diff --git "a/model.ipynb" "b/model.ipynb" --- "a/model.ipynb" +++ "b/model.ipynb" @@ -24,7 +24,7 @@ }, { "cell_type": "code", - "execution_count": 470, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 471, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -145,7 +145,7 @@ "4 NaN Yes " ] }, - "execution_count": 471, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -157,7 +157,7 @@ }, { "cell_type": "code", - "execution_count": 472, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -188,7 +188,7 @@ }, { "cell_type": "code", - "execution_count": 473, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -282,7 +282,7 @@ "max 89.000000 6.000000 14.000000" ] }, - "execution_count": 473, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -293,7 +293,7 @@ }, { "cell_type": "code", - "execution_count": 474, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -304,7 +304,7 @@ " dtype='object')" ] }, - "execution_count": 474, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -316,7 +316,7 @@ }, { "cell_type": "code", - "execution_count": 475, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -325,7 +325,7 @@ "" ] }, - "execution_count": 475, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, @@ -353,7 +353,7 @@ }, { "cell_type": "code", - "execution_count": 476, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -544,7 +544,7 @@ "[1964 rows x 8 columns]" ] }, - "execution_count": 476, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -562,7 +562,7 @@ }, { "cell_type": "code", - "execution_count": 477, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -579,7 +579,7 @@ "dtype: int64" ] }, - "execution_count": 477, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -599,7 +599,7 @@ }, { "cell_type": "code", - "execution_count": 478, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -630,7 +630,7 @@ }, { "cell_type": "code", - "execution_count": 479, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -740,7 +740,7 @@ "4 7.528571 Yes " ] }, - "execution_count": 479, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -751,7 +751,7 @@ }, { "cell_type": "code", - "execution_count": 480, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -850,7 +850,7 @@ }, { "cell_type": "code", - "execution_count": 481, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -960,7 +960,7 @@ "4 7.528571 Yes " ] }, - "execution_count": 481, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -971,7 +971,7 @@ }, { "cell_type": "code", - "execution_count": 482, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -980,7 +980,7 @@ "\" \\n# target encoding due to many classes\\nencoder = TargetEncoder(cols=['Disease Type'], smoothing=0.3)\\ndf['DiseaseTypeEncoded'] = encoder.fit_transform(df['Disease Type'], df['Recovered'])\\n\\nencoder = TargetEncoder(cols=['Treatment Type'], smoothing=0.3)\\ndf['TreatmentTypeEncoded'] = encoder.fit_transform(df['Treatment Type'], df['Recovered']) \"" ] }, - "execution_count": 482, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -1010,7 +1010,7 @@ }, { "cell_type": "code", - "execution_count": 483, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -1020,7 +1020,7 @@ }, { "cell_type": "code", - "execution_count": 484, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1192,7 +1192,7 @@ "4 0 1 0 " ] }, - "execution_count": 484, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -1204,7 +1204,7 @@ }, { "cell_type": "code", - "execution_count": 485, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -1214,7 +1214,7 @@ }, { "cell_type": "code", - "execution_count": 505, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -1229,7 +1229,7 @@ }, { "cell_type": "code", - "execution_count": 506, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -1389,7 +1389,7 @@ "4 0 1 0 " ] }, - "execution_count": 506, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1407,7 +1407,7 @@ }, { "cell_type": "code", - "execution_count": 507, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1416,7 +1416,7 @@ "((5200, 13), (5200,))" ] }, - "execution_count": 507, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1435,13 +1435,13 @@ }, { "cell_type": "code", - "execution_count": 509, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
LogisticRegression(solver='saga')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
LogisticRegression(solver='saga')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "LogisticRegression(solver='saga')" ] }, - "execution_count": 509, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -1898,7 +1898,7 @@ }, { "cell_type": "code", - "execution_count": 510, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -1947,7 +1947,7 @@ }, { "cell_type": "code", - "execution_count": 511, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -1974,7 +1974,7 @@ }, { "cell_type": "code", - "execution_count": 512, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -2001,7 +2001,7 @@ }, { "cell_type": "code", - "execution_count": 513, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -2028,7 +2028,7 @@ }, { "cell_type": "code", - "execution_count": 514, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -2040,7 +2040,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABUkAAAHqCAYAAAA5289qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeJlJREFUeJzt3QmczPX/wPH37rK7lrXu+yzlyFUqoaISoqJTOkjShUIJJWdSEjpEydXhRynlilCUKLnKEZUjyp1YR3bXzvf/eH/6f6eZ3Vl27Xd2vmtezx7f1nznO9/5zne+M/P5vr/v9+cTYVmWJQAAAAAAAAAQpiJDvQEAAAAAAAAAEEoESQEAAAAAAACENYKkAAAAAAAAAMIaQVIAAAAAAAAAYY0gKQAAAAAAAICwRpAUAAAAAAAAQFgjSAoAAAAAAAAgrBEkBQAAAAAAABDWCJICAAAAAAAACGsESRHQr7/+Ks2aNZOEhASJiIiQTz/91NH179ixw6x38uTJjq43N2vSpImZctqpU6fk6aeflvLly0tkZKS0adNGchs9lgYOHBjqzQAAAHDU/fffL5UqVQr1ZsAlQtnmXbJkiXl+/YvQnr8BCB6CpC62detWefjhh+W8886T2NhYKViwoDRq1EheffVV+eeff4L63B06dJD169fL0KFD5b333pNLL71UzqXGpv7A6/4MtB81QKz36zRixIgsr3/37t2m8bJu3TrJDSZOnCgvv/yy3H777TJlyhTp0aNHhstqI8DeNzrly5dPateuLaNHjxaPx5Oj2+1mafeT77R582Zxm02bNpljVi9eAAAQjvTCve/vdZ48eaRs2bKm3fjnn3+GevNcu598pz59+ogbvfDCC44mfJxuH+j03XffSW725ptvui6RxW5bX3DBBQHvX7hwoXf/z5gx45w/fwMQPHmCuG5kw9y5c+WOO+6QmJgYad++vdSsWVOSk5Nl2bJl0qtXL9m4caO8/fbbQXluDRyuWLFCnn32WenatWtQnqNixYrmefLmzSuhoA3fEydOyOzZs+XOO+/0u++DDz4wQemTJ0+e1br1R3bQoEHmqn/dunUz/bgvvvhCQuHLL780JwGjRo3K1PLlypWTYcOGmX8fPHhQpk6dagKrBw4cMEF1pN9PvsqUKSNuDJLqMasNULJVAADhbPDgwVK5cmXTDtRglwaLtP29YcMG0z6E/37ypecrbg2SajKA09VSgfaBqlKliuT2IGmxYsXMBQJfV199tTl/i46ODsl26efvt99+k5UrV8rll18e1udvAIKHIKkLbd++Xe666y4TSNQAVunSpb33denSxfw4aBA1WDTYpQoVKhS059CrfKFsaGrwWbNy//e//6ULkmrQr1WrVvLxxx/nyLZosDYuLi5kDY79+/dn6b3WLhjuvfde7+1HHnlEqlWrJq+//rppLEZFRQVpS3OXtPvJKZZlmQagZvECAABn3XDDDd4KqgcffNAEi1566SWZNWtWujZjOPPdT046fvy45M+fX8J5H7iVdssVyvO3888/33QTpudvvkFSbRfPnDkzrM7fAAQP5fYuNHz4cDl27JhMmDDBL0Dqe3XyiSee8N7WH4shQ4aYHw4N/ukVsGeeeUaSkpL8Hqfzb7zxRnM1XH9Y9EdOS/nfffdd7zJaZqDBWaUZqxrMtDPLMuoTSR+jy6UtebjyyitN8K1AgQJStWpVs01n6pNUg8JXXXWVaRzpY1u3bi0///xzwOfTYLFuky6nAamOHTuaH6zMuvvuu+Xzzz+Xw4cPe+f98MMPptxe70vr0KFD8tRTT0mtWrXMa9JyfW0c/fjjj95ltI+eyy67zPxbt8cu+7Bfp2bq6VX21atXm6ux+uNq75e0fdpolwf6HqV9/c2bN5fChQubK55namQ++eSTpq9RPS70PdDuAzTI5vsefPXVVyYz2d7WrPYzpNuor/no0aMm4Gr76aefzPtjdxdRqlQpeeCBB+Svv/466/dTj2nNWi1evLjEx8fLzTffLH/88UfA7Vq7dq15f/R90vfruuuuS1f+ZJdL6Wfi8ccfN+vV59duLjRzW48NzeTW/a2T9t1q77/syurndsGCBaYhrsHRt956y9yn29e9e3fve6zfDXoil7brg2nTpkm9evXMPtP9ocewdtth7wPNWlfXXHNNuuNg1apV5pjTk0R9bs2Y0PcRAIBwoO1Suxssm7YR+vfvb35btc2i7VZdTttUvuy2lra/tALM/s3XdpO2OdPSknBtJ2q7Sf9q4Ods2ng2fW6tCvvoo4+kRo0a5ne8QYMGpkstpe0JbTvo82kb1Mlud7LSpteKFm17a1tLzx9s77//vtnHut1FihQxSSS7du3yW4e222+77TbTztTXoZU8utyRI0e8+0D3l3YpZbdx7AxJbbtqO0rbWrofS5QoIddff72sWbMm268/JSXFbLO2Z9NKTEw026rnFVk5ngLJyvnZpEmT5NprrzWvU1+vHhNjx471W0bXpecFS5cu9e4v+/wkoz5J9fiy3ydtL2qSQNouKnQ7tT2u8zWjV/+t7W7dB6mpqZJZ7dq1k+nTp/u1dbUyUM8ZMrqIoc+pbdeSJUua133RRReZ7saCcf5mB211/1944YXmfdbz+VtvvdXvO+R0bXMAoUUmqQvpF70Glho2bJip5fUqt/7waxmJNpi+//57U+arDZG0jSsNROlynTp1MkE4/YHQHy39ktYfDP0C14aMBqL0R6hly5bmRywr9IdVgzraV6VmFuqPkT7vt99+e9rHLVq0yAS19LXrD4uWc2h2omZ8amMlbQNAfwg1YKOvVe9/5513zI++BokyQ1+rZkF+8skn3qCPZpFqVuQll1ySbvlt27aZxqsGlPR59+3bZxqXjRs3No07LaOuXr26ec3a0HnooYe8DWvf91KDhPo6tQGnjQj9wQ5Efyi1ganvk3Z/oBma+nxa1qH9xJ6ubFsbyRpA1MaVvtdaNqJBNg18a0NBS+u1YaLr0RJ5DcrbpeH6GrLKPgnwzUjVQLnuM21saMPV7iJC/2qwMm3DLTPvpx7r2mDWhrTuU90/etU4LX0O3ffa6NDApnbroPtOGzHa6Ktfv77f8t26dTPbqGU2um26nfpali9fLhUqVDBlWvPmzTN9t2ojSQOnZ6INPu2OwJc2lOzPU1Y+t1u2bDGfRw3edu7c2ZwMaWNQjz19P3W+bqdub9++fWXPnj2mn1j7fdDHapDY3pf6HPp51Ist2tjTAPFrr71mGnz2+69/NeitA7jpsaL9jOk+0fdaPzMAAIQDO3CoATzfIJe2U/T3VX+XNdimyQ16UVFLgdOW62r7UpfR32tt/2hChLZDtZ1kdz2l7TsN9mngStsD2l7UNpQG/bLaxvP1zTffmCxYrUZTum5tp2v7SMuqH3vsMfn777/NNml7WNtWmaFByLTtHA2QnU2bXtvW2tektrfsQK+2T5977jnTPtQ2k1a66Tq03aIXwrVNosFF3ed6gdluy+k+mDNnjrmQrAFHbevq4zVBRNvmSoPVSs8DtP9KDSTrftd9rhfOtZ0U6FwgM/tA39+iRYua9/WWW24xbSZtg/pmHOr5hG6znguczfF0tjQgqud7evxo12N6zqnvvwYc7eND24+6L7W9ql2vqYzOVZQGEvU41SCjHlt6fqTnMNrOtN8n37axviZth2tQX4+TV155xbwfjz76aKZeg54D6DGlgU0N+NqfL23n6nlDWro9V1xxhfeCgbZpNUlGPzu63zVI7uT5m75G/XwtXrzYLKttbX0/tT2uXXboaz1T2xxAiFlwlSNHjmjLwGrdunWmll+3bp1Z/sEHH/Sb/9RTT5n5X375pXdexYoVzbyvv/7aO2///v1WTEyM9eSTT3rnbd++3Sz38ssv+62zQ4cOZh1pDRgwwCxvGzVqlLl94MCBDLfbfo5JkyZ559WtW9cqUaKE9ddff3nn/fjjj1ZkZKTVvn37dM/3wAMP+K3zlltusYoWLZrhc/q+jvz585t/33777dZ1111n/p2ammqVKlXKGjRoUMB9cPLkSbNM2teh+2/w4MHeeT/88EO612Zr3LixuW/cuHEB79PJ14IFC8zyzz//vLVt2zarQIECVps2bc74Gj/99FPv43zp642IiLB+++03v+e96KKLzrhOe9lq1aqZ91anzZs3W7169TLP1apVK79lT5w4ke7x//vf/9Idg5l9P+1j/bHHHvNb7u677zbzdT023UfR0dHW1q1bvfN2795txcfHW1dffbV3nr5H+tjmzZtbHo/HO79BgwZmPz3yyCPeeadOnbLKlSuX7j3KaD/petNOeuyd7ed2/vz5fssOGTLEHMe//PKL3/w+ffpYUVFR1s6dO83tJ554wipYsKDZ/ox89NFH5jm++uorv/kzZ8408/WYBgDgXGa3CRYtWmTaOLt27bJmzJhhFS9e3LT19LZNf1OTkpL8Hv/3339bJUuW9GvP2O1Jbc8cOnTIO/+zzz4z82fPnu3XDi5durR1+PBh77wvvvjCLOfb/s5KG0+X023X7bC99dZbZr62eRMTE73z+/bta+b7Lnu6/RRoOts2fbt27fyeY8eOHaYtM3ToUL/569evt/LkyeOdv3btWvN4bcecjraX7DaYr4SEBKtLly6nfWxW94Hu77TteN/3WbVs2dI677zzsnw8qbRt3syen2XUNtc2sO+2KD0vCNTe1Xaib3sxOTnZvM81a9a0/vnnH+9yc+bMMcv179/fbzt1nu85k7r44outevXqWWfie75y6aWXWp06dfLuJ23zT5kyxbt9vseDLqefq4MHD/qt76677jLvv71PnDp/mzhxoll25MiR6Za1zzUy0zYHEDqU27uMXtFSmnqfGZrdpnr27Ok3XzPTVNq+S/UqqX11TOnVNM1K0yvZTrGvGH722WeZHvFcM990NEHNatXSFJtmo2rZi/06fenVX1/6uvQqn70PM3s1Uq9E7t2711w517+BSu2VZsRqXzz2VUJ9LrsrgayU5eh6ApXeBKJZfJp1oFc3NeNAMxHtUuvT0f2lmaeaIZj2uND2lV5BPVs6OrseNzpp1q1mV+oV6bRdJ/j2mallJ3qlXa/kqkD760zvp30MpH1NegXYl743mo2hpTyawWDTUhd9bzVDIO0xoleTfTNb9Qq37iedb9P9qeXumf2saJaEXin2nTRr42w+t5phq1fe05Y26T7SzBbdt/bUtGlTsw++/vpr7+dRy8z0+c/2s6wZGVo2BgDAuU5/R7WNo6XsWu2hpc+aiemb0altAjszUNu62iWTdqOj7YRAbZy2bdv6ZaLabXG7TWG3g7V6SLMfbdoG1rZ7dtp4mq3mm7lpV9No1qrv+YY9P7PtnDFjxqRr5zjVptfsS92vmkXq28bRTFHNOLXL0O19pZm0Welyy7edo5U8Z+rCKiv7wHf/a6ajZtdqebhNs3Z1OT0mzvZ4Olu+bXM7C1arkvQ9t7snyArtkkmrjjQb1bevUq3y0nOEQGNoBGrvZ/U8VNvzeoxoJrFmAuv+06zdtPTzoH2U3nTTTebfvseStqv1NWd2/2b2/E2fT99zzcZNyz7XyE7bHEDwESR1GS0PVpqWnxm///67CdylHUVRGxH6Baz3+9KS3LS00aY/2E7RH30tp9HSFi1F0FKDDz/88LQBU3s7NeCYlpZA6I+Z/pic7rXYjc+svBbtTkAbiNp40VERtVQkoxEpdfu1hEkbZ/pDqT+A2ojWvjez0rDQkeSz0sm3lqNoI1MbnFoSHaiUJND+1HL8tMF2u5Q67XGRFXbwTxukWqalr0dLoNJ25K4NPC0Z0WNAG2W6r+wRQAPtrzO9n/axbpdI2dIeM7ot2lDO6FjS9zFtf1Zpn9tudOsJUtr5mT2+9KRKT7R8J/tEJ6uf20Ajp2ofXPPnz/cGrO1Jn0fZ/cNqw1X7RNISIT3B01I6fVxmaMNZT6K0GwI93rU/Me3PKm2/qQAAnCvswJcGX7SdqG1QbfelpV3maOBP2z9aXq2/wRoUOts2jtI2Zlpp2zNZbeNlpY3ju01nouXrads5Z9umT9vO0TaOBrV0f6Rt52hZst3G0cfpBWctVdd2iga+9P3LbLtcuxjQEmjdF/p6tIw7KwG7QPtA+3e3aUm7tqM0ccRuO2lwTy88+wZJs3o8nS0t59ZttPuJ1eew+9Y8m+c53XutQdK0x6K+Nn3O7J6H2n3OakBaz9+0vD1QgpGeE2i3C9qNVtrjyA54+o6n4MT5m/Y7qvtD3/uMZKdtDiD46JPUhUFSbfjoD3ZWpO3fMSMZjTyemcFoMnqOtJ1ta0BMs9j0Kq/+uOuXvgYh9WqqZvg5Nfp5dl6LTRu9mqGpDRNtFGnjKCPaT5L2jaQ/ZDrgjgYuNdClmYyZzZhVWR2VXPvzsX/AtaN97cMmlOzgn00D4tpvkzayNIhr06v/2kem9pGlfSlp1q3upxYtWgTcX068n2cro+cONN/J7cns5zbQMaP7UDMy7OzUtLTxpTSorgF2DWprY1InDXRqv6p63J9p+/QkUftp1X6rdB16/Gv/UTovq/0VAwDgdhr4skcs16oUHUhIM9e0f3D7d0/7R9dMSb1f2zn6W6ttBu2T0XdwltzWxsmpbTpTO0fbONoG0TZLoO30bX9om0TfCw1E6nmGZtjq+6DtlLT9uaalbVXNZNS+4PWxWh2lfURqIFMDWE7QgJ5Wgelr0eNFE0c0gFinTh3vMlk9ns7m/EzXo1nF+twjR440gWEN+mlmryaBZOVc5mw5dQ6o1WE6zoC+9xr4zWhEe/s1aR+imqUdiAamg3H+djrZaZsDCD6CpC6kV8P0ipcO1qMjUJ6OjkSvPwB6xdV3wB3tpFqvnNkj1TtBr/T5jgRvC5SVqMFD/SHWSX+INcConX9r4NQ3wOb7OpQ2QAOVd+vVYQ3OBYM2fHUAK91muwP1QDRYpFeHtSN1X7pP7I7qsxL4ygy90q5XOjUDUTsP1yveWk5ij8CYEd2f2hm6ZiT7XlnVfWnf7xRtXGjjQxuAOkKlZizoFWHtsFwzELUTdJsep2fLPtbtK7S2tMeMXh3WUSczOpb0fU6bPZHTnPjcakatDrgV6POUljaCtdRIJ31evYKt75cG/TWb9UzHrHaToJMOoqCd499zzz1mVE7NFgcA4FxlB6q0/ffGG2+YQQztNqF26aPBNN/f0AEDBpzV89i/+4HaSWnbMznZxjsbTrTptY2jwVrNFLUv+p6OjgyuU79+/cwFer2AP27cOHn++efN/adr52jATdtFOmlSgl741/aOU0FSHWhKn0MTRjTgrt172QMi2bJzPGX2/Ewvdms2q3Yd4ZtdbHdd4Cuz5zK+77U9iJJN5wXzWNTzN22HakasZnwHoucE+hnRgPGZ2stOnb/psatdOGi2sD0o29m0zQGEDuX2LqSZYdp40C9+DZqkpUEiHTVQ2T8K9kjWNg1MqkAjf2fnS19LG7S83Kb9DqUdiVvLrNOyR2XMqExXGw+6jF498/2h14xavbKb0Y+fE7Thq5mh2vjVcufTNZTTXl3XfiF1FE1fdsMvUIMlq3r37i07d+40+0XfUy111yuhZyp31v2lDQJ9Tb70SrE2Apxq+Pkes9oYsI87+0px2v2V9jjNCnubfbNVA61Tn1v7ctWMAntEWqWfJQ3waQPV7tYiVJz43Gr2g15I0avQaemxp31ZKe3X1ZcGie2r5vZxlNExq8HutO/hmT7LAACcSzRjTbNL9Tdb+1jPqJ2jgRH9XT4bvu1g37JnLfvftGlTSNt4WeVEm16rvHQf68X2tO0QvW23bbSPebu9Y9NgqbZ1fNsp2s5J28bRfZi2xFwz/LSiz8k2jm6L9m2rQcr33nvPbG/aUvvsHE+ZPT8L9Bz6OM1gTCvQ/gpEM651n2lA2nefaWakdovg5HloWrpPNYisXX9lVAavr1m7O9BM00BVmlqO7/T5mz6fdimR9vPpu+8z0zYHEDpkkrqQ/thpMEd/QDXLTFPva9asaTqn1qujGpjTkgylpRoaNNPMU/1S1z4EV65caRomWrLh2y9OdmmWpQbtNJNRS1m038exY8eaK7y+nV7rIENabq8/jHoFUa/K6g+YlrxogCojWuKiDTvNntUBc/755x95/fXXTR9JpyuDzy79YdIrz5nJ8NXXppmdmtWppe/aD47v4ED2+6dXNbXBoFcv9UdXO8MP1K/k6eiVZt1v2gDQq9pKGzLaWNerjJpVmhG9KqnvvV6p1kChHifaMNXAoXYPkLZfz+zSTFdt9GqfULpt2peSXjnXbdTgqfbjo8+/ffv2s34ObXBrVwO6T7RRp++BZqv+9ttv6ZbVzAE9sdDjTa/Mar9AenVWGx6n2285xYnPrZZjaTaAHpf6fVCvXj2TeazHpWYk6Puu2Rp6sUUvXOgVfv0MamaBfq50f9pZrPpvbUhqiZnuW+2GQpfX7yHd3/qZ12NGs1bGjx9vgszBvHABAICb6G/uHXfcYQap1IFn9LdXs/7091Hbu9q+0Xaftoe0yuNsaMaqrkvbLtq1jf526+/1RRdd5LfOnG7jnY3stun1NWhbrm/fvuY1attI29S6nzX499BDD5nqJW0rd+3a1bw3ej6iAUgNRNrBMZu2kTT7Vi9GaxBU2+RalaTtIg226T7UEn5d5ocffjBl3JmhwUA7g9eXtlF9zw/0nE5fv7bpNYjrW0WksnM8Zfb8TBMI7OxFHRRW16ttOg1yalDVl+4vXYe+B5rVqMukzRRVmimpbUc9N9K2rLbTNSlBk3k0saNHjx4SLJk9ll588UWTLavnYp07dzb7VD9bum/0/baTe5w6f9Pz9nfffdf0latte+3OQdvn+lx6TqL9+2embQ4ghDIe+B6h9ssvv1idO3e2KlWqZEVHR1vx8fFWo0aNrNdff906efKkd7mUlBRr0KBBVuXKla28efNa5cuXt/r27eu3jKpYsaLVqlWrdM/TuHFjM9m2b9+ul7msl19+Od2yX3zxhVWzZk2zPVWrVrXef/99a8CAAWZ52+LFi63WrVtbZcqUMcvp33bt2pnXk/Y5Jk2a5Lf+RYsWmdeYL18+q2DBgtZNN91kbdq0yW8Z+/kOHDjgN1/XpfN13afToUMHK3/+/KddJtA+0P355JNPWqVLlzbbp9u5YsWKdPtPffbZZ1aNGjWsPHny+L1OXe6iiy4K+Jy+60lMTDTv1yWXXGLeX189evSwIiMjzXOfztGjR82yuv/1uLjgggvM6/F4POmeN6NtCrSNGS27ZMkS81r1/VF//PGHdcstt1iFChWyEhISrDvuuMPavXu33zJZfT//+ecf6/HHH7eKFi1q3kM9Pnbt2pVunWrNmjVW8+bNrQIFClhxcXHWNddcYy1fvjzgc/zwww9+8zPapswcO2faT059bu33WB9TpUoV81krVqyY1bBhQ2vEiBFWcnKyWWbGjBlWs2bNrBIlSphlKlSoYD388MPWnj17/NY1fvx467zzzrOioqLMa//qq6/MPtTPrj4mJibGrOPGG2+0Vq1adcZ9AABAbpJRm0ClpqZa559/vplOnTpl2lIvvPCC+Y3W38eLL77YmjNnjmkn6LzMtKkDtV0+/vhjq3r16mad2o785JNP0q0zK208fY4uXbr4zctom/R3X+d/9NFHZ72fnGrT++6PK6+80rS9dKpWrZp5PVu2bDH3b9u2zXrggQfM+xIbG2sVKVLEtPf0uX1t3rzZuvrqq8226PPpPk1KSrJ69epl1alTx5xj6fr132+++eZpX5fvPshoSnt+o++LtvP0vueffz7d+jJ7PGV03GTm/EzNmjXLql27ttlXen750ksvWRMnTkzX3t67d69pe+p+0fvs8xP7GNG/vqZPn262Wbdd34N77rnHnAdkpg0daDvPtm2d0TG8b98+c9zoe6Cfl1KlSlnXXXed9fbbbzt6/mY7ceKE9eyzz3rb+Pp8t99+u7V169Ystc0BhEaE/i+UQVoAAAAAAAAACCX6JAUAAAAAAAAQ1giSAgAAAAAAAAhrBEkBAAAAAAAAhDWCpAAAAJn09ddfm9GBdYTkiIgI+fTTT8/4mCVLlsgll1wiMTExZqRgHSEbAAAAgLsQJAUAAMik48ePS506dWTMmDGZWn779u3SqlUrueaaa2TdunXSvXt3efDBB2XBggVB31YAAAAAmcfo9gAAAGdBM0lnzpwpbdq0yXCZ3r17y9y5c2XDhg3eeXfddZccPnxY5s+fn0NbCgAAAOBM8kgu5vF4ZPfu3RIfH29OVAAAOFt6zfDo0aOmjDoy0h2FFidPnpTk5GTH1hcdHS2xsbGOrQ9ntmLFCmnatKnfvObNm5uM0owkJSWZybe9c+jQISlatCjtHQAAACBI53m5OkiqAdLy5cuHejMAAOeQXbt2Sbly5VwRIK1csYDs3Z/q2DpLlSplyr8JlOacvXv3SsmSJf3m6e3ExET5559/JF++fOkeM2zYMBk0aFAObiUAAABwbsvMeV6uDpJqBqm6UlpKHskb6s0BXOvYrZeFehMA10tNOSlrZz/v/W0JNc0g1QDp76srScH47Ge2Jh71SMV6O8x6CZK6W9++faVnz57e20eOHJEKFSqYhl3BggVDum0AAABAbqLJCZpgmZnzvFwdJLVLzjRAmieCICmQkTx5CYgAmeW2cuYC8RFmyi6PuOt1hQvN3t23b5/fPL2twc5AWaQqJibGTGnpYwiSAgAAAME5z8vVQVIAAM51qZZHUi1n1oOc16BBA5k3b57fvIULF5r5AAAAANzDHSNTAAAA5ALHjh2TdevWmUlpH6/67507d3pL5du3b+9d/pFHHpFt27bJ008/LZs3b5Y333xTPvzwQ+nRo0fIXgMAAACA9MgkBQDAxTximcmJ9SD7Vq1aJddcc433tt13aIcOHWTy5MmyZ88eb8BUVa5cWebOnWuCoq+++qrpLP6dd94xI9wDAAAAcA+CpAAAAJnUpEkTsayMA84aKA30mLVr1wZ5ywAAAABkB0FSAABczGP+c2Y9AAAAAIDACJICAOBiqZZlJifWAwAAAAAIjIGbAAAAAAAAAIQ1MkkBAHAxBm4CAAAAgOAjSAoAgItpcDOVICkAAAAABBXl9gAAAAAAAADCGpmkAAC4GOX2AAAAABB8ZJICAAAAAAAACGtkkgIA4GKplmUmJ9YDAAAAAAiMICkAAC7m+f/JifUAAAAAAAKj3B4AAAAAAABAWCOTFAAAF0sVy0xOrAcAAAAAEBhBUgAAXCzV+ndyYj0AAAAAgMAotwcAAAAAAAAQ1sgkBQDAxRi4CQAAAACCjyApAAAu5pEISZUIR9YDAAAAAAiMcnsAAAAAAAAAYY0gKQAALuaxnJuyYuzYsVK7dm0pWLCgmRo0aCCff/55uuUsy5IbbrhBIiIi5NNPP/W7b+fOndKqVSuJi4uTEiVKSK9eveTUqVPZ3SUAAAAA4DjK7QEAQDrlypWTF198US644AITCJ0yZYq0bt1a1q5dKxdddJF3udGjR5sAaVqpqakmQFqqVClZvny57NmzR9q3by958+aVF154IYdfDQAAAACcHpmkAAC4mPZH6tSUFTfddJO0bNnSBEkvvPBCGTp0qBQoUEC+++477zLr1q2TV155RSZOnJju8V988YVs2rRJ3n//falbt67JNh0yZIiMGTNGkpOTHdk3AAAAAOAUgqQAALhYqIKkftuQmirTpk2T48ePm7J7deLECbn77rtN0FOzRdNasWKF1KpVS0qWLOmd17x5c0lMTJSNGzee9bYAAAAAQDBQbg8AQBjRIKWvmJgYMwWyfv16ExQ9efKkySKdOXOm1KhRw9zXo0cPadiwoSnBD2Tv3r1+AVJl39b7AAAAAMBNCJICAOBiHivCTE6sR5UvX95v/oABA2TgwIEBH1O1alVTUn/kyBGZMWOGdOjQQZYuXSq//fabfPnll6Z/UgAAAAA4FxAkBQDAxbJbKu+7HrVr1y4zWr0toyxSFR0dLVWqVDH/rlevnvzwww/y6quvSr58+WTr1q1SqFAhv+Vvu+02ueqqq2TJkiWmBH/lypV+9+/bt8/8DVSeDwAAAAChRJ+kAACEEQ2Q+k6nC5Km5fF4JCkpSfr06SM//fSTyTK1JzVq1CiZNGmS+beW6Wu5/v79+72PX7hwoXlOu2QfAAAAANyCTFIAAFwsVSLNlP31ZE3fvn3NiPQVKlSQo0ePytSpU02G6IIFC0wmaKBsUF22cuXK5t/NmjUzwdD77rtPhg8fbvoh7devn3Tp0iVLgVkAAAAAyAkESQEAQDqaAdq+fXvZs2ePJCQkSO3atU2A9Prrr8/U46OiomTOnDny6KOPmqzS/Pnzmz5NBw8eHPRtBwAAAICsIkgKAICLWQ4N3KTryYoJEyZkcf1WunkVK1aUefPmZWk9AAAAABAKBEkBAAijgZsAAAAAAOkxcBMAAAAAAACAsEYmKQAALpZqRZop++txZHMAAAAA4JxEkBQAABfzSIR4HCj88AhRUgAAAADICOX2AAAAAAAAAMIamaQAALgYAzcBAAAAQPARJAUAICz6JKXcHgAAAAAyQrk9AAAAAAAAgLBGJikAAK4fuCn7pfJOrAMAAAAAzlVkkgIAAAAAAAAIa2SSAgDgYh6JlFQHrml6hD5JAQAAACAjBEkBAHAxBm4CAAAAgOCj3B4AAAAAAABAWCOTFAAAl5fb65T99ZBJCgAAAAAZIUgKAICLpVoRZnJiPQAAAACAwCi3BwAAAAAAABDWyCQFAMDFUh0a3T6VcnsAAAAAyBBBUgAAXMxjRZop++shSAoAAAAAGaHcHgAAAAAAAEBYI5MUAAAXo9weAAAAAIKPTFIAAAAAAAAAYY1MUgAAXMyjWaBWhCPrAQAAAAAERpAUAAAX80ikmZxYDwAAAAAgMM6YAAAAAAAAAIQ1MkkBAHCxVCvSTE6sBwAAAAAQGEFSAABczCMRZnJiPQAAAACAwEgrAQAAAAAAABDWyCQFAMDFKLcHAAAAgODjjAkAAAAAAABAWCOTFAAAF0uVSDM5sR4AAAAAQGAESQEAcDGPFWEmJ9YDAAAAAAiMtBIAAAAAAAAAYY1MUgAAXMzjULm9rgcAAAAAEBhBUgAAXMxjRZrJifUAAAAAAALjjAkAAAAAAABAWCOTFAAAF0uVCDM5sR4AAAAAQGAESQEAcDHK7QEAAAAg+DhjAgAAAAAAABDWyCQFAMDFUh0qldf1AAAAAAACI5MUAAAAAAAAQFgjkxQAABejT1IAAAAACD6CpAAAuFiqFWkmJ9YDAAAAAAiMMyYAAIAsGDNmjFSqVEliY2Olfv36snLlytMuP3r0aKlatarky5dPypcvLz169JCTJ0/m2PYCAAAAODMySQEAcDFLIsTjwMBNuh5k3/Tp06Vnz54ybtw4EyDVAGjz5s1ly5YtUqJEiXTLT506Vfr06SMTJ06Uhg0byi+//CL333+/REREyMiRI0PyGgAAAACkRyYpAAC5oNzeiQnZp4HNzp07S8eOHaVGjRomWBoXF2eCoIEsX75cGjVqJHfffbfJPm3WrJm0a9fujNmnAAAAAHIWZ0wAAACZkJycLKtXr5amTZt650VGRprbK1asCPgYzR7Vx9hB0W3btsm8efOkZcuWGT5PUlKSJCYm+k0AAAAAgosgKQAALuaxIhybsmLs2LFSu3ZtKViwoJkaNGggn3/+ubnv0KFD0q1bN28/mxUqVJDHH39cjhw54reOnTt3SqtWrUympZai9+rVS06dOiW51cGDByU1NVVKlizpN19v7927N+BjNIN08ODBcuWVV0revHnl/PPPlyZNmsgzzzyT4fMMGzZMEhISvJP2YwoAAAAguAiSAgDgYqkS6diUFeXKlZMXX3zRZEGuWrVKrr32WmndurVs3LhRdu/ebaYRI0bIhg0bZPLkyTJ//nzp1KnTf9udmmoCpJp9qSXnU6ZMMcv1799fwsmSJUvkhRdekDfffFPWrFkjn3zyicydO1eGDBmS4WP69u1rAs72tGvXrhzdZgAAACAcMXATAABI56abbvK7PXToUJNd+t1335lg6Mcff+y9T7Mj9f57773XZIrmyZNHvvjiC9m0aZMsWrTIZFrWrVvXBAZ79+4tAwcOlOjoaMltihUrJlFRUbJv3z6/+Xq7VKlSAR/z3HPPyX333ScPPviguV2rVi05fvy4PPTQQ/Lss8+acv20YmJizAQAAAAg55BJCgBAGJXbp+3rUvu/PBPNCp02bZoJ7mnZfSCa8ahl+RogVdpHpwYEfUvTdRR4fU7NRs2NNLBbr149Wbx4sXeex+MxtzPaLydOnEgXCNVAq7IsK8hbDAAAACCzCJICABBGtH9L3/4utf/LjKxfv14KFChgshofeeQRmTlzphnRPVBfnZolqtmRNu2jM1DfnfZ9uVXPnj1l/PjxpvuAn3/+WR599FETPNbR7lX79u1NubxvRq5m4GqQefv27bJw4UKTXarz7WApAAAAgNCj3B4AABfzSKSZnFiP0v4tNePTdrqybh2Yad26dSZLdMaMGdKhQwdZunSpX6BUM0O171Gdp2X057q2bdvKgQMHTN+qGuzVbgS0P1Y7AKyDVflmjvbr108iIiLM3z///FOKFy9uAqTaPQEAAAAA9yBICgCAi6VaEWZyYj3KHq0+s+XlVapUMf/WMvMffvhBXn31VXnrrbfMvKNHj0qLFi0kPj7eZJnq6O027aNz5cqVfuuz+/LMqP/O3KJr165mymigJl/a/cCAAQPMBAAAAMC9KLcHAACZov1v2n2YagZps2bNTCB11qxZEhsb67es9tGp5fr79+/3ztNScw3QBirZBwAAAIBQIpMUAAAX8x10KbvryQrtV/OGG26QChUqmIzRqVOnmizJBQsWeAOkOijR+++/7x0ESmk5ufa1qfdrMFRHdh8+fLgpTdeS8y5dujByOwAAAADXIUgKAICLWVakeKxIR9aTFZoBqoMQ7dmzxwzwVLt2bRMgvf76602w9PvvvzfL2eX4Nh2cqFKlSiZQOmfOHDOwkWaV5s+f3/RpOnjw4Gy/FgAAAABwGkFSAACQzoQJEzK8r0mTJmJZ1hnXUbFiRZk3b57DWwYAAAAAziNICgCAi6VKhJmcWA8AAAAAIDAGbgIAAAAAAAAQ1sgkBQDAxTxW1gddymg9AAAAAIDACJLijNp23SeNWh6R8lWSJPlkpGxaFScThpaWP7bGepfJG+ORhwbsliY3H5a8MZasXhIvr/ctK4cP5jX3X3/nIXlq9K6A67+zVg058te/ywG51X1N10rj2tulYonDkpQSJet3lJKxs+vLzv2FAixtyYiHP5cG1XdJnwnN5Jv1lf3ubXn5Fmnb5CcpX/yInDiZV75cd56M/PiqHHstcBePQwM3ObEOAAAAADhXESTFGdVucFxmTy4mv6yLk6g8ltzfZ4+88L9t0rlxVUn6J8os88jA3XJ500R5/uGKcjwxSroM/VP6T9ghPVtfYO5fOquQrPoq3m+9GjTV4CoBUpwL6p6/Wz5ZdpH8vLO4REVa8nCrlTLqkblyz4t3yslk/2O8beP1GicNSIOj7Zr8KGNmXSGbfi8hsdGnpHSRoznzIgAAAAAACFOuSCsZM2aMVKpUSWJjY6V+/fqycuXKUG8SfDx7z3my8MMi8vsvsbJtUz55pXsFKVkuRS6o/Y+5Py4+VZq3OyRvDSwjP34bL7+tj5ORPcvLRZedkGqXHDfLaAbq3wfyeidPaoTUaXRMFvyvSIhfHeCMJ99qJfNWVpXte4vIb7uLytCpTaRUkWNStdwBv+UuKHtQ7rrmJ3nhf03SrSM+X5I81PIHGfLBNbJwzQXy518JsnVPUVm2sVIOvhK4jUciHJsAAAAAAC4Nkk6fPl169uwpAwYMkDVr1kidOnWkefPmsn///lBvGjKQv2Cq+Xv08L9ZpBfUPiF5oy1Z+81/maK7fouVfX/kler1TgRcR9M7DknSPxHyzdxApchA7pc/X7L5m3jiv24pYvKmyID7FssrM66UQ0fj0j3msqp/SESEJcULnZAP+k6XmQPfl8EdFkqJQsdydNvhLqlWhGMTAAAAAMClQdKRI0dK586dpWPHjlKjRg0ZN26cxMXFycSJE0O9aQhAAziPDPpTNqyMk9+35DPzipQ4JclJEabM3tfhA3mkSImUgOvRzNOvZhY2GabAufg5eeKW5fLjtlIms9T2+C0rZMP2UrJsQ+DM0DJFEyUywpL2TdfKqzMbSr9J10vBuCQZ/ehcyRP178UJAAAAAADgvJBGqJKTk2X16tXStGnT/zYoMtLcXrFiRbrlk5KSJDEx0W9Czur6wp9SsdpJGfZoxbNeR/V6x6XihUkyn1J7nKOevH2ZnFf6kAyYcp133pUX7ZB6F/xpgp8Z0QBp3jweGf1JQ1m5ubxs/L2kDHz3OilX/IhccsHuHNp6uHXgJicmAAAAAIALB246ePCgpKamSsmSJf3m6+3NmzenW37YsGEyaNCgHNxC+Ooy9A+pf32iPHnL+XJwT7R3/qH9eSQ6xjJl+L7ZpIWKn5JD+9MPytTi7kPy24ZY03cpcK7pedsyaVjjd+ny+s1y4EgB7/x6F/4pZYsmyvxhk/yWH9pxock47fbGzXIw8d/PxPa9hb33Hz6eT44cj5WSlNyHLdOfqAOl8vRJCgAAAADnyOj2ffv2Nf2X2jSTtHz58iHdpvBgmdHqG7Y4Ir1uryL7dsX43fvrT3GSkhwhF195VJbN+7eP0XLnnzSDO/282j8QGhuXKlffdFgmDSudo68ACD5Let72rVxda7t0feNm2XOooN+97y26WGatqO437/0+H8lrnzaQbzf8m5m9fnsp87dCicPeAGt83ElJyH9S9v39X8AVAAAAAACcQ0HSYsWKSVRUlOzbt89vvt4uVerfYIGvmJgYMyHnS+yvueVvGdixsvxzLFIKF/+3n9HjR6NMn6InjkaZUeofGrhbjh7OI8ePRpqg6qZVcbJ5TX6/dTVufViioixZ/PF/mXLAuVJif32936TPO83lRFJeKRL/76Blx05GS3JKHjNQU6DBmjT4aQdUdx0oJF+vryTdb10uL02/Wo6fjJZHbvxedu4rJKt/LZPjrwnuYDk0Mr2uBwAAAADgwiBpdHS01KtXTxYvXixt2rQx8zwej7ndtWvXUG4afNx0/1/m74hPtvrNH9G9vCz88N9+RccNLCMeS+S58Tskb4wlq5bEyxt9y6ZbV4t2h+TbzxPSDfIE5Ha3XrnJ/B3Tbbbf/KFTm8i8lVUzvZ4h718jj9+yXF5+6HOxrAhZ91tp6flWS0n18JkBAAAAACBYIizLsiSEpk+fLh06dJC33npLLr/8chk9erR8+OGHpk/StH2VpqXl9gkJCdJEWkueiPR9XwL417E7rwj1JgCudyrlpKz6pJ8cOXJEChb07y4hFOzfuNsWdZC8+f/rB/pspRxPlo+bTnHN60PWjwXeOwAAACB4bemQ90natm1bOXDggPTv31/27t0rdevWlfnz558xQAoAQDhwamR6RrcHAAAAABcHSZWW1lNeDwAAAAAAACBsg6QAACAwjxVhJifWAwAAAAAIjCApAAAu5nFodHsn1gEAAAAA5yo6KAMAAAAAAAAQ1sgkBQDAxSi3BwAAAIDgI0gKAICLESQFAAAAgOCj3B4AAAAAAABAWCOTFAAAFyOTFAAAAACCj0xSAAAAAAAAAGGNTFIAAFyMTFIAAAAACD6CpAAAuJilAU6JcGQ9AAAAAIDAKLcHAAAAAAAAENbIJAUAwMUotwcAAACA4CNICgCAixEkBQAAAIDgo9weAAAAAAAAQFgjkxQAABcjkxQAAAAAgo9MUgAAAAAAAABhjUxSAABcjExSAAAAAAg+gqQAALiYZUWYyYn1AAAAAAACo9weAAAAAAAAQFgjkxQAABfzSISZnFgPAAAAACAwgqQAALgYfZICAAAAQPBRbg8AAAAAAAAgrJFJCgCAizFwEwAAAAAEH0FSAABcjHJ7AAAAAAg+yu0BAAAAAAAAhDUySQEAcDHK7QEAAAAg+MgkBQAAAAAAABDWyCQFAMDFNAPUif5EySQFAAAAgIwRJAUAwMUsE+B0Zj0AAAAAgMAotwcAAOmMHTtWateuLQULFjRTgwYN5PPPP/fef/LkSenSpYsULVpUChQoILfddpvs27fPbx07d+6UVq1aSVxcnJQoUUJ69eolp06dCsGrAQAAAIDTI0gKAICLeSTCsSkrypUrJy+++KKsXr1aVq1aJddee620bt1aNm7caO7v0aOHzJ49Wz766CNZunSp7N69W2699Vbv41NTU02ANDk5WZYvXy5TpkyRyZMnS//+/R3fRwAAAACQXZTbAwDgYqEa3f6mm27yuz106FCTXfrdd9+ZAOqECRNk6tSpJniqJk2aJNWrVzf3X3HFFfLFF1/Ipk2bZNGiRVKyZEmpW7euDBkyRHr37i0DBw6U6OjobL8mAAAAAHAKmaQAAOC0NCt02rRpcvz4cVN2r9mlKSkp0rRpU+8y1apVkwoVKsiKFSvMbf1bq1YtEyC1NW/eXBITE73ZqAAAAADgFmSSAgDgYjqyfYQDmaS6HqVBSl8xMTFmCmT9+vUmKKr9j2q/ozNnzpQaNWrIunXrTCZooUKF/JbXgOjevXvNv/Wvb4DUvt++DwAAAADchExSAADCSPny5SUhIcE7DRs2LMNlq1atagKi33//vTz66KPSoUMHU0IPAAAAAOcaMkkBAHAxy/p3cmI9ateuXWa0eltGWaRKs0WrVKli/l2vXj354Ycf5NVXX5W2bduaAZkOHz7sl02qo9uXKlXK/Fv/rly50m99er99HwAAAAC4CZmkAADkgoGbnJiUBkh9p9MFSdPyeDySlJRkAqZ58+aVxYsXe+/bsmWL7Ny505TnK/2r5fr79+/3LrNw4ULznFqyDwAAAABuQiYpAABIp2/fvnLDDTeYwZiOHj1qRrJfsmSJLFiwwJTpd+rUSXr27ClFihQxgc9u3bqZwKiObK+aNWtmgqH33XefDB8+3PRD2q9fP+nSpUuWArMAAAAAkBMIkgIA4GK+WaDZXU9WaAZo+/btZc+ePSYoWrt2bRMgvf766839o0aNksjISLnttttMdqmOXP/mm296Hx8VFSVz5swxfZlq8DR//vymT9PBgwdn+7UAAAAAgNMIkgIAEEaj22fWhAkTTnt/bGysjBkzxkwZqVixosybNy9LzwsAAAAAoUCfpAAAAAAAAADCGpmkAACE0ej2AAAAAID0CJICAOD6IKkTfZI6sjkAAAAAcE6i3B4AAAAAAABAWCOTFAAAFwvV6PYAAAAAEE7IJAUAAAAAAAAQ1sgkBQDAxbQrUSe6E6VLUgAAAADIGEFSAABcjHJ7AAAAAAg+yu0BAAAAAAAAhDUySQEAcDPq7QEAAAAg6MgkBQDAzf6/3D67k64HzhgzZoxUqlRJYmNjpX79+rJy5crTLn/48GHp0qWLlC5dWmJiYuTCCy+UefPm5dj2AgAAADgzMkkBAAAyafr06dKzZ08ZN26cCZCOHj1amjdvLlu2bJESJUqkWz45OVmuv/56c9+MGTOkbNmy8vvvv0uhQoVCsv0AAAAAAiNICgCAi1nWv5MT60H2jRw5Ujp37iwdO3Y0tzVYOnfuXJk4caL06dMn3fI6/9ChQ7J8+XLJmzevmadZqAAAAADchXJ7AABczIlSe2/JPbJFs0JXr14tTZs29c6LjIw0t1esWBHwMbNmzZIGDRqYcvuSJUtKzZo15YUXXpDU1NQMnycpKUkSExP9JgAAAADBRZAUAAAgEw4ePGiCmxrs9KW39+7dG/Ax27ZtM2X2+jjth/S5556TV155RZ5//vkMn2fYsGGSkJDgncqXL+/4awEAAADgjyApAABuZg+65MSEHOfxeEx/pG+//bbUq1dP2rZtK88++6wp089I37595ciRI95p165dObrNAAAAQDiiT1IAAIBMKFasmERFRcm+ffv85uvtUqVKBXyMjmivfZHq42zVq1c3madavh8dHZ3uMTExMWYCAABws0p95oZ6E5BL7HixleQGBEkBAHAxBm5yDw1oajbo4sWLpU2bNt5MUb3dtWvXgI9p1KiRTJ061Syn/ZeqX375xQRPAwVIAQDhi4ATzqVgE5AbUW4PAICbWQ5OyLaePXvK+PHjZcqUKfLzzz/Lo48+KsePH/eOdt++fXtTLm/T+3V0+yeeeMIER+fOnWsGbtKBnAAAAAC4B5mkAAAAmaR9ih44cED69+9vSubr1q0r8+fP9w7mtHPnTm/GqNJBlxYsWCA9evSQ2rVrS9myZU3AtHfv3iF8FUB4ICsPmUFWHgDARpAUAAAXs6wIMzmxHjhDS+szKq9fsmRJunkNGjSQ7777Lge2DAAAAMDZIkgKAIDbUSoPAAAAAKEPks6aNSvTK7z55puzsz0AAAAAAAAA4L4gqT2C65lERERIampqdrcJAAD8P8rtAQAAAMAlQVKPxxP8LQEAAAAAAACAEPhv+NWzcPLkSee2BAAABO6P1KkJAAAAAOBMkFTL6YcMGSJly5aVAgUKyLZt28z85557TiZMmJDV1QEAgNOKcHACAAAAADgSJB06dKhMnjxZhg8fLtHR0d75NWvWlHfeeSerqwMAAAAAAACA3BUkfffdd+Xtt9+We+65R6Kiorzz69SpI5s3b3Z6+wAACG+U2wMAAACAOwZu8vXnn39KlSpVAg7ulJKS4tR2AQAAcTDASZAUAAAAAJzLJK1Ro4Z888036ebPmDFDLr744qyuDgAAAAAAAAByVyZp//79pUOHDiajVLNHP/nkE9myZYspw58zZ05wthIAgHBlRfw7ObEeAAAAAIAzmaStW7eW2bNny6JFiyR//vwmaPrzzz+beddff31WVwcAAE7DspybAAAAAAAOZZKqq666ShYuXHg2DwUAAAAAAACA3B8kVatWrTIZpHY/pfXq1XNyuwAAgGLgJgAAAABwX5D0jz/+kHbt2sm3334rhQoVMvMOHz4sDRs2lGnTpkm5cuWCsZ0AAAAAAAAA4I4+SR988EFJSUkxWaSHDh0yk/5bB3HS+wAAQBAGbnJiAgAAAAA4k0m6dOlSWb58uVStWtU7T//9+uuvm75KAQCAcyKsfycn1gMAAAAAcCiTtHz58iaTNK3U1FQpU6ZMVlcHAAAAAAAAALkrSPryyy9Lt27dzMBNNv33E088ISNGjHB6+wAACG+WgxMAAAAA4OzL7QsXLiwREf/1ZXb8+HGpX7++5Mnz78NPnTpl/v3AAw9ImzZtMrNKAACQGU71J0qfpMimSn3mhnoTkAvseLFVqDcBAAAgeEHS0aNHn93aAQAAAAAAAOBcCJJ26NAh+FsCAADSc6pUnnJ7AAAAAHBudHtfJ0+elOTkZL95BQsWzM4qAQCAL4KkAAAAAOC+gZu0P9KuXbtKiRIlJH/+/Ka/Ut8JAAAAAAAAAM7pIOnTTz8tX375pYwdO1ZiYmLknXfekUGDBkmZMmXk3XffDc5WAgAQrhjdHgAAAADcFySdPXu2vPnmm3LbbbeZEe2vuuoq6devn7zwwgvywQcfBGcrAQBAjho2bJhcdtllEh8fb6pH2rRpI1u2bPFbZu/evXLfffdJqVKlTHXJJZdcIh9//LHfMocOHZJ77rnHdMdTqFAh6dSpkxw7diyHXw0AAAAAOBwk1ZOd8847z/xbT3j0trryyivl66+/zurqAADA6VgRzk1ZsHTpUunSpYt89913snDhQklJSZFmzZqZbnds7du3N4HTWbNmyfr16+XWW2+VO++8U9auXetdRgOkGzduNOuYM2eOaSs89NBDju4iAAAAAMjxIKkGSLdv327+Xa1aNfnwww+9GaaaIQIAAJwTYTk3ZcX8+fPl/vvvl4suukjq1KkjkydPlp07d8rq1au9yyxfvly6desml19+uWkfaGWJtgXsZX7++WezHu2ap379+uaC6uuvvy7Tpk2T3bt3O72rAAAAACDngqQdO3aUH3/80fy7T58+MmbMGImNjZUePXpIr169zn5LAABA0CUmJvpNSUlJmXrckSNHzN8iRYp45zVs2FCmT59uqko8Ho8Jfp48eVKaNGli7l+xYoUJml566aXexzRt2lQiIyPl+++/d/y1AQAAAMDZypPVB2gw1PdEZ/PmzSZjpEqVKlK7dm2ntw8AgPDm1KBL/7+O8uXL+80eMGCADBw48LQP1QBo9+7dpVGjRlKzZk3vfK0madu2rRQtWtT0Ux4XFyczZ840bQK7z1Ltz9SXLqeBVr0PAAAAAHJtkDStihUrmgkAALjfrl27TJ/itpiYmDM+Rvsm3bBhgyxbtsxv/nPPPSeHDx+WRYsWSbFixeTTTz81fZJ+8803UqtWraBsPwAAAACELEj62muvZXqFjz/+eHa2BwAABJEGSH2DpGfStWtX74BL5cqV887funWrvPHGGyZ4qv2WKu27VAOk2hXPuHHjzKj3+/fv91vfqVOnTHm+3gcAAAAAuSpIOmrUqEytLCIigiApAAAO0jHpszroUkbryQrLssygTFo+v2TJEqlcubLf/SdOnDB/tX9RX1FRUaY8XzVo0MBkmmq3PPXq1TPzvvzyS3O/DuQEAAAAALkqSGqPZu9WKdfUFStPbKg3A3Ctb0ePC/UmAK6XeNQjhT8J9Va4h5bYT506VT777DOJj4/39iGakJAg+fLlk2rVqpm+Rx9++GEZMWKE6ZdUy+0XLlxoMk9V9erVpUWLFtK5c2eTWZqSkmIyU++66y4pU6ZMiF8hAAAAAGRjdHsAAJCDrAjnpiwYO3asGdFeR6ovXbq0d9LR7FXevHll3rx5Urx4cbnpppvM4I3vvvuuTJkyRVq2bOldzwcffGACqtddd52Zf+WVV8rbb7/t+G4CAAAAgJAO3AQAAHLP6PaZXtw68wMuuOAC+fjjj0+7jI5krxmpAAAAAOBmZJICAAAAAAAACGtkkgIA4GYhyiQFAAAAgHBCkBQAABfTke0dGd2eICkAAAAAOFtu/80338i9994rDRo0kD///NPMe++992TZsmVnszoAAAAAAAAAyD1BUh2goXnz5pIvXz5Zu3atJCUlmfk6Au4LL7wQjG0EACB8WQ5OAAAAAABngqTPP/+8jBs3TsaPHy958+b1zm/UqJGsWbMmq6sDAACnQ5AUAAAAANwXJN2yZYtcffXV6eYnJCTI4cOHndouAAAAAAAAAHBnkLRUqVLy22+/pZuv/ZGed955Tm0XAADwGbjJiQkAAAAA4FCQtHPnzvLEE0/I999/LxEREbJ792754IMP5KmnnpJHH300q6sDAAAAAAAAgJDKk9UH9OnTRzwej1x33XVy4sQJU3ofExNjgqTdunULzlYCABCurIh/JyfWAwAAAABwJkiq2aPPPvus9OrVy5TdHzt2TGrUqCEFChTI6qoAAMCZODXoEuX2AAAAAOBckNQWHR1tgqMAAAAAAAAAEFZB0muuucZkk2bkyy+/zO42AQCA/+fUoEsM3AQAAAAADgZJ69at63c7JSVF1q1bJxs2bJAOHTpkdXUAAOB0KLcHAAAAAPcFSUeNGhVw/sCBA03/pAAAAAAAAACQm0Q6taJ7771XJk6c6NTqAACA+v9y++xOZJICAAAAQBAGbkprxYoVEhsb69TqAACAotweAAAAANwXJL311lv9bluWJXv27JFVq1bJc8895+S2AQAAAAAAAID7gqQJCQl+tyMjI6Vq1aoyePBgadasmZPbBgAAyCQFAAAAAHcFSVNTU6Vjx45Sq1YtKVy4cPC2CgAAAAAAAADcOHBTVFSUyRY9fPhw8LYIAAB4OTFok3fwJgAAAACAM6Pb16xZU7Zt25bVhwEAAAAAAADAuREkff755+Wpp56SOXPmmAGbEhMT/SYAAAAAAAAAOCf7JNWBmZ588klp2bKluX3zzTdLRESE3yj3elv7LQUAAA5h4CYAAAAAcE+QdNCgQfLII4/IV199FdwtAgAAXk71J0qfpAAAAADgQJBUM0VV48aNM/sQAAAAAAAAADh3gqTKt7weAADkELJAAQAAAMA9QdILL7zwjIHSQ4cOZXebAAAAAAAAAMCdQVLtlzQhISF4WwMAAPwxcBMAAAAAuCtIetddd0mJEiWCtzUAAMAPAzcBAAAAQPBFZnZB+iMFAAAAAAAAcC7K8uj2AAAgB1FuDwAAAADuCZJ6PJ7gbgkAAEiHcnsAAAAAcFG5PQAAAETGjBkjlSpVktjYWKlfv76sXLkyU4+bNm2a6b6oTZs2Qd9GAAAAAFlDkBQAgNxQbu/EhGybPn269OzZUwYMGCBr1qyROnXqSPPmzWX//v2nfdyOHTvkqaeekquuuirHthUAAABA5hEkBQDAzQiSusrIkSOlc+fO0rFjR6lRo4aMGzdO4uLiZOLEiRk+JjU1Ve655x4ZNGiQnHfeeTm6vQAAAAAyhyApAABAJiQnJ8vq1auladOm3nmRkZHm9ooVKzJ83ODBg6VEiRLSqVOnHNpSAAAAAEEbuAkAAOQ8Bm5yj4MHD5qs0JIlS/rN19ubN28O+Jhly5bJhAkTZN26dZl+nqSkJDPZEhMTs7HVAAAAADKDTFIAAIAgOHr0qNx3330yfvx4KVasWKYfN2zYMElISPBO5cuXD+p2AgAAACCTFAAAd3Nq0CUySbNNA51RUVGyb98+v/l6u1SpUumW37p1qxmw6aabbvLO83g85m+ePHlky5Ytcv7556d7XN++fc3gUL6ZpARKAQAAgOAiSAoAgJsRJHWN6OhoqVevnixevFjatGnjDXrq7a5du6Zbvlq1arJ+/Xq/ef369TMZpq+++mqGgc+YmBgzAQAAAMg5BEkBAAAySTM8O3ToIJdeeqlcfvnlMnr0aDl+/LgZ7V61b99eypYta0rmY2NjpWbNmn6PL1SokPmbdj4AAACA0CJICgCAizFwk7u0bdtWDhw4IP3795e9e/dK3bp1Zf78+d7BnHbu3GlGvAcAAACQuxAkBQDAzSi3dx0trQ9UXq+WLFly2sdOnjw5SFsFAAAAIDtIdQAAAAAAAAAQ1giSAgCQC8rtnZiyQvvUvOyyyyQ+Pl5KlChhBirS0djTWrFihVx77bWSP39+KViwoFx99dXyzz//eO8/dOiQ3HPPPeY+7Y+zU6dOcuzYMSd2DQAAAAA4hiApAAC5odzeiSkLli5dKl26dJHvvvtOFi5cKCkpKdKsWTMzSJFvgLRFixZm/sqVK+WHH34wZei+fXJqgHTjxo1mHXPmzJGvv/5aHnroISf3EAAAAABkG32SAgCAdHQworR9aWpG6erVq022qOrRo4c8/vjj0qdPH+9yVatW9f77559/NuvR4KmOBq9ef/11admypYwYMULKlCmTY68HAAAAAE6HTFIAANwsRJmkaR05csT8LVKkiPm7f/9++f77703gtGHDhmZ098aNG8uyZcv8Mk21xN4OkKqmTZuaTFN9LAAAAAC4BUFSAADCSGJiot+UlJR0xsd4PB7p3r27NGrUSGrWrGnmbdu2zfwdOHCgdO7c2WSMXnLJJXLdddfJr7/+au7bu3evCaL6ypMnjwm06n0AAAAA4BYESQEAcLEIBydVvnx5SUhI8E46QNOZaN+kGzZskGnTpvkFTtXDDz8sHTt2lIsvvlhGjRplyu0nTpwYtP0BAAAAAMFAn6QAALiZA6Xy3vWIyK5du8xI87aYmJjTPkwHYrIHXCpXrpx3funSpc3fGjVq+C1fvXp12blzp/l3qVKlTFm+r1OnTpkR7/U+AAAAAHALMkkBAAgjGiD1nTIKklqWZQKkM2fOlC+//FIqV67sd3+lSpXMwEtbtmzxm//LL79IxYoVzb8bNGgghw8fNoM92XRdmoVav379oLw+AAAAADgbZJICAOBiEda/kxPryQotsZ86dap89tlnEh8f7+1DVEv08+XLJxEREdKrVy8ZMGCA1KlTR+rWrStTpkyRzZs3y4wZM7xZpS1atDB9lo4bN05SUlJM4PWuu+5iZHsAAAAArkKQFACAMCq3z6yxY8eav02aNPGbP2nSJLn//vvNv3Uwp5MnT0qPHj1MCb0GSxcuXCjnn3++d/kPPvjABEZ1QCcd1f62226T1157zYEXBAAAAADOIUgKAAAClttnRp8+fcyUER3JXjNSAQAAAMDNCJICAOB2TmSSAgAAAAAyxMBNAAAAAAAAAMIamaQAALhYqAZuAgAAAIBwQpAUAAA3C9HATQAAAAAQTii3BwAAAAAAABDWyCQFAMDFKLcHAAAAgOAjSAoAgJtRbg8AAAAAQUe5PQAAAAAAAICwRiYpAAAuRrk9AAAAAAQfQVIAANyMcnsAAAAACDrK7QEAAAAAAACENTJJAQBwMzJJAQAAACDoyCQFAAAAAAAAENbIJAUAwMUYuAkAAAAAgo8gKQAAbka5PQAAAAAEHeX2AAAAAAAAAMIamaQAALhYhGWZyYn1AAAAAAACI0gKAICbUW4PAAAAAEFHuT0AAAAAAACAsEYmKQAALsbo9gAAAAAQfGSSAgAAAAAAAAhrZJICAOBm9EkKAAAAAEFHkBQAABej3B4AAAAAgo9yewAAAAAAAABhjUxSAADcjHJ7AAAAAAg6gqQAALgY5fYAAAAAEHyU2wMAAAAAAAAIa2SSAgDgZpTbAwAAAEDQESQFAMDlKJUHAAAAgOCi3B4AAAAAAABAWCOTFAAAN7Osfycn1gMAAAAACIhMUgAAAAAAAABhjUxSAABc3h+pE32S0q8pAAAAAGSMICkAAG7G6PYAAAAAEHSU2wMAAAAAAAAIa2SSAgDgYhGefycn1gMAAAAACIwgKQAAbka5PQAAAAAEHUFSnFG7G3+Uqy79XSqUPixJKXlk468lZPz0y2TX3gTvMj3u/1bqXbRbihY+If+czCsbfyshb0+/VHbtKWTub37lr9L7oW8Crv/WLu3k8NF8OfZ6gGCYPaWozH23mOzbFW1uV6x6Uu7psVcuu/aoud3rtiry04oCfo9ped9BeeKlP7y39/+RV17vW05+/DZeYvOnyvV3/C0PPLNbovimBgAAAAAgqEJ66v3111/Lyy+/LKtXr5Y9e/bIzJkzpU2bNqHcJARQp9pe+WxRddmyvZhERnrkwTtWy/Cn50vHPrfKyeS8ZplfdhSVxSvOl31/5ZeC+ZOkwy1rZfjTC+SenneIx4qUr76vLCvXl/Vbb+/O30h03lQCpDgnFC+dYgKaZSsniWVFyMKPCsvAjpVlzBe/SKWqJ80yN9xzUNr32ut9TEy+/+qfU1NFnmt/nhQufkpGzfpVDu3PIy8/XlGi8lryQN89IXlNcAdGtwcAAACAc3zgpuPHj0udOnVkzJgxodwMnEGfEc1lwbILZMefhWXbrqLy0virpGSx43Jh5b+8y8xdUk1+2lJK9h2Ml19/LyYTP64nJYsel1LFj5n7k1PyyN9H4ryTxxMhF9fYI58vvTCErwxwzhXNEuXy645K2fOSpdz5SdKxz16Jze+RzavjvMvE5LOkSIlT3il//H9B0jVL42XnL7HS+43f5fya/5gM1PZP75HZk4tJSnJEiF4VXMGynJsAAAAAAO7LJL3hhhvMhNwlf74U8zfxWEzA+2OjU6TFVb/K7v0FZP9f+QMu06zRb5KUlEeW/lApqNsKhIJmhX4zu5AknYiU6pce987/6pPC8uXHhaVwiRS54vpEubv7XomN+zdwtWlVfqlU7aTJJLVd2uSovN4nSn7fEitVav0TktcCAAAAAEA4oKc7ZElEhCVd7v1e1v9SwmSW+rr5up/l4bY/SL7YU7Jzd4I8PbyFnEqNCrieGxr/Kou/O89kmALniu0/x0r3my6Q5KRIyZffI/0nbJeKFyaZ+6655W8pUS5ZipZMke0/55MJQ0vLH1tjpP+EHeb+vw/kkcLF/70AYStULMV7H8IX5fYAAAAAEHy56sw7KSnJTLbExMSQbk84eqL9Cqlc9m95/PlW6e5bvPx8Wb2hjBQt9I/cecN66d/lK+n2fCtJSRMIrVFlv1Qqe1iGvXV1Dm45EHxaZv/mwi1y4miUfDOnkIx4oqK8/MmvJlDa8t7/uqeoXP2kFCmRIr3vrCK7d0RLmUrJId1uAAAAAADCXUj7JM2qYcOGSUJCgncqX758qDcprDx+3wq5ou4u6TnsBjn4d/oy+uP/RMuf+xJM36QDX79Wypc5IlfV+z3dci0bb5Fffy8iv+4olkNbDuSMvNGWlK2cLBfU/kceeGaPVK7xj3z6TvGAy1a75IT5u3vHv91WaJn93wf+HQjNdvjgv7d9S/ARhiwHJwAAAABA7g+S9u3bV44cOeKddu3aFepNChOWCZBeWe93efLFFrL3YPwZHxERIRIhluTN89/ANCo2JkWaXL6dAZsQFnScnJTkwF+zWzfkM381o1TVuPS47NgcK4cP/pd5vebreImLT5UKF57MoS2Gm8vtnZgAAAAAAOdAuX1MTIyZkLOe6LBCrrtim/QbfZ2cOJlXCif8mwF3/ES06VO0dPFEaVJ/u6zaUFaOHI2V4oWPS7sbf5KklDzy/Y/l/NZ1Tf3tEhVlycLl54fo1QDBMfGF0nLZtYlSvGyK/HMsUr6aWVh+Wl5Ahk7dakrq9fbl1yVKfOFU2b4pVt4aWFZqXXFMzqvxbwD0ksZHTTB0eLcK0qnfbpNVOvmlUnLT/QclOoboFgAAAAAA52yQ9NixY/Lbb795b2/fvl3WrVsnRYoUkQoVKoRy0+Cj9XWbzd/Rz37uN/+lt6+SBcsuMIHS2lX3yW3NN0p8/mT5+0g++WlLSXl88I1y+Oi/2XK2lo1/kW9WVZTjJwh249yiGaAvP15RDu3PY7I/td9RDZDWa3xM9v+ZV9Z+Ey8z3ykuJ09ESvEyKXJly8PSrvs+7+OjokQGv7tNXu9TXnrcdKHExnmk6R2HpEOvPSF9XXBJSrJOTqwni13cfPLJJ7J582bJly+fNGzYUF566SWpWrVqgFVb0rJlS5k/f77MnDlT2rRp471v586d8uijj8pXX30lBQoUkA4dOph158mTq67TAgAAADjHhfQMZdWqVXLNNdd4b/fs2dP81ROoyZMnh3DL4Ova9g+c9v6/DsdJ31eaZWpd3Ybc6NBWAe7Sc2TG3X+UKJsiIz7574JQRkqWS5Hn39/m8JYhtwvV6PZLly6VLl26yGWXXSanTp2SZ555Rpo1ayabNm2S/Pn9+6UePXq0RGg/K2mkpqZKq1atpFSpUrJ8+XLZs2ePtG/fXvLmzSsvvPBCdl8SAAAAAJwbQdImTZqY7BMAAOAumhXqSy9elihRQlavXi1XX321d75WgLzyyivmwmfp0qX9HvPFF1+YoOqiRYukZMmSUrduXRkyZIj07t1bBg4cKNHR0Tn2egAAAADgnBm4CQCAsOPw6PaJiYl+U1JSUqY2QwdMVNolju3EiRNy9913y5gxY0y2aForVqyQWrVqmQCprXnz5uZ5N27cmP19AwAAAAAOIUgKAEAYKV++vCQkJHgn7R/0TDwej3Tv3l0aNWokNWvW9M7v0aOH6au0devWAR+3d+9evwCpsm/rfQAAAADgFoyaAABAGPVJumvXLilYsKB3fkzMmQfS075JN2zYIMuWLfPOmzVrlnz55Zeydu3a7G8cAAAAAIQYmaQAALiZx3JuEjEBUt/pTEHSrl27ypw5c8zo9OXKlfPO1wDp1q1bpVChQmakenu0+ttuu830Oa60BH/fvn1+67NvByrPBwAAAIBQIUgKAADS0YEVNUA6c+ZMExCtXLmy3/19+vSRn376yQzcZE9q1KhRMmnSJPPvBg0ayPr162X//v3exy1cuNAEZ2vUqJHDrwgAAAAAMka5PQAAbuYz6FK215MFWmI/depU+eyzzyQ+Pt7bh6j2Y5ovXz6TCRooG7RChQregGqzZs1MMPS+++6T4cOHm3X069fPrDszZf4AAAAAkFPIJAUAwMUifPolzdaUxecdO3asGdFeS+dLly7tnaZPn57pdURFRZlSff2rWaX33nuvtG/fXgYPHpzl/QAAAAAAwUQmKQAACFhu78RjKlasKPPmzXNoqwAAAAAgOAiSAgDgZhp4PIuAZcD1AAAAAAACotweAAAXc6TU/v8nOGPMmDFSqVIliY2Nlfr168vKlSszXHb8+PFy1VVXSeHChc3UtGnT0y4PAAAAIDQIkgIAAGSS9snas2dPGTBggKxZs0bq1KkjzZs3l/379wdcfsmSJdKuXTv56quvZMWKFVK+fHkzoNWff/6Z49sOAAAAIGMESQEAyA2j2zsxIdtGjhwpnTt3lo4dO0qNGjVk3LhxEhcXJxMnTgy4/AcffCCPPfaY1K1bV6pVqybvvPOOeDweWbx4cY5vOwAAAICMESQFAADIhOTkZFm9erUpmbdFRkaa25olmhknTpyQlJQUKVKkSBC3FAAAAEBWMXATAAAuFmFZZnJiPciegwcPSmpqqpQsWdJvvt7evHlzptbRu3dvKVOmjF+gNa2kpCQz2RITE7Ox1QAAAAAyg0xSAADczOPghJB68cUXZdq0aTJz5kwz6FNGhg0bJgkJCd5J+zEFAAAAEFwESQEAADKhWLFiEhUVJfv27fObr7dLlSp12seOGDHCBEm/+OILqV279mmX7du3rxw5csQ77dq1y5HtBwAAAJAxgqQAAOSCcnsnJmRPdHS01KtXz2/QJXsQpgYNGmT4uOHDh8uQIUNk/vz5cumll57xeWJiYqRgwYJ+EwAAAIDgok9SAADczKmR6YmROqJnz57SoUMHE+y8/PLLZfTo0XL8+HEz2r1q3769lC1b1pTMq5deekn69+8vU6dOlUqVKsnevXvN/AIFCpgJAAAAgDsQJAUAAMiktm3byoEDB0zgUwOedevWNRmi9mBOO3fuNCPe28aOHSvJycly++23+61nwIABMnDgwBzffgAAAACBESQFAMDNtEzeiVJ5yu0d07VrVzMFsmTJEr/bO3bsyKGtAgAAAJAdBEkBAHCxCOvfyYn1AAAAAAACY+AmAAAAAAAAAGGNTFIAANyMcnsAAAAACDoySQEAAAAAAACENTJJAQBwsQjPv5MT6wEAAAAABEaQFAAAN6PcHgAAAACCjnJ7AAAAAAAAAGGNTFIAANxME0CdSAIlkRQAAAAAMkSQFAAAF4uwLDM5sR4AAAAAQGCU2wMAAAAAAAAIa2SSAgDgZgzcBAAAAABBRyYpAAAAAAAAgLBGJikAAG6mCaAeh9YDAAAAAAiIICkAAC7GwE0AAAAAEHyU2wMAAAAAAAAIa2SSAgDgZpoA6sjATU5sDAAAAACcmwiSAgDgZoxuDwAAAABBR7k9AAAAAAAAgLBGJikAAG6mI9tHOLQeAAAAAEBABEkBAHAxRrcHAAAAgOCj3B4AAAAAAABAWCOTFAAAN2PgJgAAAAAIOjJJAQAAAAAAAIQ1MkkBAHAzMkkBAAAAIOgIkgIA4GYESQEAAAAg6Ci3BwAAAAAAABDWyCQFAMDNPCIS4dB6AAAAAAABESQFAMDFIizLTE6sBwAAAAAQGOX2AAAAAAAAAMIamaQAALgZAzcBAAAAQNARJAUAwM08ltbKO7MeAAAAAEBAlNsDAAAAAAAACGtkkgIA4GaU2wMAAABA0JFJCgAA0hk2bJhcdtllEh8fLyVKlJA2bdrIli1bvPcfOnRIunXrJlWrVpV8+fJJhQoV5PHHH5cjR474rWfnzp3SqlUriYuLM+vp1auXnDp1KgSvCAAAAAAyRpAUAABX+/9M0uxOup4sWLp0qXTp0kW+++47WbhwoaSkpEizZs3k+PHj5v7du3ebacSIEbJhwwaZPHmyzJ8/Xzp16uRdR2pqqgmQJicny/Lly2XKlClmuf79+zu+lwAAAAAgOyi3BwDAzUJUbq8BT18a3NRM0NWrV8vVV18tNWvWlI8//th7//nnny9Dhw6Ve++912SK5smTR7744gvZtGmTLFq0SEqWLCl169aVIUOGSO/evWXgwIESHR2d/dcFAAAAAA4gkxQAAJyRXUZfpEiR0y5TsGBBEyBVK1askFq1apkAqa158+aSmJgoGzduzIGtBgAAAIDMIZMUAAA382S9VD7j9YgJUPqKiYkx02kf6vFI9+7dpVGjRiaDNJCDBw+aLNGHHnrIO2/v3r1+AVJl39b7AAAAAMAtyCQFAMDNLI9zk4iUL19eEhISvJMO0HQm2jep9js6bdq0gPdr4FX7Hq1Ro4YpowcAAACA3IZMUgAAwsiuXbtMSbztTFmkXbt2lTlz5sjXX38t5cqVS3f/0aNHpUWLFhIfHy8zZ86UvHnzeu8rVaqUrFy50m/5ffv2ee8DAAAAALcgkxQAADdzYmR7n8GfNEDqO2UUJLUsywRINfD55ZdfSuXKlQNmkOqI9zoA06xZsyQ2Ntbv/gYNGsj69etl//793nkLFy40z6tZpwAAAADgFmSSAgCAgCX2U6dOlc8++8xkidp9iGqJfr58+bwB0hMnTsj7779vbtv9nRYvXlyioqLM/RoMve+++2T48OFmHf369TPrPlMGKwAAAADkJIKkAACE0cBNmTV27Fjzt0mTJn7zJ02aJPfff7+sWbNGvv/+ezOvSpUqfsts375dKlWqZAKlWqr/6KOPmqzS/PnzS4cOHWTw4MHZfjkAAAAA4CSCpAAAuJlPqXy215OlxU+/vAZPz7SMqlixosybNy9Lzw0AAAAAOY0+SQEAAAAAAACENTJJAQBwM1Nt70QmqRMbAwAAAADnJoKkAAC4WYjK7QEAAAAgnFBuDwAAAAAAACCskUkKAICbeTz6P4fWAwAAAAAIhCApAABuRrk9AAAAAAQd5fYAAAAAAAAAwhqZpAAAuBmZpAAAAAAQdGSSAgAAAAAAAAhrZJICAOBmHs0AtRxaDwAAAAAgEIKkAAC4mGV5zOTEegAAAAAAgVFuDwAAAAAAACCskUkKAICb6YBLTpTKM3ATAAAAAGSIICkAAG5mgpsESQEAAAAgmCi3BwAAAAAAABDWyCQFAMDNPB6RCAcGXWLgJgAAAADIEJmkAAAAAAAAAMIamaQAALgZfZICAAAAQNARJAUAwMUsj0csB8rtLcrtAQAAACBDlNsDAAAAAAAACGtkkgIA4GaU2wMAAABA0BEkBQDAzTyWSARBUgAAAAAIJsrtAQAAAAAAAIQ1MkkBAHAzkwHqwKBLZJICAAAAQIYIkgIA4GKWxxLLgXJ7iyApAAAAAGSIcnsAAAAAAAAAYY0gKQAAbmZ5nJvgiDFjxkilSpUkNjZW6tevLytXrjzt8h999JFUq1bNLF+rVi2ZN29ejm0rAAAAgMwhSAoAAJBJ06dPl549e8qAAQNkzZo1UqdOHWnevLns378/4PLLly+Xdu3aSadOnWTt2rXSpk0bM23YsCHHtx0AAABAxgiSAgDg9j5JHZqQfSNHjpTOnTtLx44dpUaNGjJu3DiJi4uTiRMnBlz+1VdflRYtWkivXr2kevXqMmTIELnkkkvkjTfeyPFtBwAAAJAxgqQAALgZ5faukZycLKtXr5amTZt650VGRprbK1asCPgYne+7vNLM04yWBwAAABAauXp0e3uk3lOnkkK9KYCrJR4lOAKcSeIxjytHgT8lKSKWQ+tBthw8eFBSU1OlZMmSfvP19ubNmwM+Zu/evQGX1/kZSUpKMpPtyJEj5m9iYqKEkifpREifH7lDqI9TXxyzyAyOWeQ2HLPIjRJDeNzaz52Z87xcHSQ9evSo+fv9Ny+GelMAVyt8Yai3AMhdvy0JCQmh3gyJjo6WUqVKybK9zg3yo+vT9cLdhg0bJoMGDUo3v3z58iHZHiArEkaHeguArOGYRW7DMYvcKGF07jjPy9VB0jJlysiuXbskPj5eIiIiQr05+P8IvZ7E6ftSsGDBUG8O4Ep8TtxJryzqD6f+triBjoS+fft2U+LtFA2Q6npxdooVKyZRUVGyb98+v/l6WwPQgej8rCyv+vbtawaHsnk8Hjl06JAULVqU9o6L8F2O3IZjFrkNxyxyG47Z3H+el6uDpNoPWLly5UK9GQhAvxD4UgBOj8+J+7ghg9SXBjQJarqHBpnr1asnixcvNiPU2wFMvd21a9eAj2nQoIG5v3v37t55CxcuNPMzEhMTYyZfhQoVcux1wFl8lyO34ZhFbsMxi9yGYzb3nufl6iApAABATtIMzw4dOsill14ql19+uYwePVqOHz9uRrtX7du3l7Jly5qSefXEE09I48aN5ZVXXpFWrVrJtGnTZNWqVfL222+H+JUAAAAA8EWQFAAAIJPatm0rBw4ckP79+5vBl+rWrSvz58/3Ds60c+dOU+lia9iwoUydOlX69esnzzzzjFxwwQXy6aefSs2aNUP4KgAAAACkRZAUjtLywAEDBqQrEwTwHz4nQO6mpfUZldcvWbIk3bw77rjDTDi38F2O3IZjFrkNxyxyG47Z3C/C0h5MAQAAAAAAACBM/VcPBgAAAAAAAABhiCApAAAAAAAAgLBGkBQAAAAAwkBERIQZPM7pZQEA2eP7nbtjxw5ze926daHerLBDkBSOGjNmjFSqVEliY2Olfv36snLlylBvEuAqX3/9tdx0001SpkwZTj4AwEErVqyQqKgoadWqVag3BciU+++/37QFdIqOjpYqVarI4MGD5dSpU0F7zj179sgNN9zg+LIIv2PWd/rtt9/Oup2bmpoqL774olSrVk3y5csnRYoUMeeR77zzTg68IiD9sZ03b16pXLmyPP3003Ly5MlQbxpyGEFSOGb69OnSs2dPM5rbmjVrpE6dOtK8eXPZv39/qDcNcI3jx4+bz4ZeUAAAOGfChAnSrVs3c5K+e/fukG1HcnJyyJ4buU+LFi1MMPLXX3+VJ598UgYOHCgvv/xy0I6rUqVKZXrU5awsi/A7Zn0nDSidbTt30KBBMmrUKBkyZIhs2rRJvvrqK3nooYfk8OHDQXsNfE/jdMf2tm3bzDH51ltvmdgGwgtBUjhm5MiR0rlzZ+nYsaPUqFFDxo0bJ3FxcTJx4sRQbxrgGpqR8fzzz8stt9wS6k0BgHPGsWPHzMXaRx991GSSTp482e/+2bNny2WXXWYqXYoVK+b3HZyUlCS9e/eW8uXLm4CQZvNpwFXpegoVKuS3Ls2M0kwTmwa16tata7KeNFCgz6Hmz58vV155pXl80aJF5cYbb5StW7f6reuPP/6Qdu3amcyp/Pnzy6WXXirff/+9KbOLjIyUVatW+S0/evRoqVixong8Hgf3HkJJjzkNRur7qsdv06ZNZdasWSarqU2bNjJ06FCTlVe1alWz/K5du+TOO+80x5UeN61btzbHiy9te1900UVm3aVLl5auXbt67/PN7tNAkd6ny+hxq9swbNiwgMuq9evXy7XXXmuy/fSY1kCWfvZs9jaPGDHCrFOX6dKli6SkpAR1HyI0x6zvpFn8Z9vO1eP9sccekzvuuMN8h2qQtVOnTvLUU095l9HvvOHDh5vvZ33+ChUqmM9GVo/Ns/k8IfyObW0P6PGi38cLFy70HoP6/ajHqB5nepzOmDHD7/EbN240v/UFCxaU+Ph4ueqqq7y/+z/88INcf/31pg2SkJAgjRs3NollcB+CpHCENrJWr15tvkhs2rjX21r+BgAAECwffvihKdXUE997773XBIksyzL3zZ0715ywt2zZUtauXSuLFy+Wyy+/3PvY9u3by//+9z957bXX5OeffzaZIwUKFMjS82up6ccffyyffPKJt/8wzajSChsNdOpzartIt8MOcOoJvJ4k/fnnnyZI8OOPP5rSPr1fuy7SNtSkSZP8nkdv68m+rgvnJj35trPc9LjZsmWLOUmfM2eOCTZqlZaefH/zzTfy7bffmmNVs5/sx4wdO9YEJjVIpIEjPbY0sBSIHvN6v35+9Hk++OADc+wFosezPnfhwoXNyf5HH30kixYt8gvAKs0C1KCA/p0yZYq50JD2ogXgS4NSX375pRw4cCDDZfr27WtK8p977jmTbTp16lQpWbJklo7Ns/k8IXxt2LBBli9fbrpCURogfffdd00imAZDe/ToYdobS5cuNffrb/nVV19tAq16PGts5IEHHvB2n3L06FHp0KGDLFu2TL777ju54IILTLtE58NlLMABf/75p56JWMuXL/eb36tXL+vyyy8P2XYBbqafmZkzZ4Z6MwAg12vYsKE1evRo8++UlBSrWLFi1ldffWVuN2jQwLrnnnsCPm7Lli3mu3jhwoUB7580aZKVkJDgN0+/t32b0AMGDLDy5s1r7d+//7TbeODAAfO49evXm9tvvfWWFR8fb/31118Bl58+fbpVuHBh6+TJk+b26tWrrYiICGv79u2nfR7kHh06dLBat25t/u3xeMxxGBMTYz311FPmvpIlS1pJSUne5d977z2ratWqZlmb3p8vXz5rwYIF5naZMmWsZ599NlNtj27dulnXXnut3/oyWvbtt982x+OxY8e898+dO9eKjIy09u7d6309FStWtE6dOuVd5o477rDatm171vsI7qLvcVRUlJU/f37vdPvtt2ernbtx40arevXq5liqVauW9fDDD1vz5s3z3p+YmGg+F+PHjw/4+Mwem2fzeUJ4Htt6vOnxq8fQjBkzzO9wXFxculhHp06drHbt2pl/9+3b16pcubKVnJycqedLTU01bYDZs2cH/Mzob73eXrt2raOvE2fGZWgAAADkWpoZpANFatm6ypMnj7Rt29ZbMq+Zndddd13Ax+p9WiaqGZ3ZoWXKxYsX95unfUzqNp133nmm9M7O0Nu5c6f3uS+++GJT4hmIlvrpts2cOdPc1my8a665JsNMP+ROmtGm2Wta7q6lynrsahcOqlatWt4sJqXZxpq1rJlv+hid9PjRgUU0e1PHAdD+eDM63tPSrGQ9DjUD+/HHH5cvvvgiw2U1y1rLS7VbCFujRo1M5rN+Bm1a5m+XXistu2d8gnOLfg/pcWNPmpGcHdpNm2btaXadZt7p8aKDPz344IPeY0+7RcnouM7ssZnVzxPC99jWbm8061O7EbztttvMcXLixAlTLm8fKzppZql9rOjjtLxeB30KZN++faZrQs0g1XJ7bRdoRYndJoB75An1BuDcoH1raINIP/y+9LaWUAAAAASDBkO1nE37mbNpQoaWvL3xxhumfDkjp7tPaVm7XbZvC9S/ou/JuU1P8jV4On78eLNtesJes2ZNbxnnmZ5bT+a1KwAtsb/11ltNeemrr7562scgd56Ua4m8vt96nGiQP6PjSk+o69WrZ8ri09IgfVa7Ybjkkktk+/bt8vnnn5vyZO2bUbt5SNvPXlakDRBov6b0oXtu0eMyoy4czpYeu9pvtE7du3eX999/X+677z559tlnz/hdmVlZ/TwhvI9t7bZHg+/axtDfbrv7nrJly/o9xh7c7kzHqQZd//rrL/M7rm0DfVyDBg3o2sGFyCSFI7Rhpz8y2teLTRtEels//AAAAE7T4Khmcrzyyit+mU2aIaQBJ+1rtHbt2n7tE1+aWaTtFbtPsUAnytpfmPZ5Z7P7HD0dPRHSDKZ+/fqZ7Kfq1avL33//7beMbpeu69ChQxmuRzOpNHj15ptvmteqwVKcmyflOhCNb4A0o6CmZiiXKFHCPMZ30swkzYjTTOOMjvdANJtJs1c1mK+Dn2nfuoGOST2G9XPl+1nQPhw1uGUPggM4RbNLlR5vmnmnAaiMjuuzPTbP9HlCeNPj55lnnjG/43o8alBTsz7THis6yJP9m65922Y0UJ0ek5qxr/2Q2gPrHTx4MIdfFTKDICkco4MTaANLO2nXsgcdoVN/rDRNHcB/V63tk3ilGRz6b0otAODsSpU1+KgjIWumh++kJXKaATJgwAATLNW/2j7RwWxeeukl83gNKGl2h5Z46ije+p28ZMkSM5CNql+/vsTFxZkTJS2p02zOzAxCowOI6AjLb7/9tinT00EctJ3kS0vxtdpGy+r15Gnbtm0mQOU74KWe/F9xxRXSu3dvs7xTGVXIne655x5TvaUjcOvJuH286on3H3/8YZbRUn29aKAl0BoA0tGTX3/99YDrGzlypPlsbN68WX755Rcz4I0ekzrSd6Dn1i4B9POipdE6MFO3bt1Mtp89gA5wNu3c22+/XUaNGmVKnH///XdzTOvgYxdeeKEZkE+PO/0O1IHt7PJmLc23u1Q522MzM58nhLc77rjDVMvqgI5PPfWUGaxJYx16DNrfrXpb6UBhiYmJctddd5kBG/X797333vN2+aDBfr2t7RA91vX44zfdnQiSwjF6FXrEiBHSv39/qVu3rvlBnD9/Pg0nwIf+aGofdDopPWnWf+vnBgCQNXqSrOXBgbJ+NEiq37nax5wGf3QUb22fXHvttaYPU5uWOutJ+mOPPWZOyLXPMDsjSR+rZZ/z5s0zWacaULL7izxTBsq0adPM6LYasNUTq5dffjldFY72AalZTJpZouvX0Zt9+3NUGgDWcjwN5CK8acD+66+/NlmnmlWsQXQ9PrQPRc0IVRooGj16tMk+1mylG2+80ZysB6KZp8OHD5dLL73UlDnv2LHDHOuByvb1uRcsWGCyTHVZ/cxolrR2aQFkp52rI8zPnj3bdFGigVE9hvW7WL8f7exqHdX+ySefNOvR417PO+2+bs/22MzM5wnhTY8/DX7q92Tfvn3Ncaij3Oux0qJFC1N+X7lyZbOsXhjVC6J6oUD7OdcqW00gs7sg0faKXtTVDGYN4GswXn//4T4ROnpTqDcCAAAAQHpDhgwxQd6ffvop1JsCAABwTiOTFAAAAHAZzUbR0lHNhtLSUQAAAAQXQVIAAADAZbTET8v1mjRpQqk9AABADqDcHgAAAAAAAEBYI5MUAAAAAAAAQFgjSAoAAAAAAAAgrBEkBQAAAAAAABDWCJICAAAAAAAACGsESQEAAAAAAACENYKkgEvcf//90qZNG+/tJk2aSPfu3XN8O5YsWSIRERFy+PDhDJfR+z/99NNMr3PgwIFSt27dbG3Xjh07zPOuW7cuW+sBAAAAAABIiyApcIbApQbmdIqOjpYqVarI4MGD5dSpU0F/7k8++USGDBniWGATAAAAAAAAgeXJYD6A/9eiRQuZNGmSJCUlybx586RLly6SN29e6du3b7plk5OTTTDVCUWKFHFkPQAAAAAAADg9MkmBM4iJiZFSpUpJxYoV5dFHH5WmTZvKrFmz/Erkhw4dKmXKlJGqVaua+bt27ZI777xTChUqZIKdrVu3NuXittTUVOnZs6e5v2jRovL000+LZVl+z5u23F6DtL1795by5cubbdKs1gkTJpj1XnPNNWaZwoULm4xS3S7l8Xhk2LBhUrlyZcmXL5/UqVNHZsyY4fc8Gvi98MILzf26Ht/tzCzdLl1HXFycnHfeefLcc89JSkpKuuXeeusts/26nO6fI0eO+N3/zjvvSPXq1SU2NlaqVasmb775Zpa3BQAAAAAAIKsIkgJZpMFEzRi1LV68WLZs2SILFy6UOXPmmOBg8+bNJT4+Xr755hv59ttvpUCBAiYj1X7cK6+8IpMnT5aJEyfKsmXL5NChQzJz5szTPm/79u3lf//7n7z22mvy888/m4CjrleDjh9//LFZRrdjz5498uqrr5rbGiB99913Zdy4cbJx40bp0aOH3HvvvbJ06VJvMPfWW2+Vm266yfT1+eCDD0qfPn2yvE/0terr2bRpk3nu8ePHy6hRo/yW+e233+TDDz+U2bNny/z582Xt2rXy2GOPee//4IMPpH///ibgrK/vhRdeMMHWKVOmZHl7AAAAAAAAsoJyeyCTNNNTA6ILFiyQbt26eefnz5/fZEDaZfbvv/++yeDUeZrVqbRcX7NGte/QZs2ayejRo025vgYolQYxdb0Z+eWXX0yAUQOxmsmqNGMzbWl+iRIlzPPYmacaaFy0aJE0aNDA+xgNymqAtXHjxjJ27Fg5//zzTdBWaSbs+vXr5aWXXsrSvunXr5/335UqVZKnnnpKpk2bZjJkbSdPnjQB27Jly5rbr7/+urRq1co8t2bqDhgwwPzb3iea/apBV93WDh06ZGl7AAAAAAAAsoIgKXAGmh2qGZuaIarBz7vvvtuM1m6rVauWXz+kP/74o8ma1OxKXxok3Lp1qykx12zP+vXre+/LkyePXHrppelK7m2a5RkVFWUCm5ml23DixAm5/vrr/eZrNuvFF19s/q0Zm77boeyAalZMnz7dZLjq6zt27JgZ2KpgwYJ+y1SoUMEbILWfR/enZr/qvtLHdurUSTp37uxdRteTkJCQ5e0BAAAAAADICoKkwBloP52acamBUO13VAOavjST1JcGCevVq2fKx9MqXrz4WZf4Z5Vuh5o7d65fcFJpn6ZOWbFihdxzzz0yaNAg082ABjU1i9TOTs3KtmqZftqgrQaHAQAAAAAAgokgKXAGGgTVQZIy65JLLjGZlVr6njab0la6dGn5/vvv5eqrr/ZmTK5evdo8NhDNVtWsS+1L1C6392VnsuqAULYaNWqYYOjOnTszzEDVQZLsQahs3333nWTF8uXLzaBWzz77rHfe77//nm453Y7du3ebQLP9PJGRkabEv2TJkmb+tm3bTMAVAAAAAAAgJzFwE+AwDfIVK1bMjGivAzdt377d9EX6+OOPyx9//GGWeeKJJ+TFF1+UTz/9VDZv3mwGMDp8+HCG69R+PrVfzgceeMA8xl6n9lOqNEip/Z9q1wAHDhwwmZlawq59g+pgTTr4kZazr1mzxvQFag+G9Mgjj8ivv/4qvXr1MmXvU6dONQMwZcUFF1xgAqCaParPoWX3gQah0hHr9TVodwS6X3R/6Aj32h+p0kxUHWhKH699sGrfqNqX68iRI7O0PQAAAAAAAFlFkBRwWFxcnHz99demD04dhEizNbWvTe2T1M4sffLJJ+W+++4zQUPtm1MDmrfccstp16sl/7fffrsJqFarVs303Xn8+HFzn5bTa5BRR6bXrMyuXbua+UOGDDEjxGvwUbejRYsWpvxeB0VSuo0ff/yxCbzWqVPHDCClgz1lxc0332wCsfqcdevWNZml+pxpaTau7o+WLVuawatq164tb775pvf+Bx980Ax2pYFRzZzV7FcN2NrbCgAAAAAAECwRVkYjxQAAAAAAAABAGCCTFAAAAAAAAEBYI0gKAAAAAAAAIKwRJAUAAAAAAAAQ1giSAgAAAAAAAAhrBEkBAAAAAAAAhDWCpAAAAAAAAADCGkFSAAAAAAAAAGGNICkAAAAAAACAsEaQFAAAAAAAAEBYI0gKAAAAAAAAIKwRJAUAAAAAAAAQ1giSAgAAAAAAAJBw9n/3VhM5dgoHJAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABUkAAAHqCAYAAAA5289qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeINJREFUeJzt3QmcTfX7wPFnZphhGGM3lrEUWbKVyg8tKiF+olUqJKmEQgklayhJqp+lFGnxo5SKZC1USLayRGWJ7PJjLJkZc8//9Xz9z+3emTvMmHNnzrift9cxc88999xzzz137vc853m+3zDLsiwBAAAAAAAAgBAVntMbAAAAAAAAAAA5iSApAAAAAAAAgJBGkBQAAAAAAABASCNICgAAAAAAACCkESQFAAAAAAAAENIIkgIAAAAAAAAIaQRJAQAAAAAAAIQ0gqQAAAAAAAAAQhpBUgAAAAAAAAAhjSApAvrtt9+kadOmEhsbK2FhYfLZZ585uv6dO3ea9b777ruOrjc3a9y4sZmy25kzZ+SZZ56R+Ph4CQ8PlzZt2khuo8fS4MGDc3ozAAAAHPXggw9KxYoVc3oz4BI52eZdsmSJeX79iZw9fwMQPARJXWzbtm3y6KOPyiWXXCL58uWTQoUKSaNGjeS1116Tv//+O6jP3bFjR9mwYYMMHz5c3n//fbnqqqvkYmps6he87s9A+1EDxHq/TqNHj870+vfu3WsaL+vXr5fcYPLkyfLyyy/LXXfdJVOnTpVevXqlu6w2Aux9o1P+/Pmldu3aMnbsWPF4PNm63W6Wej/5Tlu2bBG32bx5szlm9eIFAAChSC/c+35f58mTR8qWLWvajXv27MnpzXPtfvKd+vXrJ240YsQIRxM+zrUPdFq5cqXkZuPHj3ddIovdtq5SpUrA+xcuXOjd/zNnzrzoz98ABE+eIK4bWfDll1/K3XffLVFRUdKhQwepWbOmJCUlyXfffSd9+vSRTZs2yVtvvRWU59bA4YoVK+S5556T7t27B+U5KlSoYJ4nb968khO04Xvq1CmZPXu23HPPPX73ffjhhyYoffr06Qtat37JDhkyxFz1r1u3boYft2DBAskJX3/9tTkJePXVVzO0fLly5WTkyJHm98OHD8u0adNMYPXQoUMmqI60+8lXmTJlxI1BUj1mtQFKtgoAIJQNHTpUKlWqZNqBGuzSYJG2vzdu3Gjah/DfT770fMWtQVJNBnC6WirQPlCVK1eW3B4kLV68uLlA4Ov6668352+RkZE5sl36+fv9999l1apVcs0114T0+RuA4CFI6kI7duyQe++91wQSNYBVunRp733dunUzXw4aRA0WDXapwoULB+059CpfTjY0NfisWbn//e9/0wRJNejXsmVL+eSTT7JlWzRYGx0dnWMNjoMHD2bqvdYuGB544AHv7ccee0yqVasmb7zxhmksRkREBGlLc5fU+8kplmWZBqBm8QIAAGfdeuut3gqqhx9+2ASLXnrpJfniiy/StBlDme9+ctLJkyelQIECEsr7wK20W66cPH+79NJLTTdhev7mGyTVdvGsWbNC6vwNQPBQbu9Co0aNkhMnTsg777zjFyD1vTr55JNPem/rl8WwYcPMF4cG//QK2LPPPiuJiYl+j9P5//73v83VcP1i0S85LeV/7733vMtomYEGZ5VmrGow084sS69PJH2MLpe65OHaa681wbeCBQtK1apVzTadr09SDQpfd911pnGkj23durX88ssvAZ9Pg8W6TbqcBqQ6depkvrAy6r777pOvvvpKjh496p33448/mnJ7vS+1I0eOyNNPPy21atUyr0nL9bVx9NNPP3mX0T56rr76avO7bo9d9mG/Ts3U06vsa9asMVdj9cvV3i+p+7TRLg/0PUr9+ps1ayZFihQxVzzP18h86qmnTF+jelzoe6DdB2iQzfc9+Oabb0xmsr2tme1nSLdRX/Px48dNwNX2888/m/fH7i4iLi5OHnroIfnrr78u+P3UY1qzVkuUKCExMTFy2223yZ9//hlwu9atW2feH32f9P26+eab05Q/2eVS+pl44oknzHr1+bWbC83c1mNDM7l1f+ukfbfa+y+rMvu5nT9/vmmIa3D0zTffNPfp9vXs2dP7HuvfBj2RS931wfTp06VevXpmn+n+0GNYu+2w94Fmrasbb7wxzXGwevVqc8zpSaI+t2ZM6PsIAEAo0Hap3Q2WTdsIAwcONN+t2mbRdqsup20qX3ZbS9tfWgFmf+dru0nbnKlpSbi2E7XdpD818HMhbTybPrdWhX388cdSo0YN8z3eoEED06WW0vaEth30+bQN6mS3O5lp02tFi7a9ta2l5w+2Dz74wOxj3e6iRYuaJJLdu3f7rUPb7XfeeadpZ+rr0EoeXe7YsWPefaD7S7uUsts4doaktl21HaVtLd2PJUuWlFtuuUXWrl2b5defnJxstlnbs6klJCSYbdXziswcT4Fk5vxsypQpctNNN5nXqa9Xj4kJEyb4LaPr0vOCpUuXeveXfX6SXp+kenzZ75O2FzVJIHUXFbqd2h7X+ZrRq79ru1v3QUpKimRUu3btZMaMGX5tXa0M1HOG9C5i6HNq27VUqVLmdV9++eWmu7FgnL/ZQVvd/5dddpl5n/V8/o477vD7G3KutjmAnEUmqQvpH3oNLDVs2DBDy+tVbv3i1zISbTD98MMPpsxXGyKpG1caiNLlOnfubIJw+gWhX1r6R1q/MPQPuDZkNBClX0ItWrQwX2KZoV+sGtTRvio1s1C/jPR5v//++3M+btGiRSaopa9dv1i0nEOzEzXjUxsrqRsA+kWoARt9rXr/22+/bb70NUiUEfpaNQvy008/9QZ9NItUsyKvvPLKNMtv377dNF41oKTPe+DAAdO4vOGGG0zjTsuoq1evbl6zNnQeeeQRb8Pa973UIKG+Tm3AaSNCv7AD0S9KbWDq+6TdH2iGpj6flnVoP7HnKtvWRrIGELVxpe+1lo1okE0D39pQ0NJ6bZjoerREXoPydmm4vobMsk8CfDNSNVCu+0wbG9pwtbuI0J8arEzdcMvI+6nHujaYtSGt+1T3j141Tk2fQ/e9Njo0sKndOui+00aMNvrq16/vt3yPHj3MNmqZjW6bbqe+luXLl0v58uVNmdbcuXNN363aSNLA6flog0+7I/ClDSX785SZz+3WrVvN51GDt126dDEnQ9oY1GNP30+dr9up29u/f3/Zt2+f6SfWfh/0sRoktvelPod+HvViizb2NED8+uuvmwaf/f7rTw166wBueqxoP2O6T/S91s8MAAChwA4cagDPN8il7RT9ftXvZQ22aXKDXlTUUuDU5bravtRl9Pta2z+aEKHtUG0n2V1PaftOg30auNL2gLYXtQ2lQb/MtvF8ffvttyYLVqvRlK5b2+naPtKy6scff1z+97//mW3S9rC2rTJCg5Cp2zkaILuQNr22rbWvSW1v2YFebZ8+//zzpn2obSatdNN1aLtFL4Rrm0SDi7rP9QKz3ZbTfTBnzhxzIVkDjtrW1cdrgoi2zZUGq5WeB2j/lRpI1v2u+1wvnGs7KdC5QEb2gb6/xYoVM+/r7bffbtpM2gb1zTjU8wndZj0XuJDj6UJpQFTP9/T40a7H9JxT338NONrHh7YfdV9qe1W7XlPpnasoDSTqcapBRj229PxIz2G0nWm/T75tY31N2g7XoL4eJ6+88op5P7p27Zqh16DnAHpMaWBTA77250vbuXrekJpuz7/+9S/vBQNt02qSjH52dL9rkNzJ8zd9jfr5Wrx4sVlW29r6fmp7XLvs0Nd6vrY5gBxmwVWOHTumLQOrdevWGVp+/fr1ZvmHH37Yb/7TTz9t5n/99dfeeRUqVDDzli1b5p138OBBKyoqynrqqae883bs2GGWe/nll/3W2bFjR7OO1AYNGmSWt7366qvm9qFDh9Ldbvs5pkyZ4p1Xt25dq2TJktZff/3lnffTTz9Z4eHhVocOHdI830MPPeS3zttvv90qVqxYus/p+zoKFChgfr/rrrusm2++2fyekpJixcXFWUOGDAm4D06fPm2WSf06dP8NHTrUO+/HH39M89psN9xwg7lv4sSJAe/Tydf8+fPN8i+88IK1fft2q2DBglabNm3O+xo/++wz7+N86esNCwuzfv/9d7/nvfzyy8+7TnvZatWqmfdWpy1btlh9+vQxz9WyZUu/ZU+dOpXm8f/973/THIMZfT/tY/3xxx/3W+6+++4z83U9Nt1HkZGR1rZt27zz9u7da8XExFjXX3+9d56+R/rYZs2aWR6Pxzu/QYMGZj899thj3nlnzpyxypUrl+Y9Sm8/6XpTT3rsXejndt68eX7LDhs2zBzHv/76q9/8fv36WREREdauXbvM7SeffNIqVKiQ2f70fPzxx+Y5vvnmG7/5s2bNMvP1mAYA4GJmtwkWLVpk2ji7d++2Zs6caZUoUcK09fS2Tb9TExMT/R7/v//9zypVqpRfe8ZuT2p75siRI975n3/+uZk/e/Zsv3Zw6dKlraNHj3rnLViwwCzn2/7OTBtPl9Nt1+2wvfnmm2a+tnkTEhK88/v372/m+y57rv0UaLrQNn27du38nmPnzp2mLTN8+HC/+Rs2bLDy5Mnjnb9u3TrzeG3HnIu2l+w2mK/Y2FirW7du53xsZveB7u/U7Xjf91m1aNHCuuSSSzJ9PKnUbd6Mnp+l1zbXNrDvtig9LwjU3tV2om97MSkpybzPNWvWtP7++2/vcnPmzDHLDRw40G87dZ7vOZO64oorrHr16lnn43u+ctVVV1mdO3f27idt80+dOtW7fb7Hgy6nn6vDhw/7re/ee+8177+9T5w6f5s8ebJZdsyYMWmWtc81MtI2B5BzKLd3Gb2ipTT1PiM0u0317t3bb75mpqnUfZfqVVL76pjSq2malaZXsp1iXzH8/PPPMzziuWa+6WiCmtWqpSk2zUbVshf7dfrSq7++9HXpVT57H2b0aqReidy/f7+5cq4/A5XaK82I1b547KuE+lx2VwKZKcvR9QQqvQlEs/g060CvbmrGgWYi2qXW56L7SzNPNUMw9XGh7Su9gnqhdHR2PW500qxbza7UK9Kpu07w7TNTy070SrteyVWB9tf53k/7GEj9mvQKsC99bzQbQ0t5NIPBpqUu+t5qhkDqY0SvJvtmtuoVbt1POt+m+1PL3TP6WdEsCb1S7Dtp1saFfG41w1avvKcubdJ9pJktum/tqUmTJmYfLFu2zPt51DIzff4L/SxrRoaWjQEAcLHT71Ft42gpu1Z7aOmzZmL6ZnRqm8DODNS2rnbJpN3oaDshUBunbdu2fpmodlvcblPY7WCtHtLsR5u2gbXtnpU2nmar+WZu2tU0mrXqe75hz89oO2fcuHFp2jlOtek1+1L3q2aR+rZxNFNUM07tMnR7X2kmbWa63PJt52glz/m6sMrMPvDd/5rpqNm1Wh5u06xdXU6PiQs9ni6Ub9vczoLVqiR9z+3uCTJDu2TSqiPNRvXtq1SrvPQcIdAYGoHa+5k9D9X2vB4jmkmsmcC6/zRrNzX9PGgfpa1atTK/+x5L2q7W15zR/ZvR8zd9Pn3PNRs3NftcIyttcwDBR5DUZbQ8WGlafkb88ccfJnCXehRFbUToH2C935eW5KamjTb9wnaKfulrOY2WtmgpgpYafPTRR+cMmNrbqQHH1LQEQr/M9MvkXK/Fbnxm5rVodwLaQNTGi46KqKUi6Y1IqduvJUzaONMvSv0C1Ea09r2ZmYaFjiSfmU6+tRxFG5na4NSS6EClJIH2p5bjpw6226XUqY+LzLCDf9og1TItfT1aApW6I3dt4GnJiB4D2ijTfWWPABpof53v/bSPdbtEypb6mNFt0YZyeseSvo+p+7NK/dx2o1tPkFLPz+jxpSdVeqLlO9knOpn93AYaOVX74Jo3b543YG1P+jzK7h9WG67aJ5KWCOkJnpbS6eMyQhvOehKl3RDo8a79iWl/Vqn7TQUA4GJhB740+KLtRG2DarsvNe0yRwN/2v7R8mr9Dtag0IW2cZS2MVNL3Z7JbBsvM20c3206Hy1fT93OudA2fep2jrZxNKil+yN1O0fLku02jj5OLzhrqbq2UzTwpe9fRtvl2sWAlkDrvtDXo2XcmQnYBdoH2r+7TUvatR2liSN220mDe3rh2TdImtnj6UJpObduo91PrD6H3bfmhTzPud5rDZKmPhb1telzZvU81O5zVgPSev6m5e2BEoz0nEC7XdButFIfR3bA03c8BSfO37TfUd0f+t6nJyttcwDBR5+kLgySasNHv7AzI3X/julJb+TxjAxGk95zpO5sWwNimsWmV3n1y13/6GsQUq+maoafU6OfZ+W12LTRqxma2jDRRpE2jtKj/SRp30j6RaYD7mjgUgNdmsmY0YxZldlRybU/H/sLXDva1z5scpId/LNpQFz7bdJGlgZxbXr1X/vI1D6ytC8lzbrV/dS8efOA+8uJ9/NCpffcgeY7uT0Z/dwGOmZ0H2pGhp2dmpo2vpQG1TXArkFtbUzqpIFO7VdVj/vzbZ+eJGo/rdpvla5Dj3/tP0rnZba/YgAA3E4DX/aI5VqVogMJaeaa9g9uf+9p/+iaKan3aztHv2u1zaB9MvoOzpLb2jjZtU3na+doG0fbINpmCbSdvu0PbZPoe6GBSD3P0AxbfR+0nZK6P9fUtK2qmYzaF7w+VqujtI9IDWRqAMsJGtDTKjB9LXq8aOKIBhDr1KnjXSazx9OFnJ/pejSrWJ97zJgxJjCsQT/N7NUkkMycy1wop84BtTpMxxnQ914Dv+mNaG+/Ju1DVLO0A9HAdDDO384lK21zAMFHkNSF9GqYXvHSwXp0BMpz0ZHo9QtAr7j6DrijnVTrlTN7pHon6JU+35HgbYGyEjV4qF/EOukXsQYYtfNvDZz6Bth8X4fSBmig8m69OqzBuWDQhq8OYKXbbHegHogGi/TqsHak7kv3id1RfWYCXxmhV9r1SqdmIGrn4XrFW8tJ7BEY06P7UztD14xk3yurui/t+52ijQttfGgDUEeo1IwFvSKsHZZrBqJ2gm7T4/RC2ce6fYXWlvqY0avDOupkeseSvs+psyeymxOfW82o1QG3An2eUtNGsJYa6aTPq1ew9f3SoL9ms57vmNVuEnTSQRS0c/z777/fjMqp2eIAAFys7ECVtv/+85//mEEM7TahdumjwTTf79BBgwZd0PPY3/uB2kmp2zPZ2ca7EE606bWNo8FazRS1L/qei44MrtOAAQPMBXq9gD9x4kR54YUXzP3naudowE3bRTppUoJe+Nf2jlNBUh1oSp9DE0Y04K7de9kDItmycjxl9PxML3ZrNqt2HeGbXWx3XeAro+cyvu+1PYiSTecF81jU8zdth2pGrGZ8B6LnBPoZ0YDx+drLTp2/6bGrXThotrA9KNuFtM0B5BzK7V1IM8O08aB/+DVokpoGiXTUQGV/KdgjWds0MKkCjfydlT/6Wtqg5eU27Xco9UjcWmadmj0qY3plutp40GX06pnvF71m1OqV3fS+/JygDV/NDNXGr5Y7n6uhnPrquvYLqaNo+rIbfoEaLJnVt29f2bVrl9kv+p5qqbteCT1fubPuL20Q6GvypVeKtRHgVMPP95jVxoB93NlXilPvr9THaWbY2+ybrRponfrc2perZhTYI9Iq/SxpgE8bqHa3FjnFic+tZj/ohRS9Cp2aHnval5XSfl19aZDYvmpuH0fpHbMa7E79Hp7vswwAwMVEM9Y0u1S/s7WP9fTaORoY0e/lC+HbDvYte9ay/82bN+doGy+znGjTa5WX7mO92J66HaK37baN9jFvt3dsGizVto5vO0XbOanbOLoPU5eYa4afVvQ52cbRbdG+bTVI+f7775vtTV1qn5XjKaPnZ4GeQx+nGYypBdpfgWjGte4zDUj77jPNjNRuEZw8D01N96kGkbXrr/TK4PU1a3cHmmkaqEpTy/GdPn/T59MuJVJ/Pn33fUba5gByDpmkLqRfdhrM0S9QzTLT1PuaNWuazqn16qgG5rQkQ2mphgbNNPNU/6hrH4KrVq0yDRMt2fDtFyerNMtSg3aayailLNrv44QJE8wVXt9Or3WQIS231y9GvYKoV2X1C0xLXjRAlR4tcdGGnWbP6oA5f//9t7zxxhumj6RzlcFnlX4x6ZXnjGT46mvTzE7N6tTSd+0Hx3dwIPv906ua2mDQq5f6paud4QfqV/Jc9Eqz7jdtAOhVbaUNGW2s61VGzSpNj16V1Pder1RroFCPE22YauBQuwdI3a9nVmmmqzZ6tU8o3TbtS0mvnOs2avBU+/HR59+xY8cFP4c2uLWrAd0n2qjT90CzVX///fc0y2rmgJ5Y6PGmV2a1XyC9OqsNj3Ptt+zixOdWy7E0G0CPS/17UK9ePZN5rMelZiTo+67ZGnqxRS9c6BV+/QxqZoF+rnR/2lms+rs2JLXETPetdkOhy+vfId3f+pnXY0azViZNmmSCzMG8cAEAgJvod+7dd99tBqnUgWf0u1ez/vT7Udu72r7Rdp+2h7TK40JoxqquS9su2rWNfnfr9/Xll1/ut87sbuNdiKy26fU1aFuuf//+5jVq20jb1LqfNfj3yCOPmOolbSt3797dvDd6PqIBSA1E2sExm7aRNPtWL0ZrEFTb5FqVpO0iDbbpPtQSfl3mxx9/NGXcGaHBQDuD15e2UX3PD/ScTl+/tuk1iOtbRaSycjxl9PxMEwjs7EUdFFbXq206DXJqUNWX7i9dh74HmtWoy6TOFFWaKaltRz030rasttM1KUGTeTSxo1evXhIsGT2WXnzxRZMtq+diXbp0MftUP1u6b/T9tpN7nDp/0/P29957z/SVq2177c5B2+f6XHpOov37Z6RtDiAHpT/wPXLar7/+anXp0sWqWLGiFRkZacXExFiNGjWy3njjDev06dPe5ZKTk60hQ4ZYlSpVsvLmzWvFx8db/fv391tGVahQwWrZsmWa57nhhhvMZNuxY4de5rJefvnlNMsuWLDAqlmzptmeqlWrWh988IE1aNAgs7xt8eLFVuvWra0yZcqY5fRnu3btzOtJ/RxTpkzxW/+iRYvMa8yfP79VqFAhq1WrVtbmzZv9lrGf79ChQ37zdV06X9d9Lh07drQKFChwzmUC7QPdn0899ZRVunRps326nStWrEiz/9Tnn39u1ahRw8qTJ4/f69TlLr/88oDP6buehIQE835deeWV5v311atXLys8PNw897kcP37cLKv7X4+LKlWqmNfj8XjSPG962xRoG9NbdsmSJea16vuj/vzzT+v222+3ChcubMXGxlp33323tXfvXr9lMvt+/v3339YTTzxhFStWzLyHenzs3r07zTrV2rVrrWbNmlkFCxa0oqOjrRtvvNFavnx5wOf48ccf/eant00ZOXbOt5+c+tza77E+pnLlyuazVrx4cathw4bW6NGjraSkJLPMzJkzraZNm1olS5Y0y5QvX9569NFHrX379vmta9KkSdYll1xiRUREmNf+zTffmH2on119TFRUlFnHv//9b2v16tXn3QcAAOQm6bUJVEpKinXppZea6cyZM6YtNWLECPMdrd+PV1xxhTVnzhzTTtB5GWlTB2q7fPLJJ1b16tXNOrUd+emnn6ZZZ2baePoc3bp185uX3jbp977O//jjjy94PznVpvfdH9dee61pe+lUrVo183q2bt1q7t++fbv10EMPmfclX758VtGiRU17T5/b15YtW6zrr7/ebIs+n+7TxMREq0+fPladOnXMOZauX38fP378OV+X7z5Ib0p9fqPvi7bz9L4XXnghzfoyejyld9xk5PxMffHFF1bt2rXNvtLzy5deesmaPHlymvb2/v37TdtT94veZ5+f2MeI/vQ1Y8YMs8267foe3H///eY8ICNt6EDbeaFt6/SO4QMHDpjjRt8D/bzExcVZN998s/XWW285ev5mO3XqlPXcc8952/j6fHfddZe1bdu2TLXNAeSMMP0vJ4O0AAAAAAAAAJCT6JMUAAAAAAAAQEgjSAoAAAAAAAAgpBEkBQAAAAAAABDSCJICAABk0LJly8zowDpCclhYmHz22WfnfcySJUvkyiuvlKioKDNSsI6QDQAAAMBdCJICAABk0MmTJ6VOnToybty4DC2/Y8cOadmypdx4442yfv166dmzpzz88MMyf/78oG8rAAAAgIxjdHsAAIALoJmks2bNkjZt2qS7TN++feXLL7+UjRs3eufde++9cvToUZk3b142bSkAAACA88kjuZjH45G9e/dKTEyMOVEBAOBC6TXD48ePmzLq8HB3FFqcPn1akpKSHFtfZGSk5MuXz7H14fxWrFghTZo08ZvXrFkzk1GansTERDP5tneOHDkixYoVo70DAAAABOk8L1cHSTVAGh8fn9ObAQC4iOzevVvKlSvnigBppQoFZf/BFMfWGRcXZ8q/CZRmn/3790upUqX85unthIQE+fvvvyV//vxpHjNy5EgZMmRINm4lAAAAcHHLyHlerg6SagapulZaSB7Jm9ObA7jW8buvzulNAFwvJfm0rP/sBe93S07TDFINkP6xpqIUisl6ZmvCcY9UqLfTrJcgqbv1799fevfu7b197NgxKV++vGnYFSpUKEe3DQAAAMhNNDlBEywzcp6Xq4OkdsmZBkjzhBEkBdITkZeACJBRbitnLhgTZqas8oi7Xleo0OzdAwcO+M3T2xrsDJRFqqKiosyUmj6GICkAAAAQnPO8XB0kBQDgYpdieSTFcmY9yH4NGjSQuXPn+s1buHChmQ8AAADAPdwxMgUAAEAucOLECVm/fr2ZlPbxqr/v2rXLWyrfoUMH7/KPPfaYbN++XZ555hnZsmWLjB8/Xj766CPp1atXjr0GAAAAAGmRSQoAgIt5xDKTE+tB1q1evVpuvPFG722779COHTvKu+++K/v27fMGTFWlSpXkyy+/NEHR1157zXQW//bbb5sR7gEAAAC4B0FSAACADGrcuLFYVvoBZw2UBnrMunXrgrxlAAAAALKCICkAAC7mMf+cWQ8AAAAAIDCCpAAAuFiKZZnJifUAAAAAAAJj4CYAAAAAAAAAIY1MUgAAXIyBmwAAAAAg+AiSAgDgYhrcTCFICgAAAABBRbk9AAAAAAAAgJBGJikAAC5GuT0AAAAABB+ZpAAAAAAAAABCGpmkAAC4WIplmcmJ9QAAAAAAAiNICgCAi3n+f3JiPQAAAACAwCi3BwAAAAAAABDSyCQFAMDFUsQykxPrAQAAAAAERpAUAAAXS7HOTk6sBwAAAAAQGOX2AAAAAAAAAEIamaQAALgYAzcBAAAAQPARJAUAwMU8EiYpEubIegAAAAAAgVFuDwAAAAAAACCkkUkKAICLeayzkxPrAQAAAAAERiYpAAAAAAAAgJBGJikAAC6W4lCfpE6sAwAAAAAuVmSSAgCQC4KkTkyZMWHCBKldu7YUKlTITA0aNJCvvvoqzXKWZcmtt94qYWFh8tlnn/ndt2vXLmnZsqVER0dLyZIlpU+fPnLmzJks7xMAAAAAcBqZpAAAII1y5crJiy++KFWqVDGB0KlTp0rr1q1l3bp1cvnll3uXGzt2rAmQppaSkmICpHFxcbJ8+XLZt2+fdOjQQfLmzSsjRozI5lcDAAAAAOdGJikAAC7mscIcmzKjVatW0qJFCxMkveyyy2T48OFSsGBBWblypXeZ9evXyyuvvCKTJ09O8/gFCxbI5s2b5YMPPpC6deuabNNhw4bJuHHjJCkpyZF9AwAAAABOIUgKAEAIldsnJCT4TYmJieffhpQUmT59upw8edKU3atTp07JfffdZ4Kemi2a2ooVK6RWrVpSqlQp77xmzZqZ59y0aZOj+wgAAAAAsoogKQAAISQ+Pl5iY2O908iRI9NddsOGDSZ7NCoqSh577DGZNWuW1KhRw9zXq1cvadiwoSnBD2T//v1+AVJl39b7AAAAAMBN6JMUAAAXS5FwM2V9PWft3r3bDMRk0wBoeqpWrWpK6o8dOyYzZ86Ujh07ytKlS+X333+Xr7/+2vRPCgAAAAAXA4KkAACEEHu0+oyIjIyUypUrm9/r1asnP/74o7z22muSP39+2bZtmxQuXNhv+TvvvFOuu+46WbJkiSnBX7Vqld/9Bw4cMD8DlecDAAAAQE6i3B4AABezHBq0SdeTVR6Px/Rh2q9fP/n5559Nlqk9qVdffVWmTJlifte+S7Vc/+DBg97HL1y40ARo7ZJ9AAAAAHALMkkBAHAx30GXsrqezOjfv78Zkb58+fJy/PhxmTZtmskQnT9/vskEDZQNqstWqlTJ/N60aVMTDG3fvr2MGjXK9EM6YMAA6dat2zlL/AEAAAAgJxAkBQAAaWgGaIcOHWTfvn1mgKfatWubAOktt9ySocdHRETInDlzpGvXriartECBAqZP06FDhwZ92wEAAAAgswiSAgDgYilWuJmyvp7MLf/OO+9kannLSvsEFSpUkLlz52buiQEAAAAgBxAkBQDAxTwSJh4HuhD3SCajpAAAAAAQQhi4CQAAAAAAAEBII5MUAAAXy6mBmwAAAAAglBAkBQAgJPokpdweAAAAANJDuT0AAAAAAACAkEYmKQAArh+4Keul8k6sAwAAAAAuVmSSAgAAAAAAAAhpZJICAOBiHgmXFAeuaXqEPkkBAAAAID0ESQEAcDEGbgIAAACA4KPcHgAAAAAAAEBII5MUAACXl9vrlPX1kEkKAAAAAOkhSAoAgIulWGFmcmI9AAAAAIDAKLcHAAAAAAAAENLIJAUAwMVSHBrdPoVyewAAAABIF0FSAABczGOFmynr6yFICgAAAADpodweAAAAAAAAQEgjkxQAABej3B4AAAAAgo9MUgAAAAAAAAAhjUxSAABczKNZoFaYI+sBAAAAAARGkBQAABfzSLiZnFgPAAAAACAwzpgAAAAAAAAAhDQySQEAcLEUK9xMTqwHAAAAABAYQVIAAFzMI2FmcmI9AAAAAIDASCsBAAAAAAAAENLIJAUAwMUotwcAAACA4OOMCQAAAAAAAEBII5MUAAAXS5FwMzmxHgAAAABAYARJAQBwMY8VZiYn1gMAAAAACIy0EgAAAAAAAAAhjUxSAABczONQub2uBwAAAAAQGEFSAABczGOFm8mJ9QAAAAAAAuOMCQAAAAAAAEBII5MUAAAXS5EwMzmxHgAAAABAYARJAQBwMcrtAQAAACD4OGMCAAAAAAAAENLIJAUAwMVSHCqV1/UAAAAAAAIjkxQAAAAAAABASCOTFAAAF6NPUgAAAAAIPoKkAAC4WIoVbiYn1gMAAAAACIwzJgAAgEwYN26cVKxYUfLlyyf169eXVatWnXP5sWPHStWqVSV//vwSHx8vvXr1ktOnT2fb9gIAAAA4PzJJAQBwMUvCxOPAwE26HmTdjBkzpHfv3jJx4kQTINUAaLNmzWTr1q1SsmTJNMtPmzZN+vXrJ5MnT5aGDRvKr7/+Kg8++KCEhYXJmDFjcuQ1AAAAAEiLTFIAAHJBub0TE7JOA5tdunSRTp06SY0aNUywNDo62gRBA1m+fLk0atRI7rvvPpN92rRpU2nXrt15s08BAAAAZC/OmAAAADIgKSlJ1qxZI02aNPHOCw8PN7dXrFgR8DGaPaqPsYOi27dvl7lz50qLFi3SfZ7ExERJSEjwmwAAAAAEF+X2AAC4mMcKM5MT60HWHD58WFJSUqRUqVJ+8/X2li1bAj5GM0j1cddee61YliVnzpyRxx57TJ599tl0n2fkyJEyZMgQx7cfAAAAQPrIJAUAwMVSJNyxKTMmTJggtWvXlkKFCpmpQYMG8tVXX5n7jhw5Ij169PAORlS+fHl54okn5NixY37r2LVrl7Rs2dKUo2t/nX369DFBwlCyZMkSGTFihIwfP17Wrl0rn376qXz55ZcybNiwdB/Tv39/sy/taffu3dm6zQAAAEAoIpMUAACkUa5cOXnxxRelSpUqJgNy6tSp0rp1a1m3bp25vXfvXhk9erTpl/OPP/4w2ZE6b+bMmebxmnGpAdK4uDjTL+e+ffukQ4cOkjdvXhM0zI2KFy8uERERcuDAAb/5eltfZyDPP/+8tG/fXh5++GFzu1atWnLy5El55JFH5LnnnjPl+qlFRUWZCQAAAED2IZMUAIBcUG7vxJQZrVq1Mv1mapD0sssuk+HDh0vBggVl5cqVUrNmTfnkk0/MMpdeeqncdNNN5v7Zs2d7M0UXLFggmzdvlg8++EDq1q0rt956q8meHDdunOnbMzeKjIyUevXqyeLFi73zPB6Pua2ZtoGcOnUqTSBUA61Kg80AAAAA3IEgKQAAOCfNCp0+fbrJgEwvGKhl4VqWnyfP2SIVHchIsyZ9++9s1qyZGYRo06ZNklv17t1bJk2aZDJrf/nlF+natavZLzravdJsWS2Xt2kgWbsu0P23Y8cOWbhwocku1fl2sBQAAABAzqPcHgAAF/NIuJmcWI9KPVL6uUq7N2zYYIKip0+fNlmks2bNMuX1qenARJolqiXktv379wcc4Mi+L7dq27atHDp0SAYOHGheh2bJzps3z/vatB9W38zRAQMGSFhYmPm5Z88eKVGihAmQauYtAAAAAPcgSAoAgIulWGFmcmI9Kj4+3m/+oEGDZPDgwQEfowMzrV+/3mSJal+jHTt2lKVLl/oFSjXoqn2P6rz01nOx6d69u5nSG6jJl2bW6j7WCQAAAIB7ESQFACCE6EjpWhZvO9cAQdoHZ+XKlc3v2hfnjz/+KK+99pq8+eabZt7x48elefPmEhMTY7JMdVAmmw5ktGrVKr/12QMepTfIEQAAAADkFPokBQAghAZu0gCp75SZUdR1kKLExERvBmnTpk1NIPWLL76QfPny+S2rZfparn/w4EHvPO2PU58zUMk+AAAAAOQkMkkBAHAxywoXjxXuyHoyQwcf0hHpy5cvbzJGp02bZkrJ58+f7w2Q6sjtOnq93rb7OtU+N3VAIr1fg6Ht27eXUaNGmf47tV/Obt26ZSowCwAAAADZgSApAABIQzNAdaT2ffv2SWxsrNSuXdsESG+55RYTLP3hhx/McnY5vk1HcK9YsaIJlM6ZM8eM/q5ZpQUKFDB9mg4dOjSHXhEAAAAApI8gKQAALpYiYWZyYj2Z8c4776R7X+PGjcWyrPOuo0KFCjJ37txMPS8AAAAA5AT6JAUAAAAAAAAQ0sgkBQDAxTzW2cGbnFgPAAAAACAwgqQ4r7bdD0ijFsckvnKiJJ0Ol82ro+Wd4aXlz23/jGScN8ojjwzaK41vOyp5oyxZsyRG3uhfVo4ezuu3rlvuOSJ3PHJIyl2SKKdORMiyObEy7tlyOfCqAGd1uGmd3FBrh1QoeVQSkyNkwx9xMn5Ofdl1qHCApS0Z8/BX0qD6buk7paks21jJzG1x9VZ5/t4lAdffYlAH+d+J/EF+FXAjj0MDNzmxDgAAAAC4WBEkxXnVbnBSZr9bXH5dHy0ReSx5sN8+GfHf7dLlhqqS+HeEWeaxwXvlmiYJ8sKjFeRkQoR0G75HBr6zU3q3ruJdjwZH73z0oLz9QhnZsjZa8kV7pFR8Ug6+MsA5V1y6Vz5Zfrn8squERIRb8liLVTL2kS/lvpfvkdNJ/hcL7r1+gwRK6lu87lJZuSXeb97z934jkXlSCJACAAAAABBErkgrGTdunBkJN1++fFK/fn1ZtWpVTm8SfDx3/yWy8KOi8sev+WT75vzySs/yUqpcslSp/be5PzomRZq1OyJvDi4jP30fI79viJYxvePl8qtPSbUrT5plCsaekY5998nLT5aXb2YVkX1/RMmOX/LLygWxOfzqAGf0mtRS5v5YVXYcKCq/7ysmL0xvLKWLnpBq5Q75LVelzGFpd8PPMnxG4zTrSDyTR44cj/ZOHk+Y1Ku8V2avqpaNrwRu45EwxyYAAAAAgEuDpDNmzJDevXvLoEGDZO3atVKnTh1p1qyZHDx4MKc3DekoUCjF/Dx+9GwWaZXapyRvpCXrvo3xLrP793xy4M+8Ur3eKXP7yutPSHiYSPG4ZJm0dIt8sHqzPDdxp5QoQyYpLk4F8509thNO/dMtRVTeZBly/2IZ/em1Jgh6Prde9aucTs4j3/x0SVC3Fe6WYoU5NgEAAAAAXBokHTNmjHTp0kU6deokNWrUkIkTJ0p0dLRMnjw5pzcNAYSFWfLYkD2ycVW0/LH1bPlv0ZJnJCkxzJTZ+zp6KI8ULZlsfo+rkChh4SL3PnFQJg4sIy88UkFiiqTIyOnbJU9eT468FiCYn5OebZbLTzviZPv+ot75PVuvMH2VfrupYobW0+qaLbJgbWWTYQoAAAAAAC7SIGlSUpKsWbNGmjRp8s8GhYeb2ytWrEizfGJioiQkJPhNyF7dR+yRCtVOy8iuFTL1OM0i1WzT8c+XlTVLC8mWtQXMOspUSpQ6DU8EbXuBnPD0Hd/JJXFH5Pn3b/bOu/bynVKv8h4Z+1nDDK2jZoX9UinuKKX28A7c5MQEAAAAAAgsR9OTDh8+LCkpKVKqVCm/+Xp7y5YtaZYfOXKkDBkyJBu3EL66Df9T6t+SIE/dfqkc3hfpnX/kYB6JjLJMGb5vNmnhEmfkyMGzA9bYP3f9GuW9/9iRPJJwJI+ULHs22xS4GDx1+3fSqMYf0nXcbXLoWEHv/Ksq75GyxRJkwQtT/JYf0XGh/LQ9TrpNuM1v/m31t8ive4rJ1j9LZNu2w51Mf6IOlMrTJykAAAAApC9X1XD279/f9F9q00zS+Hj/kaARDJYZrb5h82PS567KcmD3P4FO9dvP0ZKcFCZXXHtcvptb2Mwrd+lpM7jTL2vO9ru46ccC/z8/0RtgjSl8RgoVPSMH9vwTcAVyL0ueuv17uaHWDnl8/G2y70ghv3vf+/oK+eKH6n7zPuzzsbz2eQP5brN/Znb+yGS5qc52mTj3mmzZcgAAAAAAQl2OBkmLFy8uERERcuDAAb/5ejsuLi7N8lFRUWZC9pfY33j7/2Rwp0ry94lwKVLibObnyeMRknQ6XE4dj5D5/y0qjwzeK8eP5pGTx8NNUHXz6mhTVq/2bI+S5fMKSdehe+W1Z8qZZR56dr/8+XuU/PT9P9l2QG4usW965e/Sd3IzOZWYV4rGnB207OTfkX6j1qd24GjBNAHVJnW3SZ4Ij8xbUyXbth/uZTk0Mr2uBwAAAADgwiBpZGSk1KtXTxYvXixt2rQx8zwej7ndvXv3nNw0+Gj14F/m5+hPt/nNH90zXhZ+dHZQmomDy4jHEnl+0k7JG2XJ6iUx8p/+Zf2Wf/mJ8vLokL0y9L0dYnlEfl5ZUJ67/xJJOcOJO3K/OxttNj/Hd5vtN3/Y9MYy98eqmVpXq/pbZMmGSnLiNBeFAAAAAADIDmGWZVmSg2bMmCEdO3aUN998U6655hoZO3asfPTRR6ZP0tR9laam5faxsbHSWFpLnrCzfV4CSCuh3b9yehMA10tJPi1rPh4gx44dk0KF/LN7c4L9HXfnoo6St0DWuyVJPpkknzSZ6prXh8wfC7x3AAAAQPDa0jneJ2nbtm3l0KFDMnDgQNm/f7/UrVtX5s2bd94AKQAAocCpkekZ3R4AAAAAXBwkVVpaT3k9AAAAAAAAgJANkgIAgMA8VpiZnFgPAAAAACAwgqQAALiYx6HR7Z1YBwAAAABcrOigDAAAAAAAAEBII5MUAAAXo9weAAAAAIKPICkAAC5GkBQAAAAAgo9yewAAAAAAAAAhjUxSAABcjExSAAAAAAg+MkkBAAAAAAAAhDQySQEAcDEySQEAAAAg+AiSAgDgYpYGOCXMkfUAAAAAAAKj3B4AAAAAAABASCOTFAAAF6PcHgAAAACCjyApAAAuRpAUAAAAAIKPcnsAAAAAAAAAIY1MUgAAXIxMUgAAAAAIPjJJAQAAAAAAAIQ0MkkBAHAxMkkBAAAAIPgIkgIA4GKWFWYmJ9YDAAAAAAiMcnsAAAAAAAAAIY1MUgAAXMwjYWZyYj0AAAAAgMAIkgIA4GL0SQoAAAAAwUe5PQAAAAAAAICQRiYpAAAuxsBNAAAAABB8BEkBAHAxyu0BAAAAIPgotwcAAAAAAAAQ0sgkBQDAxSi3BwAAAIDgI5MUAAAAAAAAQEgjkxQAABfTDFAn+hMlkxQAAAAA0keQFAAAF7NMgNOZ9QAAAAAAAqPcHgAAAAAAAEBII0gKAICLeSTMsSkzJkyYILVr15ZChQqZqUGDBvLVV1957z99+rR069ZNihUrJgULFpQ777xTDhw44LeOXbt2ScuWLSU6OlpKliwpffr0kTNnzji2bwAAAADAKQRJAQDIBaPbOzFlRrly5eTFF1+UNWvWyOrVq+Wmm26S1q1by6ZNm8z9vXr1ktmzZ8vHH38sS5culb1798odd9zhfXxKSooJkCYlJcny5ctl6tSp8u6778rAgQMd30cAAAAAkFX0SQoAANJo1aqV3+3hw4eb7NKVK1eaAOo777wj06ZNM8FTNWXKFKlevbq5/1//+pcsWLBANm/eLIsWLZJSpUpJ3bp1ZdiwYdK3b18ZPHiwREZG5tArAwAAAIC0yCQFAMDFdGR7p6YLpVmh06dPl5MnT5qye80uTU5OliZNmniXqVatmpQvX15WrFhhbuvPWrVqmQCprVmzZpKQkODNRgUAAAAAtyCTFACAEKJBSl9RUVFmCmTDhg0mKKr9j2q/o7NmzZIaNWrI+vXrTSZo4cKF/ZbXgOj+/fvN7/rTN0Bq32/fBwAAAABuQiYpAAAuZlnOTSo+Pl5iY2O908iRI9N97qpVq5qA6A8//CBdu3aVjh07mhJ6AAAAALjYkEkKAICLXcigS+mtR+3evduMVm9LL4tUabZo5cqVze/16tWTH3/8UV577TVp27atGZDp6NGjftmkOrp9XFyc+V1/rlq1ym99er99HwAAAAC4CZmkAACEEA2Q+k7nCpKm5vF4JDEx0QRM8+bNK4sXL/bet3XrVtm1a5cpz1f6U8v1Dx486F1m4cKF5jm1ZB8AAAAA3IRMUgAAQiiTNKP69+8vt956qxmM6fjx42Yk+yVLlsj8+fNNmX7nzp2ld+/eUrRoURP47NGjhwmM6sj2qmnTpiYY2r59exk1apTph3TAgAHSrVu3TAVmAQAAACA7ECQFAMDFdFT6MAeCpJkd3V4zQDt06CD79u0zQdHatWubAOktt9xi7n/11VclPDxc7rzzTpNdqiPXjx8/3vv4iIgImTNnjunLVIOnBQoUMH2aDh06NMuvBQAAAACcRpAUAACk8c4775zz/nz58sm4cePMlJ4KFSrI3Llzg7B1AAAAAOAsgqQAALiY78j0WV0PAAAAACAwgqQAALg+SOpEn6SObA4AAAAAXJQY3R4AAAAAAABASCOTFAAAF8up0e0BAAAAIJSQSQoAAAAAAAAgpJFJCgCAi2lXok50J0qXpAAAAACQPoKkAAC4GOX2AAAAABB8lNsDAAAAAAAACGlkkgIA4GbU2wMAAABA0JFJCgCAm/1/uX1WJ10PnDFu3DipWLGi5MuXT+rXry+rVq065/JHjx6Vbt26SenSpSUqKkouu+wymTt3brZtLwAAAIDzI5MUAAAgg2bMmCG9e/eWiRMnmgDp2LFjpVmzZrJ161YpWbJkmuWTkpLklltuMffNnDlTypYtK3/88YcULlw4R7YfAAAAQGAESQEAcDHLOjs5sR5k3ZgxY6RLly7SqVMnc1uDpV9++aVMnjxZ+vXrl2Z5nX/kyBFZvny55M2b18zTLFQAAAAA7kK5PQAALuZEqb235B5Zolmha9askSZNmnjnhYeHm9srVqwI+JgvvvhCGjRoYMrtS5UqJTVr1pQRI0ZISkpKus+TmJgoCQkJfhMAAACA4CJICgAAkAGHDx82wU0NdvrS2/v37w/4mO3bt5sye32c9kP6/PPPyyuvvCIvvPBCus8zcuRIiY2N9U7x8fGOvxYAAAAA/ii3BwDAzZwadIlM0hzh8XhMf6RvvfWWRERESL169WTPnj3y8ssvy6BBgwI+pn///qbfU5tmkhIoBQAAblOx35c5vQnIJXa+2FJyA4KkAAAAGVC8eHET6Dxw4IDffL0dFxcX8DE6or32RaqPs1WvXt1knmr5fmRkZJrHREVFmQkAAABA9iFICgCAizFwk3toQFMzQRcvXixt2rTxZorq7e7duwd8TKNGjWTatGlmOe2/VP36668meBooQAoACF1k5eFiysgDciP6JAUAwM0sBydkmZbBT5o0SaZOnSq//PKLdO3aVU6ePOkd7b5Dhw6mXN6m9+vo9k8++aQJjn755Zdm4CYdyAkAAACAe5BJCgAAkEFt27aVQ4cOycCBA03JfN26dWXevHnewZx27drlzRhV2pfo/PnzpVevXlK7dm0pW7asCZj27ds3B18FEBrIykNGkJUHALARJAUAwMUsK8xMTqwHztDS+vTK65csWZJmXoMGDWTlypXZsGUAAAAALhRBUgAA3I5SeQAAAADI+SDpF198keEV3nbbbVnZHgAAAAAAAABwX5DUHsH1fMLCwiQlJSWr2wQAAP4f5fYAAAAA4JIgqcfjCf6WAAAAAAAAAEAO+Gf41Qtw+vRp57YEAAAE7o/UqQkAAAAA4EyQVMvphw0bJmXLlpWCBQvK9u3bzfznn39e3nnnncyuDgAAnFOYgxMAAAAAwJEg6fDhw+Xdd9+VUaNGSWRkpHd+zZo15e23387s6gAAAAAAAAAgdwVJ33vvPXnrrbfk/vvvl4iICO/8OnXqyJYtW5zePgAAQhvl9gAAAADgjoGbfO3Zs0cqV64ccHCn5ORkp7YLAACIgwFOgqQAAAAA4FwmaY0aNeTbb79NM3/mzJlyxRVXZHZ1AAAAAAAAAJC7MkkHDhwoHTt2NBmlmj366aefytatW00Z/pw5c4KzlQAAhCor7OzkxHoAAAAAAM5kkrZu3Vpmz54tixYtkgIFCpig6S+//GLm3XLLLZldHQAAOAfLcm4CAAAAADiUSaquu+46Wbhw4YU8FAAAAAAAAAByf5BUrV692mSQ2v2U1qtXz8ntAgAAioGbAAAAAMB9QdI///xT2rVrJ99//70ULlzYzDt69Kg0bNhQpk+fLuXKlQvGdgIAAAAAAACAO/okffjhhyU5OdlkkR45csRM+rsO4qT3AQCAIAzc5MQEAAAAAHAmk3Tp0qWyfPlyqVq1qnee/v7GG2+YvkoBAIBzwqyzkxPrAQAAAAA4lEkaHx9vMklTS0lJkTJlymR2dQAAAAAAAACQu4KkL7/8svTo0cMM3GTT35988kkZPXq009sHAEBosxycAAAAAAAXXm5fpEgRCQv7py+zkydPSv369SVPnrMPP3PmjPn9oYcekjZt2mRklQAAICOc6k+UPkmRRRX7fZnTm4BcYOeLLXN6EwAAAIIXJB07duyFrR0AAAAAAAAALoYgaceOHYO/JQAAIC2nSuUptwcAAAAA50a393X69GlJSkrym1eoUKGsrBIAAPgiSAoAAAAA7hu4Sfsj7d69u5QsWVIKFChg+iv1nQAAAAAAAADgog6SPvPMM/L111/LhAkTJCoqSt5++20ZMmSIlClTRt57773gbCUAAKGK0e0BAAAAwH1B0tmzZ8v48ePlzjvvNCPaX3fddTJgwAAZMWKEfPjhh8HZSgAAkK1GjhwpV199tcTExJjqkTZt2sjWrVv9ltm/f7+0b99e4uLiTHXJlVdeKZ988onfMkeOHJH777/fdMdTuHBh6dy5s5w4cSKbXw0AAAAAOBwk1ZOdSy65xPyuJzx6W1177bWybNmyzK4OAACcixXm3JQJS5culW7dusnKlStl4cKFkpycLE2bNjXd7tg6dOhgAqdffPGFbNiwQe644w655557ZN26dd5lNEC6adMms445c+aYtsIjjzzi6C4CAAAAgGwPkmqAdMeOHeb3atWqyUcffeTNMNUMEQAA4Jwwy7kpM+bNmycPPvigXH755VKnTh159913ZdeuXbJmzRrvMsuXL5cePXrINddcY9oHWlmibQF7mV9++cWsR7vmqV+/vrmg+sYbb8j06dNl7969Tu8qAAAAAMi+IGmnTp3kp59+Mr/369dPxo0bJ/ny5ZNevXpJnz59LnxLAABA0CUkJPhNiYmJGXrcsWPHzM+iRYt65zVs2FBmzJhhqko8Ho8Jfp4+fVoaN25s7l+xYoUJml511VXexzRp0kTCw8Plhx9+cPy1AQAAAMCFypPZB2gw1PdEZ8uWLSZjpHLlylK7dm2ntw8AgNDm1KBL/7+O+Ph4v9mDBg2SwYMHn/OhGgDt2bOnNGrUSGrWrOmdr9Ukbdu2lWLFipl+yqOjo2XWrFmmTWD3War9mfrS5TTQqvcBAAAAQK4NkqZWoUIFMwEAAPfbvXu36VPcFhUVdd7HaN+kGzdulO+++85v/vPPPy9Hjx6VRYsWSfHixeWzzz4zfZJ+++23UqtWraBsPwAAAADkWJD09ddfz/AKn3jiiaxsDwAACCINkPoGSc+ne/fu3gGXypUr552/bds2+c9//mOCp9pvqdK+SzVAql3xTJw40Yx6f/DgQb/1nTlzxpTn630AAAAAkKuCpK+++mqGVhYWFkaQFAAAB+mY9JkddCm99WSGZVlmUCYtn1+yZIlUqlTJ7/5Tp06Zn9q/qK+IiAhTnq8aNGhgMk21W5569eqZeV9//bW5XwdyAgAAAIBcFSS1R7N3qzON64rkyZfTmwG41opXJub0JgCul3DcI0U+zumtcA8tsZ82bZp8/vnnEhMT4+1DNDY2VvLnzy/VqlUzfY8++uijMnr0aNMvqZbbL1y40GSequrVq0vz5s2lS5cuJrM0OTnZZKbee++9UqZMmRx+hQAAAACQhdHtAQBANrLCnJsyYcKECWZEex2pvnTp0t5JR7NXefPmlblz50qJEiWkVatWZvDG9957T6ZOnSotWrTwrufDDz80AdWbb77ZzL/22mvlrbfecnw3AQAAAECODtwEAAByz+j2GV7cOv8DqlSpIp988sk5l9GR7DUjFQAAAADcjExSAAAAAAAAACGNTFIAANwshzJJAQAAACCUECQFAMDFdGR7R0a3J0gKAAAAAM6W23/77bfywAMPSIMGDWTPnj1m3vvvvy/ffffdhawOAAAAAAAAAHJPkFQHaGjWrJnkz59f1q1bJ4mJiWa+joA7YsSIYGwjAAChy3JwAgAAAAA4EyR94YUXZOLEiTJp0iTJmzevd36jRo1k7dq1mV0dAAA4F4KkAAAAAOC+IOnWrVvl+uuvTzM/NjZWjh496tR2AQAAAAAAAIA7g6RxcXHy+++/p5mv/ZFecsklTm0XAADwGbjJiQkAAAAA4FCQtEuXLvLkk0/KDz/8IGFhYbJ371758MMP5emnn5auXbtmdnUAAAAAAAAAkKPyZPYB/fr1E4/HIzfffLOcOnXKlN5HRUWZIGmPHj2Cs5UAAIQqK+zs5MR6AAAAAADOBEk1e/S5556TPn36mLL7EydOSI0aNaRgwYKZXRUAADgfpwZdotweAAAAAJwLktoiIyNNcBQAAAAAAAAAQipIeuONN5ps0vR8/fXXWd0mAADw/5wadImBmwAAAADAwSBp3bp1/W4nJyfL+vXrZePGjdKxY8fMrg4AAJwL5fYAAAAA4L4g6auvvhpw/uDBg03/pAAAAAAAAACQm4Q7taIHHnhAJk+e7NTqAACA+v9y+6xOZJICAAAAQBAGbkptxYoVki9fPqdWBwAAFOX2AAAAAOC+IOkdd9zhd9uyLNm3b5+sXr1ann/+eSe3DQAAAAAAAADcFySNjY31ux0eHi5Vq1aVoUOHStOmTZ3cNgAAQCYpAAAAALgrSJqSkiKdOnWSWrVqSZEiRYK3VQAAAAAAAADgxoGbIiIiTLbo0aNHg7dFAADAy4lBm7yDNwEAAAAAnBndvmbNmrJ9+/bMPgwAAAAAAAAALo4g6QsvvCBPP/20zJkzxwzYlJCQ4DcBAAAAAAAAwEXZJ6kOzPTUU09JixYtzO3bbrtNwsLC/Ea519vabykAAHAIAzcBAAAAgHuCpEOGDJHHHntMvvnmm+BuEQAA8HKqP1H6JAUAAAAAB4Kkmimqbrjhhow+BAAAAAAAAAAuniCp8i2vBwAA2YQsUAAAAABwT5D0sssuO2+g9MiRI1ndJgAAAAAAAABwZ5BU+yWNjY0N3tYAAAB/DNwEAAAAAO4Kkt57771SsmTJ4G0NAADww8BNAAAAABB84RldkP5IAQAAAAAAAFyMMj26PQAAyEaU2wMAAACAe4KkHo8nuFsCAADSoNweAAAAAFxUbg8AAACRcePGScWKFSVfvnxSv359WbVqVYYeN336dNN9UZs2bYK+jQAAAAAyhyApAAC5odzeiQlZNmPGDOndu7cMGjRI1q5dK3Xq1JFmzZrJwYMHz/m4nTt3ytNPPy3XXXddtm0rAAAAgIwjSAoAgJsRJHWVMWPGSJcuXaRTp05So0YNmThxokRHR8vkyZPTfUxKSorcf//9MmTIELnkkkuydXsBAAAAZAxBUgAAgAxISkqSNWvWSJMmTbzzwsPDze0VK1ak+7ihQ4dKyZIlpXPnztm0pQAAAACCNnATAADIfgzc5B6HDx82WaGlSpXym6+3t2zZEvAx3333nbzzzjuyfv36DD9PYmKimWwJCQlZ2GoAAAAAGUEmKQAAQBAcP35c2rdvL5MmTZLixYtn+HEjR46U2NhY7xQfHx/U7QQAAABAJikAAO7m1KBLZJJmmQY6IyIi5MCBA37z9XZcXFya5bdt22YGbGrVqpV3nsfjMT/z5MkjW7dulUsvvTTN4/r3728Gh/LNJCVQCgAAAAQXQVIAANyMIKlrREZGSr169WTx4sXSpk0bb9BTb3fv3j3N8tWqVZMNGzb4zRswYIDJMH3ttdfSDXxGRUWZCQAAAED2IUgKAACQQZrh2bFjR7nqqqvkmmuukbFjx8rJkyfNaPeqQ4cOUrZsWVMyny9fPqlZs6bf4wsXLmx+pp4PAAAAIGcRJAUAwMUYuMld2rZtK4cOHZKBAwfK/v37pW7dujJv3jzvYE67du0yI94DAAAAyF0IkgIA4GaU27uOltYHKq9XS5YsOedj33333SBtFQAAAICsINUBAAAAAAAAQEgjSAoAQC4ot3diygztU/Pqq6+WmJgYKVmypBmoSEdjT23FihVy0003SYECBaRQoUJy/fXXy99//+29/8iRI3L//feb+7Q/zs6dO8uJEyec2DUAAAAA4BiCpAAA5IZyeyemTFi6dKl069ZNVq5cKQsXLpTk5GRp2rSpGaTIN0DavHlzM3/VqlXy448/mjJ03z45NUC6adMms445c+bIsmXL5JFHHnFyDwEAAABAltEnKQAASEMHI0rdl6ZmlK5Zs8Zki6pevXrJE088If369fMuV7VqVe/vv/zyi1mPBk91NHj1xhtvSIsWLWT06NFSpkyZbHs9AAAAAHAuZJICABBCmaQJCQl+U2JiYoY249ixY+Zn0aJFzc+DBw/KDz/8YAKnDRs2NKO733DDDfLdd9/5ZZpqib0dIFVNmjQxmab6WAAAAABwC4KkAACEkPj4eImNjfVO2vfo+Xg8HunZs6c0atRIatasaeZt377d/Bw8eLB06dLFZIxeeeWVcvPNN8tvv/1m7tu/f78JovrKkyePCbTqfQAAAADgFpTbAwDgYmH/PzmxHrV7924ziJItKirqvI/Vvkk3btzolyWqgVP16KOPSqdOnczvV1xxhSxevFgmT56coeArAAAAALgFQVIAANzsAgZdSnc9IiZA6hskPR8diMkecKlcuXLe+aVLlzY/a9So4bd89erVZdeuXeb3uLg4U5bv68yZM2bEe70PAAAAANyCcnsAAJCGZVkmQDpr1iz5+uuvpVKlSn73V6xY0Qy8tHXrVr/5v/76q1SoUMH83qBBAzl69KgZ7Mmm69Is1Pr162fTKwEAAACA8yOTFAAAFwuzzk5OrCcztMR+2rRp8vnnn0tMTIy3D1HtxzR//vwSFhYmffr0kUGDBkmdOnWkbt26MnXqVNmyZYvMnDnTm1XavHlz02fpxIkTJTk52QRe7733Xka2BwAAAOAqBEkBAAihcvuMmjBhgvnZuHFjv/lTpkyRBx980PyugzmdPn1aevXqZUroNVi6cOFCufTSS73Lf/jhhyYwqgM66aj2d955p7z++usOvCAAAAAAcA5BUgAAELDcPiP69etnpvToSPaakQoAAAAAbkaQFAAAt3MikxQAAAAAkC4GbgIAAAAAAAAQ0sgkBQDAxXJq4CYAAAAACCUESQEAcLMcGrgJAAAAAEIJ5fYAAAAAAAAAQhqZpAAAuBjl9gAAAAAQfARJAQBwM8rtAQAAACDoKLcHAAAAAAAAENLIJAUAwMUotwcAAACA4CNICgCAm1FuDwAAAABBR7k9AAAAAAAAgJBGJikAAG5GJikAAAAABB2ZpAAAAAAAAABCGpmkAAC4GAM3AQAAAEDwESQFAMDNKLcHAAAAgKCj3B4AAAAAAABASCOTFAAAFwuzLDM5sR4AAAAAQGAESQEAcDPK7QEAAAAg6Ci3BwAAAAAAABDSyCQFAMDFGN0eAAAAAIKPTFIAAAAAAAAAIY1MUgAA3Iw+SQEAAAAg6AiSAgDgYpTbAwAAAEDwUW4PAAAAAAAAIKSRSQoAgJtRbg8AAAAAQUeQFAAAF6PcHgAAAACCj3J7AAAAAAAAACGNTFIAANyMcnsAAAAACDqCpAAAuByl8gAAAAAQXJTbAwAAAAAAAAhpZJICAOBmlnV2cmI9AAAAAICAyCQFAAAAAAAAENLIJAUAwOX9kTrRJyn9mgIAAABA+giSAgDgZoxuDwAAAABBR7k9AAAAAAAAgJBGJikAAC4W5jk7ObEeAAAAAEBgBEkBAHAzyu0BAAAAIOgIkuK82rX6Sa696g8pX/qoJCbnkc2/lZS3pl8tf+6P9S7Tq9P3cuXle6VYkVPy9+m8sum3kjJpxlWye19hv3U1u+43uav5RikXlyAnT+eVZasqyutTG+bAqwKcNXtqMfnyveJyYHekuV2h6mm5v9d+ufqm4+Z2nzsry88rCvo9pkX7w/LkS396b48fUFY2/VhA/tiaT+IrJ8qERVuz+VUAAAAAABCacjRIumzZMnn55ZdlzZo1sm/fPpk1a5a0adMmJzcJAdSutl++WFRdtmwvLhERHul89xoZ1XeePNTvDjmdmNcs8+vOYrJo+aVy8K8CUqhAonS4Y5289Mx8eaD33eKxznZ9q8HRu2/dKG9Ov1p+2VZC8kedkVLFT+TwqwOcUaJ0sjz07F4pWylRLCtMFn5cRAZ3qiTjFvwqFaueNsvcev9h6dBnv/cxUfnT1j83u/eIbFkXLTs258/W7Yd7Mbo9AAAAAFzkQdKTJ09KnTp15KGHHpI77rgjJzcF59D/5WZ+t0e9dZ18Ov6/UqXiX7Jha5yZ9+U31bz3HzgcI1Nm1pNJIz6TUiVOyL6DhaRgdKJ0umuNDBhzi6zbXMa77PbdRbPxlQDB86+mCX63O/XbL3PeKy5b1kR7g6RR+S0pWvJMuut4/IU95uexv+IIkuIflnV2cmI9AAAAAAD3BUlvvfVWMyF3KZA/2fw8fjIq4P35opKl2fW/yd6DBeXQXwXMvHo190h4mEjxIidl8oufSHT+ZFOSP3HaNXLoiH8JMpDbpaSIfDu7sCSeCpfqV530zv/m0yLy9SdFpEjJZPnXLQlyX8/9ki+awBUAAAAAADmNPkmRKWFhlnR74AfZsLWk7PyziN99t938izxy74+SP98Z2bU3Vp55qbmcSYkw95UueVzCwi2577afZdwH9eXkqUiTWTqq73zp8mwb73JAbrbjl3zSs1UVSUoMl/wFPDLwnR1S4bJEc9+Nt/9PSpZLkmKlkmXHL/nlneGl5c9tUTLwnZ05vdlwOcrtAQAAACD4clWQNDEx0Uy2hAT/8lYE3xMdV0jFcv+TJ4e1THPf4uWXypqNZaRo4b/lnhYbZGD3b+SJYS0lOTmPySLNm8cj/3n/X7JmY1mz/PDxjeXj/0yXujX2yeoN5XLg1QDOKndpooxfuFVOHY+Qb+cUltFPVpCXP/3NBEpbPPCXd7lK1U9L0ZLJ0veeyrJ3Z6SUqZiUo9sNAAAAAECoOzuiTi4xcuRIiY2N9U7x8fE5vUkhpUeHFfKvurvlqZG3yuH/nS2j93Xy70jZcyDW9FM65PWbJL7MMbm23h/mvr+Onu1f8Y89/4x2f+x4fkk4HiUli/1TjgzkZnkjLSlbKUmq1P5bHnp2n1Sq8bd89naJgMtWu/KU+bl3Z+BuKwAvy8EJAAAAAJD7g6T9+/eXY8eOeafdu3fn9CaFCMsESDXg+fTI5rL/UMx5HxEWJhImlkTmPTt696bfSpmf8aWPeZeJKZAohWIS5cBh+iTFxUnHyUlOCvxndtvGsxcONKMUyEi5vRNTZi9MXn311RITEyMlS5aUNm3ayNatWwMua1mW6WM8LCxMPvvsM7/7du3aJS1btpTo6Giznj59+siZM+kPYAYAAAAAOSFXldtHRUWZCdlfYn9zg+3y/Nib5dTpvFIk9mwGnPYrmpScR0qXSJDG/9ohqzeUlWPH80nxoiel3b9/lqSkPPLDT2fL6P/cHyvfrykv3dqvlDGTG8mpvyPl4XtWy+69sbL+l9I5/AqBrJs8orRcfVOClCibLH+fCJdvZhWRn5cXlOHTtpmSer19zc0JElMkRXZszidvDi4rtf51Qi6pcXbke7VnR6ScPhkhRw7lkaTTYd5AavnLTpssVSA7LV26VLp162YCpRrUfPbZZ6Vp06ayefNmKVDAv5pg7NixJkCaWkpKigmQxsXFyfLly2Xfvn3SoUMHyZs3r4wYMSIbXw0AAAAAuDhIeuLECfn999+9t3fs2CHr16+XokWLSvny5XNy0+CjdZMt5uerz33lN3/UW9fJ/G+rmEBpraoH5M5mm6RggST537H88vPWUtJj6L/laMLZII96ceL18vgDP8iIpxaK5QmTn7bESb+Xm0pKSq5KaAYCOno4j7z8RAU5cjCPRMekmH5HNUBa74YTcnBPXln3bYzMeruEnD4VLiXKJMu1LY5Ku54H/NYx9uny8vOKfzKrH29a1fyc+sNmiYun39KQTknWyYn1ZMK8efP8br/77rsmE3TNmjVy/fXXe+fr9/Yrr7wiq1evltKl/S96LViwwARVFy1aJKVKlZK6devKsGHDpG/fvjJ48GCJjIzM4osCAAAAgIsgSKonVDfeeKP3du/evc3Pjh07mpMxuMPN7R865/1/HY2WZ0c3Pe96Tp2OlNFvX2cm4GLTe0z63X+ULJssoz/954JQel7+5PzLIPS4ZXR77eZG6YVM26lTp+S+++6TcePGmWzR1FasWCG1atUyAVJbs2bNpGvXrrJp0ya54oorsrZRAAAAAHAxBEkbN25s+jEDAADZIyEhIdNd2Xg8HunZs6c0atRIatas6Z3fq1cvadiwobRu3Trg4/bv3+8XIFX2bb0PAAAAANwiV/VJCgBAyHFqZPr/X0d8fLzf7EGDBpnS93PRvkk3btwo3333nXfeF198IV9//bWsW7fOgY0DAAAAgJxFkBQAgBCye/duKVSokPf2+bJIu3fvLnPmzJFly5ZJuXJnB+NTGiDdtm2bFC5c2G/5O++8U6677jpZsmSJKcFftWqV3/0HDpztizdQeT4AAAAA5BSCpAAAhFCfpBog9Q2Spke7w+nRo4fMmjXLBDwrVarkd3+/fv3k4Ycf9pun/Y+++uqr0qpVK3O7QYMGMnz4cDl48KAZ9EktXLjQPH+NGjWy/qIAAAAAwCEESQEAcDOPdXZyYj2ZoCX206ZNk88//1xiYmK8fYjGxsZK/vz5TSZooGzQ8uXLewOqTZs2NcHQ9u3by6hRo8w6BgwYYNZ9vgxWAAAAAMhO4dn6bAAAIFeYMGGCGdFeB1ksXbq0d5oxY0aG1xEREWFK9fWnZpU+8MAD0qFDBxk6dGhQtx0AAAAAMotMUgAAQmjgpgwvbmX+SQM9pkKFCjJ37txMrwsAAAAAshNBUgAAXCzMpz/RrK4HAAAAABAY5fYAAAAAAAAAQhqZpAAAuJmWsF9A6XvA9QAAAAAAAiKTFAAAF9NSe6cmOGPcuHFSsWJFyZcvn9SvX19WrVqV7rKTJk2S6667TooUKWKmJk2anHN5AAAAADmDICkAAEAGzZgxQ3r37i2DBg2StWvXSp06daRZs2Zy8ODBgMsvWbJE2rVrJ998842sWLFC4uPjpWnTprJnz55s33YAAAAA6SNICgBAbhjd3okJWTZmzBjp0qWLdOrUSWrUqCETJ06U6OhomTx5csDlP/zwQ3n88celbt26Uq1aNXn77bfF4/HI4sWLs33bAQAAAKSPICkAAEAGJCUlyZo1a0zJvC08PNzc1izRjDh16pQkJydL0aJFg7ilAAAAADKLgZsAAHCxMMsykxPrQdYcPnxYUlJSpFSpUn7z9faWLVsytI6+fftKmTJl/AKtqSUmJprJlpCQkIWtBgAAAJARZJICAOBmHgcn5KgXX3xRpk+fLrNmzTKDPqVn5MiREhsb6520H1MAAAAAwUWQFAAAIAOKFy8uERERcuDAAb/5ejsuLu6cjx09erQJki5YsEBq1659zmX79+8vx44d8067d+92ZPsBAAAApI8gKQAAuaDc3okJWRMZGSn16tXzG3TJHoSpQYMG6T5u1KhRMmzYMJk3b55cddVV532eqKgoKVSokN8EAAAAILjokxQAADdzamR6YqSO6N27t3Ts2NEEO6+55hoZO3asnDx50ox2rzp06CBly5Y1JfPqpZdekoEDB8q0adOkYsWKsn//fjO/YMGCZgIAAADgDgRJAQAAMqht27Zy6NAhE/jUgGfdunVNhqg9mNOuXbvMiPe2CRMmSFJSktx1111+6xk0aJAMHjw427cfAAAAQGAESQEAcDMtk3eiVJ5ye8d0797dTIEsWbLE7/bOnTuzaasAAAAAZAVBUgAAXCzMOjs5sR4AAAAAQGAM3AQAAAAAAAAgpJFJCgCAm1FuDwAAAABBRyYpAAAAAAAAgJBGJikAAC4W5jk7ObEeAAAAAEBgBEkBAHAzyu0BAAAAIOgotwcAAAAAAAAQ0sgkBQDAzTQB1IkkUBJJAQAAACBdBEkBAHCxMMsykxPrAQAAAAAERrk9AAAAAAAAgJBGJikAAG7GwE0AAAAAEHRkkgIAAAAAAAAIaWSSAgDgZpoA6nFoPQAAAACAgAiSAgDgYgzcBAAAAADBR7k9AAAAAAAAgJBGJikAAG6mCaCODNzkxMYAAAAAwMWJICkAAG7G6PYAAAAAEHSU2wMAAAAAAAAIaWSSAgDgZjqyfZhD6wEAAAAABESQFAAAF2N0ewAAAAAIPsrtAQAAAAAAAIQ0MkkBAHAzBm4CAAAAgKAjkxQAAAAAAABASCOTFAAANyOTFAAAAACCjiApAABuRpAUAAAAAIKOcnsAAAAAAAAAIY1MUgAA3MwjImEOrQcAAAAAEBBBUgAAXCzMsszkxHoAAAAAAIFRbg8AAAAAAAAgpJFJCgCAmzFwEwAAAAAEHUFSAADczGNprbwz6wEAAAAABES5PQAASGPkyJFy9dVXS0xMjJQsWVLatGkjW7du9d5/5MgR6dGjh1StWlXy588v5cuXlyeeeEKOHTvmt55du3ZJy5YtJTo62qynT58+cubMmRx4RQAAAACQPoKkAADkhnJ7J6ZMWLp0qXTr1k1WrlwpCxculOTkZGnatKmcPHnS3L93714zjR49WjZu3CjvvvuuzJs3Tzp37uxdR0pKigmQJiUlyfLly2Xq1KlmuYEDBzq+mwAAAAAgKyi3BwAAaWjA05cGNzUTdM2aNXL99ddLzZo15ZNPPvHef+mll8rw4cPlgQceMJmiefLkkQULFsjmzZtl0aJFUqpUKalbt64MGzZM+vbtK4MHD5bIyMgceGUAAAAAkBaZpAAAuJpTWaRZ65PULqMvWrToOZcpVKiQCZCqFStWSK1atUyA1NasWTNJSEiQTZs2ZWl7AAAAAMBJZJICABBCo9trgNJXVFSUmc7F4/FIz549pVGjRiaDNJDDhw+bLNFHHnnEO2///v1+AVJl39b7AAAAAMAtyCQFACCExMfHS2xsrHfSAZrOR/sm1X5Hp0+fHvB+Dbxq36M1atQwZfQAAAAAkNuQSQoAgJt5sl4q/896RHbv3m1K4m3nyyLt3r27zJkzR5YtWyblypVLc//x48elefPmEhMTI7NmzZK8efN674uLi5NVq1b5LX/gwAHvfQAAAADgFmSSAgDgZpbHuUnEBEh9p/SCpJZlmQCpBj6//vprqVSpUsAMUh3xXgdg+uKLLyRfvnx+9zdo0EA2bNggBw8e9M5buHCheV7NOgUAAAAAtyCTFAAABCyxnzZtmnz++ecmS9TuQ1RL9PPnz+8NkJ46dUo++OADc9vu77REiRISERFh7tdgaPv27WXUqFFmHQMGDDDrPl8GKwAAAABkJ4KkAACE0MBNGTVhwgTzs3Hjxn7zp0yZIg8++KCsXbtWfvjhBzOvcuXKfsvs2LFDKlasaAKlWqrftWtXk1VaoEAB6dixowwdOjTLLwcAAAAAnESQFAAABCy3PxcNnp5vGVWhQgWZO3eug1sGAAAAAM4jSAoAQAgN3AQAAAAASIsgKQAAbpZD5fYAAAAAEEoY3R4AAAAAAABASCOTFAAANzPV9k5kkjqxMQAAAABwcSJICgCAm1FuDwAAAABBR7k9AAAAAAAAgJBGJikAAG7m8eh/Dq0HAAAAABAIQVIAANyMcnsAAAAACDrK7QEAAAAAAACENDJJAQBwMzJJAQAAACDoyCQFAAAAAAAAENLIJAUAwM08mgFqObQeAAAAAEAgBEkBAHAxy/KYyYn1AAAAAAACo9weAAAAAAAAQEgjkxQAADfTAZecKJVn4CYAAAAASBdBUgAA3MwENwmSAgAAAEAwUW4PAAAAAAAAIKSRSQoAgJt5PCJhDgy6xMBNAAAAAJAuMkkBAAAAAAAAhDQySQEAcDP6JAUAAACAoCNICgCAi1kej1gOlNtblNsDAAAAQLootwcAAAAAAAAQ0sgkBQDAzSi3BwAAAICgI0gKAICbeSyRMIKkAAAAABBMlNsDAAAAAAAACGlkkgIA4GYmA9SBQZfIJAUAAACAdBEkBQDAxSyPJZYD5fYWQVIAAAAASBfl9gAAAAAAAABCGkFSAADczPI4N8ER48aNk4oVK0q+fPmkfv36smrVqnMu//HHH0u1atXM8rVq1ZK5c+dm27YCAAAAyBiCpAAAABk0Y8YM6d27twwaNEjWrl0rderUkWbNmsnBgwcDLr98+XJp166ddO7cWdatWydt2rQx08aNG7N92wEAAACkjyApAABu75PUoQlZN2bMGOnSpYt06tRJatSoIRMnTpTo6GiZPHlywOVfe+01ad68ufTp00eqV68uw4YNkyuvvFL+85//ZPu2AwAAAEgfQVIAANyMcnvXSEpKkjVr1kiTJk2888LDw83tFStWBHyMzvddXmnmaXrLAwAAAMgZuXp0e3uk3jNnEnN6UwBXSzhOcAQ4n4QTHleOAn9GkkUsh9aDLDl8+LCkpKRIqVKl/Obr7S1btgR8zP79+wMur/PTk5iYaCbbsWPHzM+EhATJSZ7EUzn6/Mgdcvo49cUxi4zgmEVuwzGL3CghB49b+7kzcp6Xq4Okx48fNz9XfvdiTm8K4GpFLsvpLQBy13dLbGxsTm+GREZGSlxcnHy337lBfnR9ul6428iRI2XIkCFp5sfHx+fI9gCZETs2p7cAyByOWeQ2HLPIjWLH5o7zvFwdJC1Tpozs3r1bYmJiJCwsLKc3B/8fodeTOH1fChUqlNObA7gSnxN30iuL+sWp3y1uoCOh79ixw5R4O0UDpLpeXJjixYtLRESEHDhwwG++3tYAdCA6PzPLq/79+5vBoWwej0eOHDkixYoVo73jIvwtR27DMYvchmMWuQ3HbO4/z8vVQVLtB6xcuXI5vRkIQP8g8EcBODc+J+7jhgxSXxrQJKjpHhpkrlevnixevNiMUG8HMPV29+7dAz6mQYMG5v6ePXt65y1cuNDMT09UVJSZfBUuXNix1wFn8bccuQ3HLHIbjlnkNhyzufc8L1cHSQEAALKTZnh27NhRrrrqKrnmmmtk7NixcvLkSTPaverQoYOULVvWlMyrJ598Um644QZ55ZVXpGXLljJ9+nRZvXq1vPXWWzn8SgAAAAD4IkgKAACQQW3btpVDhw7JwIEDzeBLdevWlXnz5nkHZ9q1a5epdLE1bNhQpk2bJgMGDJBnn31WqlSpIp999pnUrFkzB18FAAAAgNQIksJRWh44aNCgNGWCAP7B5wTI3bS0Pr3y+iVLlqSZd/fdd5sJFxf+liO34ZhFbsMxi9yGYzb3C7O0B1MAAAAAAAAACFH/1IMBAAAAAAAAQAgiSAoAAAAAAAAgpBEkBQAAAIAQEBYWZgaPc3pZAEDW+P7N3blzp7m9fv36nN6skEOQFI4aN26cVKxYUfLlyyf169eXVatW5fQmAa6ybNkyadWqlZQpU4aTDwBw0IoVKyQiIkJatmyZ05sCZMiDDz5o2gI6RUZGSuXKlWXo0KFy5syZoD3nvn375NZbb3V8WYTeMes7/f777xfczk1JSZEXX3xRqlWrJvnz55eiRYua88i33347G14RkPbYzps3r1SqVEmeeeYZOX36dE5vGrIZQVI4ZsaMGdK7d28zmtvatWulTp060qxZMzl48GBObxrgGidPnjSfDb2gAABwzjvvvCM9evQwJ+l79+7Nse1ISkrKsedG7tO8eXMTjPztt9/kqaeeksGDB8vLL78ctOMqLi4uw6MuZ2ZZhN4x6ztpQOlC27lDhgyRV199VYYNGyabN2+Wb775Rh555BE5evRo0F4Df6dxrmN7+/bt5ph88803TWwDoYUgKRwzZswY6dKli3Tq1Elq1KghEydOlOjoaJk8eXJObxrgGpqR8cILL8jtt9+e05sCABeNEydOmIu1Xbt2NZmk7777rt/9s2fPlquvvtpUuhQvXtzvb3BiYqL07dtX4uPjTUBIs/k04Kp0PYULF/Zbl2ZGaaaJTYNadevWNVlPGijQ51Dz5s2Ta6+91jy+WLFi8u9//1u2bdvmt64///xT2rVrZzKnChQoIFdddZX88MMPpswuPDxcVq9e7bf82LFjpUKFCuLxeBzce8hJesxpMFLfVz1+mzRpIl988YXJamrTpo0MHz7cZOVVrVrVLL9792655557zHGlx03r1q3N8eJL296XX365WXfp0qWle/fu3vt8s/s0UKT36TJ63Oo2jBw5MuCyasOGDXLTTTeZbD89pjWQpZ89m73No0ePNuvUZbp16ybJyclB3YfImWPWd9Is/gtt5+rx/vjjj8vdd99t/oZqkLVz587y9NNPe5fRv3mjRo0yf5/1+cuXL28+G5k9Ni/k84TQO7a1PaDHi/49XrhwofcY1L+PeozqcabH6cyZM/0ev2nTJvNdX6hQIYmJiZHrrrvO+73/448/yi233GLaILGxsXLDDTeYxDK4D0FSOEIbWWvWrDF/SGzauNfbWv4GAAAQLB999JEp1dQT3wceeMAEiSzLMvd9+eWX5oS9RYsWsm7dOlm8eLFcc8013sd26NBB/vvf/8rrr78uv/zyi8kcKViwYKaeX0tNP/nkE/n000+9/YdpRpVW2GigU59T20W6HXaAU0/g9SRpz549Jkjw008/mdI+vV+7LtI21JQpU/yeR2/ryb6uCxcnPfm2s9z0uNm6das5SZ8zZ44JNmqVlp58f/vtt/L999+bY1Wzn+zHTJgwwQQmNUikgSM9tjSwFIge83q/fn70eT788ENz7AWix7M+d5EiRczJ/scffyyLFi3yC8AqzQLUoID+nDp1qrnQkPqiBeBLg1Jff/21HDp0KN1l+vfvb0ryn3/+eZNtOm3aNClVqlSmjs0L+TwhdG3cuFGWL19uukJRGiB97733TCKYBkN79epl2htLly419+t3+fXXX28CrXo8a2zkoYce8nafcvz4cenYsaN89913snLlSqlSpYppl+h8uIwFOGDPnj16JmItX77cb36fPn2sa665Jse2C3Az/czMmjUrpzcDAHK9hg0bWmPHjjW/JycnW8WLF7e++eYbc7tBgwbW/fffH/BxW7duNX+LFy5cGPD+KVOmWLGxsX7z9O+2bxN60KBBVt68ea2DBw+ecxsPHTpkHrdhwwZz+80337RiYmKsv/76K+DyM2bMsIoUKWKdPn3a3F6zZo0VFhZm7dix45zPg9yjY8eOVuvWrc3vHo/HHIdRUVHW008/be4rVaqUlZiY6F3+/ffft6pWrWqWten9+fPnt+bPn29ulylTxnruuecy1Pbo0aOHddNNN/mtL71l33rrLXM8njhxwnv/l19+aYWHh1v79+/3vp4KFSpYZ86c8S5z9913W23btr3gfQR30fc4IiLCKlCggHe66667stTO3bRpk1W9enVzLNWqVct69NFHrblz53rvT0hIMJ+LSZMmBXx8Ro/NC/k8ITSPbT3e9PjVY2jmzJnmezg6OjpNrKNz585Wu3btzO/9+/e3KlWqZCUlJWXo+VJSUkwbYPbs2QE/M/pdr7fXrVvn6OvE+XEZGgAAALmWZgbpQJFatq7y5Mkjbdu29ZbMa2bnzTffHPCxep+WiWpGZ1ZomXKJEiX85mkfk7pNl1xyiSm9szP0du3a5X3uK664wpR4BqKlfrpts2bNMrc1G+/GG29MN9MPuZNmtGn2mpa7a6myHrvahYOqVauWN4tJabaxZi1r5ps+Ric9fnRgEc3e1HEAtD/e9I731DQrWY9DzcB+4oknZMGCBekuq1nWWl6q3ULYGjVqZDKf9TNo0zJ/u/Raadk94xNcXPTvkB439qQZyVmh3bRp1p5m12nmnR4vOvjTww8/7D32tFuU9I7rjB6bmf08IXSPbe32RrM+tRvBO++80xwnp06dMuXy9rGik2aW2seKPk7L63XQp0AOHDhguibUDFItt9d2gVaU2G0CuEeenN4AXBy0bw1tEOmH35fe1hIKAACAYNBgqJazaT9zNk3I0JK3//znP6Z8OT3nuk9pWbtdtm8L1L+i78m5TU/yNXg6adIks216wl6zZk1vGef5nltP5rUrAC2xv+OOO0x56WuvvXbOxyB3npRriby+33qcaJA/veNKT6jr1atnyuJT0yB9ZrthuPLKK2XHjh3y1VdfmfJk7ZtRu3lI3c9eZqQOEGi/pvShe3HR4zK9LhwulB672m+0Tj179pQPPvhA2rdvL88999x5/1ZmVGY/TwjtY1u77dHgu7Yx9Lvb7r6nbNmyfo+xB7c733GqQde//vrLfI9r20Af16BBA7p2cCEySeEIbdjpl4z29WLTBpHe1g8/AACA0zQ4qpkcr7zyil9mk2YIacBJ+xqtXbu2X/vEl2YWaXvF7lMs0Imy9hemfd7Z7D5Hz0VPhDSDacCAASb7qXr16vK///3PbxndLl3XkSNH0l2PZlJp8Gr8+PHmtWqwFBfnSbkOROMbIE0vqKkZyiVLljSP8Z00M0kz4jTTOL3jPRDNZtLsVQ3m6+Bn2rduoGNSj2H9XPl+FrQPRw1u2YPgAE7R7FKlx5tm3mkAKr3j+kKPzfN9nhDa9Ph59tlnzfe4Ho8a1NSsz9THig7yZH+na9+26Q1Up8ekZuxrP6T2wHqHDx/O5leFjCBICsfo4ATawNJO2rXsQUfo1C8rTVMH8M9Va/skXmkGh/5OqQUAXFipsgYfdSRkzfTwnbRETjNABg0aZIKl+lPbJzqYzUsvvWQerwElze7QEk8dxVv/Ji9ZssQMZKPq168v0dHR5kRJS+o0mzMjg9DoACI6wvJbb71lyvR0EAdtJ/nSUnytttGyej152r59uwlQ+Q54qSf///rXv6Rv375meacyqpA73X///aZ6S0fg1pNx+3jVE+8///zTLKOl+nrRQEugNQCkoye/8cYbAdc3ZswY89nYsmWL/Prrr2bAGz0mdaTvQM+tXQLo50VLo3Vgph49ephsP3sAHeBC2rl33XWXvPrqq6bE+Y8//jDHtA4+dtlll5kB+fS407+BOrCdXd6spfl2lyoXemxm5POE0Hb33Xebalkd0PHpp582gzVprEOPQftvq95WOlBYQkKC3HvvvWbARv37+/7773u7fNBgv97Wdoge63r88Z3uTgRJ4Ri9Cj169GgZOHCg1K1b13whzps3j4YT4EO/NLUPOp2UnjTr7/q5AQBkjp4ka3lwoKwfDZLq31ztY06DPzqKt7ZPbrrpJtOHqU1LnfUk/fHHHzcn5NpnmJ2RpI/Vss+5c+earFMNKNn9RZ4vA2X69OlmdFsN2OqJ1csvv5ymCkf7gNQsJs0s0fXr6M2+/TkqDQBrOZ4GchHaNGC/bNkyk3WqWcUaRNfjQ/tQ1IxQpYGisWPHmuxjzVb697//bU7WA9HM01GjRslVV11lypx37txpjvVAZfv63PPnzzdZprqsfmY0S1q7tACy0s7VEeZnz55tuijRwKgew/q3WP8+2tnVOqr9U089Zdajx72ed9p93V7osZmRzxNCmx5/GvzUv5P9+/c3x6GOcq/HSvPmzU35faVKlcyyemFUL4jqhQLt51yrbDWBzO6CRNsrelFXM5g1gK/BeP3+h/uE6ehNOb0RAAAAANIaNmyYCfL+/PPPOb0pAAAAFzUySQEAAACX0WwULR3VbCgtHQUAAEBwESQFAAAAXEZL/LRcr3HjxpTaAwAAZAPK7QEAAAAAAACENDJJAQAAAAAAAIQ0gqQAAAAAAAAAQhpBUgAAAAAAAAAhjSApAAAAAAAAgJBGkBQAAAAAAABASCNICrjEgw8+KG3atPHebty4sfTs2TPbt2PJkiUSFhYmR48eTXcZvf+zzz7L8DoHDx4sdevWzdJ27dy50zzv+vXrs7QeAAAAAACA1AiSAucJXGpgTqfIyEipXLmyDB06VM6cORP05/70009l2LBhjgU2AQAAAAAAEFiedOYD+H/NmzeXKVOmSGJiosydO1e6desmefPmlf79+6dZNikpyQRTnVC0aFFH1gMAAAAAAIBzI5MUOI+oqCiJi4uTChUqSNeuXaVJkybyxRdf+JXIDx8+XMqUKSNVq1Y183fv3i333HOPFC5c2AQ7W7dubcrFbSkpKdK7d29zf7FixeSZZ54Ry7L8njd1ub0Gafv27Svx8fFmmzSr9Z133jHrvfHGG80yRYoUMRmlul3K4/HIyJEjpVKlSpI/f36pU6eOzJw50+95NPB72WWXmft1Pb7bmVG6XbqO6OhoueSSS+T555+X5OTkNMu9+eabZvt1Od0/x44d87v/7bfflurVq0u+fPmkWrVqMn78+ExvCwAAAAAAQGYRJAUySYOJmjFqW7x4sWzdulUWLlwoc+bMMcHBZs2aSUxMjHz77bfy/fffS8GCBU1Gqv24V155Rd59912ZPHmyfPfdd3LkyBGZNWvWOZ+3Q4cO8t///ldef/11+eWXX0zAUderQcdPPvnELKPbsW/fPnnttdfMbQ2QvvfeezJx4kTZtGmT9OrVSx544AFZunSpN5h7xx13SKtWrUxfnw8//LD069cv0/tEX6u+ns2bN5vnnjRpkrz66qt+y/z+++/y0UcfyezZs2XevHmybt06efzxx733f/jhhzJw4EATcNbXN2LECBNsnTp1aqa3BwAAAAAAIDMotwcySDM9NSA6f/586dGjh3d+gQIFTAakXWb/wQcfmAxOnadZnUrL9TVrVPsObdq0qYwdO9aU62uAUmkQU9ebnl9//dUEGDUQq5msSjM2U5fmlyxZ0jyPnXmqgcZFixZJgwYNvI/RoKwGWG+44QaZMGGCXHrppSZoqzQTdsOGDfLSSy9lat8MGDDA+3vFihXl6aeflunTp5sMWdvp06dNwLZs2bLm9htvvCEtW7Y0z62ZuoMGDTK/2/tEs1816Krb2rFjx0xtDwAAAAAAQGYQJAXOQ7NDNWNTM0Q1+HnfffeZ0dpttWrV8uuH9KeffjJZk5pd6UuDhNu2bTMl5prtWb9+fe99efLkkauuuipNyb1NszwjIiJMYDOjdBtOnTolt9xyi998zWa94oorzO+asem7HcoOqGbGjBkzTIarvr4TJ06Yga0KFSrkt0z58uW9AVL7eXR/avar7it9bOfOnaVLly7eZXQ9sbGxmd4eAAAAAACAzCBICpyH9tOpGZcaCNV+RzWg6UszSX1pkLBevXqmfDy1EiVKXHCJf2bpdqgvv/zSLziptE9Tp6xYsULuv/9+GTJkiOlmQIOamkVqZ6dmZlu1TD910FaDwwAAAAAAAMFEkBQ4Dw2C6iBJGXXllVeazEotfU+dTWkrXbq0/PDDD3L99dd7MybXrFljHhuIZqtq1qX2JWqX2/uyM1l1QChbjRo1TDB0165d6Wag6iBJ9iBUtpUrV0pmLF++3Axq9dxzz3nn/fHHH2mW0+3Yu3evCTTbzxMeHm5K/EuVKmXmb9++3QRcAQAAAAAAshMDNwEO0yBf8eLFzYj2OnDTjh07TF+kTzzxhPz5559mmSeffFJefPFF+eyzz2TLli1mAKOjR4+mu07t51P75XzooYfMY+x1aj+lSoOU2v+pdg1w6NAhk5mpJezaN6gO1qSDH2k5+9q1a01foPZgSI899pj89ttv0qdPH1P2Pm3aNDMAU2ZUqVLFBEA1e1SfQ8vuAw1CpSPW62vQ7gh0v+j+0BHutT9SpZmoOtCUPl77YNW+UbUv1zFjxmRqewAAAAAAADKLICngsOjoaFm2bJnpg1MHIdJsTe1rU/sktTNLn3rqKWnfvr0JGmrfnBrQvP3228+5Xi35v+uuu0xAtVq1aqbvzpMnT5r7tJxeg4w6Mr1mZXbv3t3MHzZsmBkhXoOPuh3Nmzc35fc6KJLSbfzkk09M4LVOnTpmACkd7CkzbrvtNhOI1eesW7euySzV50xNs3F1f7Ro0cIMXlW7dm0ZP3689/6HH37YDHalgVHNnNXsVw3Y2tsKAAAAAAAQLGFWeiPFAAAAAAAAAEAIIJMUAAAAAAAAQEgjSAoAAAAAAAAgpBEkBQAAAAAAABDSCJICAAAAAAAACGkESQEAAAAAAACENIKkAAAAAAAAAEIaQVIAAAAAAAAAIY0gKQAAAAAAAICQRpAUAAAAAAAAQEgjSAoAAAAAAAAgpBEkBQAAAAAAABDSCJICAAAAAAAAkFD2f/204SqtMuHIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2055,7 +2055,7 @@ }, { "cell_type": "code", - "execution_count": 515, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -2082,20 +2082,231 @@ }, { "cell_type": "code", - "execution_count": 520, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeHospital VisitsLung CapacityGenderSmoking StatusRecoveredDisease Type_AsthmaDisease Type_BronchitisDisease Type_COPDDisease Type_Lung CancerDisease Type_PneumoniaTreatment Type_MedicationTreatment Type_SurgeryTreatment Type_Therapy
071144.49000000100100001
13473.50186501001000010
28041.95000011100100100
34013.50186501001000100
44374.60000011100100010
\n", + "
" + ], "text/plain": [ - "['models\\\\LogisticRegression.pkl']" + " Age Hospital Visits Lung Capacity Gender Smoking Status Recovered \\\n", + "0 71 14 4.490000 0 0 1 \n", + "1 34 7 3.501865 0 1 0 \n", + "2 80 4 1.950000 1 1 1 \n", + "3 40 1 3.501865 0 1 0 \n", + "4 43 7 4.600000 1 1 1 \n", + "\n", + " Disease Type_Asthma Disease Type_Bronchitis Disease Type_COPD \\\n", + "0 0 0 1 \n", + "1 0 1 0 \n", + "2 0 0 1 \n", + "3 0 1 0 \n", + "4 0 0 1 \n", + "\n", + " Disease Type_Lung Cancer Disease Type_Pneumonia \\\n", + "0 0 0 \n", + "1 0 0 \n", + "2 0 0 \n", + "3 0 0 \n", + "4 0 0 \n", + "\n", + " Treatment Type_Medication Treatment Type_Surgery Treatment Type_Therapy \n", + "0 0 0 1 \n", + "1 0 1 0 \n", + "2 1 0 0 \n", + "3 1 0 0 \n", + "4 0 1 0 " ] }, - "execution_count": 520, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], + "source": [ + "df_oh.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def prediction(model, age: int, gender: str,\n", + " smoke_status: str, lung_capacity: float,\n", + " disease_type: str, treatment_type: str,\n", + " hospital_visits: int\n", + " ) -> int:\n", + " \n", + " df_input = pd.DataFrame(\n", + " {'Age': [age],\n", + " 'Hospital Visits': [hospital_visits],\n", + " 'Lung Capacity': [lung_capacity],\n", + " 'Gender': [1 if gender == \"Male\" else 0],\n", + " 'Smoking Status': [1 if smoke_status == \"Yes\" else 0],\n", + " 'Disease Type_Asthma': [1 if disease_type in 'Disease Type_Asthma' else 0],\n", + " 'Disease Type_Bronchitis': [1 if disease_type in 'Disease Type_Bronchitis' else 0],\n", + " 'Disease Type_COPD': [1 if disease_type in 'Disease Type_COPD' else 0],\n", + " 'Disease Type_Lung Cancer': [1 if disease_type in 'Disease Type_Lung Cancer' else 0],\n", + " 'Disease Type_Pneumonia': [1 if disease_type in 'Disease Type_Pneumonia' else 0],\n", + " \n", + " 'Treatment Type_Medication': [1 if treatment_type in 'Treatment Type_Medication' else 0],\n", + " 'Treatment Type_Surgery': [1 if treatment_type in 'Treatment Type_Surgery' else 0],\n", + " 'Treatment Type_Therapy': [1 if treatment_type in 'Treatment Type_Therapy' else 0]\n", + " }\n", + " )\n", + " \n", + " input_arr = np.array(df_input)\n", + " \n", + " prediction = model.predict(input_arr)[0]\n", + " \n", + " return prediction.item()\n", + " \n", + " \n", + "prediction(lg, 20, 'Male', 'Yes', 7.14, 'COPD', 'Surgery', 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], "source": [ "# Saving the models\n", "from joblib import dump\n", @@ -2112,7 +2323,8 @@ "dump(rf, model_dir/'RandomForests.pkl')\n", "dump(xgb, model_dir/'XGBoost.pkl')\n", "dump(svm, model_dir/'SVM.pkl')\n", - "dump(lg, model_dir/'LogisticRegression.pkl')\n" + "dump(lg, model_dir/'LogisticRegression.pkl')\n", + "df_oh.to_csv('preprocessed_data.csv', index=False)\n" ] } ],