hylee commited on
Commit
5c971ea
·
1 Parent(s): d8129dd
APDrawingGAN2/data/aligned_dataset.py CHANGED
@@ -9,50 +9,55 @@ import numpy as np
9
  import cv2
10
  import csv
11
 
 
12
  def getfeats(featpath):
13
- trans_points = np.empty([5,2],dtype=np.int64)
14
- with open(featpath, 'r') as csvfile:
15
- reader = csv.reader(csvfile, delimiter=' ')
16
- for ind,row in enumerate(reader):
17
- trans_points[ind,:] = row
18
- return trans_points
 
19
 
20
  def tocv2(ts):
21
- img = (ts.numpy()/2+0.5)*255
22
  img = img.astype('uint8')
23
- img = np.transpose(img,(1,2,0))
24
- img = img[:,:,::-1]#rgb->bgr
25
  return img
26
 
 
27
  def dt(img):
28
- if(img.shape[2]==3):
29
- img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
30
- #convert to BW
31
- ret1,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
32
- ret2,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
33
- dt1 = cv2.distanceTransform(thresh1,cv2.DIST_L2,5)
34
- dt2 = cv2.distanceTransform(thresh2,cv2.DIST_L2,5)
35
- dt1 = dt1/dt1.max()#->[0,1]
36
- dt2 = dt2/dt2.max()
37
  return dt1, dt2
38
 
39
- def getSoft(size,xb,yb,boundwidth=5.0):
40
- xarray = np.tile(np.arange(0,size[1]),(size[0],1))
41
- yarray = np.tile(np.arange(0,size[0]),(size[1],1)).transpose()
 
42
  cxdists = []
43
  cydists = []
44
  for i in range(len(xb)):
45
- xba = np.tile(xb[i],(size[1],1)).transpose()
46
- yba = np.tile(yb[i],(size[0],1))
47
- cxdists.append(np.abs(xarray-xba))
48
- cydists.append(np.abs(yarray-yba))
49
  xdist = np.minimum.reduce(cxdists)
50
  ydist = np.minimum.reduce(cydists)
51
- manhdist = np.minimum.reduce([xdist,ydist])
52
- im = (manhdist+1) / (boundwidth+1) * 1.0
53
- im[im>=1.0] = 1.0
54
  return im
55
 
 
56
  class AlignedDataset(BaseDataset):
57
  @staticmethod
58
  def modify_commandline_options(parser, is_train):
@@ -71,17 +76,17 @@ class AlignedDataset(BaseDataset):
71
  else:
72
  self.dir_AB = os.path.join(opt.dataroot, opt.phase)
73
  self.AB_paths = sorted(make_dataset(self.dir_AB))
74
- assert(opt.resize_or_crop == 'resize_and_crop')
75
 
76
  def __getitem__(self, index):
77
  AB_path = self.AB_paths[index]
78
  AB = Image.open(AB_path).convert('RGB')
79
  w, h = AB.size
80
- if w/h == 2:
81
  w2 = int(w / 2)
82
  A = AB.crop((0, 0, w2, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
83
  B = AB.crop((w2, 0, w, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
84
- else: # if w/h != 2, need B_paths
85
  A = AB.resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
86
  B = Image.open(self.B_paths[index]).convert('RGB')
87
  B = B.resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
@@ -90,7 +95,7 @@ class AlignedDataset(BaseDataset):
90
  w_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1))
91
  h_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1))
92
 
93
- A = A[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize]#C,H,W
94
  B = B[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize]
95
 
96
  A = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A)
@@ -118,25 +123,25 @@ class AlignedDataset(BaseDataset):
118
  if output_nc == 1: # RGB to gray
119
  tmp = B[0, ...] * 0.299 + B[1, ...] * 0.587 + B[2, ...] * 0.114
120
  B = tmp.unsqueeze(0)
121
-
122
  item = {'A': A, 'B': B,
123
  'A_paths': AB_path, 'B_paths': AB_path}
124
 
125
  if self.opt.use_local:
126
- regions = ['eyel','eyer','nose','mouth']
127
- basen = os.path.basename(AB_path)[:-4]+'.txt'
128
- if self.opt.region_enm in [0,1]:
129
  featdir = self.opt.lm_dir
130
- featpath = os.path.join(featdir,basen)
131
  feats = getfeats(featpath)
132
  if flipped:
133
  for i in range(5):
134
- feats[i,0] = self.opt.fineSize - feats[i,0] - 1
135
- tmp = [feats[0,0],feats[0,1]]
136
- feats[0,:] = [feats[1,0],feats[1,1]]
137
- feats[1,:] = tmp
138
- mouth_x = int((feats[3,0]+feats[4,0])/2.0)
139
- mouth_y = int((feats[3,1]+feats[4,1])/2.0)
140
  ratio = self.opt.fineSize / 256
141
  EYE_H = self.opt.EYE_H * ratio
142
  EYE_W = self.opt.EYE_W * ratio
@@ -144,32 +149,37 @@ class AlignedDataset(BaseDataset):
144
  NOSE_W = self.opt.NOSE_W * ratio
145
  MOUTH_H = self.opt.MOUTH_H * ratio
146
  MOUTH_W = self.opt.MOUTH_W * ratio
147
- center = torch.IntTensor([[feats[0,0],feats[0,1]-4*ratio],[feats[1,0],feats[1,1]-4*ratio],[feats[2,0],feats[2,1]-NOSE_H/2+16*ratio],[mouth_x,mouth_y]])
 
 
148
  item['center'] = center
149
- rhs = [int(EYE_H),int(EYE_H),int(NOSE_H),int(MOUTH_H)]
150
- rws = [int(EYE_W),int(EYE_W),int(NOSE_W),int(MOUTH_W)]
151
  if self.opt.soft_border:
152
  soft_border_mask4 = []
153
  for i in range(4):
154
- xb = [np.zeros(rhs[i]),np.ones(rhs[i])*(rws[i]-1)]
155
- yb = [np.zeros(rws[i]),np.ones(rws[i])*(rhs[i]-1)]
156
- soft_border_mask = getSoft([rhs[i],rws[i]],xb,yb)
157
  soft_border_mask4.append(torch.Tensor(soft_border_mask).unsqueeze(0))
158
- item['soft_'+regions[i]+'_mask'] = soft_border_mask4[i]
159
  for i in range(4):
160
- item[regions[i]+'_A'] = A[:,center[i,1]-rhs[i]/2:center[i,1]+rhs[i]/2,center[i,0]-rws[i]/2:center[i,0]+rws[i]/2]
161
- item[regions[i]+'_B'] = B[:,center[i,1]-rhs[i]/2:center[i,1]+rhs[i]/2,center[i,0]-rws[i]/2:center[i,0]+rws[i]/2]
 
 
162
  if self.opt.soft_border:
163
- item[regions[i]+'_A'] = item[regions[i]+'_A'] * soft_border_mask4[i].repeat(int(input_nc/output_nc),1,1)
164
- item[regions[i]+'_B'] = item[regions[i]+'_B'] * soft_border_mask4[i]
 
165
  if self.opt.compactmask:
166
  cmasks0 = []
167
  cmasks = []
168
  for i in range(4):
169
- if flipped and i in [0,1]:
170
- cmaskpath = os.path.join(self.opt.cmask_dir,regions[1-i],basen[:-4]+'.png')
171
  else:
172
- cmaskpath = os.path.join(self.opt.cmask_dir,regions[i],basen[:-4]+'.png')
173
  im_cmask = Image.open(cmaskpath)
174
  cmask0 = transforms.ToTensor()(im_cmask)
175
  if flipped:
@@ -180,11 +190,12 @@ class AlignedDataset(BaseDataset):
180
  cmask0 = (cmask0 >= 0.5).float()
181
  cmasks0.append(cmask0)
182
  cmask = cmask0.clone()
183
- if self.opt.region_enm in [0,1]:
184
- cmask = cmask[:,center[i,1]-rhs[i]/2:center[i,1]+rhs[i]/2,center[i,0]-rws[i]/2:center[i,0]+rws[i]/2]
185
- elif self.opt.region_enm in [2]: # need to multiply cmask
186
- item[regions[i]+'_A'] = (A/2+0.5) * cmask * 2 - 1
187
- item[regions[i]+'_B'] = (B/2+0.5) * cmask * 2 - 1
 
188
  cmasks.append(cmask)
189
  item['cmaskel'] = cmasks[0]
190
  item['cmasker'] = cmasks[1]
@@ -194,70 +205,75 @@ class AlignedDataset(BaseDataset):
194
  mask = torch.ones(B.shape)
195
  if self.opt.region_enm == 0:
196
  for i in range(4):
197
- mask[:,center[i,1]-rhs[i]/2:center[i,1]+rhs[i]/2,center[i,0]-rws[i]/2:center[i,0]+rws[i]/2] = 0
 
198
  if self.opt.soft_border:
199
  imgsize = self.opt.fineSize
200
  maskn = mask[0].numpy()
201
- masks = [np.ones([imgsize,imgsize]),np.ones([imgsize,imgsize]),np.ones([imgsize,imgsize]),np.ones([imgsize,imgsize])]
 
202
  masks[0][1:] = maskn[:-1]
203
  masks[1][:-1] = maskn[1:]
204
- masks[2][:,1:] = maskn[:,:-1]
205
- masks[3][:,:-1] = maskn[:,1:]
206
- masks2 = [maskn-e for e in masks]
207
  bound = np.minimum.reduce(masks2)
208
  bound = -bound
209
  xb = []
210
  yb = []
211
  for i in range(4):
212
- xbi = [center[i,0]-rws[i]/2, center[i,0]+rws[i]/2-1]
213
- ybi = [center[i,1]-rhs[i]/2, center[i,1]+rhs[i]/2-1]
214
  for j in range(2):
215
- maskx = bound[:,xbi[j]]
216
- masky = bound[ybi[j],:]
217
- tmp_a = torch.from_numpy(maskx)*xbi[j].double()
218
- tmp_b = torch.from_numpy(1-maskx)
219
- xb += [tmp_b*10000 + tmp_a]
220
 
221
- tmp_a = torch.from_numpy(masky)*ybi[j].double()
222
- tmp_b = torch.from_numpy(1-masky)
223
- yb += [tmp_b*10000 + tmp_a]
224
- soft = 1-getSoft([imgsize,imgsize],xb,yb)
225
  soft = torch.Tensor(soft).unsqueeze(0)
226
- mask = (torch.ones(mask.shape)-mask)*soft + mask
227
  elif self.opt.region_enm == 1:
228
  for i in range(4):
229
  cmask0 = cmasks0[i]
230
  rec = torch.zeros(B.shape)
231
- rec[:,center[i,1]-rhs[i]/2:center[i,1]+rhs[i]/2,center[i,0]-rws[i]/2:center[i,0]+rws[i]/2] = 1
 
232
  mask = mask * (torch.ones(B.shape) - cmask0 * rec)
233
  elif self.opt.region_enm == 2:
234
  for i in range(4):
235
  cmask0 = cmasks0[i]
236
  mask = mask * (torch.ones(B.shape) - cmask0)
237
- hair_A = (A/2+0.5) * mask.repeat(int(input_nc/output_nc),1,1) * 2 - 1
238
- hair_B = (B/2+0.5) * mask * 2 - 1
239
  item['hair_A'] = hair_A
240
  item['hair_B'] = hair_B
241
- item['mask'] = mask # mask out eyes, nose, mouth
242
  if self.opt.bg_local:
243
  bgdir = self.opt.bg_dir
244
- bgpath = os.path.join(bgdir,basen[:-4]+'.png')
245
  im_bg = Image.open(bgpath)
246
- mask2 = transforms.ToTensor()(im_bg) # mask out background
247
  if flipped:
248
  mask2 = mask2.index_select(2, idx)
249
  mask2 = (mask2 >= 0.5).float()
250
- hair_A = (A/2+0.5) * mask.repeat(int(input_nc/output_nc),1,1) * mask2.repeat(int(input_nc/output_nc),1,1) * 2 - 1
251
- hair_B = (B/2+0.5) * mask * mask2 * 2 - 1
252
- bg_A = (A/2+0.5) * (torch.ones(mask2.shape)-mask2).repeat(int(input_nc/output_nc),1,1) * 2 - 1
253
- bg_B = (B/2+0.5) * (torch.ones(mask2.shape)-mask2) * 2 - 1
 
 
254
  item['hair_A'] = hair_A
255
  item['hair_B'] = hair_B
256
  item['bg_A'] = bg_A
257
  item['bg_B'] = bg_B
258
  item['mask'] = mask
259
  item['mask2'] = mask2
260
-
261
  if (self.opt.isTrain and self.opt.chamfer_loss):
262
  if self.opt.which_direction == 'AtoB':
263
  img = tocv2(B)
@@ -270,11 +286,11 @@ class AlignedDataset(BaseDataset):
270
  dt2 = dt2.unsqueeze(0)
271
  item['dt1gt'] = dt1
272
  item['dt2gt'] = dt2
273
-
274
  if self.opt.isTrain and self.opt.emphasis_conti_face:
275
- face_mask_path = os.path.join(self.opt.facemask_dir,basen[:-4]+'.png')
276
  face_mask = Image.open(face_mask_path)
277
- face_mask = transforms.ToTensor()(face_mask) # [0,1]
278
  if flipped:
279
  face_mask = face_mask.index_select(2, idx)
280
  item['face_mask'] = face_mask
 
9
  import cv2
10
  import csv
11
 
12
+
13
  def getfeats(featpath):
14
+ trans_points = np.empty([5, 2], dtype=np.int64)
15
+ with open(featpath, 'r') as csvfile:
16
+ reader = csv.reader(csvfile, delimiter=' ')
17
+ for ind, row in enumerate(reader):
18
+ trans_points[ind, :] = row
19
+ return trans_points
20
+
21
 
22
  def tocv2(ts):
23
+ img = (ts.numpy() / 2 + 0.5) * 255
24
  img = img.astype('uint8')
25
+ img = np.transpose(img, (1, 2, 0))
26
+ img = img[:, :, ::-1] # rgb->bgr
27
  return img
28
 
29
+
30
  def dt(img):
31
+ if (img.shape[2] == 3):
32
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
33
+ # convert to BW
34
+ ret1, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
35
+ ret2, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
36
+ dt1 = cv2.distanceTransform(thresh1, cv2.DIST_L2, 5)
37
+ dt2 = cv2.distanceTransform(thresh2, cv2.DIST_L2, 5)
38
+ dt1 = dt1 / dt1.max() # ->[0,1]
39
+ dt2 = dt2 / dt2.max()
40
  return dt1, dt2
41
 
42
+
43
+ def getSoft(size, xb, yb, boundwidth=5.0):
44
+ xarray = np.tile(np.arange(0, size[1]), (size[0], 1))
45
+ yarray = np.tile(np.arange(0, size[0]), (size[1], 1)).transpose()
46
  cxdists = []
47
  cydists = []
48
  for i in range(len(xb)):
49
+ xba = np.tile(xb[i], (size[1], 1)).transpose()
50
+ yba = np.tile(yb[i], (size[0], 1))
51
+ cxdists.append(np.abs(xarray - xba))
52
+ cydists.append(np.abs(yarray - yba))
53
  xdist = np.minimum.reduce(cxdists)
54
  ydist = np.minimum.reduce(cydists)
55
+ manhdist = np.minimum.reduce([xdist, ydist])
56
+ im = (manhdist + 1) / (boundwidth + 1) * 1.0
57
+ im[im >= 1.0] = 1.0
58
  return im
59
 
60
+
61
  class AlignedDataset(BaseDataset):
62
  @staticmethod
63
  def modify_commandline_options(parser, is_train):
 
76
  else:
77
  self.dir_AB = os.path.join(opt.dataroot, opt.phase)
78
  self.AB_paths = sorted(make_dataset(self.dir_AB))
79
+ assert (opt.resize_or_crop == 'resize_and_crop')
80
 
81
  def __getitem__(self, index):
82
  AB_path = self.AB_paths[index]
83
  AB = Image.open(AB_path).convert('RGB')
84
  w, h = AB.size
85
+ if w / h == 2:
86
  w2 = int(w / 2)
87
  A = AB.crop((0, 0, w2, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
88
  B = AB.crop((w2, 0, w, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
89
+ else: # if w/h != 2, need B_paths
90
  A = AB.resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
91
  B = Image.open(self.B_paths[index]).convert('RGB')
92
  B = B.resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
 
95
  w_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1))
96
  h_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1))
97
 
98
+ A = A[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize] # C,H,W
99
  B = B[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize]
100
 
101
  A = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A)
 
123
  if output_nc == 1: # RGB to gray
124
  tmp = B[0, ...] * 0.299 + B[1, ...] * 0.587 + B[2, ...] * 0.114
125
  B = tmp.unsqueeze(0)
126
+
127
  item = {'A': A, 'B': B,
128
  'A_paths': AB_path, 'B_paths': AB_path}
129
 
130
  if self.opt.use_local:
131
+ regions = ['eyel', 'eyer', 'nose', 'mouth']
132
+ basen = os.path.basename(AB_path)[:-4] + '.txt'
133
+ if self.opt.region_enm in [0, 1]:
134
  featdir = self.opt.lm_dir
135
+ featpath = os.path.join(featdir, basen)
136
  feats = getfeats(featpath)
137
  if flipped:
138
  for i in range(5):
139
+ feats[i, 0] = self.opt.fineSize - feats[i, 0] - 1
140
+ tmp = [feats[0, 0], feats[0, 1]]
141
+ feats[0, :] = [feats[1, 0], feats[1, 1]]
142
+ feats[1, :] = tmp
143
+ mouth_x = int((feats[3, 0] + feats[4, 0]) / 2.0)
144
+ mouth_y = int((feats[3, 1] + feats[4, 1]) / 2.0)
145
  ratio = self.opt.fineSize / 256
146
  EYE_H = self.opt.EYE_H * ratio
147
  EYE_W = self.opt.EYE_W * ratio
 
