File size: 5,624 Bytes
d73173f 2fe3ec4 d73173f 2fe3ec4 d73173f 2fe3ec4 d84f784 2fe3ec4 d73173f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import cv2
import os, glob, csv, shutil
import numpy as np
import dlib
import math
from shapely.geometry import Point
from shapely.geometry import Polygon
import sys
def getfeats(featpath):
trans_points = np.empty([68,2],dtype=np.int64)
with open(featpath, 'r') as csvfile:
reader = csv.reader(csvfile, delimiter=' ')
for ind,row in enumerate(reader):
trans_points[ind,:] = row
return trans_points
def getinternal(lm1,lm2):
lminternal = []
if abs(lm1[1]-lm2[1]) > abs(lm1[0]-lm2[0]):
if lm1[1] > lm2[1]:
tmp = lm1
lm1 = lm2
lm2 = tmp
for y in range(lm1[1]+1,lm2[1]):
x = int(round(float(y-lm1[1])/(lm2[1]-lm1[1])*(lm2[0]-lm1[0])+lm1[0]))
lminternal.append((x,y))
else:
if lm1[0] > lm2[0]:
tmp = lm1
lm1 = lm2
lm2 = tmp
for x in range(lm1[0]+1,lm2[0]):
y = int(round(float(x-lm1[0])/(lm2[0]-lm1[0])*(lm2[1]-lm1[1])+lm1[1]))
lminternal.append((x,y))
return lminternal
def mulcross(p,x_1,x):#p-x_1,x-x_1
vp = [p[0]-x_1[0],p[1]-x_1[1]]
vq = [x[0]-x_1[0],x[1]-x_1[1]]
return vp[0]*vq[1]-vp[1]*vq[0]
def shape_to_np(shape, dtype="int"):
# initialize the list of (x, y)-coordinates
coords = np.zeros((shape.num_parts, 2), dtype=dtype)
# loop over all facial landmarks and convert them
# to a 2-tuple of (x, y)-coordinates
for i in range(0, shape.num_parts):
coords[i] = (shape.part(i).x, shape.part(i).y)
# return the list of (x, y)-coordinates
return coords
def get_68lm(imgfile,savepath5,savepath68, detector, predictor):
image = cv2.imread(imgfile)
rgbImg = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
rects = detector(rgbImg, 1)
for (i, rect) in enumerate(rects):
landmarks = predictor(rgbImg, rect)
landmarks = shape_to_np(landmarks)
f = open(savepath68,'w')
for i in range(len(landmarks)):
lm = landmarks[i]
print(lm[0], lm[1], file=f)
f.close()
ff = open(savepath5, 'w')
lm = (landmarks[36]+landmarks[39])/2
print(int(lm[0]), int(lm[1]), file=ff)
lm = (landmarks[45]+landmarks[42])/2
print(int(lm[0]), int(lm[1]), file=ff)
lm = landmarks[30]
print(lm[0], lm[1], file=ff)
lm = landmarks[48]
print(lm[0], lm[1], file=ff)
lm = landmarks[54]
print(lm[0], lm[1], file=ff)
ff.close()
def get_partmask(imgfile,part,lmpath,savefile):
img = cv2.imread(imgfile)
mask = np.zeros(img.shape, np.uint8)
lms = getfeats(lmpath)
if os.path.exists(savefile):
return
if part == 'nose':
# 27,31....,35 -> up, left, right, lower5 -- eight points
up = [int(round(1.2*lms[27][0]-0.2*lms[33][0])),int(round(1.2*lms[27][1]-0.2*lms[33][1]))]
lower5 = [[0,0]]*5
for i in range(31,36):
lower5[i-31] = [int(round(1.1*lms[i][0]-0.1*lms[27][0])),int(round(1.1*lms[i][1]-0.1*lms[27][1]))]
ratio = 2.5
