hypeconqueror1 commited on
Commit
d9a9ebc
·
verified ·
1 Parent(s): 088200b

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +21 -1
main.py CHANGED
@@ -9,6 +9,18 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
9
  from langchain_community.vectorstores import FAISS
10
  from langchain.chains import ConversationalRetrievalChain
11
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  DB_FAISS_PATH = 'vectorstore/db_faiss'
13
 
14
  app = FastAPI()
@@ -44,7 +56,15 @@ async def PromptLLM(file: UploadFile = File(...)):
44
  chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
45
 
46
  result = chain({"question": "Summarise this report", "chat_history": ''})
47
- return result['answer']
 
 
 
 
 
 
 
 
48
 
49
 
50
 
 
9
  from langchain_community.vectorstores import FAISS
10
  from langchain.chains import ConversationalRetrievalChain
11
 
12
+ import google.generativeai as genai
13
+
14
+
15
+ GOOGLE_API_KEY = 'AIzaSyA13K0uJP5ti0R6eCy_ogK0UlqenbFfr_o'
16
+
17
+ genai.configure(api_key=GOOGLE_API_KEY)
18
+
19
+
20
+ model = genai.GenerativeModel('gemini-pro')
21
+ #response = model.generate_content(query)
22
+ #return response.text
23
+
24
  DB_FAISS_PATH = 'vectorstore/db_faiss'
25
 
26
  app = FastAPI()
 
56
  chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
57
 
58
  result = chain({"question": "Summarise this report", "chat_history": ''})
59
+ summary = result['answer']
60
+
61
+ response = model.generate_content(summary + "\nBased on the information provided, what are the key medical insights and considerations for this patient?")
62
+
63
+ ans = {"summary": summary, "insights": response.text}
64
+
65
+ return ans
66
+
67
+
68
 
69
 
70