|
import torch |
|
import torch.nn as nn |
|
from torch.nn import init |
|
import functools |
|
from torch.optim import lr_scheduler |
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_norm_layer(norm_type='instance'): |
|
if norm_type == 'batch': |
|
norm_layer = functools.partial(nn.BatchNorm2d, affine=True) |
|
elif norm_type == 'instance': |
|
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=True) |
|
elif norm_type == 'none': |
|
norm_layer = None |
|
else: |
|
raise NotImplementedError('normalization layer [%s] is not found' % norm_type) |
|
return norm_layer |
|
|
|
|
|
def get_scheduler(optimizer, opt): |
|
if opt.lr_policy == 'lambda': |
|
def lambda_rule(epoch): |
|
lr_l = 1.0 - max(0, epoch + 1 + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1) |
|
return lr_l |
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) |
|
elif opt.lr_policy == 'step': |
|
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) |
|
elif opt.lr_policy == 'plateau': |
|
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) |
|
elif opt.lr_policy == 'cosine': |
|
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0) |
|
else: |
|
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) |
|
return scheduler |
|
|
|
|
|
def init_weights(net, init_type='normal', gain=0.02): |
|
def init_func(m): |
|
classname = m.__class__.__name__ |
|
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): |
|
if init_type == 'normal': |
|
init.normal_(m.weight.data, 0.0, gain) |
|
elif init_type == 'xavier': |
|
init.xavier_normal_(m.weight.data, gain=gain) |
|
elif init_type == 'kaiming': |
|
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') |
|
elif init_type == 'orthogonal': |
|
init.orthogonal_(m.weight.data, gain=gain) |
|
else: |
|
raise NotImplementedError('initialization method [%s] is not implemented' % init_type) |
|
if hasattr(m, 'bias') and m.bias is not None: |
|
init.constant_(m.bias.data, 0.0) |
|
elif classname.find('BatchNorm2d') != -1: |
|
init.normal_(m.weight.data, 1.0, gain) |
|
init.constant_(m.bias.data, 0.0) |
|
|
|
print('initialize network with %s' % init_type) |
|
net.apply(init_func) |
|
|
|
|
|
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): |
|
if len(gpu_ids) > 0: |
|
assert(torch.cuda.is_available()) |
|
net.to(gpu_ids[0]) |
|
net = torch.nn.DataParallel(net, gpu_ids) |
|
init_weights(net, init_type, gain=init_gain) |
|
return net |
|
|
|
|
|
def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[], nnG=9, multiple=2, latent_dim=1024, ae_h=96, ae_w=96, extra_channel=2, nres=1): |
|
net = None |
|
norm_layer = get_norm_layer(norm_type=norm) |
|
|
|
if netG == 'autoencoder': |
|
net = AutoEncoder(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
elif netG == 'autoencoderfc': |
|
net = AutoEncoderWithFC(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, |
|
multiple=multiple, latent_dim=latent_dim, h=ae_h, w=ae_w) |
|
elif netG == 'autoencoderfc2': |
|
net = AutoEncoderWithFC2(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, |
|
multiple=multiple, latent_dim=latent_dim, h=ae_h, w=ae_w) |
|
elif netG == 'vae': |
|
net = VAE(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, |
|
multiple=multiple, latent_dim=latent_dim, h=ae_h, w=ae_w) |
|
elif netG == 'classifier': |
|
net = Classifier(input_nc, output_nc, ngf, num_downs=nnG, norm_layer=norm_layer, use_dropout=use_dropout, h=ae_h, w=ae_w) |
|
elif netG == 'regressor': |
|
net = Regressor(input_nc, ngf, norm_layer=norm_layer, arch=nnG) |
|
elif netG == 'resnet_9blocks': |
|
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) |
|
elif netG == 'resnet_6blocks': |
|
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) |
|
elif netG == 'resnet_nblocks': |
|
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=nnG) |
|
elif netG == 'resnet_style2_9blocks': |
|
net = ResnetStyle2Generator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9, model0_res=0, extra_channel=extra_channel) |
|
elif netG == 'resnet_style2_6blocks': |
|
net = ResnetStyle2Generator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6, model0_res=0, extra_channel=extra_channel) |
|
elif netG == 'resnet_style2_nblocks': |
|
net = ResnetStyle2Generator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=nnG, model0_res=0, extra_channel=extra_channel) |
|
elif netG == 'unet_128': |
|
net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
elif netG == 'unet_256': |
|
net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
elif netG == 'unet_512': |
|
net = UnetGenerator(input_nc, output_nc, 9, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