149
  NOSE_W = self.opt.NOSE_W * ratio
150
  MOUTH_H = self.opt.MOUTH_H * ratio
151
  MOUTH_W = self.opt.MOUTH_W * ratio
152
+ center = torch.LongTensor(
153
+ [[feats[0, 0], feats[0, 1] - 4 * ratio], [feats[1, 0], feats[1, 1] - 4 * ratio],
154
+ [feats[2, 0], feats[2, 1] - NOSE_H / 2 + 16 * ratio], [mouth_x, mouth_y]])
155
  item['center'] = center
156
+ rhs = [int(EYE_H), int(EYE_H), int(NOSE_H), int(MOUTH_H)]
157
+ rws = [int(EYE_W), int(EYE_W), int(NOSE_W), int(MOUTH_W)]
158
  if self.opt.soft_border:
159
  soft_border_mask4 = []
160
  for i in range(4):
161
+ xb = [np.zeros(rhs[i]), np.ones(rhs[i]) * (rws[i] - 1)]
162
+ yb = [np.zeros(rws[i]), np.ones(rws[i]) * (rhs[i] - 1)]
163
+ soft_border_mask = getSoft([rhs[i], rws[i]], xb, yb)
164
  soft_border_mask4.append(torch.Tensor(soft_border_mask).unsqueeze(0))
165
+ item['soft_' + regions[i] + '_mask'] = soft_border_mask4[i]
166
  for i in range(4):
167
+ item[regions[i] + '_A'] = A[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
168
+ int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)]
169
+ item[regions[i] + '_B'] = B[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
170
+ int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)]
171
  if self.opt.soft_border:
172
+ item[regions[i] + '_A'] = item[regions[i] + '_A'] * soft_border_mask4[i].repeat(
173
+ int(input_nc / output_nc), 1, 1)
174
+ item[regions[i] + '_B'] = item[regions[i] + '_B'] * soft_border_mask4[i]
175
  if self.opt.compactmask:
176
  cmasks0 = []
177
  cmasks = []
178
  for i in range(4):
179
+ if flipped and i in [0, 1]:
180
+ cmaskpath = os.path.join(self.opt.cmask_dir, regions[1 - i], basen[:-4] + '.png')
181
  else:
182
+ cmaskpath = os.path.join(self.opt.cmask_dir, regions[i], basen[:-4] + '.png')
183
  im_cmask = Image.open(cmaskpath)
184
  cmask0 = transforms.ToTensor()(im_cmask)
185
  if flipped:
 
190
  cmask0 = (cmask0 >= 0.5).float()
191
  cmasks0.append(cmask0)
192
  cmask = cmask0.clone()
193
+ if self.opt.region_enm in [0, 1]:
194
+ cmask = cmask[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
195
+ int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)]
196
+ elif self.opt.region_enm in [2]: # need to multiply cmask
197
+ item[regions[i] + '_A'] = (A / 2 + 0.5) * cmask * 2 - 1
198
+ item[regions[i] + '_B'] = (B / 2 + 0.5) * cmask * 2 - 1
199
  cmasks.append(cmask)
200
  item['cmaskel'] = cmasks[0]
201
  item['cmasker'] = cmasks[1]
 
205
  mask = torch.ones(B.shape)
206
  if self.opt.region_enm == 0:
207
  for i in range(4):
208
+ mask[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
209
+ int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)] = 0
210
  if self.opt.soft_border:
211
  imgsize = self.opt.fineSize
212
  maskn = mask[0].numpy()
213
+ masks = [np.ones([imgsize, imgsize]), np.ones([imgsize, imgsize]), np.ones([imgsize, imgsize]),
214
+ np.ones([imgsize, imgsize])]
215
  masks[0][1:] = maskn[:-1]
216
  masks[1][:-1] = maskn[1:]
217
+ masks[2][:, 1:] = maskn[:, :-1]
218
+ masks[3][:, :-1] = maskn[:, 1:]
219
+ masks2 = [maskn - e for e in masks]
220
  bound = np.minimum.reduce(masks2)
221
  bound = -bound
222
  xb = []
223
  yb = []
224
  for i in range(4):
225
+ xbi = [int(center[i, 0] - rws[i] / 2), int(center[i, 0] + rws[i] / 2 - 1)]
226
+ ybi = [int(center[i, 1] - rhs[i] / 2), int(center[i, 1] + rhs[i] / 2 - 1)]
227
  for j in range(2):
228
+ maskx = bound[:, xbi[j]]
229
+ masky = bound[ybi[j], :]
230
+ tmp_a = torch.from_numpy(maskx) * xbi[j]
231
+ tmp_b = torch.from_numpy(1 - maskx)
232
+ xb += [tmp_b * 10000 + tmp_a]
233
 
234
+ tmp_a = torch.from_numpy(masky) * ybi[j]
235
+ tmp_b = torch.from_numpy(1 - masky)
236
+ yb += [tmp_b * 10000 + tmp_a]
237
+ soft = 1 - getSoft([imgsize, imgsize], xb, yb)
238
  soft = torch.Tensor(soft).unsqueeze(0)
239
+ mask = (torch.ones(mask.shape) - mask) * soft + mask
240
  elif self.opt.region_enm == 1:
241
  for i in range(4):
242
  cmask0 = cmasks0[i]
243
  rec = torch.zeros(B.shape)
244
+ rec[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
245
+ int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)] = 1
246
  mask = mask * (torch.ones(B.shape) - cmask0 * rec)
247
  elif self.opt.region_enm == 2:
248
  for i in range(4):
249
  cmask0 = cmasks0[i]
250
  mask = mask * (torch.ones(B.shape) - cmask0)
251
+ hair_A = (A / 2 + 0.5) * mask.repeat(int(input_nc / output_nc), 1, 1) * 2 - 1
252
+ hair_B = (B / 2 + 0.5) * mask * 2 - 1
253
  item['hair_A'] = hair_A
254
  item['hair_B'] = hair_B
255
+ item['mask'] = mask # mask out eyes, nose, mouth
256
  if self.opt.bg_local:
257
  bgdir = self.opt.bg_dir
258
+ bgpath = os.path.join(bgdir, basen[:-4] + '.png')
259
  im_bg = Image.open(bgpath)
260
+ mask2 = transforms.ToTensor()(im_bg) # mask out background
261
  if flipped:
262
  mask2 = mask2.index_select(2, idx)
263
  mask2 = (mask2 >= 0.5).float()
264
+ hair_A = (A / 2 + 0.5) * mask.repeat(int(input_nc / output_nc), 1, 1) * mask2.repeat(
265
+ int(input_nc / output_nc), 1, 1) * 2 - 1
266
+ hair_B = (B / 2 + 0.5) * mask * mask2 * 2 - 1
267
+ bg_A = (A / 2 + 0.5) * (torch.ones(mask2.shape) - mask2).repeat(int(input_nc / output_nc), 1,
268
+ 1) * 2 - 1
269
+ bg_B = (B / 2 + 0.5) * (torch.ones(mask2.shape) - mask2) * 2 - 1
270
  item['hair_A'] = hair_A
271
  item['hair_B'] = hair_B
272
  item['bg_A'] = bg_A
273
  item['bg_B'] = bg_B
274
  item['mask'] = mask
275
  item['mask2'] = mask2
276
+
277
  if (self.opt.isTrain and self.opt.chamfer_loss):
278
  if self.opt.which_direction == 'AtoB':
279
  img = tocv2(B)
 
286
  dt2 = dt2.unsqueeze(0)
287
  item['dt1gt'] = dt1
288
  item['dt2gt'] = dt2
289
+
290
  if self.opt.isTrain and self.opt.emphasis_conti_face:
291
+ face_mask_path = os.path.join(self.opt.facemask_dir, basen[:-4] + '.png')
292
  face_mask = Image.open(face_mask_path)
293
+ face_mask = transforms.ToTensor()(face_mask) # [0,1]
294
  if flipped:
295
  face_mask = face_mask.index_select(2, idx)
296
  item['face_mask'] = face_mask
APDrawingGAN2/data/single_dataset.py CHANGED
@@ -82,7 +82,7 @@ class SingleDataset(BaseDataset):
82
  NOSE_W = self.opt.NOSE_W * ratio
83
  MOUTH_H = self.opt.MOUTH_H * ratio
84
  MOUTH_W = self.opt.MOUTH_W * ratio
85
- center = torch.IntTensor([[feats[0,0],feats[0,1]-4*ratio],[feats[1,0],feats[1,1]-4*ratio],[feats[2,0],feats[2,1]-NOSE_H/2+16*ratio],[mouth_x,mouth_y]])
86
  item['center'] = center
87
  rhs = [int(EYE_H),int(EYE_H),int(NOSE_H),int(MOUTH_H)]
88
  rws = [int(EYE_W),int(EYE_W),int(NOSE_W),int(MOUTH_W)]
@@ -95,7 +95,10 @@ class SingleDataset(BaseDataset):
95
  soft_border_mask4.append(torch.Tensor(soft_border_mask).unsqueeze(0))
96
  item['soft_'+regions[i]+'_mask'] = soft_border_mask4[i]
97
  for i in range(4):
98
- item[regions[i]+'_A'] = A[:,int(center[i,1]-rhs[i]/2):int(center[i,1]+rhs[i]/2),int(center[i,0]-rws[i]/2):int(center[i,0]+rws[i]/2)]
 
 
 
99
  if self.opt.soft_border:
100
  item[regions[i]+'_A'] = item[regions[i]+'_A'] * soft_border_mask4[i].repeat(int(input_nc/output_nc),1,1)
101
  if self.opt.compactmask:
@@ -111,7 +114,7 @@ class SingleDataset(BaseDataset):
111
  cmask0 = (cmask0 >= 0.5).float()
112
  cmasks0.append(cmask0)
113
  cmask = cmask0.clone()
114
- cmask = cmask[:,int(center[i,1]-rhs[i]/2):int(center[i,1]+rhs[i]/2),int(center[i,0]-rws[i]/2):int(center[i,0]+rws[i]/2)]
115
  cmasks.append(cmask)
116
  item['cmaskel'] = cmasks[0]
117
  item['cmasker'] = cmasks[1]
@@ -121,7 +124,7 @@ class SingleDataset(BaseDataset):
121
  output_nc = self.opt.output_nc
122
  mask = torch.ones([output_nc,A.shape[1],A.shape[2]])
123
  for i in range(4):
124
- mask[:,int(center[i,1]-rhs[i]/2):int(center[i,1]+rhs[i]/2),int(center[i,0]-rws[i]/2):int(center[i,0]+rws[i]/2)] = 0
125
  if self.opt.soft_border:
126
  imgsize = self.opt.fineSize
127
  maskn = mask[0].numpy()
@@ -136,11 +139,11 @@ class SingleDataset(BaseDataset):
136
  xb = []
137
  yb = []
138
  for i in range(4):
139
- xbi = [center[i,0]-rws[i]/2, center[i,0]+rws[i]/2-1]
140
- ybi = [center[i,1]-rhs[i]/2, center[i,1]+rhs[i]/2-1]
141
  for j in range(2):
142
- maskx = bound[:,int(xbi[j])]
143
- masky = bound[int(ybi[j]),:]
144
  tmp_a = torch.from_numpy(maskx)*xbi[j].double()
145
  tmp_b = torch.from_numpy(1-maskx)
146
  xb += [tmp_b*10000 + tmp_a]
@@ -160,10 +163,8 @@ class SingleDataset(BaseDataset):
160
  im_bg = Image.open(bgpath)
161
  mask2 = transforms.ToTensor()(im_bg) # mask out background
162
  mask2 = (mask2 >= 0.5).float()
163
- #hair_A = (A/2+0.5) * mask.repeat(int(input_nc/output_nc),1,1) * mask2.repeat(int(input_nc/output_nc),1,1) * 2 - 1
164
- hair_A = (A/2+0.5) * mask.repeat(3,1,1) * mask2.repeat(3,1,1) * 2 - 1
165
- #bg_A = (A/2+0.5) * (torch.ones(mask2.shape)-mask2).repeat(int(input_nc/output_nc),1,1) * 2 - 1
166
- bg_A = (A/2+0.5) * (torch.ones(mask2.shape)-mask2).repeat(3,1,1) * 2 - 1
167
  item['hair_A'] = hair_A
168
  item['bg_A'] = bg_A
169
  item['mask'] = mask
 
82
  NOSE_W = self.opt.NOSE_W * ratio
83
  MOUTH_H = self.opt.MOUTH_H * ratio
84
  MOUTH_W = self.opt.MOUTH_W * ratio
85
+ center = torch.LongTensor([[feats[0,0],feats[0,1]-4*ratio],[feats[1,0],feats[1,1]-4*ratio],[feats[2,0],feats[2,1]-NOSE_H/2+16*ratio],[mouth_x,mouth_y]])
86
  item['center'] = center
87
  rhs = [int(EYE_H),int(EYE_H),int(NOSE_H),int(MOUTH_H)]
88
  rws = [int(EYE_W),int(EYE_W),int(NOSE_W),int(MOUTH_W)]
 
95
  soft_border_mask4.append(torch.Tensor(soft_border_mask).unsqueeze(0))
96
  item['soft_'+regions[i]+'_mask'] = soft_border_mask4[i]
97
  for i in range(4):
98
+ item[regions[i]+'_A'] = A[:,(center[i,1]-rhs[i]/2).to(torch.long):
99
+ (center[i,1]+rhs[i]/2).to(torch.long),
100
+ (center[i,0]-rws[i]/2).to(torch.long):
101
+ (center[i,0]+rws[i]/2).to(torch.long)]
102
  if self.opt.soft_border:
103
  item[regions[i]+'_A'] = item[regions[i]+'_A'] * soft_border_mask4[i].repeat(int(input_nc/output_nc),1,1)
104
  if self.opt.compactmask:
 
114
  cmask0 = (cmask0 >= 0.5).float()
115
  cmasks0.append(cmask0)
116
  cmask = cmask0.clone()
117
+ cmask = cmask[:,(center[i,1]-rhs[i]/2).to(torch.long):(center[i,1]+rhs[i]/2).to(torch.long),(center[i,0]-rws[i]/2).to(torch.long):(center[i,0]+rws[i]/2).to(torch.long)]
118
  cmasks.append(cmask)
119
  item['cmaskel'] = cmasks[0]
120
  item['cmasker'] = cmasks[1]
 
124
  output_nc = self.opt.output_nc
125
  mask = torch.ones([output_nc,A.shape[1],A.shape[2]])
126
  for i in range(4):
127
+ mask[:,(center[i,1]-rhs[i]/2).to(torch.long):(center[i,1]+rhs[i]/2).to(torch.long),(center[i,0]-rws[i]/2).to(torch.long):(center[i,0]+rws[i]/2).to(torch.long)] = 0
128
  if self.opt.soft_border:
129
  imgsize = self.opt.fineSize
130
  maskn = mask[0].numpy()
 
139
  xb = []
140
  yb = []
141
  for i in range(4):
142
+ xbi = [(center[i,0]-rws[i]/2).to(torch.long), (center[i,0]+rws[i]/2-1).to(torch.long)]
143
+ ybi = [(center[i,1]-rhs[i]/2).to(torch.long), (center[i,1]+rhs[i]/2-1).to(torch.long)]
144
  for j in range(2):
145
+ maskx = bound[:,xbi[j]]
146
+ masky = bound[ybi[j],:]
147
  tmp_a = torch.from_numpy(maskx)*xbi[j].double()
148
  tmp_b = torch.from_numpy(1-maskx)
149
  xb += [tmp_b*10000 + tmp_a]
 
163
  im_bg = Image.open(bgpath)
164
  mask2 = transforms.ToTensor()(im_bg) # mask out background
165
  mask2 = (mask2 >= 0.5).float()
166
+ hair_A = (A/2+0.5) * mask.repeat(int(input_nc/output_nc),1,1) * mask2.repeat(int(input_nc/output_nc),1,1) * 2 - 1
167
+ bg_A = (A/2+0.5) * (torch.ones(mask2.shape)-mask2).repeat(int(input_nc/output_nc),1,1) * 2 - 1
 
 
168
  item['hair_A'] = hair_A
169
  item['bg_A'] = bg_A
170
  item['mask'] = mask
APDrawingGAN2/models/apdrawingpp_style_model.py CHANGED
@@ -6,13 +6,13 @@ import os
6
  import math
7
 
8
  W = 11
9
- aa = int(math.floor(512./W))
10
- res = 512 - W*aa
11
 
12
 
13
- def padpart(A,part,centers,opt,device):
14
  IMAGE_SIZE = opt.fineSize
15
- bs,nc,_,_ = A.shape
16
  ratio = IMAGE_SIZE / 256
17
  NOSE_W = opt.NOSE_W * ratio
18
  NOSE_H = opt.NOSE_H * ratio
@@ -20,37 +20,52 @@ def padpart(A,part,centers,opt,device):
20
  EYE_H = opt.EYE_H * ratio
21
  MOUTH_W = opt.MOUTH_W * ratio
22
  MOUTH_H = opt.MOUTH_H * ratio
23
- A_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(device)
24
- padvalue = -1 # black
25
  for i in range(bs):
26
  center = centers[i]
27
  if part == 'nose':
28
- A_p[i] = torch.nn.ConstantPad2d((center[2,0] - NOSE_W / 2, IMAGE_SIZE - (center[2,0]+NOSE_W/2), center[2,1] - NOSE_H / 2, IMAGE_SIZE - (center[2,1]+NOSE_H/2)),padvalue)(A[i])
 
