File size: 15,879 Bytes
4096d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

#######################################################
# 1. Getting setup -- using our HF template
#######################################################

# We have a few options for how to proceed.  I'll start by showing the process in 
#   PL and then I'll move to my local installation of my template so that I can make 
#   sure I am pushing code at various intervals so folks can check that out.

# NOTE: during this process, you can click on "Always Rerun" for automatic updates.

# See the class notes on this with some photos for reference!
# **this has to be implemented!**


###################################################################
# 2. Review of where we got to last time, in template app.py file
###################################################################


# Let's start by copying things we did last time
import streamlit as st
import altair as alt

# Let's recall a plot that we made with Altair in Jupyterlab:
#    Make sure we copy the URL as well!
mobility_url = 'https://raw.githubusercontent.com/UIUC-iSchool-DataViz/is445_data/main/mobility.csv'

st.title('This is my fancy app for HuggingFace!!')

scatters = alt.Chart(mobility_url).mark_point().encode(
    x='Mobility:Q', # "Q for quantiative"
    #y='Population:Q',
    y=alt.Y('Population:Q', scale=alt.Scale(type='log')),
    color=alt.Color('Income:Q', scale=alt.Scale(scheme='sinebow'),bin=alt.Bin(maxbins=5))
)

st.header('More complex Dashboards')

brush = alt.selection_interval(encodings=['x','y'])

chart1 = alt.Chart(mobility_url).mark_rect().encode(
    alt.X("Student_teacher_ratio:Q", bin=alt.Bin(maxbins=10)),
    alt.Y("State:O"),
    alt.Color("count()")
).properties(
   height=400
).add_params(
        brush
)

chart2 = alt.Chart(mobility_url).mark_bar().encode(
    alt.X("Mobility:Q", bin=True,axis=alt.Axis(title='Mobility Score')),
    alt.Y('count()', axis=alt.Axis(title='Mobility Score Distribution'))
).transform_filter(
    brush
)

chart = (chart1.properties(width=300) | chart2.properties(width=300))

tab1, tab2 = st.tabs(["Mobility interactive", "Scatter plot"])

with tab1:
    st.altair_chart(chart, theme=None, use_container_width=True)
with tab2:
    st.altair_chart(scatters, theme=None, use_container_width=True)


################################################
# 3. Adding features, Pushing to HF
################################################

st.header('Requirements, README file, Pushing to HuggingFace')

### 3.1 Make a plot ###

# Let's say we want to add in some matplotlib plots from some data we read
#  in with Pandas.

import pandas as pd
df = pd.read_csv(mobility_url)

# There are a few ways to show the dataframe if we want our viewer to see the table:
#df
st.write(df)

# Now, let's plot with matplotlib:
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
df['Seg_income'].plot(kind='hist', ax=ax)
#plt.show() # but wait! this doesn't work!  

# We need to use the streamlit-specific way of showing matplotlib plots: https://docs.streamlit.io/develop/api-reference/charts/st.pyplot
st.pyplot(fig)

### 3.2 Push these changes to HF -- requirements.txt ###
# In order to push these changes to HF and have things actually show up we need to 
#   add the packages we've added to our requirements.txt file.

st.write('''The requirements.txt file contains all the packages needed 
         for our app to run.  These include (for our application):''')
st.code('''
streamlit==1.39.0
altair
numpy
pandas
matplotlib
            ''')

# NOTE: for any package you want to use in your app.py file, you must include it in 
#   the requirements.txt file!

# Note #2: we specified a version of streamlit so we can use some specific widgets

### 3.3 Push these changes to HF -- README.md ###

# While we're doing this, let's also take a look at the README.md file!

st.header('Build in HF: README.md & requirements.txt files')

st.code('''
---
title: Prep notebook -- My Streamlit App     
emoji: 🏢
colorFrom: blue   
colorTo: gray
sdk: streamlit
sdk_version: 1.39.0
app_file: app.py
pinned: false
license: mit
---
''')
st.write("Note: the sdk version has to match what is in your requirements.txt (and with whatever widgets you want to be able to use).")