elif netG == 'unet_ndown': |
|
net = UnetGenerator(input_nc, output_nc, nnG, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
elif netG == 'unetres_ndown': |
|
net = UnetResGenerator(input_nc, output_nc, nnG, ngf, norm_layer=norm_layer, use_dropout=use_dropout, nres=nres) |
|
elif netG == 'partunet': |
|
net = PartUnet(input_nc, output_nc, nnG, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
elif netG == 'partunet2': |
|
net = PartUnet2(input_nc, output_nc, nnG, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
elif netG == 'partunetres': |
|
net = PartUnetRes(input_nc, output_nc, nnG, ngf, norm_layer=norm_layer, use_dropout=use_dropout,nres=nres) |
|
elif netG == 'partunet2res': |
|
net = PartUnet2Res(input_nc, output_nc, nnG, ngf, norm_layer=norm_layer, use_dropout=use_dropout,nres=nres) |
|
elif netG == 'partunet2style': |
|
net = PartUnet2Style(input_nc, output_nc, nnG, ngf, extra_channel=extra_channel, norm_layer=norm_layer, use_dropout=use_dropout) |
|
elif netG == 'partunet2resstyle': |
|
net = PartUnet2ResStyle(input_nc, output_nc, nnG, ngf, extra_channel=extra_channel, norm_layer=norm_layer, use_dropout=use_dropout,nres=nres) |
|
elif netG == 'combiner': |
|
net = Combiner(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=2) |
|
elif netG == 'combiner2': |
|
net = Combiner2(input_nc, output_nc, nnG, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
else: |
|
raise NotImplementedError('Generator model name [%s] is not recognized' % netG) |
|
return init_net(net, init_type, init_gain, gpu_ids) |
|
|
|
|
|
def define_D(input_nc, ndf, netD, |
|
n_layers_D=3, norm='batch', use_sigmoid=False, init_type='normal', init_gain=0.02, gpu_ids=[]): |
|
net = None |
|
norm_layer = get_norm_layer(norm_type=norm) |
|
|
|
if netD == 'basic': |
|
net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, use_sigmoid=use_sigmoid) |
|
elif netD == 'n_layers': |
|
net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, use_sigmoid=use_sigmoid) |
|
elif netD == 'pixel': |
|
net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer, use_sigmoid=use_sigmoid) |
|
else: |
|
raise NotImplementedError('Discriminator model name [%s] is not recognized' % net) |
|
return init_net(net, init_type, init_gain, gpu_ids) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GANLoss(nn.Module): |
|
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0): |
|
super(GANLoss, self).__init__() |
|
self.register_buffer('real_label', torch.tensor(target_real_label)) |
|
self.register_buffer('fake_label', torch.tensor(target_fake_label)) |
|
if use_lsgan: |
|
self.loss = nn.MSELoss() |
|
else: |
|
self.loss = nn.BCELoss() |
|
|
|
def get_target_tensor(self, input, target_is_real): |
|
if target_is_real: |
|
target_tensor = self.real_label |
|
else: |
|
target_tensor = self.fake_label |
|
return target_tensor.expand_as(input) |
|
|
|
def __call__(self, input, target_is_real): |
|
target_tensor = self.get_target_tensor(input, target_is_real) |
|
return self.loss(input, target_tensor) |
|
|
|
|
|
class AutoEncoderMNIST(nn.Module): |
|
def __init__(self): |
|
super(AutoEncoderMNIST, self).__init__() |
|
self.encoder = nn.Sequential( |
|
nn.Conv2d(1, 16, 3, stride=3, padding=1), |
|
nn.ReLU(True), |
|
nn.MaxPool2d(2, stride=2), |
|
nn.Conv2d(16, 8, 3, stride=2, padding=1), |
|
nn.ReLU(True), |
|
nn.MaxPool2d(2, stride=1) |
|
) |
|
self.decoder = nn.Sequential( |
|
nn.ConvTranspose2d(8, 16, 3, stride=2), |
|
nn.ReLU(True), |
|
nn.ConvTranspose2d(16, 8, 5, stride=3, padding=1), |
|
nn.ReLU(True), |
|
nn.ConvTranspose2d(8, 1, 2, stride=2, padding=1), |
|
nn.Tanh() |
|
) |
|
|
|
def forward(self, x): |
|
x = self.encoder(x) |
|
x = self.decoder(x) |
|
return x |
|
|
|
class AutoEncoder(nn.Module): |
|
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, padding_type='reflect'): |
|
super(AutoEncoder, self).__init__() |
|
self.input_nc = input_nc |
|
self.output_nc = output_nc |
|
self.ngf = ngf |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
model = [nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)] |
|
n_downsampling = 3 |
|
for i in range(n_downsampling): |
|
mult = 2**i |
|
model += [nn.LeakyReLU(0.2), |
|
nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=4, |
|
stride=2, padding=1, bias=use_bias), |
|
norm_layer(ngf * mult * 2)] |
|
self.encoder = nn.Sequential(*model) |
|
|
|
model2 = [] |
|
for i in range(n_downsampling): |
|
mult = 2**(n_downsampling - i) |
|
model2 += [nn.ReLU(), |
|
nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias), |