 
 
29
  elif part == 'eyel':
30
- A_p[i] = torch.nn.ConstantPad2d((center[0,0] - EYE_W / 2, IMAGE_SIZE - (center[0,0]+EYE_W/2), center[0,1] - EYE_H / 2, IMAGE_SIZE - (center[0,1]+EYE_H/2)),padvalue)(A[i])
 
 
31
  elif part == 'eyer':
32
- A_p[i] = torch.nn.ConstantPad2d((center[1,0] - EYE_W / 2, IMAGE_SIZE - (center[1,0]+EYE_W/2), center[1,1] - EYE_H / 2, IMAGE_SIZE - (center[1,1]+EYE_H/2)),padvalue)(A[i])
 
 
33
  elif part == 'mouth':
34
- A_p[i] = torch.nn.ConstantPad2d((center[3,0] - MOUTH_W / 2, IMAGE_SIZE - (center[3,0]+MOUTH_W/2), center[3,1] - MOUTH_H / 2, IMAGE_SIZE - (center[3,1]+MOUTH_H/2)),padvalue)(A[i])
 
 
 
35
  return A_p
36
 
 
37
  import numpy as np
38
- def nonlinearDt(dt,type='atan',xmax=torch.Tensor([10.0])):#dt in [0,1], first multiply xmax(>1), then remap to [0,1]
 
 
 
39
  if type == 'atan':
40
- nldt = torch.atan(dt*xmax) / torch.atan(xmax)
41
  elif type == 'sigmoid':
42
- nldt = (torch.sigmoid(dt*xmax)-0.5) / (torch.sigmoid(xmax)-0.5)
43
  elif type == 'tanh':
44
- nldt = torch.tanh(dt*xmax) / torch.tanh(xmax)
45
  elif type == 'pow':
46
- nldt = torch.pow(dt*xmax,2) / torch.pow(xmax,2)
47
  elif type == 'exp':
48
- if xmax.item()>1:
49
  xmax = xmax / 3
50
- nldt = (torch.exp(dt*xmax)-1) / (torch.exp(xmax)-1)
51
- #print("remap dt:", type, xmax.item())
52
  return nldt
53
 
 
54
  class APDrawingPPStyleModel(BaseModel):
55
  def name(self):
56
  return 'APDrawingPPStyleModel'
@@ -60,7 +75,7 @@ class APDrawingPPStyleModel(BaseModel):
60
 
61
  # changing the default values to match the pix2pix paper
62
  # (https://phillipi.github.io/pix2pix/)
63
- parser.set_defaults(pool_size=0, no_lsgan=True, norm='batch')# no_lsgan=True, use_lsgan=False
64
  parser.set_defaults(dataset_mode='aligned')
65
  parser.set_defaults(auxiliary_root='auxiliaryeye2o')
66
  parser.set_defaults(use_local=True, hair_local=True, bg_local=True)
@@ -107,15 +122,15 @@ class APDrawingPPStyleModel(BaseModel):
107
  self.visual_names += ['fake_B0', 'fake_B1']
108
  self.visual_names += ['fake_B_hair', 'real_B_hair', 'real_A_hair']
109
  self.visual_names += ['fake_B_bg', 'real_B_bg', 'real_A_bg']
110
- if self.opt.region_enm in [0,1]:
111
  if self.opt.nose_ae:
112
- self.visual_names += ['fake_B_nose_v','fake_B_nose_v1','fake_B_nose_v2','cmask1no']
113
  if self.opt.others_ae:
114
- self.visual_names += ['fake_B_eyel_v','fake_B_eyel_v1','fake_B_eyel_v2','cmask1el']
115
- self.visual_names += ['fake_B_eyer_v','fake_B_eyer_v1','fake_B_eyer_v2','cmask1er']
116
- self.visual_names += ['fake_B_mouth_v','fake_B_mouth_v1','fake_B_mouth_v2','cmask1mo']
117
  elif self.opt.region_enm in [2]:
118
- self.visual_names += ['fake_B_nose','fake_B_eyel','fake_B_eyer','fake_B_mouth']
119
  if self.isTrain and self.opt.chamfer_loss:
120
  self.visual_names += ['dt1', 'dt2']
121
  self.visual_names += ['dt1gt', 'dt2gt']
@@ -129,7 +144,7 @@ class APDrawingPPStyleModel(BaseModel):
129
  if self.isTrain:
130
  self.model_names = ['G', 'D']
131
  if self.opt.discriminator_local:
132
- self.model_names += ['DLEyel','DLEyer','DLNose','DLMouth','DLHair','DLBG']
133
  # auxiliary nets for loss calculation
134
  if self.opt.chamfer_loss:
135
  self.auxiliary_model_names += ['DT1', 'DT2']
@@ -141,13 +156,13 @@ class APDrawingPPStyleModel(BaseModel):
141
  if self.opt.test_continuity_loss:
142
  self.auxiliary_model_names += ['Regressor']
143
  if self.opt.use_local:
144
- self.model_names += ['GLEyel','GLEyer','GLNose','GLMouth','GLHair','GLBG','GCombine']
145
- self.auxiliary_model_names += ['CLm','CLh']
146
  # auxiliary nets for local output refinement
147
  if self.opt.nose_ae:
148
  self.auxiliary_model_names += ['AE']
149
  if self.opt.others_ae:
150
- self.auxiliary_model_names += ['AEel','AEer','AEmowhite','AEmoblack']
151
  print('model_names', self.model_names)
152
  print('auxiliary_model_names', self.auxiliary_model_names)
153
  # load/define networks
@@ -159,55 +174,61 @@ class APDrawingPPStyleModel(BaseModel):
159
  if self.isTrain:
160
  use_sigmoid = opt.no_lsgan
161
  self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
162
- opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)
 
163
  print('netD', opt.netD, opt.n_layers_D)
164
  if self.opt.discriminator_local:
165
  self.netDLEyel = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
166
- opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)
 
167
  self.netDLEyer = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
168
- opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)
 
169
  self.netDLNose = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
170
- opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)
 
171
  self.netDLMouth = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
172
- opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)
 
173
  self.netDLHair = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
174
- opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)
 
175
  self.netDLBG = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
176
- opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)
177
-
178
-
179
  if self.opt.use_local:
180
  netlocal1 = 'partunet' if self.opt.use_resnet == 0 else 'resnet_nblocks'
181
  netlocal2 = 'partunet2' if self.opt.use_resnet == 0 else 'resnet_6blocks'
182
  netlocal2_style = 'partunet2style' if self.opt.use_resnet == 0 else 'resnet_style2_6blocks'
183
  self.netGLEyel = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal1, opt.norm,
184
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=3)
185
  self.netGLEyer = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal1, opt.norm,
186
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=3)
187
  self.netGLNose = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal1, opt.norm,
188
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=3)
189
  self.netGLMouth = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal1, opt.norm,
190
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=3)
191
  self.netGLHair = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal2_style, opt.norm,
192
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=4,
193
- extra_channel=3)
194
  self.netGLBG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal2, opt.norm,
195
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=4)
196
  # by default combiner_type is combiner, which uses resnet
197
  print('combiner_type', self.opt.combiner_type)
198
- self.netGCombine = networks.define_G(2*opt.output_nc, opt.output_nc, opt.ngf, self.opt.combiner_type, opt.norm,
199
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, 2)
 
200
  # auxiliary classifiers for mouth and hair
201
  ratio = self.opt.fineSize / 256
202
  self.MOUTH_H = int(self.opt.MOUTH_H * ratio)
203
  self.MOUTH_W = int(self.opt.MOUTH_W * ratio)
204
  self.netCLm = networks.define_G(opt.input_nc, 2, opt.ngf, 'classifier', opt.norm,
205
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
206
- nnG = 3, ae_h = self.MOUTH_H, ae_w = self.MOUTH_W)
207
  self.netCLh = networks.define_G(opt.input_nc, 3, opt.ngf, 'classifier', opt.norm,
208
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
209
- nnG = opt.nnG_hairc, ae_h = opt.fineSize, ae_w = opt.fineSize)
210
-
211
 
212
  if self.isTrain:
213
  self.fake_AB_pool = ImagePool(opt.pool_size)
@@ -220,34 +241,39 @@ class APDrawingPPStyleModel(BaseModel):
220
  if not self.opt.use_local:
221
  print('G_params 1 components')
222
  self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
223
- lr=opt.lr, betas=(opt.beta1, 0.999))
224
  else:
225
- G_params = list(self.netG.parameters()) + list(self.netGLEyel.parameters()) + list(self.netGLEyer.parameters()) + list(self.netGLNose.parameters()) + list(self.netGLMouth.parameters()) + list(self.netGCombine.parameters()) + list(self.netGLHair.parameters()) + list(self.netGLBG.parameters())
 
 
 
226
  print('G_params 8 components')
227
  self.optimizer_G = torch.optim.Adam(G_params,
228
- lr=opt.lr, betas=(opt.beta1, 0.999))
229
-
230
  if not self.opt.discriminator_local:
231
  print('D_params 1 components')
232
  self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
233
- lr=opt.lr, betas=(opt.beta1, 0.999))
234
- else:#self.opt.discriminator_local == True
235
- D_params = list(self.netD.parameters()) + list(self.netDLEyel.parameters()) +list(self.netDLEyer.parameters()) + list(self.netDLNose.parameters()) + list(self.netDLMouth.parameters()) + list(self.netDLHair.parameters()) + list(self.netDLBG.parameters())
 
 
236
  print('D_params 7 components')
237
  self.optimizer_D = torch.optim.Adam(D_params,
238
- lr=opt.lr, betas=(opt.beta1, 0.999))
239
  self.optimizers.append(self.optimizer_G)
240
  self.optimizers.append(self.optimizer_D)
241
-
242
  # ==================================auxiliary nets (loaded, parameters fixed)=============================
243
  if self.opt.use_local and self.opt.nose_ae:
244
  ratio = self.opt.fineSize / 256
245
  NOSE_H = self.opt.NOSE_H * ratio
246
  NOSE_W = self.opt.NOSE_W * ratio
247
  self.netAE = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
248
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
249
- latent_dim=self.opt.ae_latentno, ae_h=NOSE_H, ae_w=NOSE_W)
250
- self.set_requires_grad(self.netAE, False)
251
  if self.opt.use_local and self.opt.others_ae:
252
  ratio = self.opt.fineSize / 256
253
  EYE_H = self.opt.EYE_H * ratio
@@ -255,53 +281,51 @@ class APDrawingPPStyleModel(BaseModel):
255
  MOUTH_H = self.opt.MOUTH_H * ratio
256
  MOUTH_W = self.opt.MOUTH_W * ratio
257
  self.netAEel = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
258
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
259
- latent_dim=self.opt.ae_latenteye, ae_h=EYE_H, ae_w=EYE_W)
260
  self.netAEer = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
261
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
262
- latent_dim=self.opt.ae_latenteye, ae_h=EYE_H, ae_w=EYE_W)
263
  self.netAEmowhite = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
264
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
265
- latent_dim=self.opt.ae_latentmo, ae_h=MOUTH_H, ae_w=MOUTH_W)
266
  self.netAEmoblack = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
267
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
268
- latent_dim=self.opt.ae_latentmo, ae_h=MOUTH_H, ae_w=MOUTH_W)
269
  self.set_requires_grad(self.netAEel, False)
270
  self.set_requires_grad(self.netAEer, False)
271
  self.set_requires_grad(self.netAEmowhite, False)
272
  self.set_requires_grad(self.netAEmoblack, False)
273
-
274
-
275
  if self.isTrain and self.opt.continuity_loss:
276
  self.nc = 1
277
  self.netRegressor = networks.define_G(self.nc, 1, opt.ngf, 'regressor', opt.norm,
278
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p,
279
- nnG = opt.regarch)
280
  self.set_requires_grad(self.netRegressor, False)
281
 
282
  if self.isTrain and self.opt.chamfer_loss:
283
  self.nc = 1
284
  self.netDT1 = networks.define_G(self.nc, self.nc, opt.ngf, opt.netG_dt, opt.norm,
285
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p)
286
  self.netDT2 = networks.define_G(self.nc, self.nc, opt.ngf, opt.netG_dt, opt.norm,
287
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p)
288
  self.set_requires_grad(self.netDT1, False)
289
  self.set_requires_grad(self.netDT2, False)
290
  self.netLine1 = networks.define_G(self.nc, self.nc, opt.ngf, opt.netG_line, opt.norm,
291
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p)
292
  self.netLine2 = networks.define_G(self.nc, self.nc, opt.ngf, opt.netG_line, opt.norm,
293
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p)
294
  self.set_requires_grad(self.netLine1, False)
295
  self.set_requires_grad(self.netLine2, False)
296
-
297
  # ==================================for test (nets loaded, parameters fixed)=============================
298
- if not self.isTrain and self.opt.test_continuity_loss:
299
  self.nc = 1
300
  self.netRegressor = networks.define_G(self.nc, 1, opt.ngf, 'regressor', opt.norm,
301
- not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
302
- nnG = opt.regarch)
303
  self.set_requires_grad(self.netRegressor, False)
304
-
305
 
306
  def set_input(self, input):
307
  AtoB = self.opt.which_direction == 'AtoB'
@@ -318,7 +342,7 @@ class APDrawingPPStyleModel(BaseModel):
318
  self.real_B_eyer = input['eyer_B'].to(self.device)
319
  self.real_B_nose = input['nose_B'].to(self.device)
320
  self.real_B_mouth = input['mouth_B'].to(self.device)
321
- if self.opt.region_enm in [0,1]:
322
  self.center = input['center']
323
  if self.opt.soft_border:
324
  self.softel = input['soft_eyel_mask'].to(self.device)
@@ -327,17 +351,17 @@ class APDrawingPPStyleModel(BaseModel):
327
  self.softmo = input['soft_mouth_mask'].to(self.device)
328
  if self.opt.compactmask:
329
  self.cmask = input['cmask'].to(self.device)
330
- self.cmask1 = self.cmask*2-1#[0,1]->[-1,1]
331
  self.cmaskel = input['cmaskel'].to(self.device)
332
- self.cmask1el = self.cmaskel*2-1
333
  self.cmasker = input['cmasker'].to(self.device)
334
- self.cmask1er = self.cmasker*2-1
335
  self.cmaskmo = input['cmaskmo'].to(self.device)
336
- self.cmask1mo = self.cmaskmo*2-1
337
  self.real_A_hair = input['hair_A'].to(self.device)
338
  self.real_B_hair = input['hair_B'].to(self.device)
339
- self.mask = input['mask'].to(self.device) # mask for non-eyes,nose,mouth
340
- self.mask2 = input['mask2'].to(self.device) # mask for non-bg
341
  self.real_A_bg = input['bg_A'].to(self.device)
342
  self.real_B_bg = input['bg_B'].to(self.device)
343
  if (self.isTrain and self.opt.chamfer_loss):
@@ -345,13 +369,13 @@ class APDrawingPPStyleModel(BaseModel):
345
  self.dt2gt = input['dt2gt'].to(self.device)
346
  if self.isTrain and self.opt.emphasis_conti_face:
347
  self.face_mask = input['face_mask'].cuda(self.gpu_ids_p[0])
348
-
349
- def getonehot(self,outputs,classes):
350
- [maxv,index] = torch.max(outputs,1)
351
- y = torch.unsqueeze(index,1)
352
- onehot = torch.FloatTensor(self.batch_size,classes).to(self.device)
353
  onehot.zero_()
354
- onehot.scatter_(1,y,1)
355
  return onehot
356
 
357
  def forward(self):
@@ -361,40 +385,41 @@ class APDrawingPPStyleModel(BaseModel):
361
  self.fake_B0 = self.netG(self.real_A)
362
  # EYES, MOUTH
363
  outputs1 = self.netCLm(self.real_A_mouth)
364
- onehot1 = self.getonehot(outputs1,2)
365
 
366
  if not self.opt.others_ae:
367
  fake_B_eyel = self.netGLEyel(self.real_A_eyel)
368
  fake_B_eyer = self.netGLEyer(self.real_A_eyer)
369
  fake_B_mouth = self.netGLMouth(self.real_A_mouth)
370
- else: # use AE that only constains compact region, need cmask!
371
  self.fake_B_eyel1 = self.netGLEyel(self.real_A_eyel)
372
  self.fake_B_eyer1 = self.netGLEyer(self.real_A_eyer)
373
  self.fake_B_mouth1 = self.netGLMouth(self.real_A_mouth)
374
- self.fake_B_eyel2,_ = self.netAEel(self.fake_B_eyel1)
375
- self.fake_B_eyer2,_ = self.netAEer(self.fake_B_eyer1)
376
  # USE 2 AEs
377
- self.fake_B_mouth2 = torch.FloatTensor(self.batch_size,self.opt.output_nc,self.MOUTH_H,self.MOUTH_W).to(self.device)
 
378
  for i in range(self.batch_size):
379
  if onehot1[i][0] == 1:
380
- self.fake_B_mouth2[i],_ = self.netAEmowhite(self.fake_B_mouth1[i].unsqueeze(0))
381
- #print('AEmowhite')
382
  elif onehot1[i][1] == 1:
383
- self.fake_B_mouth2[i],_ = self.netAEmoblack(self.fake_B_mouth1[i].unsqueeze(0))
384
- #print('AEmoblack')
385
- fake_B_eyel = self.add_with_mask(self.fake_B_eyel2,self.fake_B_eyel1,self.cmaskel)
386
- fake_B_eyer = self.add_with_mask(self.fake_B_eyer2,self.fake_B_eyer1,self.cmasker)
387
- fake_B_mouth = self.add_with_mask(self.fake_B_mouth2,self.fake_B_mouth1,self.cmaskmo)
388
  # NOSE
389
  if not self.opt.nose_ae:
390
  fake_B_nose = self.netGLNose(self.real_A_nose)
391
- else: # use AE that only constains compact region, need cmask!
392
  self.fake_B_nose1 = self.netGLNose(self.real_A_nose)
393
- self.fake_B_nose2,_ = self.netAE(self.fake_B_nose1)
394
- fake_B_nose = self.add_with_mask(self.fake_B_nose2,self.fake_B_nose1,self.cmask)
395
 
