File size: 26,124 Bytes
d73173f 4e16140 d73173f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import os
import torch
from collections import OrderedDict
from . import networks
class BaseModel():
# modify parser to add command line options,
# and also change the default values if needed
@staticmethod
def modify_commandline_options(parser, is_train):
return parser
def name(self):
return 'BaseModel'
def initialize(self, opt):
self.opt = opt
self.gpu_ids = opt.gpu_ids
self.gpu_ids_p = opt.gpu_ids_p
self.isTrain = opt.isTrain
self.device = torch.device('cpu')
self.device_p = torch.device('cpu')
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
self.auxiliary_dir = os.path.join(opt.checkpoints_dir, opt.auxiliary_root)
if opt.resize_or_crop != 'scale_width':
torch.backends.cudnn.benchmark = True
self.loss_names = []
self.model_names = []
self.visual_names = []
self.image_paths = []
def set_input(self, input):
self.input = input
def forward(self):
pass
# load and print networks; create schedulers
def setup(self, opt, parser=None):
if self.isTrain:
self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
if not self.isTrain or opt.continue_train:
self.load_networks(opt.which_epoch)
if len(self.auxiliary_model_names) > 0:
self.load_auxiliary_networks()
self.print_networks(opt.verbose)
# make models eval mode during test time
def eval(self):
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
net.eval()
# used in test time, wrapping `forward` in no_grad() so we don't save
# intermediate steps for backprop
def test(self):
with torch.no_grad():
self.forward()
# get image paths
def get_image_paths(self):
return self.image_paths
def optimize_parameters(self):
pass
# update learning rate (called once every epoch)
def update_learning_rate(self):
for scheduler in self.schedulers:
scheduler.step()
lr = self.optimizers[0].param_groups[0]['lr']
print('learning rate = %.7f' % lr)
# return visualization images. train.py will display these images, and save the images to a html
def get_current_visuals(self):
visual_ret = OrderedDict()
for name in self.visual_names:
if isinstance(name, str):
visual_ret[name] = getattr(self, name)
return visual_ret
# return traning losses/errors. train.py will print out these errors as debugging information
def get_current_losses(self):
errors_ret = OrderedDict()
for name in self.loss_names:
if isinstance(name, str):
# float(...) works for both scalar tensor and float number
errors_ret[name] = float(getattr(self, 'loss_' + name))
return errors_ret
# save models to the disk
def save_networks(self, which_epoch):
for name in self.model_names:
if isinstance(name, str):
save_filename = '%s_net_%s.pth' % (which_epoch, name)
save_path = os.path.join(self.save_dir, save_filename)
net = getattr(self, 'net' + name)
if len(self.gpu_ids) > 0 and torch.cuda.is_available():
torch.save(net.module.cpu().state_dict(), save_path)
net.cuda(self.gpu_ids[0])
else:
torch.save(net.cpu().state_dict(), save_path)
def save_networks2(self, which_epoch):
gen_name = os.path.join(self.save_dir, '%s_net_gen.pt' % (which_epoch))
dis_name = os.path.join(self.save_dir, '%s_net_dis.pt' % (which_epoch))
dict_gen = {}
dict_dis = {}
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