|
norm_layer(int(ngf * mult / 2))] |
|
model2 += [nn.ReLU()] |
|
model2 += [nn.ConvTranspose2d(ngf, output_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)] |
|
model2 += [nn.Tanh()] |
|
self.decoder = nn.Sequential(*model2) |
|
|
|
def forward(self, x): |
|
ax = self.encoder(x) |
|
y = self.decoder(ax) |
|
return y, ax |
|
|
|
class AutoEncoderWithFC(nn.Module): |
|
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, multiple=2,latent_dim=1024, h=96, w=96): |
|
super(AutoEncoderWithFC, self).__init__() |
|
self.input_nc = input_nc |
|
self.output_nc = output_nc |
|
self.ngf = ngf |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
model = [nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)] |
|
n_downsampling = 3 |
|
|
|
for i in range(n_downsampling): |
|
mult = multiple**i |
|
model += [nn.LeakyReLU(0.2), |
|
nn.Conv2d(int(ngf * mult), int(ngf * mult * multiple), kernel_size=4, |
|
stride=2, padding=1, bias=use_bias), |
|
norm_layer(int(ngf * mult * multiple))] |
|
self.encoder = nn.Sequential(*model) |
|
self.fc1 = nn.Linear(int(ngf*(multiple**n_downsampling)*h/16*w/16),latent_dim) |
|
self.relu = nn.ReLU(latent_dim) |
|
self.fc2 = nn.Linear(latent_dim,int(ngf*(multiple**n_downsampling)*h/16*w/16)) |
|
self.rh = int(h/16) |
|
self.rw = int(w/16) |
|
model2 = [] |
|
for i in range(n_downsampling): |
|
mult = multiple**(n_downsampling - i) |
|
model2 += [nn.ReLU(), |
|
nn.ConvTranspose2d(int(ngf * mult), int(ngf * mult / multiple), |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias), |
|
norm_layer(int(ngf * mult / multiple))] |
|
model2 += [nn.ReLU()] |
|
model2 += [nn.ConvTranspose2d(ngf, output_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)] |
|
model2 += [nn.Tanh()] |
|
self.decoder = nn.Sequential(*model2) |
|
|
|
def forward(self, x): |
|
ax = self.encoder(x) |
|
ax = ax.view(ax.size(0), -1) |
|
ax = self.relu(self.fc1(ax)) |
|
ax = self.fc2(ax) |
|
ax = ax.view(ax.size(0),-1,self.rh,self.rw) |
|
y = self.decoder(ax) |
|
return y, ax |
|
|
|
class AutoEncoderWithFC2(nn.Module): |
|
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, multiple=2,latent_dim=1024, h=96, w=96): |
|
super(AutoEncoderWithFC2, self).__init__() |
|
self.input_nc = input_nc |
|
self.output_nc = output_nc |
|
self.ngf = ngf |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
model = [nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)] |
|
n_downsampling = 2 |
|
|
|
for i in range(n_downsampling): |
|
mult = multiple**i |
|
model += [nn.LeakyReLU(0.2), |
|
nn.Conv2d(int(ngf * mult), int(ngf * mult * multiple), kernel_size=4, |
|
stride=2, padding=1, bias=use_bias), |
|
norm_layer(int(ngf * mult * multiple))] |
|
self.encoder = nn.Sequential(*model) |
|
self.fc1 = nn.Linear(int(ngf*(multiple**n_downsampling)*h/8*w/8),latent_dim) |
|
self.relu = nn.ReLU(latent_dim) |
|
self.fc2 = nn.Linear(latent_dim,int(ngf*(multiple**n_downsampling)*h/8*w/8)) |
|
self.rh = h/8 |
|
self.rw = w/8 |
|
model2 = [] |
|
for i in range(n_downsampling): |
|
mult = multiple**(n_downsampling - i) |
|
model2 += [nn.ReLU(), |
|
nn.ConvTranspose2d(int(ngf * mult), int(ngf * mult / multiple), |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias), |
|
norm_layer(int(ngf * mult / multiple))] |
|
model2 += [nn.ReLU()] |
|
model2 += [nn.ConvTranspose2d(ngf, output_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)] |
|
model2 += [nn.Tanh()] |
|
self.decoder = nn.Sequential(*model2) |
|
|
|
def forward(self, x): |
|
ax = self.encoder(x) |
|
ax = ax.view(ax.size(0), -1) |
|
ax = self.relu(self.fc1(ax)) |
|
ax = self.fc2(ax) |
|
ax = ax.view(ax.size(0),-1,self.rh,self.rw) |
|
y = self.decoder(ax) |
|
return y, ax |
|
|
|
class VAE(nn.Module): |
|
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, multiple=2,latent_dim=1024, h=96, w=96): |
|
super(VAE, self).__init__() |
|
self.input_nc = input_nc |
|
self.output_nc = output_nc |
|
self.ngf = ngf |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
model = [nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)] |
|
n_downsampling = 3 |
|
for i in range(n_downsampling): |
|
mult = multiple**i |
|
model += [nn.LeakyReLU(0.2), |
|
nn.Conv2d(int(ngf * mult), int(ngf * mult * multiple), kernel_size=4, |
|
stride=2, padding=1, bias=use_bias), |
|
norm_layer(int(ngf * mult * multiple))] |
|
self.encoder_cnn = nn.Sequential(*model) |
|
|
|
self.c_dim = int(ngf*(multiple**n_downsampling)*h/16*w/16) |
|
self.rh = h/16 |
|
self.rw = w/16 |
|
self.fc1 = nn.Linear(self.c_dim,latent_dim) |
|
self.fc2 = nn.Linear(self.c_dim,latent_dim) |