396
  # for visuals and later local loss
397
- if self.opt.region_enm in [0,1]:
398
  self.fake_B_nose = fake_B_nose
399
  self.fake_B_eyel = fake_B_eyel
400
  self.fake_B_eyer = fake_B_eyer
@@ -405,41 +430,48 @@ class APDrawingPPStyleModel(BaseModel):
405
  self.fake_B_eyel = self.masked(fake_B_eyel, self.softel)
406
  self.fake_B_eyer = self.masked(fake_B_eyer, self.softer)
407
  self.fake_B_mouth = self.masked(fake_B_mouth, self.softmo)
408
- elif self.opt.region_enm in [2]: # need to multiply cmask
409
- self.fake_B_nose = self.masked(fake_B_nose,self.cmask)
410
- self.fake_B_eyel = self.masked(fake_B_eyel,self.cmaskel)
411
- self.fake_B_eyer = self.masked(fake_B_eyer,self.cmasker)
412
- self.fake_B_mouth = self.masked(fake_B_mouth,self.cmaskmo)
413
-
414
  # HAIR, BG AND PARTCOMBINE
415
  outputs2 = self.netCLh(self.real_A_hair)
416
- onehot2 = self.getonehot(outputs2,3)
417
 
418
  if not self.isTrain:
419
  opt = self.opt
420
  if opt.imagefolder == 'images':
421
- file_name = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch), 'styleonehot.txt')
 
422
  else:
423
- file_name = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch), opt.imagefolder, 'styleonehot.txt')
424
- message = '%s [%d %d] [%d %d %d]' % (self.image_paths[0], onehot1[0][0], onehot1[0][1],
425
- onehot2[0][0], onehot2[0][1], onehot2[0][2])
 
426
  with open(file_name, 'a+') as s_file:
427
  s_file.write(message)
428
  s_file.write('\n')
429
 
430
- fake_B_hair = self.netGLHair(self.real_A_hair,onehot2)
431
  fake_B_bg = self.netGLBG(self.real_A_bg)
432
- self.fake_B_hair = self.masked(fake_B_hair,self.mask*self.mask2)
433
- self.fake_B_bg = self.masked(fake_B_bg,self.inverse_mask(self.mask2))
434
  if not self.opt.compactmask:
435
- self.fake_B1 = self.partCombiner2_bg(fake_B_eyel,fake_B_eyer,fake_B_nose,fake_B_mouth,fake_B_hair,fake_B_bg,self.mask*self.mask2,self.inverse_mask(self.mask2),self.opt.comb_op)
 
 
436
  else:
437
- self.fake_B1 = self.partCombiner2_bg(fake_B_eyel,fake_B_eyer,fake_B_nose,fake_B_mouth,fake_B_hair,fake_B_bg,self.mask*self.mask2,self.inverse_mask(self.mask2),self.opt.comb_op,self.opt.region_enm,self.cmaskel,self.cmasker,self.cmask,self.cmaskmo)
438
-
439
- self.fake_B = self.netGCombine(torch.cat([self.fake_B0,self.fake_B1],1))
 
 
 
440
 
441
  # for AE visuals
442
- if self.opt.region_enm in [0,1]:
443
  if self.opt.nose_ae:
444
  self.fake_B_nose_v = padpart(self.fake_B_nose, 'nose', self.center, self.opt, self.device)
445
  self.fake_B_nose_v1 = padpart(self.fake_B_nose1, 'nose', self.center, self.opt, self.device)
@@ -458,21 +490,20 @@ class APDrawingPPStyleModel(BaseModel):
458
  self.fake_B_mouth_v1 = padpart(self.fake_B_mouth1, 'mouth', self.center, self.opt, self.device)
459
  self.fake_B_mouth_v2 = padpart(self.fake_B_mouth2, 'mouth', self.center, self.opt, self.device)
460
  self.cmask1mo = padpart(self.cmask1mo, 'mouth', self.center, self.opt, self.device)
461
-
462
  if not self.isTrain and self.opt.test_continuity_loss:
463
  self.ContinuityForTest(real=1)
464
-
465
-
466
  def backward_D(self):
467
  # Fake
468
  # stop backprop to the generator by detaching fake_B
469
  fake_AB = self.fake_AB_pool.query(torch.cat((self.real_A, self.fake_B), 1))
470
- #print('fake_AB', fake_AB.shape) # (1,4,512,512)
471
- pred_fake = self.netD(fake_AB.detach())# by detach, not affect G's gradient
472
  self.loss_D_fake = self.criterionGAN(pred_fake, False)
473
  if self.opt.discriminator_local:
474
  fake_AB_parts = self.getLocalParts(fake_AB)
475
- local_names = ['DLEyel','DLEyer','DLNose','DLMouth','DLHair','DLBG']
476
  self.loss_D_fake_local = 0
477
  for i in range(len(fake_AB_parts)):
478
  net = getattr(self, 'net' + local_names[i])
@@ -487,7 +518,7 @@ class APDrawingPPStyleModel(BaseModel):
487
  self.loss_D_real = self.criterionGAN(pred_real, True)
488
  if self.opt.discriminator_local:
489
  real_AB_parts = self.getLocalParts(real_AB)
490
- local_names = ['DLEyel','DLEyer','DLNose','DLMouth','DLHair','DLBG']
491
  self.loss_D_real_local = 0
492
  for i in range(len(real_AB_parts)):
493
  net = getattr(self, 'net' + local_names[i])
@@ -504,12 +535,12 @@ class APDrawingPPStyleModel(BaseModel):
504
  def backward_G(self):
505
  # First, G(A) should fake the discriminator
506
  fake_AB = torch.cat((self.real_A, self.fake_B), 1)
507
- pred_fake = self.netD(fake_AB) # (1,4,512,512)->(1,1,30,30)
508
  self.loss_G_GAN = self.criterionGAN(pred_fake, True)
509
  if self.opt.discriminator_local:
510
  fake_AB_parts = self.getLocalParts(fake_AB)
511
- local_names = ['DLEyel','DLEyer','DLNose','DLMouth','DLHair','DLBG']
512
- self.loss_G_GAN_local = 0 # G_GAN_local is then added into G_GAN
513
  for i in range(len(fake_AB_parts)):
514
  net = getattr(self, 'net' + local_names[i])
515
  pred_fake_tmp = net(fake_AB_parts[i])
@@ -524,31 +555,34 @@ class APDrawingPPStyleModel(BaseModel):
524
  # Second, G(A) = B
525
  if not self.opt.no_l1_loss:
526
  self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1
527
-
528
  if self.opt.use_local and not self.opt.no_G_local_loss:
529
- local_names = ['eyel','eyer','nose','mouth']
530
  self.loss_G_local = 0
531
  for i in range(len(local_names)):
532
  fakeblocal = getattr(self, 'fake_B_' + local_names[i])
533
  realblocal = getattr(self, 'real_B_' + local_names[i])
534
  addw = self.getaddw(local_names[i])
535
- self.loss_G_local = self.loss_G_local + self.criterionL1(fakeblocal,realblocal) * self.opt.lambda_local * addw
536
- self.loss_G_hair_local = self.criterionL1(self.fake_B_hair, self.real_B_hair) * self.opt.lambda_local * self.opt.addw_hair
537
- self.loss_G_bg_local = self.criterionL1(self.fake_B_bg, self.real_B_bg) * self.opt.lambda_local * self.opt.addw_bg
 
 
 
538
 
539
  # Third, chamfer matching (assume chamfer_2way and chamfer_only_line is true)
540
  if self.opt.chamfer_loss:
541
  if self.fake_B.shape[1] == 3:
542
- tmp = self.fake_B[:,0,...]*0.299+self.fake_B[:,1,...]*0.587+self.fake_B[:,2,...]*0.114
543
  fake_B_gray = tmp.unsqueeze(1)
544
  else:
545
  fake_B_gray = self.fake_B
546
  if self.real_B.shape[1] == 3:
547
- tmp = self.real_B[:,0,...]*0.299+self.real_B[:,1,...]*0.587+self.real_B[:,2,...]*0.114
548
  real_B_gray = tmp.unsqueeze(1)
549
  else:
550
  real_B_gray = self.real_B
551
-
552
  gpu_p = self.opt.gpu_ids_p[0]
553
  gpu = self.opt.gpu_ids[0]
554
  if gpu_p != gpu:
@@ -558,22 +592,23 @@ class APDrawingPPStyleModel(BaseModel):
558
  # d_CM(a_i,G(p_i))
559
  self.dt1 = self.netDT1(fake_B_gray)
560
  self.dt2 = self.netDT2(fake_B_gray)
561
- dt1 = self.dt1/2.0+0.5#[-1,1]->[0,1]
562
- dt2 = self.dt2/2.0+0.5
563
  if self.opt.dt_nonlinear != '':
564
  dt_xmax = torch.Tensor([self.opt.dt_xmax]).cuda(gpu_p)
565
  dt1 = nonlinearDt(dt1, self.opt.dt_nonlinear, dt_xmax)
566
  dt2 = nonlinearDt(dt2, self.opt.dt_nonlinear, dt_xmax)
567
- #print('dt1dt2',torch.min(dt1).item(),torch.max(dt1).item(),torch.min(dt2).item(),torch.max(dt2).item())
568
-
569
  bs = real_B_gray.shape[0]
570
  real_B_gray_line1 = self.netLine1(real_B_gray)
571
  real_B_gray_line2 = self.netLine2(real_B_gray)
572
- self.loss_G_chamfer = (dt1[(real_B_gray<0)&(real_B_gray_line1<0)].sum() + dt2[(real_B_gray>=0)&(real_B_gray_line2>=0)].sum()) / bs * self.opt.lambda_chamfer
 
573
  if gpu_p != gpu:
574
- self.loss_G_chamfer = self.loss_G_chamfer.cuda(gpu)
575
 
576
- # d_CM(G(p_i),a_i)
577
  if gpu_p != gpu:
578
  dt1gt = self.dt1gt.cuda(gpu_p)
579
  dt2gt = self.dt2gt.cuda(gpu_p)
@@ -583,13 +618,14 @@ class APDrawingPPStyleModel(BaseModel):
583
  if self.opt.dt_nonlinear != '':
584
  dt1gt = nonlinearDt(dt1gt, self.opt.dt_nonlinear, dt_xmax)
585
  dt2gt = nonlinearDt(dt2gt, self.opt.dt_nonlinear, dt_xmax)
586
- #print('dt1gtdt2gt',torch.min(dt1gt).item(),torch.max(dt1gt).item(),torch.min(dt2gt).item(),torch.max(dt2gt).item())
587
- self.dt1gt = (self.dt1gt-0.5)*2
588
- self.dt2gt = (self.dt2gt-0.5)*2
589
 
590
  fake_B_gray_line1 = self.netLine1(fake_B_gray)
591
  fake_B_gray_line2 = self.netLine2(fake_B_gray)
592
- self.loss_G_chamfer2 = (dt1gt[(fake_B_gray<0)&(fake_B_gray_line1<0)].sum() + dt2gt[(fake_B_gray>=0)&(fake_B_gray_line2>=0)].sum()) / bs * self.opt.lambda_chamfer2
 
593
  if gpu_p != gpu:
594
  self.loss_G_chamfer2 = self.loss_G_chamfer2.cuda(gpu)
595
 
@@ -599,11 +635,10 @@ class APDrawingPPStyleModel(BaseModel):
599
  self.get_patches()
600
  self.outputs = self.netRegressor(self.fake_B_patches)
601
  if not self.opt.emphasis_conti_face:
602
- self.loss_G_continuity = (1.0-torch.mean(self.outputs)).cuda(gpu) * self.opt.lambda_continuity
603
  else:
604
- self.loss_G_continuity = torch.mean((1.0-self.outputs)*self.conti_weights).cuda(gpu) * self.opt.lambda_continuity
605
-
606
-
607
 
608
  self.loss_G = self.loss_G_GAN
609
  if 'G_L1' in self.loss_names:
@@ -627,7 +662,7 @@ class APDrawingPPStyleModel(BaseModel):
627
  self.forward()
628
  # update D
629
  self.set_requires_grad(self.netD, True)
630
-
631
  if self.opt.discriminator_local:
632
  self.set_requires_grad(self.netDLEyel, True)
633
  self.set_requires_grad(self.netDLEyer, True)
@@ -661,32 +696,32 @@ class APDrawingPPStyleModel(BaseModel):
661
  patches = []
662
  if self.isTrain and self.opt.emphasis_conti_face:
663
  weights = []
664
- W2 = int(W/2)
665
- t = np.random.randint(res,size=2)
666
  for i in range(aa):
667
  for j in range(aa):
668
- p = self.fake_B[:,:,t[0]+i*W:t[0]+(i+1)*W,t[1]+j*W:t[1]+(j+1)*W]
669
- whitenum = torch.sum(p>=0.0)
670
- #if whitenum < 5 or whitenum > W*W-5:
671
- if whitenum < 1 or whitenum > W*W-1:
672
  continue
673
  patches.append(p)
674
  if self.isTrain and self.opt.emphasis_conti_face:
675
- weights.append(self.face_mask[:,:,t[0]+i*W+W2,t[1]+j*W+W2])
676
  self.fake_B_patches = torch.cat(patches, dim=0)
677
  if self.isTrain and self.opt.emphasis_conti_face:
678
- self.conti_weights = torch.cat(weights, dim=0)+1 #0->1,1->2
679
-
680
  def get_patches_real(self):
681
  # [1,1,512,512]->[bs,1,11,11]
682
  patches = []
683
- t = np.random.randint(res,size=2)
684
  for i in range(aa):
685
  for j in range(aa):
686
- p = self.real_B[:,:,t[0]+i*W:t[0]+(i+1)*W,t[1]+j*W:t[1]+(j+1)*W]
687
- whitenum = torch.sum(p>=0.0)
688
- #if whitenum < 5 or whitenum > W*W-5:
689
- if whitenum < 1 or whitenum > W*W-1:
690
  continue
691
  patches.append(p)
692
  self.real_B_patches = torch.cat(patches, dim=0)
 
6
  import math
7
 
8
  W = 11
9
+ aa = int(math.floor(512. / W))
10
+ res = 512 - W * aa
11
 
12
 
13
+ def padpart(A, part, centers, opt, device):
14
  IMAGE_SIZE = opt.fineSize
15
+ bs, nc, _, _ = A.shape
16
  ratio = IMAGE_SIZE / 256
17
  NOSE_W = opt.NOSE_W * ratio
18
  NOSE_H = opt.NOSE_H * ratio
 
20
  EYE_H = opt.EYE_H * ratio
21
  MOUTH_W = opt.MOUTH_W * ratio
22
  MOUTH_H = opt.MOUTH_H * ratio
23
+ A_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(device)
24
+ padvalue = -1 # black
25
  for i in range(bs):
26
  center = centers[i]
27
  if part == 'nose':
28
+ A_p[i] = torch.nn.ConstantPad2d((
29
+ int(center[2, 0] - NOSE_W / 2), IMAGE_SIZE - int(center[2, 0] + NOSE_W / 2),
30
+ int(center[2, 1] - NOSE_H / 2),
31
+ IMAGE_SIZE - int(center[2, 1] + NOSE_H / 2)), padvalue)(A[i])
32
  elif part == 'eyel':
33
+ A_p[i] = torch.nn.ConstantPad2d((int(center[0, 0] - EYE_W / 2), IMAGE_SIZE - int(center[0, 0] + EYE_W / 2),
34
+ int(center[0, 1] - EYE_H / 2), IMAGE_SIZE - int(center[0, 1] + EYE_H / 2)),
35
+ padvalue)(A[i])
36
  elif part == 'eyer':
37
+ A_p[i] = torch.nn.ConstantPad2d((int(center[1, 0] - EYE_W / 2), IMAGE_SIZE - int(center[1, 0] + EYE_W / 2),
38
+ int(center[1, 1] - EYE_H / 2), IMAGE_SIZE - int(center[1, 1] + EYE_H / 2)),
39
+ padvalue)(A[i])
40
  elif part == 'mouth':
41
+ A_p[i] = torch.nn.ConstantPad2d((int(center[3, 0] - MOUTH_W / 2),
42
+ IMAGE_SIZE - int(center[3, 0] + MOUTH_W / 2),
43
+ int(center[3, 1] - MOUTH_H / 2),
44
+ IMAGE_SIZE - int(center[3, 1] + MOUTH_H / 2)), padvalue)(A[i])
45
  return A_p
46
 
47
+
48
  import numpy as np
49
+
50
+
51
+ def nonlinearDt(dt, type='atan',
52
+ xmax=torch.Tensor([10.0])): # dt in [0,1], first multiply xmax(>1), then remap to [0,1]
53
  if type == 'atan':
54
+ nldt = torch.atan(dt * xmax) / torch.atan(xmax)
55
  elif type == 'sigmoid':
56
+ nldt = (torch.sigmoid(dt * xmax) - 0.5) / (torch.sigmoid(xmax) - 0.5)
57
  elif type == 'tanh':
58
+ nldt = torch.tanh(dt * xmax) / torch.tanh(xmax)
59
  elif type == 'pow':
60
+ nldt = torch.pow(dt * xmax, 2) / torch.pow(xmax, 2)
61
  elif type == 'exp':
62
+ if xmax.item() > 1:
63
  xmax = xmax / 3
64
+ nldt = (torch.exp(dt * xmax) - 1) / (torch.exp(xmax) - 1)
65
+ # print("remap dt:", type, xmax.item())
66
  return nldt
67
 
