File size: 12,069 Bytes
7a7f105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import tensorflow as tf
import tensorflow.contrib as tf_contrib
# Xavier : tf_contrib.layers.xavier_initializer()
# He : tf_contrib.layers.variance_scaling_initializer()
# Normal : tf.random_normal_initializer(mean=0.0, stddev=0.02)
# l2_decay : tf_contrib.layers.l2_regularizer(0.0001)
weight_init = tf.random_normal_initializer(mean=0.0, stddev=0.02)
weight_regularizer = tf_contrib.layers.l2_regularizer(scale=0.0001)
##################################################################################
# Layer
##################################################################################
def conv(x, channels, kernel=4, stride=2, pad=0, pad_type='zero', use_bias=True, sn=False, scope='conv_0'):
with tf.variable_scope(scope):
if pad > 0 :
if (kernel - stride) % 2 == 0:
pad_top = pad
pad_bottom = pad
pad_left = pad
pad_right = pad
else:
pad_top = pad
pad_bottom = kernel - stride - pad_top
pad_left = pad
pad_right = kernel - stride - pad_left
if pad_type == 'zero':
x = tf.pad(x, [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]])
if pad_type == 'reflect':
x = tf.pad(x, [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]], mode='REFLECT')
if sn :
w = tf.get_variable("kernel", shape=[kernel, kernel, x.get_shape()[-1], channels], initializer=weight_init,
regularizer=weight_regularizer)
x = tf.nn.conv2d(input=x, filter=spectral_norm(w),
strides=[1, stride, stride, 1], padding='VALID')
if use_bias :
bias = tf.get_variable("bias", [channels], initializer=tf.constant_initializer(0.0))
x = tf.nn.bias_add(x, bias)
else :
x = tf.layers.conv2d(inputs=x, filters=channels,
kernel_size=kernel, kernel_initializer=weight_init,
kernel_regularizer=weight_regularizer,
strides=stride, use_bias=use_bias)
return x
def fully_connected_with_w(x, use_bias=True, sn=False, reuse=False, scope='linear'):
with tf.variable_scope(scope, reuse=reuse):
x = flatten(x)
bias = 0.0
shape = x.get_shape().as_list()
channels = shape[-1]
w = tf.get_variable("kernel", [channels, 1], tf.float32,
initializer=weight_init, regularizer=weight_regularizer)
if sn :
w = spectral_norm(w)
if use_bias :
bias = tf.get_variable("bias", [1],
initializer=tf.constant_initializer(0.0))
x = tf.matmul(x, w) + bias
else :
x = tf.matmul(x, w)
if use_bias :
weights = tf.gather(tf.transpose(tf.nn.bias_add(w, bias)), 0)
else :
weights = tf.gather(tf.transpose(w), 0)
return x, weights
def fully_connected(x, units, use_bias=True, sn=False, scope='linear'):
with tf.variable_scope(scope):
x = flatten(x)
shape = x.get_shape().as_list()
channels = shape[-1]
if sn:
w = tf.get_variable("kernel", [channels, units], tf.float32,
initializer=weight_init, regularizer=weight_regularizer)
if use_bias:
bias = tf.get_variable("bias", [units],
initializer=tf.constant_initializer(0.0))
x = tf.matmul(x, spectral_norm(w)) + bias
else:
x = tf.matmul(x, spectral_norm(w))
else :
x = tf.layers.dense(x, units=units, kernel_initializer=weight_init, kernel_regularizer=weight_regularizer, use_bias=use_bias)
return x
def flatten(x) :
return tf.layers.flatten(x)
##################################################################################
# Residual-block
##################################################################################
def resblock(x_init, channels, use_bias=True, scope='resblock_0'):
with tf.variable_scope(scope):
with tf.variable_scope('res1'):
x = conv(x_init, channels, kernel=3, stride=1, pad=1, pad_type='reflect', use_bias=use_bias)
x = instance_norm(x)
x = relu(x)
with tf.variable_scope('res2'):
x = conv(x, channels, kernel=3, stride=1, pad=1, pad_type='reflect', use_bias=use_bias)
x = instance_norm(x)
return x + x_init
def adaptive_ins_layer_resblock(x_init, channels, gamma, beta, use_bias=True, smoothing=True, scope='adaptive_resblock') :
with tf.variable_scope(scope):
with tf.variable_scope('res1'):
x = conv(x_init, channels, kernel=3, stride=1, pad=1, pad_type='reflect', use_bias=use_bias)
x = adaptive_instance_layer_norm(x, gamma, beta, smoothing)
x = relu(x)
with tf.variable_scope('res2'):
x = conv(x, channels, kernel=3, stride=1, pad=1, pad_type='reflect', use_bias=use_bias)
x = adaptive_instance_layer_norm(x, gamma, beta, smoothing)
return x + x_init
##################################################################################
# Sampling
##################################################################################
def up_sample(x, scale_factor=2):
_, h, w, _ = x.get_shape().as_list()
new_size = [h * scale_factor, w * scale_factor]
return tf.image.resize_nearest_neighbor(x, size=new_size)
def global_avg_pooling(x):
gap = tf.reduce_mean(x, axis=[1, 2])
return gap
def global_max_pooling(x):
gmp = tf.reduce_max(x, axis=[1, 2])
return gmp
##################################################################################
# Activation function
##################################################################################