|
self.fc3 = nn.Linear(latent_dim,self.c_dim) |
|
self.relu = nn.ReLU() |
|
|
|
model2 = [] |
|
for i in range(n_downsampling): |
|
mult = multiple**(n_downsampling - i) |
|
model2 += [nn.ReLU(), |
|
nn.ConvTranspose2d(int(ngf * mult), int(ngf * mult / multiple), |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias), |
|
norm_layer(int(ngf * mult / multiple))] |
|
model2 += [nn.ReLU()] |
|
model2 += [nn.ConvTranspose2d(ngf, output_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)] |
|
model2 += [nn.Tanh()] |
|
self.decoder_cnn = nn.Sequential(*model2) |
|
|
|
def encode(self, x): |
|
h1 = self.encoder_cnn(x) |
|
r1 = h1.view(h1.size(0), -1) |
|
return self.fc1(r1), self.fc2(r1) |
|
|
|
def reparameterize(self, mu, logvar): |
|
std = torch.exp(0.5*logvar) |
|
eps = torch.randn_like(std) |
|
|
|
return eps.mul(std).add_(mu) |
|
|
|
def decode(self, z): |
|
h4 = self.relu(self.fc3(z)) |
|
r3 = h4.view(h4.size(0),-1,self.rh,self.rw) |
|
return self.decoder_cnn(r3) |
|
|
|
def forward(self, x): |
|
mu, logvar = self.encode(x) |
|
z = self.reparameterize(mu, logvar) |
|
reconx = self.decode(z) |
|
return reconx, mu, logvar |
|
|
|
class Classifier(nn.Module): |
|
def __init__(self, input_nc, classes, ngf=64, num_downs=3, norm_layer=nn.BatchNorm2d, use_dropout=False, |
|
h=96, w=96): |
|
super(Classifier, self).__init__() |
|
self.input_nc = input_nc |
|
self.ngf = ngf |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
model = [nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)] |
|
multiple = 2 |
|
for i in range(num_downs): |
|
mult = multiple**i |
|
model += [nn.LeakyReLU(0.2), |
|
nn.Conv2d(int(ngf * mult), int(ngf * mult * multiple), kernel_size=4, |
|
stride=2, padding=1, bias=use_bias), |
|
norm_layer(int(ngf * mult * multiple))] |
|
self.encoder = nn.Sequential(*model) |
|
strides = 2**(num_downs+1) |
|
self.fc1 = nn.Linear(int(ngf*h*w/(strides*2)), classes) |
|
|
|
def forward(self, x): |
|
ax = self.encoder(x) |
|
ax = ax.view(ax.size(0), -1) |
|
return self.fc1(ax) |
|
|
|
class Regressor(nn.Module): |
|
def __init__(self, input_nc, ngf=64, norm_layer=nn.BatchNorm2d, arch=1): |
|
super(Regressor, self).__init__() |
|
|
|
|
|
|
|
self.arch = arch |
|
|
|
if arch == 1: |
|
use_bias = True |
|
sequence = [ |
|
nn.Conv2d(input_nc, ngf, kernel_size=3, stride=2, padding=0, bias=use_bias), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf, 1, kernel_size=5, stride=1, padding=0, bias=use_bias), |
|
] |
|
elif arch == 2: |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
sequence = [ |
|
nn.Conv2d(input_nc, ngf, kernel_size=3, stride=1, padding=0, bias=use_bias), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf, ngf*2, kernel_size=3, stride=1, padding=0, bias=use_bias), |
|
norm_layer(ngf*2), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf*2, ngf*4, kernel_size=3, stride=1, padding=0, bias=use_bias), |
|
norm_layer(ngf*4), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf*4, 1, kernel_size=5, stride=1, padding=0, bias=use_bias), |
|
] |
|
elif arch == 3: |
|
use_bias = True |
|
sequence = [ |
|
nn.Conv2d(input_nc, ngf, kernel_size=3, stride=1, padding=1, bias=use_bias), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf, 1, kernel_size=11, stride=1, padding=0, bias=use_bias), |
|
] |
|
elif arch == 4: |
|
use_bias = True |
|
sequence = [ |
|
nn.Conv2d(input_nc, ngf, kernel_size=3, stride=1, padding=1, bias=use_bias), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf, ngf*2, kernel_size=3, stride=1, padding=1, bias=use_bias), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf*2, ngf*4, kernel_size=3, stride=1, padding=1, bias=use_bias), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf*4, 1, kernel_size=11, stride=1, padding=0, bias=use_bias), |
|
] |
|
elif arch == 5: |
|
use_bias = True |
|
sequence = [ |
|
nn.Conv2d(input_nc, ngf, kernel_size=3, stride=1, padding=1, bias=use_bias), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf, ngf*2, kernel_size=3, stride=1, padding=1, bias=use_bias), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ngf*2, ngf*4, kernel_size=3, stride=1, padding=1, bias=use_bias), |
|
nn.LeakyReLU(0.2, True), |
|
] |
|
fc = [ |
|
nn.Linear(ngf*4*11*11, 4096), |
|
nn.ReLU(True), |
|
nn.Dropout(), |
|
nn.Linear(4096, 1), |
|
] |
|
self.fc = nn.Sequential(*fc) |
|
|
|
self.model = nn.Sequential(*sequence) |
|
|
|
def forward(self, x): |
|
if self.arch <= 4: |
|
return self.model(x) |
|
else: |
|
x = self.model(x) |
|
x = x.view(x.size(0), -1) |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