68
+
69
  class APDrawingPPStyleModel(BaseModel):
70
  def name(self):
71
  return 'APDrawingPPStyleModel'
 
75
 
76
  # changing the default values to match the pix2pix paper
77
  # (https://phillipi.github.io/pix2pix/)
78
+ parser.set_defaults(pool_size=0, no_lsgan=True, norm='batch') # no_lsgan=True, use_lsgan=False
79
  parser.set_defaults(dataset_mode='aligned')
80
  parser.set_defaults(auxiliary_root='auxiliaryeye2o')
81
  parser.set_defaults(use_local=True, hair_local=True, bg_local=True)
 
122
  self.visual_names += ['fake_B0', 'fake_B1']
123
  self.visual_names += ['fake_B_hair', 'real_B_hair', 'real_A_hair']
124
  self.visual_names += ['fake_B_bg', 'real_B_bg', 'real_A_bg']
125
+ if self.opt.region_enm in [0, 1]:
126
  if self.opt.nose_ae:
127
+ self.visual_names += ['fake_B_nose_v', 'fake_B_nose_v1', 'fake_B_nose_v2', 'cmask1no']
128
  if self.opt.others_ae:
129
+ self.visual_names += ['fake_B_eyel_v', 'fake_B_eyel_v1', 'fake_B_eyel_v2', 'cmask1el']
130
+ self.visual_names += ['fake_B_eyer_v', 'fake_B_eyer_v1', 'fake_B_eyer_v2', 'cmask1er']
131
+ self.visual_names += ['fake_B_mouth_v', 'fake_B_mouth_v1', 'fake_B_mouth_v2', 'cmask1mo']
132
  elif self.opt.region_enm in [2]:
133
+ self.visual_names += ['fake_B_nose', 'fake_B_eyel', 'fake_B_eyer', 'fake_B_mouth']
134
  if self.isTrain and self.opt.chamfer_loss:
135
  self.visual_names += ['dt1', 'dt2']
136
  self.visual_names += ['dt1gt', 'dt2gt']
 
144
  if self.isTrain:
145
  self.model_names = ['G', 'D']
146
  if self.opt.discriminator_local:
147
+ self.model_names += ['DLEyel', 'DLEyer', 'DLNose', 'DLMouth', 'DLHair', 'DLBG']
148
  # auxiliary nets for loss calculation
149
  if self.opt.chamfer_loss:
150
  self.auxiliary_model_names += ['DT1', 'DT2']
 
156
  if self.opt.test_continuity_loss:
157
  self.auxiliary_model_names += ['Regressor']
158
  if self.opt.use_local:
159
+ self.model_names += ['GLEyel', 'GLEyer', 'GLNose', 'GLMouth', 'GLHair', 'GLBG', 'GCombine']
160
+ self.auxiliary_model_names += ['CLm', 'CLh']
161
  # auxiliary nets for local output refinement
162
  if self.opt.nose_ae:
163
  self.auxiliary_model_names += ['AE']
164
  if self.opt.others_ae:
165
+ self.auxiliary_model_names += ['AEel', 'AEer', 'AEmowhite', 'AEmoblack']
166
  print('model_names', self.model_names)
167
  print('auxiliary_model_names', self.auxiliary_model_names)
168
  # load/define networks
 
174
  if self.isTrain:
175
  use_sigmoid = opt.no_lsgan
176
  self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
177
+ opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain,
178
+ self.gpu_ids)
179
  print('netD', opt.netD, opt.n_layers_D)
180
  if self.opt.discriminator_local:
181
  self.netDLEyel = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
182
+ opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain,
183
+ self.gpu_ids)
184
  self.netDLEyer = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
185
+ opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain,
186
+ self.gpu_ids)
187
  self.netDLNose = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
188
+ opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain,
189
+ self.gpu_ids)
190
  self.netDLMouth = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
191
+ opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain,
192
+ self.gpu_ids)
193
  self.netDLHair = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
194
+ opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain,
195
+ self.gpu_ids)
196
  self.netDLBG = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
197
+ opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain,
198
+ self.gpu_ids)
199
+
200
  if self.opt.use_local:
201
  netlocal1 = 'partunet' if self.opt.use_resnet == 0 else 'resnet_nblocks'
202
  netlocal2 = 'partunet2' if self.opt.use_resnet == 0 else 'resnet_6blocks'
203
  netlocal2_style = 'partunet2style' if self.opt.use_resnet == 0 else 'resnet_style2_6blocks'
204
  self.netGLEyel = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal1, opt.norm,
205
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=3)
206
  self.netGLEyer = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal1, opt.norm,
207
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=3)
208
  self.netGLNose = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal1, opt.norm,
209
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=3)
210
  self.netGLMouth = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal1, opt.norm,
211
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=3)
212
  self.netGLHair = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal2_style, opt.norm,
213
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=4,
214
+ extra_channel=3)
215
  self.netGLBG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, netlocal2, opt.norm,
216
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, nnG=4)
217
  # by default combiner_type is combiner, which uses resnet
218
  print('combiner_type', self.opt.combiner_type)
219
+ self.netGCombine = networks.define_G(2 * opt.output_nc, opt.output_nc, opt.ngf, self.opt.combiner_type,
220
+ opt.norm,
221
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, 2)
222
  # auxiliary classifiers for mouth and hair
223
  ratio = self.opt.fineSize / 256
224
  self.MOUTH_H = int(self.opt.MOUTH_H * ratio)
225
  self.MOUTH_W = int(self.opt.MOUTH_W * ratio)
226
  self.netCLm = networks.define_G(opt.input_nc, 2, opt.ngf, 'classifier', opt.norm,
227
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
228
+ nnG=3, ae_h=self.MOUTH_H, ae_w=self.MOUTH_W)
229
  self.netCLh = networks.define_G(opt.input_nc, 3, opt.ngf, 'classifier', opt.norm,
230
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
231
+ nnG=opt.nnG_hairc, ae_h=opt.fineSize, ae_w=opt.fineSize)
 
232
 
233
  if self.isTrain:
234
  self.fake_AB_pool = ImagePool(opt.pool_size)
 
241
  if not self.opt.use_local:
242
  print('G_params 1 components')
243
  self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
244
+ lr=opt.lr, betas=(opt.beta1, 0.999))
245
  else:
246
+ G_params = list(self.netG.parameters()) + list(self.netGLEyel.parameters()) + list(
247
+ self.netGLEyer.parameters()) + list(self.netGLNose.parameters()) + list(
248
+ self.netGLMouth.parameters()) + list(self.netGCombine.parameters()) + list(
249
+ self.netGLHair.parameters()) + list(self.netGLBG.parameters())
250
  print('G_params 8 components')
251
  self.optimizer_G = torch.optim.Adam(G_params,
252
+ lr=opt.lr, betas=(opt.beta1, 0.999))
253
+
254
  if not self.opt.discriminator_local:
255
  print('D_params 1 components')
256
  self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
257
+ lr=opt.lr, betas=(opt.beta1, 0.999))
258
+ else: # self.opt.discriminator_local == True
259
+ D_params = list(self.netD.parameters()) + list(self.netDLEyel.parameters()) + list(
260
+ self.netDLEyer.parameters()) + list(self.netDLNose.parameters()) + list(
261
+ self.netDLMouth.parameters()) + list(self.netDLHair.parameters()) + list(self.netDLBG.parameters())
262
  print('D_params 7 components')
263
  self.optimizer_D = torch.optim.Adam(D_params,
264
+ lr=opt.lr, betas=(opt.beta1, 0.999))
265
  self.optimizers.append(self.optimizer_G)
266
  self.optimizers.append(self.optimizer_D)
267
+
268
  # ==================================auxiliary nets (loaded, parameters fixed)=============================
269
  if self.opt.use_local and self.opt.nose_ae:
270
  ratio = self.opt.fineSize / 256
271
  NOSE_H = self.opt.NOSE_H * ratio
272
  NOSE_W = self.opt.NOSE_W * ratio
273
  self.netAE = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
274
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
275
+ latent_dim=self.opt.ae_latentno, ae_h=NOSE_H, ae_w=NOSE_W)
276
+ self.set_requires_grad(self.netAE, False)
277
  if self.opt.use_local and self.opt.others_ae:
278
  ratio = self.opt.fineSize / 256
279
  EYE_H = self.opt.EYE_H * ratio
 
281
  MOUTH_H = self.opt.MOUTH_H * ratio
282
  MOUTH_W = self.opt.MOUTH_W * ratio
283
  self.netAEel = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
284
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
285
+ latent_dim=self.opt.ae_latenteye, ae_h=EYE_H, ae_w=EYE_W)
286
  self.netAEer = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
287
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
288
+ latent_dim=self.opt.ae_latenteye, ae_h=EYE_H, ae_w=EYE_W)
289
  self.netAEmowhite = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
290
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
291
+ latent_dim=self.opt.ae_latentmo, ae_h=MOUTH_H, ae_w=MOUTH_W)
292
  self.netAEmoblack = networks.define_G(opt.output_nc, opt.output_nc, opt.ngf, self.opt.nose_ae_net, 'batch',
293
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
294
+ latent_dim=self.opt.ae_latentmo, ae_h=MOUTH_H, ae_w=MOUTH_W)
295
  self.set_requires_grad(self.netAEel, False)
296
  self.set_requires_grad(self.netAEer, False)
297
  self.set_requires_grad(self.netAEmowhite, False)
298
  self.set_requires_grad(self.netAEmoblack, False)
299
+
 
300
  if self.isTrain and self.opt.continuity_loss:
301
  self.nc = 1
302
  self.netRegressor = networks.define_G(self.nc, 1, opt.ngf, 'regressor', opt.norm,
303
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p,
304
+ nnG=opt.regarch)
305
  self.set_requires_grad(self.netRegressor, False)
306
 
307
  if self.isTrain and self.opt.chamfer_loss:
308
  self.nc = 1
309
  self.netDT1 = networks.define_G(self.nc, self.nc, opt.ngf, opt.netG_dt, opt.norm,
310
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p)
311
  self.netDT2 = networks.define_G(self.nc, self.nc, opt.ngf, opt.netG_dt, opt.norm,
312
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p)
313
  self.set_requires_grad(self.netDT1, False)
314
  self.set_requires_grad(self.netDT2, False)
315
  self.netLine1 = networks.define_G(self.nc, self.nc, opt.ngf, opt.netG_line, opt.norm,
316
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p)
317
  self.netLine2 = networks.define_G(self.nc, self.nc, opt.ngf, opt.netG_line, opt.norm,
318
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids_p)
319
  self.set_requires_grad(self.netLine1, False)
320
  self.set_requires_grad(self.netLine2, False)
321
+
322
  # ==================================for test (nets loaded, parameters fixed)=============================
323
+ if not self.isTrain and self.opt.test_continuity_loss:
324
  self.nc = 1
325
  self.netRegressor = networks.define_G(self.nc, 1, opt.ngf, 'regressor', opt.norm,
326
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids,
327
+ nnG=opt.regarch)
328
  self.set_requires_grad(self.netRegressor, False)
 
329
 
330
  def set_input(self, input):
331
  AtoB = self.opt.which_direction == 'AtoB'
 
342
  self.real_B_eyer = input['eyer_B'].to(self.device)
343
  self.real_B_nose = input['nose_B'].to(self.device)
344
  self.real_B_mouth = input['mouth_B'].to(self.device)
345
+ if self.opt.region_enm in [0, 1]:
346
  self.center = input['center']
347
  if self.opt.soft_border:
348
  self.softel = input['soft_eyel_mask'].to(self.device)
 
351
  self.softmo = input['soft_mouth_mask'].to(self.device)
352
  if self.opt.compactmask:
353
  self.cmask = input['cmask'].to(self.device)
354
+ self.cmask1 = self.cmask * 2 - 1 # [0,1]->[-1,1]
355
  self.cmaskel = input['cmaskel'].to(self.device)
356
+ self.cmask1el = self.cmaskel * 2 - 1
357
  self.cmasker = input['cmasker'].to(self.device)
358
+ self.cmask1er = self.cmasker * 2 - 1
359
  self.cmaskmo = input['cmaskmo'].to(self.device)
360
+ self.cmask1mo = self.cmaskmo * 2 - 1
361
  self.real_A_hair = input['hair_A'].to(self.device)
362
  self.real_B_hair = input['hair_B'].to(self.device)
363
+ self.mask = input['mask'].to(self.device) # mask for non-eyes,nose,mouth
364
+ self.mask2 = input['mask2'].to(self.device) # mask for non-bg
365
  self.real_A_bg = input['bg_A'].to(self.device)
366
  self.real_B_bg = input['bg_B'].to(self.device)
367
  if (self.isTrain and self.opt.chamfer_loss):
 
369
  self.dt2gt = input['dt2gt'].to(self.device)
370
  if self.isTrain and self.opt.emphasis_conti_face:
371
  self.face_mask = input['face_mask'].cuda(self.gpu_ids_p[0])
372
+
373
+ def getonehot(self, outputs, classes):
374
+ [maxv, index] = torch.max(outputs, 1)
375
+ y = torch.unsqueeze(index, 1)
376
+ onehot = torch.FloatTensor(self.batch_size, classes).to(self.device)
377
  onehot.zero_()
378
+ onehot.scatter_(1, y, 1)
379
  return onehot
380
 
381
  def forward(self):
 
385
  self.fake_B0 = self.netG(self.real_A)
386
  # EYES, MOUTH
387
  outputs1 = self.netCLm(self.real_A_mouth)
388
+ onehot1 = self.getonehot(outputs1, 2)
389
 
390
  if not self.opt.others_ae:
391
  fake_B_eyel = self.netGLEyel(self.real_A_eyel)
392
  fake_B_eyer = self.netGLEyer(self.real_A_eyer)
393
  fake_B_mouth = self.netGLMouth(self.real_A_mouth)
394
+ else: # use AE that only constains compact region, need cmask!
395
  self.fake_B_eyel1 = self.netGLEyel(self.real_A_eyel)
396
  self.fake_B_eyer1 = self.netGLEyer(self.real_A_eyer)
397
  self.fake_B_mouth1 = self.netGLMouth(self.real_A_mouth)
398
+ self.fake_B_eyel2, _ = self.netAEel(self.fake_B_eyel1)
399
+ self.fake_B_eyer2, _ = self.netAEer(self.fake_B_eyer1)
400
  # USE 2 AEs
401
+ self.fake_B_mouth2 = torch.FloatTensor(self.batch_size, self.opt.output_nc, self.MOUTH_H,
402
+ self.MOUTH_W).to(self.device)
403
  for i in range(self.batch_size):
404
  if onehot1[i][0] == 1:
405
+ self.fake_B_mouth2[i], _ = self.netAEmowhite(self.fake_B_mouth1[i].unsqueeze(0))
406
+ # print('AEmowhite')
407
  elif onehot1[i][1] == 1:
408
+ self.fake_B_mouth2[i], _ = self.netAEmoblack(self.fake_B_mouth1[i].unsqueeze(0))
409
+ # print('AEmoblack')
410
+ fake_B_eyel = self.add_with_mask(self.fake_B_eyel2, self.fake_B_eyel1, self.cmaskel)
411
+ fake_B_eyer = self.add_with_mask(self.fake_B_eyer2, self.fake_B_eyer1, self.cmasker)
412
+ fake_B_mouth = self.add_with_mask(self.fake_B_mouth2, self.fake_B_mouth1, self.cmaskmo)
413
  # NOSE
414
  if not self.opt.nose_ae:
415
  fake_B_nose = self.netGLNose(self.real_A_nose)
416
+ else: # use AE that only constains compact region, need cmask!
417
  self.fake_B_nose1 = self.netGLNose(self.real_A_nose)
418
+ self.fake_B_nose2, _ = self.netAE(self.fake_B_nose1)
419
+ fake_B_nose = self.add_with_mask(self.fake_B_nose2, self.fake_B_nose1, self.cmask)
420
 
421
  # for visuals and later local loss
422
+ if self.opt.region_enm in [0, 1]:
423
  self.fake_B_nose = fake_B_nose
424
  self.fake_B_eyel = fake_B_eyel
425
  self.fake_B_eyer = fake_B_eyer
 
430
  self.fake_B_eyel = self.masked(fake_B_eyel, self.softel)
431
  self.fake_B_eyer = self.masked(fake_B_eyer, self.softer)
432
  self.fake_B_mouth = self.masked(fake_B_mouth, self.softmo)
433
+ elif self.opt.region_enm in [2]: # need to multiply cmask
434
+ self.fake_B_nose = self.masked(fake_B_nose, self.cmask)
435
+ self.fake_B_eyel = self.masked(fake_B_eyel, self.cmaskel)
436
+ self.fake_B_eyer = self.masked(fake_B_eyer, self.cmasker)
437
+ self.fake_B_mouth = self.masked(fake_B_mouth, self.cmaskmo)
438
+
439
  # HAIR, BG AND PARTCOMBINE
440
  outputs2 = self.netCLh(self.real_A_hair)
441
+ onehot2 = self.getonehot(outputs2, 3)
442
 
443
  if not self.isTrain:
444
  opt = self.opt
445
  if opt.imagefolder == 'images':
446
+ file_name = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch),
447
+ 'styleonehot.txt')
448
  else:
449
+ file_name = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch),
450
+ opt.imagefolder, 'styleonehot.txt')
451
+ message = '%s [%d %d] [%d %d %d]' % (self.image_paths[0], onehot1[0][0], onehot1[0][1],
452
+ onehot2[0][0], onehot2[0][1], onehot2[0][2])
453
  with open(file_name, 'a+') as s_file:
454
  s_file.write(message)
455
  s_file.write('\n')
456
 
