Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitattributes +1 -0
- LoadLLM.py +24 -0
- app.py +49 -0
- llama-2-7b-chat.Q5_K_M.gguf +3 -0
- requirements.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
llama-2-7b-chat.Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
LoadLLM.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.llms import LlamaCpp
|
2 |
+
from langchain.callbacks.manager import CallbackManager
|
3 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
4 |
+
|
5 |
+
model_path = 'llama-2-7b-chat.Q5_K_M.gguf'
|
6 |
+
|
7 |
+
|
8 |
+
class Loadllm:
|
9 |
+
@staticmethod
|
10 |
+
def load_llm():
|
11 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
12 |
+
# Prepare the LLM
|
13 |
+
|
14 |
+
llm = LlamaCpp(
|
15 |
+
model_path=model_path,
|
16 |
+
n_gpu_layers=40,
|
17 |
+
n_batch=512,
|
18 |
+
n_ctx=2048,
|
19 |
+
f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
|
20 |
+
callback_manager=callback_manager,
|
21 |
+
verbose=True,
|
22 |
+
)
|
23 |
+
|
24 |
+
return llm
|
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ctransformers import AutoModelForCausalLM
|
2 |
+
from flask import Flask, request, jsonify
|
3 |
+
import os
|
4 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
5 |
+
from LoadLLM import Loadllm
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
|
10 |
+
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
11 |
+
|
12 |
+
app = Flask(__name__)
|
13 |
+
|
14 |
+
@app.route('/')
|
15 |
+
def home():
|
16 |
+
return "API Server Running"
|
17 |
+
|
18 |
+
|
19 |
+
@app.route('/PromptBuddy', methods=['GET', 'POST'])
|
20 |
+
def PromptLLM():
|
21 |
+
pdf_file = request.files['file']
|
22 |
+
pdf_name = pdf_file.filename
|
23 |
+
user_prompt = request.form.get('query')
|
24 |
+
pdf_file.save(pdf_name)
|
25 |
+
|
26 |
+
|
27 |
+
loader = PyMuPDFLoader(file_path=pdf_name)
|
28 |
+
data = loader.load()
|
29 |
+
|
30 |
+
|
31 |
+
# Create embeddings using Sentence Transformers
|
32 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
|
33 |
+
|
34 |
+
# Create a FAISS vector store and save embeddings
|
35 |
+
db = FAISS.from_documents(data, embeddings)
|
36 |
+
db.save_local(DB_FAISS_PATH)
|
37 |
+
|
38 |
+
# Load the language model
|
39 |
+
llm = Loadllm.load_llm()
|
40 |
+
|
41 |
+
# Create a conversational chain
|
42 |
+
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
|
43 |
+
|
44 |
+
result = chain({"question": user_prompt, "chat_history":''})
|
45 |
+
return result["answer"]
|
46 |
+
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
app.run(debug=True)
|
llama-2-7b-chat.Q5_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0b99920cf47b94c78d2fb06a1eceb9ed795176dfa3f7feac64629f1b52b997f
|
3 |
+
size 4783156928
|
requirements.txt
ADDED
Binary file (3.35 kB). View file
|
|