class ResnetGenerator(nn.Module): |
|
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): |
|
assert(n_blocks >= 0) |
|
super(ResnetGenerator, self).__init__() |
|
self.input_nc = input_nc |
|
self.output_nc = output_nc |
|
self.ngf = ngf |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
model = [nn.ReflectionPad2d(3), |
|
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, |
|
bias=use_bias), |
|
norm_layer(ngf), |
|
nn.ReLU(True)] |
|
|
|
n_downsampling = 2 |
|
for i in range(n_downsampling): |
|
mult = 2**i |
|
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, |
|
stride=2, padding=1, bias=use_bias), |
|
norm_layer(ngf * mult * 2), |
|
nn.ReLU(True)] |
|
|
|
mult = 2**n_downsampling |
|
for i in range(n_blocks): |
|
model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] |
|
|
|
for i in range(n_downsampling): |
|
mult = 2**(n_downsampling - i) |
|
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), |
|
kernel_size=3, stride=2, |
|
padding=1, output_padding=1, |
|
bias=use_bias), |
|
norm_layer(int(ngf * mult / 2)), |
|
nn.ReLU(True)] |
|
model += [nn.ReflectionPad2d(3)] |
|
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] |
|
model += [nn.Tanh()] |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
class ResnetStyle2Generator(nn.Module): |
|
"""Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. |
|
We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) |
|
""" |
|
|
|
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect', extra_channel=3, model0_res=0): |
|
"""Construct a Resnet-based generator |
|
|
|
Parameters: |
|
input_nc (int) -- the number of channels in input images |
|
output_nc (int) -- the number of channels in output images |
|
ngf (int) -- the number of filters in the last conv layer |
|
norm_layer -- normalization layer |
|
use_dropout (bool) -- if use dropout layers |
|
n_blocks (int) -- the number of ResNet blocks |
|
padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero |
|
""" |
|
assert(n_blocks >= 0) |
|
super(ResnetStyle2Generator, self).__init__() |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
model0 = [nn.ReflectionPad2d(3), |
|
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), |
|
norm_layer(ngf), |
|
nn.ReLU(True)] |
|
|
|
n_downsampling = 2 |
|
for i in range(n_downsampling): |
|
mult = 2 ** i |
|
model0 += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), |
|
norm_layer(ngf * mult * 2), |
|
nn.ReLU(True)] |
|
|
|
mult = 2 ** n_downsampling |
|
for i in range(model0_res): |
|
model0 += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] |
|
|
|
model = [] |
|
model += [nn.Conv2d(ngf * mult + extra_channel, ngf * mult, kernel_size=3, stride=1, padding=1, bias=use_bias), |
|
norm_layer(ngf * mult), |
|
nn.ReLU(True)] |
|
|
|
for i in range(n_blocks-model0_res): |
|
model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] |
|
|
|
for i in range(n_downsampling): |
|
mult = 2 ** (n_downsampling - i) |
|
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), |
|
kernel_size=3, stride=2, |
|
padding=1, output_padding=1, |
|
bias=use_bias), |
|
norm_layer(int(ngf * mult / 2)), |
|
nn.ReLU(True)] |
|
model += [nn.ReflectionPad2d(3)] |
|
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] |
|
model += [nn.Tanh()] |
|
|
|
self.model0 = nn.Sequential(*model0) |
|
self.model = nn.Sequential(*model) |
|
print(list(self.modules())) |
|
|
|
def forward(self, input1, input2): |
|
"""Standard forward""" |
|
f1 = self.model0(input1) |
|
[bs,c,h,w] = f1.shape |
|
input2 = input2.repeat(h,w,1,1).permute([2,3,0,1]) |
|
y1 = torch.cat([f1, input2], 1) |
|
return self.model(y1) |
|
|
|
class Combiner(nn.Module): |
|
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): |
|
assert(n_blocks >= 0) |
|
super(Combiner, self).__init__() |
|
self.input_nc = input_nc |
|
self.output_nc = output_nc |
|
self.ngf = ngf |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
model = [nn.ReflectionPad2d(3), |
|
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, |
|
bias=use_bias), |
|
norm_layer(ngf), |
|
nn.ReLU(True)] |
|
|
|
for i in range(n_blocks): |
|
model += [ResnetBlock(ngf, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] |
|
|
|
model += [nn.ReflectionPad2d(3)] |
|
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] |
|
model += [nn.Tanh()] |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
class Combiner2(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(Combiner2, self).__init__() |
|
|
|
|
|
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) |
|