def lrelu(x, alpha=0.01):
# pytorch alpha is 0.01
return tf.nn.leaky_relu(x, alpha)
def relu(x):
return tf.nn.relu(x)
def tanh(x):
return tf.tanh(x)
def sigmoid(x) :
return tf.sigmoid(x)
##################################################################################
# Normalization function
##################################################################################
def adaptive_instance_layer_norm(x, gamma, beta, smoothing=True, scope='instance_layer_norm') :
with tf.variable_scope(scope):
ch = x.shape[-1]
eps = 1e-5
ins_mean, ins_sigma = tf.nn.moments(x, axes=[1, 2], keep_dims=True)
x_ins = (x - ins_mean) / (tf.sqrt(ins_sigma + eps))
ln_mean, ln_sigma = tf.nn.moments(x, axes=[1, 2, 3], keep_dims=True)
x_ln = (x - ln_mean) / (tf.sqrt(ln_sigma + eps))
rho = tf.get_variable("rho", [ch], initializer=tf.constant_initializer(1.0), constraint=lambda x: tf.clip_by_value(x, clip_value_min=0.0, clip_value_max=1.0))
if smoothing :
rho = tf.clip_by_value(rho - tf.constant(0.1), 0.0, 1.0)
x_hat = rho * x_ins + (1 - rho) * x_ln
x_hat = x_hat * gamma + beta
return x_hat
def instance_norm(x, scope='instance_norm'):
return tf_contrib.layers.instance_norm(x,
epsilon=1e-05,
center=True, scale=True,
scope=scope)
def layer_norm(x, scope='layer_norm') :
return tf_contrib.layers.layer_norm(x,
center=True, scale=True,
scope=scope)
def layer_instance_norm(x, scope='layer_instance_norm') :
with tf.variable_scope(scope):
ch = x.shape[-1]
eps = 1e-5
ins_mean, ins_sigma = tf.nn.moments(x, axes=[1, 2], keep_dims=True)
x_ins = (x - ins_mean) / (tf.sqrt(ins_sigma + eps))
ln_mean, ln_sigma = tf.nn.moments(x, axes=[1, 2, 3], keep_dims=True)
x_ln = (x - ln_mean) / (tf.sqrt(ln_sigma + eps))
rho = tf.get_variable("rho", [ch], initializer=tf.constant_initializer(0.0), constraint=lambda x: tf.clip_by_value(x, clip_value_min=0.0, clip_value_max=1.0))
gamma = tf.get_variable("gamma", [ch], initializer=tf.constant_initializer(1.0))
beta = tf.get_variable("beta", [ch], initializer=tf.constant_initializer(0.0))
x_hat = rho * x_ins + (1 - rho) * x_ln
x_hat = x_hat * gamma + beta
return x_hat
def spectral_norm(w, iteration=1):
w_shape = w.shape.as_list()
w = tf.reshape(w, [-1, w_shape[-1]])
u = tf.get_variable("u", [1, w_shape[-1]], initializer=tf.random_normal_initializer(), trainable=False)
u_hat = u
v_hat = None
for i in range(iteration):
"""
power iteration
Usually iteration = 1 will be enough
"""
v_ = tf.matmul(u_hat, tf.transpose(w))
v_hat = tf.nn.l2_normalize(v_)
u_ = tf.matmul(v_hat, w)
u_hat = tf.nn.l2_normalize(u_)
u_hat = tf.stop_gradient(u_hat)
v_hat = tf.stop_gradient(v_hat)
sigma = tf.matmul(tf.matmul(v_hat, w), tf.transpose(u_hat))
with tf.control_dependencies([u.assign(u_hat)]):
w_norm = w / sigma
w_norm = tf.reshape(w_norm, w_shape)
return w_norm
##################################################################################
# Loss function
##################################################################################
def L1_loss(x, y):
loss = tf.reduce_mean(tf.abs(x - y))
return loss
def cam_loss(source, non_source) :
identity_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(source), logits=source))
non_identity_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(non_source), logits=non_source))
loss = identity_loss + non_identity_loss
return loss
def regularization_loss(scope_name) :
"""
If you want to use "Regularization"
g_loss += regularization_loss('generator')
d_loss += regularization_loss('discriminator')
"""
collection_regularization = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = []
for item in collection_regularization :
if scope_name in item.name :
loss.append(item)
return tf.reduce_sum(loss)
def discriminator_loss(loss_func, real, fake):
loss = []
real_loss = 0
fake_loss = 0
for i in range(2) :
if loss_func.__contains__('wgan') :
real_loss = -tf.reduce_mean(real[i])
fake_loss = tf.reduce_mean(fake[i])
if loss_func == 'lsgan' :
real_loss = tf.reduce_mean(tf.squared_difference(real[i], 1.0))
fake_loss = tf.reduce_mean(tf.square(fake[i]))
if loss_func == 'gan' or loss_func == 'dragan' :
real_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(real[i]), logits=real[i]))
fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(fake[i]), logits=fake[i]))
if loss_func == 'hinge' :
real_loss = tf.reduce_mean(relu(1.0 - real[i]))
fake_loss = tf.reduce_mean(relu(1.0 + fake[i]))
loss.append(real_loss + fake_loss)
return sum(loss)
def generator_loss(loss_func, fake):
loss = []
fake_loss = 0
for i in range(2) :
if loss_func.__contains__('wgan') :
fake_loss = -tf.reduce_mean(fake[i])
if loss_func == 'lsgan' :
fake_loss = tf.reduce_mean(tf.squared_difference(fake[i], 1.0))
if loss_func == 'gan' or loss_func == 'dragan' :
fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(fake[i]), logits=fake[i]))
if loss_func == 'hinge' :
fake_loss = -tf.reduce_mean(fake[i])
loss.append(fake_loss)
return sum(loss) |