left = [int(round(ratio*lower5[0][0]-(ratio-1)*lower5[1][0])),int(round(ratio*lower5[0][1]-(ratio-1)*lower5[1][1]))]
right = [int(round(ratio*lower5[4][0]-(ratio-1)*lower5[3][0])),int(round(ratio*lower5[4][1]-(ratio-1)*lower5[3][1]))]
loop = [up,left,lower5[0],lower5[1],lower5[2],lower5[3],lower5[4],right]
elif part == 'eyel':
height = max(lms[41][1]-lms[37][1],lms[40][1]-lms[38][1])
width = lms[39][0]-lms[36][0]
ratio = 0.1
gap = int(math.ceil(width*ratio))
ratio2 = 0.6
gaph = int(math.ceil(height*ratio2))
ratio3 = 1.5
gaph2 = int(math.ceil(height*ratio3))
upper = [[lms[17][0]-2*gap,lms[17][1]],[lms[17][0]-2*gap,lms[17][1]-gaph],[lms[18][0],lms[18][1]-gaph],[lms[19][0],lms[19][1]-gaph],[lms[20][0],lms[20][1]-gaph],[lms[21][0]+gap*2,lms[21][1]-gaph]]
lower = [[lms[39][0]+gap,lms[40][1]+gaph2],[lms[40][0],lms[40][1]+gaph2],[lms[41][0],lms[41][1]+gaph2],[lms[36][0]-2*gap,lms[41][1]+gaph2]]
loop = upper + lower
loop.reverse()
elif part == 'eyer':
height = max(lms[47][1]-lms[43][1],lms[46][1]-lms[44][1])
width = lms[45][0]-lms[42][0]
ratio = 0.1
gap = int(math.ceil(width*ratio))
ratio2 = 0.6
gaph = int(math.ceil(height*ratio2))
ratio3 = 1.5
gaph2 = int(math.ceil(height*ratio3))
upper = [[lms[22][0]-2*gap,lms[22][1]],[lms[22][0]-2*gap,lms[22][1]-gaph],[lms[23][0],lms[23][1]-gaph],[lms[24][0],lms[24][1]-gaph],[lms[25][0],lms[25][1]-gaph],[lms[26][0]+gap*2,lms[26][1]-gaph]]
lower = [[lms[45][0]+2*gap,lms[46][1]+gaph2],[lms[46][0],lms[46][1]+gaph2],[lms[47][0],lms[47][1]+gaph2],[lms[42][0]-gap,lms[42][1]+gaph2]]
loop = upper + lower
loop.reverse()
elif part == 'mouth':
height = lms[62][1]-lms[51][1]
width = lms[54][0]-lms[48][0]
ratio = 1
ratio2 = 0.2#0.1
gaph = int(math.ceil(ratio*height))
gapw = int(math.ceil(ratio2*width))
left = [(lms[48][0]-gapw,lms[48][1])]
upper = [(lms[i][0], lms[i][1]-gaph) for i in range(48,55)]
right = [(lms[54][0]+gapw,lms[54][1])]
lower = [(lms[i][0], lms[i][1]+gaph) for i in list(range(54,60))+[48]]
loop = left + upper + right + lower
loop.reverse()
pl = Polygon(loop)
for i in range(mask.shape[0]):
for j in range(mask.shape[1]):
if part != 'mouth' and part != 'jaw':
p = [j,i]
flag = 1
for k in range(len(loop)):
if mulcross(p,loop[k],loop[(k+1)%len(loop)]) < 0:#y downside... >0 represents counter-clockwise, <0 clockwise
flag = 0
break
else:
p = Point(j,i)
flag = pl.contains(p)
if flag:
mask[i,j] = [255,255,255]
if not os.path.exists(os.path.dirname(savefile)):
os.mkdir(os.path.dirname(savefile))
cv2.imwrite(savefile,mask)
if __name__ == '__main__':
imgfile = 'example/img_1701_aligned.png'
lmfile = 'example/img_1701_aligned_68lm.txt'
get_68lm(imgfile,lmfile)
for part in ['eyel','eyer','nose','mouth']:
savepath = 'example/img_1701_aligned_'+part+'mask.png'
get_partmask(imgfile,part,lmfile,savepath)
|