# Some important things to note here:

st.write('Some important items to note about these:')
st.markdown('''
* the "emoji" is what will show up as an identifier on your homepage
* the sdk *must* be streamlit
* the "app_file" *must* link to the app file you are developing in
            ''')

################################################
# 4. TODO Quick intro to widgets
################################################

st.header('Widgets in Streamlit apps')

### 4.1 Widget basics: A few widget examples ###

st.markdown("""
These will be very similar to how we used the `ipywidgets` package in Jupyter notebooks.
         """)

st.markdown("""
We won't go over all of them, but you can check out the [list of widgets](https://docs.streamlit.io/develop/api-reference/widgets) 
            linked.
""")

st.markdown("""Let's try a few!""")

st.subheader('Feedback Widget')

st.markdown("""
For example, we could try the [feedback widget](https://docs.streamlit.io/develop/api-reference/widgets/st.feedback).
            """
)
st.markdown("""            
            If we check out the docs for this widget, we see some familiar looking functions like 
            `on_change` and the example they give looks very similar to an 
            "observation" function that we built before using widgets:
             """)

st.code(
"""
sentiment_mapping = ["one", "two", "three", "four", "five"]
selected = st.feedback("stars")
if selected is not None:
    st.markdown(f"You selected {sentiment_mapping[selected]} star(s).")
""")

# Let's give this a shot!

st.write("How great are you feeling right now?")
sentiment_mapping = ["one", "two", "three", "four", "five"] # map to these numers
selected = st.feedback("stars")
if selected is not None: # make sure we have a selection
    st.markdown(f"You selected {sentiment_mapping[selected]} star(s).")
    if selected < 1:
        st.markdown('Sorry to hear you are so sad :(')
    elif selected < 3:
        st.markdown('A solid medium is great!')
    else:
        st.markdown('Fantastic you are having such a great day!')

st.subheader('Radio Buttons')

st.markdown("""
Let's try out a [radio button](https://docs.streamlit.io/develop/api-reference/widgets/st.radio) example.
""")

favoriteViz = st.radio(
    "What's your visualization tool so far?",
    [":rainbow[Streamlit]", "vega-lite :sparkles:", "matplotlib :material/Home:"],
    captions=[
        "New and cool!",
        "So sparkly.",
        "Familiar and comforting.",
    ],
)

if favoriteViz == ":rainbow[Streamlit]":
    st.write("You selected Streamlit!")
else:
    st.write("You didn't select Streamlit but that's ok, Data Viz still likes you :grin:")

st.markdown("""
Note here that we made use of text highlight [colors](https://docs.streamlit.io/develop/api-reference/text/st.markdown) 
            and [emoji's](https://streamlit-emoji-shortcodes-streamlit-app-gwckff.streamlit.app/) 
            and [icons](https://fonts.google.com/icons?icon.set=Material+Symbols&icon.style=Rounded).
 """)

### 4.2 Connecting widgets with plots ###

st.subheader('Connecting Widgets and Plots')


st.markdown("""
There are actually [many types of charts](https://docs.streamlit.io/develop/api-reference/charts) 
            supported in Streamlit (including the Streamlit-based "Simple Charts"), 
            though we will just mainly be focusing on [Altair-related](https://docs.streamlit.io/develop/api-reference/charts/st.altair_chart) plots 
            and their interactivity options since we'll also be making use of these when 
            we move to building Jekyll webpages.
 """)

st.markdown("""Since `matplotlib` is relatively familiar though, let's do a quick 
            example using `pandas` and `matplotlib` to plot as 
            Streamlit [does support `matplotlib`](https://docs.streamlit.io/develop/api-reference/charts/st.pyplot) 
            as a plotting engine. """)

st.markdown("""First, let's just make a simple plot with `pandas` and `matplotlib`. 
            Let's re-do the matplotlib plots we did before with the mobility dataset 
            with some interactivity. """)

import pandas as pd
import numpy as np

# first, let's make a static plot:
st.write("We'll start with a static plot:")
# read in dataset
df = pd.read_csv("https://raw.githubusercontent.com/UIUC-iSchool-DataViz/is445_data/main/mobility.csv")