457
+ fake_B_hair = self.netGLHair(self.real_A_hair, onehot2)
458
  fake_B_bg = self.netGLBG(self.real_A_bg)
459
+ self.fake_B_hair = self.masked(fake_B_hair, self.mask * self.mask2)
460
+ self.fake_B_bg = self.masked(fake_B_bg, self.inverse_mask(self.mask2))
461
  if not self.opt.compactmask:
462
+ self.fake_B1 = self.partCombiner2_bg(fake_B_eyel, fake_B_eyer, fake_B_nose, fake_B_mouth, fake_B_hair,
463
+ fake_B_bg, self.mask * self.mask2, self.inverse_mask(self.mask2),
464
+ self.opt.comb_op)
465
  else:
466
+ self.fake_B1 = self.partCombiner2_bg(fake_B_eyel, fake_B_eyer, fake_B_nose, fake_B_mouth, fake_B_hair,
467
+ fake_B_bg, self.mask * self.mask2, self.inverse_mask(self.mask2),
468
+ self.opt.comb_op, self.opt.region_enm, self.cmaskel, self.cmasker,
469
+ self.cmask, self.cmaskmo)
470
+
471
+ self.fake_B = self.netGCombine(torch.cat([self.fake_B0, self.fake_B1], 1))
472
 
473
  # for AE visuals
474
+ if self.opt.region_enm in [0, 1]:
475
  if self.opt.nose_ae:
476
  self.fake_B_nose_v = padpart(self.fake_B_nose, 'nose', self.center, self.opt, self.device)
477
  self.fake_B_nose_v1 = padpart(self.fake_B_nose1, 'nose', self.center, self.opt, self.device)
 
490
  self.fake_B_mouth_v1 = padpart(self.fake_B_mouth1, 'mouth', self.center, self.opt, self.device)
491
  self.fake_B_mouth_v2 = padpart(self.fake_B_mouth2, 'mouth', self.center, self.opt, self.device)
492
  self.cmask1mo = padpart(self.cmask1mo, 'mouth', self.center, self.opt, self.device)
493
+
494
  if not self.isTrain and self.opt.test_continuity_loss:
495
  self.ContinuityForTest(real=1)
496
+
 
497
  def backward_D(self):
498
  # Fake
499
  # stop backprop to the generator by detaching fake_B
500
  fake_AB = self.fake_AB_pool.query(torch.cat((self.real_A, self.fake_B), 1))
501
+ # print('fake_AB', fake_AB.shape) # (1,4,512,512)
502
+ pred_fake = self.netD(fake_AB.detach()) # by detach, not affect G's gradient
503
  self.loss_D_fake = self.criterionGAN(pred_fake, False)
504
  if self.opt.discriminator_local:
505
  fake_AB_parts = self.getLocalParts(fake_AB)
506
+ local_names = ['DLEyel', 'DLEyer', 'DLNose', 'DLMouth', 'DLHair', 'DLBG']
507
  self.loss_D_fake_local = 0
508
  for i in range(len(fake_AB_parts)):
509
  net = getattr(self, 'net' + local_names[i])
 
518
  self.loss_D_real = self.criterionGAN(pred_real, True)
519
  if self.opt.discriminator_local:
520
  real_AB_parts = self.getLocalParts(real_AB)
521
+ local_names = ['DLEyel', 'DLEyer', 'DLNose', 'DLMouth', 'DLHair', 'DLBG']
522
  self.loss_D_real_local = 0
523
  for i in range(len(real_AB_parts)):
524
  net = getattr(self, 'net' + local_names[i])
 
535
  def backward_G(self):
536
  # First, G(A) should fake the discriminator
537
  fake_AB = torch.cat((self.real_A, self.fake_B), 1)
538
+ pred_fake = self.netD(fake_AB) # (1,4,512,512)->(1,1,30,30)
539
  self.loss_G_GAN = self.criterionGAN(pred_fake, True)
540
  if self.opt.discriminator_local:
541
  fake_AB_parts = self.getLocalParts(fake_AB)
542
+ local_names = ['DLEyel', 'DLEyer', 'DLNose', 'DLMouth', 'DLHair', 'DLBG']
543
+ self.loss_G_GAN_local = 0 # G_GAN_local is then added into G_GAN
544
  for i in range(len(fake_AB_parts)):
545
  net = getattr(self, 'net' + local_names[i])
546
  pred_fake_tmp = net(fake_AB_parts[i])
 
555
  # Second, G(A) = B
556
  if not self.opt.no_l1_loss:
557
  self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1
558
+
559
  if self.opt.use_local and not self.opt.no_G_local_loss:
560
+ local_names = ['eyel', 'eyer', 'nose', 'mouth']
561
  self.loss_G_local = 0
562
  for i in range(len(local_names)):
563
  fakeblocal = getattr(self, 'fake_B_' + local_names[i])
564
  realblocal = getattr(self, 'real_B_' + local_names[i])
565
  addw = self.getaddw(local_names[i])
566
+ self.loss_G_local = self.loss_G_local + self.criterionL1(fakeblocal,
567
+ realblocal) * self.opt.lambda_local * addw
568
+ self.loss_G_hair_local = self.criterionL1(self.fake_B_hair,
569
+ self.real_B_hair) * self.opt.lambda_local * self.opt.addw_hair
570
+ self.loss_G_bg_local = self.criterionL1(self.fake_B_bg,
571
+ self.real_B_bg) * self.opt.lambda_local * self.opt.addw_bg
572
 
573
  # Third, chamfer matching (assume chamfer_2way and chamfer_only_line is true)
574
  if self.opt.chamfer_loss:
575
  if self.fake_B.shape[1] == 3:
576
+ tmp = self.fake_B[:, 0, ...] * 0.299 + self.fake_B[:, 1, ...] * 0.587 + self.fake_B[:, 2, ...] * 0.114
577
  fake_B_gray = tmp.unsqueeze(1)
578
  else:
579
  fake_B_gray = self.fake_B
580
  if self.real_B.shape[1] == 3:
581
+ tmp = self.real_B[:, 0, ...] * 0.299 + self.real_B[:, 1, ...] * 0.587 + self.real_B[:, 2, ...] * 0.114
582
  real_B_gray = tmp.unsqueeze(1)
583
  else:
584
  real_B_gray = self.real_B
585
+
586
  gpu_p = self.opt.gpu_ids_p[0]
587
  gpu = self.opt.gpu_ids[0]
588
  if gpu_p != gpu:
 
592
  # d_CM(a_i,G(p_i))
593
  self.dt1 = self.netDT1(fake_B_gray)
594
  self.dt2 = self.netDT2(fake_B_gray)
595
+ dt1 = self.dt1 / 2.0 + 0.5 # [-1,1]->[0,1]
596
+ dt2 = self.dt2 / 2.0 + 0.5
597
  if self.opt.dt_nonlinear != '':
598
  dt_xmax = torch.Tensor([self.opt.dt_xmax]).cuda(gpu_p)
599
  dt1 = nonlinearDt(dt1, self.opt.dt_nonlinear, dt_xmax)
600
  dt2 = nonlinearDt(dt2, self.opt.dt_nonlinear, dt_xmax)
601
+ # print('dt1dt2',torch.min(dt1).item(),torch.max(dt1).item(),torch.min(dt2).item(),torch.max(dt2).item())
602
+
603
  bs = real_B_gray.shape[0]
604
  real_B_gray_line1 = self.netLine1(real_B_gray)
605
  real_B_gray_line2 = self.netLine2(real_B_gray)
606
+ self.loss_G_chamfer = (dt1[(real_B_gray < 0) & (real_B_gray_line1 < 0)].sum() + dt2[
607
+ (real_B_gray >= 0) & (real_B_gray_line2 >= 0)].sum()) / bs * self.opt.lambda_chamfer
608
  if gpu_p != gpu:
609
+ self.loss_G_chamfer = self.loss_G_chamfer.cuda(gpu)
610
 
611
+ # d_CM(G(p_i),a_i)
612
  if gpu_p != gpu:
613
  dt1gt = self.dt1gt.cuda(gpu_p)
614
  dt2gt = self.dt2gt.cuda(gpu_p)
 
618
  if self.opt.dt_nonlinear != '':
619
  dt1gt = nonlinearDt(dt1gt, self.opt.dt_nonlinear, dt_xmax)
620
  dt2gt = nonlinearDt(dt2gt, self.opt.dt_nonlinear, dt_xmax)
621
+ # print('dt1gtdt2gt',torch.min(dt1gt).item(),torch.max(dt1gt).item(),torch.min(dt2gt).item(),torch.max(dt2gt).item())
622
+ self.dt1gt = (self.dt1gt - 0.5) * 2
623
+ self.dt2gt = (self.dt2gt - 0.5) * 2
624
 
625
  fake_B_gray_line1 = self.netLine1(fake_B_gray)
626
  fake_B_gray_line2 = self.netLine2(fake_B_gray)
627
+ self.loss_G_chamfer2 = (dt1gt[(fake_B_gray < 0) & (fake_B_gray_line1 < 0)].sum() + dt2gt[
628
+ (fake_B_gray >= 0) & (fake_B_gray_line2 >= 0)].sum()) / bs * self.opt.lambda_chamfer2
629
  if gpu_p != gpu:
630
  self.loss_G_chamfer2 = self.loss_G_chamfer2.cuda(gpu)
631
 
 
635
  self.get_patches()
636
  self.outputs = self.netRegressor(self.fake_B_patches)
637
  if not self.opt.emphasis_conti_face:
638
+ self.loss_G_continuity = (1.0 - torch.mean(self.outputs)).cuda(gpu) * self.opt.lambda_continuity
639
  else:
640
+ self.loss_G_continuity = torch.mean((1.0 - self.outputs) * self.conti_weights).cuda(
641
+ gpu) * self.opt.lambda_continuity
 
642
 
643
  self.loss_G = self.loss_G_GAN
644
  if 'G_L1' in self.loss_names:
 
662
  self.forward()
663
  # update D
664
  self.set_requires_grad(self.netD, True)
665
+
666
  if self.opt.discriminator_local:
667
  self.set_requires_grad(self.netDLEyel, True)
668
  self.set_requires_grad(self.netDLEyer, True)
 
696
  patches = []
697
  if self.isTrain and self.opt.emphasis_conti_face:
698
  weights = []
699
+ W2 = int(W / 2)
700
+ t = np.random.randint(res, size=2)
701
  for i in range(aa):
702
  for j in range(aa):
703
+ p = self.fake_B[:, :, t[0] + i * W:t[0] + (i + 1) * W, t[1] + j * W:t[1] + (j + 1) * W]
704
+ whitenum = torch.sum(p >= 0.0)
705
+ # if whitenum < 5 or whitenum > W*W-5:
706
+ if whitenum < 1 or whitenum > W * W - 1:
707
  continue
708
  patches.append(p)
709
  if self.isTrain and self.opt.emphasis_conti_face:
710
+ weights.append(self.face_mask[:, :, t[0] + i * W + W2, t[1] + j * W + W2])
711
  self.fake_B_patches = torch.cat(patches, dim=0)
712
  if self.isTrain and self.opt.emphasis_conti_face:
713
+ self.conti_weights = torch.cat(weights, dim=0) + 1 # 0->1,1->2
714
+
715
  def get_patches_real(self):
716
  # [1,1,512,512]->[bs,1,11,11]
717
  patches = []
718
+ t = np.random.randint(res, size=2)
719
  for i in range(aa):
720
  for j in range(aa):
721
+ p = self.real_B[:, :, t[0] + i * W:t[0] + (i + 1) * W, t[1] + j * W:t[1] + (j + 1) * W]
722
+ whitenum = torch.sum(p >= 0.0)
723
+ # if whitenum < 5 or whitenum > W*W-5:
724
+ if whitenum < 1 or whitenum > W * W - 1:
725
  continue
726
  patches.append(p)
727
  self.real_B_patches = torch.cat(patches, dim=0)
APDrawingGAN2/models/base_model.py CHANGED
@@ -20,8 +20,8 @@ class BaseModel():
20
  self.gpu_ids = opt.gpu_ids
21
  self.gpu_ids_p = opt.gpu_ids_p
22
  self.isTrain = opt.isTrain
23
- self.device = torch.device('cpu')
24
- self.device_p = torch.device('cpu')
25
  self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
26
  self.auxiliary_dir = os.path.join(opt.checkpoints_dir, opt.auxiliary_root)
27
  if opt.resize_or_crop != 'scale_width':
@@ -105,7 +105,7 @@ class BaseModel():
105
  net.cuda(self.gpu_ids[0])
106
  else:
107
  torch.save(net.cpu().state_dict(), save_path)
108
-
109
  def save_networks2(self, which_epoch):
110
  gen_name = os.path.join(self.save_dir, '%s_net_gen.pt' % (which_epoch))
111
  dis_name = os.path.join(self.save_dir, '%s_net_dis.pt' % (which_epoch))
@@ -120,7 +120,7 @@ class BaseModel():
120
  net.cuda(self.gpu_ids[0])
121
  else:
122
  state_dict = net.cpu().state_dict()
123
-
124
  if name[0] == 'G':
125
  dict_gen[name] = state_dict
126
  elif name[0] == 'D':
@@ -142,7 +142,7 @@ class BaseModel():
142
  if getattr(module, key) is None:
143
  state_dict.pop('.'.join(keys))
144
  if module.__class__.__name__.startswith('InstanceNorm') and \
145
- (key == 'num_batches_tracked'):
146
  state_dict.pop('.'.join(keys))
147
  else:
148
  self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
@@ -171,7 +171,7 @@ class BaseModel():
171
  for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
172
  self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
173
  net.load_state_dict(state_dict)
174
-
175
  def load_networks2(self, which_epoch):
176
  gen_name = os.path.join(self.save_dir, '%s_net_gen.pt' % (which_epoch))
177
  gen_state_dict = torch.load(gen_name, map_location=str(self.device))
@@ -184,19 +184,19 @@ class BaseModel():
184
  if isinstance(net, torch.nn.DataParallel):
185
  net = net.module
186
  if name[0] == 'G':
187
- print('loading the model %s from %s' % (name,gen_name))
188
  state_dict = gen_state_dict[name]
189
  elif name[0] == 'D':
190
- print('loading the model %s from %s' % (name,gen_name))
191
  state_dict = dis_state_dict[name]
192
-
193
  if hasattr(state_dict, '_metadata'):
194
  del state_dict._metadata
195
  # patch InstanceNorm checkpoints prior to 0.4
196
  for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
197
  self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
198
  net.load_state_dict(state_dict)
199
-
200
  # load auxiliary net models from the disk
201
  def load_auxiliary_networks(self):
202
  for name in self.auxiliary_model_names:
@@ -214,7 +214,8 @@ class BaseModel():
214
  print('loading the model from %s' % load_path)
215
  # if you are using PyTorch newer than 0.4 (e.g., built from
216
  # GitHub source), you can remove str() on self.device
217
- if name in ['DT1', 'DT2', 'Line1', 'Line2', 'Continuity1', 'Continuity2', 'Regressor', 'Regressorhair', 'Regressorface']:
 
218
  state_dict = torch.load(load_path, map_location=str(self.device_p))
219
  else:
220
  state_dict = torch.load(load_path, map_location=str(self.device))
@@ -251,18 +252,19 @@ class BaseModel():
251
 
252
  # =============================================================================================================
253
  def inverse_mask(self, mask):
254
- return torch.ones(mask.shape).to(self.device)-mask
255
-
256
- def masked(self, A,mask):
257
- return (A/2+0.5)*mask*2-1
258
-
259
- def add_with_mask(self, A,B,mask):
260
- return ((A/2+0.5)*mask+(B/2+0.5)*(torch.ones(mask.shape).to(self.device)-mask))*2-1
261
-
262
- def addone_with_mask(self, A,mask):
263
- return ((A/2+0.5)*mask+(torch.ones(mask.shape).to(self.device)-mask))*2-1
264
-
265
- def partCombiner(self, eyel, eyer, nose, mouth, average_pos=False, comb_op = 1, region_enm = 0, cmaskel = None, cmasker = None, cmaskno = None, cmaskmo = None):
 