if len(self.gpu_ids) > 0 and torch.cuda.is_available():
state_dict = net.module.cpu().state_dict()
net.cuda(self.gpu_ids[0])
else:
state_dict = net.cpu().state_dict()
if name[0] == 'G':
dict_gen[name] = state_dict
elif name[0] == 'D':
dict_dis[name] = state_dict
else:
save_filename = '%s_net_%s.pth' % (which_epoch, name)
save_path = os.path.join(self.save_dir, save_filename)
torch.save(state_dict, save_path)
if dict_gen:
torch.save(dict_gen, gen_name)
if dict_dis:
torch.save(dict_dis, dis_name)
def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
key = keys[i]
if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
if module.__class__.__name__.startswith('InstanceNorm') and \
(key == 'running_mean' or key == 'running_var'):
if getattr(module, key) is None:
state_dict.pop('.'.join(keys))
if module.__class__.__name__.startswith('InstanceNorm') and \
(key == 'num_batches_tracked'):
state_dict.pop('.'.join(keys))
else:
self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
# load models from the disk
def load_networks(self, which_epoch):
gen_name = os.path.join(self.save_dir, '%s_net_gen.pt' % (which_epoch))
if os.path.exists(gen_name):
self.load_networks2(which_epoch)
return
for name in self.model_names:
if isinstance(name, str):
load_filename = '%s_net_%s.pth' % (which_epoch, name)
load_path = os.path.join(self.save_dir, load_filename)
net = getattr(self, 'net' + name)
if isinstance(net, torch.nn.DataParallel):
net = net.module
print('loading the model from %s' % load_path)
# if you are using PyTorch newer than 0.4 (e.g., built from
# GitHub source), you can remove str() on self.device
state_dict = torch.load(load_path, map_location=str(self.device))
if hasattr(state_dict, '_metadata'):
del state_dict._metadata
# patch InstanceNorm checkpoints prior to 0.4
for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
net.load_state_dict(state_dict)
def load_networks2(self, which_epoch):
gen_name = os.path.join(self.save_dir, '%s_net_gen.pt' % (which_epoch))
gen_state_dict = torch.load(gen_name, map_location=str(self.device))
if self.isTrain and self.opt.model != 'apdrawing_style_nogan':
dis_name = os.path.join(self.save_dir, '%s_net_dis.pt' % (which_epoch))
dis_state_dict = torch.load(dis_name, map_location=str(self.device))
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
if isinstance(net, torch.nn.DataParallel):
net = net.module
if name[0] == 'G':
print('loading the model %s from %s' % (name,gen_name))
state_dict = gen_state_dict[name]
elif name[0] == 'D':
print('loading the model %s from %s' % (name,gen_name))
state_dict = dis_state_dict[name]
if hasattr(state_dict, '_metadata'):
del state_dict._metadata
# patch InstanceNorm checkpoints prior to 0.4
for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
net.load_state_dict(state_dict)
# load auxiliary net models from the disk
def load_auxiliary_networks(self):
for name in self.auxiliary_model_names:
if isinstance(name, str):
if 'AE' in name and self.opt.ae_small:
load_filename = '%s_net_%s_small.pth' % ('latest', name)
elif 'Regressor' in name:
load_filename = '%s_net_%s%d.pth' % ('latest', name, self.opt.regarch)
else:
load_filename = '%s_net_%s.pth' % ('latest', name)
load_path = os.path.join(self.auxiliary_dir, load_filename)
net = getattr(self, 'net' + name)
