAKfbTHP/Fj47x+c6oQv3lMhqQ554LI5SuFIwD8nbZvdixfpOBzuVDZrsXp3xIWZTInLpyxSV5vMF7kPefm7XFjJMiQ2keIlua26Yg7KX6S8Vd/jx76hSAICtXH1R2sF2sWJbRbhaahYwVUrhwXq59zK7P+HT3lxpShyxz/LMQNMxB4R0sN409o6Uw9WcXikzXDm3h6AO3vWEfs4VNVQaFIHrzSYPkhLYlGxePAMKvD2tB0UJMzIW02TUPIUiNeSxiQAgxZGQwxcwKzu5Ze50lku6k06NqWJ1UEBDLZT84H1RA6orWS5NvHYjlZ5bxNbrnZJzm/aFw+P7LPv6LHxhdvVzTy700QmvOxLt5/PySV73hL7/xq/9+6/Po2WviX32RjUnGF/JSgkxlLgutSjmCUNmKO0wxjW4cYqZqAK5QPwkv0lZI6LNHGLL70LpPC6IcCREtRIOzqLTr/1SUNbYIUYFv3hnPCDYos5TkFJYIOTx23nCg5KIVCiNhnN/LAQViPuv24ksLn4ykO+dGqxFaWsoo53kYokWZn5GKEhQJSU6lcBZ3Fc8mTqLI5hmRJrGnm5I9di8UpHwtvFVll9qSgf3sOJNnm6yyNEdWzZV7HI0u12bDBbkS7/D5QIMGiP7wMTVFIPHAvoD2R3NsXsW9uZHNBkuGz55c6DNRVKaNjb3F7I8mgSL3IdeuDpQcY9eQBPSVr/gxaM6X0m8uVJUvo9Lv9qorNpUfCoQ0QwyHvQspTV5MOfI+yP7tKY/QPEnOk/u6eEX52hd/U6ZXmvA4vUjjP1loqdVSM9tv21jt72N8vbPFC9syI0Klt6RoUP/lSQfuCoz1oUlJTe6bI6S3ATw5Mka11QzvUzzqpon+6cbG0m+cVgHnDgoRNkRC20XtcAwfo+0S2BkkyMlet4mexvK4j3kAeIC0Y6qREO1pFZv3PtDPO0yYalm4pzE2UWkCDFA+raLZMJ3DNw/gIROo0i6l3SKIWauxmvaHmOA8gtAJ+eri/vP7mI/HuH16Fx/+1kexRRCyf4zDwy7m/d4pIWo6pjgzNWhIZnsw3UU0i6SncNbwUwdfe9aKvTIHWdooU5vi/a7X+p4ywxvUX+1XepRqqigeNNOvORrSPzYbG9hTIPedU0e0poy5mZbBn3nNF6+4UngAmRS2oPXs/GxzAs3XfPat94WgOhbwYoX3tRV+v4ysu9AZEr5W4HcFi88RP3wxxPe+2Coblr8Al5IHGB9P3oQWe0CE5SbQ2XvUnXFLJaiokPicqTsq1uTvcvN3fNFKI5r9IXNK9ebz+5PDcsziUnzAMRM6VGjUJl+cqoW0Y7+eHOuKDMvIWboJlJLmuFFM6sF3iS6vOZHPM4lAvyeJmlwfBVuL1en3rlumwsxmZnXzfQot6U9+cKioMmzbhO11jAcXZs0GH4JiD1ksYTWYPZzYHIyiJZcgI82cWJee9Br78bVMz09COqQAk68S986HMRwLZVVyAQRNoBi0fYSfVdtJmKNFbB2jppPHS+rIzjGCdnSruD/PcWDUoe7Pkv1xMZ9lLOcCk4JQiairVbx67OLv/skYrzBILcHMNcdSDheJcP6axNd36fUl/cZbf24LoS+5Uscc//DjUwzr7iLkELJgIZHJkRY0+bbk6GDhv7kAcoZvqbf8d8rJ1Vi2tLBuhEAE7A5ERjYdrB9WinpMh3n+NGKVMav9vPzeNKg1l1cFxaWDZoNjT5BHZVZzHDIGmsmYNrrltWAPQHmjiXOULJkMe9eoSmRw9gnslJJsLs4NIzhTHuSEn5/TiLiJ9ByYHk/70LXZ8Tn2HBLyLxTDROtKakbBmoWCWuUJX7AKYq3YLLg9onPsolE2lcuJHnoPkMnzbDsWRUJlgUqMIXsIPKX9ZCuf+h2KgsoR/iJeS3sPKZfrGUp/UX6efAeJ/LvyDwStcs8OImr7En7m/+UPj2lG+5s8xe/iqxiIdUW4PmM8Hg8xzPZq1DO1vH/NP/1dmSYlMSBj8bIkS59XP6sW8/HsSSDCviybJV7ry/0dsfzjQJyFzJ7bPkVY6U+bfuJ5hzXmVEHCexHXO2kt4lzbfktNGUWfGvpku5JTe7d1wg+cOdkdKUrBRT4JGlKdV/PAHm0rI8cc+v3G5iZWW3MU97uDvXDT3knBCv1Kub/4D4ofyZnLGa/0LNIdnCZFwdNSuKSd1HB4VNHkiLwu+ttn+vpOXsCjfg/G/G9e7mL3+QshkL/z138nnn30bal34Sei5G1XU2z7Jm66PmaphVvx+GShFmupeVsUxVyjabCfYJlnD8SRzkIsSfbQ3W6ZwJnLx1koepN8Dp1Aof1H+1ROOo6zQBssnZzz7P3AfGijvVqN7I9JFdF3Fs89+etK1IFnWo1YimXrNHv+fBt3H/1WGpDWn37NiF9ldC5LptC+5CNnvKxe7kojHuZT/PMf7ePj/W0iceUTlcWYlJx0pVPsIAqfM7EzbV2uOLS6AKXsMLH7Gnk0f0nzeSlQkwyd7vxWuVEVp/Kwxg+p3l14f8mlKlduESyLAF8Me3XqLmgku1ZtCAdilhUJ4xLZXKQX2IL+5diSILG5pcj1xuGi9ArRk6HxYtj91rZpNdlKHMYOk0l9ERuHD6ruhuD3C1nZ9w1uUHKL8mDwpwatgGswR4PPohRj6XdWh4v4XOYwMnaWl1k+fHDtKPwsO/caWIMeXpFeQWx4a6AS4iuA8mkD1FZjBEWmvPZehMsg5JeDjJ8vFMXcJPvAhaJ7QKII7P7Dz9v4s3vnBC+O9YkOf/m4sWfxBYl9V4+iXwpNflnU+1UfYHWOV8c5vv960LoS8tSu5U1VtZ+Lu1Q9U5yxsOR96XgzOnVPJxI5TMRPSQ8adRoBUaMHL4d8bTtOqRsVQ0j8MO5lxeoYRVfJqCg00wDEWYX2IDsDH0xevTakdUboOnptkDaJlqJvUfh6FCX/vRT6VMHm95rTAAjU2niTapEotrpzGR97tLpasrcrvzoLpzR3pSjkoOX3w0kazusYJtCBJPFoNpviL3MT9NxTGPJ7pPSUr+S8XFNd75wcVBgYr3Fax+FYgrYs3qGLaJwUV2K0Nk6DbZNYkwgF4PGpEEwxgAfkFNRVxKSxbHkogrTCAVQBWS4FK6GP8rJDfNLAIcPyqY8/ezn8es+sHtT4BrwWGr3e7/BwkM9bPa+yuwIxRd2tgp1zwd9XNmAlpHCvlApN0/3sI8o+TSGGVRXedKDZj8cYXu1kQEy4+s17+G7R9oB05c9JDigNtbZ09mWN7Pn5/juh88nnNJfavDjEHAh31OxrzJN7JGeYEGafUxa+uwgSjxGx0zgpgclRgj4DjnDjTscYp4OSY9onT4N8pt0DCFsajSu0YR39BlED54cLY7j8oM80KhwW2BAhfFlRnA1jHIbDwq9lFLy5e+prPzL96sU1pXA63B/j8bMvdG3ee38bNx9+W/Y0d7d93Nz0un74ED59/yMn14xEyMKdPLhgnkf7AI8QNuY4DkTODXE8DLF7HOLhYR+P94hHThqFX5/P1APw62lRW5C49Dr1nuaxupbnOEjpLM9c6B7y/dUt9jRSQzBAsGqk7XxyiaA1D1qThUQG3Yzn0wowlPz3D//qb0uFfBntxddb+P0y1E82AzXJFXKXvnxAx6d1/OLNFP/J77+JL+Y7zfILD/dowWhUf0Plv4p5xwNq5Gw5nLP446ItOYmJgKnYW63jKFNNV+RKd+hNqDXiQDSMxy/1i4tj4y7pQoA/Lzm6WfBldqd4OomueQScnzcJ887aWAnR0s+oaCvgX/5ecnRbzWDWSvatrAIodvRAXUaRxVWSwjLPTR56OftX61f3A1T86LSLnii21shXVQWVo9vABcq0C3md5fugClM+oeLoLshYFaxFsJSX2JoAe1BYNovWh6zQCH+PikYZ3LK4Ib3Di2piz4HDSC4J69wnR8gZeYSMbosWxgh4GJ6U5cw9xT3KDtmghRUZZu7Z73++iv/H9w7xeMQXKCO6khC/pH18swC+X4nyXX+BbRu+yjvN9+tv/+AYZwQ/yTPySAkXeiwSCr/AKR/FqQPa6X49ikw17fq6iE4RTQomrLbGt6zJtAfEgSBCrF1bPtS4EH+4apbgTImXm2kcNgK4iKJcOzEiThScMWzW9BqXwf9QX+U4LX8Q56QiTFTclkY3FyFWWbM4DxO/fj+DoP4i8WfEI2IP/llG0bnZYoQttD9zq+Wnx94CIs14ShxFr1Gey2SXLAex3mce/KoFNA1xfqqb5rzeGRM3UiAqoi0PcLkggICY3MX4TrSQRdxXgiuvR76P4s2mK1Yf2yaJsZ8TTVSw6JpgX2G0Suk6qC3VtDv9W9ZaHF7sifI8Xcf/8Z896rNfbGniG/t6m0mRzyTXctjFfjiYx5cG5BZB1b2E5+UCpnz3+EelFQi0nhSLP8RJBXnVfzuD97QfYnh5jNVusu3IXRvt3TZWN09ie9vF+YjPJhZHnkxp3SXdxxzsjOZKzliRYeB+SmmbAkUpQA/HOIF2adrlPb6BbgP6hWWLHcgNfqh59/6/7hiPUmS24mKzl+hTAmUlhCmrpJtbuXQcHhghH+PcJ1d2zagWT9hRIg/es/EJVNLQLCbx/R5297GbCTpAWBji0Z3OfQxvSDo5mNM6u9GY1328eb3T922f3sb7/85/R0Uz5/PN7a32onXgd3gTw4AR884eoog2DvabHI+oeE8xDgcIh7FZnWTYvDrBmUcdvYr+1me2ZhpJJ1GzRlGp874T79BDMkbmaA2M4GPn1ONdjJF3RZsmk4BIBE2tzIeTEOhatMoeAU9f+fPnxrZc6X+rPc92fX7Wstd89vxZ3H3nt1wZFaH+30Rk2/UqKkeHJPqZ9xPn+NHLOf7+D1YxrLZpWujsXsHi6pznWPcUaCm9ppNW51mz7sukqiJMimPmwqN4DulhBRcmzWvd5frvBdGmr4wOJUQgabQoom+iBY5Fc4GoP1fcr9+v1IS56bHRSxFHYDZRUfh4pbcRKihfI/NrxIPLg0aHDcUYXMX0yjKs6I7ByKbHceKKYCGgQsnvT3YT4vTRgbRGGYABy8RMBrzpT5Wop5+LlF1wD4jOkdLFDy8fiQNDtg4q/HjQTCgXw4QuMAn4AkPmJk5k8koQA2phrqA4fyRGJOorvz95KZobqYOLKKnMdFX8XtqI2F7EG4QoA6inRh9qjqJaSfX88rCOv/ejdTwKJXEhMl8js1cijq8Sw+rJeOe5R1/x77+qm8siin/+7L6NlwebpCumTKMVxg+0nDkMKEV0xo1BUFcsE9uaOCfJNdHvdefPte7Ju5TBL0bs8wUlFpfMxuZ6nioVI99XcVbooWkAK/1lGUcm77WKWqFZaS4uc+XmUqy6A5Y7ctKsUBHzvt0YanNd0nj8Kaym9Od2Drh5qmRZU+BwaPhn+LPp3xuI4S4euY49iCQotMY+NhwXVqmOnyIBEZk/E0WkSO0pSrFbgJEhRBVl6s74ib0Kfu4wrOOAGa5GSsRaWrxlXtBlpKKABg5K5z9m8+kRr7l8zj5NJmcq7y3cKc9Qx8IZC+TFMQcyXHwSRe2RUtKQNoLFB8VnxE8eaSQl8frGv2o4thCJl8HvFC9e7S100TXyteCalGBILg46qIXr+Cqmx5055SUWPy38TRC4gWJvGqJFIsR4FwUqsWeJEjKKBSsa0rRbayB3OTVv5WWm7Np1HAd7yVkGRRHvAkC5zRqZJs0ivU3hZbT9xtMe9m89k84nLjR9TFRcKDd/BjdNdi9eW0K5NUVz5u5pcxsdYsLTUT9fewAI8dMnEk6B0hETRyyg3oM+BKgialj2FkRaLGS4hUwWsHIBU0yOYWcqyONuF9Ob+7h7ehvf+rd+K9p1rz1NiFrTxJMPb2N7eyvU7s0XP1fBh+MFY+O27yWKnHU3hzjiYzjOsdsdFanW3G1U7EFXUenecrZTmCNAnWXgLH5+8noHUk7y70Hz5TnMhwNJ5HMKACOizjQxTOlFwUA5TYMm30jOrbSOUvOXaWTEGy/82owUzH1IPGfU5nKbOkd7OsX73/1urDr4hP+GsnoXta+R8KpdlpNWmYH857SKf/STffzTjxM2lT1J8ipKUg8XgVBrHihdEGf7VTKFqJppuFy+WQIGljDzC0ooxCzRCcHPOYdeRn0+Adz9sIBSaWXSeB1E/mdB+goLqRQARTklH4kiBoL5spWkxUWiJAsKWHl+1eeXvYqUOsVlTAQyG0lz7YXxeyPCGNbNiu3vVPS5mLK7fvGUy5g0eYw5slJRy4HV4u+H3L8c4zMJpfJB04pGHWGmJ+Rls91KGkQ3ffI2a2wL5wlUQ+heRbnZ38Ul5KV4r2tkG4+8h/x5GWlL5ZzWFjWC6jfx9368ju9/hls9pf/b+a951tfk978drzx8/tJXfgmj8n/001GpFlASZJAs1JVnNu9HbsIVEK6UAjg3bDDFWdb9A7GAD5fm6kLObOptQrcLqLzTGcGWPDnuXxLeffhMpDfmqvahWM+bUatTDJo1Jvouc/SkRVQwfPJMpQDXnxnV6kiVSC8yC5OywBPp2hMBEAqDb0bGrGgVqy4aVHurSUWpmzEXSjKaTnsOMq8Zp4KQ6xPQN9F3URShaCRNJLk45qIaKSH9wc+7x9lcswGbNhqbwQ0OxHBHxZlzKDUkP9sXSqiLP4uLPTWuMhR2JrH+IU5t1VldLfK/xVfiuvJZJMZhbWCjxVSDhm19GVmlkp+/5+DZtsTT2QmBz/Vf/hQqAXzEihu6NCPnX2Xt8s6Oe/PMqAYxR6FC/R7fyAu1SmOuvdXTXi/arSieNP4H0Up7IRmTm8LAPRT3bZxifDzGCT4cI1G87G77WN/1cSIOLX1M7UTVRnOzjuFxlPWK7ER02xALJV2CQiefJyVCZLNDQQCC6HULmmfXgwXT1LJfK/OX0S7v3RxAbEnKeoQNfBI3znu26SCMSNEdyQtSMZE0KmM0qL75XhZ6i4o2JwjaC1YSlPBED3sETuc4MkI+wZG10pXl0nRd+hia54gNje6O3d21Vo/ndTx8/hCb25v44Le/G88/+nZsOL8oFk6n6LtN3N69H/22j+lw0Gi33WzUlK3GWYk103wUqidrssMQ4+M+2r6T8IKXjOMXQaY5+BKmMJGyoa6R3tIx8Bkzv1qN62hHEO47zapdP1IIpEjMNKTWM5fWTUL/0w9XNkE5ZeOeLMmqJbCDUmbAtay1uP+b29tY3T7/teH33yiy7e1FfFnJFX10+YPLl83Lf7fxeJriH/5wjg+ftPFXb3woOcHTL0WfKMHBaBbFFCbCvrA+9HHwMDKRvATDCdm5ppo0L5y4CvLRsou3Qwx8PIH0FSIhQmbNB3VIps+OcjArWePkMVAiUnWocUjBD5rTt0S8pau8SoiqKtpUnRt1uKZEl3luKY95k450yvHXUjR5U+KQGA5w++gUibyZYl6NzpBMKJ6oGXefVmsupD4elCMdHt1rG8dOttIapdXjUibbOoRzpKHJ1nUIeylBuXVaEH7f8nHMTaG4n9KZ0umYde9CTGaXSVhN/hVEdRGJExkSBVdfk52OeFX0iJv4x5+t4z//KbyviL1sFNLOZxmBf/m5zX+pjqD+8x1NFliAhy9FsunvvmQcvnzDl5B3CuU/ejnH58MqnjC+oLXsyOd14cNRhjCpmigV/4kIVBMF+VteYnlNKRqF8uX4S15xi/LKBbvTJEza5lDReFbvabaBtLppe/4pno9DkwINUqvusz+8lIL8HJ6vJYc6e1mKEUWHJR0jbRBmREJKKUkTXKHN5lWVJQLf4/G1fyZoMwWt+DmKoqJ4zOcU6oaoA7zXbG59E7xPZdIGIxlzfm1jxEYlzzf2A/5QBYOC8hbur3iH6Z0n7p58dEFrivTr0bVUwfzUFF7UJMI8TSwr7J2ozj/N7pURm76h2MLo6KfoS86mPjcqYwlXbKHkRjk5f+J9TdojTUYvrtk5/sWnx3ggF/YvSxX8KtX5O/lyt7t4UWbRZ8HiIX7x4hhPvm2roFPrkZ+w2mWPzMpX+xPoWs4faHzIiuW5HM6xwqJFFkWrWN/22FVYJKIHKRPUIZ41PJPKiYuZ8eOIxUsWdTLvS6sPh7o62o9nXf6cXiMagKn4W6vhcAShgQUnYflmIRA0GmmBhxs6F5WITRgDt53H2QgVWYuaBhVXH54Rxd8accYuaV52EDivQDBnWcAwMLp9ton9myFeHcfobxlhMmayYKjpmugolJKaBaKBVZONyp1swnu8/+JRWaLb957F8+98W+t+3IGcmgLR3zzRLKGF2rR/iP1+iNXDYISEc7LdxnwcYiKLdzfEeb/PqYOFOl5YPmUwpGYkrVEtQwzxll13iMqSuCFn7iB7RjcAFcvKe8egWs+HEJ0KPLiIL7SXsFBFDXBjwTrnxf5ltDmVwvwhARBFWeFrKDDtl+9zvrupJ/rrz+q9PkP9L/lGvyQurMNC6j29SZsVfvJyjH/wo21869/jAHg0pKlNxyMQFX1cgJRZK/xY5wsbZ6fR7riaYtO7uFCOokbHHm8IDNV4CJ5ejgFz1FLq3BKHJH3GC0Vsdo8xl5ysNkfDyrS0QazQ6CzS0K/OZOJqEV6yYcsvQlAtJNIshJQLye8rNSV2MAXtyibGP4ZxqtJN4ENNdlyXLca0SnJtRHuH5+F8MZqWRYx/78gBwLgc+INujkJvbtzBsd6aUwwsaEaAaeqcfU66jvtBNTesxCB+fxojcDS4GYyTPkB2H8URFGfIaAn3FF8hh1JfOIPyEUuVs3hNukBNdBxzpYBW4HfaGBAqMkT88NU6/ss/ntStsShk9/SlxuOXmTWff1Xx9C69qqD6imbqV3/fddO1is/vT/H9X0zxP/5tMnkZq0MyZkNzULoNjc050z06d0KtZfeRBuTyXBSi7xEHz/Riwq2vc/HuP6LAwd3f9vRqqtRwUYDACfX32fgcO58cQYvr0vg5tSuFixTxBUthCz8Q9CSFDnkPzQekOVnLl4vPB6Lhw6eNQ5l98xnYOK3wSbes9OHzKZ/FVGVlglrn1IEDRmgKB5V9EJ1iwj6lNFMdPk36dcLf076UPCsVpvLjrNB2b46ghA28ZpDGlvcNkmiUBrSmjMvZkziatRwokiF2qwi59gQ0/04G7ul0IMPpfM75+dwL+6C6WYX1JaSEzGYh+mR5YyhvEZf5RUYYKBD/+M06/uiNyuFfro6/KvjKcP3dfl2J4IoXklZW/Ofh9X0MHz2NTeZYly9p8VodaVd8O5oYT4zczJrHtkI1w13BuuTWPnUewLuwLgNuZdooLSWN1rFlkc2WQgsXayABIEnFaVsXJvD1SLZgkMnzrDhDEDTLu3U/mQhpgpWWQ4w+R0jptycJiPoN3w86idiBs8LUJXkb4iELzz2JZZytnM24LxAtx3i0ZR9pUMvm4Y+3JqiVAIJN9B9t4/TiIfavDtE9wRIG42ZTk0DjGBVN817+oLiAiOZwbjUO3u3mmB/vo9ncxpP334/zqovd45vYqNlro3vyJE7tnTKMR7wRb57G8eGLePXnP4v+toub509jHg9CKIeXL6Mj1/fZbRwY06bK2qILYui4fiiIjfC5WsNXePIUkL0phZISfak5pr5BMGJDep27jH8p0uoe1F6bHT33CWszGlXtS3WO6pmwN6SxFYNVl6lIarsVzuBJ3rQ/xfkRNv356y/8FnuUq8W9LP9q/i9IeP63kTNn1Hmz/MOfHuLZTRP/87/Wxl36RnFgyL1OD7DHUFTD4jiU+fBpNFp0buKwP0fXe2OVt6+MVEsgn3y/Jd4sK+TyD2Q8xc/h64VwWbwhBlwaEnNb7XFVPlsXfywWnD5v3giZ3F6u0nJw+MFwgclGgOpOxWhK8HXcoMpKdbN8xxSRmzy96XIhRzy8JjgEq+ie2JMIKyDGM1LcCj0xksZng48jTuIEDwuiONXiOqbefCkhHgro9YjWofM0n4a3bSp9SQowYuEx7Tgkj2rD6HBxZjOxHXPlQlcLvbsiDy8RQDa4ch6pxk9wDpWKmKPk4vhF9ETAnU/x4ryNv//jMT7ZUTTYDmgx6b5CLa+Ry698ht/loo9XdXRfLuZ+2fv+cseVX38/RfzR61X8+985y2B1LZ6othIrDoWOOUZMv5ZNC/QqCytFCClAmeILdMG2KLgpVgyf8q313SZD2BYi46SygGXNo9auKZnzcC9F4XbVaRMrWgiNizikKQrpITuzN0AKT1pJofWMqGguRwolxtQCBI2OKOM0D2yZrkpF51GwBWgWc2gagGKZdXaalSbE+7f4KKkq60Yj6hlmqrhvHoVqPRBzmIWeCkkOsUTAxbnLGykVngRgaaats84FQAkDpMKVey9r0PsQBZyoLvoooAi851Q2JzLfq49Msn0DolLKYOchc78wrvboz3RJClb6P6H67Jx6Dvz9E7Y0IhsnoX8V8Yevp/j4NVOC1S/tTy6PXzbb7/pae7tSzaLPalfNHcbX8fnjh/FbxKsph9UJQ+JGqwBwmoJHxPawrCSZaT/HGi85lPU3m2hRuQp9Lk88wxlt5yQm+eZp0gHy18Sqb2N+nKOdmujgAkqRCqfL9Akb8nM2TemHy8TFaDfG/mUGrDaw2cSK3FgBAbYn6foxplf7GOeNjIb1HqAJtG1sENmJyuTRMyNtew/y/aYHdB1NStkRsaccnWW7fiIE8rA76swBLTw1J2xeVfCBIAwPg6YP7dM7mRDvD3NMw1EFqqZ4AEU8/zPefac4vNmrqfnwO3fx4Xefx/7+ZayaOU79Jrqmj1Ozid14jP3+4MSN5hybJ5s4Px5jmsd4uL+PI+t0HuLZs1sn4wyjRJbm3cKzdchDr0hL7qPPPokvNZkolN+ouPiQsl2zAFQTt2mM812rCQF7ADZMpksn8qf9MuMfafxkQO+y0zoQ74madiVaKERXFjfClC2IFBrjYnB3HOKTTz+L8+GLbGe/xuSOL6+TtxCUr1rfFw2FR095oDvQfB3/5AdzbNo2/pe/yxwb+w4i2DKeMmWLFrB6/KsigguVnTYXHLsPCy9MjmPRbOE+FMdLBaTVePVmrJ7lZ7mKYQ2q0Mx0i0J9ecAdpuyQdqu6MtZKvAiXvfI1Sw8+Chygaxe4S2CAN3QSDzSy5mZN5hVKV1ECkPRLE33Hwo8TYe8Thyw5oqdY9/x8Rg4USnoycnych2xeOkbbq8GkYBV4jAoSDuf9UiQWuqEHJTONtWFhHJqFGeMhXUddfx9iWHWKiwT8l3Fc4vbl75fh59I5X5Bf1bD5+VM7Z/5GHRA5Buf6mYdl3qUKZnghcRt/50dNfP9zOsgyNM1RZR5Cb9U/9R/v+rnzS17XDdV/k9cfv5jj0906fveJmyeaI788NhQykahUxUzllNMIg8YXfv4VkacHIpGnpD1Uw1LosFlOl8Bxocc0PeKd8fs8inb367Xm8YULE1koIaTIzVCIIoVYRfAp7hEzXIrTLGDTV5MvwKcTXhsosql14o/oUVg4UuL4ed0ou1i8OeLLVnEodXN63KnI5HAlXnHVCSWg4ar9TeKZDMssXp/WpNZ4JsdwcDBilV+gjcglaHM6opD0EmOZs1dpQvaRK89FefsJnfPnkUVHJfJkOPyRDOE06EYFfQSRyANa5tuTOZFl1O3RvJ0UpP2RSMVRmaafnOLlYY7vfW7Vcq2pr3o0L+j628rqd/1Ve7iLd3/mGqftX9/H6cn75pZSAKF2TWoR9/cy+E5lOo2OoiAyfeamj9UNvEhzzUUpSMWtwVr5U+W9BSjweoEr1/dDTHvfR6gPapArEpTnB5/UZQKV64ndvAy3/XQZnWbd0vzBY+P52PTR9FMcHsdonlu8oYyPRJqZ6px55s/wg50Q4Ri7akpyXOcLKKTQI8sp+hOWQqc4g3iCZoPEl2q/uY11P8dxt4/5MMWO544KQZMvGx6LIrEGkTzF4eFFDLvHuHvSxUe/91fV4HUtX9/rulD4HYejbNxA6qK5iVO8ifb2Ju42t7F7/Ua/Syj2zcaem8CVci7gnOMW2MdT10oFlnarHL+ak+jxeWXA+zpRMJYLx7if4FdYJAMIg2BEKK73IE+3uPDmkBViLLW0akLbQq1wB8hnwdY8l035YYx4/fohhsNOFjTDESX1fRxffharszwwfi0u+G9e+H3pIL3i9i6vOjjq8L1GCZ3rR9/cxD//wRC/s2njv/ddBz4jUiBQ2ZS43ASTbCyblkLuQC90j2yEqkipjH7SgZNJHKBpHdB5R8HkypyuAV8qR7jlAtABYbWMSKsgG7TX6uL9MDii51LIclhpQ85RAQcQo1kjUNlWX6Wi1Rja8m6bPvI1UgImAmE+H9wASLN2PO4b+3dh5YDqWbm6eeCa5pEFqNQ+vga8MRdaVvHq/2e6iQAfcZxSQZl+f5UvrMIsD0f1vXqbpcJYC+1jjABU4MMtx7Jp6cJoqJJO1G+WiXIVfjlCLsSoRr8iwFIAXCno6rpNqzb+k38xxj//fK8O6kLEvhSXC9pcz2A+hL8e8P2Ova46qreQv9/oR7jz+nx/jt9/1cbvPkN9RuHHM+IjQYUXm7lG9B5HSB2XLv0WX3lE6oXOZugsXJ4v3lmfih8pvbOpQuHGtuqUnVNsMyZMPvc64Kx4Z5TBS1QIJVGaNiBuKX8iKN8qcVJeirJRimEXhNk0ibfhxuwo3NHpG83a+ZmMkUXApmmgMUoFkMYkyVvk1zHmUWEmj1kveKEsOpTMIdRfpa2SxtdwHxFiCK2xGTp7yIz9UZK2t2uQ8HPgVMaY1YIvE8KFQHL4ydLG6J/U9NdrROirxW1lzS4N5xrVvSMp7YvJINarFxSQ68q1417yDxY/OCcwz1hsZ7Sn2ONQ6mkVsL5PjKfhQH463MX3Pnn8i+jyVz27Vwj1u1/zeS34ya3NOsvWfEaG/X28Ht6Lj249+j6Rqy7UJi2PlCWtHVljWh3eg2MO220T642pFp5pscfyhKR4LQUlRoXc0AulVvEB2gZXaIjhcRU3dy73i5pDEggort6JloBTPGwebUsyUCs7VeDHgmXaJMqQGnnOzD5i3u3icPtEoIkNwi/WTW4ukrYkzi1cIYyPzcd2DjTqW86Gk0QjmLQ/+ei9mL54NHdRZwHPJRxfnv1RhWXTN3G8H2O630fzdBOdRtqZbRqdxrYvfvEmDvePcXPXxvPf/a5ENJyBpFXMpzFu7t4XD3K/fyEbGVJFph1qbApkRDNHjXpB54bTKFRxzrXLmNr2NT6/xch0OLVG2qil1fTmP+xHC2JbqTe5/4jyNIyxJg9ZN66oKMXrM33GSC/XxON+mdBLXOVISOsLjPwKTcw6ikvyZoj46ff/PA6f/Xmcxl3yoxXwfKXkrdydr7vw+wsd3GX1X6N+eiYuFJOrL3WnCSfm/rCO/+wnXXzw3m38zu0bGSpq4urfYj5Nkh2NPhSAkPm42UEIwVMYtccXaYelizmhsjnA15ljs4EAa1sWtumK1WFDNLnVl42x7+HAhuxiVDdEzyM8JKwMcnZf/Mbc4Fho8KKqcNKmoArMSEONmjdJ3BRKKb8+j9z4edNpHUfm9cTydMT2zHGGxyH3G/N3Km9XRe+Yv8dRkpLoa0oMMdyOHOkSbnSgInlKVMH7tWdaXnad/xfeJqPbxZCUkTJ2Sg3bnqXlWY8vz4Ee0ryHZTugAHoV5PNfELS4vr94HQl2L1sSioJVH//ghxH/9FMYllzzVHt9VfznV4ghftnz+86Pe38V8ncNtf+qpiw/4z/40T7+F7/VxhO6UY34XFjfbHopr6niHMnr8ouNkXXBAcIIR5y5zAb0s43diUVXjvjzZlzzeUdRGX9wWoTVwKa65BGZClTetGl4zozV6HSyAs+pgklTQCRyJSStiDWQBFJrZKich6hHsylyEjHbz6t4NUJkjPAZtUjrl3xGKWQ5uBg9w+sD6YDbJKVzaxoGHEYQSaFtWRytVXileEP7m98fZHqpaaX0s/cfFkh3PQWmCwEhcSq2MoQ9R/Bi9cGHpCGKU2zER0x18VWFVWavjOAc0WgRghOCvEbl/cx7xu+wOMkYgKgInuz3mOIyoUfYWkCYz9jH//P3Xr+1Zt7Kbv8LxO8vP5bv8lrLz7H8fw/ysrs3fnY8xu7NIebbp9mUgm6Za0dRXHwucUenIc4kRfCVW8Jne68jNRxEdlkURTNSyR9MnOYVTcKoTY3zQMrOVF83N3jkoQa+NSde6y+ljJmwtBjmp5FwWRDxV9ijcT83mmK1QvwoMGjw5ic3MY/HGHfn6J746zTiVg66V6h8ILGWYZ6ckYxCEKUoT2M5bd7mx7XDKV69fMjm0AeCLF1IvOCA5jNubxTNdnN3juM9TSnvaROTzNypoeZ4+elj7D/7LNq7Tdx++GF0NxvfMXzzNl0cjm2Mk1N1uDBtfxP7V69TZMh1HmN9HqLbQCVZx5tPXsR4PkZLwsftbex3eFianymesEKMUuDWNXE+HC3UkPDL9Bh5EYoCYDADX1Stb/lesl+CWBbnnXQU1xkgjBKGqKAuezS+h4meG0r2MXxvi+hji7KMTT2t4sXPHuPx4x/GeXiVAqTLuX21Mn+tp/5fq/D7S185JrpCKBNlcmPu/XuOcR3xs5dD/Mffm+M/+vfX8bvPzLeREil/UKFQgsV7XxS4CCruapwI0peEE3XuwO/iBc5xupmjOVqqLQIs3YKUUebZVJXijGqjfur2EukqFa8LJG4kC9MjaW6gCfL+sPAbbKaZqSOqZwrtyFEmB8EE18KFi4ja6VemRZG5tvLkk5cPs1d+fMbFsRGxgDmsZazKeit7G1zTscRplD9aPmwaTy/jZ1+fruvkVL6EsVSu8MKhcuGugzvnBhMk5WaOVVsWCJlKUoq4ZWxdT2MlacBTSBFKEuuNZl0hdoWIpsUG149UhO+/7OIffLyKdobF5e+RxP2aYPqlc6UW3pLT+019XaEnX/Gff/HPr/7y+uveHJv4/7xYxf/st6wslau+eKNsjEafRCLXQ287CCVJpL+k0Dwp7NcyTqUC4jl23KCzOM0JNSLHwUO3anPTPDyyQ9YaU+SUhQjuaLNLzWcA3zju9UBxqMPPDZqI9eXdWcUHAqk86BZj1BJwJIFali8SgYGqnWNg80DXMCaCh7J1bcGG/Cs1hmOvokv0QSvkUb/L4is5C4Cwq3CDYtI6zpD9TQghiB20BDp3xCf20lSWL95eM3QPE/YXuyi9X7AOfxYUvtwHJ+gYMXXOKRYzLho1ESuj9iuqmkIY0u/TCBbI50nZ5+yfN02me2TyQ7ciI5j9pokjExR+N3td08RPD6v4gzeTR981wqjnrBJKfsUj/OXn8d17FRfOIzw/hfWOTWd53L+O/fEm7vpGBZCQcmljbMpPo3CGh4WCF4rNdhUrLEKS0+Vc2Po9PrQ1UMzoUdFoWszAfTVFJUgxIM9a304xPYzRPe8X8QjnF6gfa0wpLRL22Iybtafcc9FlnDk9nUD8Go0uM2U2mmYbd8/PMl6exm10G1DETmeGMm0zfUoKb3iBEivYYob/5veTbYvqFgW9veuc8GFBnxX1NJMt3nPaJxAawuGbo9kS6tDEcT9LlNpRIA5zfPHnn8Xx5RfR3fbxre+8F+9998OYD6OU+7c3XYyrJo7jQ5zOb2JQFNQcjahfpG2sYw+1hEI0WkWsiV61OcebzwYVUf2JFA97JXKOU5QKET8723oa2O9QQHu8y/lLwydunSpaT+I4n2Xlcz/Ix9D3D7EKDS1NoOsAI7yJxWl7co6w7ftcbBfqrC1M4Iu5xtyrN8d1vP7ix3EeXl8mWVlYS4B3/s0W279W4bcgXTWmWw7YqzHhVZxbHUr+QG8b6jL6+PEXq/h//+Am/jd/Yxu/t32ThpX54dN3yDFhat+trE1Bhw4bGuP85B5vUpXnUmYn3jD7R5HEDXasGBC3nPmF3MG9sSo2sTovJrgwyf1Rh2RLcymVVMUrx9LZnq2yBl2EOfbH8Ul2+c+EEvnoXQlN8siWEk9jahY/8na69SlGiU9sp6HjhzFDFk6KemHnrsg59hg4BTK/ZMxkXpayJrOS8zX1/ZuGQYehCrcc//Igl2LIxab5JgIhBid9jBsKP2cPy8AzD+NF0JORNvqeRGh0yKXsRp5WyeG7KIf9MQATZXMhS4B1/MtPu/jbf7KPTw+ofY0UQcqtZ/y67qvnyWjer35uv1GvLy3mKpKvORa/lA+Yf8+h9Ld/MMXf+tZNPM0xKf5kPNMoUYWyqohwjrN8usoWXsV75TfzGFrYcZptIYQgAPWi0f3M5kVtLQTC48RGD6efJT+uFmRpEKlKqdIy0my9RiE1eYP/lutNgh94UhwkiYJbuOBEEIuG7Eno1AX/DFS+FDiDCrhswtga8M5NYZPsFsoLk2NXoTcUW+ZS8Xf441EowvMz04FDURuQ95v0PTP06f0LRbOEMZmiovFvchLF0aXYk38XozmumVM8yvYFZzSi6blziFGGVELKLopRsYpTj3IFPCVdQwk5KUhjrYPubSishfb7OmoU18J5VompVao4yIzvo0n8P32PBuGCzOvOfcne6Ze9/nVoCv/mX0UQzkb1ip+oP4V184BwYI7bHnU6zTNwqIs2RqcCIagiuJmbJjqiw9Lg36hRju7yYlx8ZzPrkqIokTubQ3M/3aTJDPyui/ObIcb9Orqnm7TwSHRaiBANMXuf2hKPGmU74mJe9A5Zc8EpU1no6E9FXXSxZw5AFva0ibOoVLZ/wTbMOe/eGwBZpLo9HSUWYw2Aku9JxkixFi85FFVDwxkJlaDZKOFC6xfkEFBj3algerx/FYfDGN32Nl7+7JPYv34hlfmz957H029/ZL9CKE9blLjYg4HW4ShDQzLHfDzEWV6lhs/H41HAgRwC9gcjeH0Xm2ebGB+H2E/H6G+2F8sy+fGy3lmPNLf2jVV6XSrwaXp1P/DMpdiT72/m03PN+q1H/bJZYU/AWSC5MJm04ijLBGVUe5hDpu28xvbL+ZtOA6tzPL5+jOGFkT4fAvkcSWTCv1Wx9VXku38DiN+XD9fLgXz574zs1Mt0hnP86Of7+Lvr2/hf//Wb+O7NLv31LshQc03iunYJWP49ielJmJUxpAxMua52+rc3s21NFN7OhpfwJE76hz03qkyoFWbojjkXpFA85PKZX3rhvjUiVJ8m4SQqYVyowmWqsq0qf4tUXDBzB84aIXm8Un5/aWfDQZqHgFNKsgCWjNeGXhwgenviMLIBJKm8QLeqinJDsSlt8omv7pWfHXsHVuzZIrqYHSKuyVN6+hnlrE2qiO4WvtgXrN5DNQH+3PLpuyLi6WBd+KA5mmvb+KPXN/Gf/ugYnx48qhtQb+am8tZn+0ufv3f+1Pm1X9eF7lsONn9ph3eOzx4j/rMfjfG///d6h7dLRGNFIDUY11ZZtoVUy1jUfDj7T+VINhG46uZkrF1JHemRyYvti0LMRb4LBqfmOMpF3W/GtKmYTw9BlUxJZfC4KhvGNExW7Vm5pWo8WCvOzYZjKw5fFlh1jaTuzUxSUWdBN7PJQv2e3spxxCQ2o+jKbJ3mj5foQFcRgKJMpbK38oalqmUHEI/ShwmzBsarsqgCKVVDBFpI0wgny2pmI6fpBZf+cKKNyMtTxlGuI7X+jKIyKq5rK6t7Gjf3xqampBpQe49M5lFfmvvH+FiFM1eV3GztV0l/cYx9bNar+MFDF3/8xizMLz+MvwyB/rUeyXfmdY1OXLeUGTuayUCraR+v3jzE+8/Y3XyYYyG+hoaD/QkIFogzz9RNH2v8KnUjXaFhgOyt2Ci2BrQIAaU4z5xgUX7Mc5W3qvKnXUwJbbub43g/xKFvYrOxXQsom8VO7NGnWPUu/CeezbREgpdYTTdTKye8WRQpmRENTb+K/TBHJ7Q/PW5lMOwR0Ezr7bljDHDKGHnK7DwFW1Ik28CaNp+KS8+3hEpwsPhbnmsSNHyZ9fVSRnsfeBxWMXz2IvYvX6r5+eBbd/HBdz80B3UcNKnbHw6xaQ4ZBelYzxEhTRZYTM1IuqGIGsd9nCc+I3NZLwr4fs16FfdvDvGAmXNnXi20MrLfRcngZpzYYUhIcFMMz5xOTROwXFtwOUWXGvilFqZZwOFs5DMZ1wKxUkh1xW0HwTca6KYgztyHFNvx3xWocJ71vr744qVHvPVc1lMq7rMcQheq2q+z+v4bFX6/7FAtLpslzBd4c3k7V0iFyf8oe9fxhx/v4sW+if/D//BpvN/ex6rDG4iN02aoFHHMzI0I5HhWpXGOkLXxlSFn/iJR1LxpWoE3R7dNG5NhHcfsShS7ho1Dbu7y/zPL3NmCUmSZCOrLNkV7xpOJJwolEYcfcVYRM55JvkBWMil1wkpgK4IuptOu9P1ebeLph8r8qQzkFhHX4x4SUFaTEYZTz9otJVeWvwknq9M7X7oWnlsrh8wB0UFYD6JQh5KkG2HVYWZKR0yDu462T5sWFWxZFCb3L+OX9dEqKMq2be6irWzOnMjFIsIFbcpPFIdFA/Tj8Xfi//4vfxpf7JDWZ9ILCCMjbn6k+Fl+Dqqh+LJ581scpP+2vq6Lv7f+OJ3pC6HJUeofvGzjf3Vq4pYiuok4yKLBpYPHpUbOUcPyDJIAccTnSht/PkdCpfw7TLnws6g1KJ84Sh1+rn+3fBbPs5zfFFkkAnOfCJKjDWUvwXMOIqcOPiMMVYzQUBUCZzHXoqQtk/P0vsSGQc9sWqIoBSQc/VgLW0+QxqNnp5pcQVJ22nfBqFXNJEBFqs8VikQhjjki7deMs4yumPKQQgkhc/4mfiYIgKlQmX/NQa30gGxcWaOpUNd+UQpAxrL57FMIwPOnaFVZpgPY1jXEqQlHuIrY49/3IEwUofosjCKx+VjFRgghrgoeyTOSxjBXsw5XtDZ27tr4j39/jD0OtV+xjr6qGLz6y29I9VdzF//7UvQlKuMJj4u//Zv7mE7PhZqqxDHZMk4TEyUfyC2JHBDJrwpzW3ctoWu6134eHJ/pOozxv31Xhc6hQl9oMcmo7rpo2iEOuyGabgPrZnGIUNEyQt2RLYORKg2m5rjdNNFsUdU6n5dxr0AREDSBC3AMuoj7XYz7UckX+mwqAaE40Zzws40qazkJyu/1bCvKT4k1Dk3QGgG8kL2Mlbk8Xk3fqymaMIxWYg9xaliTwYfs4/7n93F680pnyQcf3sa3/8p3XESNj9Ftn+sMXJ/3sWpujJTSxB0ehZJzdqPI570ciZNDyY7h+XjQ1O8Ue39Px96zis12jom85GGI9Zbow02cz4PV7nkuK5qRa6zvHB29WKWVDmr/Xs3pu8q2d8NoXp9GV4ujgMsh29R4GpcEqZqWcrVXk7h+y+JZrWJ/HGL38SdqDv3K53KBvK5sl9Lg+f8vHL8aA/yScym/ptZYJgcYP4hP7pv4f/3+Kf53f/PD+O76dYwNHf1X/ICC5JM3WMauQs1R7VK516aZ17A6dqNuGWE0YVCCWgeZe8UVmYtUuF5B9vLxYSSWiBcPilg0KdK1J96gw0yYWbtS/iZQuBE5d/J0Ti6Oq+rz4ZLuKlnwWX6vcayeJuxdrBgTv2NtZaVF53SNyYynSxRiQ9qAOwfpMxZhpoXq/F6hfwUZ6/MmYT6D6HmP5D1SsLV95v2K458bkvzaUmV5gfFy/HYRUVRhuHg8JmrobNaCUExQ/6OXN/H//MOfxae74hamV2IiQb71XjRFuP0GzJK+1tevc55+FfL5+f0xvvfxOf6nvyNGeWznOQ7Sz8EnM5fU6mqjYHTSsAk8jE+7H0jfENFzDzpnZivIQc9zI2TQiLWOT0aWUs96JOFl4hGWKB0zdgwICWzDwkGgI3Lx3iQz1yox59HyPbMNwMUTtOp3s2pkw8K4S273RKCtW0WU1V7ESzw6+d6Z5aS9lDVD555UD69fi65k85QHr6yYOBCGKXr5+llwws8APZTBqtByE7eVOJQxhvYxtIra0XERPdYxUh+f4wDX0DwVK5uT9SOLFWx4eNYbvxf4uzob1BSbnyT7i2hVCILhStgGt0s/3wUGyOp+OkXXRWzWGwnsGHUrm4R9FnrIeY5t1yq673tfnOJfvVBQ9lc8YBfT/mv0+RtT79XrLZHYVRpUWnQUj0qI9PQYP/n8EP/ud7mvbaasYNDM2C+i3fbRkQfLtguSpGchXRNYB3i2JQAi/qxsc/ybtWYURO/mYTqNtjVpUPg55UXxeuzDb47x8hf8EPz7LEZh/zclYuc1afNIPbf7TR+3z2/i9q6Nm95BAM6EdQvOfr2+6WIzb+LxOMVmGGPVgowlCJDG+6LxQJMS9aFVwQXfeyfTunVwHCq+EPRxIMrTFjCbZ12s+icaM2F2jJFyD78isGNp4zhEvHl5iNPDK9Qy8eRJE+//ld+VGhqktL19Zn9BAJaJQnKK7m4Th4e93TXAHUGFximOpyaG8eBGbBrNfwNxBxRMytP+6Bi27raL1biKw8Mk6lO7cTGslB4BOkYk5deX6V+SZZCIQtM0ukFLEobWdCt7HdMs9OTI6gmurz0gmaxoilh+pkr2SU56IsyaHgC4sHe1q/izT+8jjtzwaxqCp3KydEv6mQd0V2OJfxOF35cPmkX0cPXHFxB9qfmWEeECgZ+H+N6ng7JG/7d/cxN/7fn+rW+uA6GQH3EtM5XMRGkvovIW06gkZdRCN5IczuIUQZoNjw112WwLMXENXi95L+n9mmcntAuriDT2luQ9v09+Y+KDoxCugsfFkh30DftfLkD2mAnB2/Al/cX4HCjzlKFIwXqOUwO/KhuAFKNIrq+pM6M55+sq/1Y/3jY2FpLxOzmYgaozt5MDNdEVXQdxDlZxPp5jPhqqt5rWyrHF5ObqPKjbr/fokIDkXCYaUiP5Kw7SQk1wTkH8/mdt/J0/PcYnr41esLHW97z1rFWnc5VD/Jc9j9+o1y9Zt195qF5z//JffhnZ/nGM+Ge/OMV/99tNPG3tY0VqA2jREWI6h4xEHs6ePmaMm4sujwMlrpDh9v+3vS/rkew8z3tPna2qu2eGq0hRstbEsOwYsRwLBiIkgJHYt74wkCvnN+Qf5DKXQXKTCwO5NQJkge1EEBzIkCMJceTIjmWLEilxFcnhcLbu6aWWswbP87zvqVPVPQvNRU2zPkGcme5az/mWd3kWsH2lS8fDgZV9sOWVOLBKxvkr2QhKFFBpXo4UbGOy2uVsWNe8i/tGMVRWh1Xx1l7imF9iloS/Y8IS2EC8h8sdqeIBmzhlwKpSioUpXWJUSfAZQBxCEDmGPWhzhd0Z4Ylol1FWCVY+cLrAoecVDieTwT4NhwnIEDgsANTHS8qRxqtIQUZDGyrWNk5gr4hH01bYuxCPRsuqsVmaWY7kz72vU9fqQ3uabE7uEyKsIeimnyiJKqh8SDuOWmMgt1A+QuBykD2YlDFI7Oxgmlo+7Wmv+e23e7txFvIQF+Eqtpj1FzHtY45e1uU4PpAcI65c34PwoT0lSf/Vnbt2+uSn7SCXNmJft7TIA9YO5EO29PF4QHG8ks7Q3wmIQgatxTf8pZ3BiYQF+yeSHdjEIeD3MwXBYd3Zao4KHLbwOYkkIBDwjMsTETcoY4JihuADRIy1K6sPaztbzKyaTW26n1gxRfCi84ttV1Qns9yKRcVAjA5QSKhyVlKIPSOLvW2tgkwa7TkEiUJ7FIkHzhiIVENsmrCGPLOqA7whx0QlDg/JBvNHyLG0iZ3c6+zoxh1b3Tu1Yr+0vlra3hPPsFWOYCvL9kUY6Va8/kjm4A2PCwJxZ3zDelUJLkXtV9iwaQ/gnkJyBkidkqKpUeGbODa/biydFjZpzKrTMxWB0LKTPZEoOYyx0M5VjIB1i0sSsQcKIw0dRnQdw287oE0IwEPGje5vntgRz+utfAVua6cfB4bx3D1atFa99ooO+ygUDW2tkX2b/+BRJZQ+GFbvRlVvk/U1RlFsZIyDNZQe/cKdpfU/nNhv/eK+ff6xyrIWFl0j/TcuJN1sSFKEhY7KsGLPkm3jGhHRUiVZwTdX4s2QMfhijwAtvHJDoFOZvGRfHA3qAaeX6b0yxWapA9hDj44SLN6aAnie3r1OYlhjGBUcyczADZ39+AG2TnZRiXVg0zqAB4+T76gyNlTy6GtKvaEgNkrfcKhaevSF18Chx2J+fG/2v7y66tAUtMIZMObexoqA2EtvCsrWgqKxqZEFHa19xzquy9muQsa2hnxFrSjsb96c2J++WNn1E2SJm3g2J5ZxxDUabtjfclxmtu9Dv9Uwb979C790p7Mf30nsK89qjSBJIrMV7SJm+CmDNc5l17gKEVGRqHTdabHI+4yWl5i6IZWCyiBbi76uyRNx+RZierzaTc0xVrvX84dewFGdVufLYSISWo1kbFPUWZslvFEh2wRyE3XwAMdwHCHZcaxix6GmoBHhD4hVsJsCcYUZPp2EJGlTFB6QInDyzBCqA1Qo8AopKgIhrxGJI7sMwFo5IYkSUEMiqnYY2t6AVMCpZOhcmAD59GvldRRzHwlnhtaV33UE1wXiULjdeJCNTgQCbwXfGau5oXWIQBGBLJ6N/WLlvrwkhqBa0JtN8wkDQVQzfnQ0sT+/Qe+GdzdZY63HfvMQLODPeuj82QLLjpOnEQSQNoH1Pbtx+wn7/DP7wlfyjDHL4W7huGYp5YQlKGWO3aJSGFA+xnUcqajozG6vFXMiBHOcc8hbqNVZZW0lD+VpWXCvJQ4WcwpEran2ekgcKWCUUwzkg5p5ZcuzpVWQbjlJLC2mlk9nVpaZtAbZAZNP8PJobku8N0mNYv1jrwDBTppeCwVgExhsirme5blN6srqpLBsicqfiFj4xvMloA9ioFPbsk9tftjZye07tjq+x4CwPED1ryQjl1qihCMgTHSfW9o8VnR5yIoDq+aobALzV1HHrkhLXv8JbOYWSyaWlEhGkoqzkmejiksmjQ2tDbxPmVvRT201X1pdNdZR61IOLSSkuSMOSC/h5UwzhlAc8biE+5mzWkl8Q6XQK3zqOmhPlf+8eyezQqQ1g2sPpx3CPVw79cb1U+srVPt8hnqgt66IRMcLn2cEcftZBn7rcT4S1aGg34V/ZoAWmSV1E/vR7cRuf7+y3/p8Zl/5JK5OTbA1WhURMTKUGFeevNJENXq/fixQhKG2Y4AQQOeUh6EZrAIoas45m8Y3RbwWdJvkEiGZB2ndysmChxUyEwZhjqvy6hbbP7CCcdYVxY1ZodB7RDDEWho/qFoz3E/o8OHZGPQy8WGIhZLeGv6s8cUjSnKslAJNva7EIB047OQXVEKQaRAjiXK14+4CR6SKHNw9EHBObDKFvU/YPqGisCaOkAjiLVsGeh4Ussuw9pofpFqIvyTDbd0f6pOpfeul1r75RmanS5QXHQS9jbseVRXl07pZ2Rpj+h4F3/dRqAgOa3j71IwgePSj+32b4VowWentrO7sO2+Z/conSttDZAMWOoI+tjWl+M/NibgYZMlgc8siasxIlOtNBN+a31i3FFr2z4MDS1V26V9hQ4f8QVSnqfSAzdUTGJQy5A4wsdp1MhEwCXMq6Lgq4wpmKGJLuSLXF2RWjSqkjox9REYUN1WyREwVWe4KNlN8Xx7AkEjCBg3IBzxIHTNDFxwEgcLVEWfIioqTMzw5QwUSAZxYgZz1lqMtB2kKBHKoJDh+D1K+1O50AknAKSAVITFsHf8rdydhAEiYeW8L+KU62J4hngPNsS6pn0aCKK6JAjy8l4h+oQ2ooC+wksBeLtPGDvDek56BXwaduUlq376e2J25t/EvWk+x7wT+4qK5OJ6glzTyW6ejgUcXu1qNdhHteDgTGqC5Xt27bcePT+0KHTZQvQI7VZ0V7ODUaONWh19qQQWOORxCxODVn1EaoRc1SD4k8KHyJwcaiPnXJ7W1aF2mZuV+blNgCakplrEdiEohqmRoMYGowHYs2/wZRZune6XN9k+tOmusgu/tam5Nu7LqHrXDiLHL0d5MOrK6V0sQFmQ/SMgUIBVpzjOFnrSTOavu4biTXLvG9VSfzu1eUtCtJJ3iXMP5UNl0um99OrXlvTOrD4+sr+ZWrWori94+8WRh06t7Nq9KBl5FkVtRwicY1e4lA+E0721SZtamOTUVk2rhSVY9nAlnEFzua1bIAXmgDBLhWTi3S7p7MIDvFdDC0aaB7mKR2qSZ2OxgatVyZfPVytpFbw31bPwshrd4JrZ24QUY4qLl4aFg0mMDz2q9KujVPqw7BJOMA2Rryp3OFQjoewy9R0DCiDU2u73qbPH2C4MuXhAgB4TYuoTmkBTN6Ec52d5z4PegQ3ZD8PM+rYEICOMgR6Yti1qUZ3s7vNfY11+AtOXUfu050M9hlOypt0fKAD0TR8lIfH2Bhv+qTCaVfWymK2XP7o7JICdsSXkkgaIOX1tIJVBi0aVYuGm7a4hn0+xSeSuUpvaiHwsL53pgYG/JjWRdLRNmwqsX4+oY8Dvu44vnrFDCJnPQA2d/c1pOseLtlRR3zuDnF89drzOqDnH+OBaVmc7Qf5VIp6vVEC8ChnJfNlbBMQT4rKFEu76uAjSPWLZDcBZzIsrfQSJZzwX86rjO7I+fX9nzh7mtzhYelHuQGo/j9XXg7NAdH2/X7y6A+yiIN587I7c/7rgc6v8+3wI+XxENWMXzNzv7y9tmv/EUghhPQJBxgnkIXarQUuRcF3RAG5UTt5gkqUVBjiNwaM6qYzXZkwx+RMfNsfLHwAw6ndLHc4ckl/9xT2q2X1XNJraJyY3U7WFI1K9tYIYKvcDw8ANW0oPK3gRIN2bPWHuaP9ALIzEEbDu0gJKMr8m2KJMXEUyoxenYVQxuzmgtQVi6g7js0mpU8D3RkY2TIln66DLzB0FLhDRJNKjlRJ01D46Bn8wdQoHjC4EjMVuEB7sEBrC6TJpUWcIGFxVH4pYczgFiQNUj0FXwjJUxlfkPE0QcUgwMIW6AgIQwYFQ1JlQG4B5G7Htid9rSvvYy9MIeNEb2fo+wri7rilPAF8lzpCyub+VB3Jo5pkO2rRd27/aJza5NidlK9nH9xMoEkYMORNyntSaYGFOTEiQC15gkYcJVElilkyA4Zbo4FyAS3NsSLk6nIB0Im3lwdWZZSYFXETSS1iqYFGDeUWe2s7bO5S8PHbu+5VmGVnRx9XErp5V1TwID2FlX9TY/XlkNaaaqscnBFeIQkXzvTQFTyihVhO+T1iARTciKnU4La9LMigzn8cTaSWEnpytbHZotUVmeTqyszuzkzj0y6jEtju2QDiS4RmDSAgt3cLWxpz/zjF197GmeP4vrlXXNxPpyZk1XWppw9pKJX6R7Zn1p3RzSJjet3MtIvIKVIhxL4K6ygpgySTeyvxNTHYCu3FZYk2Q3IwGKgBx7hNjUJIWg7DKbWlmwjyxtRWqcNmxvw3u5OplbW5aWAiKTma0qQWOEbY9TCSuW+mqWJNDslec2sc5oN7NAowAabicYJL9wb1CrGEiBez89sm55EoGS6zpud1B9zj5ipe99r/g9bOF7TOyBsFd9XFcuHiB8nIIeRtpe/TusOvvGjxEYHNiXP1lbmc75FBYJCFkTwYFtVte+4iVxJjBeSGxXsHzki9fCndz1vyKTi3I+qw58bW0IlBxB2ZvyFjqwhBlyfA21TjyoGkVBbE/55kLQOqtj7sOJzd4dA2iAzfPNCRZkKEtagq/mvWNM2ajO4bPAnUNVT5cdjYifB7izH0UOVHWSSuOO6cNr4f1hYUegMSYuJjuCSFkFkTHsvqUBUtafwc4NaxDJc5CV6G09tsjJEkQ2jHaF8FQINnHNbiwK+87bhX3/nVNrUcL3kr5/hTW0ZmjtrseDkozL3MJ95PGw9RsYiXE7avv3D7hWuHd/9MOl/eo/Lu0A+lR02uip6bfy6hnIFtSponKQkjCKjwchB79jiwp4Nt1rZMZYv7Ruo4e1a10RuCwMEz4ZH+MyCcTEREWaX0TySdzOiFFT9YTir9hpmUkoQeTr9SnJIcAKgsWKNUvJEoJr3cqIeBrZWolV6YD2QZLJ7RuxXUMiYtCrQyIHAVg56mDdsmULnC2z8sC86iYgUcSGLeZ/a3vcYAsBwAcoCnzJkf3nbEuHqw0TLq0oD7DB7tM1WOLgQ2t3YrZggKfrhX0JRwrb3Uxjax6COFTxCLSjkETjTx5OqLoiqUWFAwxP6q7xFWhfxXg8T+3ffedM1o4PmEPDWTN6zHjtDVX7mJJ2OYeSV+2pYzkMfV6hrQPjONTOW7Ozs3t2PM3sGjCRg2+lg8ypDq7Cgjoh2ICxR4ofKsVEbchdmwrw77KPVY1gTZYNjQdk2MPLvdTKKzNWF1U5VCKmxn5YJKFli/27pr+ucPNinlJ8GN8GQaBNrc8Ty2eJPf7EAYMnFD/KvKAQ8yTZY3IBkf80K6n1JyITWYoMMjF3wa6FzAwCo+70lqV5bVcPcsIm+tmBFd2ZTYCjYw5XWbNsrchTm10rbf+Jq5ZOp5YX+3QtEfb3UOvibMEAklaRIEUkHauDcEVJ67nleWf1YqVkqJiRoISAD+xq4idJkFABA04lKJo0y7nWDAo+Lfx3Rbgg3h6YYeiTNrXO+mBDOiM/yQp2LbJrnU1WHckl3aq2ei4JnQr7HWR0ErN8ijKRyG9IqtGBUE6sKh4LJR4NI+hHEqpuLxLsSBR6Ozyr7eTuq9Y3OBsxPOAb9n79bFhpPFcd1tV/yK3e+wV/UXwY7SXnu1fjNvBQyvR/4UIsJvbf/+bEbh/n9tUv7tnVdLGWQ4j38LZibELacDH5wWRy82VebE0mMvmiP+/tyHh/atmNCQkU+1rjCtWi9mh9sJlzhqtXTELuhIB0x0lxMULWwp8LaRa0r+lowCgRvn/6LuGkxgIegfCy+CGhhM7cfoVGgthyBFH7SK1qNwOhZpuuBw5dYA3j9zgA8JkaSMWYWVmmFPQkqH5oE6tV5nBDv07CWKmF7kK0OJBpFh/htP/XEcrLLLNX7mX2zRcqe/u4thpK97wQIT1y0bxaf089xIO8C46Ty17Ne6Sx/YX5s3dRARyi5gte23/1zjKx//FGZv/ic1CwV1oG5jZ0sNjOJ/ZNQSLmBv17PTBHZQ2nHw4Can5RT09gahEsVEEefwViWB0Di0MLGzClXKLyTLFgae0R9+QZofJk7Af4DKrOAGukypVgCwgkGQxRmkRrHJMewR8CQumAypcb74nASy+viiDa2pSFQRuPUhsKPPEcyqeQkay1AMILQOK0kWOADFUHpqhDjwHVGm7hjj/EtSF5gtguLVJURekuRFkiPRb6aPieqATG7YNfDTrPqgBqLdVYy8Qf483XgQr2KAhL7w3ORSm15RQHKgsG1gqhh3yMcT9qdkx4YCZm//ONxP7vTSWy73ZsV9/vC1W4RINSLXF4DEQchXnrJuzmEiMTdrWws8XSrhxc83MIoRySHK8ws3cn5iyfx65Q2D/LeYkQILRv6Z4Sbletu0I5/CFPbFpmNtsHpg/Blz7ZuluGx3vzmNJHaNevFSkQdBK7BxyeKz4gcaF0COeQ07FYIQNWEIlDyooWqnl4LZvIKg6LBl0twokoor6y5aSyBBmJw6OALwRhAnJA0yKzaoXvlHPeX/lkaUVZWI9qWV5a2+dMqOhsA33cWU5CIWRpYBCEIkVWTsmYtQoBUGc9bNtadLNA6MisW65sAUweHIeQGPL8D6IjrnNqLT4EOgKo1gP60eIbS3MWOpdolcPdg5677DggqZUqRliI4voheIbm5ZQyS0CeuWwV9s2msWUlPF9W4PkQeIc8nJJf4XchxybHHsqROQxg0IuksL1Y/0e3Dq05OfIJMw6O+osaPoMD2bb4+AcW+D0ypmp0nols4L3voX0UoEfXuPPH42ap4I4J0duf/bS2t1cT++dfumJfyOe2rDoyj+AqAbYOX9/xQcShIhECmBlt26kqGTxwKMYsaRLZHkXrFSxflVtpgE3K1brVieAroC3rACh+JwAv7hVxNKR1q5UGrAarfe49iklEZlIPBwX3pY72Nf6g2buoEKzCOW6PLgX0MQ2ZG9j2EOXtrVZNogCc0lRaCoHM9kBqobwAMYQCn6PqWLpQKMguQE/gc+O6kC3JSq02Fzw2lMeRBQUTOrh/0FoiptKNgjtUOvELqNrnuX33bmp/+WJnN+6tAdOB7wwdpNA9DRnAADjEXIlql18Sv+cPrnJt/+6j0PLdHuuFvm7RX2iZNWrv6/EXvFbf2Z+9ubAvP5Xb56+i7eM+oRQVDgsgt3Hz64QNH2uLGFzH9vSRPHnvFpVtqn9RckU3iFUBatlJ8oSSCY5HRbUZbSmKLAc21TGcYqCLPFQ3ImrgvZkfETTtNmjE+emb0vXCWcYidnnblo8FK1DznbVDX8tk65LsFBU8h3YE6Ymbs8snUWpBhwjbdtxfXHvT/0ebOk5gfGd9hyE589Yu16MHA9iDKPcBLCEwXZTLkGaaDgU5RRBXGJJUnpgSgE+NQ+GLZRkb/RVfX7SW0v0EcxeQNHWNRQjD/om23XG+b//15TnvBUOfh+zr27jadaK3Ne8+AstsXLmNSsoarbquAw6Hatfa6enSmicfW3uns30rPCjxp04q0nPlsMF4sG4sqRviNRGMoepTogpLfJewPfBEnyDwKTK2V7GPcqX7wS9JMsml8O9IVui+4kxRQiy0b2sr1jlCggYIe7DexN7s9xodHgR88PXl3sHCCYLY3Lq6ZhuVjH9OpAmra/QaQUMHYsfefeP+wTnfWzK7Qu1XiE7nYBHvHTDIJJa1ayRDhL+ibVzCr622GlZqNapwhSSMaIPqUNIcRRJ0ohvLAddAftIvrasrOnKle1M/59StwFhVS9vHZ6ROIgK9htXMOdw9kLBiHSPo8/ss6bQwB2U0QG1RXz4KRkACg00dumdFRmu+Apq6WWvLZWWLuiY7GEQV+maTDA3yB645vq/r+rF5Alwi9gHX5rXElvPajt+6Ydais7kO8zYCOtfrU+t3/cOAtXwoFb+HHaBDpWaED1sXz/WzyK423CSiX+AaebiXCPR+9ObSju909k+/VNovP72if2xNqyMX1XTSBXA5vKhoe5Qu+OuvGfUEkSoiO/dqmmf3qLypy6iS7SDOw4q+aPesULD1pM9JUwSWAdzyzLM7JmmoNjILn1DPiMKSyEq85RBDZWK1CKj87QK3IUkRTGnq5rIy2Oh3VGYPdXGRTVB9QOaDASwVg0jHohDwzkoI6OrKePBFKJTp7kNgPPN1g6LuQTWJHXR1kMm9a1H4JdKBxo/ao4YC3FBi/+elxv7qrcyWFWj4roDuyQplMUbzemj5jrbjYV6MD6V3OVc/GsLO6z53bPLjIC6q0KO49z6V0vsHt/j53XljX38lsd/9pdKuFGgz6bE1PGLAeYIPKIIX4PAGGRS0jFS6YgUKQsIIpoLti+oCMmdkyDwE3KPX5xATOZriAnsjfUvX9Fe1bgjIADUQ7IE7BapYzjoXuaSnMDMwt5jTqAekXZjTo/2MQ0Oq+MAqkb08SDR50AlWM63cUjJgYUwPWyl6eIcrCf1yvJKA/CXYuV5TwRrC9MfrMMlBgAkHBP/MIH3wPrCi6GQzz2ZRcWeQC3xl09pehsqIIB1cY94+lk0dIC4KfCn7gQTLDd7pv4tqAUD6/MxqRauKKmY/6joMBfH9uAZqBtzofiDBy7PcvvbC0l69QyTlACGJeTiWkDg35QYGb3J+3o3W8GUcgRcOOwAdTnFOhc5oBH9xcvnPqmO7fnTVvlhcEc2ISYyrGFAdVkB+VgOXYpuTcQ7xbODlSsiVQMMSgXvuftZm1aq1agkNus6yolTigaALbUF3/cC9Q+AX+n1M1lg5lPsRAh+eSdSqBCbQWeeYAiQngEwkL9qKkSteU+dQVUGCBbIxDTX3IMLeA8vX9VaWqLjBoUQqF6i6EbeKqly3ZAJS5GDuosiAswEBbW/T2cGAvYcWIDXtiBiB20hhq6qxdrVy+1Pg7vUZERj3aF3j6uPaMXGTYw5k4ZHFEKe3nNv8uLekwHWaiaTkoRIiAyoQdAq22yYhiQSB3xLfpYY8jeY7Cibu3WFVLewxCkBs1XrxR/7bgMbUEMTU2Y21nud0xWnRrq/QNkb1L+NZj2uAD5gGJCoAADbgSURBVE3SHKBp+F6ufc9EkAQQMXtfu3lq3dnbnsBFFj/GVsh/ezh0hwTF5dQeYbl9SKze82MM9lc3dws0csGeE8Rl3Jy3F5X9t+/Xdv2LT9tXnzmzT+4tKHCKCpXEZQWOprAjNllsbowfXWrAg0NurkM1UjkeW6DUAZts9ixib/P9IR0qer41+D0SfsPbZC5doVYpRB+haC5GV194SxisLFr3uKSLvwGEYoNNJlygDhwcMjDvwL9lN+XUcq9y4r2iAiC2pL4zz0tvIXSu40JmFrx9K3gNpjz08RqQx6H2lFeH8F3HpBkMVG0Y3HolM4JnaCOSLUrSaGqvnGT2v19u7NUjRL+LgYHEimvss1v3fmjfx0V9hPn0UaziPWxc9G02r8a6gsl/ba2jqKBf9CKYZy/c6+2Hxyv79afFQs0o7RiHIK1yiPkEVmhFzIvLtBCCoHYIW5jE9MEj20VwOVnDzk94UkxiBoJorzi5AHAJVtcp4SBrRbRsINGEwJI4XVQQ4eqB9q1bo0UdRc4jwJZCd8+F0f2zQEesbWsFfQ7DoKeua/9x6bn3MANInGaoVEa9bBRcx9SndAtxRG7J6ALRZD3zuzhUxMlX4QqEdYICBSoPWHvw5oUTDXBK9K9OEmryuVa1S3s4LtLF1HE9cFgzsfNEGUubWonuZT6eB2EVhTYUqpMQtkedBssTRU7okJZpb9NiYj86ruxb19WWHkMNhlDHf+aSxL7XbbZBx1XCmJmXN+Qbj/BNZ092DTvZ+BbB9B2hABH73b1jd8rSnriC1mi8ll6DCT/amMCiUYattSxPrICECluq4XAlH2WQpOA4UcOZA3N9nz3fQTuORKdwEkHijUoVAkuXBWJAhvnluFayRlEZg3Ydq4HAf8tRBueA5JucEcpOEAIykRPapdw2eCXSgqxxTKZ55WffJOc6kyoX8HVLS0voXhZs7qC6TvwaEqtMQs0dCCQT4FAxT4AVREgGEeVaYss5TApqEqdAVLFkZQ2winAPahory9z6LqOsGYgvLFSQ8V9bWRY2WdU2h5g2iht5LnIjMMyoTkJvkHITWAMopUJXUOsNCSLObLSnydp3CBMCPuI/SdTUeRhdPQTwE1T5iCGUYgit13KwqjPr85bnd31W0xkE+GQ6CjkaN/Bs6I8AWy8rlN4Ol7VVr74cfbZ1Lw1uH0MyEglJrC51EYYiyQdR8XvQ4fpuqymeH64jposSRD/Hop1Kxhpbn7pg33rttr1zWthXP1vY33ussRyZN81HJ5aVfqGGPrM2fL4eJ9+IGk0Aubecvf2rVpVvcG50LqcRPZ4s3sD9kba9theTRI3KscLFSSaCRupkXEgjiOVe+vk53sQ3A6rvCxPMoWqfkzvcRSBazvg7sjVduq1Sb7RgSExRtQADVT0nTKoCQZmLjgcoMFzQ+QIQfM26Xtdp4x7r+2orDMyiPptu6VmV2Ut3c/tfry3taAGtNIQFmYNZI2AZGy/7cLHeaI+tIQKaECKhbs7DRyV1fCQCw3EZj2Bxzcvkgs//wO894BHuB/jt7XTR2HfeSO1LVxO7Ru9qyTcEnhQbrmaecHOs1qEVRV0tYdtk76fnONpoDXx1+SJZO4vdKskRF1qnpIG2Q64ZSsvIcB5Ym3ASQbbPrdBbxCSgoB3KtSfMDbN5X8MMxlxxP6SM9HP9m1AP4H0YjMJTE/ZuyqJRIWQVmxIMma34Y3mKcsN0SSLuIcAcOqkJn1t6n8jo1bKVa5ACWjnjeFsRQUMnrTAavsMer+9sSqiU3HpYGKQyreATOKgrVC2wV7H6o2qNRIK1J4hvhX1GotMIEpEEEtcMKRAQBQqIb7cEpKPNu7TUvvlGZ28dNeen4NYIybtkG1IQ3YiofozX532S+kszhiwTt2qti8ZfDTJkcUU8MteXtb6Z252jYzsor0m0GfAYBBDuMsO5MenYcYLGHIJvDoL6vEuEOYEqHyXyPOibplbA1JbaccK2AqaDYFFmAt4d45/CtLUtKojr7hhpTA2CDkkvITFAwkGZMAam0KvzdYSAEcl6qjUPQWZYK2IwYfE9HT1oYmAngBXkOqtSBLOFLc4WVi9ryphxbqKydrayx5+6YtagM4cKf+7FKoirK0DGeibGDusANYOqsWVd2zQprINIs2Pm0eaFRWoH5w1PfkjkdH/bZFZatlgS3w4P5RYBJe4BKvH0m+yYqFbSrldVHetoDkPJjAEntX6j0Yv9x6XK2Lp2WSpe7VVj/Uy4YBy+0YELwimpj6iS9hXXN64Jkz4mccqMXQd6oA0t+8RuvHzL+ubmUO1zvy+fe+teg+BRPi89E9PaDNDVJa34XRTUCcN2fo9gZQjVKv/+gg4JQ5Q2Zq/cbOzWcWa/8InM/snPlfZMeWZLZ5ZykO6ulpIOIV1MJ6B6jobAJIRktYCZbbP+DnipNnnG29iQUa1wXSbqmaGsHZ7c8aGDF+ZWPEmxZrsOAaJj2lQl8EDURaz5Eo7fHiyjcIN1FihIVdIjLJC3nSlMGeQRr8ypujmWkNEJhDYZZCpUitZhI7stF7v2iqU0+PwgFgBs2BzXWDx3VWh6e+Uss+++3tqrNyuSV0RoF4NSxt/3D8AGxMXI2SXmxEZ786MW0L2LMeQqw2K+WLdlJHyjH0SxZit/GpxSLsADvnizs+88Vtpvf56ITyupyQLB0tQqn+PAqKKNqzkiWQTcR1pJhS+wM7AFO9A8ZhUPIul4sFcBcYAh4MARGGzzEP0VXlDuE3gfTWuXM/DqCArmVLLDPEWighdBFS4A8YF5wuemrzRaxMIThmgzmb70zJQoO9YgMUWwo8N6cIIL8IOQxKDFlmfe2Aviu2Ne43iMgJLSM/y+ONi0ScODekG8pEhlTP5cd1Nta1ROW7GTid1F5Q7kF9fXdBcPBJaoxOdo0VJ3U1VAVwRxkg72KR28OLgQJALjxXADkiBkawvvC7bmpEztuzdK+8YrhxvTYnudPUyx4aInDj+/xEHfukKebDXNNNiqHSp9o1b2aPfrlkd2Ul+1J/dw7xpLINuCti/cPBAUUb9SFTjPWrVnI2xQVEGJMVbmrLViBnyY2J7Eb1LcV8K+uK0hByRQgJKssDIUWscLJPSERuAiyJDmmiriIjU2nNewCuT8zUAc0jxFJTzIhaxY8jJ1rGah8gbsXQXpGhZgsDe4tzDgGACRthPJ0MB4AZ95nMByv5gQbycbOPne9nlq5RQYNzBna1U5w/awm1jeVdY2YhRzteHDNa01cO4oxTa2aUZLu9qJkiRX1epiETKB6l4NmIMqelQNKICpBFlN90WVbkBBnOCGCiYgVGlPdjOYvDiDsV7RieD5SuUD3D0N1F1p01gWVi8RgMMlRyBBQY91PXiuCiBit2631tx51QMch4iEsCoDvdDk9a6l0j0FqKEcsNWVe98CvwdV+97N4btm5G6CFs8RGkcVzcGb1zMa2rO1nc261o5OG/vuamJv3svtN3/+CfvUlYUV/ZyVMGAo+Pmi7eTtKuqkOy4JYxXs3nEm65p6km8IHXunjDcA7CILEEuOpj5y3/Y2lDsWkEkbWoOuHug6aQN+y7XqxH4c5PpYeSCegeDQ9cYagVHc5xCgZoAHraSR36kwQ66Jx+oBytQFX2q5gNE8WMJi5zIExnWiKCLmlF5XgHuXwfBrgXxKnr36HXAqJ4vWnr9d2rdfq+x4IUwWyRojhvNI8WY0r4Y98dy0HapaXgWMufDg+fURb/tuLGz/vtSCPA+if+BCH7BWUS8dXn6YRwjEvv7Swn75qal94aC1JgEjDxsyhJTlfkPLNg/go22KwEdgcs+6PdA7n7iF1IDauwzeSHzA3oxASa86pBOOY8PPnSPEOYq2KIlW2IxBCEEVEBVrh0IgSKXsEoMd4ZcCHwj5IwG0EbBCQLW1qWtjsQGEFqrLSYHlit/AESNa1WqxeVLlUioI7IhrBEaQQu2SZ+L3IsAqHCxcbJpVTBxaua34qfGdUGmUSwNb2Hg9ePeCAODODGLwrtcRnomNG/sIcVou+osqH5jMCExxaEKahsEFD9DeMrShEgDjE7Z499LOVmlhv/e9Y1uNJRdGc6Tf+sd2V2cIgEZ7puRpwjP03SptfrhDn1Cs1HUrzatyHGqtcabwXngEMWj+QZ6jsqO7d62YPW3XCrhmuNsFAjJ0dhjAyQkjpHvI4uR8TOiJ3Syg1Wc2PSgsn+Xu4ISKlkN/PG+CpzIpOsp1XIrICXtEKgj/BSIU75UTl1RDFnMeGDQQSdhuxWxJamsatGDVhYKrB63glksSEfamOSvPdMSapLaoU6vPltYslpbT7tTJJw1cOiRfgi4SvHSvXgPGDXZrICdpD2EdhAdcY8sJfKHN0rqnlE2Wge1bi1GLSiSkVCp0HyqrIZxDfSlUG4FdhIafKt5QqaB9JESmJ3DuAIbY/bddWoXkiaSV0HpgdOmcggQQHsItq3RMPMFgjuiE1pUdiS+4nBNg9soJ2/NutjcwdIVzQTtZgH+qD1CtAIk0qq/S6o3OIV+/T+xu09vdN162tjrRvXZ41kbHUfgcDwB9nx10osb88w8g8Hv/xugDbzIu7lsMGkSxKVegp+CmK3jrOdlu3K3s97/X2uc+fc1+81OJPZWvLC9g0iwHAaiLk07tFT1uVpw8DoVDNoaJUrvfpR9yyLaFtUGmAuAnInLHFCFoCvIjKhqOdRGezm2l8ELu30sWYFTSSOMWOzE2zuF7shyMAFMBDzxPA3qFbE7Bn6RWVBrm1fMqykgTwg8//k6lP2ZJTZ0S1N2ljfBIEMT0sjJJUa4ozrYVHTlUNYlqIraTOgFsvLW+Tu2ontrXvze3tyBw697FdDKIqo0HdnGPh4B/VNXavvfjVu/mzx8+uT/qwd9wRz3g2/7dRhD3oBfYrBle+CJnjdnv/2Bl/+orM7uaNqxIAUMEFX0cTPgQBQHedDsf8KvISiSNEEf+GmtJBqAnPGR4Y/4RHpGxhYqWFioishAU9ELZq1uQDxqOIkhJu08Vxob0VbdIlNYz20cSKk6lqdfWXDN4HoIgiLE3YK0gaPNgCnMZfw/LLGyqIlaklrfwrIXcg3CAqKig1YoDHAcHqiX4fMuWMPMB5+jUFAl7etBOu0cGfYpkaWuPa0qB5oagdlo14bPhZzhQXQbJO1Nqs/u6D2WCNHBfcZcpK4JjFnqG9L1iC5uWvGSRJrR6m5U9JaH+9bcWdrwcRX1bZbptH4CNhHw9uTaffkHV4VEkJn5WI9Jvbd8Q3o1SF34bhQlVtM5fFy2iZn5iy6MDe/zpKzLUg7xIHHEI7sDepdSLWn1UrIBYf91ZvVyx9T7dzy2b5kJ48F6CSKV3p1suCwcKJuWrk1JDk3PCJYgmaaNqGnBxLoCOpA34V3aESJrIBD9qGzrcEFvqTHUGwencCjcQBjL1dNFZkWMdCBKRLE6syCrbuzq1ti9s0jZWXs1tDtLi6bHNu33rq86m08SKfVwPkDWkGgEyR9N0Np0BEFkw2HJ8Fd1juqK3Bh7Ei5X1e4UtKVC9UtLVQnIMsIqVpNhokJBCBV3M+A54XvjtFjY/q4jBUzERFT8Eh+rOJcQ6ypCBXvfYK0CCgpQK29wg5qDm4xhiF8XNJsAaYvlDFHumDlyH1Yvha9Nd7aRdqGQSjGlUMPF5sWfg/3xfHm41A9o71+9adXjTW7ahWOEdurC/cq1xzQ5v7w6Ho+YHO3KPMOfft8Dvb3vAbjSqRpCQGB4bDn9fx4vrB7Fd6j/j4VJ19sJP79g7t3L78qcL+5VPJHZ1trDCN1EEZgW0dtjGciyvl8txAMhwOoy1vZ9O4WO8G/R5nCQBRhJ/5odeVKRCtxCVtShJbwW1OqeCju1B39AndmIFDzmRWQbF7vjakXH7hcPnQdbDFjRXtWOFHHMztNMIvk+sryR5AQq6Ko1qERAf4ti6ELOOa82yu8sEEDxP0H1vt05m9oN3WvvhjaXNVzpQBzye433iwDo3SzZ+cHGgdhGu7SK828Oes/3zj4TYc5AztiudF+EhNp632e7dqMyMqrTjpPLVY7NvvDGx3/mMZCagdh/WVRTxYcENGxfwoVo7FDilfhcqxV5ZF6ycc4kuGJBacFcN3WO1pPB3VrO9SE5rLJ56atNyPfLzKkmiyDgqZNQXFLORwgguzVSkGZ8nGDQq+HJA0DkuhjulSgapFyWQ9AcmPk9kFprOIxmEjhnsqRiECguYoF2DQBKbsmMoyWQn4QMVSGER5Q3a2gyHLAXV0V2QdzcYh1qdgo7QHyWBHZsEqLFSCpeUChcUXAf8XhhH9/6mNZeuN1tQPSomqLwIo4zgE49j624C3U68LlSVEkunqX3jDbMf3cE7jDKAzQLxBUn4KEEfzTX9OFb9OnAaHnNpE7CAF8VKiIR57egRlSH/xVpCZfR9+7ayw+N7tn+1tGszzH0yPSTvRdypdNq0d0rEu6MQMAgPZsVsalkJ6Ss1cLk28PIg/6DMpIKhCHuu1Udh/D7jXKFWpTPh2eUn7tub0fjoEORHW5R2hG5eAF3HvGd7NRypsL6me6ia5UocIIG0aq05nduqhidvwlZvsndgNfRxF5XtHRTW4DTIIPisM6Hqayv3S2urmqQJuMUgGWuBW4RETIv1ULGzFHCFWirvllQrW2UTWy4FuQD0As4adPmpFqrqo1oISEYKcWa3yIHlHfT9SCZDtU3JJwI4OmJxjSvJESZPexha1oBrSJhAZyWC5kHfkSLMuHNYy2HaECSsIHHiHJWKAfncPl0YmOLyg1gFMe5puXaA4FxI7d7pyo7eecusPdMZmWx1ZQaQ+7isPnbriHkabePkkrN6h78/6HFb4s5OoBhAxk6BZxYcAG5/3L3T1v7kR7X9+Nae/dIThf3Kc41dK9ViQcTPUM9FVXEoEB9B5wzJIWSDn66yAopWOnCXrCjilYSJoJ9hVPa8U0C2IuQqnKERAeC4AUIChx+CYRaul8LzvPLhTOahw8AHrbFRYhiuSSe8Rm51Fp9jnZ+K9t9XuaUlKiJSlyeJCqxBx4foM6yDjPjs4auMz337tLPn7xb2/K3ajo4BzkV5HkvI9cacHCLNt/OxSbSiP4yx7SwQP7uUYwunt5aceNBzHlwuTx7mvECRUrNvvXZin55m9mvPyreVeFMkqJApooQCDjncXxE0cGBgBLZv47RnZc61Kf0QpKc11x9wMsK2iYDhYs2uXM4A0yuFwsbFfNKaxYYeDjThtAOYKte0Xy+y6AgJUQI0yMswWJXdnArhnvwgaGtdHJlVeEm+8LMyiVEpnCznCAfweiE743hB+WVLhR3/wyEN0WXtU5KGij1Mupjad/ASOATBEQBEBYmcC/BZStN315YjMFldDup6+vdlm9k7GvjiEoqVZA6CALR407SlR/kr91r7Ly+0drLaWoMjWM27WpzJxc+57KnVIJnh7fxB7wtjOFhHCv3DnuUkoWEh9dYtT+3O3QM7ePaAlTYKJIOVClwmF4DbHVad1fBB7lpiXYGJSwo8zjUqRxVv+r/TYUXY1mCVwkbTIzw5djBmUlWZGnb+7wlsC3O4z5h189omqHinE8vy1HLAffKCiRcSIq5VJGiwhMrAJsb3yoURnNSWX0HQV0oGqettsQQpAhvDjEne9EpBL2BWPJEIgdHLP6UlSGtVtJnJRk8l/o/2KZaKYzpoTZeBhNHacrW0Iskp5ltBkmZxRiY6cHWsbCFo5FqWFAqqb7hT8O6mJmKj9YTnI72BKIxa6L3SWeLZBV8Bv5hOK0hWOQW8Yh/avkza0A2UrA4OWBFEVb3DUh3iCnozqyYblWQwlvFcSsRg73L4F2Rrrl8/tPYY1b4R9GBd4VkHev7vqDmz4udpNs/si3BSH3bg90HqpXkRYPi7+yFvWsBxTUDpyuyntxd252hiP7nZ2T/8/GP2pSeXVuQLq2HD5EEbK9tUJlf7CYkBHTS8Rxt6fmh3ZtFyEsDNdZsCiC4GFbBxwC4IIzRSgCewFyVrqPQrE0Apmpt6vJ5r8QRYkxPKpTD4Gp71D0GpM3s5CV1WBXjFKTEbXjKOaiR2jwoPWxnWEuVv/HpSbtAJJtR9QvYFLJW312BIjizwxPbse2809pPrS8rqgL0FmywVH2teRwxcK2EpfW/djk3G5aiNebMOgFllHWEa39O8uayB3tboLxKc3vrduQN1yBLv094+H3VvvZA2xLvLxP749dY+83hhz017m4DkoXjHZtbbnBsXub9isCJ4ozyLMGZUsAhikWe7TJQGzaPoWkg5P3JUYmBI0EjIkMXcA06VgRHkSuC8AykHwpZQUfOGh3tyorJFX1JvuRAvx/amDm0KLFMXs9bcZlHcD1f/Xw48UfhKR9UaDEt/ragI4BULtMgGIpK34eiAI+Yy44kUgrNyBmDgSfF2KQNCggUpEqqLZG7C2zfY/b6m6frgmD5iIuncoAOKZBV+d3fwZPvZBicHOgUkie3TS1W/LzNUdya2SjL72qupvXS0pKTG9sLaTDgeHaU3rjDfrxV8+YZrFjrhL1QaN1fcSC5jtF7Ww69T19jp4S27cXVmn74aUmAINlJptgFuBCzo0oO+WcY2IIgLLDawoetsck+mFAW64wbIOEHEcOYoGdysGLtjFM8BuVJNhhZra+2qIj6w2C8VIDDOTSg4HHhA4ECpS4uzr6kdWw55vpoCxZNJaX1aWpdPGViV/Rmrfvi0EmaH4Wxvy2MweHGmZUI74P2BEWwolEJ4AgI8+liz0pjaCuch5miRWnGQ2Xxe27RtrF6qNY7PjmqjQpaGnxMOGYtFQyLM4CTp14vJF0TfiZPh4lTsBH2/BjcGHQwJpgumpUo+sI7o7qHAQ1UAF3Dn/V41lsKlxG1cUd2khjTf2sXuqf2rDwLuQE/7N63qtMxttVxaku05K9vs9dPKFm+9LJsSD/vWM++iheMMZg+CAhYWlb5HXWo/W1bvI+OyRqVO/1XoHY/JGBt1EfeuUxaa2EnX2urY7PrfnNhf7GX2qz9/xb50rbKDHPR0VSuYbTmLVKbxa4wS2bT+umpzbVaQ0PakJmCwEikuK29PHsckmASjyVtgnI9eevbWakwIYO6Y3Lu8Aw9KxyMU/ly1dwdFM89mdOiBdcQKhlfvFAGmzLDYGkulKzZUDUMQevAkX9PF8W9Yqy27PfvhcWZ/9crC3saCw2FFjT9YXfk9cIuZoTt5gfZr/Hsc1G3OgREBZCNYiJ9d6pPkPY8L63ujOX7RWAeIcVjf53GxUYweMG4DYza9eGT29Vd7+92/X1kOVX0EaBQwVXW7ROWMws3Yg2viPokJpKwE2qHune0yMJJtUeCTe4YGaRKy8AgnEIEpJJBKGN57AIk2DJMpoqpRCQxnDsmz8rgMyZgwOXcnGPltr7+fXD1cww+vbR0ZjSwygryCkArwDTynaa3l9wgNTNks4rUPKIvkpXW6akiqBmUNVfVgmYiKD9riGQM01PtYBwBxw4PFsKMDtoiHFQJf578zEfRqIHXXoFHoWn0Ew7NUifshAWe0+HAPMoLwUZGFZpwOXuwXWQa8Jlw6OvvWO4X9wY/v6YDaStI3ko6tP2Nu3m9iDet73Kr6CIw1SzeEcj3x3MAmxgYU4rne/o2qA+EG2NDndvj2XXt67xmbup874UENAis45DRkxOZTaN6hNSudOtw82Oc1UKpwBx3WpXq06cWMH0hQSAIw39G2LQrpUyAJAzGhlgAxghpIpMCRKSthh5ZYWs5sulfaaqmkCxAGYtEgNYMzDZ+BeptgoQIWAV09uG6klhYlixQr+tkCFwuRZLakLPE/W8iwzGtbHZ/Y/idmdN+oSXzMLZkvzQoEk2hnZ4ihKHODQgsJg4RbIMnBtZyana2sSRvL8t5SYB8xx+ksZbaChp9HeeQ1EyKo+hrwecBOypWkppUjcbWUz0GVnKhGYvW4CtPO8h6SRu4r7kkaoJOEecHL14DRQ2LY0lll8AUmmsWx+sT3Yu1hj8D61d4WuFAhTHzdI/KcICYxO3zhuvX18biO5/qEtqUrud60Y08iyp4MfsFFXGhm0+Ltgw783guQfrzxIJgBAHz43ehx4wCCQYNHCNtvG5U36tK5kXz0KiHm+MZZazf/urPv7nX2D57N7ReebOzpKxObOWYvdMLQ/qUyP31t1y0BHCpRZUNmQLkLlz5ByZwL1wHc3PKdXcjWlB9wg/sFafb63AjYxO5XZhjCrTT4dqB34AoIEK/Rogrwv7di8dlRKCAgRB+Z7WR6r7mJOIJCXhhVVvjxJjDl9qzRswe8VtVldnM+sRdvNfbSzdrunEBgExvVGpdYR5XDgzQmPGu3o3P379y/h0pgf2Hw9y4q2H+nxsby3RZi3hIXHvAgY6zWOYDfg95g/TO8zZ++vrCf25vYb3wWsh9Su6dsw+DfC2JC+EOOGOSD97XburkmoFiR65YlWLcQZCbgmRm3cIHUsnQQ9BLBGVtdeA0cAr42uOF1VoDBx0NDXyWSLlSaRSYKALU7w7BiLxkWbsEIDumyozYvV6u/FvBSXMts40oPjyqHdOupWR1kZZHrB5qbSuawfiC9AcFWXI/KEyHq6TGw09pEvJCF5AzWjgdy45vCqgMPRgmoo9rOZJKB6MBJ5OdHdbAkMQ3CuWYzOEL0rZXoKAADWCQ2y1P73r3G/s23j9wLeb3AYv/ezAk2s4OLILFDYBStqJFE1/2m3aUam2wzJQVD4Ko277D0/LBd46yiCqgWq+Z8av3yyF5/Z88++8krNsW94/6YWFN11qzQygS5Scxf3j8XZuEM88qToD++tqSuKecpt95koAfRPhATlmjnq6LNMNOdY8ocWnKlZYUzai2z5aKxpqpViSLRwKxdeNUZvtAJAqGcFfa2qyybZTbJwfzVZ8E5CPbstG+sgkxaXthqZVaElmff2BQSMgjsvIbarVbCtUIloEFgC7ccVL/VjmYCB5s2VNJLEA6xfjSvWwhPs8qD6hukk1z/btJb3dSWoc7daS0SXcvqqFiv+MbsFMDqF24ZfC/gD7GOtMdgkEEM4o0TslAcWaKljiAQv4edJd2LMsJJ0EPG7yC23UMAnjGCAsEQ1KYFKRNmhxNgvQJuAVF5uKMkZq+/cmTdyStaOpQFcY/hwP1zbqmNjRhmSEecxCGEs+sLck5OttrCH0Lgtx2wPQq4fvzz+Pv4NYafj1p/seYUZHicvBUYeLVXKvgQm3X/XE0tYdkWTWWL48TunLb2/I2ZfeGZiX3hsdY+dS21g2wlPa7aAZ5gK1G3TNUBZFy5+32SpUj2rrIVTlHuB6qTt5NWgVho9oyYHnItUCuMwG+3LWNbKISQXYqChwoDxwmrCe7LPVQ05J/rzQq2y7yCx/K6i+EyQIXOlMgj9A32z88DDBkYjt/O7KxO7Y2jzl47K+2VmzVlWvBdhaXwKsdws7V9DRvkRrnPH7IVuo1bt+s5sL7P62ni8iV/x6t847HxTcdR3YU/f0BM9wiX7H4PQcv2j17tba/s7KvPJpRtQCu1xKznnix5BGHhoFmFgETEIhWkWcviG6gF7O1/VMUpj6DWsPRmwYBUuwavBRYqiAorVJRBUMgBmwB73NeFu+0As8Mq3oDtU0VMDDccUO4ZGpUttE69Ws82qle5mRwxoYM2ngcuHvAR7qAOjiruXq3nnzzLlOngOcL2BYBfwSWqovieTM6clIT9R/hi7XVg8SJY1FyXtRrh6y6ITa9yfK7MvXaRWHo1CQcWnkGOJK5rApLLxEocMo7XLXIjw/J6ndl/+O7KlsQxjsK7ILvcZ3Kc625eMOE2grxxkHjpl632KN7zaK3Gz0YJabRXY7dVD1OEnsBmr/e6zlZHt+3woLCnrxRybSLpUDaF6IgyMRjJ34wdkFzPw4PQcGnxiqIHkaowohIH6zAJC0M8GQNQCDDRgaOjzFKbW9+sLIUPZxQf1O+0FFkdft6DdIHKcCYWf1dbNkUrGoEK9PvWkksMfjBnwXCAnyzmWpmLSY7k5toeK+YImPiegBS57AW6BgoClagBPwif8JQJC3B/JROeclbYqu1tJsyBSCnAv+buT0w3IYBhM3W98FXdNpI4yLSzdJZbcwJAhrvdeFLXEo8skg0wdjq7sN5DsgzXhlpmVq/k5AOoIe8Uq8PyX+0TsIWxGUqlIJi6igXEykYlUARRxym7VunNuytb3PgJg0hKwUTHZujsxBoNxGeY2qqyF+WZc/ipgeTxAQZ+4ypf4HreL+D95u8v/ntUgpKLkrfhWkpLzpfrRpsL2QGYRLePart93Nr/m2X25EFnnypb+0efzezafmoFPC37lvIk0iDziDuEnv396J1JOjjt++ITDRZHY2amWED+IwrQ4rXX/Xm+D6nn2siR4al8HKXgIG8oS0SbCYsVuCcZeSN5kB2Me8JbBT02iFbiQAOZhR7CCkqZLU16O20Tm69Se/7N2l47ae1wmdpqMWeJPIJZTXthiNRBdgC5Z6jRKj8X1EVG7cHqox4ID5sbH21P3vuPi7BSF1VQNquC58lQ28+L6X/hJU02H3O46O1rr6zs03u5fQ7i+wCFU0ZBAiOYWlTfZyYuzSxXcFljDWmxJls3DARGEIlFkEjEDudDWLc5mJ0+2fDpVNsLbUsesJ4Zh6C5Dmw5GYA5i3UF+RYdbJoDDOQGjCECp5BuV3XH+Rj6TAgYIX9C8gYOOB3AOTB5rMoBdzjxQFXMPTLdCWBfsy6pyRc+1PTfhDizAjl2DGIvAaaPgaEq8EzCfI3xQME1oK2T7iIxV1FxdTFcHJJ4I/rBUzyaxGQyNiHbMp1OGPidWWr/8Qed/eTeIzgwjf9yn2Bvuyr40BV6SUt/wz5FRxqvVvteNUZNSV91C/vnzN81w3d98MDC7O6tQ5vmT9lBkcibvW7JiKUWpXucY+5gnpMRTqwmJEDCV1nKC8KMss/l7ydRbla53WoNDHS0ZSG8nOdw1PDgATg1MnkBa9CT5B+N9SUx3A4tSjza92V45k5nhapWKDJQyQJuPQpG8TmqJeTAKivgTws2PWS9UCWEOxVYv83Slicr23tiOmr8iCQBMSWQMiCkjGIKWecwJaBWaOVuOplVZ0syhmUeoAW1BAuaOFaIYssJh1fEC6XqHEi5AkEl7lFdV5aWEGYXGTPhtdb6a2mfFjau7pyVq5XbAOTf1TbBPfNqKmNv1/hk8khiGBJfVAz9vqr14ZWZdXEGclB4zOG8s9uvv2ndCosxLBD9MwRRS7NS/w01jggAuecGUMT3mQssVT9UOZcHyWY8SKrjfpvQuUPqPi2HIajy3w2dxvi5/wzuHJIAc19c0Lkn2sSrRWXzldkbfWI/uNPZs08V9uXnrtrnspXtFXNlGEwtgCxHMCgWkaIwMUFk9aaGACanynbK3OCOIWaiyvJ0OyCg1iVCUUyhNoTIFDp3AId18WO/sVFVxPMRuCL4ii+vigT8d+HlCHs4WAXVg82UJnBmXQk9JsgJmM1tZi/PD+zP3z60+W2z0wZHIAJZimGIQSa1vsFJYRyE6h6P7+X6pijwXSuNb1bzNufA/caDqsQf1cDub3VGPmDeD8XVC2RcHvQy47N9+4zHnXvrXmJ/+Epn//IXU7vGlkljGRmLqCQhSkL7M2UVGor6wMBwfgwgXFW6SGxAckTekLtgoKoFYpOKh2LgZZJZIjs1hexD6AUieHRNO6rahraVKnhoP/XZxFZIgKI5xufFpq4KHQ4x4OWw8MNWawhVKe8CrT9gdbVu8VD8m600F4xGkLZCq42B6cRWkH+JIBRq/u6uEK+Oz8y2uMslKTkD4x8+n6qkoyLKPYEBnld4PFlkgucSOMNaArkD7VweQDjI1UrGZwL2CgUIQDfysrO+nNofPN/aN1+eMzjXbbl/JBYwj2GZbRC1z9v/rcOjC2yXLmnAFwNJhQ5S3S9a+QlL43tt2HSOmZZrVU2SY4aAUBJGsajq+T17+/bUPvXYPvF+ZTYRy5UBnFqXky5nQkFLMVqEqdrcg+0rbzWvUqm6jMRL1TLAFFBZQktfuDEkCPSR7ny+WDMElapaqUCAYEvJRKJ2LV6FHAY4iDRWFBkFnJkowaYwLxgsiUDVWd1UNgUOl3aKui7VshYRBCLI2cTKg8Kq46XNl62VDKaE4cP8WVUIgJTEMelJQILCmYdvA15Iw6CyWa5stZrabIag0xNFSiwJxy4JJWBXM2FqcVYiImNg7CLJULWGwTDP7DizUl5/qm0QG9sOOoPYmfIks2XSWDtvLCFQUxVWkHPo+4NAmzARBO/abRIQd5wAhiIK43YvPOEe0O2oz2xe1/bWWzesPnzTY4OYiJu78AZkZ1hXLt8fLkaEBjibdziDhWH+QAO/B9r4bAV77+2AHreDh3cffqcgxDW//NRDpqzC9zrIw+MgpIn8huSpsHRjud7b5yS59XZy1lh1NrGX37pj09nEvvjsFfvS4409XSzsatnYFdcLg5RDBT0tmDZ7ST+i1ZoRvm+iSB68ZUOFdHdzDyeAaDu5O8sQz1NjzHX8MKKwyrKxa/xQEBNAbhrMq6VME2kEmrlA7PpIiQHOMa9qO7o3scPFnr14s7c3jpZW1bXwEZB3cfKvcILuBenYvaj0RdA3boecmx/Dn+O20nuYBtuv/4AXe5DDzMOe+7MemxU6/7z3yeRCuF2PPR/oPcq5ux0Ijj8J2hJ//Y7Zn+wl9ttfTK0sJFVASzdMBuh2YcfHJohqlVexhHHx12S1S0bkqM5RmshlKnCg0XUiBwnCF4Dr6wmnF8BvP5jRzg0HBdfCI0YOxxzEXVNZUMGdIGzPwu0EzPN8kkt3L9yzWBkA0B3r1/G7hNvoQcTuetJYci1ibcKqSY4JOFRZ6cR7+vfiV3BcXl+H8K3WOF4vK2A2LykOVOsRvKFyumxrKx3LNUtTYhwVu7oup6896iiSACDdTtyzKV0+FDQWGap8YI2i79vZt1+b23/6QWvL7sHJ1NC9GQVw586QUfv38q6gRx+YI4KnhHRXLAIFgIqztvmSsTsr2EtGB7AcaiIR76w6umN3y8w+fXUqVwh2W5DsKDGhPR/JfzIgwGO45zLJkM6lMKE6A2QqgOehktWJSEWNO5dJYpC3ZBAptu5EHulIULA+sAbF/+a+zmIG5ZA6EkNgiDvJSwY1ZAaDIUzAXqEWKeZ1lthqUXM+FqxuCaeLQA2fL8tQ0S4tnVTWoJJybY+OHTAKYMJFpjrw5Vo7WDcF2qaAe2AeF5kd7Ke2WgE7V1vbT5385TaOcApBoFbpmgzYPs5XkGfEuoV1KNbt7GBCQWgkhy0yIgN3xNvX6BIwIFXrHmcnICRJ3VlaNlYBP4igrkMA5+vbCT4g4lCSRTgO4Yvd7jp0Q9ECZqXftVCvHy5s9c6bzuIdjaikDCsrWidD6WTd9nWhe91Dx4JGi3iM8/4wWb3blb/xz97ra45fd80M9b5+bETjDeuCt8UeGg4d8drbFURW/WkbVVPAdX7W2vdfPbIXXktsP53Yc1cLe+6a2bNXGop1Pn6QWpHAlkbSmxgUeqRf8HD/1JLCYed+mfxeZHvpWTjcqIfm4rr4tfLCwM5JZoZZaQSNDrQHuDQo/bZCFcasKoTva23fDue93T1t7NYis9eOWjucJ3ayWjLQ5XRKUHZ3ktrQ5tB1VDVjcwiPEvck7tPFrcbx/Xo/xmUO2t7v0T9CEDcEitvXfqNcPtRkNl/nIW+AXy+6xL7xZm+Pz1r7Z5/JrGS/FO0OCvupvdJh81YLBC0btLHCaxeHEQtezrHCARf+0bQfIzDdPQqw0bkkkdaoWH/Ktf3TU77FD1xnwiMYxEEXRzLA86xQsx0krTts2NDeVJsU1QutHXwHBZeyXNO1CJ0srQk5e6Ddi2NT8jWhrM+KpPt+M7jjASlwXl7AfksAfxygxNO66DWei4MTXQIEeTqEgYfsbUXmn3QHIbzMg95N6elOglYXJC4YBLrwPLX6UFnqyODNs95+fJjb7/11a3dRoryoInfRHvnAKbGmSa9n1n3W48NKz5dh+IaluTciCrqz0mY9fHSohMBv4O/oxjHSco1gsV/Z8e1Duzd7hu1+bJz08Q1yH2MGkZ7Qngcbl8lUJ53JaANS+23QY5U3DPm7qBRDV9OhChTnd+IPz5EKpCgla+zgpHgfYdK5X9PRRm1hSA9h4i6RiMWcx3nJSkClpA2BTNVSZHm2n1pOZq7fZOq4TojNw99JQllWVhPrZ7QTjMo+VhMgUQgusWdgXSEJY/sV12Y6sy5vbLForZg2VpQyqGcACV0xJpTGlnPWy+JORVN3MUbghsdlqKhOLT1ozE6W1i5BYEEFXrCTfoOR6FhLEHCKibVpQfgjxKAnOe63k2eolag9Q/mc+okS6FAVkVXaOLPdWOL2SW93X/qpWXO67laMZNzX02w056hCMExWv1OjDuBQgA+86aOV2N/3wC8yx/dyOK/L6PGX9e+2X3f8b7ZwR23H+Hu0dCOgphTDCMgtIogOCC4YJ8iACq5MS71iPO+4ae349spevC1phMf3cntir7eDYmKPlxN75kpqz1yFZhY27Iam3TwDBkV1TPa1i4UAxc7W9XvJMrYrBbgazAAOFTNdchIMFLEFMJLFgkP1L7O6y+zOaW1v36jtcGF2igrmqrfjk8YWaK0BZcGyh6LcoXWLt/XMZS3eHAdusIkHuMVQhfaHDTcvNr5xEjBuBcfPLrqfF86HDQDrgytgDxvjz3SpA8iBHxMY0a3f34/pvBXZXZT/rGvlWy950S/8zU9Wrf3hS73Nisx+/RNgJMJBABul/HFxkA22fKEn5tqSaEuxFYs/gStlZgVxV1QfpAWIdqkOLFXJvb7NQ5GbLNePLM9kTSovXlT0YDmlKpvmrYDVa0eP9XcTupp4KsfaLVH1QNUEeCvGgJ5EYrI78QkYPxxIZPozmFUghs8A4hWIXiFs7m/BAxDPI7cXVRPggHCdKLUhW6hoJ7ZhEectcFWAfD8KRyHiK/VFFMTCXUQevGAY0v0hR3u3MUCSwI58ZZ7Zv/3zioneQ6bJ+bWwkRCMOi6x9rYShnHycd/XuYRDe9gIpefrLdrsCuxjv/EuDebeRiolz2fu2e7qMbw2q+On9s7NzPLnnrHHqUUnu0sUAdDR4V7kiQDnNBIFYGa9gs52dC/4DfF6eElYwsnsWmLSlP/xQNADDiZhEA8neQSVOy9qAPlDrTAQpJwy0Das3Mu1qiakI8f8pkuGYBVIfFZVbd1qaXuQowkNW8emEZMOyRqoQbQNA11allaVZfsgjwA/i1KGO9wSk+pELJgKDIcgAjIkQo0tz2pbXCmlYQi8IRn/XnP1ZI+YPUJGAE9yqIi3RsHMxyVfgbWLVrv19KdHQAiSDXgcXE1+zfoKzjrAXqpaSv9jaJeiPezKHMRmotqX+j1g5U86iIQjDtQLD7b73m4venvjpdetX1z3zX2USIwWoyR8fMMaCAm+6uK1PVEZ5mosPMebPkqf59Lp+Nm7TBI3NqxRULIRQI8e7yYZ3ibVphYROfFIjteIA4B1gvCbDWYeSBwo9a5AKW/s9r2a9GwEZGUhXa1p1ts0M4NT4aeenNinHi/synRie/AExP8pEVELpDsEfutckZUBHAiZa/W51hQiv3mf2dkiseNVa7fu1basE7txr2WmdtI0VreZLbhHpfSC7GxB3AHklvjtQKV3JwKR4MeM6WG7WoNF43rRKmpMIIo29VZi/B4Cs/vBBOJnD2sxPWql+TIHfUMMPQ7uLvji963cjX88tBDu87ztCqH/udF18L/fXWb2n19c2iQp7CtPac5mndmK/peyCgMAHGsHFS/g2rAxLoHTo9wFWpCJLfvE9suctlUymNc8lPuhlOx0kKkVywqBZz2hUi/fW8lBIBijXqbOMh6maNeEcHkI4gZKi5smDim0i1yChdhgViVl7cQ6Dip2cOiBEKxLbOicx/pU9QKtOer7QSzepZ5y1xUDw5FBWoLvSlVYJV2Q8nDpGB1ONa3gGBN4RRLvB/9WhLF4DTKgiZEUDgqPxebNik2a2l6GwK9nZQRVv6Puiv37v5jbD25d5MP7CEfDfRbaI62aLZzpR2HojI2mrrQl1w6+GC6czCal40u3QRYjPUDVqtdpand2Yrfuzmz23DXbQ6AQixvtww4BiZwygAdTBa311qKqvmyOeuJAdjnfQC1EJOvi+vrsaODABE95hR9IMsQ1QBCmTRzwARAASTph0aOyupZkCSrKJc4LVOHRQgYUIU3sdNlbUtdWTjOrGbCqysfKYJtYVbW2v1eQmIUTpgEWLjW2pNkWpee3EhYGnlwngGfgHAWWfWIp7Q21GCFwfbrq7fR0ZUXGUNimLraMwmiJF0/NFg2wxSkTI5gh0KoNVVPuQzira8iNSlYtSYl9BcO6gSC8s265rNFqnygpq4j2C5keKYJkEI/hJZeX+aQDdEVMZQVjKvPx8zOuwGdt7aw1u/H6W9Ye/ZSfXXNkXMRY40dJ5XIJqPjT+wmDPawKMzG7QgYmEslH0z5L+st8Au7GbuzGbuzGbuzGbuzG+zZGJoS7sRu7sRu7sRu7sRu78Xd57AK/3diN3diN3diN3diNj8nYBX67sRu7sRu7sRu7sRsfk7EL/HZjN3ZjN3ZjN3ZjNz4mYxf47cZu7MZu7MZu7MZufEzGLvDbjd3Yjd3Yjd3Yjd34mIxd4Lcbu7Ebu7Ebu7Ebu/ExGbvAbzd2Yzd2Yzd2Yzd242MydoHfbuzGbuzGbuzGbuyGfTzG/wf6HcgQKd4OTwAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Visualizing our data\n",
"\n",
"def unnormalize(img, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):\n",
" img = img.clone() # Avoid modifying original tensor\n",
" for t, m, s in zip(img, mean, std):\n",
" t.mul_(s).add_(m) # reverse normalization: (img * std) + mean\n",
" return img\n",
"\n",
"figure = plt.figure(figsize=(8, 8))\n",
"cols, rows = 3, 3\n",
"for i in range(1, cols * rows + 1):\n",
" sample_idx = torch.randint(len(train_dataset), size=(1,)).item()\n",
" img, label = train_dataset[sample_idx]\n",
" img = unnormalize(img) # Unnormalized temporarily for visualization\n",
" figure.add_subplot(rows, cols, i)\n",
" plt.title(list(idx_labels.keys())[list(idx_labels.values()).index(label)])\n",
" plt.axis(\"off\")\n",
" plt.imshow(img.permute(1, 2, 0))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"id": "1YiZ47SHiTQ7"
},
"outputs": [],
"source": [
"# Create `DataLoader` object\n",
"\n",
"from torch.utils.data import DataLoader\n",
"\n",
"train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True)\n",
"test_dataloader = DataLoader(test_dataset, batch_size=64, shuffle=True)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XlfO-gvEiTQ7",
"outputId": "7387f2a5-e413-4a0f-f06e-e9017011e93e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Feature batch shape: torch.Size([64, 3, 224, 224])\n",
"Labels batch shape: torch.Size([64])\n",
"Single Image: torch.Size([3, 224, 224])\n",
"Label: 1, \n"
]
}
],
"source": [
"# See dataloader batch data\n",
"train_features, train_labels = next(iter(train_dataloader))\n",
"print(f\"Feature batch shape: {train_features.size()}\")\n",
"print(f\"Labels batch shape: {train_labels.size()}\")\n",
"\n",
"# Get single image and label, check their shapes\n",
"single_img = train_features[0]\n",
"label = train_labels[0]\n",
"\n",
"print(f'Single Image: {single_img.shape}')\n",
"print(f'Label: {label}, {type(label)}')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9sttvLmuiTQ8"
},
"source": [
"## Training\n",
"\n",
"In this section, we are going to:\n",
"\n",
"- Create our Torch class parameters\n",
"- Create a method for training and testing our models\n",
"- Use visualizations to assess the model"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "i8E6Hj-eiTQ8",
"outputId": "6f429452-d4b1-4c69-be41-64935275db90"
},
"outputs": [
{
"data": {
"text/plain": [
"(DR_Classifier(\n",
" (block1): Sequential(\n",
" (0): Conv2d(3, 25, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (1): BatchNorm2d(25, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (2): LeakyReLU(negative_slope=0.1)\n",
" (3): Conv2d(25, 25, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (4): BatchNorm2d(25, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (5): LeakyReLU(negative_slope=0.1)\n",
" (6): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (7): Dropout(p=0.2, inplace=False)\n",
" )\n",
" (block2): Sequential(\n",
" (0): Conv2d(25, 50, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (1): BatchNorm2d(50, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (2): LeakyReLU(negative_slope=0.1)\n",
" (3): Conv2d(50, 50, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (4): BatchNorm2d(50, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (5): LeakyReLU(negative_slope=0.1)\n",
" (6): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (7): Dropout(p=0.3, inplace=False)\n",
" )\n",
" (block3): Sequential(\n",
" (0): Conv2d(50, 100, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (1): BatchNorm2d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (2): LeakyReLU(negative_slope=0.1)\n",
" (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (4): Dropout(p=0.3, inplace=False)\n",
" )\n",
" (classifier): Sequential(\n",
" (0): Flatten(start_dim=1, end_dim=-1)\n",
" (1): Linear(in_features=78400, out_features=512, bias=True)\n",
" (2): LeakyReLU(negative_slope=0.1)\n",
" (3): Dropout(p=0.4, inplace=False)\n",
" (4): Linear(in_features=512, out_features=5, bias=True)\n",
" )\n",
" ),\n",
" )"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Creating NN Torch class\n",
"import torch.nn.init as init\n",
"\n",
"class DR_Classifier(nn.Module):\n",
" def __init__(self, input_shape: int, output_shape: int, hidden_units: int = 20):\n",
" super().__init__()\n",
"\n",
" self.block1 = nn.Sequential(\n",
" nn.Conv2d(in_channels=input_shape,\n",
" out_channels=hidden_units,\n",
" kernel_size=3,\n",
" padding=1,\n",
" ),\n",
" nn.BatchNorm2d(hidden_units),\n",
" nn.LeakyReLU(0.1),\n",
" nn.Conv2d(hidden_units,\n",
" hidden_units,\n",
" 3,\n",
" 1,\n",
" 1), # These are already in default value, except kernel_size\n",
" nn.BatchNorm2d(hidden_units),\n",
" nn.LeakyReLU(0.1),\n",
" nn.MaxPool2d(kernel_size=2, stride=2),\n",
" nn.Dropout(0.2)\n",
" )\n",
"\n",
" self.block2 = nn.Sequential(\n",
" nn.Conv2d(hidden_units, hidden_units * 2, kernel_size=3, padding=1),\n",
" nn.BatchNorm2d(hidden_units * 2),\n",
" nn.LeakyReLU(0.1),\n",
" nn.Conv2d(hidden_units * 2, hidden_units * 2, kernel_size=3, padding=1),\n",
" nn.BatchNorm2d(hidden_units * 2),\n",
" nn.LeakyReLU(0.1),\n",
" nn.MaxPool2d(2, 2),\n",
" nn.Dropout(0.3)\n",
" )\n",
"\n",
" self.block3 = nn.Sequential(\n",
" nn.Conv2d(hidden_units * 2, hidden_units * 4, kernel_size=3, padding=1),\n",
" nn.BatchNorm2d(hidden_units * 4),\n",
" nn.LeakyReLU(0.1),\n",
" nn.MaxPool2d(2, 2),\n",
" nn.Dropout(0.3)\n",
" )\n",
"\n",
" self.classifier = nn.Sequential(\n",
" nn.Flatten(),\n",
" nn.Linear(hidden_units * 4 * 28 * 28, 512),\n",
" nn.LeakyReLU(0.1),\n",
" nn.Dropout(0.4),\n",
" nn.Linear(512, output_shape)\n",
" )\n",
"\n",
" def _initialize_weights(self):\n",
" for m in self.modules():\n",
" if isinstance(m, nn.Conv2d):\n",
" init.kaiming_normal_(m.weight, nonlinearity='leaky_relu')\n",
" if m.bias is not None:\n",
" init.constant_(m.bias, 0)\n",
" elif isinstance(m, nn.Linear):\n",
" init.kaiming_normal_(m.weight, nonlinearity='leaky_relu')\n",
" if m.bias is not None:\n",
" init.constant_(m.bias, 0)\n",
" elif isinstance(m, nn.BatchNorm2d):\n",
" init.constant_(m.weight, 1)\n",
" init.constant_(m.bias, 0)\n",
"\n",
" def forward(self, x):\n",
" x = self.block1(x)\n",
" x = self.block2(x)\n",
" x = self.block3(x)\n",
" x = self.classifier(x)\n",
" return x\n",
"\n",
"model_1 = DR_Classifier(input_shape=3, output_shape=len(idx_labels), hidden_units=25)\n",
"model_1, model_1.parameters"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lXVXD4Ibwz9N",
"outputId": "71e35582-c6d6-4512-991c-18b22005b364"
},
"outputs": [
{
"data": {
"text/plain": [
"(DR_Classifierv2(\n",
" (block1): Sequential(\n",
" (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=same)\n",
" (1): LeakyReLU(negative_slope=0.1)\n",
" (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same)\n",
" (4): LeakyReLU(negative_slope=0.1)\n",
" (5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (6): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (7): Dropout(p=0.3, inplace=False)\n",
" )\n",
" (block2): Sequential(\n",
" (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=same)\n",
" (1): LeakyReLU(negative_slope=0.1)\n",
" (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same)\n",
" (4): LeakyReLU(negative_slope=0.1)\n",
" (5): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (6): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (7): Dropout(p=0.4, inplace=False)\n",
" )\n",
" (block3): Sequential(\n",
" (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=same)\n",
" (1): LeakyReLU(negative_slope=0.1)\n",
" (2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same)\n",
" (4): LeakyReLU(negative_slope=0.1)\n",
" (5): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (6): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (7): Dropout(p=0.4, inplace=False)\n",
" )\n",
" (block4): Sequential(\n",
" (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=same)\n",
" (1): LeakyReLU(negative_slope=0.1)\n",
" (2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=same)\n",
" (4): LeakyReLU(negative_slope=0.1)\n",
" (5): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (6): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (7): Dropout(p=0.5, inplace=False)\n",
" )\n",
" (adaptiveAvgPool): AdaptiveAvgPool2d(output_size=1)\n",
" (classifier): Sequential(\n",
" (0): Flatten(start_dim=1, end_dim=-1)\n",
" (1): Linear(in_features=512, out_features=512, bias=True)\n",
" (2): LeakyReLU(negative_slope=0.1)\n",
" (3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (4): Dropout(p=0.6, inplace=False)\n",
" (5): Linear(in_features=512, out_features=5, bias=True)\n",
" )\n",
" ),\n",
" )"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"class DR_Classifierv2(nn.Module):\n",
" def __init__(self, output_shape: int, input_shape: int = 3, hidden_units: int = 64):\n",
" super().__init__()\n",
"\n",
" self.block1 = nn.Sequential(\n",
" nn.Conv2d(input_shape, hidden_units, kernel_size=3, padding='same'),\n",
" nn.LeakyReLU(0.1),\n",
" nn.BatchNorm2d(hidden_units),\n",
" nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding='same'),\n",
" nn.LeakyReLU(0.1),\n",
" nn.BatchNorm2d(hidden_units),\n",
" nn.MaxPool2d(2),\n",
" nn.Dropout(0.3)\n",
" )\n",
"\n",
" self.block2 = nn.Sequential(\n",
" nn.Conv2d(hidden_units, hidden_units * 2, kernel_size=3, padding='same'),\n",
" nn.LeakyReLU(0.1),\n",
" nn.BatchNorm2d(hidden_units * 2),\n",
" nn.Conv2d(hidden_units * 2, hidden_units * 2, kernel_size=3, padding='same'),\n",
" nn.LeakyReLU(0.1),\n",
" nn.BatchNorm2d(hidden_units * 2),\n",
" nn.MaxPool2d(2),\n",
" nn.Dropout(0.4)\n",
" )\n",
"\n",
" self.block3 = nn.Sequential(\n",
" nn.Conv2d(hidden_units * 2, hidden_units * 4, kernel_size=3, padding='same'),\n",
" nn.LeakyReLU(0.1),\n",
" nn.BatchNorm2d(hidden_units * 4),\n",
" nn.Conv2d(hidden_units * 4, hidden_units * 4, kernel_size=3, padding='same'),\n",
" nn.LeakyReLU(0.1),\n",
" nn.BatchNorm2d(hidden_units * 4),\n",
" nn.MaxPool2d(2),\n",
" nn.Dropout(0.4)\n",
" )\n",
"\n",
" self.block4 = nn.Sequential(\n",
" nn.Conv2d(hidden_units * 4, hidden_units * 8, kernel_size=3, padding='same'),\n",
" nn.LeakyReLU(0.1),\n",
" nn.BatchNorm2d(hidden_units * 8),\n",
" nn.Conv2d(hidden_units * 8, hidden_units * 8, kernel_size=3, padding='same'),\n",
" nn.LeakyReLU(0.1),\n",
" nn.BatchNorm2d(hidden_units * 8),\n",
" nn.MaxPool2d(2),\n",
" nn.Dropout(0.5)\n",
" )\n",
"\n",
" self.adaptiveAvgPool = nn.AdaptiveAvgPool2d(1)\n",
"\n",
" self.classifier = nn.Sequential(\n",
" nn.Flatten(),\n",
" nn.Linear(hidden_units * 8, 512),\n",
" nn.LeakyReLU(0.1),\n",
" nn.BatchNorm1d(512),\n",
" nn.Dropout(0.6),\n",
" nn.Linear(512, output_shape)\n",
" )\n",
"\n",
" def forward(self, x: torch.Tensor):\n",
" x = self.block1(x)\n",
" x = self.block2(x)\n",
" x = self.block3(x)\n",
" x = self.block4(x)\n",
" x = self.adaptiveAvgPool(x)\n",
" x = self.classifier(x)\n",
" return x\n",
"\n",
"model_2 = DR_Classifierv2(input_shape=3, output_shape=len(idx_labels), hidden_units=64)\n",
"model_2, model_2.parameters()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"id": "siUue_oXpIE4"
},
"outputs": [],
"source": [
"from torchmetrics.classification import Accuracy\n",
"import torch.optim as optim\n",
"from torch.optim.lr_scheduler import ReduceLROnPlateau"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"id": "jTddKAlciTQ8"
},
"outputs": [],
"source": [
"# Create a train and testing method\n",
"from typing import Callable, Tuple, List\n",
"\n",
"def train_step(model: nn.Module,\n",
" data_loader: torch.utils.data.DataLoader,\n",
" loss_fn: nn.Module,\n",
" optimizer: torch.optim.Optimizer,\n",
" accuracy_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],\n",
" scheduler: optim.lr_scheduler,\n",
" device: torch.device\n",
" ) -> Tuple[float, float]:\n",
" model.to(device)\n",
" model.train()\n",
"\n",
" total_loss, total_acc = 0.0, 0.0\n",
" total_samples = 0\n",
"\n",
" for batch, (X, y) in enumerate(data_loader):\n",
" X, y = X.to(device), y.to(device)\n",
" batch_size = X.size(0)\n",
" total_samples += batch_size\n",
"\n",
" # Forward pass\n",
" y_pred = model(X)\n",
"\n",
" # Compute loss and accuracy\n",
" loss = loss_fn(y_pred, y)\n",
" acc = accuracy_fn(y_pred.argmax(dim=1), y)\n",
"\n",
" # Backpropagation\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" # Accumulate weighted loss and accuracy\n",
" total_loss += loss.item() * batch_size\n",
" total_acc += acc.item() * batch_size\n",
"\n",
" print(f\"[Train] Batch {batch + 1}/{len(data_loader)} | Loss: {loss.item():.5f} | Acc: {acc.item():.2f}% | LR: {optimizer.param_groups[0]['lr']} | Samples: {batch_size}\")\n",
"\n",
" scheduler.step(total_loss / total_samples)\n",
"\n",
" # Weighted averages\n",
" avg_loss = total_loss / total_samples\n",
" avg_acc = total_acc / total_samples\n",
" print(f\"[Train Summary] Avg Loss: {avg_loss:.5f} | Avg Acc: {avg_acc:.2f}%\\n\")\n",
"\n",
" return avg_loss, avg_acc\n",
"\n",
"\n",
"def test_step(model: nn.Module,\n",
" data_loader: torch.utils.data.DataLoader,\n",
" loss_fn: nn.Module,\n",
" accuracy_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],\n",
" device: torch.device\n",
" ) -> Tuple[float, float]:\n",
" model.to(device)\n",
" model.eval()\n",
"\n",
" total_loss, total_acc = 0.0, 0.0\n",
" total_samples = 0\n",
"\n",
" with torch.inference_mode():\n",
" for batch, (X, y) in enumerate(data_loader):\n",
" X, y = X.to(device), y.to(device)\n",
" batch_size = X.size(0)\n",
" total_samples += batch_size\n",
"\n",
" # Forward pass\n",
" y_pred = model(X)\n",
"\n",
" # Compute loss and accuracy\n",
" loss = loss_fn(y_pred, y)\n",
" acc = accuracy_fn(y_pred.argmax(dim=1), y)\n",
"\n",
" total_loss += loss.item() * batch_size\n",
" total_acc += acc.item() * batch_size\n",
"\n",
" print(f\"[Test] Batch {batch + 1}/{len(data_loader)} | Loss: {loss.item():.5f} | Acc: {acc.item():.2f}% | Samples: {batch_size}\")\n",
"\n",
" avg_loss = total_loss / total_samples\n",
" avg_acc = total_acc / total_samples\n",
" print(f\"[Test Summary] Avg Loss: {avg_loss:.5f} | Avg Acc: {avg_acc:.2f}%\\n\")\n",
"\n",
" return avg_loss, avg_acc"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"id": "8bgVJnogLI3Q"
},
"outputs": [],
"source": [
"def evaluate_model(model: nn.Module, train_loss, test_loss, train_acc, test_acc, num_epochs) -> None:\n",
" '''\n",
" Evaluates the PyTorch model by plotting the loss, and compares the accuracy\n",
"\n",
" Args:\n",
" model (nn.Module): A PyTorch neural network module\n",
" train_loss: A list of the train losses\n",
" test_loss: A list of the test losses\n",
" train_acc: A list of the train accuracies\n",
" test_acc: A list of the test accuracies\n",
" num_epochs: Number of epochs the model is trained\n",
" '''\n",
"\n",
" epochs = range(1, num_epochs + 1)\n",
" fig, ax = plt.subplots(1, 2, figsize=(12, 5))\n",
"\n",
" # Loss curves\n",
" ax[0].plot(epochs, train_loss, label='Train Loss')\n",
" ax[0].plot(epochs, test_loss, label='Test Loss')\n",
" ax[0].set_title('Loss Curves')\n",
" ax[0].set_xlabel('Epochs')\n",
" ax[0].set_ylabel('Loss')\n",
" ax[0].legend()\n",
"\n",
" # Accuracy\n",
" ax[1].plot(epochs, train_acc, label='Train Acc')\n",
" ax[1].plot(epochs, test_acc, label='Test Acc')\n",
" ax[1].set_title('Accuracy Plot')\n",
" ax[1].set_xlabel('Epochs')\n",
" ax[1].set_ylabel('Accuracy')\n",
" ax[1].legend()\n",
"\n",
" plt.tight_layout()\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GVbTU9luLI3R"
},
"outputs": [],
"source": [
"def train_evaluate_model(MODEL: nn.Module,\n",
" train_data_loader: torch.utils.data.DataLoader,\n",
" test_data_loader: torch.utils.data.DataLoader,\n",
" loss_fn: nn.Module,\n",
" optimizer: torch.optim.Optimizer,\n",
" accuracy_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],\n",
" scheduler: optim.lr_scheduler,\n",
" n_epochs: int\n",
" ):\n",
"\n",
" DEVICE = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
" accuracy_fn = accuracy_fn.to(DEVICE)\n",
"\n",
" train_loss_list, train_acc_list = [], []\n",
" test_loss_list, test_acc_list = [], []\n",
"\n",
" for epoch in range(n_epochs):\n",
" print(f'Epoch: {epoch + 1}\\n{\"-\" * 40}')\n",
"\n",
" train_loss, train_acc = train_step(\n",
" model=MODEL,\n",
" data_loader=train_data_loader,\n",
" loss_fn=loss_fn,\n",
" optimizer=optimizer,\n",
" accuracy_fn=accuracy_fn,\n",
" scheduler=scheduler,\n",
" device=DEVICE\n",
" )\n",
"\n",
" test_loss, test_acc = test_step(\n",
" model=MODEL,\n",
" data_loader=test_data_loader,\n",
" loss_fn=loss_fn,\n",
" accuracy_fn=accuracy_fn,\n",
" device=DEVICE\n",
" )\n",
"\n",
" train_loss_list.append(train_loss)\n",
" train_acc_list.append(train_acc)\n",
" test_loss_list.append(test_loss)\n",
" test_acc_list.append(test_acc)\n",
" \n",
"\n",
" print(f'{\"-\" * 40}\\n\\n')\n",
"\n",
"\n",
" evaluate_model(MODEL, train_loss_list, test_loss_list, train_acc_list, test_acc_list, n_epochs)\n"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 122
},
"id": "Zb8aaYZO9m8L",
"outputId": "f16e78fe-c405-406b-b619-0dc16ac4f350"
},
"outputs": [
{
"data": {
"text/plain": [
"' loss_fn = nn.CrossEntropyLoss()\\noptimizer = optim.Adam(params=model_1.parameters(),\\n lr=0.00001)\\nacc_fn = Accuracy(task=\"multiclass\", num_classes=len(idx_labels))\\nscheduler = ReduceLROnPlateau(optimizer, mode=\\'min\\', patience=5)\\n\\ntrain_evaluate_model(model_1,\\n train_data_loader=train_dataloader,\\n test_data_loader=test_dataloader,\\n loss_fn=loss_fn,\\n accuracy_fn=acc_fn,\\n optimizer=optimizer,\\n scheduler=scheduler\\n n_epochs=30\\n )\\n '"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# DR Classifier - Model 1\n",
"\n",
"\"\"\" loss_fn = nn.CrossEntropyLoss()\n",
"optimizer = optim.Adam(params=model_1.parameters(),\n",
" lr=0.00001)\n",
"acc_fn = Accuracy(task=\"multiclass\", num_classes=len(idx_labels))\n",
"scheduler = ReduceLROnPlateau(optimizer, mode='min', patience=5)\n",
"\n",
"train_evaluate_model(model_1,\n",
" train_data_loader=train_dataloader,\n",
" test_data_loader=test_dataloader,\n",
" loss_fn=loss_fn,\n",
" accuracy_fn=acc_fn,\n",
" optimizer=optimizer,\n",
" scheduler=scheduler\n",
" n_epochs=30\n",
" )\n",
" \"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "bTk_VW_xLI3S",
