File size: 3,769 Bytes
c38a591
a988bac
8de291e
 
 
 
 
b95fb21
 
a988bac
8de291e
a988bac
c38a591
a988bac
8de291e
 
5280321
 
 
 
 
 
 
 
8de291e
 
 
 
 
 
 
b95fb21
8de291e
 
 
b95fb21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de291e
 
 
b95fb21
 
8de291e
 
 
 
4a7ca2e
 
ba76dd6
b95fb21
8de291e
 
b95fb21
8de291e
 
 
 
 
 
b95fb21
8de291e
 
 
a988bac
8de291e
 
a988bac
8de291e
a988bac
8de291e
 
 
b95fb21
8de291e
 
 
a988bac
8de291e
 
 
 
 
 
 
 
a988bac
 
8de291e
 
 
ef7902e
8de291e
 
 
ef7902e
c38a591
ef7902e
8de291e
37451d1
8de291e
9b95409
b95fb21
 
8de291e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
#
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
import matplotlib.pyplot as plt
from matplotlib import gridspec
import numpy as np
import tensorflow as tf
from PIL import Image
from io import BytesIO
import requests

#

feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")

# urls = ["http://farm3.staticflickr.com/2523/3705549787_79049b1b6d_z.jpg",
#         "http://farm8.staticflickr.com/7012/6476201279_52db36af64_z.jpg",
#         "http://farm8.staticflickr.com/7180/6967423255_a3d65d5f6b_z.jpg",
#         "http://farm4.staticflickr.com/3563/3470840644_3378804bea_z.jpg",
#         "http://farm9.staticflickr.com/8388/8516454091_0ebdc1130a_z.jpg"]
# images = []
# for i in urls:
#     images.append(Image.open(requests.get(i, stream=True).raw))


# inputs = feature_extractor(images=image, return_tensors="pt")
# outputs = model(**inputs)
# logits = outputs.logits  # shape (batch_size, num_labels, height/4, width/4)

labels_list = []
with open("labels.txt", "r") as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray([
    [131, 162, 255],
    [180, 189, 255],
    [255, 227, 187],
    [255, 210, 143],
    [248, 117, 170],
    [255, 223, 223],
    [255, 246, 246],
    [174, 222, 252],
    [150, 194, 145],
    [255, 219, 170],
    [244, 238, 238],
    [50, 38, 83],
    [128, 98, 214],
    [146, 136, 248],
    [255, 210, 215],
    [255, 152, 152],
    [162, 103, 138],
    [63, 29, 56]
])

# with open(r"labels.txt", "r") as fp:
#     for line in fp:
#         labels_list.append(line[:-1])
#
# colormap = np.asarray(my_palette())


def greet(input_img):
    input_img = Image.open(BytesIO(input_img))

    inputs = feature_extractor(images=input_img, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits

    logits = logits.detach().numpy()

    logits = tf.transpose(logits.detach(), [0, 2, 3, 1]).numpy()
    logits = tf.image.resize(logits, input_img.size[::-1])

    seg = tf.math.argmax(logits, axis=-1)[0]
    color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
    for label, color in enumerate(colormap):
        color_seg[seg.numpy() == label, :] = color

    pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
    pred_img = pred_img.astype(np.uint8)

    # Draw the plot
    fig = draw_plot(pred_img, seg)
    return fig


def draw_plot(pred_img, seg):
    fig = plt.figure(figsize=(20, 15))

    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis("off")

    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    return fig


def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]


iface = gr.Interface(
    fn=greet,
    inputs="image",
    outputs=["plot"],
    examples=["image (1).jpg", "image (2).jpg", "image (3).jpg", "image (4).jpg", "image (5).jpg"],
    allow_flagging="never"
)
iface.launch(share=True)