if isinstance(net, torch.nn.DataParallel):
net = net.module
print('loading the model from %s' % load_path)
# if you are using PyTorch newer than 0.4 (e.g., built from
# GitHub source), you can remove str() on self.device
if name in ['DT1', 'DT2', 'Line1', 'Line2', 'Continuity1', 'Continuity2', 'Regressor', 'Regressorhair', 'Regressorface']:
state_dict = torch.load(load_path, map_location=str(self.device_p))
else:
state_dict = torch.load(load_path, map_location=str(self.device))
if hasattr(state_dict, '_metadata'):
del state_dict._metadata
# patch InstanceNorm checkpoints prior to 0.4
for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
net.load_state_dict(state_dict)
# print network information
def print_networks(self, verbose):
print('---------- Networks initialized -------------')
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
num_params = 0
for param in net.parameters():
num_params += param.numel()
if verbose:
print(net)
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
print('-----------------------------------------------')
# set requies_grad=Fasle to avoid computation
def set_requires_grad(self, nets, requires_grad=False):
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
# =============================================================================================================
def inverse_mask(self, mask):
return torch.ones(mask.shape).to(self.device)-mask
def masked(self, A,mask):
return (A/2+0.5)*mask*2-1
def add_with_mask(self, A,B,mask):
return ((A/2+0.5)*mask+(B/2+0.5)*(torch.ones(mask.shape).to(self.device)-mask))*2-1
def addone_with_mask(self, A,mask):
return ((A/2+0.5)*mask+(torch.ones(mask.shape).to(self.device)-mask))*2-1
def partCombiner(self, eyel, eyer, nose, mouth, average_pos=False, comb_op = 1, region_enm = 0, cmaskel = None, cmasker = None, cmaskno = None, cmaskmo = None):
'''
x y
100.571 123.429
155.429 123.429
128.000 155.886
103.314 185.417
152.686 185.417
this is the mean locaiton of 5 landmarks (for 256x256)
Pad2d Left,Right,Top,Down
'''
if comb_op == 0:
# use max pooling, pad black for eyes etc
padvalue = -1
if region_enm in [1,2]:
eyel = eyel * cmaskel
eyer = eyer * cmasker
nose = nose * cmaskno
mouth = mouth * cmaskmo
else:
# use min pooling, pad white for eyes etc
padvalue = 1
if region_enm in [1,2]:
eyel = self.addone_with_mask(eyel, cmaskel)
eyer = self.addone_with_mask(eyer, cmasker)
nose = self.addone_with_mask(nose, cmaskno)
mouth = self.addone_with_mask(mouth, cmaskmo)
if region_enm in [0,1]: # need to pad
IMAGE_SIZE = self.opt.fineSize
ratio = IMAGE_SIZE / 256
EYE_W = self.opt.EYE_W * ratio
EYE_H = self.opt.EYE_H * ratio
NOSE_W = self.opt.NOSE_W * ratio
NOSE_H = self.opt.NOSE_H * ratio
MOUTH_W = self.opt.MOUTH_W * ratio
MOUTH_H = self.opt.MOUTH_H * ratio
bs,nc,_,_ = eyel.shape
eyel_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
eyer_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
nose_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
mouth_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
for i in range(bs):
if not average_pos:
center = self.center[i]#x,y
else:# if average_pos = True
center = torch.tensor([[101,123-4],[155,123-4],[128,156-NOSE_H/2+16],[128,185]])