"outputId": "6d7ac270-c50e-43d1-d737-300b9e80c599"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 1\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 1.86217 | Acc: 0.14% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 1.86849 | Acc: 0.22% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 1.92668 | Acc: 0.22% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.81006 | Acc: 0.23% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 1.80879 | Acc: 0.25% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.62203 | Acc: 0.31% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 1.50859 | Acc: 0.33% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 1.63463 | Acc: 0.33% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 1.45484 | Acc: 0.38% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 1.71597 | Acc: 0.33% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 1.61705 | Acc: 0.39% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 1.58080 | Acc: 0.33% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 1.55862 | Acc: 0.36% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 1.66487 | Acc: 0.36% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.55035 | Acc: 0.34% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.42317 | Acc: 0.44% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 1.78250 | Acc: 0.23% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 1.47447 | Acc: 0.47% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.56336 | Acc: 0.36% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 1.57291 | Acc: 0.41% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 1.30359 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.54010 | Acc: 0.34% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 1.46242 | Acc: 0.39% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.39132 | Acc: 0.47% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.36917 | Acc: 0.44% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.62684 | Acc: 0.38% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 1.37803 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 1.44432 | Acc: 0.33% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.26303 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 1.41828 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.54499 | Acc: 0.45% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 1.49433 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 1.47136 | Acc: 0.41% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 1.29545 | Acc: 0.47% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 1.24247 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 1.38145 | Acc: 0.50% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 1.51138 | Acc: 0.44% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.23784 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.32337 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 1.40668 | Acc: 0.45% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.24804 | Acc: 0.39% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 1.31113 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 1.37044 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 1.29525 | Acc: 0.47% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 1.27495 | Acc: 0.47% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 1.33778 | Acc: 0.51% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 1.49962 | Avg Acc: 0.40%\n",
"\n",
"[Test] Batch 1/12 | Loss: 2.58235 | Acc: 0.16% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 2.62644 | Acc: 0.25% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 2.44273 | Acc: 0.22% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 2.27038 | Acc: 0.30% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 2.61116 | Acc: 0.28% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 2.52309 | Acc: 0.25% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 2.59611 | Acc: 0.23% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 2.70157 | Acc: 0.27% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 2.57631 | Acc: 0.30% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 2.93077 | Acc: 0.19% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 2.36368 | Acc: 0.28% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 2.47849 | Acc: 0.34% | Samples: 29\n",
"[Test Summary] Avg Loss: 2.56241 | Avg Acc: 0.25%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 2\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 1.29964 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 1.35612 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 1.26938 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.22583 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 1.28505 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.30126 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 1.17328 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 1.24246 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 1.33693 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 1.41607 | Acc: 0.44% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 1.21518 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 1.26648 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 1.15531 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 1.29260 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.11495 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.46979 | Acc: 0.42% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 1.23929 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 1.39557 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.34680 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 1.16833 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 1.41313 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.05821 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 1.39711 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.36707 | Acc: 0.45% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.10856 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.11124 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 1.23725 | Acc: 0.47% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 1.23882 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.03548 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 1.40642 | Acc: 0.50% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.08120 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 1.16237 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 1.14663 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 1.14950 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 1.04291 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 1.13009 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 1.20472 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.09686 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.08472 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 1.13548 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.26048 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 1.18656 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 1.29896 | Acc: 0.47% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 1.11134 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 1.14665 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 1.09852 | Acc: 0.61% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 1.22413 | Avg Acc: 0.55%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.16047 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.28403 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.10309 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.54736 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.73132 | Acc: 0.45% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.11466 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.13340 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.14345 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.45817 | Acc: 0.45% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 0.94766 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.24544 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.13742 | Acc: 0.55% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.25594 | Avg Acc: 0.58%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 3\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 1.03090 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.94085 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 1.14177 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.20812 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 1.00959 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.14677 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 1.31630 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 1.04000 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.96939 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 1.19492 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 1.16755 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 1.38394 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 1.29854 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 1.12250 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.15940 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.03775 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 1.01381 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 1.27934 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.99711 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.90952 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 1.14391 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.22793 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 1.02316 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.15604 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.06223 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.02648 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 1.10025 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 1.01310 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.91733 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 1.14542 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.31968 | Acc: 0.50% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.99880 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.86263 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 1.27033 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.99084 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 1.16268 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 1.32413 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.98036 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.07999 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 1.15987 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.10469 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.87044 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 1.02971 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 1.12346 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 1.04617 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 1.20070 | Acc: 0.55% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 1.10185 | Avg Acc: 0.59%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.02233 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.54932 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.19851 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.22869 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.40372 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.08914 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.22166 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 0.97897 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.43968 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.32963 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.29844 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 0.86853 | Acc: 0.72% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.23579 | Avg Acc: 0.62%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 4\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.98006 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 1.14658 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 1.04194 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.02780 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 1.18759 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.04904 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 1.00347 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.93856 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 1.11510 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.89735 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.85209 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.95745 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 1.22979 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.93812 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.96116 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.23383 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.86799 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.95917 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.11340 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 1.12722 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.99536 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.81978 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.86835 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.00436 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.04684 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.01575 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 1.08660 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.67624 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.04717 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.95272 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.21821 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 1.03740 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 1.06672 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.94595 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.76475 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.97090 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 1.13575 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.25404 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.14919 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.83049 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.13268 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 1.41054 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 1.27112 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 1.02955 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 1.10466 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.99324 | Acc: 0.59% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 1.03185 | Avg Acc: 0.65%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.51360 | Acc: 0.47% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.50643 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.47357 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.08334 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.27133 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.46845 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 2.04040 | Acc: 0.47% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 0.88009 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.26693 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.32060 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.60371 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 0.63744 | Acc: 0.72% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.37232 | Avg Acc: 0.57%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 5\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.70312 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.83655 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.80529 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.25710 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 1.00628 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.05982 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 1.09823 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.98553 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 1.26934 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.82562 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.89733 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.87250 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 1.12734 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 1.02047 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.86760 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.02207 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.98978 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 1.03036 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.10452 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 1.08372 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.86734 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.87902 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.85922 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.38113 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.86510 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.08040 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.93230 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.93535 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.95547 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.92143 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.99795 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.99223 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 1.05021 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 1.23576 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.95113 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.89799 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 1.33734 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.93848 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.08967 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 1.20210 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.02264 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.95635 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 1.09946 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 1.20393 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.99017 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 1.44159 | Acc: 0.51% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 1.01842 | Avg Acc: 0.64%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.38790 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.55310 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.54251 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.79197 | Acc: 0.50% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.09439 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.33606 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.58106 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.86429 | Acc: 0.44% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.77827 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.36830 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.47179 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.29536 | Acc: 0.52% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.51545 | Avg Acc: 0.55%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 6\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 1.01149 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.93161 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 1.29223 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.84718 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.91815 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.04572 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 1.05590 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 1.00994 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 1.29531 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 1.03702 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 1.14753 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 1.05762 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.77688 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 1.26953 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.40753 | Acc: 0.50% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.20094 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 1.34094 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.97296 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.02165 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.97363 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 1.24146 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.07302 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 1.05609 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.17790 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.07685 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.81583 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.95945 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.89563 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.31287 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.91057 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.96100 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 1.00693 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.98061 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.99212 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.89223 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.85696 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.81142 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.95603 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.94601 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.98902 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.98744 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 1.02644 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 1.23763 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.93504 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 1.16896 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.80034 | Acc: 0.71% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 1.03777 | Avg Acc: 0.63%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.39448 | Acc: 0.45% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.34407 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 0.92820 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 0.95740 | Acc: 0.72% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 0.72799 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.25601 | Acc: 0.72% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.05966 | Acc: 0.72% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.46647 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.28680 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 0.98748 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.27818 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.66344 | Acc: 0.59% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.17352 | Avg Acc: 0.64%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 7\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.90205 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.97771 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.78343 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.07994 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.81929 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.01033 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.84092 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.81831 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.96886 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.95407 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.80043 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.79805 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.92418 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.95801 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.91793 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.99273 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.90266 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.87146 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.14016 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.85186 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 1.02609 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.04600 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.83875 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.84791 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.08941 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.10580 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.79759 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.79042 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.05373 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.93848 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.99084 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.75780 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 1.18422 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 1.18211 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 1.02203 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.86472 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 1.34135 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.94669 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.02973 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.77494 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.00480 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 1.07501 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.94165 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.87086 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 1.09002 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.85477 | Acc: 0.69% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.95219 | Avg Acc: 0.66%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.55945 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 0.89727 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.74202 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.96622 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.09154 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.21659 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.36560 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.22545 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.36683 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.49596 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.76933 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.73610 | Acc: 0.59% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.43916 | Avg Acc: 0.59%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 8\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 1.49683 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.79519 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.86707 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.14420 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.83123 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.06108 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.91225 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.92943 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 1.09148 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.88134 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 1.00220 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.78602 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 1.00698 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.85600 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.70277 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.99845 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 1.09817 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.89950 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.30642 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.79614 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.87724 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.03110 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.99264 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.04498 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.91575 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.04680 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 1.06488 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.87420 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.95835 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.96884 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.78400 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.84749 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.74896 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.94898 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.72069 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 1.08636 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.79845 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.93180 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.86074 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.86089 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.82526 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.93748 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 1.00954 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.78065 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 1.20089 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 1.05879 | Acc: 0.71% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.94810 | Avg Acc: 0.66%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.17674 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.34347 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 0.87380 | Acc: 0.77% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.33828 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 0.88241 | Acc: 0.77% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.54985 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.49330 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.71298 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.44979 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.35424 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.73409 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.74258 | Acc: 0.48% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.37068 | Avg Acc: 0.62%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 9\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.82218 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.68149 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.87939 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.87718 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.85057 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.80439 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 1.01071 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 1.05947 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.77143 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.96402 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.72709 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.91589 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.99710 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.87420 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.03415 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.83308 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.77114 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.89578 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.85723 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.96746 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 1.25823 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.88135 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.92257 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.89045 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.25955 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.94552 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 1.20116 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 1.21295 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.02729 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.97042 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.71675 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.86867 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.98909 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 1.13526 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.89514 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.84812 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.85261 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.06040 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.82094 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 1.08010 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.98751 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.84265 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.88733 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.88938 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.80844 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 1.02289 | Acc: 0.61% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.93146 | Avg Acc: 0.68%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.35115 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.26603 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.54985 