File size: 8,023 Bytes
d73173f 3caa29f d73173f 46ba26b 15811d2 d73173f 0776c7c d73173f 46ba26b d73173f 46ba26b d73173f 46ba26b d73173f 0776c7c d73173f 46ba26b d73173f 46ba26b d73173f 46ba26b 7ea3da2 46ba26b 0776c7c 7ea3da2 d73173f 3caa29f 842a8b7 3caa29f d73173f 3caa29f 0776c7c 3caa29f 7ea3da2 3caa29f 71dfc57 3caa29f 0776c7c 112ec0b 3cb90c3 46ba26b 7ea3da2 d73173f 0776c7c 46ba26b 0776c7c d73173f 7ea3da2 d73173f 46ba26b d73173f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pathlib
import sys
from typing import Callable
import uuid
import cv2
sys.path.insert(0, 'APDrawingGAN2')
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
from io import BytesIO
import shutil
from options.test_options import TestOptions
from data import CreateDataLoader
from models import create_model
import dlib
from preprocess.get_partmask import get_68lm, get_partmask
from util import html
import ntpath
from util import util
from modnet import ModNet
ORIGINAL_REPO_URL = 'https://github.com/yiranran/APDrawingGAN2'
TITLE = 'yiranran/APDrawingGAN2'
DESCRIPTION = f"""This is a demo for {ORIGINAL_REPO_URL}.
"""
ARTICLE = """
"""
MODEL_REPO = 'hylee/apdrawing_model'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def load_checkpoint():
dir = 'checkpoint'
checkpoint_path = huggingface_hub.hf_hub_download(MODEL_REPO,
'checkpoints.zip',
force_filename='checkpoints.zip')
print(checkpoint_path)
shutil.unpack_archive(checkpoint_path, extract_dir=dir)
print(os.listdir(dir + '/checkpoints'))
return dir + '/checkpoints'
def load_modnet_model():
modnet_path = huggingface_hub.hf_hub_download(MODEL_REPO,
'modnet.onnx',
force_filename='modnet.onnx')
return modnet_path
# save image to the disk
def save_images2(image_dir, visuals, image_path, aspect_ratio=1.0, width=256):
short_path = ntpath.basename(image_path[0])
name = os.path.splitext(short_path)[0]
imgs = []
for label, im_data in visuals.items():
im = util.tensor2im(im_data) # tensor to numpy array [-1,1]->[0,1]->[0,255]
image_name = '%s_%s.png' % (name, label)
save_path = os.path.join(image_dir, image_name)
h, w, _ = im.shape
if aspect_ratio > 1.0:
im = np.array(PIL.Image.fromarray(arr).resize(im, (h, int(w * aspect_ratio))))
if aspect_ratio < 1.0:
im = np.array(PIL.Image.fromarray(arr).resize(im, (int(h / aspect_ratio), w)))
util.save_image(im, save_path)
imgs.append(save_path)
return imgs
SAFEHASH = [x for x in "0123456789-abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
def compress_UUID():
'''
根据http://www.ietf.org/rfc/rfc1738.txt,由uuid编码扩bai大字符域生成du串
包括:[0-9a-zA-Z\-_]共64个
长度:(32-2)/3*2=20
备注:可在地球上人zhi人都用,使用100年不重复(2^120)
:return:String
'''
row = str(uuid.uuid4()).replace('-', '')
safe_code = ''
for i in range(10):
enbin = "%012d" % int(bin(int(row[i * 3] + row[i * 3 + 1] + row[i * 3 + 2], 16))[2:], 10)
safe_code += (SAFEHASH[int(enbin[0:6], 2)] + SAFEHASH[int(enbin[6:12], 2)])
safe_code = safe_code.replace('-', '')
return safe_code
def run(
image,
landmarks_str : str,
model,
opt,
detector,
predictor,
modnet : ModNet,
) -> tuple[PIL.Image.Image]:
dataroot = 'images/' + compress_UUID()
opt.dataroot = os.path.join(dataroot, 'src/')
os.makedirs(opt.dataroot, exist_ok=True)
opt.results_dir = os.path.join(dataroot, 'results/')
os.makedirs(opt.results_dir, exist_ok=True)
opt.lm_dir = os.path.join(dataroot, 'landmark/')
opt.cmask_dir = os.path.join(dataroot, 'mask/')
opt.bg_dir = os.path.join(dataroot, 'mask/bg')
os.makedirs(opt.lm_dir, exist_ok=True)
os.makedirs(opt.cmask_dir, exist_ok=True)
os.makedirs(opt.bg_dir, exist_ok=True)
shutil.copy(image.name, opt.dataroot)
fullname = os.path.basename(image.name)
name = fullname.split(".")[0]
#bg = cv2.cvtColor(cv2.imread(mask.name), cv2.COLOR_BGR2GRAY)
#cv2.imwrite(os.path.join(opt.bg_dir, name+'.png'), bg)
modnet.segment(image.name, os.path.join(opt.bg_dir, name+'.png'))
imgfile = os.path.join(opt.dataroot, fullname)
lmfile5 = os.path.join(opt.lm_dir, name+'.txt')
lmfile68 = os.path.join(opt.lm_dir, name + '_68.txt')
# 预处理数据
# get_68lm(imgfile, lmfile5, lmfile68, detector, predictor)
f = open(lmfile68, 'w')
print(landmarks_str, file=f)
f.close()
landmarks = np.loadtxt(lmfile68, dtype=np.int64)
ff = open(lmfile5, 'w')
lm = (landmarks[36] + landmarks[39]) / 2
print(int(lm[0]), int(lm[1]), file=ff)
lm = (landmarks[45] + landmarks[42]) / 2
print(int(lm[0]), int(lm[1]), file=ff)
lm = landmarks[30]
print(lm[0], lm[1], file=ff)
lm = landmarks[48]
print(lm[0], lm[1], file=ff)
lm = landmarks[54]
print(lm[0], lm[1], file=ff)
ff.close()
imgs = []
for part in ['eyel', 'eyer', 'nose', 'mouth']:
savepath = os.path.join(opt.cmask_dir + part, name+'.png')
get_partmask(imgfile, part, lmfile68, savepath)
#imgs.append(savepath)
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
# test
# model.eval()
for i, data in enumerate(dataset):
if i >= opt.how_many: # test code only supports batch_size = 1, how_many means how many test images to run
break
model.set_input(data)
model.test()
visuals = model.get_current_visuals() # in test the loadSize is set to the same as fineSize
img_path = model.get_image_paths()
# if i % 5 == 0:
# print('processing (%04d)-th image... %s' % (i, img_path))
imgs = save_images2(opt.results_dir, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
print(imgs)
return PIL.Image.open(imgs[1])
def main():
gr.close_all()
args = parse_args()
checkpoint_dir = load_checkpoint()
opt = TestOptions().parse()
opt.num_threads = 1 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
opt.display_id = -1 # no visdom display
opt.checkpoints_dir = checkpoint_dir
model = create_model(opt)
model.setup(opt)
modnet_path = load_modnet_model();
modnet = ModNet(modnet_path)
'''
预处理数据
'''
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(checkpoint_dir + '/shape_predictor_68_face_landmarks.dat')
func = functools.partial(run, model=model, opt=opt, detector=detector, predictor=predictor, modnet=modnet)
func = functools.update_wrapper(func, run)
gr.Interface(
func,
[
gr.inputs.Image(type='file', label='Input Image'),
gr.inputs.Textbox(lines=1, label="Landmarks"),
],
[
gr.outputs.Image(
type='pil',
label='Result'),
],
# examples=examples,
theme=args.theme,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|