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): |
|
super(ResnetBlock, self).__init__() |
|
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) |
|
|
|
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): |
|
conv_block = [] |
|
p = 0 |
|
if padding_type == 'reflect': |
|
conv_block += [nn.ReflectionPad2d(1)] |
|
elif padding_type == 'replicate': |
|
conv_block += [nn.ReplicationPad2d(1)] |
|
elif padding_type == 'zero': |
|
p = 1 |
|
else: |
|
raise NotImplementedError('padding [%s] is not implemented' % padding_type) |
|
|
|
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), |
|
norm_layer(dim), |
|
nn.ReLU(True)] |
|
if use_dropout: |
|
conv_block += [nn.Dropout(0.5)] |
|
|
|
p = 0 |
|
if padding_type == 'reflect': |
|
conv_block += [nn.ReflectionPad2d(1)] |
|
elif padding_type == 'replicate': |
|
conv_block += [nn.ReplicationPad2d(1)] |
|
elif padding_type == 'zero': |
|
p = 1 |
|
else: |
|
raise NotImplementedError('padding [%s] is not implemented' % padding_type) |
|
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), |
|
norm_layer(dim)] |
|
|
|
return nn.Sequential(*conv_block) |
|
|
|
def forward(self, x): |
|
out = x + self.conv_block(x) |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
|
|
class UnetGenerator(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(UnetGenerator, self).__init__() |
|
|
|
|
|
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) |
|
for i in range(num_downs - 5): |
|
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) |
|
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
class UnetResGenerator(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False, nres=1): |
|
super(UnetResGenerator, self).__init__() |
|
|
|
|
|
unet_block = UnetSkipConnectionResBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True, nres=nres) |
|
for i in range(num_downs - 5): |
|
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) |
|
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
class PartUnet(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(PartUnet, self).__init__() |
|
|
|
|
|
|
|
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) |
|
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
class PartUnetRes(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False, nres=1): |
|
super(PartUnetRes, self).__init__() |
|
|
|
|
|
|
|
unet_block = UnetSkipConnectionResBlock(ngf * 2, ngf * 4, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True, nres=nres) |
|
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
class PartUnet2(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(PartUnet2, self).__init__() |
|
|
|
|
|
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 2, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) |
|
for i in range(num_downs - 3): |
|
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) |
|
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
class PartUnet2Res(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False, nres=1): |
|
super(PartUnet2Res, self).__init__() |
|
|
|
|
|
unet_block = UnetSkipConnectionResBlock(ngf * 2, ngf * 2, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True, nres=nres) |
|
for i in range(num_downs - 3): |
|
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) |
|
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
class PartUnet2Style(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, extra_channel=2, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(PartUnet2Style, self).__init__() |
|
|
|
unet_block = UnetSkipConnectionStyleBlock(ngf * 2, ngf * 2, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True, extra_channel=extra_channel) |
|
for i in range(num_downs - 3): |
|
unet_block = UnetSkipConnectionStyleBlock(ngf * 2, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout, extra_channel=extra_channel) |
|
unet_block = UnetSkipConnectionStyleBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer, extra_channel=extra_channel) |
|
unet_block = UnetSkipConnectionStyleBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer, extra_channel=extra_channel) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input, cate): |
|
return self.model(input, cate) |
|
|
|
class PartUnet2ResStyle(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, extra_channel=2, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False, nres=1): |
|
super(PartUnet2ResStyle, self).__init__() |
|
|
|
unet_block = UnetSkipConnectionResStyleBlock(ngf * 2, ngf * 2, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True, extra_channel=extra_channel, nres=nres) |
|