266
  '''
267
  x y
268
  100.571 123.429
@@ -276,7 +278,7 @@ class BaseModel():
276
  if comb_op == 0:
277
  # use max pooling, pad black for eyes etc
278
  padvalue = -1
279
- if region_enm in [1,2]:
280
  eyel = eyel * cmaskel
281
  eyer = eyer * cmasker
282
  nose = nose * cmaskno
@@ -284,12 +286,12 @@ class BaseModel():
284
  else:
285
  # use min pooling, pad white for eyes etc
286
  padvalue = 1
287
- if region_enm in [1,2]:
288
  eyel = self.addone_with_mask(eyel, cmaskel)
289
  eyer = self.addone_with_mask(eyer, cmasker)
290
  nose = self.addone_with_mask(nose, cmaskno)
291
  mouth = self.addone_with_mask(mouth, cmaskmo)
292
- if region_enm in [0,1]: # need to pad
293
  IMAGE_SIZE = self.opt.fineSize
294
  ratio = IMAGE_SIZE / 256
295
  EYE_W = self.opt.EYE_W * ratio
@@ -298,20 +300,32 @@ class BaseModel():
298
  NOSE_H = self.opt.NOSE_H * ratio
299
  MOUTH_W = self.opt.MOUTH_W * ratio
300
  MOUTH_H = self.opt.MOUTH_H * ratio
301
- bs,nc,_,_ = eyel.shape
302
- eyel_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
303
- eyer_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
304
- nose_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
305
- mouth_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
306
  for i in range(bs):
307
  if not average_pos:
308
- center = self.center[i]#x,y
309
- else:# if average_pos = True
310
- center = torch.tensor([[101,123-4],[155,123-4],[128,156-NOSE_H/2+16],[128,185]])
311
- eyel_p[i] = torch.nn.ConstantPad2d((int(center[0,0] - EYE_W / 2 - 1), int(IMAGE_SIZE - (center[0,0]+EYE_W/2-1)), int(center[0,1] - EYE_H / 2 - 1),int(IMAGE_SIZE - (center[0,1]+EYE_H/2 - 1))),-1)(eyel[i])
312
- eyer_p[i] = torch.nn.ConstantPad2d((int(center[1,0] - EYE_W / 2 - 1), int(IMAGE_SIZE - (center[1,0]+EYE_W/2-1)), int(center[1,1] - EYE_H / 2 - 1), int(IMAGE_SIZE - (center[1,1]+EYE_H/2 - 1))),-1)(eyer[i])
313
- nose_p[i] = torch.nn.ConstantPad2d((int(center[2,0] - NOSE_W / 2 - 1), int(IMAGE_SIZE - (center[2,0]+NOSE_W/2-1)), int(center[2,1] - NOSE_H / 2 - 1), int(IMAGE_SIZE - (center[2,1]+NOSE_H/2 - 1))),-1)(nose[i])
314
- mouth_p[i] = torch.nn.ConstantPad2d((int(center[3,0] - MOUTH_W / 2 - 1), int(IMAGE_SIZE - (center[3,0]+MOUTH_W/2-1)), int(center[3,1] - MOUTH_H / 2 - 1), int(IMAGE_SIZE - (center[3,1]+MOUTH_H/2 - 1))),-1)(mouth[i])
 
 
 
 
 
 
 
 
 
 
 
 
315
  elif region_enm in [2]:
316
  eyel_p = eyel
317
  eyer_p = eyer
@@ -328,13 +342,14 @@ class BaseModel():
328
  eye_nose = torch.min(eyes, nose_p)
329
  result = torch.min(eye_nose, mouth_p)
330
  return result
331
-
332
- def partCombiner2(self, eyel, eyer, nose, mouth, hair, mask, comb_op = 1, region_enm = 0, cmaskel = None, cmasker = None, cmaskno = None, cmaskmo = None):
 
333
  if comb_op == 0:
334
  # use max pooling, pad black for eyes etc
335
  padvalue = -1
336
  hair = self.masked(hair, mask)
337
- if region_enm in [1,2]:
338
  eyel = eyel * cmaskel
339
  eyer = eyer * cmasker
340
  nose = nose * cmaskno
@@ -343,12 +358,12 @@ class BaseModel():
343
  # use min pooling, pad white for eyes etc
344
  padvalue = 1
345
  hair = self.addone_with_mask(hair, mask)
346
- if region_enm in [1,2]:
347
  eyel = self.addone_with_mask(eyel, cmaskel)
348
  eyer = self.addone_with_mask(eyer, cmasker)
349
  nose = self.addone_with_mask(nose, cmaskno)
350
  mouth = self.addone_with_mask(mouth, cmaskmo)
351
- if region_enm in [0,1]: # need to pad
352
  IMAGE_SIZE = self.opt.fineSize
353
  ratio = IMAGE_SIZE / 256
354
  EYE_W = self.opt.EYE_W * ratio
@@ -357,17 +372,26 @@ class BaseModel():
357
  NOSE_H = self.opt.NOSE_H * ratio
358
  MOUTH_W = self.opt.MOUTH_W * ratio
359
  MOUTH_H = self.opt.MOUTH_H * ratio
360
- bs,nc,_,_ = eyel.shape
361
- eyel_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
362
- eyer_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
363
- nose_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
364
- mouth_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
365
  for i in range(bs):
366
- center = self.center[i]#x,y
367
- eyel_p[i] = torch.nn.ConstantPad2d((center[0,0] - EYE_W / 2, IMAGE_SIZE - (center[0,0]+EYE_W/2), center[0,1] - EYE_H / 2, IMAGE_SIZE - (center[0,1]+EYE_H/2)),padvalue)(eyel[i])
368
- eyer_p[i] = torch.nn.ConstantPad2d((center[1,0] - EYE_W / 2, IMAGE_SIZE - (center[1,0]+EYE_W/2), center[1,1] - EYE_H / 2, IMAGE_SIZE - (center[1,1]+EYE_H/2)),padvalue)(eyer[i])
369
- nose_p[i] = torch.nn.ConstantPad2d((center[2,0] - NOSE_W / 2, IMAGE_SIZE - (center[2,0]+NOSE_W/2), center[2,1] - NOSE_H / 2, IMAGE_SIZE - (center[2,1]+NOSE_H/2)),padvalue)(nose[i])
370
- mouth_p[i] = torch.nn.ConstantPad2d((center[3,0] - MOUTH_W / 2, IMAGE_SIZE - (center[3,0]+MOUTH_W/2), center[3,1] - MOUTH_H / 2, IMAGE_SIZE - (center[3,1]+MOUTH_H/2)),padvalue)(mouth[i])
 
 
 
 
 
 
 
 
 
371
  elif region_enm in [2]:
372
  eyel_p = eyel
373
  eyer_p = eyer
@@ -378,22 +402,23 @@ class BaseModel():
378
  eyes = torch.max(eyel_p, eyer_p)
379
  eye_nose = torch.max(eyes, nose_p)
380
  eye_nose_mouth = torch.max(eye_nose, mouth_p)
381
- result = torch.max(hair,eye_nose_mouth)
382
  else:
383
  # use min pooling
384
  eyes = torch.min(eyel_p, eyer_p)
385
  eye_nose = torch.min(eyes, nose_p)
386
  eye_nose_mouth = torch.min(eye_nose, mouth_p)
387
- result = torch.min(hair,eye_nose_mouth)
388
  return result
389
-
390
- def partCombiner2_bg(self, eyel, eyer, nose, mouth, hair, bg, maskh, maskb, comb_op = 1, region_enm = 0, cmaskel = None, cmasker = None, cmaskno = None, cmaskmo = None):
 
391
  if comb_op == 0:
392
  # use max pooling, pad black for eyes etc
393
  padvalue = -1
394
  hair = self.masked(hair, maskh)
395
  bg = self.masked(bg, maskb)
396
- if region_enm in [1,2]:
397
  eyel = eyel * cmaskel
398
  eyer = eyer * cmasker
399
  nose = nose * cmaskno
@@ -403,12 +428,12 @@ class BaseModel():
403
  padvalue = 1
404
  hair = self.addone_with_mask(hair, maskh)
405
  bg = self.addone_with_mask(bg, maskb)
406
- if region_enm in [1,2]:
407
  eyel = self.addone_with_mask(eyel, cmaskel)
408
  eyer = self.addone_with_mask(eyer, cmasker)
409
  nose = self.addone_with_mask(nose, cmaskno)
410
  mouth = self.addone_with_mask(mouth, cmaskmo)
411
- if region_enm in [0,1]: # need to pad to full size
412
  IMAGE_SIZE = self.opt.fineSize
413
  ratio = IMAGE_SIZE / 256
414
  EYE_W = self.opt.EYE_W * ratio
@@ -417,17 +442,29 @@ class BaseModel():
417
  NOSE_H = self.opt.NOSE_H * ratio
418
  MOUTH_W = self.opt.MOUTH_W * ratio
419
  MOUTH_H = self.opt.MOUTH_H * ratio
420
- bs,nc,_,_ = eyel.shape
421
- eyel_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
422
- eyer_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
423
- nose_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
424
- mouth_p = torch.ones((bs,nc,IMAGE_SIZE,IMAGE_SIZE)).to(self.device)
425
  for i in range(bs):
426
- center = self.center[i]#x,y
427
- eyel_p[i] = torch.nn.ConstantPad2d((center[0,0] - EYE_W / 2, IMAGE_SIZE - (center[0,0]+EYE_W/2), center[0,1] - EYE_H / 2, IMAGE_SIZE - (center[0,1]+EYE_H/2)),padvalue)(eyel[i])
428
- eyer_p[i] = torch.nn.ConstantPad2d((center[1,0] - EYE_W / 2, IMAGE_SIZE - (center[1,0]+EYE_W/2), center[1,1] - EYE_H / 2, IMAGE_SIZE - (center[1,1]+EYE_H/2)),padvalue)(eyer[i])
429
- nose_p[i] = torch.nn.ConstantPad2d((center[2,0] - NOSE_W / 2, IMAGE_SIZE - (center[2,0]+NOSE_W/2), center[2,1] - NOSE_H / 2, IMAGE_SIZE - (center[2,1]+NOSE_H/2)),padvalue)(nose[i])
430
- mouth_p[i] = torch.nn.ConstantPad2d((center[3,0] - MOUTH_W / 2, IMAGE_SIZE - (center[3,0]+MOUTH_W/2), center[3,1] - MOUTH_H / 2, IMAGE_SIZE - (center[3,1]+MOUTH_H/2)),padvalue)(mouth[i])
 
 
 
 
 
 
 
 
 
 
 
 
431
  elif region_enm in [2]:
432
  eyel_p = eyel
433
  eyer_p = eyer
@@ -437,17 +474,17 @@ class BaseModel():
437
  eyes = torch.max(eyel_p, eyer_p)
438
  eye_nose = torch.max(eyes, nose_p)
439
  eye_nose_mouth = torch.max(eye_nose, mouth_p)
440
- eye_nose_mouth_hair = torch.max(hair,eye_nose_mouth)
441
- result = torch.max(bg,eye_nose_mouth_hair)
442
  else:
443
  eyes = torch.min(eyel_p, eyer_p)
444
  eye_nose = torch.min(eyes, nose_p)
445
  eye_nose_mouth = torch.min(eye_nose, mouth_p)
446
- eye_nose_mouth_hair = torch.min(hair,eye_nose_mouth)
447
- result = torch.min(bg,eye_nose_mouth_hair)
448
  return result
449
-
450
- def partCombiner3(self, face, hair, maskf, maskh, comb_op = 1):
451
  if comb_op == 0:
452
  # use max pooling, pad black etc
453
  padvalue = -1
@@ -459,27 +496,25 @@ class BaseModel():
459
  face = self.addone_with_mask(face, maskf)
460
  hair = self.addone_with_mask(hair, maskh)
461
  if comb_op == 0:
462
- result = torch.max(face,hair)
463
  else:
464
- result = torch.min(face,hair)
465
  return result
466
 
467
-
468
  def tocv2(ts):
469
- img = (ts.numpy()/2+0.5)*255
470
  img = img.astype('uint8')
471
- img = np.transpose(img,(1,2,0))
472
- img = img[:,:,::-1]#rgb->bgr
473
  return img
474
-
475
  def totor(img):
476
- img = img[:,:,::-1]
477
  tor = transforms.ToTensor()(img)
478
  tor = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(tor)
479
  return tor
480
-
481
-
482
- def ContinuityForTest(self, real = 0):
483
  # Patch-based
484
  self.get_patches()
485
  self.outputs = self.netRegressor(self.fake_B_patches)
@@ -494,16 +529,17 @@ class BaseModel():
494
  self.get_patches_real()
495
  self.outputs2 = self.netRegressor(self.real_B_patches)
496
  line_continuity2 = torch.mean(self.outputs2)
497
- file_name = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch), 'continuity-r.txt')
 
498
  message = '%s %.04f' % (self.image_paths[0], line_continuity2)
499
  with open(file_name, 'a+') as c_file:
500
  c_file.write(message)
501
  c_file.write('\n')
502
-
503
- def getLocalParts(self,fakeAB):
504
- bs,nc,_,_ = fakeAB.shape #dtype torch.float32
505
  ncr = int(nc / self.opt.output_nc)
506
- if self.opt.region_enm in [0,1]:
507
  ratio = self.opt.fineSize / 256
508
  EYE_H = self.opt.EYE_H * ratio
509
  EYE_W = self.opt.EYE_W * ratio
@@ -511,28 +547,32 @@ class BaseModel():
511
  NOSE_W = self.opt.NOSE_W * ratio
512
  MOUTH_H = self.opt.MOUTH_H * ratio
513
  MOUTH_W = self.opt.MOUTH_W * ratio
514
- eyel = torch.ones((bs,nc,int(EYE_H),int(EYE_W))).to(self.device)
515
- eyer = torch.ones((bs,nc,int(EYE_H),int(EYE_W))).to(self.device)
516
- nose = torch.ones((bs,nc,int(NOSE_H),int(NOSE_W))).to(self.device)
517
- mouth = torch.ones((bs,nc,int(MOUTH_H),int(MOUTH_W))).to(self.device)
518
  for i in range(bs):
519
  center = self.center[i]
520
- eyel[i] = fakeAB[i,:,center[0,1]-EYE_H/2:center[0,1]+EYE_H/2,center[0,0]-EYE_W/2:center[0,0]+EYE_W/2]
521
- eyer[i] = fakeAB[i,:,center[1,1]-EYE_H/2:center[1,1]+EYE_H/2,center[1,0]-EYE_W/2:center[1,0]+EYE_W/2]
522
- nose[i] = fakeAB[i,:,center[2,1]-NOSE_H/2:center[2,1]+NOSE_H/2,center[2,0]-NOSE_W/2:center[2,0]+NOSE_W/2]
523
- mouth[i] = fakeAB[i,:,center[3,1]-MOUTH_H/2:center[3,1]+MOUTH_H/2,center[3,0]-MOUTH_W/2:center[3,0]+MOUTH_W/2]
 
 
 
 
524
  elif self.opt.region_enm in [2]:
525
- eyel = (fakeAB/2+0.5) * self.cmaskel.repeat(1,ncr,1,1) * 2 - 1
526
- eyer = (fakeAB/2+0.5) * self.cmasker.repeat(1,ncr,1,1) * 2 - 1
527
- nose = (fakeAB/2+0.5) * self.cmask.repeat(1,ncr,1,1) * 2 - 1
528
- mouth = (fakeAB/2+0.5) * self.cmaskmo.repeat(1,ncr,1,1) * 2 - 1
529
- hair = (fakeAB/2+0.5) * self.mask.repeat(1,ncr,1,1) * self.mask2.repeat(1,ncr,1,1) * 2 - 1
530
- bg = (fakeAB/2+0.5) * (torch.ones(fakeAB.shape).to(self.device)-self.mask2.repeat(1,ncr,1,1)) * 2 - 1
531
  return eyel, eyer, nose, mouth, hair, bg
532
-
533
- def getaddw(self,local_name):
534
  addw = 1
535
- if local_name in ['DLEyel','DLEyer','eyel','eyer','DLFace','face']:
536
  addw = self.opt.addw_eye
537
  elif local_name in ['DLNose', 'nose']:
538
  addw = self.opt.addw_nose
 
20
  self.gpu_ids = opt.gpu_ids
21
  self.gpu_ids_p = opt.gpu_ids_p
22
  self.isTrain = opt.isTrain
23
+ self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
24
+ self.device_p = torch.device('cuda:{}'.format(self.gpu_ids_p[0])) if self.gpu_ids else torch.device('cpu')
25
  self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
26
  self.auxiliary_dir = os.path.join(opt.checkpoints_dir, opt.auxiliary_root)
27
  if opt.resize_or_crop != 'scale_width':
 
105
  net.cuda(self.gpu_ids[0])
106
  else:
107
  torch.save(net.cpu().state_dict(), save_path)
108
+
109
  def save_networks2(self, which_epoch):
110
  gen_name = os.path.join(self.save_dir, '%s_net_gen.pt' % (which_epoch))
111
  dis_name = os.path.join(self.save_dir, '%s_net_dis.pt' % (which_epoch))
 
120
  net.cuda(self.gpu_ids[0])
121
  else:
122
  state_dict = net.cpu().state_dict()
123
+
124
  if name[0] == 'G':
125
  dict_gen[name] = state_dict
126
  elif name[0] == 'D':
 
142
  if getattr(module, key) is None:
143
  state_dict.pop('.'.join(keys))
144
  if module.__class__.__name__.startswith('InstanceNorm') and \
145
+ (key == 'num_batches_tracked'):
146
  state_dict.pop('.'.join(keys))
147
  else:
148
  self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
 
171
  for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
172
  self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
173
  net.load_state_dict(state_dict)
174
+
175
  def load_networks2(self, which_epoch):
176
  gen_name = os.path.join(self.save_dir, '%s_net_gen.pt' % (which_epoch))
177
  gen_state_dict = torch.load(gen_name, map_location=str(self.device))
 
184
  if isinstance(net, torch.nn.DataParallel):
185
  net = net.module
186
  if name[0] == 'G':
187
+ print('loading the model %s from %s' % (name, gen_name))
188
  state_dict = gen_state_dict[name]
189
  elif name[0] == 'D':
190
+ print('loading the model %s from %s' % (name, gen_name))
191
  state_dict = dis_state_dict[name]
192
+
193
  if hasattr(state_dict, '_metadata'):
194
  del state_dict._metadata
195
  # patch InstanceNorm checkpoints prior to 0.4
196
  for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
197
  self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
198
  net.load_state_dict(state_dict)
199
+
200
  # load auxiliary net models from the disk
201
  def load_auxiliary_networks(self):
202
  for name in self.auxiliary_model_names:
 