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.21814 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.43062 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.74496 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.58291 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.08936 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 0.71213 | Acc: 0.73% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.58942 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 0.94964 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.07250 | Acc: 0.62% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.30708 | Avg Acc: 0.60%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 10\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.66893 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 1.04422 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.93578 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.21862 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 1.00085 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.00675 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.87514 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.97950 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 1.00957 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.85695 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.94432 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 1.06860 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.85351 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.91214 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.37401 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.98717 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.82703 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.74382 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.79833 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.78958 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.78251 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.79032 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.80742 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.12374 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.80434 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.97273 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.89002 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.95863 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.66073 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.83389 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.26468 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 1.07932 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.89400 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.97764 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.84482 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.65784 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.72805 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.92365 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.14060 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.89090 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.79952 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.79758 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.82591 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 1.02693 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 1.16930 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 1.11819 | Acc: 0.67% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.92637 | Avg Acc: 0.67%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.50669 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 2.06475 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.80939 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.44997 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.63253 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.10332 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.20757 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.79019 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.15304 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 0.89805 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.42457 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.02447 | Acc: 0.62% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.44103 | Avg Acc: 0.59%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 11\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.77836 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.88798 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.88775 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.81774 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.88334 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.85162 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.68438 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 1.04069 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.92685 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 1.01949 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.84937 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.85352 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.66262 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.86419 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.13182 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.77532 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 1.01465 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.99058 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.08188 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.94684 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.84751 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.08340 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.88740 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.09157 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.90173 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.04625 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.93877 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.91664 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.04834 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.91209 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.22745 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.99744 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.65220 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.74991 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.90214 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.84661 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 1.12943 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.91617 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.93177 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.92930 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.83411 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.95374 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.98267 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.92635 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.89638 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.79915 | Acc: 0.69% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.92013 | Avg Acc: 0.68%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.32178 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.28043 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.10328 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.14164 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.29582 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.61367 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.32115 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.03758 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.37632 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.27899 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.68308 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.55272 | Acc: 0.52% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.32342 | Avg Acc: 0.62%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 12\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.92693 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.95166 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.75721 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.86448 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.82660 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.98172 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.98011 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.81598 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.76644 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 1.28271 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.86461 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.82913 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.79564 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.77166 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.07417 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.86162 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 1.07421 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.83860 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.74624 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 1.06262 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.96508 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.99096 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.99722 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.04637 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.81601 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.71831 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 1.10924 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 1.02364 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.78523 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 1.10750 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.96598 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.96530 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.87783 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.84476 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.98811 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.94024 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 1.00196 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.95947 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.13023 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.81892 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.05577 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.70184 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.83318 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.72763 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.99688 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 1.03070 | Acc: 0.61% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.92273 | Avg Acc: 0.67%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.50317 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.21356 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.13309 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.22253 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.91758 | Acc: 0.50% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.74270 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.56019 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.38166 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.14757 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.65239 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.49958 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 0.60522 | Acc: 0.76% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.41868 | Avg Acc: 0.60%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 13\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.85738 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.86932 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.88992 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.11541 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.94836 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.87905 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.95579 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 1.03811 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.87375 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.95043 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.75349 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 1.11716 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.68918 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.84689 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.96560 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.86941 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.80223 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.69869 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.72934 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.85457 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.90072 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.92059 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.83799 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.73431 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.75297 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.91572 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.80161 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.72267 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.72960 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.98688 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.02735 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.75043 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 1.12713 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.97782 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.64742 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.67624 | Acc: 0.84% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.90985 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.06097 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.16471 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.90351 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.92489 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.96123 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.92144 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.87752 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.78995 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.75786 | Acc: 0.69% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.88074 | Avg Acc: 0.69%\n",
"\n",
"[Test] Batch 1/12 | Loss: 0.88785 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.52700 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.66229 | Acc: 0.47% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.70634 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.89419 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.75288 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.53798 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.48708 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.75690 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 2.32553 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.66509 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 0.74603 | Acc: 0.69% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.61887 | Avg Acc: 0.59%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 14\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.83918 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.84670 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.92562 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.82681 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.81495 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.03053 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.82011 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.81722 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.76670 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.76784 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.89266 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.85415 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.74650 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.78021 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.14223 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.86643 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.83482 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.79881 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.74048 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.75731 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.91082 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.94600 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.81597 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.97935 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.13293 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.76395 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.78007 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 1.01000 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.09474 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.85419 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.86835 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.89219 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.82886 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 1.00744 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.87081 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 1.10968 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.82094 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.09574 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.80953 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.97025 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.84985 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.87410 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 1.02708 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 1.04008 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.77174 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.86026 | Acc: 0.61% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.88828 | Avg Acc: 0.69%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.33388 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 2.01893 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.39256 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.39868 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.23251 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.41195 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.36858 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.25511 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.05236 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.88988 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.49272 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.64580 | Acc: 0.55% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.44877 | Avg Acc: 0.62%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 15\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.59273 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.63311 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.98260 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.75016 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.96646 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.81192 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.80552 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.84131 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.97345 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.79627 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.96165 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.83571 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.85819 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.91125 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.05041 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.06014 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.80727 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.85837 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.97366 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.76837 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.82863 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.98170 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.89084 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.74432 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.78800 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.14864 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.75618 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 1.00643 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.85199 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.87759 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.04810 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.95199 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.81666 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.92428 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 1.27472 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.74681 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.85255 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.91736 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.70788 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.78478 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.73317 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.79105 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 1.27354 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.73605 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.61339 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 1.20637 | Acc: 0.57% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.87858 | Avg Acc: 0.69%\n",
"\n",
"[Test] Batch 1/12 | Loss: 2.11523 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.96525 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.36120 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 0.95495 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.25527 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 2.00791 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.18716 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.82331 | Acc: 0.50% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 2.03847 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 2.13548 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.81284 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.00447 | Acc: 0.72% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.66873 | Avg Acc: 0.60%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 16\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 1.09038 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.71478 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.75523 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.76067 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.89983 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.85981 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.71762 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.96687 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.67831 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.53098 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.98620 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 1.07724 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.70054 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.98531 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 1.12069 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.78806 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.80946 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.85665 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.82460 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.84414 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 1.05257 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.90093 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 1.07199 | Acc: 0.55% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.95405 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.01785 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.95908 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.56481 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.77072 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.70702 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.92386 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.05773 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 1.05386 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 1.05636 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.88754 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.69522 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 1.20175 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.93634 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.93459 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.86335 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.86016 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.86731 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.55654 | Acc: 0.84% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.77987 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.75854 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.89862 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.84094 | Acc: 0.65% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.87275 | Avg Acc: 0.70%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.29006 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.67671 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.59978 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.04625 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.04835 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.14265 | Acc: 0.75% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.28359 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.24278 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.05027 | Acc: 0.72% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.32907 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.02513 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.86135 | Acc: 0.45% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.27285 | Avg Acc: 0.63%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 17\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.85719 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.67116 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.82106 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.06286 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 1.10687 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.87684 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.87992 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 1.03605 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.89342 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 1.14854 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.93876 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.71105 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.82992 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.67245 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.61924 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.95137 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.83516 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.74401 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.90962 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.89824 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.98172 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.06250 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.82925 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.87198 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.99896 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.93173 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.97004 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.83839 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.78035 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 1.00214 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.74588 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.97313 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.86685 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.79905 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.75047 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.84170 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.73110 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.80816 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.66826 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.73206 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.06161 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.99661 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.70224 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.85366 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.77275 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.83525 | Acc: 0.69% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.86689 | Avg Acc: 0.70%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.30280 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.50058 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.20550 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.36992 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.76894 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.24888 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.47675 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.75134 | Acc: 0.50% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.62438 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 0.90178 | Acc: 0.73% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.30427 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 2.06760 | Acc: 0.48% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.43123 | Avg Acc: 0.61%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 18\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.96089 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.76658 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 1.04309 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 1.09190 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.92997 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.78344 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.73639 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.96653 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.93228 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.85184 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.79893 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.93013 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.82087 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.80050 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.78349 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.87140 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.87628 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.72364 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.80701 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 1.00048 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.75979 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.86141 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.84796 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.90106 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.97374 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.66880 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.70607 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.84348 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.98952 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.66625 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.83044 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.82303 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.71740 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.95768 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 1.02023 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 1.00646 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.88836 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.12587 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.89799 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.89207 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.71601 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 1.07551 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.90325 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.59143 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.89185 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.72463 | Acc: 0.78% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.86497 | Avg Acc: 0.69%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.15223 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.41424 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.07571 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.41680 