eyel_p[i] = torch.nn.ConstantPad2d((int(center[0,0] - EYE_W / 2 - 1), int(IMAGE_SIZE - (center[0,0]+EYE_W/2-1)), int(center[0,1] - EYE_H / 2 - 1),int(IMAGE_SIZE - (center[0,1]+EYE_H/2 - 1))),-1)(eyel[i])
eyer_p[i] = torch.nn.ConstantPad2d((int(center[1,0] - EYE_W / 2 - 1), int(IMAGE_SIZE - (center[1,0]+EYE_W/2-1)), int(center[1,1] - EYE_H / 2 - 1), int(IMAGE_SIZE - (center[1,1]+EYE_H/2 - 1))),-1)(eyer[i])
nose_p[i] = torch.nn.ConstantPad2d((int(center[2,0] - NOSE_W / 2 - 1), int(IMAGE_SIZE - (center[2,0]+NOSE_W/2-1)), int(center[2,1] - NOSE_H / 2 - 1), int(IMAGE_SIZE - (center[2,1]+NOSE_H/2 - 1))),-1)(nose[i])
mouth_p[i] = torch.nn.ConstantPad2d((int(center[3,0] - MOUTH_W / 2 - 1), int(IMAGE_SIZE - (center[3,0]+MOUTH_W/2-1)), int(center[3,1] - MOUTH_H / 2 - 1), int(IMAGE_SIZE - (center[3,1]+MOUTH_H/2 - 1))),-1)(mouth[i])
elif region_enm in [2]:
eyel_p = eyel
eyer_p = eyer
nose_p = nose
mouth_p = mouth
if comb_op == 0:
# use max pooling
eyes = torch.max(eyel_p, eyer_p)
eye_nose = torch.max(eyes, nose_p)
result = torch.max(eye_nose, mouth_p)
else:
# use min pooling
eyes = torch.min(eyel_p, eyer_p)
eye_nose = torch.min(eyes, nose_p)
result = torch.min(eye_nose, mouth_p)
return result
def partCombiner2(self, eyel, eyer, nose, mouth, hair, mask, comb_op = 1, region_enm = 0, cmaskel = None, cmasker = None, cmaskno = None, cmaskmo = None):
if comb_op == 0:
# use max pooling, pad black for eyes etc
padvalue = -1
hair = self.masked(hair, mask)
if region_enm in [1,2]:
eyel = eyel * cmaskel
eyer = eyer * cmasker
nose = nose * cmaskno
mouth = mouth * cmaskmo
else:
# use min pooling, pad white for eyes etc
padvalue = 1
hair = self.addone_with_mask(hair, mask)
if region_enm in [1,2]:
eyel = self.addone_with_mask(eyel, cmaskel)
eyer = self.addone_with_mask(eyer, cmasker)
nose = self.addone_with_mask(nose, cmaskno)
mouth = self.addone_with_mask(mouth, cmaskmo)
if region_enm in [0,1]: # need to pad
IMAGE_SIZE = self.opt.fineSize
ratio = IMAGE_SIZE / 256
EYE_W = self.opt.EYE_W * ratio
EYE_H = self.opt.EYE_H * ratio
NOSE_W = self.opt.NOSE_W * ratio
NOSE_H = self.opt.NOSE_H * ratio
MOUTH_W = self.opt.MOUTH_W * ratio
MOUTH_H = self.opt.MOUTH_H * ratio
bs,nc,_,_ = eyel.shape
eyel_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
eyer_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
nose_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
mouth_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
for i in range(bs):
center = self.center[i]#x,y
eyel_p[i] = torch.nn.ConstantPad2d((center[0,0] - EYE_W / 2, IMAGE_SIZE - (center[0,0]+EYE_W/2), center[0,1] - EYE_H / 2, IMAGE_SIZE - (center[0,1]+EYE_H/2)),padvalue)(eyel[i])
eyer_p[i] = torch.nn.ConstantPad2d((center[1,0] - EYE_W / 2, IMAGE_SIZE - (center[1,0]+EYE_W/2), center[1,1] - EYE_H / 2, IMAGE_SIZE - (center[1,1]+EYE_H/2)),padvalue)(eyer[i])
nose_p[i] = torch.nn.ConstantPad2d((center[2,0] - NOSE_W / 2, IMAGE_SIZE - (center[2,0]+NOSE_W/2), center[2,1] - NOSE_H / 2, IMAGE_SIZE - (center[2,1]+NOSE_H/2)),padvalue)(nose[i])
mouth_p[i] = torch.nn.ConstantPad2d((center[3,0] - MOUTH_W / 2, IMAGE_SIZE - (center[3,0]+MOUTH_W/2), center[3,1] - MOUTH_H / 2, IMAGE_SIZE - (center[3,1]+MOUTH_H/2)),padvalue)(mouth[i])
elif region_enm in [2]:
eyel_p = eyel
eyer_p = eyer
nose_p = nose
mouth_p = mouth
if comb_op == 0:
# use max pooling
eyes = torch.max(eyel_p, eyer_p)
eye_nose = torch.max(eyes, nose_p)
eye_nose_mouth = torch.max(eye_nose, mouth_p)
result = torch.max(hair,eye_nose_mouth)
else:
# use min pooling
eyes = torch.min(eyel_p, eyer_p)
eye_nose = torch.min(eyes, nose_p)
eye_nose_mouth = torch.min(eye_nose, mouth_p)
result = torch.min(hair,eye_nose_mouth)
return result
def partCombiner2_bg(self, eyel, eyer, nose, mouth, hair, bg, maskh, maskb, comb_op = 1, region_enm = 0, cmaskel = None, cmasker = None, cmaskno = None, cmaskmo = None):
if comb_op == 0:
# use max pooling, pad black for eyes etc
padvalue = -1
hair = self.masked(hair, maskh)
bg = self.masked(bg, maskb)
if region_enm in [1,2]:
eyel = eyel * cmaskel
eyer = eyer * cmasker
nose = nose * cmaskno
mouth = mouth * cmaskmo
else:
# use min pooling, pad white for eyes etc
padvalue = 1
hair = self.addone_with_mask(hair, maskh)
bg = self.addone_with_mask(bg, maskb)
if region_enm in [1,2]:
eyel = self.addone_with_mask(eyel, cmaskel)
eyer = self.addone_with_mask(eyer, cmasker)
nose = self.addone_with_mask(nose, cmaskno)
mouth = self.addone_with_mask(mouth, cmaskmo)
if region_enm in [0,1]: # need to pad to full size
IMAGE_SIZE = self.opt.fineSize
ratio = IMAGE_SIZE / 256
EYE_W = self.opt.EYE_W * ratio
EYE_H = self.opt.EYE_H * ratio
NOSE_W = self.opt.NOSE_W * ratio
NOSE_H = self.opt.NOSE_H * ratio
MOUTH_W = self.opt.MOUTH_W * ratio
MOUTH_H = self.opt.MOUTH_H * ratio
bs,nc,_,_ = eyel.shape
eyel_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
eyer_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
nose_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
mouth_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
for i in range(bs):
center = self.center[i]#x,y
eyel_p[i] = torch.nn.ConstantPad2d((center[0,0] - EYE_W / 2, IMAGE_SIZE - (center[0,0]+EYE_W/2), center[0,1] - EYE_H / 2, IMAGE_SIZE - (center[0,1]+EYE_H/2)),padvalue)(eyel[i])
eyer_p[i] = torch.nn.ConstantPad2d((center[1,0] - EYE_W / 2, IMAGE_SIZE - (center[1,0]+EYE_W/2), center[1,1] - EYE_H / 2, IMAGE_SIZE - (center[1,1]+EYE_H/2)),padvalue)(eyer[i])
nose_p[i] = torch.nn.ConstantPad2d((center[2,0] - NOSE_W / 2, IMAGE_SIZE - (center[2,0]+NOSE_W/2), center[2,1] - NOSE_H / 2, IMAGE_SIZE - (center[2,1]+NOSE_H/2)),padvalue)(nose[i])
mouth_p[i] = torch.nn.ConstantPad2d((center[3,0] - MOUTH_W / 2, IMAGE_SIZE - (center[3,0]+MOUTH_W/2), center[3,1] - MOUTH_H / 2, IMAGE_SIZE - (center[3,1]+MOUTH_H/2)),padvalue)(mouth[i])
elif region_enm in [2]:
eyel_p = eyel
eyer_p = eyer
nose_p = nose
mouth_p = mouth
if comb_op == 0:
eyes = torch.max(eyel_p, eyer_p)
eye_nose = torch.max(eyes, nose_p)
eye_nose_mouth = torch.max(eye_nose, mouth_p)
eye_nose_mouth_hair = torch.max(hair,eye_nose_mouth)
result = torch.max(bg,eye_nose_mouth_hair)
else:
eyes = torch.min(eyel_p, eyer_p)
eye_nose = torch.min(eyes, nose_p)
eye_nose_mouth = torch.min(eye_nose, mouth_p)
eye_nose_mouth_hair = torch.min(hair,eye_nose_mouth)
result = torch.min(bg,eye_nose_mouth_hair)
return result
def partCombiner3(self, face, hair, maskf, maskh, comb_op = 1):
if comb_op == 0:
# use max pooling, pad black etc
padvalue = -1
face = self.masked(face, maskf)
hair = self.masked(hair, maskh)
else:
# use min pooling, pad white etc
padvalue = 1
face = self.addone_with_mask(face, maskf)
hair = self.addone_with_mask(hair, maskh)
if comb_op == 0:
result = torch.max(face,hair)
else:
result = torch.min(face,hair)
return result
def tocv2(ts):
img = (ts.numpy()/2+0.5)*255
img = img.astype('uint8')
img = np.transpose(img,(1,2,0))
img = img[:,:,::-1]#rgb->bgr
return img
def totor(img):
img = img[:,:,::-1]
tor = transforms.ToTensor()(img)
tor = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(tor)
return tor
def ContinuityForTest(self, real = 0):
# Patch-based
self.get_patches()
self.outputs = self.netRegressor(self.fake_B_patches)
line_continuity = torch.mean(self.outputs)
opt = self.opt
file_name = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch), 'continuity.txt')
message = '%s %.04f' % (self.image_paths[0], line_continuity)
with open(file_name, 'a+') as c_file:
c_file.write(message)
c_file.write('\n')
if real == 1:
self.get_patches_real()
self.outputs2 = self.netRegressor(self.real_B_patches)
line_continuity2 = torch.mean(self.outputs2)
file_name = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch), 'continuity-r.txt')
message = '%s %.04f' % (self.image_paths[0], line_continuity2)
with open(file_name, 'a+') as c_file:
c_file.write(message)
c_file.write('\n')
def getLocalParts(self,fakeAB):
bs,nc,_,_ = fakeAB.shape #dtype torch.float32
ncr = int(nc / self.opt.output_nc)
if self.opt.region_enm in [0,1]:
ratio = self.opt.fineSize / 256
EYE_H = self.opt.EYE_H * ratio
EYE_W = self.opt.EYE_W * ratio
NOSE_H = self.opt.NOSE_H * ratio
NOSE_W = self.opt.NOSE_W * ratio
MOUTH_H = self.opt.MOUTH_H * ratio
MOUTH_W = self.opt.MOUTH_W * ratio
eyel = torch.ones((bs,nc,int(EYE_H),int(EYE_W))).to(self.device)
eyer = torch.ones((bs,nc,int(EYE_H),int(EYE_W))).to(self.device)
nose = torch.ones((bs,nc,int(NOSE_H),int(NOSE_W))).to(self.device)
mouth = torch.ones((bs,nc,int(MOUTH_H),int(MOUTH_W))).to(self.device)
for i in range(bs):
center = self.center[i]
eyel[i] = fakeAB[i,:,center[0,1]-EYE_H/2:center[0,1]+EYE_H/2,center[0,0]-EYE_W/2:center[0,0]+EYE_W/2]
eyer[i] = fakeAB[i,:,center[1,1]-EYE_H/2:center[1,1]+EYE_H/2,center[1,0]-EYE_W/2:center[1,0]+EYE_W/2]
nose[i] = fakeAB[i,:,center[2,1]-NOSE_H/2:center[2,1]+NOSE_H/2,center[2,0]-NOSE_W/2:center[2,0]+NOSE_W/2]
mouth[i] = fakeAB[i,:,center[3,1]-MOUTH_H/2:center[3,1]+MOUTH_H/2,center[3,0]-MOUTH_W/2:center[3,0]+MOUTH_W/2]
elif self.opt.region_enm in [2]:
eyel = (fakeAB/2+0.5) * self.cmaskel.repeat(1,ncr,1,1) * 2 - 1
eyer = (fakeAB/2+0.5) * self.cmasker.repeat(1,ncr,1,1) * 2 - 1
nose = (fakeAB/2+0.5) * self.cmask.repeat(1,ncr,1,1) * 2 - 1
mouth = (fakeAB/2+0.5) * self.cmaskmo.repeat(1,ncr,1,1) * 2 - 1
hair = (fakeAB/2+0.5) * self.mask.repeat(1,ncr,1,1) * self.mask2.repeat(1,ncr,1,1) * 2 - 1
bg = (fakeAB/2+0.5) * (torch.ones(fakeAB.shape).to(self.device)-self.mask2.repeat(1,ncr,1,1)) * 2 - 1
return eyel, eyer, nose, mouth, hair, bg
def getaddw(self,local_name):
addw = 1
if local_name in ['DLEyel','DLEyer','eyel','eyer','DLFace','face']:
addw = self.opt.addw_eye
elif local_name in ['DLNose', 'nose']:
addw = self.opt.addw_nose
elif local_name in ['DLMouth', 'mouth']:
addw = self.opt.addw_mouth
elif local_name in ['DLHair', 'hair']:
addw = self.opt.addw_hair
elif local_name in ['DLBG', 'bg']:
addw = self.opt.addw_bg
return addw |