214
  print('loading the model from %s' % load_path)
215
  # if you are using PyTorch newer than 0.4 (e.g., built from
216
  # GitHub source), you can remove str() on self.device
217
+ if name in ['DT1', 'DT2', 'Line1', 'Line2', 'Continuity1', 'Continuity2', 'Regressor', 'Regressorhair',
218
+ 'Regressorface']:
219
  state_dict = torch.load(load_path, map_location=str(self.device_p))
220
  else:
221
  state_dict = torch.load(load_path, map_location=str(self.device))
 
252
 
253
  # =============================================================================================================
254
  def inverse_mask(self, mask):
255
+ return torch.ones(mask.shape).to(self.device) - mask
256
+
257
+ def masked(self, A, mask):
258
+ return (A / 2 + 0.5) * mask * 2 - 1
259
+
260
+ def add_with_mask(self, A, B, mask):
261
+ return ((A / 2 + 0.5) * mask + (B / 2 + 0.5) * (torch.ones(mask.shape).to(self.device) - mask)) * 2 - 1
262
+
263
+ def addone_with_mask(self, A, mask):
264
+ return ((A / 2 + 0.5) * mask + (torch.ones(mask.shape).to(self.device) - mask)) * 2 - 1
265
+
266
+ def partCombiner(self, eyel, eyer, nose, mouth, average_pos=False, comb_op=1, region_enm=0, cmaskel=None,
267
+ cmasker=None, cmaskno=None, cmaskmo=None):
268
  '''
269
  x y
270
  100.571 123.429
 
278
  if comb_op == 0:
279
  # use max pooling, pad black for eyes etc
280
  padvalue = -1
281
+ if region_enm in [1, 2]:
282
  eyel = eyel * cmaskel
283
  eyer = eyer * cmasker
284
  nose = nose * cmaskno
 
286
  else:
287
  # use min pooling, pad white for eyes etc
288
  padvalue = 1
289
+ if region_enm in [1, 2]:
290
  eyel = self.addone_with_mask(eyel, cmaskel)
291
  eyer = self.addone_with_mask(eyer, cmasker)
292
  nose = self.addone_with_mask(nose, cmaskno)
293
  mouth = self.addone_with_mask(mouth, cmaskmo)
294
+ if region_enm in [0, 1]: # need to pad
295
  IMAGE_SIZE = self.opt.fineSize
296
  ratio = IMAGE_SIZE / 256
297
  EYE_W = self.opt.EYE_W * ratio
 
300
  NOSE_H = self.opt.NOSE_H * ratio
301
  MOUTH_W = self.opt.MOUTH_W * ratio
302
  MOUTH_H = self.opt.MOUTH_H * ratio
303
+ bs, nc, _, _ = eyel.shape
304
+ eyel_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
305
+ eyer_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
306
+ nose_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
307
+ mouth_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
308
  for i in range(bs):
309
  if not average_pos:
310
+ center = self.center[i] # x,y
311
+ else: # if average_pos = True
312
+ center = torch.tensor([[101, 123 - 4], [155, 123 - 4], [128, 156 - NOSE_H / 2 + 16], [128, 185]])
313
+ eyel_p[i] = torch.nn.ConstantPad2d((int(center[0, 0] - EYE_W / 2 - 1),
314
+ int(IMAGE_SIZE - (center[0, 0] + EYE_W / 2 - 1)),
315
+ int(center[0, 1] - EYE_H / 2 - 1),
316
+ int(IMAGE_SIZE - (center[0, 1] + EYE_H / 2 - 1))), -1)(eyel[i])
317
+ eyer_p[i] = torch.nn.ConstantPad2d((int(center[1, 0] - EYE_W / 2 - 1),
318
+ int(IMAGE_SIZE - (center[1, 0] + EYE_W / 2 - 1)),
319
+ int(center[1, 1] - EYE_H / 2 - 1),
320
+ int(IMAGE_SIZE - (center[1, 1] + EYE_H / 2 - 1))), -1)(eyer[i])
321
+ nose_p[i] = torch.nn.ConstantPad2d((int(center[2, 0] - NOSE_W / 2 - 1),
322
+ int(IMAGE_SIZE - (center[2, 0] + NOSE_W / 2 - 1)),
323
+ int(center[2, 1] - NOSE_H / 2 - 1),
324
+ int(IMAGE_SIZE - (center[2, 1] + NOSE_H / 2 - 1))), -1)(nose[i])
325
+ mouth_p[i] = torch.nn.ConstantPad2d((int(center[3, 0] - MOUTH_W / 2 - 1),
326
+ int(IMAGE_SIZE - (center[3, 0] + MOUTH_W / 2 - 1)),
327
+ int(center[3, 1] - MOUTH_H / 2 - 1),
328
+ int(IMAGE_SIZE - (center[3, 1] + MOUTH_H / 2 - 1))), -1)(mouth[i])
329
  elif region_enm in [2]:
330
  eyel_p = eyel
331
  eyer_p = eyer
 
342
  eye_nose = torch.min(eyes, nose_p)
343
  result = torch.min(eye_nose, mouth_p)
344
  return result
345
+
346
+ def partCombiner2(self, eyel, eyer, nose, mouth, hair, mask, comb_op=1, region_enm=0, cmaskel=None, cmasker=None,
347
+ cmaskno=None, cmaskmo=None):
348
  if comb_op == 0:
349
  # use max pooling, pad black for eyes etc
350
  padvalue = -1
351
  hair = self.masked(hair, mask)
352
+ if region_enm in [1, 2]:
353
  eyel = eyel * cmaskel
354
  eyer = eyer * cmasker
355
  nose = nose * cmaskno
 
358
  # use min pooling, pad white for eyes etc
359
  padvalue = 1
360
  hair = self.addone_with_mask(hair, mask)
361
+ if region_enm in [1, 2]:
362
  eyel = self.addone_with_mask(eyel, cmaskel)
363
  eyer = self.addone_with_mask(eyer, cmasker)
364
  nose = self.addone_with_mask(nose, cmaskno)
365
  mouth = self.addone_with_mask(mouth, cmaskmo)
366
+ if region_enm in [0, 1]: # need to pad
367
  IMAGE_SIZE = self.opt.fineSize
368
  ratio = IMAGE_SIZE / 256
369
  EYE_W = self.opt.EYE_W * ratio
 
372
  NOSE_H = self.opt.NOSE_H * ratio
373
  MOUTH_W = self.opt.MOUTH_W * ratio
374
  MOUTH_H = self.opt.MOUTH_H * ratio
375
+ bs, nc, _, _ = eyel.shape
376
+ eyel_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
377
+ eyer_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
378
+ nose_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
379
+ mouth_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
380
  for i in range(bs):
381
+ center = self.center[i] # x,y
382
+ eyel_p[i] = torch.nn.ConstantPad2d((center[0, 0] - EYE_W / 2, IMAGE_SIZE - (center[0, 0] + EYE_W / 2),
383
+ center[0, 1] - EYE_H / 2, IMAGE_SIZE - (center[0, 1] + EYE_H / 2)),
384
+ padvalue)(eyel[i])
385
+ eyer_p[i] = torch.nn.ConstantPad2d((center[1, 0] - EYE_W / 2, IMAGE_SIZE - (center[1, 0] + EYE_W / 2),
386
+ center[1, 1] - EYE_H / 2, IMAGE_SIZE - (center[1, 1] + EYE_H / 2)),
387
+ padvalue)(eyer[i])
388
+ nose_p[i] = torch.nn.ConstantPad2d((center[2, 0] - NOSE_W / 2, IMAGE_SIZE - (center[2, 0] + NOSE_W / 2),
389
+ center[2, 1] - NOSE_H / 2,
390
+ IMAGE_SIZE - (center[2, 1] + NOSE_H / 2)), padvalue)(nose[i])
391
+ mouth_p[i] = torch.nn.ConstantPad2d((center[3, 0] - MOUTH_W / 2,
392
+ IMAGE_SIZE - (center[3, 0] + MOUTH_W / 2),
393
+ center[3, 1] - MOUTH_H / 2,
394
+ IMAGE_SIZE - (center[3, 1] + MOUTH_H / 2)), padvalue)(mouth[i])
395
  elif region_enm in [2]:
396
  eyel_p = eyel
397
  eyer_p = eyer
 
402
  eyes = torch.max(eyel_p, eyer_p)
403
  eye_nose = torch.max(eyes, nose_p)
404
  eye_nose_mouth = torch.max(eye_nose, mouth_p)
405
+ result = torch.max(hair, eye_nose_mouth)
406
  else:
407
  # use min pooling
408
  eyes = torch.min(eyel_p, eyer_p)
409
  eye_nose = torch.min(eyes, nose_p)
410
  eye_nose_mouth = torch.min(eye_nose, mouth_p)
411
+ result = torch.min(hair, eye_nose_mouth)
412
  return result
413
+
414
+ def partCombiner2_bg(self, eyel, eyer, nose, mouth, hair, bg, maskh, maskb, comb_op=1, region_enm=0, cmaskel=None,
415
+ cmasker=None, cmaskno=None, cmaskmo=None):
416
  if comb_op == 0:
417
  # use max pooling, pad black for eyes etc
418
  padvalue = -1
419
  hair = self.masked(hair, maskh)
420
  bg = self.masked(bg, maskb)
421
+ if region_enm in [1, 2]:
422
  eyel = eyel * cmaskel
423
  eyer = eyer * cmasker
424
  nose = nose * cmaskno
 
428
  padvalue = 1
429
  hair = self.addone_with_mask(hair, maskh)
430
  bg = self.addone_with_mask(bg, maskb)
431
+ if region_enm in [1, 2]:
432
  eyel = self.addone_with_mask(eyel, cmaskel)
433
  eyer = self.addone_with_mask(eyer, cmasker)
434
  nose = self.addone_with_mask(nose, cmaskno)
435
  mouth = self.addone_with_mask(mouth, cmaskmo)
436
+ if region_enm in [0, 1]: # need to pad to full size
437
  IMAGE_SIZE = self.opt.fineSize
438
  ratio = IMAGE_SIZE / 256
439
  EYE_W = self.opt.EYE_W * ratio
 
442
  NOSE_H = self.opt.NOSE_H * ratio
443
  MOUTH_W = self.opt.MOUTH_W * ratio
444
  MOUTH_H = self.opt.MOUTH_H * ratio
445
+ bs, nc, _, _ = eyel.shape
446
+ eyel_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
447
+ eyer_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
448
+ nose_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
449
+ mouth_p = torch.ones((bs, nc, IMAGE_SIZE, IMAGE_SIZE)).to(self.device)
450
  for i in range(bs):
451
+ center = self.center[i] # x,y
452
+ eyel_p[i] = torch.nn.ConstantPad2d((int(center[0, 0] - EYE_W / 2),
453
+ IMAGE_SIZE - int(center[0, 0] + EYE_W / 2),
454
+ int(center[0, 1] - EYE_H / 2),
455
+ IMAGE_SIZE - int(center[0, 1] + EYE_H / 2)), padvalue)(eyel[i])
456
+ eyer_p[i] = torch.nn.ConstantPad2d((int(center[1, 0] - EYE_W / 2),
457
+ IMAGE_SIZE - int(center[1, 0] + EYE_W / 2),
458
+ int(center[1, 1] - EYE_H / 2),
459
+ IMAGE_SIZE - int(center[1, 1] + EYE_H / 2)), padvalue)(eyer[i])
460
+ nose_p[i] = torch.nn.ConstantPad2d((int(center[2, 0] - NOSE_W / 2),
461
+ IMAGE_SIZE - int(center[2, 0] + NOSE_W / 2),
462
+ int(center[2, 1] - NOSE_H / 2),
463
+ IMAGE_SIZE - int(center[2, 1] + NOSE_H / 2)), padvalue)(nose[i])
464
+ mouth_p[i] = torch.nn.ConstantPad2d((int(center[3, 0] - MOUTH_W / 2),
465
+ IMAGE_SIZE - int(center[3, 0] + MOUTH_W / 2),
466
+ int(center[3, 1] - MOUTH_H / 2),
467
+ IMAGE_SIZE - int(center[3, 1] + MOUTH_H / 2)), padvalue)(mouth[i])
468
  elif region_enm in [2]:
469
  eyel_p = eyel
470
  eyer_p = eyer
 
474
  eyes = torch.max(eyel_p, eyer_p)
475
  eye_nose = torch.max(eyes, nose_p)
476
  eye_nose_mouth = torch.max(eye_nose, mouth_p)
477
+ eye_nose_mouth_hair = torch.max(hair, eye_nose_mouth)
478
+ result = torch.max(bg, eye_nose_mouth_hair)
479
  else:
480
  eyes = torch.min(eyel_p, eyer_p)
481
  eye_nose = torch.min(eyes, nose_p)
482
  eye_nose_mouth = torch.min(eye_nose, mouth_p)
483
+ eye_nose_mouth_hair = torch.min(hair, eye_nose_mouth)
484
+ result = torch.min(bg, eye_nose_mouth_hair)
485
  return result
486
+
487
+ def partCombiner3(self, face, hair, maskf, maskh, comb_op=1):
488
  if comb_op == 0:
489
  # use max pooling, pad black etc
490
  padvalue = -1
 
496
  face = self.addone_with_mask(face, maskf)
497
  hair = self.addone_with_mask(hair, maskh)
498
  if comb_op == 0:
499
+ result = torch.max(face, hair)
500
  else:
501
+ result = torch.min(face, hair)
502
  return result
503
 
 
504
  def tocv2(ts):
505
+ img = (ts.numpy() / 2 + 0.5) * 255
506
  img = img.astype('uint8')
507
+ img = np.transpose(img, (1, 2, 0))
508
+ img = img[:, :, ::-1] # rgb->bgr
509
  return img
510
+
511
  def totor(img):
512
+ img = img[:, :, ::-1]
513
  tor = transforms.ToTensor()(img)
514
  tor = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(tor)
515
  return tor
516
+
517
+ def ContinuityForTest(self, real=0):
 
518
  # Patch-based
519
  self.get_patches()
520
  self.outputs = self.netRegressor(self.fake_B_patches)
 
529
  self.get_patches_real()
530
  self.outputs2 = self.netRegressor(self.real_B_patches)
531
  line_continuity2 = torch.mean(self.outputs2)
532
+ file_name = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch),
533
+ 'continuity-r.txt')
534
  message = '%s %.04f' % (self.image_paths[0], line_continuity2)
535
  with open(file_name, 'a+') as c_file:
536
  c_file.write(message)
537
  c_file.write('\n')
538
+
539
+ def getLocalParts(self, fakeAB):
540
+ bs, nc, _, _ = fakeAB.shape # dtype torch.float32
541
  ncr = int(nc / self.opt.output_nc)
542
+ if self.opt.region_enm in [0, 1]:
543
  ratio = self.opt.fineSize / 256
544
  EYE_H = self.opt.EYE_H * ratio
545
  EYE_W = self.opt.EYE_W * ratio
 
547
  NOSE_W = self.opt.NOSE_W * ratio
548
  MOUTH_H = self.opt.MOUTH_H * ratio
549
  MOUTH_W = self.opt.MOUTH_W * ratio
550
+ eyel = torch.ones((bs, nc, int(EYE_H), int(EYE_W))).to(self.device)
551
+ eyer = torch.ones((bs, nc, int(EYE_H), int(EYE_W))).to(self.device)
552
+ nose = torch.ones((bs, nc, int(NOSE_H), int(NOSE_W))).to(self.device)
553
+ mouth = torch.ones((bs, nc, int(MOUTH_H), int(MOUTH_W))).to(self.device)
554
  for i in range(bs):
555
  center = self.center[i]
556
+ eyel[i] = fakeAB[i, :, center[0, 1] - EYE_H / 2:center[0, 1] + EYE_H / 2,
557
+ center[0, 0] - EYE_W / 2:center[0, 0] + EYE_W / 2]
558
+ eyer[i] = fakeAB[i, :, center[1, 1] - EYE_H / 2:center[1, 1] + EYE_H / 2,
559
+ center[1, 0] - EYE_W / 2:center[1, 0] + EYE_W / 2]
560
+ nose[i] = fakeAB[i, :, center[2, 1] - NOSE_H / 2:center[2, 1] + NOSE_H / 2,
561
+ center[2, 0] - NOSE_W / 2:center[2, 0] + NOSE_W / 2]
562
+ mouth[i] = fakeAB[i, :, center[3, 1] - MOUTH_H / 2:center[3, 1] + MOUTH_H / 2,
563
+ center[3, 0] - MOUTH_W / 2:center[3, 0] + MOUTH_W / 2]
564
  elif self.opt.region_enm in [2]:
565
+ eyel = (fakeAB / 2 + 0.5) * self.cmaskel.repeat(1, ncr, 1, 1) * 2 - 1
566
+ eyer = (fakeAB / 2 + 0.5) * self.cmasker.repeat(1, ncr, 1, 1) * 2 - 1
567
+ nose = (fakeAB / 2 + 0.5) * self.cmask.repeat(1, ncr, 1, 1) * 2 - 1
568
+ mouth = (fakeAB / 2 + 0.5) * self.cmaskmo.repeat(1, ncr, 1, 1) * 2 - 1
569
+ hair = (fakeAB / 2 + 0.5) * self.mask.repeat(1, ncr, 1, 1) * self.mask2.repeat(1, ncr, 1, 1) * 2 - 1
570
+ bg = (fakeAB / 2 + 0.5) * (torch.ones(fakeAB.shape).to(self.device) - self.mask2.repeat(1, ncr, 1, 1)) * 2 - 1
571
  return eyel, eyer, nose, mouth, hair, bg
572
+
573
+ def getaddw(self, local_name):
574
  addw = 1
575
+ if local_name in ['DLEyel', 'DLEyer', 'eyel', 'eyer', 'DLFace', 'face']:
576
  addw = self.opt.addw_eye
577
  elif local_name in ['DLNose', 'nose']:
578
  addw = self.opt.addw_nose