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.85476 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.44537 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.24176 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.42052 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.43892 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.61986 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.69287 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 0.85292 | Acc: 0.72% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.41093 | Avg Acc: 0.63%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 19\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.75831 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 1.01350 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.67369 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.86474 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.92219 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.73136 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.65983 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.72672 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.99691 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.74381 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 1.05133 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.83698 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.82230 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.84841 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.85473 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.85086 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.85846 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.83010 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.13586 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.87431 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.72954 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.87194 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.69546 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 1.05146 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.07797 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.91259 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.70182 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 1.00282 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.06153 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.78012 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.88495 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.78954 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.74291 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 1.00203 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.71456 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.80808 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.79972 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.06088 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.81280 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.98973 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.83571 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.86146 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.79612 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.72413 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.95367 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.98593 | Acc: 0.65% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.86245 | Avg Acc: 0.69%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.02841 | Acc: 0.73% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.40535 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.19347 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.14182 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.30662 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.63874 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 0.86614 | Acc: 0.73% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 0.87826 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.71171 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.24614 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.17857 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.52416 | Acc: 0.48% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.24733 | Avg Acc: 0.65%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 20\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.68426 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.79540 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.88630 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.93015 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.74124 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.61810 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.77169 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 1.00439 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 1.07969 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.77156 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 1.02673 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.84638 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.70264 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.80362 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.73260 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.84042 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.68667 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.81390 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.87762 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 1.01963 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.85642 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.08696 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.89904 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.80676 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.86430 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.05974 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.97710 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.82253 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.86365 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.74890 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.70529 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.89162 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.95578 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.85778 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 1.07677 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.69322 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.83912 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.82134 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.69729 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.78310 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.95145 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.76244 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.71132 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.83817 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.73790 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.58376 | Acc: 0.82% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.83879 | Avg Acc: 0.71%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.45373 | Acc: 0.72% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.75579 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.38792 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.37900 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.00037 | Acc: 0.75% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.88579 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.87370 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.70871 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.58898 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.44101 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.46191 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.34102 | Acc: 0.69% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.53186 | Avg Acc: 0.65%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 21\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.74806 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.79309 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.76512 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.69243 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 1.04107 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.81543 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.76163 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.79219 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.78745 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.93532 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.79488 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.95977 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.79520 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.82004 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.91235 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.15370 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.88484 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.78883 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.68786 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.78871 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.78215 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.79495 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.72612 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.77619 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.68702 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.82537 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 1.00708 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.89049 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.78475 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 1.02035 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.71511 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.77891 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.86141 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.87142 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 1.02060 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 1.06532 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.77252 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.63251 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.90443 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 1.07768 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.94186 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.87010 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.73744 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 1.13790 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.83758 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.62090 | Acc: 0.82% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.84589 | Avg Acc: 0.69%\n",
"\n",
"[Test] Batch 1/12 | Loss: 2.10608 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.49017 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.52066 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.60436 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.65223 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 2.11644 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.31849 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.35875 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.83046 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.45733 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.18164 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 2.72218 | Acc: 0.45% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.64759 | Avg Acc: 0.63%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 22\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 1.13015 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.95803 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.70689 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.80005 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 1.04964 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.99971 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.70332 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.80596 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.69060 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.93720 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.71757 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.76635 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.90570 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.80439 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.76020 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.95565 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.75998 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.78798 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.94236 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.89513 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.93848 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.88858 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.69840 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.78887 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.91174 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.82723 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 1.14364 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 1.04898 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.75984 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.65850 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.81002 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.83540 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.92304 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 1.17542 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.55449 | Acc: 0.83% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.72542 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.54016 | Acc: 0.83% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.73267 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.63178 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 1.01820 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.67805 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.76756 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.88228 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.66739 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.90996 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.94404 | Acc: 0.71% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.83722 | Avg Acc: 0.70%\n",
"\n",
"[Test] Batch 1/12 | Loss: 0.90231 | Acc: 0.81% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.32279 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.45625 | Acc: 0.72% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.35391 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.58112 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.33000 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.39647 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.31459 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.33724 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.48099 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.60195 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 2.57807 | Acc: 0.48% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.41846 | Avg Acc: 0.67%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 23\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.74766 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.82862 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.57022 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.85975 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.85577 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.66331 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.75059 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.79645 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.71178 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.93738 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.56317 | Acc: 0.86% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.86188 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.83070 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 1.02465 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.89997 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.82328 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.78562 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 1.04513 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.88755 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.63667 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.75057 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.74958 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.77194 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.80220 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.72821 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 1.04931 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.71816 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.77627 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.88299 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 1.00220 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.78726 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 1.54407 | Acc: 0.48% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.82150 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.58030 | Acc: 0.83% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.81206 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.88482 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.57877 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.88213 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.86954 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.97500 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.13466 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.84000 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.85803 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.63682 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.88183 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.92323 | Acc: 0.63% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.83262 | Avg Acc: 0.71%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.52112 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.78358 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.88420 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.16849 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.17223 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.68188 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.22603 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.43612 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.62712 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 2.00727 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.74227 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.77609 | Acc: 0.62% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.57644 | Avg Acc: 0.63%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 24\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.85943 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.53266 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 1.07466 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.85375 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.79571 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.63130 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.71945 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.80095 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.95440 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.80170 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.82230 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.71516 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.88683 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.86537 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.88418 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.67049 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.70893 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 1.13666 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.80118 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.63999 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.81125 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.57930 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.90351 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.72789 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.63018 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.73272 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.86885 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.87973 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.63379 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.96534 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 1.11754 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.82698 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.73950 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.82991 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.90339 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.92663 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 1.02623 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.89112 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.83854 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.96603 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.61329 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.88895 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.74338 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.98677 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.78314 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.83843 | Acc: 0.76% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.82182 | Avg Acc: 0.71%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.49108 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.45104 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.35140 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.56433 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 2.13484 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.28886 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 0.89731 | Acc: 0.73% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.71678 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.59645 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.30523 | Acc: 0.77% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.44509 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.28795 | Acc: 0.69% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.46912 | Avg Acc: 0.64%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 25\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.67760 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.96688 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 1.13205 | Acc: 0.56% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.75593 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.68560 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.00095 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.71591 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.82881 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.78686 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.53081 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 1.03608 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.83923 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.67760 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 1.01199 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.84840 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.88600 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.96238 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.84309 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.69534 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.85703 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.91581 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 1.02622 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.67761 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.83789 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.95628 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.69832 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.78878 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.89186 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 1.00875 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.69240 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.70925 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.75335 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.75545 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.92920 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.89896 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.70745 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.94595 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.75122 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.90281 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.90698 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.78455 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.70233 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.80597 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.87886 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.71372 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.95117 | Acc: 0.69% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.83265 | Avg Acc: 0.70%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.57000 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 2.09914 | Acc: 0.50% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.46278 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 2.35292 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.21359 | Acc: 0.72% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.69209 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.11092 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.47181 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.78395 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 2.16483 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.48702 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.69826 | Acc: 0.52% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.67453 | Avg Acc: 0.61%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 26\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.62894 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.77536 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.79715 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.93388 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.93355 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.97613 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.82556 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.66443 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.87855 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.90720 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.72819 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.64403 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.68297 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.81448 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.72108 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.77316 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.96907 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.89633 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.00001 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.71762 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.64361 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.59989 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 1.09343 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.80124 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.63301 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.63132 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.90027 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.78404 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.82375 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 1.01721 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.81893 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 1.00224 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.67310 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.75528 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.84539 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.84971 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.88497 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.12233 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.01932 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 1.10509 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 1.06312 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.68860 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.84458 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.88950 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.87549 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.90113 | Acc: 0.73% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.83738 | Avg Acc: 0.71%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.65858 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.89886 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.34770 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.34484 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 2.35705 | Acc: 0.50% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.42331 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.29749 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.92786 | Acc: 0.58% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.55704 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 2.32423 | Acc: 0.50% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.68045 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.82685 | Acc: 0.55% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.71527 | Avg Acc: 0.61%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 27\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.88963 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.59101 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.74270 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.87147 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.96144 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 1.00773 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.74466 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.82737 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.57151 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.76409 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.77698 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.62984 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.80519 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.53053 | Acc: 0.84% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.80997 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.75346 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.97224 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.84814 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.80565 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 1.01142 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.91288 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.80497 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 1.17436 | Acc: 0.53% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.69257 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.76737 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.77340 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.85027 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.87724 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.93009 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.68252 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.97006 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.77415 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.84433 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.98959 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.91607 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.86229 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.77253 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.76195 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.68361 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.75626 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.74897 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.76266 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.86965 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.70117 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.66229 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.75215 | Acc: 0.80% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.80917 | Avg Acc: 0.71%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.63905 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 1.78623 