# make bins along student-teacher ratio
bins = np.linspace(df['Student_teacher_ratio'].min(),df['Student_teacher_ratio'].max(), 10)

# make pivot table
table = df.pivot_table(index='State', columns=pd.cut(df['Student_teacher_ratio'], bins), aggfunc='size')

# our plotting code before was:
st.code("""
import matplotlib.pyplot as plt

fig,ax = plt.subplots(figsize=(10,8))
ax.imshow(table.values, cmap='hot', interpolation='nearest')
ax.set_yticks(range(len(table.index)))
ax.set_yticklabels(table.index)
plt.show()
 """)

st.write("Let's translate it into something that will work with Streamlit:")

import matplotlib.pyplot as plt

fig,ax = plt.subplots() # this changed
ax.imshow(table.values, cmap='hot', interpolation='nearest')
ax.set_yticks(range(len(table.index)))
ax.set_yticklabels(table.index)

st.pyplot(fig) # this is different

st.markdown("""But this is too big!  The trick is that we can save this as a buffer: """)

from io import BytesIO

fig,ax = plt.subplots(figsize=(4,8)) # this changed
ax.imshow(table.values, cmap='hot', interpolation='nearest')
ax.set_yticks(range(len(table.index)))
ax.set_yticklabels(table.index)

buf = BytesIO()
fig.tight_layout()
fig.savefig(buf, format="png")
st.image(buf, width = 500) # can mess around with width, figsize/etc

st.write("Now, let's make this interactive.")
st.markdown("""We'll first use the [multiselect](https://docs.streamlit.io/develop/api-reference/widgets/st.multiselect) 
            tool in order to allow for multiple state selection. """)

# vertical alignment so they end up side by side
fig_col, controls_col = st.columns([2,1], vertical_alignment='center')

# multi-select
states_selected = controls_col.multiselect('Which states do you want to view?', table.index.values)

if len(states_selected) > 0:
    df_subset = df[df['State'].isin(states_selected)] # changed

    # make pivot table -- changed
    table_sub = df_subset.pivot_table(index='State', 
                                  columns=pd.cut(df_subset['Student_teacher_ratio'], bins), 
                                  aggfunc='size')

    base_size = 4
    # this resizing doesn't 100% work great
    #factor = len(table.index)*1.0/df['State'].nunique()
    #if factor == 0: factor = 1 # for non-selections
    #fig,ax = plt.subplots(figsize=(base_size,2*base_size*factor)) # this changed too for different size
    fig,ax = plt.subplots(figsize=(base_size,2*base_size)) # this changed too for different size
    # extent is (xmin, xmax, ymax (buttom), ymin (top))
    extent = [bins.min(), bins.max(), 0, len(table_sub.index)]
    ax.imshow(table_sub.values, cmap='hot', interpolation='nearest', 
              extent=extent)
    ax.set_yticks(range(len(table_sub.index)))
    ax.set_yticklabels(table_sub.index)
    #ax.set_xticklabels(bins)

    buf = BytesIO()
    fig.tight_layout()
    fig.savefig(buf, format="png")
    fig_col.image(buf, width = 400) # changed here to fit better
else:
    fig,ax = plt.subplots(figsize=(4,8)) # this changed
    extent = [bins.min(), bins.max(), 0, len(table.index)]
    ax.imshow(table.values, cmap='hot', interpolation='nearest', extent=extent)
    ax.set_yticks(range(len(table.index)))
    ax.set_yticklabels(table.index)
    #ax.set_xticklabels(bins)

    buf = BytesIO()
    fig.tight_layout()
    fig.savefig(buf, format="png")
    fig_col.image(buf, width = 500) # can mess around with width, figsize/etc


st.markdown(""" 
Now let's add more in by including a [range slider](https://docs.streamlit.io/develop/api-reference/widgets/st.slider) 
            widget.
""")