for i in range(num_downs - 3): |
|
unet_block = UnetSkipConnectionStyleBlock(ngf * 2, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout, extra_channel=extra_channel) |
|
unet_block = UnetSkipConnectionStyleBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer, extra_channel=extra_channel) |
|
unet_block = UnetSkipConnectionStyleBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer, extra_channel=extra_channel) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input, cate): |
|
return self.model(input, cate) |
|
|
|
|
|
|
|
|
|
|
|
class UnetSkipConnectionBlock(nn.Module): |
|
def __init__(self, outer_nc, inner_nc, input_nc=None, |
|
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(UnetSkipConnectionBlock, self).__init__() |
|
self.outermost = outermost |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
if input_nc is None: |
|
input_nc = outer_nc |
|
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, |
|
stride=2, padding=1, bias=use_bias) |
|
downrelu = nn.LeakyReLU(0.2, True) |
|
downnorm = norm_layer(inner_nc) |
|
uprelu = nn.ReLU(True) |
|
upnorm = norm_layer(outer_nc) |
|
|
|
if outermost: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1) |
|
down = [downconv] |
|
up = [uprelu, upconv, nn.Tanh()] |
|
model = down + [submodule] + up |
|
elif innermost: |
|
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv] |
|
up = [uprelu, upconv, upnorm] |
|
model = down + up |
|
else: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv, downnorm] |
|
up = [uprelu, upconv, upnorm] |
|
|
|
if use_dropout: |
|
model = down + [submodule] + up + [nn.Dropout(0.5)] |
|
else: |
|
model = down + [submodule] + up |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, x): |
|
if self.outermost: |
|
return self.model(x) |
|
else: |
|
return torch.cat([x, self.model(x)], 1) |
|
|
|
class UnetSkipConnectionResBlock(nn.Module): |
|
def __init__(self, outer_nc, inner_nc, input_nc=None, |
|
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False, nres=1): |
|
super(UnetSkipConnectionResBlock, self).__init__() |
|
self.outermost = outermost |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
if input_nc is None: |
|
input_nc = outer_nc |
|
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, |
|
stride=2, padding=1, bias=use_bias) |
|
downrelu = nn.LeakyReLU(0.2, True) |
|
downnorm = norm_layer(inner_nc) |
|
uprelu = nn.ReLU(True) |
|
upnorm = norm_layer(outer_nc) |
|
|
|
if outermost: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1) |
|
down = [downconv] |
|
up = [uprelu, upconv, nn.Tanh()] |
|
model = down + [submodule] + up |
|
elif innermost: |
|
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv, downrelu] |
|
up = [upconv, upnorm] |
|
model = down |
|
|
|
for i in range(nres): |
|
model += [ResnetBlock(inner_nc, padding_type='reflect', norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] |
|
model += up |
|
|
|
print('UnetSkipConnectionResBlock','nres',nres,'inner_nc',inner_nc) |
|
else: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv, downnorm] |
|
up = [uprelu, upconv, upnorm] |
|
|
|
if use_dropout: |
|
model = down + [submodule] + up + [nn.Dropout(0.5)] |
|
else: |
|
model = down + [submodule] + up |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, x): |
|
if self.outermost: |
|
return self.model(x) |
|
else: |
|
return torch.cat([x, self.model(x)], 1) |
|
|
|
class UnetSkipConnectionStyleBlock(nn.Module): |
|
def __init__(self, outer_nc, inner_nc, input_nc=None, |
|
submodule=None, outermost=False, innermost=False, |
|
extra_channel=2, norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(UnetSkipConnectionStyleBlock, self).__init__() |
|
self.outermost = outermost |
|
self.innermost = innermost |
|
self.extra_channel = extra_channel |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
if input_nc is None: |
|
input_nc = outer_nc |
|
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, |
|
stride=2, padding=1, bias=use_bias) |
|
downrelu = nn.LeakyReLU(0.2, True) |
|
downnorm = norm_layer(inner_nc) |
|
uprelu = nn.ReLU(True) |
|
upnorm = norm_layer(outer_nc) |
|
|
|
if outermost: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1) |
|
down = [downconv] |
|
up = [uprelu, upconv, nn.Tanh()] |
|
model = down + [submodule] + up |
|
elif innermost: |
|
upconv = nn.ConvTranspose2d(inner_nc+extra_channel, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv] |
|
up = [uprelu, upconv, upnorm] |
|
model = down + up |
|
else: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv, downnorm] |
|
up = [uprelu, upconv, upnorm] |