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 2.12817 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.17495 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.46074 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.72191 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.43122 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.60227 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.91620 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.64032 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.15492 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.48900 | Acc: 0.59% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.60050 | Avg Acc: 0.64%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 28\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.97522 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.79440 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.57001 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.76072 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.90362 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.79048 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.77379 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.82759 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.87756 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.92564 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.90923 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.96268 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.73670 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.80445 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.60524 | Acc: 0.83% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.05727 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.68342 | Acc: 0.84% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 1.02447 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.78199 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.69656 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.91688 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.83582 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.71145 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.69915 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 1.09964 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.75895 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.91091 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.68337 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.87241 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.90585 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.70126 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.84981 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.54603 | Acc: 0.83% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.86285 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.83880 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.79714 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.99519 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.73703 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 1.08942 | Acc: 0.61% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.81435 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.67379 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.77311 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.59429 | Acc: 0.83% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.77441 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.73681 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.77785 | Acc: 0.69% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.81361 | Avg Acc: 0.71%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.64966 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 2.55369 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.46170 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.45315 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.46831 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.66561 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.55361 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 2.00312 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.53454 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.17836 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 0.90358 | Acc: 0.73% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 0.50030 | Acc: 0.79% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.54124 | Avg Acc: 0.65%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 29\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.55553 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.63651 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.71928 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.87173 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.87765 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.74105 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.80702 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.73950 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.92875 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.77687 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 0.84622 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.69785 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.67753 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.68898 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.83824 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 0.83419 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.67000 | Acc: 0.83% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.93205 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 1.23378 | Acc: 0.52% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.83814 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.98698 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.83927 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.92371 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.80020 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.79700 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.60672 | Acc: 0.84% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.62628 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.97047 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.88817 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.90998 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.66960 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.94028 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.62293 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.77352 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 0.93721 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 0.67346 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.80409 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 0.80843 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.60335 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 1.02435 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.91797 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 1.00000 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.94364 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.99449 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.76752 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.91071 | Acc: 0.69% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.81803 | Avg Acc: 0.71%\n",
"\n",
"[Test] Batch 1/12 | Loss: 1.58722 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 2.52457 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 1.93401 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.96927 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.49479 | Acc: 0.64% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 2.09446 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 1.01382 | Acc: 0.69% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 1.76317 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.78746 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 2.32458 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 2.23267 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.56583 | Acc: 0.55% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.87159 | Avg Acc: 0.60%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n",
"Epoch: 30\n",
"----------------------------------------\n",
"[Train] Batch 1/46 | Loss: 0.87778 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 2/46 | Loss: 0.78580 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 3/46 | Loss: 0.69864 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 4/46 | Loss: 0.78577 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 5/46 | Loss: 0.66069 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 6/46 | Loss: 0.74396 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 7/46 | Loss: 0.85598 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 8/46 | Loss: 0.58830 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 9/46 | Loss: 0.79325 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 10/46 | Loss: 0.76540 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 11/46 | Loss: 1.10459 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 12/46 | Loss: 0.83754 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 13/46 | Loss: 0.83947 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 14/46 | Loss: 0.97423 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 15/46 | Loss: 0.70195 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 16/46 | Loss: 1.01550 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 17/46 | Loss: 0.88135 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 18/46 | Loss: 0.76910 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 19/46 | Loss: 0.76500 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 20/46 | Loss: 0.74773 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 21/46 | Loss: 0.71841 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 22/46 | Loss: 0.78125 | Acc: 0.72% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 23/46 | Loss: 0.98045 | Acc: 0.62% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 24/46 | Loss: 0.51027 | Acc: 0.81% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 25/46 | Loss: 0.62774 | Acc: 0.80% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 26/46 | Loss: 0.73077 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 27/46 | Loss: 0.78684 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 28/46 | Loss: 0.69174 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 29/46 | Loss: 0.80776 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 30/46 | Loss: 0.66872 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 31/46 | Loss: 0.94448 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 32/46 | Loss: 0.71528 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 33/46 | Loss: 0.92154 | Acc: 0.67% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 34/46 | Loss: 0.69774 | Acc: 0.78% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 35/46 | Loss: 1.08090 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 36/46 | Loss: 1.11195 | Acc: 0.59% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 37/46 | Loss: 0.77850 | Acc: 0.66% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 38/46 | Loss: 1.00694 | Acc: 0.64% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 39/46 | Loss: 0.81230 | Acc: 0.69% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 40/46 | Loss: 0.65639 | Acc: 0.77% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 41/46 | Loss: 0.87077 | Acc: 0.75% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 42/46 | Loss: 0.92007 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 43/46 | Loss: 0.85867 | Acc: 0.70% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 44/46 | Loss: 0.73461 | Acc: 0.73% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 45/46 | Loss: 0.94388 | Acc: 0.58% | LR: 1e-05 | Samples: 64\n",
"[Train] Batch 46/46 | Loss: 0.93700 | Acc: 0.61% | LR: 1e-05 | Samples: 49\n",
"[Train Summary] Avg Loss: 0.81431 | Avg Acc: 0.70%\n",
"\n",
"[Test] Batch 1/12 | Loss: 2.25780 | Acc: 0.61% | Samples: 64\n",
"[Test] Batch 2/12 | Loss: 2.10119 | Acc: 0.56% | Samples: 64\n",
"[Test] Batch 3/12 | Loss: 2.14856 | Acc: 0.52% | Samples: 64\n",
"[Test] Batch 4/12 | Loss: 1.51504 | Acc: 0.67% | Samples: 64\n",
"[Test] Batch 5/12 | Loss: 1.91361 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 6/12 | Loss: 1.80058 | Acc: 0.59% | Samples: 64\n",
"[Test] Batch 7/12 | Loss: 2.59810 | Acc: 0.53% | Samples: 64\n",
"[Test] Batch 8/12 | Loss: 2.43240 | Acc: 0.55% | Samples: 64\n",
"[Test] Batch 9/12 | Loss: 1.16471 | Acc: 0.70% | Samples: 64\n",
"[Test] Batch 10/12 | Loss: 1.61380 | Acc: 0.62% | Samples: 64\n",
"[Test] Batch 11/12 | Loss: 1.15709 | Acc: 0.66% | Samples: 64\n",
"[Test] Batch 12/12 | Loss: 1.06798 | Acc: 0.79% | Samples: 29\n",
"[Test Summary] Avg Loss: 1.84987 | Avg Acc: 0.60%\n",
"\n",
"----------------------------------------\n",
"\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA9J9JREFUeJzs3Xd4FOXXxvHvphfSIJCEkkLvvTdBuoqAgICFYldQEdsPC2B5RcXeGwgqCEpRVEQ6Ir1L7xBKQgukkZ55/xiyEEkgZZPdwP25rr0yOzvlbJJNZs8+5zwWwzAMREREREREREREipGTvQMQEREREREREZEbj5JSIiIiIiIiIiJS7JSUEhERERERERGRYqeklIiIiIiIiIiIFDslpUREREREREREpNgpKSUiIiIiIiIiIsVOSSkRERERERERESl2SkqJiIiIiIiIiEixU1JKRERERERERESKnZJSIiIiIiIict05fPgwFouFyZMn2zsUEcmFklIiUuQmT56MxWJhw4YN9g4lT7Zs2cI999xDpUqVcHd3p3Tp0nTu3Jlvv/2WjIwMe4cnIiIi14nPPvsMi8VCixYt7B1KibJs2TIsFov15urqSuXKlRk8eDAHDx60yTlWrVrFuHHjOH/+vE2OJyI5c7F3ACIijuSbb77hkUceISgoiHvvvZdq1aoRHx/P4sWLuf/++4mKiuKFF16wd5giIiJyHZg6dSrh4eGsW7eO/fv3U7VqVXuHVKI88cQTNGvWjLS0NDZt2sRXX33FH3/8wbZt2yhfvnyhjr1q1SpeeeUVhg4dir+/v20CFpErKCklInLRmjVreOSRR2jVqhXz5s3Dx8fH+tjIkSPZsGED27dvt8m5EhMT8fb2tsmxREREpOQ5dOgQq1atYvbs2Tz88MNMnTqVsWPH2jusHDnqdUu7du3o168fAMOGDaN69eo88cQTTJkyhdGjR9s5OhHJC5XviYjD2Lx5Mz169MDX15dSpUrRqVMn1qxZk22btLQ0XnnlFapVq4aHhwdlypShbdu2LFy40LpNdHQ0w4YNo2LFiri7uxMSEkKvXr04fPjwVc//yiuvYLFYmDp1araEVJamTZsydOhQ4NKw8WXLlmXbJqfeBUOHDqVUqVIcOHCAW265BR8fH+6++25GjBhBqVKluHDhwhXnGjRoEMHBwdnKBf/880/atWuHt7c3Pj4+3HrrrezYsSPbfgV97iIiIlK8pk6dSkBAALfeeiv9+vVj6tSpOW53/vx5nnrqKcLDw3F3d6dixYoMHjyYM2fOWLdJTk5m3LhxVK9eHQ8PD0JCQrjjjjs4cOAAYJvrFoAVK1bQv39/QkNDcXd3p1KlSjz11FMkJSVdEffu3bu58847KVu2LJ6entSoUYMXX3wRgKVLl2KxWJgzZ84V+02bNg2LxcLq1avz9f0EuPnmmwEz4Xc1S5YssV5T+fv706tXL3bt2mV9fNy4cTz77LMAREREWMsEdT0lYnsaKSUiDmHHjh20a9cOX19fnnvuOVxdXfnyyy/p0KEDy5cvt/ZaGDduHOPHj+eBBx6gefPmxMXFsWHDBjZt2kSXLl0A6Nu3Lzt27ODxxx8nPDycU6dOsXDhQiIjIwkPD8/x/BcuXGDx4sW0b9+e0NBQmz+/9PR0unXrRtu2bXnnnXfw8vIiPDycTz/9lD/++IP+/ftni+W3335j6NChODs7A/D9998zZMgQunXrxltvvcWFCxf4/PPPadu2LZs3b7Y+r4I8dxERESl+U6dO5Y477sDNzY1Bgwbx+eefs379epo1a2bdJiEhgXbt2rFr1y7uu+8+GjduzJkzZ5g7dy7Hjh0jMDCQjIwMbrvtNhYvXszAgQN58skniY+PZ+HChWzfvp0qVarkO7acrlsAfv75Zy5cuMCjjz5KmTJlWLduHR9//DHHjh3j559/tu7/77//0q5dO1xdXXnooYcIDw/nwIED/Pbbb/zf//0fHTp0oFKlSkydOpU+ffpc8X2pUqUKrVq1ynfcWUm4MmXK5LrNokWL6NGjB5UrV2bcuHEkJSXx8ccf06ZNGzZt2kR4eDh33HEHe/fu5ccff+T9998nMDAQgLJly+Y7JhG5BkNEpIh9++23BmCsX78+12169+5tuLm5GQcOHLCuO3HihOHj42O0b9/euq5BgwbGrbfemutxzp07ZwDGhAkT8hXj1q1bDcB48skn87T90qVLDcBYunRptvWHDh0yAOPbb7+1rhsyZIgBGP/73/+ybZuZmWlUqFDB6Nu3b7b1P/30kwEYf//9t2EYhhEfH2/4+/sbDz74YLbtoqOjDT8/P+v6gj53ERERKV4bNmwwAGPhwoWGYZjXBBUrVrziOmTMmDEGYMyePfuKY2RmZhqGYRiTJk0yAOO9997LdRtbXLcYhmFcuHDhinXjx483LBaLceTIEeu69u3bGz4+PtnWXR6PYRjG6NGjDXd3d+P8+fPWdadOnTJcXFyMsWPHXnGey2U9n0mTJhmnT582Tpw4Yfzxxx9GeHi4YbFYrNecOT2/hg0bGuXKlTPOnj1rXbd161bDycnJGDx4sHXdhAkTDMA4dOjQVWMRkcJR+Z6I2F1GRgYLFiygd+/eVK5c2bo+JCSEu+66i3/++Ye4uDgA/P392bFjB/v27cvxWJ6enri5ubFs2TLOnTuX5xiyjp9T2Z6tPProo9nuWywW+vfvz7x580hISLCunzFjBhUqVKBt27YALFy4kPPnzzNo0CDOnDljvTk7O9OiRQuWLl0KFPy5i4iISPGaOnUqQUFBdOzYETCvCQYMGMD06dOzle7PmjWLBg0aXDGaKGufrG0CAwN5/PHHc92mIP573QLmtUaWxMREzpw5Q+vWrTEMg82bNwNw+vRp/v77b+67774rRp9fHs/gwYNJSUlh5syZ1nUzZswgPT2de+65J08x3nfffZQtW5by5ctz6623kpiYyJQpU2jatGmO20dFRbFlyxaGDh1K6dKlrevr169Ply5dmDdvXp7OKyK2o6SUiNjd6dOnuXDhAjVq1LjisVq1apGZmcnRo0cBePXVVzl//jzVq1enXr16PPvss/z777/W7d3d3Xnrrbf4888/CQoKon379rz99ttER0dfNQZfX18A4uPjbfjMLnFxcaFixYpXrB8wYABJSUnMnTsXMIfpz5s3j/79+1sv3LIScDfffDNly5bNdluwYAGnTp0CCv7cRUREpPhkZGQwffp0OnbsyKFDh9i/fz/79++nRYsWnDx5ksWLF1u3PXDgAHXr1r3q8Q4cOECNGjVwcbFdZ5bcrlsiIyOtCZ1SpUpRtmxZbrrpJgBiY2MBOHjwIMA1465ZsybNmjXL1ktr6tSptGzZMs+zEI4ZM4aFCxeyZMkS/v33X06cOMG9996b6/ZHjhwByPWa88yZMyQmJubp3CJiG0pKiUiJ0r59ew4cOMCkSZOoW7cu33zzDY0bN+abb76xbjNy5Ej27t3L+PHj8fDw4OWXX6ZWrVrWT/ByUrVqVVxcXNi2bVue4sjtk8fLP928nLu7O05OV/7JbdmyJeHh4fz0008A/PbbbyQlJTFgwADrNpmZmYDZV2rhwoVX3H799VfrtgV57iIiIlJ8lixZQlRUFNOnT6datWrW25133gmQa8PzwrDFdUtGRgZdunThjz/+4Pnnn+eXX35h4cKF1ibpWdcr+TF48GCWL1/OsWPHOHDgAGvWrMnzKCmAevXq0blzZzp27Ei9evVsmpgTkeKhV62I2F3ZsmXx8vJiz549Vzy2e/dunJycqFSpknVd6dKlGTZsGMOGDSMhIYH27dszbtw4HnjgAes2VapU4emnn+bpp59m3759NGzYkHfffZcffvghxxi8vLy4+eabWbJkCUePHs12vpwEBAQA5ow4l8v6BC4/7rzzTj788EPi4uKYMWMG4eHhtGzZMttzAShXrhydO3e+5vHy+9xFRESk+EydOpVy5crx6aefXvHY7NmzmTNnDl988QWenp5UqVKF7du3X/V4VapUYe3ataSlpeHq6prjNra4btm2bRt79+5lypQpDB482Lr+8hmQAWsrhmvFDTBw4EBGjRrFjz/+SFJSEq6urtk+mLO1sLAwgFyvOQMDA/H29gYKV/ooInmnkVIiYnfOzs507dqVX3/9NdtUuydPnmTatGm0bdvWWl539uzZbPuWKlWKqlWrkpKSApgz1yUnJ2fbpkqVKvj4+Fi3yc3YsWMxDIN77703W4+nLBs3bmTKlCmAeVHj7OzM33//nW2bzz77LG9P+jIDBgwgJSWFKVOmMH/+fOsnpVm6deuGr68vb7zxBmlpaVfsf/r0aaBwz11ERESKXlJSErNnz+a2226jX79+V9xGjBhBfHy8tay/b9++bN26lTlz5lxxLMMwrNucOXOGTz75JNdtbHHdkjUjcNYxs5Y//PDDbNuVLVuW9u3bM2nSJCIjI3OMJ0tgYCA9evTghx9+YOrUqXTv3t06011RCAkJoWHDhkyZMiVbgm779u0sWLCAW265xbouKzn130SeiNiWRkqJSLGZNGkS8+fPv2L9k08+yeuvv87ChQtp27Ytjz32GC4uLnz55ZekpKTw9ttvW7etXbs2HTp0oEmTJpQuXZoNGzYwc+ZMRowYAcDevXvp1KkTd955J7Vr18bFxYU5c+Zw8uRJBg4ceNX4Wrduzaeffspjjz1GzZo1uffee6lWrRrx8fEsW7aMuXPn8vrrrwPg5+dH//79+fjjj7FYLFSpUoXff//d2t8pPxo3bkzVqlV58cUXSUlJueITQl9fXz7//HPuvfdeGjduzMCBAylbtiyRkZH88ccftGnThk8++aRQz11ERESK3ty5c4mPj+f222/P8fGWLVtStmxZpk6dyoABA3j22WeZOXMm/fv357777qNJkybExMQwd+5cvvjiCxo0aMDgwYP57rvvGDVqFOvWraNdu3YkJiayaNEiHnvsMXr16mWT65aaNWtSpUoVnnnmGY4fP46vry+zZs3KcXKVjz76iLZt29K4cWMeeughIiIiOHz4MH/88QdbtmzJtu3gwYPp168fAK+99lrev5kFNGHCBHr06EGrVq24//77SUpK4uOPP8bPz49x48ZZt2vSpAkAL774IgMHDsTV1ZWePXtak1UiYiN2nPlPRG4Q3377rQHkejt69KhhGIaxadMmo1u3bkapUqUMLy8vo2PHjsaqVauyHev11183mjdvbvj7+xuenp5GzZo1jf/7v/8zUlNTDcMwjDNnzhjDhw83atasaXh7ext+fn5GixYtjJ9++inP8W7cuNG46667jPLlyxuurq5GQECA0alTJ2PKlClGRkaGdbvTp08bffv2Nby8vIyAgADj4YcfNrZv357j1Mre3t5XPeeLL75oAEbVqlVz3Wbp0qVGt27dDD8/P8PDw8OoUqWKMXToUGPDhg02e+4iIiJSdHr27Gl4eHgYiYmJuW4zdOhQw9XV1Thz5oxhGIZx9uxZY8SIEUaFChUMNzc3o2LFisaQIUOsjxuGYVy4cMF48cUXjYiICMPV1dUIDg42+vXrZxw4cMC6jS2uW3bu3Gl07tzZKFWqlBEYGGg8+OCDxtatW684hmEYxvbt240+ffoY/v7+hoeHh1GjRg3j5ZdfvuKYKSkpRkBAgOHn52ckJSXl5dtoLF261ACMn3/++arbHTp0KMfYFi1aZLRp08bw9PQ0fH19jZ49exo7d+68Yv/XXnvNqFChguHk5GQAxqFDh/IUn4jkncUw/jOGUkRERERERKQYpKenU758eXr27MnEiRPtHY6IFDP1lBIRERERERG7+OWXXzh9+nS25ukicuPQSCkREREREREpVmvXruXff//ltddeIzAwkE2bNtk7JBGxA42UEhERERERkWL1+eef8+ijj1KuXDm+++47e4cjInaikVIiIiIiIiIiIlLsNFJKRERERERERESKnZJSIiIiIiIiIiJS7FzsHYAjyszM5MSJE/j4+GCxWOwdjoiIiDgQwzCIj4+nfPnyODnduJ/v6XpJREREcpPX6yUlpXJw4sQJKlWqZO8wRERExIEdPXqUihUr2jsMu9H1koiIiFzLta6XlJTKgY+PD2B+83x9fe0cjYiIiDiSuLg4KlWqZL1euFHpeklERERyk9frJSWlcpA1BN3X11cXWSIiIpKjG71kTddLIiIici3Xul66cRshiIiIiIiIiIiI3SgpJSIiIiIiIiIixU5JKRERERERERERKXbqKSUiImIjGRkZpKWl2TsMKSRXV1ecnZ3tHcZ1Q6+LksfNze2q03eLiIjYipJSIiIihWQYBtHR0Zw/f97eoYiN+Pv7ExwcfMM3My8MvS5KLicnJyIiInBzc7N3KCIicp1TUkpERKSQst54lytXDi8vLyUySjDDMLhw4QKnTp0CICQkxM4RlVx6XZRMmZmZnDhxgqioKEJDQ/VzExGRIqWklIiISCFkZGRY33iXKVPG3uGIDXh6egJw6tQpypUrp1K+AtDromQrW7YsJ06cID09HVdXV3uHIyIi1zEVi4uIiBRCVq8cLy8vO0citpT181QvpILR66Jkyyrby8jIsHMkIiJyvVNSSkRExAZU4nJ90c/TNvR9LJn0cxMRkeKipJSIiIiIiIiIiBQ7JaVERETEJsLDw/nggw/sHYaIw9FrQ0REJGdKSomIiNxgLBbLVW/jxo0r0HHXr1/PQw89VKjYOnTowMiRIwt1DJGCcuTXRpYff/wRZ2dnhg8fbpPjiYiI2JNm3xMREbnBREVFWZdnzJjBmDFj2LNnj3VdqVKlrMuGYZCRkYGLy7UvGcqWLWvbQEWKWUl4bUycOJHnnnuOL7/8knfffRcPDw+bHVtERKS4aaSUiIjIDSY4ONh68/Pzw2KxWO/v3r0bHx8f/vzzT5o0aYK7uzv//PMPBw4coFevXgQFBVGqVCmaNWvGokWLsh33vyVKFouFb775hj59+uDl5UW1atWYO3duoWKfNWsWderUwd3dnfDwcN59991sj3/22WdUq1YNDw8PgoKC6Nevn/WxmTNnUq9ePTw9PSlTpgydO3cmMTGxUPHI9cXRXxuHDh1i1apV/O9//6N69erMnj37im0mTZpkfY2EhIQwYsQI62Pnz5/n4YcfJigoCA8PD+rWrcvvv/9e8G+YiIhIIWmkVHGLj4Zj68HNG6rcbO9oRETExgzDICnNPtOoe7o622zWrP/973+88847VK5cmYCAAI4ePcott9zC//3f/+Hu7s53331Hz5492bNnD6Ghobke55VXXuHtt99mwoQJfPzxx9x9990cOXKE0qVL5zumjRs3cueddzJu3DgGDBjAqlWreOyxxyhTpgxDhw5lw4YNPPHEE3z//fe0bt2amJgYVqxYAZgjYAYNGsTbb79Nnz59iI+PZ8WKFRiGUeDvkeSPvV4btnxdgH1fG99++y233norfn5+3HPPPUycOJG77rrL+vjnn3/OqFGjePPNN+nRowexsbGsXLkSgMzMTHr06EF8fDw//PADVapUYefOnTg7O9vseyMici1pGZnsOBGHi5OFuhX87B2OOAAlpYrbsQ0w4x6o2ExJKRGR61BSWga1x/xll3PvfLUbXm62+df+6quv0qVLF+v90qVL06BBA+v91157jTlz5jB37txsIzH+a+jQoQwaNAiAN954g48++oh169bRvXv3fMf03nvv0alTJ15++WUAqlevzs6dO5kwYQJDhw4lMjISb29vbrvtNnx8fAgLC6NRo0aAmZRKT0/njjvuICwsDIB69erlOwYpOHu9Nmz5ugD7vTYyMzOZPHkyH3/8MQADBw7k6aef5tChQ0RERADw+uuv8/TTT/Pkk09a92vWrBkAixYtYt26dezatYvq1asDULly5YJ8C0RE8iwuOY1NR86x8cg51h+OYcvR8ySnZQLQrlogo3vUonZ5XztHKfakpFRx87j4gkuOtW8cIiIiV9G0adNs9xMSEhg3bhx//PGHNcGTlJREZGTkVY9Tv35967K3tze+vr6cOnWqQDHt2rWLXr16ZVvXpk0bPvjgAzIyMujSpQthYWFUrlyZ7t270717d2t5VIMGDejUqRP16tWjW7dudO3alX79+hEQEFCgWOTGZa/XxsKFC0lMTOSWW24BIDAwkC5dujBp0iRee+01Tp06xYkTJ+jUqVOO+2/ZsoWKFStaE1IiIkXh+PkkNhyOYcPhc2w4co7d0XH8d1Cyv5criSnprNh3hn/2r+CORhV5plt1Qvw87RN0PqVlZHIuMZWktAy83Fwo5e6Ch6uTTUfl3kiUlCpu7llJqTj7xiEiIkXC09WZna92s9u5bcXb2zvb/WeeeYaFCxfyzjvvULVqVTw9PenXrx+pqalXPY6rq2u2+xaLhczMTJvFeTkfHx82bdrEsmXLWLBgAWPGjGHcuHGsX78ef39/Fi5cyKpVq1iwYAEff/wxL774ImvXrrWOMpGiZa/Xhi1fF2C/18bEiROJiYnB0/PSm7bMzEz+/fdfXnnllWzrc3Ktx0WkeGRkGjg7XR/Ji4xMgz3R8Ww4cjEJdTiGE7HJV2wXVsaLJmEBNAsvTbPwACoHluLouQu8/dce/vg3ilmbjvH7vye4v20Ej3Sogq+Haw5nKzpZSaazianEJKZyJiGFGOtyKjGJ5v2zCeY2sUlpVxzDyQLebi54u7vg7e5MKXdz2UxaOePt7nLZOvNxL3cXnAuZyKoQ4Em9Cn4l+ndKSani5nGxbjZFSSkRkeuRxWKxaamQo1i5ciVDhw6lT58+gDk65PDhw8UaQ61ataz9cS6Pq3r16ta+OC4uLnTu3JnOnTszduxY/P39WbJkCXfccQcWi4U2bdrQpk0bxowZQ1hYGHPmzGHUqFHF+jxuVHptFNzZs2f59ddfmT59OnXq1LGuz8jIoG3btixYsIDu3bsTHh7O4sWL6dix4xXHqF+/PseOHWPv3r0aLSViB4Zh8N3qI7w1fzftqgXyTv8G+BRz8sUWYhJT+WnDUVYfOMumI+eIT0nP9rizk4U65X2tSaimYQGU871yltCwMt58eldjHmh7jjfm7WL94XN8tuwA09cf5Ymbq3JXizDcXGw/L9vZhBT+2nGSBTujiTx7Idck07U4WcDdxdnaKzHTgPiU9Cu+H8UhwMuV9tXLclP1srSvXpbAUu7FHkNhXH9XBo4uKymVdgEy0sC55P0hEhGRG0+1atWYPXs2PXv2xGKx8PLLLxfZiKfTp0+zZcuWbOtCQkJ4+umnadasGa+99hoDBgxg9erVfPLJJ3z22WcA/P777xw8eJD27dsTEBDAvHnzyMzMpEaNGqxdu5bFixfTtWtXypUrx9q1azl9+jS1atUqkucgN47ieG18//33lClThjvvvPOK8pBbbrmFiRMn0r17d8aNG8cjjzxCuXLlrE3NV65cyeOPP85NN91E+/bt6du3L++99x5Vq1Zl9+7dWCyWAvV4E5G8S0hJZ/Tsbfy29QQAf+04yYHTq/h6cFMiAr2vsbdjOHbuAt+sOMT09ZHWnlAA3m7ONA4LoGlYaZqGB9Cwkj/e7nlPMzQKDeCnh1uxcOdJ3py/m4OnExn3204mrzrMc91r0qNucKHL4rISUX9sO8GagzFkZF45yYmTBUp7u1lvZUq5UyZr+eL9y5f9PF1xdrKQmWlwIS2DxJR0ElLSSUxJJzHFvJ+Ymtu6i8sp6RRmuhXDMNgdFc+5C2n8uuUEv24xf7/qVfCjQw0zSdWwkj8uzrZP7tmSklLFzd3n0nJyHHiXsV8sIiIiefTee+9x33330bp1awIDA3n++eeJiyuaUb/Tpk1j2rRp2da99tprvPTSS/z000+MGTOG1157jZCQEF599VWGDh0KgL+/P7Nnz2bcuHEkJydTrVo1fvzxR+rUqcOuXbv4+++/+eCDD4iLiyMsLIx3332XHj16FMlzkBtHcbw2Jk2aRJ8+fXJ8Y9a3b1/uvfdezpw5w5AhQ0hOTub999/nmWeeITAwkH79+lm3nTVrFs888wyDBg0iMTGRqlWr8uabb9o0VhHJbu/JeB79YSMHTifi4mThgXaVmbP5GPtPJdDrk3/45K7GtK9e1t5h5mp3dBxfLj/I3K0nrMmcOuV96dekIs3CS1Mz2KfQSQ+LxULXOsF0rFmOGeuP8sGivRw+e4HHpm6icag/L9xSi6bh+Zu192xCCvN3RDNvW9QViah6Ffy4pV4IjUL9CSzlRmlvd/w9XXEqQAmck5OFUhdL84LyvXfhpWVksunIOZbvPc3yvafZcSKObcdj2XY8lo+X7MfXw4V21cwE1U01yhKUw6g1e7MYmgv5CnFxcfj5+REbG4uvbxHMBPB/5SEtEZ7YDKU164mISEmWnJxsnf3Kw8Px/tFLwVzt51rk1wkF9OmnnzJhwgSio6Np0KABH3/8Mc2bN89x2w4dOrB8+fIr1t9yyy388ccfeTrf1b4Pel2UbPr5idjGL5uPM3r2NpLSMgj29eCTuxrRNLw0p+KSefiHjWyOPI+TBV64pRb3t41wmEbZhmGw/vA5vlh+gCW7L03A0KZqGR65qQptqwYWaawJKel89fdBvv77oLU8rludIJ7vXpPKZUvlut/liajVB85y+YCorETUrfVCCC3jVWSx29upuGT+3neGZXtOsWLfmStKE2sG+9ChRjluql6WJmEBRVIimSWv10saKWUPHr5mUkrNzkVERMQGZsyYwahRo/jiiy9o0aIFH3zwAd26dWPPnj2UK1fuiu1nz56drRH32bNnadCgAf379y/OsEVErkvJaRm89vtOpq41Z+FsWzWQDwY2tPb6KefrwY8PtuSlX7Yzc+MxXv9jF7ui4vm/PnXxsPHkDPmRmWmwePcpPl+2n02R5wGwWOCWuiE8fFNl6lf0L5Y4Srm7MKpLde5uEcr7C/fy04aj/LXjJIt2neKu5qE82bma9XupRFR25Xw96NekIv2aVCQj02DrsfMs22OOovr32Hl2R8ezOzqeL5YfoJS7C62rlOH+thG0qGy/Ci4lpezB3RfioyA51t6RiIiIyHXgvffe48EHH2TYsGEAfPHFF/zxxx9MmjSJ//3vf1dsX7p09jKI6dOn4+XlpaSUiEghHY0xy862HY/FYoHHb67Gk52qXTE7moerMxP61adWiC//98dOZm06xoHTCXx1b5McG4MXpdT0TH7dcpyv/j7IvlMJALg5O9G3SUUeal/Zbn2vgnw9eLNvfe5rG8Gbf+5mye5TfL/mCHM2H2dAs0rsjo5TIuoqnJ0sNA4NoHFoAKO6VOdsQgr/7D/D8otJqrOJqSzYeZI7Gle0a5x2TUqNHz+e2bNns3v3bjw9PWndujVvvfUWNWrUyHWfyZMnWy+4sri7u5OcfGnqScMwGDt2LF9//TXnz5+nTZs2fP7551SrVq3Inku+eFwcuqYZ+ERERKSQUlNT2bhxI6NHj7auc3JyonPnzqxevTpPx5g4cSIDBw7E2zv3Nx4pKSmkpKRY7xdVTzERkZJq0c6TjPppC3HJ6QR4ufL+gIZ0qHHlaNUsFouF+9tGUD2oFCOmbWbL0fP0/OQfvrq3KQ0q+Rd5vIkp6fy4LpKJ/xwiKtZ8P+3j7sLdLcO4r014sSfHclM9yIdJQ5ux6sAZ3pi3i+3H45j4zyHr40pE5U2ZUu70aliBXg0rkJlpsONEHMv2nKJ1Vfv2ubZrUmr58uUMHz6cZs2akZ6ezgsvvEDXrl3ZuXPnVS+KfH192bNnj/X+f+tZ3377bT766COmTJlCREQEL7/8Mt26dWPnzp2OURefNQOfyvdERESkkM6cOUNGRgZBQdlbrAYFBbF79+5r7r9u3Tq2b9/OxIkTr7rd+PHjeeWVVwoVq4jI9Sg9I5N3F+7l82UHAGhYyZ9P725MBX/PPO3frlpZfh3ehge+28D+Uwn0/3I1b/WtR59GRTOC5WxCClNWHWbK6iPWnkNlfdy5v20Ed7UIxdfDMWeIb10lkLnD2/LbvydYuPMkdcr7KRFVQE5OFupV9KNeRT97h2LfpNT8+fOz3Z88eTLlypVj48aNtG/fPtf9LBYLwcHBOT5mGAYffPABL730Er169QLgu+++IygoiF9++YWBAwfa7gkUlPvFkVIq3xMRERE7mzhxIvXq1cu1KXqW0aNHM2rUKOv9uLg4KlWqVNThiYgA5ixjaRmZeLk5VgeaU/HJPD5tM2sPxQAwtHU4L9xSK98NpMMDvZnzWGuemrGFRbtO8dSMreyKiuf57jWvKP0riISUdJbuPsVfO6JZtOskyWmZAEQEevNQ+8r0aVTBrv2s8srJyWId7SPXB4d6RcfGmkma//Y5+K+EhATCwsLIzMykcePGvPHGG9SpUweAQ4cOER0dTefOna3b+/n50aJFC1avXu0YSSmV74mIiIiNBAYG4uzszMmTJ7OtP3nyZK4f4mVJTExk+vTpvPrqq9c8j7u7O+7u7oWKVURuLBmZBnFJacRevMUlp5GYkk5iSgaJqekkpKRb7yekpHMhNZ2ElIyL6y57PDWD1HQzidK6Shme616ThsVQ3nYtaw6e5fEfN3M6PgVvN2fe6lef2+qXL/DxfDxc+erepry3cC+fLN3PV38fZHd0PB8PbISfV/5HL51JSGHRzpP8tSOalfvPkpqRaX2sfkU/Hr2pCl3rBNsk6SVSUA6TlMrMzGTkyJG0adOGunXr5rpdjRo1mDRpEvXr1yc2NpZ33nmH1q1bs2PHDipWrEh0dDRAjkPYsx77r2LvkaDyPREREbERNzc3mjRpwuLFi+nduzdgXlctXryYESNGXHXfn3/+mZSUFO65555iiFRESrJTcclExSYTm5TG+awkU1bC6cKlxFPsZY/Fp6TbPI5VB87S+9OVdK8TzDPdalC1XCmbn+NaMjMNvvz7IBP+2k2mAdWDSvH5PU2oUrbwsTg5WXimWw1qhvjwzM9b+XvvaXp/tpKvBzfN03M9GnOBv3ZEs2DHSTYcicnWBDwi0JuudYLoXieYhpX8r2iDI2IPDpOUGj58ONu3b+eff/656natWrWiVatW1vutW7emVq1afPnll7z22msFOnex90jIKt9LUfmeiIiIFN6oUaMYMmQITZs2pXnz5nzwwQckJiZaJ4cZPHgwFSpUYPz48dn2mzhxIr1796ZMGfs2ORWRq/tzWxTrD5+jZogP9Sr4Ua1cKVyc81celh+ZmQb7TiWw4UgMGw6fY/3hGI6dSyrw8bzdnPHzdMXX0xVvdxe83V0o5e6Mt5vLxfvOF9e54OV28bGL25nbOFPK3YW4pHQ+XLyP2ZuPMX9HNAt2RtO/SSVGdqlGiF/e+jcVVuyFNJ7+2SyxA7ijUQVe71PX5mWFt9UvT3gZbx76bgOHziTS59OVfDSoER1rZm+cbhgGe07G89d2c0TUzqjsAx/qVfCja+0gutUNplq5UkpEicNxiKTUiBEj+P333/n777+pWDF/zdxcXV1p1KgR+/fvB7AOUz958iQhISHW7U6ePEnDhg1zPEax90iwjpRSUkpEREQKb8CAAZw+fZoxY8YQHR1Nw4YNmT9/vnXkeGRkJE5O2d/A7tmzh3/++YcFCxbYI2QRyaMvlx9g/J/ZJy1wd3Gidnlf6lXwo24Fv0InqpLTMvj3WCzrD8ew8cg5NhyOIS45+ygnJwsE+3rg5+WGn6cLfp6uV9x8c1nnaqMEmr+XG+/e2YCH2lfmnQV7WLjzJDM2HGXOluMMbR3OozdVIcDbzSbn+q8Lqeks33OaN/7cxdGYJNxcnHjl9joMbFapyBI9dSv4Mffxtjz6w0bWHz7HfVPW81y3mjzUvjJbjp7jrx1mIurI2QvWfZws0DyiNN3qBNO1TnCem62L2Itdk1KGYfD4448zZ84cli1bRkRERL6PkZGRwbZt27jlllsAiIiIIDg4mMWLF1uTUHFxcaxdu5ZHH300x2MUe48Ea6Nzle+JiIiIbYwYMSLXcr1ly5Zdsa5GjRoYhnHlxiLiEAzDYPyfu/nq74MAdK0dRGxSGjtOxJGQks7myPNsjjxv3d7dxYlaIWaiql7FqyeqYhJTrcmn9Ydj2H48Llu/IQBPV2cahfrTNLw0zcIDaBQaQCl3hxjTQI1gH74e3JSNR2J46889rDscw1d/H+THtZE80qEKw9qE22Tk0vkLqSzaZTYH/3vvaVIu9rWqVNqTz+9uQt0KRT9zWWApd6Y+0JKxc3fw47pI3pq/m8+W7s9WGunm4kT7aoF0rRNM51pBlC6ixJxIUbDrX5Xhw4czbdo0fv31V3x8fKw9n/z8/PD0NDO6/x1u/uqrr9KyZUuqVq3K+fPnmTBhAkeOHOGBBx4AzJn5Ro4cyeuvv061atWIiIjg5Zdfpnz58tY+C3aXNVJKjc5FRMQOrvWJ7tixYxk3blyBjz1nzpxr/s/N63YixckRXhtZHn74Yb755humT59O//79C3ROKbnSMzJ5ftY2Zm06BsDoHjV5+KYqgFlad/hsItuOx7L9eCzbjsey43gc8SnpbDl6ni1Hz1uPc3miqnJZb/ZEx7P+cAwHTidecc6yPu40Cw+gSZiZhKoV4muzEU5FpUlYaWY83JJle07z1vzd7I6OZ8Jfe5i86jBPdKrGwGaV8v0comKTWHBxBNLaQzFkXNaUqVJpT26pG8JjHaoWqPF4Qbm5ODH+jnrULu/LK3N3EJ+Sjo+7CzfXKke3OsHcVL0s3g6SMBTJL7v+5n7++ecAdOjQIdv6b7/9lqFDhwJXDjc/d+4cDz74INHR0QQEBNCkSRNWrVpF7dq1rds899xzJCYm8tBDD3H+/Hnatm3L/Pnz8fDwKPLnlCdZs++pfE9EROwgKirKujxjxgzGjBnDnj17rOtKlSr+prEijsBRXhsXLlxg+vTpPPfcc0yaNElJqRtMcloGI6ZtYtGuUzg7WXjzjnr0b3qptYiTk4XKZUtRuWwpejWsAJiJqiMxF/j32PlrJqqyVC1XKlsSKrS0V4nsN2SxWOhYsxw3VS/Lb/+e4N0Fe4mMucDLv2znmxUHebprDW6rF4LTVWaY238q4WJz8Gi2Hsv+Hq1msA/d6gTTrU4wtUJ87Po9urdlGM3CAzibkEqz8NK4uTh20lAkTwy5QmxsrAEYsbGxRXOCqG2GMdbXMN6qXDTHFxGRYpOUlGTs3LnTSEpKsncoBfLtt98afn5+2dZ9/fXXRs2aNQ13d3ejRo0axqeffmp9LCUlxRg+fLgRHBxsuLu7G6GhocYbb7xhGIZhhIWFGYD1FhYWlut5AWPOnDk5PpaRkWG88sorRoUKFQw3NzejQYMGxp9//pmnGDIzM42xY8calSpVMtzc3IyQkBDj8ccfz/f35Wo/1yK/TighrvZ9KOmvC8Ow32vDMAxj8uTJRsuWLY3z588bXl5eRmRkZLbHk5OTjeeee86oWLGi4ebmZlSpUsX45ptvrI9v377duPXWWw0fHx+jVKlSRtu2bY39+/fn+blfDz+/kur8hVSj3+crjbDnfzeqvzjPWLAjusDHysjINA6eTjB+3XLc+L8/dhr3T15vvDFvp7FwR7QRk5Biw6gdS0pahjFl1SGjyWsLjLDnfzfCnv/d6PHB38bS3SeNzMxMwzDM/xVbIs8Zb/25y7j5naXW7cKe/90I/9/vRt/PVhpfLT9gHDmTaOdnI1Jy5fV6SWP87EHleyIi1y/DgLQL196uKLh6QSE/wZ06dSpjxozhk08+oVGjRmzevJkHH3wQb29vhgwZwkcffcTcuXP56aefCA0N5ejRoxw9ehSA9evXU65cOb799lu6d++Os7NzgWL48MMPeffdd/nyyy9p1KgRkyZN4vbbb2fHjh1Uq1btqjHMmjWL999/n+nTp1OnTh2io6PZunVrob4nYiP2em3Y4HUBxfvamDhxIvfccw9+fn706NGDyZMn8/LLL1sfHzx4MKtXr+ajjz6iQYMGHDp0iDNnzgBw/Phx2rdvT4cOHViyZAm+vr6sXLmS9PT03E4nDuJUXDKDJ61jd3Q8Ph4uTBzSjOYRpQt8PCcnCxGB3kQEenN7g/I2jNSxubk4MbhVOH0bV2TSP4f46u+D7IyKY+i362lZuTQ1gnxYsPMkUbHJ1n1cnS20rhJItzrBdK5djnI+DlJhI3IDUFLKHrLK9zJSIS0ZXPVHT0TkupF2Ad6w08X/CyfAzbtQhxg7dizvvvsud9xxB2BOILJz506+/PJLhgwZQmRkJNWqVaNt27ZYLBbCwsKs+5YtWxYAf39/62y4BfHOO+/w/PPPM3DgQADeeustli5dygcffMCnn3561RgiIyMJDg6mc+fOuLq6EhoaSvPmzQsci9iQvV4bNnhdQPG9Nvbt28eaNWuYPXs2APfccw+jRo3ipZdewmKxsHfvXn766ScWLlxI586dAahcubJ1/08//RQ/Pz+mT5+Oq6vZ86Z69eqFfv5StA6fSeTeSWs5GpNEWR93pgxrTu3yvvYOq0Tzdnfh8U7VuLtlGJ8t3c93a46w5mAMaw7GmI+7OdOhRjm61gmiY81y+HoUX48oEblERaj24OYDXPzETn2lRETEQSQmJnLgwAHuv/9+SpUqZb29/vrrHDhwAIChQ4eyZcsWatSowRNPPMGCBQtsGkNcXBwnTpygTZs22da3adOGXbt2XTOG/v37k5SUROXKlXnwwQeZM2eORohIoRXna2PSpEl069aNwMBAAG655RZiY2NZsmQJAFu2bMHZ2Zmbbropx/23bNlCu3btrAkpcXzbj8fS74vVHI1JIqyMF7Meaa2ElA2V9nbjpdtqs/SZDtzXJoJBzUOZOKQpG1/uwqd3N6ZXwwpKSInYkUZK2YOTE7j7mOV7KXHgE2TviERExFZcvcyRGfY6dyEkJCQA8PXXX9OiRYtsj2WVGzVu3JhDhw7x559/smjRIu688046d+7MzJkzC3Xu/LhaDJUqVWLPnj0sWrSIhQsX8thjjzFhwgSWL1+uN+n2Zq/XRiFfF1B8r42MjAymTJlCdHQ0Li4u2dZPmjSJTp06WWeozs21HhfHsubgWR6csoH4lHRqh/gy+b5mKh0rIhX8PRnTs/a1NxSRYqWklL14+JkJqWT1lRIRua5YLDYpFbKHoKAgypcvz8GDB7n77rtz3c7X15cBAwYwYMAA+vXrR/fu3YmJiaF06dK4urqSkZFR4Bh8fX0pX748K1euzDYSZOXKldnK8K4Wg6enJz179qRnz54MHz6cmjVrsm3bNho3blzguMQG9Nq45mtj3rx5xMfHs3nz5mx9p7Zv386wYcM4f/489erVIzMzk+XLl1vL9y5Xv359pkyZQlpamhKxDu6vHdE8/uNmUtMzaRFRmq+HNNWIHRG54SgpZS/uF4fkJp+3axgiIiKXe+WVV3jiiSfw8/Oje/fupKSksGHDBs6dO8eoUaN47733CAkJoVGjRjg5OfHzzz8THByMv78/AOHh4SxevJg2bdrg7u5OQEBAruc6dOgQW7ZsybauWrVqPPvss4wdO5YqVarQsGFDvv32W7Zs2cLUqVMBrhrD5MmTycjIoEWLFnh5efHDDz/g6emZrb+PSEEUx2tj4sSJ3HrrrTRo0CDb+tq1a/PUU08xdepUhg8fzpAhQ7jvvvusjc6PHDnCqVOnuPPOOxkxYgQff/wxAwcOZPTo0fj5+bFmzRqaN29OjRo1iuNbJXkwY30ko2dvI9OArrWD+GhQIzxcCzY5hIhISaaklL1kNTvXDHwiIuJAHnjgAby8vJgwYQLPPvss3t7e1KtXj5EjRwLg4+PD22+/zb59+3B2dqZZs2bMmzcPJyezTeW7777LqFGj+Prrr6lQoQKHDx/O9VyjRo26Yt2KFSt44okniI2N5emnn+bUqVPUrl2buXPnUq1atWvG4O/vz5tvvsmoUaPIyMigXr16/Pbbb5QpU8bm3yu5sRT1a+PkyZP88ccfTJs27YpzOzk50adPHyZOnMjw4cP5/PPPeeGFF3jsscc4e/YsoaGhvPDCCwCUKVOGJUuW8Oyzz3LTTTfh7OxMw4YNr+jTVlL8vfc04//cTUSgF/e3rUyTsNwT3UUhI9Ng4c6T/LP/NBX8vagV4kPtEF/K+rhjKcCsjoZh8MXyg7w1fzcAA5pW4v/61MXFWa1+ReTGZDEMw7B3EI4mLi4OPz8/YmNj8fUtoiaD0wbA3vnQ8yNoMqRoziEiIkUuOTmZQ4cOERERgYeH+oBcL672cy2W64QS4GrfB70uSjZH+Pklp2Xw5p+7mbzqcLb1jUP9ebBdZbrWCcbZKf9JobyKvZDGjA2RTFl1hOPnk654vIy3G7VCfKkZ7EOtEF9qhfhStVwp3FxyTy5lZhq8MW8X3/xzCIBHO1ThuW41CpTcEhFxdHm9XtJIKXtx10gpEREREZH/2n48lpEztrD/lNlg/u4WoaSmZ/LrlhNsijzPo1M3EVrai/vbRtC/aUW83Gz3lmb/qQQmrzrErI3HSUoze4AFeLnSs0F5YhJT2RUVx6EziZxNTOWf/Wf4Z/8Z676uzhaqlC1F7YtJqpohZsIqsJQ7aRmZPD/rX2ZvOg7AS7fW4oF2lW0Wt4hISaWklL1kle8lx9o3DhERERERB5CRafDF8gO8v3Av6ZkG5XzcmdC/ATdVLwvAs91q8N3qI/yw9giRMRcYO3cH7y3cy90tQhnSOpwg34KN6srMNFi+9zSTVh5ixb5LSaYaQT4MaxNO70YVsvV7SkrNYN+peHZFxbErKp6dUXHsioojPjmd3dHx7I6Oh83HrduX9XHH18OFA6cTcXay8Hbf+vRtUrGA3yURkeuLklL2Ym10rpFSIiIiInJjOxpzgVE/bWH94XMA9KgbzBt96hHg7WbdppyvB890q8FjHaswa+MxJv5ziMNnL/DZsgN8veIgtzeowAPtIqgVkrey2oSUdGZtPMaUVYc5eCYRMCeJ7FwriGGtw2lVpUyOpXWebs7Ur+hP/Yr+1nWGYXD8fBK7ouLZHRXHrmgzYXX4bCKn41M4HZ+Cu4sTn93dmE61ggrxnRIRub4oKWUvHn7mV5XviYiIiMgNyjAMZm48xiu/7SQhJZ1S7i6Mu70OfRtXyLXXkpebC/e2CueuFmEs2nWSr/8+yIYj55i16RizNh2jXbVAHmhXmfbVAnM8RuTZC0xedZifNxwlPiUdAB93F+5sVokhrcIJLeOV7+dhsVioGOBFxQAvutS+lHRKTElnz8l4Dp5OpHGoP5XLlsr3sUVErmdKStmLyvdERERE5AYWk5jKC7O3MX9HNADNwgN4786GVCqdt6SQs5OFbnWC6VYnmM2R5/hmxSH+3B7Fin1nWLHvDDWCfLi/XQS9GpbHzdmJ1QfOMmnlYRbvPknWVE8Rgd4MbR1O3yYVKeVu+7dG3u4uNA4NoHFo8c4aKJKrHXNg+dvQ61Oo0Nje0YgoKWU3Kt8TEbmuZGZm2jsEsSH9PG1D38eSqTgm51625xTPzvyX0/EpuDpbeKpLdR5uX6XAM+o1Cg3g07sDOBpzgUkrD/HT+qPsORnPczP/ZcJfewjwcmXvyQTr9u2rl2VYm3BuqlYWpyKcxU/EoaQlw5/PQ8JJ+ONpeHCJWbMqYkdKStmLh7/5NUUjpURESjI3NzecnJw4ceIEZcuWxc3NTdN7l2CGYZCamsrp06dxcnLCzc3t2jvJFfS6KLkMw+D06dNYLBZcXV1tfvyk1AzG/7mL71YfAaBquVJ8MKAhdSv42eT4lUp7MbZnHUZ2rs6P6yKZvPIw0XHJnI5PwdPVmb5NKjC0dThVy/nY5HwiJcrm782EFMCJTbDzV6jT264hiSgpZS8eGiklInI9cHJyIiIigqioKE6cOGHvcMRGvLy8CA0NxcnJyd6hlEh6XZRsFouFihUr4uzsfO2N82HbsVienLGZg6fNpuJDW4fzvx41s81sZyt+nq48clMV7msTwYKd0cQnp3NL3RD8vGyfaBMpEdJTYeWH5nLZmnB6Nyx5DWreCs56XYj9KCllL+7qKSUicr1wc3MjNDSU9PR0MjIy7B2OFJKzszMuLi4a2VNIel2UXK6urjZNSKVnZPLF8gN8sGgf6ZkGQb7uvNO/Ae2qlbXZOXLj5uLEbfXLF/l5RBzevzMg9iiUCoIhv8NnLeDsfnP0VNP77B2d3MCUlLKXrJFSKfFgGKrlFREp4bJKXYqi3EWkpNLr4sYWeyGNjZExfLr0ABuPnAPg1noh/F+fuvh7qTRWpNhkpMM/75nLrR+HUmWh/XMw/3lY9hbUHwhu+Z91UsQWlJSyF4+LdfNGBqQmgrumhxURERGRkskwDI6dS2LDkRjWHz7HxsPn2HMy3vq4j7sLr/SqQ59GFTQKUaS47ZgNMQfBs/SlUVFNh8GaT+F8JKz9HNo9bd8Y5YalpJS9uHqBxdlMSiXHKiklIiIiIiVGekYmu6PjWX84hg1HzrHhcAwn41Ku2C4i0JsWEaUZcXNVKgZoJIZIscvMhL/fMZdbDQc3b3PZxR1ufhlmPwj/fABNhoFXabuFKTcuJaXsxWIxS/iSzkFKHFDB3hGJiIiIiOQoMSWdzZHn2XAkhg2Hz7E58hyJqdl7hbk4WahbwY9m4QE0CStN0/AAAku52yliEQFg929wZg+4+0HzB7M/VrcfrPwITm6DFe9Ct/+zT4xyQ1NSyp48/MyklGbgExEREREHNHnlIWZtOs7OqDgyMo1sj/m4u9A4LIBm4QE0DS9Ng4r+eLrZfiY9ESkgw4C/J5jLLR6+1EImi5MTdB4HU/vCuq+gxSPgX6nYw5Qbm5JS9pQ1A1+KklIiIiIi4limrj3CuN92Wu9X8PekaXgATcPMJFT1IB+cndQfSsRh7VsA0dvA1RtaPprzNlU7QXg7OLwClo2H3p8Vb4xyw1NSyp6yMtXJsfaNQ0RERETkMhsOxzBu7g4AHr6pMkNahVPe39POUYlInhkGLH/bXG52f+79oiwWc7TUN51g64/QagQE1S62MEWc7B3ADS1rpJSSUiIiIiLiIE7GJfPo1E2kZRjcWi+E/3WvqYSUSElzaDkc3wAuHmai6WoqNoVat4ORCYtfLZ74RC5SUsqeskZKqXxPRERERBxASnoGj/ywkdPxKdQM9uHtfvWxWFSiJ1LiZM2413gI+ARde/tOY8zZ4ff+CUdWF21sIpdR+Z49eWiklIiIiIg4BsMwGPvrDjZHnsfP05Uv722Ct7veLogUiGFA4hk4dzj7Le44NLoH6vUrunMfWW32iHJyhTZP5m2fwGrQ+F7YOBkWjYX7/jJL+0SKmP7L2JO1fE8jpURERETEvqaujWT6+qM4WeCjQY0IK+Nt75BEHFt6CpyPvDLxlHVLTch5v8MrwLssVL6paOLKmnGv0d3gVyHv+930P9g6A46uhT1/Qs1biiY+kcsoKWVPKt8TEREREQew4XAMr/xmNjZ/tltNbqpe1s4RiTigqK2w7iuIOXRx1NMJwLjKDhbwrQAB4ZduJzbBnnnw02B4cAmUqWLbGI9vhAOLzVK8NiPzt69viDlL3z/vweJXoHo3cHK2bXwi/6GklD15aKSUiIiIiNhXdGwyj/xwsbF5/RAeuamyvUMScTwnNsPknpAan329W6nsSSfrLQL8K4GLe/bt05Jg8q1m8mjaAHhgEXj62y7Ov981v9a/E0pH5H//Nk/Chklwerc5G1+je2wXm0gOlJSyJ82+JyIiIiJ2lNXY/EyC2dh8ghqbi1zp1G74/g4zIRXaGprdfyn55FUmf72XXD1h4DT4+mY4uw9+Hgp3zwRnG7w1j94Oe/4ALNB2VMGO4ekP7Z6GhS/D0jegbl8zZpEiotn37ClrpJTK90RERESuO0fOJrL+cAxnElIwjKuV+NiHYRiM+WUHW46ajc2/urcpXm76zFokm3OH4fvekBQD5RvD3T+ZTcorNgXvwII1A/cJhkE/gqsXHFwKf422TawrLo6SqtMbylYv+HGaPwS+Fc2m7Ou+tkloIrnRfx17yuoppfI9ERERkevKqfhkeny4ggupGQD4eLhQuWwpKgd6ExHoTeWy5teIQG+7JYJ+WBvJjA1mY/OPBzUitIyXXeIQcVhxUfBdL4iPgnK14Z5Z4O5jm2OHNIA7voIZ95h9qsrWgGYPFPx4Z/bBjjnmcrtnChebqwd0HA2/DjcTXY0H27bEUCAzA2IOQukq4HRjjxVSUsqe3LOSUirfExEREbme/LL5OBdSM3BzcSItI5P45HS2Hj3P1qPnr9g2xM/DmqC6PHFVMcATF+eiebOy/nAMr8w1G5s/170m7dXYXCS7CzHwfR9zpFRAONw7B7xK2/YctXpCpzGw+FWY95yZoKjSsWDHWvEeYECNWyC4buFjazAIVn0Cp3fByg+g87jCH1Mg9jhs/gE2fQdxx8wEYqeX7R2VXSkpZU9Z5Xup8WamVDMbiIiIiJR4hmEwa+NxAMb2rE3fxhU5cvYCh84kcPBMIgdPJ3LojHmLSUwlKjaZqNhkVh04m+04rs4Wqpbz4a4WofRvUhEPV9tcK0bFJvHoD5tIzzS4rX4ID7dXY3ORbFLi4Ye+ZkLGpzwM/tUsuSsKbUfB6T3w7wz4eQg8sAQCq+bvGDGHzP0B2hdylFQWJ2czYTZ9EKz5Apo/bM7OJ/mXmQH7FsLGybDvLzAyLz227mtoNwrcvO0Wnr0pKWVPWY3OwfzDpyGRIiIiIiXe9uNx7DkZj5uLE7fVL4+HqzM1gn2oEXxl2c/5C6mXJaoSOHRZ0iolPZNdUXG8/Mt2Ply0l6Gtw7m3ZTh+Xq4Fji05LYNHfthkbWz+thqbi2SXlgTTBsKJTeBZGgb/Yo6UKioWC/T8yCzlOrYefsyakS8g78dY+QEYGVClE1RoYrvYavSASi3h6BpY/ib0/NB2x74RxB6DTd/D5u/N/lxZwtpCkyGwbLz5c//3J2g6zH5x2pmSUvbk6gHO7pCRYjY7V1JKREREpMSbtekYAF1rB+HnefUEkr+XG41D3Wgcmv0NaGamQVRcMgt2RPPNikMcP5/EOwv28vmyA9zVIpT721Ym2M8jX3EZhsGYX7ezVY3NRXKWkWbOhnfkH3MAwb2zzV5PRc3Vw5yR76uOcHY//DTE7F/lnIcEdOxx2DzVXG7/rG3jsligyyswqZuZXGk1AgKrFfx4KfGw7WfzWBhwz2zbl0TaW0Y67M8aFbXg0qgoz9LQ8C5oPORSE/qEU7DgRVj/DTQZWrCm+deBG7ujliPIKuFTXykRERGREi81PZNft5ifiPdrUrHAx3FyslDB35NhbSJY9mwH3h/QgBpBPiSmZvD1ikO0e3sJz83cyv5TCXk+5g9rjvDThmM4WeCTu9TYXCSbzAyY8zDsnQ8uHnDXDCjfqPjOX6oc3DUdXL3h0HKY/7+87bfqI8hMM0ffhLWyfVyhLaF6D3Mk1uJX87+/YcDxTTD3CXinBvz+lDkK7cRmc6TQ9SL2GCwdDx/Whx8Hmr9HRiaEt4O+E2HULuj2f9lnRWx0N7h4wsntcHSt/WK3MyWl7E0z8ImIiIhcN5bsPsW5C2mU83GnXTXbNA93dXaiT6OKzB/Zjm+HNqN5eGnSMgx+2nCMLu8v5+HvN7A58txVj7HuUAyv/LYTgOe717RZbCLXBcOAP0bB9lng5AoDfoCw1sUfR3A96PsNYDFHz6z7+urbJ5wyR+SA7XpJ5aTTGLA4wa65cGxD3vZJjoP1E+HL9vB1R9g0BdISoUw1aPmYuc36iXByZ9HFXdQy0mH3PJh6J3xQzyxxjDsOXmWg9eMwYgMM/R3q9TNHw/2XZwDU62suX+tnfR3TeF17y+orlaKklIiIiEhJl1W616dxBZydbFuKYbFY6FizHB1rlmPjkRg+X3aQRbtO8tcO89YiojSPdqjCTdXLZusTFRWbxGNTN5KeadCzQXkeUmNzkUsMAxaOMZM7Fifo+zVU62K/eGreAp3HwqJx8OfzUKYKVLk5521XfwLpyVChKVTuUHQxBdU2Z+PbMtWMa8hvOZeaGYY5CmrjZNg2y0xCgdmypnYvs0QtrLW5b+xR2PWbOSJs8K8lr3Rt6wzzexF/4tK68HZmb6iat4GLe96O0+xBcza+nb9CwnhzxNwNRkkpe1P5noiIiMh14WxCCkt3nwKgX+OCl+7lRZOw0nwzpDT7Tsbz5d8H+WXzcdYeimHtoRhqhfjyyE2VubVWAKx4j/HbwzmTEEDNYB/e6ltPjc1FLrfiXbMEDsxG3nX62DcegDYjzRn5tv4IPw01G59fXvYFcCHGHGkEZi+pon5ddxgN22bC4RWwfzFU63zpseRYs1fUxskQve3S+sDq0GQYNBh4Ze+oLq/B3gVmqeKeeVDz1qKN35aOrodfHjVLGr3KQMO7zV5R+Z01EaB8Q6jYzGxyv3EK3GTjvmAlgMr37C1rpJTK90RERERKtF+3nCA906BBRT+qBV05015RqBbkwzv9G/D3cx25v20EXm7O7IqK48npW/jonTG4/DOBJ2Nep7SnE18PVmNzkWzWfQ1LXjOXu70BjQfbN54sFouZIKvUElJizRn5LsRk32btF5CaYJb8Ve9W9DH5V4LmD5rLi8ZBZiYc2wi/joB3a8IfT5sJKWd3qD8Ahv0Jw9dBq8dybmZeOgJajzCX/3oB0lOK/jnYQnIczH7ATEjV6WP2iur6WsESUlmaXfy+bvzWLAm8wdg1KTV+/HiaNWuGj48P5cqVo3fv3uzZs+eq+3z99de0a9eOgIAAAgIC6Ny5M+vWrcu2zdChQ7FYLNlu3bt3L8qnUnBZPaVSNFJKREREpCSbudEs3etbiAbnBVXe35OXb6vNqv/dzKgu1Snt7UbN5K0AVHGKYmrbGCqVVmNzEaut02HexT5MNz0PrYbbN57/cnE3e1v5hULMQfhpsDk7IJgjk9Z8YS4XxyipLO2eBnc/OLkNPmoA39wMm7+HtAsQWAO6vwlP74Y7vrpUpnc1bUdBqWA4dxjWfFYsT6HQ/nzOjNcv1Ewc5rVM72rq9AavQLMf1Z55hT9eCWPXpNTy5csZPnw4a9asYeHChaSlpdG1a1cSExNz3WfZsmUMGjSIpUuXsnr1aipVqkTXrl05fvx4tu26d+9OVFSU9fbjjz8W9dMpGDU6FxERESnxdp6IY2dUHG7OTvSsX95ucfh7ufFEp2qsfK4jN3vss66vdeAbs9+LiMCu3+GXi822WzxilqY5olJlzRn53EqZZXPznjVfx+u+Ngc1BNaAmj2LLx6v0tD2SXP5fKQ5S2GDQXDfXzB8LbR8NOdRUblxLwVdXjGX/34H4qNtH7MtbZtpllRm9R7Lei9fWC7ul0bprb/xGp7bdfzu/Pnzs92fPHky5cqVY+PGjbRv3z7HfaZOnZrt/jfffMOsWbNYvHgxgwdfGm7p7u5OcHCw7YO2NXf1lBIREREp6bIanHeqVY4Abzc7RwOesfsg7Zz5phGL2Xz40N9Q+SZ7hyZiXweWwsxhZvlVw7uh23jHbrIdVAf6ToQfB5rlXf6hsPpT87H2z4BTMY8zaTUC0pLNXkr178xfEion9e40k2zHN8DiV6G3g46YOncEfn/KXG7/LIS2tO3xm94HKz8w/06f3gNla9j2+A7MoXpKxcaaiZnSpfP+i33hwgXS0tKu2GfZsmWUK1eOGjVq8Oijj3L27Nlcj5GSkkJcXFy2W7Gxlu9ppJSIiIhISZSWkcmvW8xR+/3sULqXo8P/mF8rNb/0Cfw/79kvHhFHcHQdTL8bMlKh1u3Q86PiT+oURI3u0OVVc3nxK5AUAwERUOeO4o/FxR1ufhFaPlL4hBSY3/8eb5nLW6bC8Y2FP6atZaTD7IfM9+wVm0P752x/Dv9KUL2HuZzVwP4G4TCvwMzMTEaOHEmbNm2oW7dunvd7/vnnKV++PJ07X+r+3717d7777jsWL17MW2+9xfLly+nRowcZGRk5HmP8+PH4+flZb5UqVSr088kzDzU6FxERESnJlu85zZmEVAJLudG+ell7h2M6stL8GtbWbCZscYaDy+D4JruGJWI3p3bD1H6QlghVboa+34BzCWr83/pxaHjPpfvtRpWs+K+mYlOzDBDgz+cdr9R4xbtwdA24+Zhle0X1fW/+gPl164+QklA053BADpOUGj58ONu3b2f69Ol53ufNN99k+vTpzJkzBw8PD+v6gQMHcvvtt1OvXj169+7N77//zvr161m2bFmOxxk9ejSxsbHW29GjRwv7dPJO5XsiIiIiJVpW6V7vhhVwdXaAy2vDgMMXk1Lhbcxyn3r9zfsrP7BbWCJ2ExdlJqSSY82RLgN+sE2D6uJkscBt75szvlXvDvUH2jsi2+o0Fly94dh62PazvaO55Og6WH5xJNdt70FAeNGdK6IDlKlqjsj6d0bRncfBOMB/TRgxYgS///47S5cupWLFvA15fuedd3jzzTdZsGAB9evXv+q2lStXJjAwkP379+f4uLu7O76+vtluxSZrpJTK90RERERKnHOJqSzadRKwz6x7OTq7HxJPmVOzV2hqrms70vy6cy6cyfmaWKTIGAbMfwE+bAhHVhfvuZPjYGp/iD1qvuG/awa4eRdvDLbi4gb9J5vPwcX+vetsyjcE2j9tLi8c4xgjhZLjYNYDZv+xeneaPbSKkpMTNL3fXF5/40xOYdeklGEYjBgxgjlz5rBkyRIiIiLytN/bb7/Na6+9xvz582natOk1tz927Bhnz54lJCSksCHbnmbfExERESmxfvv3BGkZBnXK+1IrpBg/2LyarH5SFZuC68VqgnK1oMYtgKHRUlL8Nk2BNZ/CuUPwQ9/iS0ylp8JP98LJbeBdFu6ZZZs+SFI0Wg4H/zCIj3KMv1PznoHzR8zRpre+UzznbHgXuHrBqZ1wZFXxnNPO7JqUGj58OD/88APTpk3Dx8eH6OhooqOjSUpKsm4zePBgRo++NEXnW2+9xcsvv8ykSZMIDw+37pOQYGZSExISePbZZ1mzZg2HDx9m8eLF9OrVi6pVq9KtW7dif47X5K6RUiIiIiIl1cyNZule38YOMkoKLvWTCm+bfX3bizNHbZ0OcSeKJ5Z9C2HaADixuXjOJ44nehvMu9gY2rei2dPph75F/4bbMOC3J8xeaq7ecPfPRVt6JYXn6gHd/s9cXvmROeOdvfz7k1lCZ3GGO765NJikqHn6Xyq3Xv918ZzTzuyalPr888+JjY2lQ4cOhISEWG8zZlyqn4yMjCQqKirbPqmpqfTr1y/bPu+8Y2YunZ2d+ffff7n99tupXr06999/P02aNGHFihW4uztg3XDWL3faBchIs28sIiIiIpJne0/G8++xWFycLPRqWN7e4Zgu7ycV1ib7Y5Wam+sy0y5NKV+UYo/DzPtg73yY0ktN1u3p9F74dXjxz2yWEg8/D4WMFKjWFUasg8odLiam+hVtYmrJ62bDaIsz3DkFyjcqunOJ7dS8DSLam78zC1+2TwznDsPvo8zlm56H0BbFe/7mD5pfd/0G8dHFe247sGu7fiMPNZL/bU5++PDhq27v6enJX3/9VYioipn7ZcO8k+PAu4z9YhERERER04UYc8alxkOgbPUcN5l1cZRUx5rlKFPKQT78PHcI4k+AkytUbHbl422fMkdSbZwM7Z4uulImw4A/RpnVABYnSImF73rD4DlQoUnRnFNylhwHPw6AmIPmm9z7/jLLOYuaYcBvI80eZ74VoPcXZi+nQdPhx0FwcKmZmLr7Z7Mhvy1tmAQrLpZb9fwQqnWx7fGl6Fgs0P1N+KIt7PwVDq2AiHbFd/6MdJj1IKTGQ6WW5t/J4hZczzz30TXm3+oO/yv+GIqRQzQ6v6E5u5jDScH8Zy0iIiIi9rdwDKz+xEys5CA9I5M5m48D0M9RGpzDpVFSFZqAm9eVj1ftDEH1IDXBbKRbVLbNNEdIObvB/QshtNXFxFSf4h+tU1jxJ82RZfEn7R1J/mWVsMUcNO8nx5qJoLioq+9nCxsnw/aZ5kilft9e+vDd1RMG/QiVO5ojpqb2v/R7awt75sMfFxMJHUZD43ttd2wpHkF1oOl95vL8/0FmRvGd++8JcGydOXjkjq/M9+v2kDVaauPk676iSkkpR5A1A1+yklIiIiIidhd3wuy7BHB4xaU39JdZsf8Mp+JTCPBypWONcsUc4FVY+0nlMvLEYrk0E9+azyE10fYxJJyGPy/2EGr/nNlw/e6fsyemjpWQxFRGGky7E/56ASZ2zvF3waGt/wZ2zAEnF7jrZyhTDeKOmYmgopxoKepf+PN5c7nz2CvLn7ISU1Vutm1i6thGmDkMjExodI9ZeiUlU8cXwcMfTm43G+UXh8g18Pfb5vJt70NAWPGcNye1bgfvcmbT991/2C+OYqCklCPIKuHTDHwiIiIi9rf6U7PvUpbNU6/YJKt0r1fDCri5ONAlddbMe//tJ3W52r3Nhs9JMbD5B9vH8Oez5rGD6l1KgLn7wN0zLyWmvi8hiakV70LUFnP5fCRM6g4nd9g1pDw7scVMpgF0fgWqd4V7ZppvdE9uM2elS0+1/XmT4y7rI9UNWj2e83aunjBw2mWJqX6FS0ydPWAmENMumCMCb/vATMJKyeRVGjpe/P1d/BoknSva8yXHmmV7RibUHwj1+hXt+a7FxQ2aDDGXi3JUqwNwoP+gN7CsZueagU9ERETEvi7EwIZvzeWG95hft0zLVj4SeyGNBTvNUi6HKt07dwRij5rlUpWu0pjX2QVaP2Eur/rYtqUhu343R+ZYnKHXJ+Dseukx91IXE1OtLyamejt2YurEZrOUB8weN0F1IeEkfHsLHF1v39iuJTn2YmIoFWrcAq2Gm+sDwuHun8z2IQeXwdzHzRI/WzEM+O1JiDlgzrTX5wtwuspbTmtiqpOZTJra71JiNT8Sz5j7XjgDIQ2g/5Tsv3tSMjW9D8rWNJPcy98uuvMYhtnYPDbSfI3cMqHozpUfTYaZf0sPr4BTu+wdTZFRUsoReGiklIiIiIhDWP+NOWojqB7c+i54ljYbh+9fbN3k920nSE3PpGawD3XK+17lYMUsq3SvfCMzAXQ1De82R8zEHjX7P9lC0rlLPbjaPAnlG165jXupi6V8rc0PZB01MZWWDHMegcx0c2RZi0dg6O9msi/5PHx3OxxYYu8oc2YYZrLp3CHwC4Ven2YfMVS+kTkbncUZ/p1uzlJnKxsmwY7ZZrlg/2/z1kj/isRU//wlplIvmCOkYg6Cf6hZpnit338pGZxdoft4c3ndV3B6T9Gc598Zl/qf9Z146f25vflVgBo9zOXreLSUklKOwF09pURERETsLjXR7LMEZtmZqwfUH2De3/y9dbOZF0v3+jauiMWRyoMOX6Of1OVcPaDVY+byyg8gM7Pw5//rRXMkUWD1q/fyyUpMhbW5LDG1ofDnt6Ulr8Hp3Wbi7tb3zKSOZwDcO+ey5Mmd5uxgjmb9N2ZcTq65J4aqdTFnpQNzlroNkwp/3qitMH+0udxpLFRqnvd9XT2uTEwdWnHt/TLSYeZ9ZvN8zwC4Zzb4BBUsfnFMVW42R/tlppu/X7Yc2QcQcwj+eMZc7jDa7IHnSLIanm+dft0OYlFSyhGofE9ERETE/jb/YJaJBISbo2PAbJYMsOdPSDzDgdMJbI48j7OThV6Nytsr0pwdyeon1TZv2ze9z/xw9PRuc6a8wti/CLZMBSxw+ydmkuFq3EvBXT9dlpjq4ziJqcMrzb5iALd/fGnWOAA3bxg03fz9yEwzS+Q2fZ/TUezjxOZLfaS6vHr1N9iN7zXfhIM5W92ePwt+3sv7SFXvAa1z6SN1Nf9NTE278+qJKcMw+5ft/RNcPGDQDAisVuCnIA6s6+tmkvXAYti3wHbHzUiD2Q9Carw5erNdzrOt2lXETWaiPzXBHNF1HVJSyhGofE9ERETEvjLSzP5KYPZbypoGPLiuWe6UmQZbp1sbnN9UvSzlfK6ReClOscfh3GGwOEFoy7zt4+EHze43l/95r+AjEFLi4beR5nKLR66caS03OSWm7N2rKSUefnkUMMyEZI3uV27j4gb9JkHjwWZT5LkjLv3u2NPlfaRq3gYtH732Pjc9bz5PIxN+HlawUkrDgN+eMMvn/CpB788K3mA8KzFVtfO1R0z9897FEV4WuOPrvP/eSclTpsqlkZ3zR9uuQf/yt+HYenD3gzu+Aidn2xzXliwWaPaAubz+G9uPFHMASko5ApXviYiIiNjXtplmfyXvcma/pcs1uhcAY/P3zNlkJqUcqsE5XOonFVw/f/1QWjwKzu7mG7MjBZz5bNE483vnHwadXs7fvv8t5fvhDvsmpha8DOePmL2Yuo3PfTsnZ+j50aWG8QtegsWv2u8No2HAryPMxKR/qNlkPi+JIYvFnKWuamdIT4Jp/c1Z7PJjw0Szub2TC/TLYx+pq3H1gAFTL8U0tT8c+jv7Nlunm99vgB5vQe3bC3dOcXztnjH/PsccgHVfFv54R1aZpasAPT8A/0qFP2ZRaTDQnJzg9O6CTQTg4JSUcgTW8j0lpURERESKXWam2VcJzE/j/1t6VrcvuHhgOb2boPgd+Hm60qlWuWIP86qy3qiE57F0L4tP0KUSxX/eL8B5V15qwHv7R2Z5W365eV9MTLW174ipfYtg48WZF3t/eu3knsUCXV8z+ycBrHjXLIOzRX+u/Fr3Feyae7GP1GSzv1JeObuas9WFNIALZ+GHvuZsdnlxYsulPlKdX4FKzfIbec6siakuFxNTd15KTB1YCr9enE2w9RPQ4mHbnFMcm4cvdL74Wlv+NiScytt+6SlwZr/5+l73tdn7bvrd5s3IND+EqHtH0cVtCx5+0OBif8P1X9s3liKgpJQjyEpKqXxPREREpPjt/dP8BNrd1+yz9F+e/lC7FwB3Oi/l9gblcXdxsDKPrFFO+U1Kgdn/x+Jk9oWK+jfv+6UlmbO8gVnKVrlD/s+dxc0b7v7JTEylxhd/YirpnFmGB+bosYj2ed+33Si47X3AYo4amvOQWQ5aXI5vMt9og9l7p0KT/B/DvZQ5a51/qDlr37Q7zcb/V3N5uWCNW6DV8Pyf92pcPWDAD9kTU+u+hhn3mk2v6/Y1E2Fy42hwF4Q0NJPXS14z1xmGmUQ9tsEc8fr3BDNp+e2t8F4deD0IPmkCU/vCvGdg9Sew+3ezf2BgdXOkXUnQ7GLD812/Q9wJ+8ZiY0pKOYKs8j01OhcREREpXoYBK94zl5vdf+nDwv+4UGcQAD2d19C/fiHLk2wtPhrO7gcsENoq//uXjoA6F0cK5Ge01NI3zFIan/JmMqSwshJT4e0uS0ytK/xx82LesxAfBWWqXRqNkR9N74N+E80Stm0/m6MwUi/YPs7/SjpvJoYy08w+UoUZNeQTZM5e5xlgzmY38z5zdrucGAbMfcJMYPmFQq9PC95H6mqyElPVupqJqXnPmL8b4e2g9+fgpLezNxQnJ+jxtrm86Xv4rDWMrwgTqsA3nWDW/bDkdXPSiiP/QNwxwDBL38rVgRq3Qsvh0GOC2c/uoeXg7mPXp5RnQbXNMmcjAzZOtnc0NqVXsSPwUE8pERERKZxPP/2U8PBwPDw8aNGiBevWXf3N/Pnz5xk+fDghISG4u7tTvXp15s2bV0zROpAjK+H4BrOvUsvHct3st9gIjmSWw8eSRL3YpcUYYB5Y+0nVNUd1FUTbkebXnb/krafQ8Y3miAMwRwnlkszLNzdvuGvGZYmpO4o+MbXjFzORZHGCPl+Cq2fBjlO3rzkzn4sn7PvLLIMryut7wzBHhJw/YvbzskViKLCaOYudi4c5I+O8Z3Luk7X+G/N3xckF+tugj9TVuHrAnd+biSmAsrXMRJWLe9GdUxxXaAuo1x8w4NQOc1Y6LOBb0Rxp2fAe6PgS3PEN3L8IntkPLxyHx1bBoGnQ/Q1o8RBU7wZuXvZ+NvmT1fB842TbNXt3AEpKOQKV74mIiEghzJgxg1GjRjF27Fg2bdpEgwYN6NatG6dO5dxzIzU1lS5dunD48GFmzpzJnj17+Prrr6lQoUIxR+4AskYGNboHSuXeJ2rmphP8lNEBAMvmH4ohsHw4fDEpFVaA0r0swfXMN/1G5rVnkktPNZtqG5nmm8OcZqgrjJwSU4cL2IT9WuJPwu9PmcttR0HFApS+Xa5aF7h3jjmbV+QqmHwbJJwufJw5WfulWYZk7SPlb5vjhrYwZ7PDYvbYWvFu9sdPbIa/XjCXu7wKFZva5rxXk9VjatB0uG++7Z6rlEw9PzQTyHfPhBEb4KWTMGoHDPvD7Ad307NQv7/Z46xU2aIZxWcPNW+DUkGQcBJ2/1a4Y6WnwJ758Mtjdh8co6SUI7i8fO86nOJRREREitZ7773Hgw8+yLBhw6hduzZffPEFXl5eTJo0KcftJ02aRExMDL/88gtt2rQhPDycm266iQYNGhRz5HYWtdXso2RxMvsq5eLwmUTWHz7HnMx2GBYnM9lwZn8xBnoN1ibnbQp3nLYXkzNbppolgblZ8S6c2glegdC9iPqx/DcxNeU2WDgG0pJtdw7DgN+eNHvLBNeDm563zXHDWsHQ38G7LET/C992h/NHbXPsLMc2mjP+AXT7P6jQ2LbHr337pV47S16DLT+ay9n6SN161dGFNufiBjV6KCEl5t+HBgPNJHBgtRtn1JyLGzQZai6v+yb/+2clouY8AhOqwY8DzL/3e+bbNMz8UlLKEWSV72WkQroN/9GKiIjIdS81NZWNGzfSuXNn6zonJyc6d+7M6tWrc9xn7ty5tGrViuHDhxMUFETdunV54403yMjIKK6wHcM/H5hf6/Y1+yrlYvamYwBUrVYTS5VO5sotDjJaKuE0nNljLoe2LtyxQltBpRbmNemaz3LeJnr7pWnUb5kA3mUKd86rcfM2+77UH2COylr5IXzZznYN0LdMNZvcO7uZoy5c3GxzXICQ+jBsPvhVMvt9TepuJpJs8QF00jmYOdTsI1Xrdmj+UOGPmZMWD5uz24HZBP7AEnOE3LnDZkP03kXUR0pEctdkKFiczQ9HTu649vbpKbDnT5j98KVE1NYfISUWSgVD84fN0m87UlLKEbj5ABf/oKuET0RERPLhzJkzZGRkEBQUlG19UFAQ0dE5j3Y5ePAgM2fOJCMjg3nz5vHyyy/z7rvv8vrruTerTklJIS4uLtutRDt7wOyJA9BmZK6bZWYazNp0HIB+TSpC43vNB7b8mHsT6OKU1U+qXO3CJ4gslkujpdZPMptoXy4j3exhlJlulpHU6VO48+WFmxfc8RUM/NEsWzmzFyZ1hQUvm7P/FdT5SPjzf+ZyxxcgqI5t4r1cYFWz1Cywutlw+Zub4Z3qMOtB2DwVYo/n/5iGYSaGzkdCQDj0+qRoE0OdXzGTtpnpMLU/7Jprlgv2m2w2RBeR4uVbHmrdZi6vz2W0lDUR9RBMqAo/DoR/p5uJKJ8QMxE1bD6M2gW3vF00f//ywcWuZxeTk5NZwpcSa5bw+QRdex8RERGRAsrMzKRcuXJ89dVXODs706RJE44fP86ECRMYOzbnmcfGjx/PK69cR9Ovr/rYHH1TretVPyVec+gsx88n4ePhQtfaQWDpAV5lICHaLP2zdT+l/MpKSoUVsnQvS7VuZoLr1E7YMBHaPX3psdWfQNQWsx/qre8W7yiZmrdAaEuzl9HWH2HVR+abrt6fQaXm+TtWZqaZXEuNN0eGZY0GKgp+FWHYn2bfqn0LIfEUbPvJvIE521/lDuYtot21G8av+dzsI+XsZvaRslWD+dw4OZmz3MWfNGczA+j6WuF7b4lIwTV7EHb+CltnQOdx5t+BtGRzNOPOX8y/jSmXfXDkEwK1e0Ht3ubfPAebtVJJKUfhcTEppZFSIiIikg+BgYE4Oztz8uTJbOtPnjxJcHBwjvuEhITg6uqKs7OzdV2tWrWIjo4mNTUVN7cry5hGjx7NqFGjrPfj4uKoVKmSjZ5FMYuPNku34NLIoFzM2miOZrmtfnk8XJ0BZ6g/ENZ8Cpu/t39SKqsBeGH7SWVxcjJHjs15yEyAtHzMnI3uzD5Y+oa5Tbfx4JPz71aR8ioNfb4w31z9NhLO7oOJXaHVcLj5pbzPmrf+azj0N7h6mQkXJ+dr71MY3oEw4Htz9MKx9XBgKRxcBic2mc/h7D4zJosTVGhyKUlVsVn2XjnHNpp9tQC6vQHlGxVt3Flc3GHgVPh9pDnLX4tHiue8IpKz8LbmLJSnd13stZcEu+eZifYsWYmoOn2gYnOHS0RdTkkpR5HV7Dz5vF3DEBERkZLFzc2NJk2asHjxYnr37g2YI6EWL17MiBEjctynTZs2TJs2jczMTJwuXqju3buXkJCQHBNSAO7u7ri7XyfNZNd8ZvZNqtQSwnLvw5SYks6f26MA6NfkspkJG99rJqX2zoeEU1edta9IXYgxp0QH242UAqh7Byx5HWIjYfMP0PR+mPs4ZKRAlU7Q8C7bnasgavQwR03NH22Omlr9ifmz6PWZOXPc1ZzZDwsvjgbs8iqUqVL08WZxcTffTIa3hU4vm+WRh/8xE1QHl5nJqWPrzdvfE8ykWVjriwmq5jDrAbOPVO3el6aGLy6e/ubILBGxP4sFmt0P856BjZMvrfcpfzER1dvhE1GXU1LKUWQNvU3RSCkRERHJn1GjRjFkyBCaNm1K8+bN+eCDD0hMTGTYsGEADB48mAoVKjB+/HgAHn30UT755BOefPJJHn/8cfbt28cbb7zBE08UYRmTo0g6b/ZLgmuOkvpzezQXUjOICPSmcehl/XPK1YIKTeH4Btg6HdrY6ft2ZJX5NbC6bRNjzq7mbIR/PmuWyWWkQeRqcCsFPT9wjObWngEXR031NkfwnN0Pk7qZo6Y6vmj2ovqvjHSY8zCkJ0HljsWf2PkvT3+zN0xWf5jYY3Bw+aUkVeIps0R0/6JL+wREwO0fOcbPQETsp8FA2PCtOSNm7dvNv4UVm5WYRNTllJRyFFkz8Kl8T0RERPJpwIABnD59mjFjxhAdHU3Dhg2ZP3++tfl5ZGSkdUQUQKVKlfjrr7946qmnqF+/PhUqVODJJ5/k+eeft9dTKD4bJpolDuVqm/2krmLmxqMA9G1cAct/kwCN7jGTUpu/NxM49kgSZPWTCm9r+2M3ugeWv2U21P7rBXNd53HmrGuOpEZ3CF0Nf71olmSu/uRSr6nQltm3XfmB+TNz94NeDjhznF9FaHS3eTMMOLULDl4s9Tu80izvK44+UiLi+Nx94LFV9o7CJpSUchTW8r1Y+8YhIiIiJdKIESNyLddbtmzZFetatWrFmjVrijgqB5OWZPZJArNv0lU+UT4ac4E1B2OwWKBP44pXblC3r5msObMXjq67dtlYUTh8sfG0LUv3srh5QctHzDI+DAhtbZbxOSLPADMJVbs3/PYExByASd3Nflg3v2Q+l+htsOxNc/tb3ga/Clc9pN1ZLBBU27y1Gg7pqWbpnpu3vSMTEbGpkje263qVNVJK5XsiIiIiRWPzD5B42hztU7fvVTedsuowAK0ql6GCfw4NtD18zSQImKOlilvSeTPRAkUzUgrM8jbP0uDqDb0+cfyykOpd4bE10PAewDD7fn3RxiyJm/2wmdSpeRvUH2DvSPPPxU0JKRG5Ljn4f5YbSNYwXJXviYiIiNheRrrZHwmg9RPgnHvBwLFzF/hu9REAHmpfOfdjNrrH/LpjDqQk2CrSvIlcAxhQukrRzYTnGQCP/APD1xRvQ/DC8PSH3p/CXT+bTX9jDsJ3t5sN4b0C4bYPHK9sT0TkBqaklKNQ+Z6IiIhI0dkxx+yP5BUIDe++6qbvLdxLakYmrauU4abqZXPfMKy1mRRKTTCPX5yOXCzdCy+C0r3L+VVwvD5SeVG9Kzy2+lLiEMwm7aWu8vMUEZFip6SUo1D5noiIiEjRMAz4531zueUjOc/MdtHOE3HM2XwcgP/1qHllg/PLWSyXkh6bf7BVtHlj7SdVRKV71wNPf7Oh+X1/wd0zoVZPe0ckIiL/oaSUo1D5noiIiEjR2LfALN9y84FmD15107f/2o1hwG31Q6hf0f/ax24wyJwV7egaOL3XNvFeS3IcRG01l4t6pNT1ILQlVOti7yhERCQHSko5CveLSakUle+JiIiI2FTWKKmmw8zRM7lYdeAMy/acxsXJwjNda+Tt2L4hUK2ruVxcDc+PrgUjE/zDwC+HmQFFRERKCCWlHIWHekqJiIiI2NyR1RC5GpzdoOVjuW6WmWnw5p+7Abi7RSjhgfmY6azRvebXrdMhI60w0eZNVuleUc26JyIiUkyUlHIU1kbnKt8TERERsZmsUVINBpmjmnIxb3sU/x6LxdvNmcc7VcvfOap3A++ykHjKLBUsakdWml/DVLonIiIlm5JSjiKrp1RKnNmMU0REREQKJ3o77PvL7PnU5slcN0tNz2TCX3sAeKh9FQJLuefvPM6u0GCgubypiEv4UhPhxGZzWf2kRESkhFNSylFkle8Zmea0wiIiIiJSOCs/NL/W7gVlquS62fT1kRw5e4HAUu480C6iYOfKKuHbtwDiowt2jLw4uhYy08G3otlTSkREpARTUspRuHqBxdlcVgmfiIiISOGcOwzbZ5nLbZ/KdbOElHQ+XLQPgCc7V8Pb3aVg5ytbAyo2ByMDtv5YsGPkxeGLpXvhbcFiKbrziIiIFAMlpRyFxZK9hE9ERERECm7VJ2aCqEonCGmQ62Zf/32Qs4mpRAR6M7BZpcKds/HF0VKbfyi6dgxZ/aRUuiciItcBJaUciYeanYuIiIjYxOEV5tdmD+S6yan4ZL5ecRCAZ7vVwNW5kJfGdfqAqzec3Q+Rawp3rJykJcHxjeaympyLiMh1QEkpR2KdgS/WvnGIiIiIlHRZ11N+FXLd5OPF+7mQmkGDSv70qBtc+HO6+5iJKYDNRdDw/Nh6yEgFnxAoXdn2xxcRESlmSko5EpXviYiIiNhGVlIq6/rqPw6dSeTHdZEAjO5RE4ut+jNllfDtmGP70e9Z/aTC2qiflIiIXBeUlHIkWRdNGiklIiIiUnDpqZB2wVzOJSn1zl97SM80uLlmOVpWLmO7c1dqAWWqmeffMcd2xwU4/I/5Vf2kRETkOqGklCNR+Z6IiIhI4V0+6jzr+uoyW46e549tUVgs8Fz3GrY9t8UCje4xl21ZwpeWbJbvAYS1td1xRURE7EhJKUeS1ehc5XsiIiIiBZd03vzq7gtOztkeMgyD8fN2AdC3cUVqBl+ZtCq0BoPA4mwmkU7tts0xj2+EjBTwLgeB1WxzTBERETuza1Jq/PjxNGvWDB8fH8qVK0fv3r3Zs2fPNff7+eefqVmzJh4eHtSrV4958+Zle9wwDMaMGUNISAienp507tyZffv2FdXTsB1r+Z6SUiIiIiIFdpV+Usv2nGbtoRjcXJx4qkv1ojm/TxBU724u22q01JGsflKt1U9KRESuG3ZNSi1fvpzhw4ezZs0aFi5cSFpaGl27diUxMTHXfVatWsWgQYO4//772bx5M71796Z3795s377dus3bb7/NRx99xBdffMHatWvx9vamW7duJCcnF8fTKjh3jZQSERERKbTk8+bX/ySlMjIN3ppvjlwa1jqcCv6eRRdDVgnfxsmw67fCH8/aT0qleyIicv2wa1Jq/vz5DB06lDp16tCgQQMmT55MZGQkGzduzHWfDz/8kO7du/Pss89Sq1YtXnvtNRo3bswnn3wCmKOkPvjgA1566SV69epF/fr1+e677zhx4gS//PJLMT2zAvJQTykRERGRQstlpNSczcfZHR2Pr4cLj3aoUrQxVOtqzpKXmgAz7oE/noa0pIIdKz0Vjq4zl8PU5FxERK4fDtVTKjbWvIAoXbp0rtusXr2azp07Z1vXrVs3Vq9eDcChQ4eIjo7Oto2fnx8tWrSwbuOwVL4nIiIiUnjWpJT/pVVpGby3wGwTMbxjVfy93Io2BmcXuPcXaPOkeX/9N/B1Jzh97VYVVzixGdKTwLM0lK1p0zBFRETsyWGSUpmZmYwcOZI2bdpQt27dXLeLjo4mKCgo27qgoCCio6Otj2ety22b/0pJSSEuLi7bzS5UviciIiJSeDmMlPpu9WFOxCYT4ufBkNbhxROHixt0eRXumQXeZeHUDviqA2z6Dgwj78c5klW61wacHObyXUREpNAc5r/a8OHD2b59O9OnTy/2c48fPx4/Pz/rrVKlSsUeA6DyPRERERFb+E9SKvZCGp8uPQDAqC7V8XB1zm3PolG1MzyyEip3hLQLMPdxmHlf3q/5Dmc1OVc/KRERub44RFJqxIgR/P777yxdupSKFSteddvg4GBOnjyZbd3JkycJDg62Pp61Lrdt/mv06NHExsZab0ePHi3oUykcd5XviYiIiBTaf5JSny3fT2xSGjWCfLij8dWvNYuMTxDcMxs6jwMnF9gxG75oB8dy76UKQEY6HF1rLoern5SIiFxf7JqUMgyDESNGMGfOHJYsWUJERMQ192nVqhWLFy/Otm7hwoW0atUKgIiICIKDg7NtExcXx9q1a63b/Je7uzu+vr7ZbnaRNcQ8NR4yM+wTg4iIiEhJd1lS6sT5JL5deRiA53vUwNnJYr+4nJyg7VMwbD74h8L5IzCpK6z8EDIzc94naqvZLN3DH8rVKdZwRUREippdk1LDhw/nhx9+YNq0afj4+BAdHU10dDRJSZdmJhk8eDCjR4+23n/yySeZP38+7777Lrt372bcuHFs2LCBESNGAGCxWBg5ciSvv/46c+fOZdu2bQwePJjy5cvTu3fv4n6K+eNxWTIsJd5+cYiIiIiUZJclpd5fuJfU9EyaR5SmY41y9o0rS6Vm8PAKqN0bMtNh4RiY2g8STl25bVY/qbDW6iclIiLXHbv+Z/v888+JjY2lQ4cOhISEWG8zZsywbhMZGUlUVJT1fuvWrZk2bRpfffUVDRo0YObMmfzyyy/ZmqM/99xzPP744zz00EM0a9aMhIQE5s+fj4eHR7E+v3xzcQdnd3NZfaVERERECubiddTxZDdmbToGwOgeNbFY7DhK6r88/aH/ZOj5Ibh4woHF8HkbOLAk+3aHs5JSKt0TEZHrj4s9T27kYdaRZcuWXbGuf//+9O/fP9d9LBYLr776Kq+++mphwrMPDz9IPKUZ+EREREQKKvk8AFO3nCfT8KJH3WAahQbYN6acWCzQZChUagkzh8GpnfB9H2gzEm5+CSxOELnG3Fb9pERE5DqkMcCOxjoDn5JSIiIiIgVycaTUsshUnJ0sPNuthp0DuoZyNeHBJdD0PvP+yg/g2x6w+3fzg0p3Xwiub9cQRUREioKSUo7GPSsppfI9ERERkQK5eB0VhzcDm1WictlSdg4oD1w94bb34c7vzJHzx9bDT4PNx0JbgpOzfeMTEREpAkpKOZqskVIq3xMRERHJv7RkSE8GINbwZlDzUDsHlE+1e8Ej/0ClFpfWqZ+UiIhcp5SUcjQefuZXle+JiIiI5N/FD/YyDQsJeBBaxsvOARWAfygMnQcdRkNoK6h/p70jEhERKRJ2bXQuOcgq30tR+Z6IiIhIvl0s3YvHE38vd3w9XO0cUAE5u0CH/5k3ERGR65RGSjka60gpJaVERERE8i2rn5ThTWjpEjhKSkRE5AaipJSjUfmeiIiISMElnwcgDi8qKSklIiLi0JSUcjTuanQuIiIiUmAaKSUiIlJiKCnlaLJm31P5noiIiEj+ZSWl8FJSSkRExMEpKeVoskZKqXxPREREJP+SzgMQZygpJSIi4uiUlHI0WT2lVL4nIiIikm9GUtZIKW/1lBIREXFwSko5Gg+NlBIREREpqAvxMQAk4EWIn4edoxEREZGrUVLK0birp5SIiIhIQSVfTEpZvPxxcdalroiIiCPTf2pHk1W+l54EGWn2jUVERESkhElLPAeAW6nSdo5ERERErkVJKUeTNVIKVMInIiIikk9ZPaW8fMvYORIRERG5FiWlHI2zC7h6m8vJ5+0aioiIiEhJ45RqJqX8A5SUEhERcXRKSjmirGbnmoFPREREJF/c0hMAKF2mnJ0jERERkWtRUsoRZfWVUvmeiIiISL54ZZpJqbJllZQSERFxdEpKOSJ3jZQSERERya/ExATcMSeKCQkOtnM0IiIici1KSjmirPK95Fj7xiEiImIPO+fCrt/0f1Dy7UR0FAAZWPD18bdvMCIiInJNLvYOQHKg8j0REblRHVkNP91rLlucoVJzqNIJqnaCkIbgpM/TJHenTp2iGnDB4o2PfldEREQcnpJSjkjleyIicqM6tNz86uIB6ckQudq8LX0dvMpA5Y5mgqrKzeCj8izJ7uzZUwCkuPjgY+dYRERE5NqUlHJEKt8TEZEb1ZFV5tdub0DVznBgMexfDAeXw4WzsH2meQMIqgdVbzZHUoW2BBd3+8UtDiE25gwA6a6+do5ERERE8kJJKUeUNVJK5XsiInIjyUiDYxvM5dBWEBAGTe8zbxlpcGy9maDavwiitsDJbeZt5Yfg6g0R7S6V+pWuDBaLXZ+OFL/EuLPmgqe/XeMQERGRvFFSyhFl9ZRK0UgpERG5gUT/C2mJ4OEPZWtmf8zZFcJam7dOL0PiGTiw9NJIqsRTsHe+eQPwD4Pen0N4m2J/GmI/yfHnAHDx8rdvICIiIpInSko5IjU6FxGRG1HkGvNraMtrNzT3DoT6/c1bZiac3H4pQRW5Bs4fAd/yRR+zOIzMTIOMC+fBGTx8Sts7HBEREckDJaUckbt6SomIyA0oq59UaKv87efkBCH1zVvbpyAlAY6uhdIRto9RHNbJ+GS8jUQAvHyVlBIRESkJNFeuI7KW72mklIiI3CAM47KRUvlMSv2Xeymzr5TcUCLPXsAXMynlpJ5SIiIiJYKSUo7IQ43ORUTkBnP2AFw4Ay4eUL6hvaOREigy5gK+lgvmnawP+ERERMShKSnliC4v3zMM+8YiIiJSHCIvlu5VaAIu7vaNRUqkozGXRkopKSUiIlIyKCnliLJGSmWmQXqyfWMREREpDpc3Ob9BhIeH8+qrrxIZGWnvUK4L5kgpJaVERERKEiWlHJGbD2Axl1XCJyIiNwJrk/PW9o2jGI0cOZLZs2dTuXJlunTpwvTp00lJSbF3WCVWZMwFfFH5noiISEmipJQjcnK6VMKnZuciInK9i4+Gc4cAC1RqZu9ois3IkSPZsmUL69ato1atWjz++OOEhIQwYsQINm3aZO/wSpzImCT1lBIRESlhlJRyVB6X9ZUSERG5nkWuNr8G170hkwmNGzfmo48+4sSJE4wdO5ZvvvmGZs2a0bBhQyZNmoSh/pLXdCE1nTMJyZf1lPK3azwiIiKSNy72DkBy4eEHsUeVlBIRkeuftZ9UK/vGYSdpaWnMmTOHb7/9loULF9KyZUvuv/9+jh07xgsvvMCiRYuYNm2avcN0aEdjkvAgFTdLhrniBkxuioiIlERKSjkqle+JiMiNwtpP6sZKSm3atIlvv/2WH3/8EScnJwYPHsz7779PzZo1rdv06dOHZs1unJLGgsrWT8riDG7e9g1IRERE8kRJKUel8j0REbkRJMfBye3m8g2WlGrWrBldunTh888/p3fv3ri6ul6xTUREBAMHDrRDdCXLkbOJ2Wfes1jsG5CIiIjkiZJSjiprpJRm3xMRkevZsXVgZEJAOPiG2DuaYnXw4EHCwsKuuo23tzfffvttMUVUch3VzHsiIiIlkhqdO6qsCyqV74mIyPXsBu4nderUKdauXXvF+rVr17JhwwY7RFRyRcZcyD5SSkREREoEJaUclYdGSomIyA3gBk5KDR8+nKNHj16x/vjx4wwfPtwOEZVckRopJSIiUiIpKeWo3NVTSkRErnPpqXBsvbl8Ayaldu7cSePGja9Y36hRI3bu3Jnv43366aeEh4fj4eFBixYtWLduXa7bTp48GYvFku3m4eGR73M6gsxMg6PnkvDTSCkREZESR0kpR6XyPRERud5FbYX0ZPAqA4HV7B1NsXN3d+fkyZNXrI+KisLFJX9tP2fMmMGoUaMYO3YsmzZtokGDBnTr1o1Tp07luo+vry9RUVHW25EjR/L9HBzBqfgUUtMz8bdopJSIiEhJY9ek1N9//03Pnj0pX748FouFX3755arbDx069IpP9SwWC3Xq1LFuM27cuCsev3xq5RJD5XsiInK9i1xlfg1tdUPOlta1a1dGjx5NbOylUdHnz5/nhRdeoEuXLvk61nvvvceDDz7IsGHDqF27Nl988QVeXl5MmjQp130sFgvBwcHWW1BQUIGfiz1FxpjJqPIeqeYKJaVERERKDLsmpRITE2nQoAGffvppnrb/8MMPs32id/ToUUqXLk3//v2zbVenTp1s2/3zzz9FEX7Rcr94QaXyPRERuV5Z+0m1tG8cdvLOO+9w9OhRwsLC6NixIx07diQiIoLo6GjefffdPB8nNTWVjRs30rlzZ+s6JycnOnfuzOrVq3PdLyEhgbCwMCpVqkSvXr3YsWNHoZ6PvWQlpYLdU8wVnv72C0ZERETyJX9jw22sR48e9OjRI8/b+/n54ed36dOvX375hXPnzjFs2LBs27m4uBAcHGyzOO0ia6RUipJSIiJyHcrMhMiLCZPQ1vaNxU4qVKjAv//+y9SpU9m6dSuenp4MGzaMQYMG4erqmufjnDlzhoyMjCtGOgUFBbF79+4c96lRowaTJk2ifv36xMbG8s4779C6dWt27NhBxYoVc9wnJSWFlJQU6/24OMcYzZ2VlAp0STJXePjbLxgRERHJF7smpQpr4sSJdO7cmbCwsGzr9+3bR/ny5fHw8KBVq1aMHz+e0NDQXI/jkBdZWUPPVb4nIiLXozN7IekcuHpBSH17R2M33t7ePPTQQ8V+3latWtGq1aXm8q1bt6ZWrVp8+eWXvPbaaznuM378eF555ZXiCjHPjl5MSvk7ZSWlVL4nIiJSUpTYpNSJEyf4888/mTZtWrb1LVq0YPLkydSoUYOoqCheeeUV2rVrx/bt2/Hx8cnxWA55kZU1+15KHBjGDdlrQ0RErmNZ/aQqNgXnvI8Kuh7t3LmTyMhIUlNTs62//fbb87R/YGAgzs7OVzRNP3nyZJ5Hjru6utKoUSP279+f6zajR49m1KhR1vtxcXFUqlQpT8cvSlkjpXwMzb4nIiJS0pTYpNSUKVPw9/end+/e2dZfXg5Yv359WrRoQVhYGD/99BP3339/jsdyyIusrPI9IxNSE8A954SaiIhIiWTtJ9Xq6ttdxw4ePEifPn3Ytm0bFosFwzAAswE5QEZGRp6O4+bmRpMmTVi8eLH1uigzM5PFixczYsSIPB0jIyODbdu2ccstt+S6jbu7O+7u7nk6XnE6ctZMSnlmJpgrlJQSEREpMQrU6Pzo0aMcO3bMen/dunWMHDmSr776ymaBXY1hGEyaNIl7770XNze3q27r7+9P9erVr/rJn7u7O76+vtludufqBU4Xc4Yq4RMRkevNkax+UjduUurJJ58kIiKCU6dO4eXlxY4dO/j7779p2rQpy5Yty9exRo0axddff82UKVPYtWsXjz76KImJida+m4MHD2b06NHW7V999VUWLFjAwYMH2bRpE/fccw9HjhzhgQcesOVTLHIXUtM5k2C2YHBNizdXKiklIiJSYhQoKXXXXXexdOlSAKKjo+nSpQvr1q3jxRdf5NVXX7VpgDlZvnw5+/fvz3Xk0+USEhI4cOAAISEhRR6XTVks2Uv4RERErhexxyA2EizOULGZvaOxm9WrV/Pqq68SGBiIk5MTTk5OtG3blvHjx/PEE0/k61gDBgzgnXfeYcyYMTRs2JAtW7Ywf/58a/PzyMhIoqKirNufO3eOBx98kFq1anHLLbcQFxfHqlWrqF27tk2fY1E7GmP2kfLzcMEpa3IYJaVERERKjAKV723fvp3mzZsD8NNPP1G3bl1WrlzJggULeOSRRxgzZkyejpOQkJBtBNOhQ4fYsmULpUuXJjQ0lNGjR3P8+HG+++67bPtNnDiRFi1aULdu3SuO+cwzz9CzZ0/CwsI4ceIEY8eOxdnZmUGDBhXkqdqXhy8kxUCyZuATEZHrSFbpXkh9cC9l31jsKCMjw9rvMjAwkBMnTlCjRg3CwsLYs2dPvo83YsSIXMv1/jvy6v333+f999/P9zkcTVY/qeqlnSAm3VyppJSIiEiJUaCkVFpamrWnwKJFi6yNOGvWrJntU7hr2bBhAx07drTez+rrNGTIECZPnkxUVBSRkZHZ9omNjWXWrFl8+OGHOR7z2LFjDBo0iLNnz1K2bFnatm3LmjVrKFu2bL6eo0PQDHwiInI9ilTpHkDdunXZunUrERERtGjRgrfffhs3Nze++uorKleubO/wSgRrUso3E2IwWx+4etk3KBEREcmzAiWl6tSpwxdffMGtt97KwoULrVMHnzhxgjJlyuT5OB06dLA29czJ5MmTr1jn5+fHhQsXct1n+vTpeT6/w1P5noiI5MeJzbBxMtTqCVU72zua3FmbnLe0bxx29tJLL5GYaM4Y9+qrr3LbbbfRrl07ypQpw4wZM+wcXclw9GJSKsLnslFSmrFYRESkxChQUuqtt96iT58+TJgwgSFDhtCgQQMA5s6day3rExuwjpRS+Z6IiFzFqd2w9HXY9Zt5/9+f4dGVUDrCvnHlJOk8nNxhLt/gI6W6detmXa5atSq7d+8mJiaGgIAA6wx8cnVZI6XCvNLMFR7+9gtGRERE8q1ASakOHTpw5swZ4uLiCAgIsK5/6KGH8PLSkGmbyRoppaSUiIjk5NxhWPYm/DsDjEzAAj7BEB8FvzwGQ/8ApwLNaVJ0jq4DDChdBUqVs3c0dpOWloanpydbtmzJ1iOzdOnSdoyq5MlKSpX3SDVXqJ+UiIhIiVKgK9WkpCRSUlKsCakjR47wwQcfsGfPHsqVu3EvMG0u68JK5XsiInK5uCj4fRR83BS2/mgmpGreBo+thvvmg6s3RK6CtZ/bO9IrRa4yv4bd2KOkXF1dCQ0NJSMjw96hlFiZmYa1fC/ILdlcqaSUiIhIiVKgpFSvXr2sM+KdP3+eFi1a8O6779K7d28+/9wBL4BLKo+skVJKSomICJB4Fha8BB81hA0TITMNqtwMDy6BgVOhXC0ICIdu/2duv+gVOJ3/WdyKlLWf1I2dlAJ48cUXeeGFF4iJibF3KCXS6YQUUtIzcXayEOB8sd+oklIiIiIlSoHK9zZt2mSdRnjmzJkEBQWxefNmZs2axZgxY3j00UdtGuQNS+V7IiIC5ocTaz6DVZ9Aary5rlILuPlliGh35fZNhpr9pQ4shjmPwP0LwblA//JtKy0Zjm80l5WU4pNPPmH//v2UL1+esLAwvL29sz2+adMmO0VWMlhL9/w9cE65+LpQUkpERKREKdAV6oULF/Dx8QFgwYIF3HHHHTg5OdGyZUuOHDli0wBvaCrfExG5saUlwbqv4Z/3IeniaJrgenDzGKjWJfdZxiwW6PUJfNYSTmyCle9D+2eLL+7cnNgMGangXQ5KV7Z3NHbXu3dve4dQoh05ayalQkt7QfJ5c6WSUiIiIiVKgZJSVatW5ZdffqFPnz789ddfPPXUUwCcOnUKX19fmwZ4Q1P5nojIjSk9FTZ/B3+/YzYtByhTDW5+EWr1ylvzct/y0GMCzHkIlr0F1bpBSP2ijftaIlebX8Na5Z5Qu4GMHTvW3iGUaFkjpcyk1MVR5UpKiYiIlCgF6ik1ZswYnnnmGcLDw2nevDmtWplD8BcsWECjRo1sGuANLat8TyOlRERuDJkZsHU6fNIU/njaTEj5VYJen8Jja6BOn/zNplf/TrMBemYa/PIopKcUXex5kZWUUume2MBRa1LKWyOlRERESqgCjZTq168fbdu2JSoqigYNGljXd+rUiT59+tgsuBueh3pKiYjcUBaNg1Ufmcve5cySuyZDwMW9YMezWOC2D8xk0MntsPwt6DTGVtHmT2YmRK41l5WUAsDJyQnLVUaMaWa+q8s2UupI1kgpf/sFJCIiIvlW4K6nwcHBBAcHc+zYMQAqVqxI8+bNbRaYcOnCSuV7IkUn4TRMH2SOJmk70t7RyI0sNRE2TDKX2z9n/j66eV91lzwpVdZMTP10r9mbqsYtULFp4Y+bX6d2QkosuJWCoLrFf34HNGfOnGz309LS2Lx5M1OmTOGVV16xU1Qlh8r3RERESr4CJaUyMzN5/fXXeffdd0lISADAx8eHp59+mhdffBGn/JQWSO6yyvdS482SDidn+8Yjcj3aNAWOrYdzh6HNk+pzI/azcy6kJkBABHR8wba/i7Vvh3p3wrafYM7D8PAKcPOy3fHzIqt0r2Izx5gJ0AH06tXrinX9+vWjTp06zJgxg/vvv98OUZUMSakZnI43y1GzJaU8/e0XlIiIiORbgbJHL774Ip988glvvvkmmzdvZvPmzbzxxht8/PHHvPzyy7aO8cblcVnTePWVErE9w4Bt/9/efcdXVd9/HH/de5Pc7E1CAmHvjSBLURAU0FJR66oVHNWKoypaW1tH/VWLta3VqpU6oS7cuHGgiAMcaACRLRBWwszeuef3xzc3IZBAxt28n4/HfZxvzj33nE8uFzj55Pv5fF8245I99Q2lRfzh+2fNdshF3kmOnn4fxGXAvo3w8V88f/6jqWtyPsb31w4yo0aNYtGiRf4OI6BtO2BmScVHhpEQHa6ZUiIiIkGqVUmpefPm8cQTTzBz5kwGDRrEoEGDuPrqq3n88ceZO3euh0M8hoU5ISzSjFXCJ+J5uatgz9r6r3dm+y0UOcbt3wxbPwdsMORC71wjKgl+/pAZL/sPbP7MO9dpjGXBVneT81G+u24QKisr49///jcdOnTwdygBLWdfbeleSrT5fCkpJSIiEpRaNX9+//799OnT57D9ffr0Yf/+/W0OSg7ijIfqcs2UEvGGVS81/HrXCuhzun9iEVj7DkQlQ+djsAl29vNm220cJHT03nV6ngrHzTBlq29cDTO/BGec967nlp8DRTvBHgYd/NDPKkAlJSU1aHRuWRZFRUVER0fz7LPP+jGywNegn1RlMVgu84SSUiIiIkGlVUmpwYMH8/DDD/Pvf/+7wf6HH36YQYMGeSQwqRUZDyW7NVNKxNNcLlj1qhl3GQtbPoNd2X4N6Zi25m148SIIj4Gb1/kmURIoXDX1Samhv/L+9SbdAz99YhJFH9wGUx/0/jVzlpltxhDf97IKYP/6178aJKXsdjvt2rVj5MiRJCUl+TGywOdOSmUd3E/KEVE/w1xERESCQquSUvfddx9nnHEGH330EaNHm99oL126lG3btvHuu+96NMBjnrvZufuGS0Q8Y+sXZuaGMwFO+l1tUmqFv6M6NpXsg7dvMOOqEli3EAad69eQfGrzp1C43czw6PMz71/PGQdn/gfm/QyWz4U+U6HnRO9eM+dLsz0WZ8EdwSWXXOLvEIJWkyvvabEKERGRoNKqnlInn3wy69ev56yzziI/P5/8/HzOPvtsVq9ezTPPPOPpGI9t7mnoKt8T8Sx36V6/n0PH4YDNNDovyvNrWMekd282jeap/WFy9Wt+Dcfnvn/ObAf8AsJ9NMuj61gYOdOM37wWyg5493rumVKdlJQ62NNPP83LL7982P6XX36ZefPm+SGi4NFkUkpERESCSquSUgCZmZncc889vPrqq7z66qvcfffdHDhwgCeffNKT8Yl7BT6V74l4TnUF/PiGGQ86DyJiILWX+VqzpXxr9esmCWVzwLRHzb6NH0FZvl/D8pmyfFj7thkPvci3155wB6T0MMnY937vveuU7q9fUCBLTc4PNnv2bFJTUw/bn5aWxl//+lc/RBQcXC6LbQcnpdz/XigpJSIiEnRanZQSH1H5nojnbfjA/J2Ky4TOJ5p9mUPMVn2lfKd4N7w9y4zHzjKrzrXrCzWVsO4YKQX/4VWzmEVaP8g8zrfXjoiGaXPAZoeVL8KPb3rnOu5ZUqm9ISbFO9cIUjk5OXTt2vWw/Z07dyYnJ8cPEQWHPcUVVFS7cNhtZCZGaaaUiIhIEFNSKtDVle8pKSUhatvXsOkT315zVW25zMBzwF77z2DGYLPVTCnfsCx4+0Yo2w/pA+CkW8z+AWeb7Q+v+i82X/q+doW1IRf5pxdO1vFwwg1m/PaNULzH89fIWWq26id1mLS0NFauXHnY/hUrVpCSogReU9yle5mJkYQ77EpKiYiIBDElpQKd+wZL5XsSikr3w7yp8MxZkLfaN9csLzCNtAEGHtRMO2OI2Sop5RurXjZla/YwU7YXFmH2969NSv202Hw+QtnuNbDzO/MeDDrff3GM+wOk9YfSvfDOjSZh6EnupJT6SR3mwgsv5Le//S2ffPIJNTU11NTU8PHHH3P99ddzwQUX+Du8gJWz76DSPVBSSkREJIi1aPW9s88++4jP5+fntyUWaYy7fE+NziUUrXzRlC4BfPkQnDXH+9dc8xbUVJhSovaD6ve3H2i2BdvManAqM/Kewl3w7u/M+OTfQ8ZBfw6pPcyfS+5KWPMmDLvELyH6hHuWVM9JENvOf3GEOc3fvcfHm78fq142vdY8obIUdmabcSf1kzrUX/7yF7Zs2cKECRMICzO3ZC6Xi+nTp6un1BE0aHIOByWlEv0TkIiIiLRai2ZKJSQkHPHRuXNnpk+f7q1Yj02R6iklIcqy4Lv/1X+96mUo2O79666sXXVv0LkNy6Ui403TZ1BfKW+yLHjreijPN7PTTrzx8GPqSvhCeBW+miqTlAUY+iv/xgImMXjyH8z43ZuhcKdnzrtjObiqTP+2xM6eOWcIiYiI4MUXX2TdunU899xzvPbaa2zatImnnnqKiIgIf4cXsNxNzrM0U0pERCTotWim1NNPP+2tOKQpKt+TULVjOez+EcIiIb2/+XrZozDpHu9ds3AXbF5ixgeX7rllDIZ9G01SqscE78VxLMt+Hja8D44IMzvHEX74Mf3Pgo/+DFs+M83QY9N8HqbXbfgASvZATDvoeaq/ozFOvNE0mN/5HbxxDVw438yiagt3k/NOo/zTMytI9OzZk549e/o7jKBx+EypfLNVUkpERCToqKdUoFP5noSq7+aZbb8zYdytZrx8Xv3S3t6w+jXAgqyRkNTl8OfV7Ny7CrbDwtrZOOP/CGl9Gz8uqQt0GAaWC358w2fh+dT3z5ntoPMbT8z5gyOsNlHohE0fw1OT4cDWtp0z50uz7Tym7fGFoHPOOYe//e1vh+2/7777OPfcRhLnAhypfE9JKRERkWCjpFSgU/mehKKK4vrSrOOmQ4+JkNYPKotguRdnZLpL9xqbJQX1zc7dPXDEcywL3rzOJNg7DIfR1x35+P4hXMJXvMfMFoPAKN07WLvecOHzEJVkZkz9dyyse69156qpNqtrgvpJNWHJkiWcfvrph+2fMmUKS5Ys8UNEga+ssobdRRWAekqJiIiEAiWlAp3K9yQUrX4dKoshuRt0PsGU9YypTVIsmwPVFZ6/5t4NpizP5jDlYY1xN9zO3wplBzwfw7Fs+Vwz+yYssnY2zlGqx/tPM9ucpZ7rbxQoVr4IrmrIPK7p2WL+1GMi/OYzkzwsL4AXLoAP7zB9sFoi7wfz99yZYJLOcpji4uJGe0eFh4dTWKj/9xuz7YCZJRUXGUZCVO0sQ82UEhERCVpKSgU6d/ledVnLfyAQCVTuBufHTa/vMzPgF6YZcnFu/YwmT3Kfs8cEiElt/JiopPqyPpXwec6BrfDBbWZ8yu2Q2ozeOQkdIWsUYMHqBd6Mzrcsq37VvUCbJXWwxCy49D0YdbX5+osHYd7UliUI3f2kskaA3eH5GEPAwIEDefHFFw/bP3/+fPr1UyKvMTn76kv3bO7/P5SUEhERCVpKSgU6d1IKNFtKQsPutbD9azNjafAv6/eHRcComWb85UPgcnnumpYFq9yle0dZ6l59pTzL5TJNsyuLodPo+j/j5hhwjtmu9lEJX2UJLP4b7F7jvWvs/A72rDEzxtzfX6AKi4DJs+G8/5n/i3KWwpyxZsZbc+QsNdvOo70XY5C7/fbb+ctf/sKMGTOYN28e8+bNY/r06dx9993cfvvt/g4vIB3WT8rlUlJKREQkiCkpFegcYRAeY8bu1WVEgtn3z5htr8kQl97wuWGXmB9+966r77njCTuWw4EtEB4NfQ7v39KA+kp51jdPmFX0wqPhzEdaNmOm35lgs8P2b9recLs5Fs+GxX+FZ86G0v3euYa7wXmfn0FUoneu4Wn9zoQrF0P7gVC617w/n8wGV03Tr7Gs+qRUJyWlmjJ16lQWLFjAxo0bufrqq7npppvYsWMHH3/8MT169PB3eAHpsKRUZRFgmbGSUiIiIkFHSalg4L7J0gp8EuyqK2DFC2Z83PTDn4+Mh+GXmvEX//bcdd2le33OgIiYIx+rmVKes28TfHSnGU+8C1K6t+z1cemm5xiYPmTeVLwHvnnSjIt2whvXmsSKJ1WVww+vmPHQizx7bm9L6Q6Xf2gSx1jw6b3w7NnmfWvMgc1QnAeOCNM7S5p0xhln8MUXX1BSUsJPP/3Eeeedx80338zgwYP9HVpA2uZOSqUc0uTc4YTwSD9FJSIiIq2lpFQwqFuBT0kpCXLr3oXSfRCXYZopN2bkTLCHm6Xkt33T9mvWVNeXfx2tdA/qZ0rt36S/c23hqjFle1Wl0GUsHP/r1p1nQO0qfN4u4Vv6sIk1uZtJpKx7x8zy8qS1b5sfoBOyoOvJnj23L4RHwdQH4azHzMy3nxbDnBNh65eHH7u1dpZU5nFKFDTDkiVLmDFjBpmZmfzzn//klFNOYdmyZf4OKyAdNlPKnZQKlpmHIiIi0oCSUsHA3VfKfeMlEqzcDc6HXNT06mvxGTDofDP+8sG2X/OnxVCyB6JToPv4ox8fk2KSBgC5K9t+/WPVV3NM+VZEbG3ZXiv/u+l7puk/tmuFmXnlDSX74OvHzXjSX82sLoD3/wR5qz13HXeD88EXBnfj78HnwxWfQGpvszDB3J/B5w807ANXV7o3yi8hBoPc3Fzuvfdeevbsybnnnkt8fDwVFRUsWLCAe++9l+OPP97fIQYcy7KaTkqpdE9ERCQoKSkVDFS+J6EgPwc2fWLGR1t1bMx1Zrvm7bYnItwNzvufDY7w5r1GJXxts3cDLPo/Mz7tbkjq3PpzxaRAt9pZRd6aLbXsEagqgfaDTK+zUTOh52lQUwGvXAaVpW2/Rv42kyAFGPLLIx4aFNL6wBUfm9mHVo0p05x/YX0vrrom52P8F2MAmzp1Kr1792blypU88MAD7Ny5k4ceesjfYQW8PUUVVFS7sNsgMzHK7FRSSkREJKgpKRUMVL4noeD75wALup4EyV2PfGxaH5McwDIr8bVWZalJbAEMakbpnpuanbeeqwZevwqqy6H7KbU9iNqof20J3w9e6CtVuh++esyMT/492GzmceZ/IDYd9qyF9//Y9uusmA9Y0PnEo3/+g4UzFs5+DH72gOnns34h/PdkWP8+7NsI2CBrhL+jDEjvvfcel19+OXfddRdnnHEGDkcQz5zzIfcsqczEKMIdtbewSkqJiIgENSWlgoG7fE8zpSRYuWrqS5eOm9G814z5rdlmP990M+WjWfeumQGT2Bk6tqAURjOlWu/Lf8OOb82/Wz9/yCR42qrvz0yfsd2rYffatp/vYMseNat3pQ+A3getzBjbDs76L2CD5U/Dj2+0/houF2TXfv6PNksw2NhsZnGCX38ISV2hIAeer00Ap/WDqCT/xhegPv/8c4qKihg2bBgjR47k4YcfZu/evf4OK+AdVroHSkqJiIgEOSWlgkGkekpJkNv0CRRuh8hE6POz5r2m8xjoMMyUUH39WOuuu+plsx14bsuSI5lDzHbveqgobt21j0V5P8InfzXjybMhoaNnzhuVBD0mmLEnS/jK8k3vK4CTbzm871X38XDiDWb85nWmBK81cr6EA1sgIg76/byVwQa4jMHwm0+h79T6feon1aRRo0bx+OOPs2vXLn7zm98wf/58MjMzcblcfPjhhxQVFfk7xICkpJSIiEjoUVIqGLhvtFS+J8Hq+9oG54MvaP5KXDYbnHC9GX/zOFSWtOyaJftg40dm3JLSPYDYNLNCIBbk/dCy1x6raqpgwUyoqYSek0wze0+qK+F7DSzLM+f8ao6ZgZrWD/pMbfyY8X8yydHyAnj112Y1x5b6/jmz7T8NImJaHW7Ai0yA856ByX+DzKEwrJmzIo9hMTExXHbZZXz++eesWrWKm266iXvvvZe0tDR+/vMQTWC2Qc4+k5TKUlJKREQkZCgpFQzqyvc0U0qCUPEeWPuuGQ+9uGWv7fMzSO4GZQfqy/+a68fXwVVtmle3692y14L6SrXU98/CrmwzG27qg54p2ztY7ymmb9G+DZ5JFJYXwLL/mPFJv2t6dUBHOJzzpJnltG0ZLLmvZdepKIIfF5hxqJXuNcZmg1FXwZWL68tgpVl69+7Nfffdx/bt23nhhRf8HU5AanSmVFm+2SopJSIiEpSUlAoGdTOllJSSILRyPriqIPM4aD+gZa+1O2D0tWa89OGWzVJZ9YrZtnSWlJv6SrXMutrE4wm/hfgMz58/Mh56nmrGP3ighO+rx8y/qam9od+ZRz42uStMfcCMl/wdtnze/OusXgBVpZDSA7JGtjZaOYY4HA6mTZvGm2++6e9QAo7K90REREKPklLBQOV7EqwsC76rLd07bnrrzjHklxCdCvk59TNOjiY/p3ZJehsMOKd113X3ldqV3brXH0uqK+oTNT1P8951BtSW8K1uYwlfRZFJckLtLKlmrHw28BemJNFywWtXmlX7msM9w2/IRZ6fPSZyDCmrrGF3UQWgpJSIiEgo8WtSasmSJUydOpXMzExsNhsLFiw44vGLFy/GZrMd9sjNzW1w3COPPEKXLl2IjIxk5MiRfP311178LnwgFFff++YJeO035odZCV3bvjbNwsOjW58cCo+CEVea8Zf/bl4ywt3gvMuJEJ/Zuuu6Z0rtWQuVpa07x7Fi21dmNlBMmlnFzlt6TTafpQNbYOf3rT/P149Deb6ZveROdDXHlPsguTsU7jCNz4/2Wdy70ZT82eww+MLWxysibD9g/h2OiwwjMTq8/om6pFSi74MSERGRNvNrUqqkpITBgwfzyCOPtOh169atY9euXXWPtLS0uudefPFFZs2axZ133sl3333H4MGDmTRpErt37/Z0+L5Tt/peiCSl9qyDd39nyro2fOjvaMSb3LOk+p9V/zlujRFXmGTErhWw+dMjH2tZsLI2KdXa0j0wjc5j0szMmLzVrT/PsWDTx2bb/RTvzgaKiDGJKYAfXm3dOSqK4cuHzLi5s6TcnLHwi6fAHg5r34Zvnzzy8dm1Dc67T/BOSaPIMeTg0j3bwf/OKCklIiIS1PyalJoyZQp33303Z511Votel5aWRvv27ese9oMa1N5///1cccUVXHrppfTr1485c+YQHR3NU0895enwfcc9U6q8wHOrTvnTR3eZH/QBtgf5LDZpWnmhKbOC1pfuuUUn1zeJ/uLfRz42bzXsWQOOCOjbhtWrbLaD+kplt/48x4KDk1LeVlfCtwBcrpa//tsnoWy/aaA/4Bctf33mEDj1LjNe+MemE5auGlhR26x6qIdXIhQ5BjXaTwpUviciIhLkgrKn1JAhQ8jIyODUU0/liy++qNtfWVnJ8uXLmThxYt0+u93OxIkTWbp0aZPnq6iooLCwsMHDW7YfKOXxJT/x0rfbmv8i942Wqwqqy70TmK9s/RLWvVP/dc5X/otFvOuHV01JV2ovzzR4Hn2NKYPatAhyVzV93KqXzLbXJIhKbNs11ez86Ir31L8/3cZ5/3o9TjUr4RVuh+3ftOy1lSX1Sc2xN4MjrHUxjLra9M6qqYBXLm+8vHPTx1C0C6KSoPfprbuOiNRpNCnlctW3NlBSSkREJCgFVVIqIyODOXPm8Oqrr/Lqq6+SlZXFuHHj+O677wDYu3cvNTU1pKenN3hdenr6YX2nDjZ79mwSEhLqHllZWV77Hr7dcoB73l3D3C+2NP9FEbFA7VT1YC7hsyz48A4z7nqy2e78Xn2lQtX3z5jtcdM9U9KV1AX6TTNjd/nVoVwuWFVb1jWwDaV7bmp2fnQ/LTbb9IEQl37EQz0iPBL61CZ5VrdwFb5vn4bSveaz1JbSTpsNzvwPxKabWXkf/OnwY9wNzgeeB2HO1l9LRADYVpuUyjo4KVVRCNTOIG9LibiIiIj4TVAlpXr37s1vfvMbhg0bxpgxY3jqqacYM2YM//rXv9p03ltvvZWCgoK6x7ZtLZjF1EJje6Zis8GPuwrZXdjMWU92e8MSvmC15k0zsyE8Gs76r1lRraZCs1BCUe4PsGO56b0z6ALPnfeE35rtqlcgv5G/pzlfmhk0zgTPrALnnim1e42Sp01xl+718EHpnlv/g0v4apr3mqoy+OJBMx57EzjCj3z80cS2M/+OYYNvn4If36x/rnQ/rHvXjFW6J+IRjc6Uct8ThUUp+SsiIhKkgiop1ZgRI0awceNGAFJTU3E4HOTl5TU4Ji8vj/bt2zd5DqfTSXx8fIOHt6TEOhnUwUwx/3T9nua/0D0tPVhX4KupMr2kAEZfa5r+uku6tqmEL+S4Z0n1nmJ+ePeUzKHQ9SSwamDZo4c/v7K2dK/fVDOjpq0SsiAqGVzVanbeGMvybT8pt+6nmH8Ti3Mhp+nS7AaWz4WS3ZDQyXOJ0u7j4YTrzfjNa+sTpategZpKM3vMndgUkVazLOvISSmV7omIiAStoE9KZWdnk5FhVjWKiIhg2LBhLFq0qO55l8vFokWLGD16tL9CPMzJvcwP6YtblJQK8plSy+fC/k1mdpR7tkvWCLNVUiq0VJXDivlmfNwMz59/TG0S4Lt5UHagfn91Bfz4hhl7onQPDml2rhl9h9m9xiSGwqIga5TvrhsWAX2nmnFzVuGrKofPHzDjsbPM6z3llNugwzDzb/NrV0BNdX1S1t2cX0TaZE9RBeVVLuw2yEyMqn+iPN9slZQSEREJWn5NShUXF5OdnU12djYAmzdvJjs7m5ycHMCU1U2fXr9q1wMPPMAbb7zBxo0b+eGHH7jhhhv4+OOPueaaa+qOmTVrFo8//jjz5s1jzZo1zJw5k5KSEi699FKffm9HcnLvNAA+37CX6ppmrh7lLt8LxplSFUWw+F4zHvcHcMaZcafaH2JzvgqNVQXFWPu2+UEhvqOZSeJpPSZAWn+oLDZlU24bPzLXjcuALid67nrqK9W0TbW/AOhygmdmprWEu4TvxzdNIuhIvvufSZ7Fd4QhHi6nc4TDOU+Y5us5S+G1X0PuSlO6OvBcz15L5BjlniWVkRBFRNhBt66aKSUiIhL0/JqU+vbbbxk6dChDhw4FTEJp6NCh3HGHaYa9a9euugQVmNX1brrpJgYOHMjJJ5/MihUr+Oijj5gwYULdMeeffz7/+Mc/uOOOOxgyZAjZ2dksXLjwsObn/jQkK5GEqHAKyqpYsT2/eS8K5plSXz5kmgsnd4dhl9TvzxhifnAr2Q0HtvgpOPG47/5ntkN/BXaH589vs9XPtvvqv2YWDNSX7g04x7PX1UyppvmjdM+t68kQnWL+bdmypOnjqivg89q+g2Nv9OwsKbfkbvCz2musft1se0+BmBTPX0vkGNRo6R4oKSUiIhIC/JqUGjduHJZlHfaYO3cuAHPnzmXx4sV1x99yyy1s3LiRsrIy9u3bxyeffML48YfPxLj22mvZunUrFRUVfPXVV4wc6YHl6D3IYbcxtmcqAJ+ua2YJn/uGK9hW3yvKrV8pbeKdDZsLh0fWz0JRCV9o2L8ZNn8K2Lzb4HnAORDfAYrzYOWL5u/F+oXmOU/PTskYYrZ5q6G60rPnDmZVZbD1SzPuPuHIx3qDIwz6/tyMfzjCKnzfPwtFOyEuE4Ze7L14Bp0Lg39Z/7VK90Q85qhJqahE3wYkIiIiHhP0PaWCVYv7SgVr+d7ie6GqFDoeX/8D5MHU7Dy0fP+s2XYfD4mdvHcdRziMutqMv3zI9JKqLofUXp5vLJ3UxSSFayphz1rPnjuY5Sw173lcJrTr7Z8YBtSW8K15q/GEYXVl/SypE2/w/upcp//d/JvW+UT/JOpEQlRdUipFM6VERERCjZJSfuJOSq3cXsDe4mYsNR+M5Xt71tWXcp36f6bs6lB1SamvfReXeEdNNWQ/b8bHTT/ysZ4wbAY4E2DfBvjoz2bfwPMa/5y1RYNm59mePXcwO7h0z9PveXN1PgFi000vsZ8+Ofz5Fc9DwTaIbe+dpvuHcsbC5R/Ape+YmVwi4hHbVL4nIiISspSU8pO0+Ej6ZZhE02cbmjFbKhjL9z66C6wa6H06dB7T+DHupFTe6uBKuMnhNi0yZVLRKebP3NuccXD8ZWZcutdsB/7CO9dSX6nDbXQnpbzQzL657A7od6YZH1rCV1MFn/3TjE+43veN2EXEY9RTSkREJHQpKeVH43qb2VLN6isVbOV7W5fCunfAZoeJf276uLh0Ux6FBdu/9VFw4hXuWXGDL/R+mZTbyKvAUdu4uuMISO7qneu4+0opKWUU5cLu1YANuvkxKQWmvxjA2nfqm94DrJgP+TkQk9ZwgQURCSrlVTXkFZoZ5UpKiYiIhB4lpfzIXcK3ZMNeXC7ryAfXle8FQVLKsuDD28146MVH7zejvlKtV5YfGJ+JojxY954Ze7OZ9KHi2tcnHIZf6r3ruJNSuT+YMsVj3abaUrnMIf5fYa7jCNP0vrIINn5k9tVUwWf/MOMTfgsR0U2/XkQC2vYDZpZUnDOMxOjwhk8qKSUiIhL0lJTyo+M6JxHnDGN/SSWrdhyldK2ufC8IStzWvAXbv4HwaBh369GP90dSqqYaFlwNH9xmfoANRsV74OHh8MgIKNnr31hWvGBKNTuOgLQ+vr32pNkw80szQ8tbkrtBRBxUl8He9d67TrA4uJ+Uv9nt0P8sM15dW8K36mU4sAWiU2H4ZX4LTUTazl26l5Ucje3Q/nVKSomIiAQ9JaX8KNxh54QeqQAsPloJn7P2hqsiwJNSNVX1TadHXwPxGUd/jTsptf1bcNV4LbQGtn4O2c+ZldueOzcwZhu11KK7oGQPFO2Cd2/2XxyWVV+654sG54dyhEF6f+8227bbIWOQGXur2XnpfvNeBjqXK7CSUgD9a1fhW/ee+bu8pHaW1JjrICLGf3GJSJtt3ddEPykws4VBSSkREZEgpqSUn9X1lVq/+8gHBkv53nfzYP8mM0NhzG+b95q0vqZnVmWxaXjuC+vfrx//9Ak8fToU7vTNtT1h5/fw/bNmbHPA6tdh9QL/xLL1S/NnHhFbP2MlFHmz2flXj8F9XeEfveCVy2H5PDPTJxDlrTKN5SNizcy4QNDhOEjsDFWlsGCm+TxGJcPxv/Z3ZCLSRnVNzlMaSUrVzZRK9F1AIiIi4lFKSvnZybVJqext+eSXVjZ94MGNzgN1NkVFESy+14zH/aE+kXY0dgd0HG7Gvirhcyelxt4EMe3MD9pPTPRdUqwtLAvevQWwYOB5cOKNZv87N0HJPt/H454lNeAccMb6/vq+4u4rtTPbs+etKIbFs824ZDf88Aq89Vt4cDA8MBDeuBZWvmz6dgUC9yypLmMhLMK/sbjZbPUJ0bVvm+2Ya0P78yhyjNh2UPleAzXVppccaKaUiIhIEFNSys8yEqLonR6Hy4LPNhyhL5D7hstymRlFgejLh005WXK3lq925cu+Uvs2mZkU9nA44Qb49UeQ0hMKd8BTk+GnT70fQ1usfAm2fw3hMXDqXXDyLdCur5m98t4tvo2lLB9+fMOM/VG650vumVK5qzxbZvrNE1C23/y9mfE2nPx7yBoF9jCzetz3z8Brv4Z/9oJHRpmE5Np36stWfC3QSvfcBpxdP45MhOOv8FsoIuI5dTOlDk1KHbwasZJSIiIiQUtJqQDgni11xL5S4VHmh1QIzBK+ojzTnwlgwp3gCD/y8YfyZVLKPUuq82gzmyupC1z+AXQabW5ynz0HVrzo/Thao6IYPrrTjE+6CeIzIcwJ0x4Bm93Mslnzlm9isSxYeKtp/p3WDzoM8811/SW1p2neX1UC+zZ65pyVJfV/b8beDF3Hwvg/wuXvw++3wEWvwOhrof0gwAZ71sDX/4X5vzTlfo+NNz3cNn0MlaWeielo8eYsM+NAS0q1HwQpPcx49LXNn6kpIgHLsqymk1Lu0r3wmJbfc4iIiEjAUFIqAIzr5e4rtQeXq4nSPJutYQlfoPn0XvPDeofh0O/Mlr++43CTVMnPgcJdno/vYBtqk1K9Jtfvi06GixeYEiBXFbx+JSz5e+CVSn72T9PYPKkLjLqmfn+HYXDC9Wb89izTNNvblv0HVjxv/twm/dW7jcYDgd0B7Qeasaf6Sn37tJnhltgZBp3X8DlnHPQ8FSbdA1d9Brf8BOf9D4ZfbpIvlgt2fgef/wueOQv+1hk+me2ZuJqy5QuoqYSETpDS3bvXaimbDc56zKz4OeY6f0cjIh6wp7iC8ioXdht0SIxq+KRW3hMREQkJSkoFgGFdkoiOcLC3uIIfdx0h4eS+8SoPsBX49qw3jZkBTv2/1iUnnHFmBTXw7mypiiLzgzVAz0kNnwuPhHOeqv+B9uO74a3rTd+KQLD/J1j6sBlP+quJ92An/wFSe5u+RO/93ruxbPwIPritPpbu4717vUDhLuHzRF+pqjL44kEzPunmo/+mPzrZJHx/dj9ctxxu/BGmzYHBv4T4DiZZ9Om9sHtN22NrSl3p3vjATEJ2HGb62R36d0NEgpK7n1RGQhQRYYfcsiopJSIiEhKUlAoAzjAHY7qnAma2VJMCdQW+RXeBVQO9pkCXE1p/nroSvq89E1djNn1iZkIld4PUHoc/b7fDaXfDlL8DNrOa4PwLTdmcv71/m0k8dBsPvU8//PnwSJj2HzNzadVLsPZd78SxdyO8fJmZqTP0VzDyKu9cJxC5m517YqbU8nkmgZjQCQZd0PLXJ3SAIRfCWY/Cjauh78/N/s//1fbYmuJOSvWY4L1riIjUarJ0D5SUEhERCRFKSgUId1+pT4/UVyoQy/dylpnVrmx2mPjntp0ra5TZblvW5rCa5C7dO3SW1KFGXgnnPwthkbDhA5h7un9XP9v0Max7B2wOmHxv07NUOg6vn+n19g2eL+MrL4AXLoCKApNEPOP+wJwx4y11zc5XgsvV+vNUlcMXD5jx2BvbvoqdzWZWkgRY9Qrs39y28zWmYDvsXWf+rnc9yfPnFxE5RM6+MkBJKRERkVCmpFSAcPeVWp5zgMLyqsYPqivfy/dNUEdjWfDB7WY89FeQ1qdt58saYba7VpjSJk9zuWDDh2bc67SjH9/3Z2Y1tOgUE9MTE2HPOs/HdTQ1VfDeH8x4xJVHf5/H/RFSe0FxHrz/R8/F4aqBVy6HfRtMudh5z5gm68eSdn1MorKiEA60IfHz/TOmN1h8BxhykWdiyxwCPSaaWYvuskBP2vSJ2XYYBlFJnj+/iLTZI488QpcuXYiMjGTkyJF8/XXzZh7Pnz8fm83GtGnTvBtgC9XNlEpRUkpERCRUKSkVILKSo+nWLoYal8UXG/Y2flBdUipAZkqtfRu2fw1hUSYR0laJnSC2PbiqYcd3bT/foXJXmERNRCx0bmaZYdbxcPmHptyvIAeePK2+J5WvfPOEmaESnWL65RxNeCSc+QhggxUvwLqFnonjoz/Dxg/Nn/cFz0NcumfOG0wcYfW9z3Zlt+4c1RX1JXYn3ujZxJ57tlT2c55fMGDTIrMNtFX3RASAF198kVmzZnHnnXfy3XffMXjwYCZNmsTu3buP+LotW7Zw8803M3bsWB9F2nzunlJZmiklIiISspSUCiDjeqUBR+grFUjlezVVJkkBMOZaiM9o+zltNujk7ivlhWbn6z8w227jWpYISOluElMdjzez1J6ZBj+86vn4GlOyt35FtVNuh6jE5r0uawSMrl2d7+0boOxA2+JY8SJ8+W8znvaImZVzrHL3lWpts/Ps56Fwh0nADr3YU1EZncdAp9Gm95i7Kb4nuGrgp8VmrKSUSEC6//77ueKKK7j00kvp168fc+bMITo6mqeeeqrJ19TU1HDRRRdx11130a1bNx9G2zxb95cATZXv5ZutklIiIiJBTUmpAOLuK7V43R4syzr8gEBqdP7d/2DfRjN7Z8xvPXdebzY7X187Y6jXUfpJNSYmFaa/CX1+Zn7gf+Uy+OLfpoTRmz7+i+nf1H4QHDe9Za895TZI6WHKxN7/U+tj2L4c3qztUzX2JhhwTuvPFQrcfaVa0+y8pgo+u9+MT7zBO6vEuWdLffu053qK7co2iU1nPHQY7plziojHVFZWsnz5ciZOnFi3z263M3HiRJYuXdrk6/7v//6PtLQ0Lr/88mZdp6KigsLCwgYPbymvqiGvsAJQTykREZFQpqRUABnZNZnIcDu5heWsz2tktbe68r0C3wZ2qIpiWHyvGZ/8h/pkmSfUNTv/yrMJn+LdsLO2JLBnM/pJNSYiGs77H4z4jfn6w9vh3d9BTbVnYjzUzmyzQhvAlL+B3dGy14dH1ZfxZT9X30+rJQp3wfxfQk2FWV1x/G0tP0eocc8S27Wi5Z/RFS+YMtCYNBh2iacjM3pMhPYDoaoEvvqvZ87pXnWv60mmhFFEAsrevXupqakhPb1hWXV6ejq5ubmNvubzzz/nySef5PHHH2/2dWbPnk1CQkLdIysrq01xH8n2A6Z0L9YZRlJ0+OEHuO+FmjuDWERERAKSklIBJDLcwahuKQAsXtdID4hAKd/7/F9mKfukrp7/wbr9QNNIumy/mYnlKe6ETMZgiGvf+vPYHSZBdNo95utvHofnz217edyhLAve+z1gwYBfmLKs1ug0CkZdbcZv/rZlCc2qcnjxIijOhXZ94ezHwK5/MmjXFxwRpnQkf2vzX1dTBUv+YcYnXG+Sht5w8Ep8X82BiqK2n9Pd5FyleyIhoaioiIsvvpjHH3+c1NTUZr/u1ltvpaCgoO6xbds2r8Vos9n42aAMJvRNw9bYKq+aKSUiIhIS9BNmgHGvwtdoX6lAKN87sBW+fMiMT7u77UvZHyosAjKPM+OcZZ4774b3zbZnK0r3DmWzmT5a584zTb83fQyPn+LZlfl+eBW2LYPwaDj1/9p2rlNuM43ai3Y2v4zPsuCt62HHcrPS2oXPe3ZGXDALi4C0fmbckr5Sq142SazoVBh+qVdCq9P356Z0szzflPG1RXlhfY83JaVEAlJqaioOh4O8vLwG+/Py8mjf/vBfxGzatIktW7YwdepUwsLCCAsL43//+x9vvvkmYWFhbNq0qdHrOJ1O4uPjGzy8pXu7WB7+5XE8eMHQxg9QUkpERCQkKCkVYE7ubZqdf7NlP8UVh5SFuWdK+bN876M7TSlXl7HQ5wzvXMPTzc6rK+tnevSa7JlzAvSfBpd/AAlZsP8neHyCZ1a6qyyBD2434xNnQUKHtp0vIrq+jO/7Z2DjR0d/zZcPwcr5YHPAuXNNUkvqtbSvVE11/SypMddBRIx34nKzO8zKfmAanleVt/5cWz43K2ImdYXkrp6JT0Q8KiIigmHDhrFo0aK6fS6Xi0WLFjF69OjDju/Tpw+rVq0iOzu77vHzn/+c8ePHk52d7dWyPI9RUkpERCQkKCkVYLqmxtA5JZqqGoulm/Y1fNJ94+Wv8r2tS2H162Czw+TZZsaQN3i62XnOUvOexbSDzCZ+49paGYPgysXQ+QSoLIIXLjDJh7b0w/r8X2ZWU2InMyPLEzqPgZG1vbCOVsa34UOTfASYfK9ZrVAaqktKZTfv+NWvwf5NEJUMx//aa2E1MPA8iO8IxXmmp1hruftJ9ZjgmbhExCtmzZrF448/zrx581izZg0zZ86kpKSESy81MzOnT5/OrbfeCkBkZCQDBgxo8EhMTCQuLo4BAwYQEeHhWdDeoKSUiIhISFBSKgCd3Mu9Ct8hfaXqGp37ISnlcsHCP5jxcdNN7ydv6TjCbPeu88zqYRs+MNsep3qnJ1JMKly8AIZfBlhmxbxXLoPK0paf68AWs6ofmL5Vnuw7NOEOSOoChTvqZ2Idas96E7vlMn/OI67w3PVDSUuanbtqYMnfzXj0NeCM9WpodcIi4ITalTG/eKD1DfndSSmV7okEtPPPP59//OMf3HHHHQwZMoTs7GwWLlxY1/w8JyeHXbt2+TlKD6mphsraBWEiE/0aioiIiLSNklIBaFzv+r5S1sE/8LrL9yqLzA+6vrTiBTMrJCLO+yuwxaRASk8z3v5N28+3vrafVK9WrrrXHGER8LN/wRn3gz3MzIx5ahLkt7AJ7Ae3mfLIridB36mejTEipraMD/huXn1Jo1tZPsy/0Mwq6zQaTv+n92bDBbu0/ubPuXQfFGw/8rE/LoC9601SecSVPgmvznHTzQzB/BzTp6ylDmwxM7xsDlOyKyIB7dprr2Xr1q1UVFTw1VdfMXLkyLrnFi9ezNy5c5t87dy5c1mwYIH3g/SEg2eMO9XvUEREJJgpKRWARnVLIcJhZ/uBMjbtKal/4uBG074s4asohkV3mfHJv4PYdt6/pruEr63Nzvf/BPs2mASCL2Z6HH85TH8TolMgdyU8Ng62ftm81/70Kax5yyQAJv/NOwmhLifWJ0bevK5+ZTZXjZkhtW+jKfk67xnPN7EPJeGRZhU+OHJfKZcLPq2dJTXqGt83iw+Pql998fP7TTwt4Z4llTVCje5FJHCU55ttRCw4wvwaioiIiLSNklIBKDoijJHdkoFDVuELc0JYpBn7soTv83+ZvjRJXWHkVb65ZicP9ZVaX1u612m07/pOdDnB9JlKHwile2Hez4++AlpNNbz3ezM+/nJI7+e9+CbcCYmdoWAbfHiH2ffhHbBpkVlN8MIXfJN4DHbNaXa+9i3YswacCfU9vXzt+MvN9feshXXvtuy1Kt0TkUBUlm+26iclIiIS9JSUClBN9pVyT1P31Uyp/ByzEhvAaXebxJgvuGdK7VgONVWtP8/62tXwek1qe0wtkdgJLn8f+p8Frip4+wZ456amv5dvnzTJi6hkGHerd2NzxsLPa/9Mv33KxLX0YfP1WY+a5u1ydHV9pbIbf97lgk/vM+NRV0FUog+CakRkQn1vsM/+2fwm/DXV8NMSM+6uJuciEkDU5FxERCRkKCkVoNx9pb7avJ+yyoP6R7lLaI60eponfXiH6XHUZSz0OcM31wTTUyoqCarLTBlca1QUw9YvzLinj5NSYHo4/eJpOOV2wAbfPAH/mwYlexseV7IPPrnHjE/5E0Qnez+2bifD8MvN+JsnzPakW0wSTZrnaDOl1r0LeT+YPmy+mmHYlFEzzSy4nd/BT58c/Xgwx1YUmCbC7gSciEggqEtKJfo1DBEREWk7JaUCVPd2sXRIjKKy2sWyn/bVP+HLFfi2LoXVr4PNDpNn+7bptd1evwpfa0v4floMNZVmxbnUnp6KrGVsNjjpZlMSFxEHWz+Hx8ZD7qr6Yz6529xgpw+AYZf6LrZT74KETmbc52fen6EVatIHmL8bxXlQeMiKVpYFn/7NjEde6ZtE45HEpMKwS8z4s/ub9xp36V63cWB3eCMqEZHW0UwpERGRkKGkVICy2WycfNAqfHV8Vb7ncsHCP5jxcdOh/UDvXq8xndrY7HxD7ap7PSf5fxW53lPg1x+ZvlwFOfDkafDjGyY5tXyuOWbK33z7w78zDi56GU79Pzj7MZMIlOaLiIbU3mZ86Gyp9e+bGX7hMabBeSAYcy3Yw2HLZ5Dz1dGP37jIbNVPSkQCjZJSIiIiIUM/hQawRvtK+ap8b+V80ysnIg7G3+bdazXF3Vdq21fN74PjZln1Tc593U+qKWl94IqPodt4qCqFl6bDc+eB5TJlc11O9E9MJ1xvSg2l5epK+LLr9x08S2rEryEmxedhNSqhIwy+wIw/P8psqbJ82PGtGSspJSKBRkkpERGRkKGkVAA7oUcqYXYbW/aVsmVvidnpi/K9imL46C4zPvl3/luJLfM4sIdB0S4o2N6y1+5aAcW5ZqaKP5I9TYlOhoteqZ89U7TT9Po59S/+jUtap67Z+UEzpTYuMv2YwqJg9HV+CatJJ95oSg7XL2xYQnqozUtMsjS1FyRm+S4+EZHmUFJKREQkZCgpFcBinWEM75IEHFTCV1e+58WZUp//yyR0krr6t0FzRDS0r10Jblszyo0OtqF2llS3cb5bMbC5HGEw+a8w7VHT72rybP3gH6zcM6V2ZputZcGn95rx8Zf7L6HblJTu0G+aGX/+r6aPc/eT0iwpEQlESkqJiIiEDCWlAty43mnAQUkpb8+Uys+BLx8y49Pu9n9C5+ASvpZYX9tPqtdpno3Hk4b8Eq5fAcN92NxcPKv9QMBmZrwV7zbN9bd/A2GRMCbAZkm5jZ1ltqtfh32bDn/esmCT+kmJSABTUkpERCRkKCkV4Nx9pb7ctJfyqpr6mVLe6in14Z1QUwFdxkKfM7xzjZZoTbPzkr2wY7kZ9wzgpJQEP2ccpPQw410r6ntJDbsE4tr7Lawjaj/QNP+3XPDFA4c/v/8nk5y2h0PnE3wenojIUSkpJSIiEjKUlApwfdrHkR7vpLzKxTdb9tffgHlj9b2tS2H1a6bnzOTZ/l+xDqDjCLPN+8H0umqODR8ClvnhOz7Ta6GJAPV9pZY+DDlLweGEE27wZ0RHN/Yms81+AQp2NHzOXbrXaRQ4Y30bl4hIc5Tnm62SUiIiIkFPSakAZ7PZDlqFb89Bq+95OCnlcsHCP5jxcdNry5ICQEIHSMgyszrcq4EdzQZ36d5k78Ul4ubuK/XTYrM9bjrEZ/gtnGbpNBI6nwiuKpNMO5j6SYlIoNNMKRERkZChpFQQaNBXylvleyvnm2XtI+Jg/G2ePXdb1fWV+vrox9ZUmdXPwJQoiXhbxpD6sT0cTrzBX5G0jLu31PK5puQVzN+fzUvMWEkpEQlUSkqJiIiEDCWlgsAJPVJx2G1s3F1MXlVt43FPlu9VFMNHd5nxyb8LvBXDWtLsPGeZeW+iU6DDcd6NSwQgY1D9eOivIKGj/2Jpie6nQOZQqCqFr+aYfdu+hspi8/en/aAjv15ExB+qK82/WwBRiX4NRURERNrOr0mpJUuWMHXqVDIzM7HZbCxYsOCIx7/22muceuqptGvXjvj4eEaPHs3777/f4Jg///nP2Gy2Bo8+ffp48bvwvoSocI7rlAjA0h1VZqcny/c+/xcU50JSVxh5lefO6ynuZufbvjFlhkfiLt3rcSrYHd6NSwTMb+q7ngRRyfWzj4KBzVbfW+qrx8y/Ke7SvW7jwa7fWYhIADr4l3Lu2eMiIiIStPz6U0dJSQmDBw/mkUceadbxS5Ys4dRTT+Xdd99l+fLljB8/nqlTp/L99983OK5///7s2rWr7vH55597I3yfcveV+mRLhdlRXWZ+W9hW+Tnw5UNmfNrdEOZs+zk9La0/hMdARQHsWXvkY9d/YLa9tOqe+NCvXocbVkFiJ39H0jK9z4DU3ubv1rdP1ielekzwb1wiIk1xl+454/XLJxERkRAQ5s+LT5kyhSlTpjT7+AceeKDB13/961954403eOuttxg6dGjd/rCwMNq3D9Dl2FtpXO80/vHBej7ZXFafSizcAcld23biD++EmgroMhb6nNHmOL3CEQYdh5leN9uWQXq/xo/bvxn2rgObA7rrh2rxIUcYOIJwpTq73czuev038MW/oeyA2d9tvH/jEhFpilbeExERCSlBXZ/hcrkoKioiOTm5wf4NGzaQmZlJt27duOiii8jJyfFThJ7TLyOe1NgICiuhOjzO7Pz3UPjvSfDBbbDhQ9MbqiW2LoXVr4HNDpNnm3KeQJU1ymyP1Ox8Q+0sqU6j1WdCpLkGnGNmeJXtByxI6xf4qweKyLFLTc5FRERCSlAnpf7xj39QXFzMeeedV7dv5MiRzJ07l4ULF/Loo4+yefNmxo4dS1FRUZPnqaiooLCwsMEj0NjtNk6qLeH7sOM1puQGC3atMOV3z/0C/tYZnpwEH98Dmz+DqvKmT+hywcI/mPFx06H9QO9/E23RnGbn62v7Sal0T6T5HOFwwvX1X2vVPREJZEpKiYiIhJSgTUo9//zz3HXXXbz00kukpaXV7Z8yZQrnnnsugwYNYtKkSbz77rvk5+fz0ksvNXmu2bNnk5CQUPfIysryxbfQYu6+Ug8eOAGu/RpuWgdnPwFDLzYzHVzVprxtyX0w72cmSTXv5/DZP2H7t1BTXX+ylfNhVzZExMH42/zzDbVEx+GADfb/BMW7D3++sgS21PYO6znJp6GJBL0hv4LYdDPueap/YxERORIlpUREREKKX3tKtdb8+fP59a9/zcsvv8zEiROPeGxiYiK9evVi48aNTR5z6623MmtW/apZhYWFAZmYOqlnO+w2WJtbRG5BOe0T2sOgc80D4MAW03fJ/SjOg82fmgeYBFSXE0z/KHdz85N/B7Ht/PL9tEhUIqT1hd0/mhK+vj9r+PxPn5reWImdoF1vv4QoErTCI+HiBZC3Grqe7O9oRESaVpZvtkpKiYiIhISgS0q98MILXHbZZcyfP58zzjh6Y+7i4mI2bdrExRdf3OQxTqcTpzMAV507RFJMBIOzEvk+J59P1+/m/OMPWekrqYt5HDcdLAv2rq9NUH1qyvnK82H9QvMASOoKI6/y8XfRBlkjapNSyw5PSm2oLd3rOSmwe2OJBKr0fk0vIiAiEig0U0pERCSk+DUpVVxc3GAG0+bNm8nOziY5OZlOnTpx6623smPHDv73v/8BpmRvxowZPPjgg4wcOZLc3FwAoqKiSEgwNyc333wzU6dOpXPnzuzcuZM777wTh8PBhRde6Ptv0AtO7tWuNim15/Ck1MFsNjNjqF1vGHEFuGogd1X9LKp9G2HqgxAW+Mm4OlmjYPncw5udWxasr21y3muyz8MSERERH1FSSkREJKT4tafUt99+y9ChQxk6dCgAs2bNYujQodxxxx0A7Nq1q8HKeY899hjV1dVcc801ZGRk1D2uv76+Se/27du58MIL6d27N+eddx4pKSksW7aMdu2CoEStGcb1Nv2zPtuwl6oaV/NfaHdA5hA44bfwq1fg+mzoFmRlOlkjzHbn91BdUb8/dxUU7YTwaOhyon9iExEREe+rS0ol+jUMERER8Qy/zpQaN24clmU1+fzcuXMbfL148eKjnnP+/PltjCqwDeyQQGqsk73FFcz9YgtXnNTN3yH5TnI3iGkHJXtgZzZ0ql2Rz1261/Vk0xtHREREQpNmSomIiISUoF1971jlsNu4ZZJp5P3PD9eRs6/UzxH5kM0GWbWJqG1f1e+vK907zfcxiYiIiO8oKSUiIhJSlJQKQucO78jobimUV7n404JVR5xtFnIOTUqV7IPt35hxTyWlREREQpqSUiIiIiFFSakgZLPZ+OvZA4kIs/PZhr28/v0Of4fkOwcnpSwLNn4IWJA+EBI6+jU0ERER8TIlpUREREKKklJBqmtqDDdM7AnAX97+kX3FFUd5RYjIGAyOCNNX6sBmWF/bT0qleyIiIqFPSSkREZGQoqRUELtibDf6ZsRzoLSKv7z9o7/D8Y3wSMg0qzWy5QvYtMiMe07yX0wiIiLifdUVUF1mxkpKiYiIhAQlpYJYuMPOvWcPxG6DBdk7+XT9Hn+H5BtZI8x26SPmN6ZRydBxuH9jEhEREe8qL6wd2MAZ79dQRERExDOUlApyg7MSuWRMVwD++NoqSiqq/RyRD2SNMts9a8y2x0SwO/wXj4iIiHhfeb7ZOuPBrltYERGRUKD/0UPATaf1okNiFDvyy7j/w/X+Dsf73DOl3HqpdE9ERCTkqZ+UiIhIyFFSKgTEOMO456wBADz9xWZWbMv3b0DeFpsGSWZ2GDYH9Jjg33hERETE+9wzpaKUlBIREQkVSkqFiHG90zhzSCYuC/7w2iqqalz+Dsm7OtWW8GWNhKgk/8YiIiIi3lc3UyrRr2GIiIiI5ygpFULu+Fk/kqLDWbOrkMc/+8nf4XjXsEsgviOMuc7fkYiIiIgvqHxPREQk5CgpFUJSYp3cdkY/AB78aANb9pb4OSIv6jQKZq2GPqf7OxIRERHxBSWlREREQo6SUiHm7OM6MLZnKhXVLm59bRWWZfk7JBEREZG2U1JKREQk5CgpFWJsNhv3TBtIZLidpT/t4+Vvt/s7JBEREZG2U1JKREQk5CgpFYI6pUQz69ReANzz7hr2FFX4OSIRERGRNlJSSkREJOQoKRWiLjuhKwM6xFNQVsVdb632dzgiIiIibaOklIiISMhRUipEhTns3Hv2IBx2G2+v3MWiNXn+DklERESk9cryzVZJKRERkZChpFQIG9AhgV+f2BWA2xb8QHFFtZ8jEhEREWklzZQSEREJOUpKhbgbJvaiU3I0uwrK+cf76/wdjoiIiEjr1CWlEv0ahoiIiHiOklIhLirCwT1nDQBg3tItLN96wM8RiYiIiLSCZkqJiIiEHCWljgFje7bjnOM6Yllw62srqax2+TskERERkearKoea2tWElZQSEREJGUpKHSNuO6MvKTERrM8r5r+fbvJ3OCIiIiLN554lZbNDRKx/YxERERGPUVLqGJEUE8EdU/sB8NDHG9m4u9jPEYmIiIg0kzsp5YwHu25fRUREQoX+Vz+G/HxwJif3akdljYs/vrYKl8vyd0giIiIiR6d+UiIiIiFJSaljiM1m456zBhAd4eDrLfv554frsCwlpkRERCTAKSklIiISkpSUOsZ0TIrmj6f3BeCRTzbxx9dXUV2jxuciIiISwMrzzVZJKRERkZCipNQx6FejOnP3tAHYbfDC19u46tnllFXW+DssERERkcYpKSUiIhKSlJQ6Rv1qVGce/dUwnGF2Plqzm4ueWMaBkkp/hyUiIiJyuLryvUS/hiEiIiKepaTUMWxS//Y8++uRxEeG8V1OPr+Y8yXbD5T6OywRERGRhtxJqahEv4YhIiIinqWk1DHu+C7JvDJzDBkJkWzaU8LZ//mSNbsK/R2WiIiISD01OhcREQlJSkoJvdLjeO3qMfROj2N3UQXnzVnK0k37/B2WiIiIiKGklIiISEhSUkoAyEiI4qXfjGZEl2SKKqqZ8dTXvLNyl7/DEhEREVFSSkREJEQpKSV1EqLD+d/lI5gyoD2VNS6ufeE75n6x2d9hiYiIyLFOSSkREZGQpKSUNBAZ7uDhXx7H9NGdsSz481s/8reFa7Esy9+hiYiIyLFKSSkREZGQpKSUHMZht3HXz/vzu0m9AXh08SZuenkFVTUuP0cmIiIixyQlpUREREKSklLSKJvNxjXje3DfLwbhsNt47bsdXD7vW0oqqv0dmoiIiBxLLEtJKRERkRClpJQc0XnDs3hi+nCiwh0sWb+HCx9fxt7iCn+HJSIiIseKqjKoqTRjJaVERERCipJSclTj+6Tx/BUjSYoOZ+X2An7x6Jds3Vfil1gsy2Lj7iKeWbaV2xf8wIa8Ir/EISIiIj7iniVlc0BErH9jEREREY8K83cAEhyGdkri1ZljmP7U12zZV8o5j37J/505gEEdE+iQGIXNZvPKdS3LYsPuYpb9tI+vftrPV5v3sbe4su75937I5bWZY+iUEu2V64uIiIifHVy656X7DREREfEPJaWk2bq1i+W1q8dwyVPf8OOuQq5+7jsAYp1h9EyPpXd6HL3S4+jd3mxTYyNanKxyuSzW7y5i2aZ9fLV5P19t3s/+ksoGxzjD7BzXKYndReVs2lPCxU99xStXjaFdnNNj36uIiIgECPWTEhERCVlKSkmLpMVF8uJvRnHfwnV8s2U/m/YUU1xRzfc5+Xyfk9/g2OSYCHqlx9KnfXxtsiqWnulxxEeG1x3jclmszS0yM6E2m0RUfmlVg/NEhtsZ3jmZkV2TGdU9hUEdE3CGOdhdWM45c75k675SLnn6a+ZfOYq4g84tIiIiIUBJKRERkZClpJS0WFxkOH+ZNgCAqhoXW/aWsC6viPW5RazLK2JdbhFb95eyv6SSZT/tZ9lP+xu8PjMhkl7t4wiz2/hmywEKyhomoaLCHQzvksSobimM6pbMwA6JRIQd3v4sLT6S/102knPnfMnqnYVc+b/lPH3p8USGO7z3zYuIiIhvKSklIiISsvyalFqyZAl///vfWb58Obt27eL1119n2rRpR3zN4sWLmTVrFqtXryYrK4vbbruNSy65pMExjzzyCH//+9/Jzc1l8ODBPPTQQ4wYMcJ738gxLNxhp2d6HD3T42BQ/f6yyho27i42yaraRNX6vCJ2FZSzs/bhFhPhYHiXZEZ2S2ZUtxQGdkgg3NG8HvxdU2OYe+kILnhsGUt/2scN87N55KLjcNjVc0JERCQklOebrZJSIiIiIcevSamSkhIGDx7MZZddxtlnn33U4zdv3swZZ5zBVVddxXPPPceiRYv49a9/TUZGBpMmTQLgxRdfZNasWcyZM4eRI0fywAMPMGnSJNatW0daWpq3vyWpFRXhYGDHBAZ2bHgDWVBWxYY8M6OqrLKG4V2SGZAZT1gzk1CNGdAhgccuHsYlT3/DwtW53P7GD9wzbYDXmq+LiIgEopb8Uu61117jr3/9Kxs3bqSqqoqePXty0003cfHFF/s46mbQTCkREZGQZbMsy/J3EAA2m+2oM6V+//vf88477/DDDz/U7bvgggvIz89n4cKFAIwcOZLjjz+ehx9+GACXy0VWVhbXXXcdf/jDH5oVS2FhIQkJCRQUFBAfH9/6b0p86t1Vu7jm+e+wLPjthJ7MOrWXv0MSEZEQFIj3CS+++CLTp09v8Eu5l19+uclfyi1evJgDBw7Qp08fIiIiePvtt7npppt455136n7RdzQ+ex8+uB2+/DeMvhYm3eO964iIiIjHNPc+ofXTU/xg6dKlTJw4scG+SZMmsXTpUgAqKytZvnx5g2PsdjsTJ06sO6YxFRUVFBYWNnhI8Dl9YAZ/OdP0uvr3og3M+3KLfwMSERHxkfvvv58rrriCSy+9lH79+jFnzhyio6N56qmnGj1+3LhxnHXWWfTt25fu3btz/fXXM2jQID7//HMfR94MdTOlEv0ahoiIiHheUCWlcnNzSU9Pb7AvPT2dwsJCysrK2Lt3LzU1NY0ek5ub2+R5Z8+eTUJCQt0jKyvLK/GL9/1qVGdunGhmSP35rdW8tWKnnyMSERHxrtb+Us7NsiwWLVrEunXrOOmkk5o8zm+/xFNPKRERkZAVVEkpb7n11lspKCioe2zbts3fIUkb/HZCD6aP7oxlwayXsvlswx5/hyQiIuI1rf2lXEFBAbGxsURERHDGGWfw0EMPceqppzZ5vN9+iaeeUiIiIiErqJJS7du3Jy8vr8G+vLw84uPjiYqKIjU1FYfD0egx7du3b/K8TqeT+Pj4Bg8JXjabjTun9ueMgRlU1Vj85pnlrNye7++wREREAkpcXBzZ2dl888033HPPPcyaNYvFixc3ebzffomnpJSIiEjICqqk1OjRo1m0aFGDfR9++CGjR48GICIigmHDhjU4xuVysWjRorpj5NjgsNu4//zBnNAjhdLKGi55+ht+2lPs77BEREQ8rrW/lLPb7fTo0YMhQ4Zw00038Ytf/ILZs2c3ebzffonnTkpFJfrmeiIiIuIzfk1KFRcXk52dTXZ2NgCbN28mOzubnJwcwPxGbvr06XXHX3XVVfz000/ccsstrF27lv/85z+89NJL3HjjjXXHzJo1i8cff5x58+axZs0aZs6cSUlJCZdeeqlPvzfxP2eYg/9ePJyBHRLYX1LJxU9+TV5hub/DEhER8ShP/VLO5XJRUVHhjRDbRjOlREREQlaYPy/+7bffMn78+LqvZ82aBcCMGTOYO3cuu3btqktQAXTt2pV33nmHG2+8kQcffJCOHTvyxBNPNFi6+Pzzz2fPnj3ccccd5ObmMmTIEBYuXHhYnwU5NsQ6w3j60uM5d85SNu8tYfqTX/PSb0aTEB3u79BEREQ8ZtasWcyYMYPhw4czYsQIHnjggQa/lJs+fTodOnSomwk1e/Zshg8fTvfu3amoqODdd9/lmWee4dFHH/Xnt3E4y1JSSkREJIT5NSk1btw4LMtq8vm5c+c2+prvv//+iOe99tprufbaa9sanoSI1Fgn/7tsBOc8+iXr8oq4fN43PHP5SKIiHP4OTURExCOO9ku5nJwc7Pb6CfIlJSVcffXVbN++naioKPr06cOzzz7L+eef769voXFVpeCqNmMlpUREREKOzTpSVugYVVhYSEJCAgUFBWp6HkLW5hZy3pylFJZXM6FPGnMuHka4I6jaqomISADQfYLhk/ehcCfc3xfsYXD7XrDZvHMdERER8ajm3ifoJ3I5ZvRpH8+TlxyPM8zOorW7ufW1VUecqSciIiJ+dnDpnhJSIiIiIcev5XsivnZ8l2Qe/uVxXPXscl5Zvp2d+WV0TIoi1hlOrNNBbGQYMc4wYmsfB49jI83WGWbHphtjERER71M/KRERkZCmpJQcc07tl87sswdyyysr+XLTvha/3mG31SWqUmIjGNAhgSFZiQzJSqRHu1jsdiWsREREPEJJKRERkZCmpJQck84bnkX3drGs2p5PSWUNxRXVFJdXU1JRTVGF2Ra7H7X7SyprAKhxWRSUVVFQVsWO/DJWbi/g+a/MKpGxzjAGdUxgcG2SakhWIunxkf78VkVERIJXWb7ZKiklIiISkpSUkmPWsM5JDOuc1OzjXS6LkspqSipqKK6ooriihp35ZazYls/32/JZtb2A4opqvty0r8EMrIyESAZ3TGRIJ5OkGtghgRin/uqJiIgclWZKiYiIhDT9ZCzSTHa7jbjIcOIiwwEz+2lIViKnD8wAoLrGxYbdxWRvy2fFtnyyt+WzPq+IXQXl7CrIZeHqXHMeG/RKj2Nwx0QGZyXSPsFJQlQ4CVHhxEeFEx8ZTmS4w1/fpoiISOCoS0ol+jUMERER8Q4lpUQ8JMxhp29GPH0z4rlwRCcASiqqWbWjoEGialdBOWtzi1ibW8SL325r9FzOMHtdkqouYRUZ1jB5VTtOjAonJTaCpOgIEqMjcKinlYiIhIryfLPVTCkREZGQpKSUiBfFOMMY1S2FUd1S6vblFZaTXZugWr2zkP0lFRSWVVNQVkVheRWWBRXVLnYXVbC7qKJF17PZIDEqnOSYiMMeSdERdcmrlBgnSTHhpMQ4iYpwUOOyqKiuobzKdfi2qoby6sa3FdUuqmssxvZK5bhOzS+FFBERaRaV74mIiIQ0JaVEfCw9PpJJ/dszqX/7w55zuSyKK6spKDWN1AtrE1Xuxuru5FXBQfvzS6vYV1xBYXk1lgUHSqs4UFrFpj0lzYrHYbdR47La9D3966P1nNYvnVsm96ZHWlybziUiIlJHSSkREZGQpqSUSACx223ER5q+UlktfG1VjYsDpZUcKKlif0mleZRWsr+4kgOllewrqeRASf12f0kllTWuwxJSYXYbkeEOnGF2sw234wxzEBlur9930La4opqFP+TywY95fLQmj/OGZ3HDxF60T9CqgyIi0kbqKSUiIhLSlJQSCRHhDjtpcZGkxTUvGWRZFiWVNRSVV+EMMwkmZ5idMIe9xdfekFfEfe+v48Mf85j/zTZe/34Hl57QlZkndychOrzF5xMREQE0U0pERCTEtfynTxEJCTabjVhnGBkJUSTHRBDjDGtVQgqgZ3ocj08fzqszR3N8lyQqql3M+XQTJ/39Ex5bsonyqhoPRy8iIscEJaVERERCmpJSIuIxwzon89JvRvPE9OH0So+loKyKv767lvH/WMxL325rc+8qERE5xigpJSIiEtKUlBIRj7LZbEzsl85715/E338xiMyESHYVlHPLKyuZ8uASPvoxD8tSckpERI7CspSUEhERCXHqKSUiXuGw2zh3eBZTB2fyzNKtPPzJRtbnFfPr/33L8V2S+MOUPgzrnNzq81dWu9hbXMHuogqKyqtoHx9Jh6QooiP0z5qISEioLAartvxbSSkREZGQpJ/eRMSrIsMdXHFSN847Pos5n27i6S82882WA5zz6FJO7ZfOLZN60zM9ru744opqdheWs6fIJJzMw3y9p6iC3YXm6wOlVY1eLyUmgg5JUXRMiqJjUnTt1ow7JEYR49Q/eyIiQcE9S8oRAeFR/o1FREREvEI/nYmITyREhfP7yX2YMboLDy5az4vfbOPDH/NYtCaPQR0TyS+tZHdRBaWVzW+KHma30S7OSawzjNzCcorKq9lXUsm+kkpWbi9o9DVJ0eGNJqvaxTlJio4gMSacOGcYNpvNU9+6iIi0xsGle/o3WUREJCQpKSUiPtU+IZLZZw/i8hO78Y/317FwdS7Z2/IbHBMT4aBdnJO0uEjaxTtJi3PWfZ0W5yQt3km7WJNEstvrf1ApKKtix4Eyth8oZfuBstqHGe/IL6OgrIoDpVUcKC1g1Y7Gk1Zgkl2J0eEkRUeYRFXtODHGvS+cxNrnkqLDSYqJIDEqvNWrF4qISCPUT0pERCTkKSklIn7RIy2WORcPY/XOAjbvLaFdrJO0eJN0am2JXUJUOAlR4fTLjG/0+cJyd9LqoGTVgTK255eyr7iSA6WVlFe5qHZZ7C2uZG9xZYuuHxcZ1iBRdXBCy3wd3mBfckwEkeGOVn2vIiIhT0kpERGRkKeklIj4Vf/MBPpn+uYHjvjIcOIzwumb0XjSCqC8qoYDpZUcKKkiv7SSA6VV7C+tJL/EjM2+g8dVFJSZ/lZF5dUUlVeTs7/5MUWG20mKjiAhKhxnuAOnw054mI1wh50Ih53wMLONOGR/RJidcId5RITZiXDYiAizExnuwBlmxxnmwBleuw2zExl++D5nmF1liiISuJSUEhERCXlKSomIHCQy3EFGQhQZCc1vqlvjsuoSVO6tSWwdksgqqWqQ0Kp2WZRXudhVUM6ugnIvfldNcyennOEOUmOdnNyrHaf2S2NIVhIOuxJWIuJHSkqJiIiEPCWlRETayGG3kRLrJCXW2ezXWJZFcUV1XaKqoKyKymoXlTUuqmpcVFa7qKqxqKyuMdu6fe6HRcVBX1dWm0d5dQ0VVS4qql1UVNdQXmW2FdUuKqrM85ZVH4c5zgXl1ewpqmDNrkLmfLqJlJgIxvdJY2LfdMb2TNWqhSLie0pKiYiIhDz9lCEi4gc2m424yHDiIsPplBLts+tallWb0DKJqvKq+oTVxj3FLFqTxydrd7OvpJJXlm/nleXbiQizM6Z7ChP7pjOhb1qLZpGJiLSaklIiIiIhT0kpEZFjiM1mIyLM9J+KO+S5fpnx/HxwJlU1Lr7Zsp+PftzNR2vyyNlfyuJ1e1i8bg+3LYABHeKZ2DediX3T6Z8Z3+q+VNU1LvaXVrKnqMI0li+qIMxhIzMxivbxkbRPiCRcKxqKHLvK8s1WSSkREZGQpaSUiIg0EO6wM6Z7KmO6p3L7z/qycXcxH60xCarvcg7ww45CfthRyAMfbSAjIZJT+qQxsV86o7ulEGa3HZZo2ltcUft17b7ar/eXVjYoJTyUzQapsU4yE0yCyvT6iiQjsXabEEl6vBJXIiGrPN9slZQSEREJWUpKiYhIk2w2Gz3T4+iZHsfMcd3ZW1zBJ2tNguqzDXvZVVDOc1/l8NxXOUQ47FS5XEdMNB3KboPkGCepsRG0i3NSWW0av+cWlFNZ42JPkUlgrdhe0ER80C7WWZukiiIt3kl8ZDhxkWG15ZFhxEWGER8VTvxB+6LCHUG38qDLZVFUUU1ReRWFZbXbcvfXVRSVV1NYXkVJZQ39M+M5Y2AGidER/g5bpPXqyvcS/RqGiIiIeI+SUiIi0mypsU7OHZ7FucOzKK+qYelP+/joxzwWrdlNbqFZQdBmg5SYCFJjnbSLcx60bbgvNdZJckxEo6v8uVwW+0sr2ZVfzq6CMnILy9mZX05uQRk7a5NW7sTV7qIKdh8hcdUYh91Wl7CKc9YnseKjwuiQGEWn5Gi6pMbQOTmadnFOryWwLMtid1EFW/aWsHV/KVv3lbAzv7xBkqmovJrCsiqKK6tblPC7680fGd+nHWcN7cj4Pu1whjm88j2IeI2SUiIiIiFPSSkREWmVyHAH43unMb53GndPs9i2v4yoCEeTiaaWsNttdYmrgR0bL905NHG1q6Cc3UXlFJVX1z7cM4nM2L11WVDjssgvrSK/tAooO2IsUeEOOqdE1z5iTMIqJYbOKdFkJkYd9XutrjGzv7bsK2HrPpN42rKvlJx9pWzdX0J5latF740zzG4SaJFhxNXOAHPPDouPCifMbuPjtbtZm1vE+6vzeH91HglR4ZwxKIOzhnZgeOekoJslJscoNToXEREJeUpKiYhIm9lsNp+uIgjNS1wdyrIsSitrDklaVdUlsvLLKtl+oIycfaVs2VfCzvwyyqpqWJtbxNrcosPOF+6w0TGpNmGVbJJWQH3iaX8p2/aXUu1qeoqTw26jQ2JUXeKrY1I0iVHhxEfVJpoOSjjFRYY1a8bTLZP7sGZXIQu+38GC7B3kFVbw/Fc5PP9VDlnJUZw1pAPThnagW7vYZr1vIn6hpJSIiEjIs1lWS4oBjg2FhYUkJCRQUFBAfHy8v8MRERE/qax2sf1AqSmtqyuxM7Odtu0vo7KmebOcIsLstTOsoumUHEOX1Oi6GVcdkqK82qy9xmWx7Kd9vPbdDhb+sIuSypq65wZnJXLWkEymDs4kJdbptRjcLMuiotpFYXkVxXWz2KoprjAJwuKDvnbY7cQ6HURHhBFTu411hhEd4SCmdhvrDCPaGUZ0uAN7G2fntYTuEwyvvg8uF/wlBSwX3LQe4tI9e34RERHxqubeJygp1QjdbIqIyNHUuCxyC8vrklVb9pWQs68Umw2TeKot9+ucEk37+EifJk2aUlZZwwc/5vL69zv4bMNeampncIXZbZzcqx3Thnbg1H7pRIYfPhurusZFcUV1g/LIuq9rG7AXH/JcXaKpov65I80aa4uocJOsciewYiIc/PXsgfRKj/P4tXSfYHj1fSgvhHuzzPhPeRAe6dnzi4iIiFc19z5B5XsiIiKt4C6765AYxRh/B9NMUREOzhzSgTOHdGBPUQVvrdjJguwdrNxewKK1u1m0djexzjAGdkigtKqmQaKprKrm6BdoJpsNYp1hxDlNg/nY2qbzsc76bY0LSiurKamsoaSimpKKakorayiprKa0wmxLKqpx57jKqmooq6phb3H9dapr9Hu3oOUu3XM4lZASEREJYUpKiYiIHIPaxTm57MSuXHZiVzbuLmLB9zt5/fsd7MgvY+lP+5p8XWS4nVhnbaP1yDCTUHLWJ5biIsNrk021z0WGE+sMI/6grz1VbucuBzw4YVVSUVP7dTVZyVFtvob4ifpJiYiIHBOUlBIRETnG9UiL4+ZJvZl1ai+W5xxg+4FSYp3hdbOW3M3WY5xhRIR5r/9VS9lsNiLDHUSGO0jxdzDiWfGZcNZjgGa7iYiIhDIlpURERAQwKxoe3yWZ47sk+zsUOdZFJ8Pg8/0dhYiIiHhZ4Py6U0REREREREREjhlKSomIiIiIiIiIiM8pKSUiIiIiIiIiIj6npJSIiIiIiIiIiPicklIiIiIiIiIiIuJzAZGUeuSRR+jSpQuRkZGMHDmSr7/+usljx40bh81mO+xxxhln1B1zySWXHPb85MmTffGtiIiIiIiIiIhIM4T5O4AXX3yRWbNmMWfOHEaOHMkDDzzApEmTWLduHWlpaYcd/9prr1FZWVn39b59+xg8eDDnnntug+MmT57M008/Xfe10+n03jchIiIiIiIiIiIt4veZUvfffz9XXHEFl156Kf369WPOnDlER0fz1FNPNXp8cnIy7du3r3t8+OGHREdHH5aUcjqdDY5LSkryxbcjIiIiIiIiIiLN4NekVGVlJcuXL2fixIl1++x2OxMnTmTp0qXNOseTTz7JBRdcQExMTIP9ixcvJi0tjd69ezNz5kz27dvn0dhFRERERERERKT1/Fq+t3fvXmpqakhPT2+wPz09nbVr1x719V9//TU//PADTz75ZIP9kydP5uyzz6Zr165s2rSJP/7xj0yZMoWlS5ficDgOO09FRQUVFRV1XxcWFrbyOxIRERERERERkebwe0+ptnjyyScZOHAgI0aMaLD/ggsuqBsPHDiQQYMG0b17dxYvXsyECRMOO8/s2bO56667vB6viIiIiIiIiIgYfi3fS01NxeFwkJeX12B/Xl4e7du3P+JrS0pKmD9/PpdffvlRr9OtWzdSU1PZuHFjo8/feuutFBQU1D22bdvW/G9CRERERERERERazK9JqYiICIYNG8aiRYvq9rlcLhYtWsTo0aOP+NqXX36ZiooKfvWrXx31Otu3b2ffvn1kZGQ0+rzT6SQ+Pr7BQ0REREREREREvMfvq+/NmjWLxx9/nHnz5rFmzRpmzpxJSUkJl156KQDTp0/n1ltvPex1Tz75JNOmTSMlJaXB/uLiYn73u9+xbNkytmzZwqJFizjzzDPp0aMHkyZN8sn3JCIiIiIiIiIiR+b3nlLnn38+e/bs4Y477iA3N5chQ4awcOHCuubnOTk52O0Nc2fr1q3j888/54MPPjjsfA6Hg5UrVzJv3jzy8/PJzMzktNNO4y9/+QtOp9Mn35OIiIiIiIiIiByZzbIsy99BBJqCggISExPZtm2bSvlERESkgcLCQrKyssjPzychIcHf4fiN7pdERESkKc29X/L7TKlAVFRUBEBWVpafIxEREZFAVVRUdEwnpXS/JCIiIkdztPslzZRqhMvlYufOncTFxWGz2Ro858726beCbaP30TP0PnqG3kfP0PvYdnoPPcPb76NlWRQVFZGZmXlYi4FjyZHul0CfZ0/Qe+gZeh89Q++jZ+h9bDu9h54RKPdLminVCLvdTseOHY94jFbp8wy9j56h99Ez9D56ht7HttN76BnefB+P5RlSbs25XwJ9nj1B76Fn6H30DL2PnqH3se30HnqGv++Xjt1f74mIiIiIiIiIiN8oKSUiIiIiIiIiIj6npFQLOZ1O7rzzTpxOp79DCWp6Hz1D76Nn6H30DL2Pbaf30DP0PgYG/Tm0nd5Dz9D76Bl6Hz1D72Pb6T30jEB5H9XoXEREREREREREfE4zpURERERERERExOeUlBIREREREREREZ9TUkpERERERERERHxOSakWeuSRR+jSpQuRkZGMHDmSr7/+2t8hBZU///nP2Gy2Bo8+ffr4O6yAt2TJEqZOnUpmZiY2m40FCxY0eN6yLO644w4yMjKIiopi4sSJbNiwwT/BBrCjvY+XXHLJYZ/PyZMn+yfYADV79myOP/544uLiSEtLY9q0aaxbt67BMeXl5VxzzTWkpKQQGxvLOeecQ15enp8iDkzNeR/HjRt32Ofxqquu8lPEgefRRx9l0KBBxMfHEx8fz+jRo3nvvffqntfn0L90v9Q2ul9qHd0veYbul9pO90ueofslzwj0eyYlpVrgxRdfZNasWdx555189913DB48mEmTJrF7925/hxZU+vfvz65du+oen3/+ub9DCnglJSUMHjyYRx55pNHn77vvPv79738zZ84cvvrqK2JiYpg0aRLl5eU+jjSwHe19BJg8eXKDz+cLL7zgwwgD36effso111zDsmXL+PDDD6mqquK0006jpKSk7pgbb7yRt956i5dffplPP/2UnTt3cvbZZ/sx6sDTnPcR4Iorrmjwebzvvvv8FHHg6dixI/feey/Lly/n22+/5ZRTTuHMM89k9erVgD6H/qT7Jc/Q/VLL6X7JM3S/1Ha6X/IM3S95RsDfM1nSbCNGjLCuueaauq9ramqszMxMa/bs2X6MKrjceeed1uDBg/0dRlADrNdff73ua5fLZbVv3976+9//XrcvPz/fcjqd1gsvvOCHCIPDoe+jZVnWjBkzrDPPPNMv8QSr3bt3W4D16aefWpZlPnvh4eHWyy+/XHfMmjVrLMBaunSpv8IMeIe+j5ZlWSeffLJ1/fXX+y+oIJSUlGQ98cQT+hz6me6X2k73S22n+yXP0P2SZ+h+yTN0v+Q5gXTPpJlSzVRZWcny5cuZOHFi3T673c7EiRNZunSpHyMLPhs2bCAzM5Nu3bpx0UUXkZOT4++QgtrmzZvJzc1t8NlMSEhg5MiR+my2wuLFi0lLS6N3797MnDmTffv2+TukgFZQUABAcnIyAMuXL6eqqqrB57FPnz506tRJn8cjOPR9dHvuuedITU1lwIAB3HrrrZSWlvojvIBXU1PD/PnzKSkpYfTo0foc+pHulzxH90uepfslz9L9UsvofskzdL/UdoF4zxTmk6uEgL1791JTU0N6enqD/enp6axdu9ZPUQWfkSNHMnfuXHr37s2uXbu46667GDt2LD/88ANxcXH+Di8o5ebmAjT62XQ/J80zefJkzj77bLp27cqmTZv44x//yJQpU1i6dCkOh8Pf4QUcl8vFDTfcwAknnMCAAQMA83mMiIggMTGxwbH6PDatsfcR4Je//CWdO3cmMzOTlStX8vvf/55169bx2muv+THawLJq1SpGjx5NeXk5sbGxvP766/Tr14/s7Gx9Dv1E90ueofslz9P9kufofqlldL/kGbpfaptAvmdSUkp8asqUKXXjQYMGMXLkSDp37sxLL73E5Zdf7sfIROCCCy6oGw8cOJBBgwbRvXt3Fi9ezIQJE/wYWWC65ppr+OGHH9TnpI2aeh+vvPLKuvHAgQPJyMhgwoQJbNq0ie7du/s6zIDUu3dvsrOzKSgo4JVXXmHGjBl8+umn/g5LpM10vySBTPdLLaP7Jc/Q/VLbBPI9k8r3mik1NRWHw3FYF/q8vDzat2/vp6iCX2JiIr169WLjxo3+DiVouT9/+mx6Xrdu3UhNTdXnsxHXXnstb7/9Np988gkdO3as29++fXsqKyvJz89vcLw+j41r6n1szMiRIwH0eTxIREQEPXr0YNiwYcyePZvBgwfz4IMP6nPoR7pf8g7dL7Wd7pe8R/dLTdP9kmfofqntAvmeSUmpZoqIiGDYsGEsWrSobp/L5WLRokWMHj3aj5EFt+LiYjZt2kRGRoa/QwlaXbt2pX379g0+m4WFhXz11Vf6bLbR9u3b2bdvnz6fB7Esi2uvvZbXX3+djz/+mK5duzZ4ftiwYYSHhzf4PK5bt46cnBx9Hg9ytPexMdnZ2QD6PB6By+WioqJCn0M/0v2Sd+h+qe10v+Q9ul86nO6XPEP3S94TSPdMKt9rgVmzZjFjxgyGDx/OiBEjeOCBBygpKeHSSy/1d2hB4+abb2bq1Kl07tyZnTt3cuedd+JwOLjwwgv9HVpAKy4ubpDt37x5M9nZ2SQnJ9OpUyduuOEG7r77bnr27EnXrl25/fbbyczMZNq0af4LOgAd6X1MTk7mrrvu4pxzzqF9+/Zs2rSJW265hR49ejBp0iQ/Rh1YrrnmGp5//nneeOMN4uLi6mrNExISiIqKIiEhgcsvv5xZs2aRnJxMfHw81113HaNHj2bUqFF+jj5wHO193LRpE88//zynn346KSkprFy5khtvvJGTTjqJQYMG+Tn6wHDrrbcyZcoUOnXqRFFREc8//zyLFy/m/fff1+fQz3S/1Ha6X2od3S95hu6X2k73S56h+yXPCPh7Jp+s8RdCHnroIatTp05WRESENWLECGvZsmX+DimonH/++VZGRoYVERFhdejQwTr//POtjRs3+jusgPfJJ59YwGGPGTNmWJZlljm+/fbbrfT0dMvpdFoTJkyw1q1b59+gA9CR3sfS0lLrtNNOs9q1a2eFh4dbnTt3tq644gorNzfX32EHlMbeP8B6+umn644pKyuzrr76aispKcmKjo62zjrrLGvXrl3+CzoAHe19zMnJsU466SQrOTnZcjqdVo8ePazf/e53VkFBgX8DDyCXXXaZ1blzZysiIsJq166dNWHCBOuDDz6oe16fQ//S/VLb6H6pdXS/5Bm6X2o73S95hu6XPCPQ75lslmVZ3kl3iYiIiIiIiIiINE49pURERERERERExOeUlBIREREREREREZ9TUkpERERERERERHxOSSkREREREREREfE5JaVERERERERERMTnlJQSERERERERERGfU1JKRERERERERER8TkkpERERERERERHxOSWlREQ8yGazsWDBAn+HISIiIhKwdL8kIm5KSolIyLjkkkuw2WyHPSZPnuzv0EREREQCgu6XRCSQhPk7ABERT5o8eTJPP/10g31Op9NP0YiIiIgEHt0viUig0EwpEQkpTqeT9u3bN3gkJSUBZqr4o48+ypQpU4iKiqJbt2688sorDV6/atUqTjnlFKKiokhJSeHKK6+kuLi4wTFPPfUU/fv3x+l0kpGRwbXXXtvg+b1793LWWWcRHR1Nz549efPNN+ueO3DgABdddBHt2rUjKiqKnj17HnZTKCIiIuJNul8SkUChpJSIHFNuv/12zjnnHFasWMFFF13EBRdcwJo1awAoKSlh0qRJJCUl8c033/Dyyy/z0UcfNbiJevTRR7nmmmu48sorWbVqFW+++SY9evRocI277rqL8847j5UrV3L66adz0UUXsX///rrr//jjj7z33nusWbOGRx99lNTUVN+9ASIiIiJHofslEfEZS0QkRMyYMcNyOBxWTExMg8c999xjWZZlAdZVV13V4DUjR460Zs6caVmWZT322GNWUlKSVVxcXPf8O++8Y9ntdis3N9eyLMvKzMy0/vSnPzUZA2DddtttdV8XFxdbgPXee+9ZlmVZU6dOtS699FLPfMMiIiIiLaT7JREJJOopJSIhZfz48Tz66KMN9iUnJ9eNR48e3eC50aNHk52dDcCaNWsYPHgwMTExdc+fcMIJuFwu1q1bh81mY+fOnUyYMOGIMQwaNKhuHBMTQ3x8PLt37wZg5syZnHPOOXz33XecdtppTJs2jTFjxrTqexURERFpDd0viUigUFJKREJKTEzMYdPDPSUqKqpZx4WHhzf42maz4XK5AJgyZQpbt27l3Xff5cMPP2TChAlcc801/OMf//B4vCIiIiKN0f2SiAQK9ZQSkWPKsmXLDvu6b9++APTt25cVK1ZQUlJS9/wXX3yB3W6nd+/exMXF0aVLFxYtWtSmGNq1a8eMGTN49tlneeCBB3jsscfadD4RERERT9L9koj4imZKiUhIqaioIDc3t8G+sLCwuuaYL7/8MsOHD+fEE0/kueee4+uvv+bJJ58E4KKLLuLOO+9kxowZ/PnPf2bPnj1cd911XHzxxaSnpwPw5z//mauuuoq0tDSmTJlCUVERX3zxBdddd12z4rvjjjsYNmwY/fv3p6KigrfffrvuJk9ERETEF3S/JCKBQkkpEQkpCxcuJCMjo8G+3r17s3btWsCs9DJ//nyuvvpqMjIyeOGFF+jXrx8A0dHRvP/++1x//fUcf/zxREdHc84553D//ffXnWvGjBmUl5fzr3/9i5tvvpnU1FR+8YtfNDu+iIgIbr31VrZs2UJUVBRjx45l/vz5HvjORURERJpH90siEihslmVZ/g5CRMQXbDYbr7/+OtOmTfN3KCIiIiIBSfdLIuJL6iklIiIiIiIiIiI+p6SUiIiIiIiIiIj4nMr3RERERERERETE5zRTSkREREREREREfE5JKRERERERERER8TklpURERERERERExOeUlBIREREREREREZ9TUkpERERERERERHxOSSkREREREREREfE5JaVERERERERERMTnlJQSERERERERERGfU1JKRERERERERER87v8BIxgs+xcroiQAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Model 2 with LR scheduler and L2 regularization\n",
"loss_fn = nn.CrossEntropyLoss()\n",
"optimizer = optim.Adam(params=model_2.parameters(),\n",
" lr=0.00001, weight_decay=1e-4)\n",
"acc_fn = Accuracy(task=\"multiclass\", num_classes=len(idx_labels))\n",
"scheduler = ReduceLROnPlateau(optimizer, mode='min', patience=5)\n",
"\n",
"train_evaluate_model(model_2,\n",
" train_data_loader=train_dataloader,\n",
" test_data_loader=test_dataloader,\n",
" loss_fn=loss_fn,\n",
" accuracy_fn=acc_fn,\n",
" optimizer=optimizer,\n",
" scheduler=scheduler,\n",
" n_epochs=30\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "U-nYwMWUiTQ-"
},
"source": [
"## Saving and Loading\n",
"\n",
"In this section, we are going to:\n",
"\n",
"- Save the trained PyTorch model\n",
"- Load the PyTorch model\n",
"- Perform a basic prediction on the loaded model"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vwcvTM0xiTQ_",
"outputId": "5b843756-e363-40e3-be46-82c8e4be7d91"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Saving model to: dataset/model_v2.pth\n"
]
}
],
"source": [
"# Saving the trained PyTorch model\n",
"MODEL_PATH = Path(r'./dataset')\n",
"\n",
"# Create model save path\n",
"MODEL_NAME = \"model_v2.pth\"\n",
"MODEL_SAVE_PATH = MODEL_PATH / MODEL_NAME\n",
"\n",
"# Save the model state dict\n",
"print(f\"Saving model to: {MODEL_SAVE_PATH}\")\n",
"\n",
"torch.save(obj=model_2.state_dict(), # only saving the state_dict() only saves the learned parameters\n",
" f=MODEL_SAVE_PATH)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Loading and Prediction from `PIL` Image"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"id": "TSMrFg9oiTQ_"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"current_device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"# Loading the PyTorch model!\n",
"loaded_model = DR_Classifierv2(input_shape=3,\n",
" hidden_units=64,\n",
" output_shape=len(idx_labels))\n",
"\n",
"# Load in the saved state_dict()\n",
"loaded_model.load_state_dict(torch.load('./dataset/model_v2.pth', map_location=torch.device(current_device), weights_only=True))"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"# Get random label\n",
"labels = next(os.walk(dataset_path))[1]\n",
"random_index = random.randint(1, len(labels))\n",
"random_label = labels[random_index]\n",
"\n",
"label_dir = dataset_path / random_label\n",
"\n",
"# Get random image\n",
"random_image = label_dir / random.choice(os.listdir(label_dir))\n",
"\n",
"parsed_image = Image.open(Path(random_image)).convert(\"RGB\")"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image shape -> torch.Size([1, 3, 224, 224])\n",
"Image -> tensor([[[[ 3., 1., 3., ..., 3., 1., 1.],\n",
" [ 1., 1., 3., ..., 3., 3., 1.],\n",
" [ 3., 1., 3., ..., 1., 3., 1.],\n",
" ...,\n",
" [ 1., 1., 1., ..., 3., 1., 5.],\n",
" [ 1., 1., 1., ..., 1., 3., 1.],\n",
" [ 1., 1., 1., ..., 1., 3., 3.]],\n",
"\n",
" [[-1., -1., 1., ..., -1., -1., -1.],\n",
" [-1., -1., -1., ..., 1., -1., -1.],\n",
" [-1., -1., -1., ..., -1., -1., -1.],\n",
" ...,\n",
" [-1., -1., -1., ..., -1., -1., 1.],\n",
" [-1., -1., -1., ..., -1., -1., -1.],\n",
" [-1., -1., -1., ..., -1., -1., -1.]],\n",
"\n",
" [[ 3., 1., 3., ..., 3., 1., 1.],\n",
" [ 1., 1., 3., ..., 3., 3., 1.],\n",
" [ 3., 1., 3., ..., 1., 3., 1.],\n",
" ...,\n",
" [ 1., 1., 1., ..., 3., 1., 5.],\n",
" [ 1., 1., 1., ..., 1., 3., 1.],\n",
" [ 1., 1., 1., ..., 1., 3., 3.]]]])\n"
]
}
],
"source": [
"transform = v2.Compose([\n",
" v2.PILToTensor(),\n",
" v2.ToDtype(torch.float32),\n",
" v2.Resize((224,224)),\n",
" v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])\n",
"])\n",
"\n",
"img_tensor = transform(parsed_image).unsqueeze(0).to(current_device)\n",
"\n",
"print(f'Image shape -> {img_tensor.shape}\\nImage -> {img_tensor}')"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted label: Moderate\n"
]
}
],
"source": [
"new_idx_labels = {0: 'Mild', 1: 'Moderate', 2: 'No DR', 3: 'Proliferate DR', 4: 'Severe'}\n",
"\n",
"loaded_model.eval()\n",
"with torch.inference_mode():\n",
" pred = loaded_model(img_tensor)\n",
" predicted_class = torch.argmax(pred, dim=1).item()\n",
" \n",
"\n",
"predicted_label = new_idx_labels[predicted_class]\n",
"print(f'Predicted label: {predicted_label}')"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"include_colab_link": true,
"provenance": []
},
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}