# vertical alignment so they end up side by side
fig_col2, controls_col2 = st.columns([2,1], vertical_alignment='center')

# multi-select
states_selected2 = controls_col2.multiselect('Which states do you want to view?', 
                                             table.index.values, key='unik1155') 
#                                            had to pass unique key to have double widgets with same value

# range slider -- added
student_teacher_ratio_range = controls_col2.slider("Range of student teacher ratio:", 
                                                   df['Student_teacher_ratio'].min(), 
                                                   df['Student_teacher_ratio'].max(), 
                                                   (0.25*df['Student_teacher_ratio'].mean(), 
                                                    0.75*df['Student_teacher_ratio'].mean()))

# note all the "2's" here, probably will just update the original one
if len(states_selected2) > 0: # here we set a default value for the slider, so no need to have a tag
    min_range = student_teacher_ratio_range[0] # added
    max_range = student_teacher_ratio_range[1] # added

    df_subset2 = df[(df['State'].isin(states_selected2)) & (df['Student_teacher_ratio'] >= min_range) & (df['Student_teacher_ratio']<=max_range)] # changed

    # just 10 bins over the full range --> changed
    bins2 = 10 #np.linspace(df['Student_teacher_ratio'].min(),df['Student_teacher_ratio'].max(), 10)

    # make pivot table -- changed
    table_sub2 = df_subset2.pivot_table(index='State', 
                                  columns=pd.cut(df_subset2['Student_teacher_ratio'], bins2), 
                                  aggfunc='size')

    base_size = 4
    fig2,ax2 = plt.subplots(figsize=(base_size,2*base_size)) # this changed too for different size
    extent2 = [df_subset2['Student_teacher_ratio'].min(), 
               df_subset2['Student_teacher_ratio'].max(), 
               0, len(table_sub2.index)]
    ax2.imshow(table_sub2.values, cmap='hot', interpolation='nearest', extent=extent2)
    ax2.set_yticks(range(len(table_sub2.index)))
    ax2.set_yticklabels(table_sub2.index)
    #ax2.set_xticklabels()

    buf2 = BytesIO()
    fig2.tight_layout()
    fig2.savefig(buf2, format="png")
    fig_col2.image(buf2, width = 400) # changed here to fit better
else:
    min_range = student_teacher_ratio_range[0] # added
    max_range = student_teacher_ratio_range[1] # added

    df_subset2 = df[(df['Student_teacher_ratio'] >= min_range) & (df['Student_teacher_ratio']<=max_range)] # changed

    # just 10 bins over the full range --> changed
    bins2 = 10 #np.linspace(df['Student_teacher_ratio'].min(),df['Student_teacher_ratio'].max(), 10)

    # make pivot table -- changed
    table_sub2 = df_subset2.pivot_table(index='State', 
                                  columns=pd.cut(df_subset2['Student_teacher_ratio'], bins2), 
                                  aggfunc='size')

    base_size = 4
    fig2,ax2 = plt.subplots(figsize=(base_size,2*base_size)) # this changed too for different size
    extent2 = [df_subset2['Student_teacher_ratio'].min(), 
               df_subset2['Student_teacher_ratio'].max(), 
               0, len(table_sub2.index)]
    ax2.imshow(table_sub2.values, cmap='hot', interpolation='nearest', extent=extent2)
    ax2.set_yticks(range(len(table_sub2.index)))
    ax2.set_yticklabels(table_sub2.index)
    #ax2.set_xticklabels()

    buf2 = BytesIO()
    fig2.tight_layout()
    fig2.savefig(buf2, format="png")
    fig_col2.image(buf2, width = 400) # changed here to fit better

st.header('Push final page to HF')
st.markdown("""When ready, do:""")
st.code("""
git add -A
git commit -m "final push of day 1"
git push
 """)