|
|
|
if use_dropout: |
|
up = up + [nn.Dropout(0.5)] |
|
model = down + [submodule] + up |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
self.downmodel = nn.Sequential(*down) |
|
self.upmodel = nn.Sequential(*up) |
|
self.submodule = submodule |
|
|
|
def forward(self, x, cate): |
|
if self.innermost: |
|
y1 = self.downmodel(x) |
|
[bs,c,h,w] = y1.shape |
|
map = cate.repeat(h,w,1,1).permute([2,3,0,1]) |
|
y2 = torch.cat([y1,map], 1) |
|
y3 = self.upmodel(y2) |
|
return torch.cat([x, y3], 1) |
|
else: |
|
y1 = self.downmodel(x) |
|
y2 = self.submodule(y1,cate) |
|
y3 = self.upmodel(y2) |
|
if self.outermost: |
|
return y3 |
|
else: |
|
return torch.cat([x, y3], 1) |
|
|
|
class UnetSkipConnectionResStyleBlock(nn.Module): |
|
def __init__(self, outer_nc, inner_nc, input_nc=None, |
|
submodule=None, outermost=False, innermost=False, |
|
extra_channel=2, norm_layer=nn.BatchNorm2d, use_dropout=False, nres=1): |
|
super(UnetSkipConnectionResStyleBlock, self).__init__() |
|
self.outermost = outermost |
|
self.innermost = innermost |
|
self.extra_channel = extra_channel |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
if input_nc is None: |
|
input_nc = outer_nc |
|
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, |
|
stride=2, padding=1, bias=use_bias) |
|
downrelu = nn.LeakyReLU(0.2, True) |
|
downnorm = norm_layer(inner_nc) |
|
uprelu = nn.ReLU(True) |
|
upnorm = norm_layer(outer_nc) |
|
|
|
if outermost: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1) |
|
down = [downconv] |
|
up = [uprelu, upconv, nn.Tanh()] |
|
model = down + [submodule] + up |
|
elif innermost: |
|
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv, downrelu] |
|
up = [nn.Conv2d(inner_nc+extra_channel, inner_nc, kernel_size=3, stride=1, padding=1, bias=use_bias), |
|
norm_layer(inner_nc), |
|
nn.ReLU(True)] |
|
for i in range(nres): |
|
up += [ResnetBlock(inner_nc, padding_type='reflect', norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] |
|
up += [ upconv, upnorm] |
|
model = down + up |
|
print('UnetSkipConnectionResStyleBlock','nres',nres,'inner_nc',inner_nc) |
|
else: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv, downnorm] |
|
up = [uprelu, upconv, upnorm] |
|
|
|
if use_dropout: |
|
up = up + [nn.Dropout(0.5)] |
|
model = down + [submodule] + up |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
self.downmodel = nn.Sequential(*down) |
|
self.upmodel = nn.Sequential(*up) |
|
self.submodule = submodule |
|
|
|
def forward(self, x, cate): |
|
|
|
if self.innermost: |
|
y1 = self.downmodel(x) |
|
[bs,c,h,w] = y1.shape |
|
map = cate.repeat(h,w,1,1).permute([2,3,0,1]) |
|
y2 = torch.cat([y1,map], 1) |
|
y3 = self.upmodel(y2) |
|
return torch.cat([x, y3], 1) |
|
else: |
|
y1 = self.downmodel(x) |
|
y2 = self.submodule(y1,cate) |
|
y3 = self.upmodel(y2) |
|
if self.outermost: |
|
return y3 |
|
else: |
|
return torch.cat([x, y3], 1) |
|
|
|
|
|
class NLayerDiscriminator(nn.Module): |
|
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False): |
|
super(NLayerDiscriminator, self).__init__() |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
kw = 4 |
|
padw = 1 |
|
sequence = [ |
|
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
|
|
nf_mult = 1 |
|
nf_mult_prev = 1 |
|
for n in range(1, n_layers): |
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2**n, 8) |
|
sequence += [ |
|
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, |
|
kernel_size=kw, stride=2, padding=padw, bias=use_bias), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
|
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2**n_layers, 8) |
|
sequence += [ |
|
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, |
|
kernel_size=kw, stride=1, padding=padw, bias=use_bias), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
|
|
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] |
|
|
|
if use_sigmoid: |
|
sequence += [nn.Sigmoid()] |
|
|
|
self.model = nn.Sequential(*sequence) |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
|
|
class PixelDiscriminator(nn.Module): |
|
def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d, use_sigmoid=False): |
|
super(PixelDiscriminator, self).__init__() |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
self.net = [ |
|
nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), |
|
norm_layer(ndf * 2), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] |
|
|
|
if use_sigmoid: |
|
self.net.append(nn.Sigmoid()) |
|
|
|
self.net = nn.Sequential(*self.net) |
|
|
|
def forward(self, input): |
|
return self.net(input) |
|
|